src/share/vm/runtime/advancedThresholdPolicy.cpp

Tue, 11 Mar 2014 15:06:34 +0400

author
vlivanov
date
Tue, 11 Mar 2014 15:06:34 +0400
changeset 7179
7301840ea20e
parent 6649
7150b16fda52
child 7302
41dcdd636080
permissions
-rw-r--r--

8023461: Thread holding lock at safepoint that vm can block on: MethodCompileQueue_lock
Reviewed-by: kvn, iveresov

     1 /*
     2  * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "runtime/advancedThresholdPolicy.hpp"
    27 #include "runtime/simpleThresholdPolicy.inline.hpp"
    29 #ifdef TIERED
    30 // Print an event.
    31 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
    32                                              int bci, CompLevel level) {
    33   tty->print(" rate=");
    34   if (mh->prev_time() == 0) tty->print("n/a");
    35   else tty->print("%f", mh->rate());
    37   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
    38                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
    40 }
    42 void AdvancedThresholdPolicy::initialize() {
    43   // Turn on ergonomic compiler count selection
    44   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    45     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
    46   }
    47   int count = CICompilerCount;
    48   if (CICompilerCountPerCPU) {
    49     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    50     int log_cpu = log2_intptr(os::active_processor_count());
    51     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
    52     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
    53   }
    55   set_c1_count(MAX2(count / 3, 1));
    56   set_c2_count(MAX2(count - c1_count(), 1));
    57   FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
    59   // Some inlining tuning
    60 #ifdef X86
    61   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    62     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
    63   }
    64 #endif
    66 #ifdef SPARC
    67   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    68     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
    69   }
    70 #endif
    72   set_increase_threshold_at_ratio();
    73   set_start_time(os::javaTimeMillis());
    74 }
    76 // update_rate() is called from select_task() while holding a compile queue lock.
    77 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
    78   // Skip update if counters are absent.
    79   // Can't allocate them since we are holding compile queue lock.
    80   if (m->method_counters() == NULL)  return;
    82   if (is_old(m)) {
    83     // We don't remove old methods from the queue,
    84     // so we can just zero the rate.
    85     m->set_rate(0);
    86     return;
    87   }
    89   // We don't update the rate if we've just came out of a safepoint.
    90   // delta_s is the time since last safepoint in milliseconds.
    91   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
    92   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
    93   // How many events were there since the last time?
    94   int event_count = m->invocation_count() + m->backedge_count();
    95   int delta_e = event_count - m->prev_event_count();
    97   // We should be running for at least 1ms.
    98   if (delta_s >= TieredRateUpdateMinTime) {
    99     // And we must've taken the previous point at least 1ms before.
   100     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
   101       m->set_prev_time(t);
   102       m->set_prev_event_count(event_count);
   103       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
   104     } else {
   105       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
   106         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
   107         m->set_rate(0);
   108       }
   109     }
   110   }
   111 }
   113 // Check if this method has been stale from a given number of milliseconds.
   114 // See select_task().
   115 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
   116   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
   117   jlong delta_t = t - m->prev_time();
   118   if (delta_t > timeout && delta_s > timeout) {
   119     int event_count = m->invocation_count() + m->backedge_count();
   120     int delta_e = event_count - m->prev_event_count();
   121     // Return true if there were no events.
   122     return delta_e == 0;
   123   }
   124   return false;
   125 }
   127 // We don't remove old methods from the compile queue even if they have
   128 // very low activity. See select_task().
   129 bool AdvancedThresholdPolicy::is_old(Method* method) {
   130   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
   131 }
   133 double AdvancedThresholdPolicy::weight(Method* method) {
   134   return (method->rate() + 1) * ((method->invocation_count() + 1) *  (method->backedge_count() + 1));
   135 }
   137 // Apply heuristics and return true if x should be compiled before y
   138 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
   139   if (x->highest_comp_level() > y->highest_comp_level()) {
   140     // recompilation after deopt
   141     return true;
   142   } else
   143     if (x->highest_comp_level() == y->highest_comp_level()) {
   144       if (weight(x) > weight(y)) {
   145         return true;
   146       }
   147     }
   148   return false;
   149 }
   151 // Is method profiled enough?
   152 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
   153   MethodData* mdo = method->method_data();
   154   if (mdo != NULL) {
   155     int i = mdo->invocation_count_delta();
   156     int b = mdo->backedge_count_delta();
   157     return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
   158   }
   159   return false;
   160 }
   162 // Called with the queue locked and with at least one element
   163 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
   164   CompileTask *max_task = NULL;
   165   Method* max_method = NULL;
   166   jlong t = os::javaTimeMillis();
   167   // Iterate through the queue and find a method with a maximum rate.
   168   for (CompileTask* task = compile_queue->first(); task != NULL;) {
   169     CompileTask* next_task = task->next();
   170     Method* method = task->method();
   171     update_rate(t, method);
   172     if (max_task == NULL) {
   173       max_task = task;
   174       max_method = method;
   175     } else {
   176       // If a method has been stale for some time, remove it from the queue.
   177       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
   178         if (PrintTieredEvents) {
   179           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
   180         }
   181         compile_queue->remove_and_mark_stale(task);
   182         method->clear_queued_for_compilation();
   183         task = next_task;
   184         continue;
   185       }
   187       // Select a method with a higher rate
   188       if (compare_methods(method, max_method)) {
   189         max_task = task;
   190         max_method = method;
   191       }
   192     }
   193     task = next_task;
   194   }
   196   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
   197       && is_method_profiled(max_method)) {
   198     max_task->set_comp_level(CompLevel_limited_profile);
   199     if (PrintTieredEvents) {
   200       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
   201     }
   202   }
   204   return max_task;
   205 }
   207 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
   208   double queue_size = CompileBroker::queue_size(level);
   209   int comp_count = compiler_count(level);
   210   double k = queue_size / (feedback_k * comp_count) + 1;
   212   // Increase C1 compile threshold when the code cache is filled more
   213   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
   214   // The main intention is to keep enough free space for C2 compiled code
   215   // to achieve peak performance if the code cache is under stress.
   216   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
   217     double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
   218     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
   219       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
   220     }
   221   }
   222   return k;
   223 }
   225 // Call and loop predicates determine whether a transition to a higher
   226 // compilation level should be performed (pointers to predicate functions
   227 // are passed to common()).
   228 // Tier?LoadFeedback is basically a coefficient that determines of
   229 // how many methods per compiler thread can be in the queue before
   230 // the threshold values double.
   231 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
   232   switch(cur_level) {
   233   case CompLevel_none:
   234   case CompLevel_limited_profile: {
   235     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   236     return loop_predicate_helper<CompLevel_none>(i, b, k);
   237   }
   238   case CompLevel_full_profile: {
   239     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   240     return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
   241   }
   242   default:
   243     return true;
   244   }
   245 }
   247 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
   248   switch(cur_level) {
   249   case CompLevel_none:
   250   case CompLevel_limited_profile: {
   251     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   252     return call_predicate_helper<CompLevel_none>(i, b, k);
   253   }
   254   case CompLevel_full_profile: {
   255     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   256     return call_predicate_helper<CompLevel_full_profile>(i, b, k);
   257   }
   258   default:
   259     return true;
   260   }
   261 }
   263 // If a method is old enough and is still in the interpreter we would want to
   264 // start profiling without waiting for the compiled method to arrive.
   265 // We also take the load on compilers into the account.
   266 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
   267   if (cur_level == CompLevel_none &&
   268       CompileBroker::queue_size(CompLevel_full_optimization) <=
   269       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   270     int i = method->invocation_count();
   271     int b = method->backedge_count();
   272     double k = Tier0ProfilingStartPercentage / 100.0;
   273     return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
   274   }
   275   return false;
   276 }
   278 // Inlining control: if we're compiling a profiled method with C1 and the callee
   279 // is known to have OSRed in a C2 version, don't inline it.
   280 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
   281   CompLevel comp_level = (CompLevel)env->comp_level();
   282   if (comp_level == CompLevel_full_profile ||
   283       comp_level == CompLevel_limited_profile) {
   284     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
   285   }
   286   return false;
   287 }
   289 // Create MDO if necessary.
   290 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
   291   if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
   292   if (mh->method_data() == NULL) {
   293     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
   294   }
   295 }
   298 /*
   299  * Method states:
   300  *   0 - interpreter (CompLevel_none)
   301  *   1 - pure C1 (CompLevel_simple)
   302  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
   303  *   3 - C1 with full profiling (CompLevel_full_profile)
   304  *   4 - C2 (CompLevel_full_optimization)
   305  *
   306  * Common state transition patterns:
   307  * a. 0 -> 3 -> 4.
   308  *    The most common path. But note that even in this straightforward case
   309  *    profiling can start at level 0 and finish at level 3.
   310  *
   311  * b. 0 -> 2 -> 3 -> 4.
   312  *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
   313  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
   314  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
   315  *
   316  * c. 0 -> (3->2) -> 4.
   317  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
   318  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
   319  *    of the method to 2, because it'll allow it to run much faster without full profiling while c2
   320  *    is compiling.
   321  *
   322  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
   323  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
   324  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
   325  *
   326  * e. 0 -> 4.
   327  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
   328  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
   329  *    the compiled version already exists).
   330  *
   331  * Note that since state 0 can be reached from any other state via deoptimization different loops
   332  * are possible.
   333  *
   334  */
   336 // Common transition function. Given a predicate determines if a method should transition to another level.
   337 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
   338   CompLevel next_level = cur_level;
   339   int i = method->invocation_count();
   340   int b = method->backedge_count();
   342   if (is_trivial(method)) {
   343     next_level = CompLevel_simple;
   344   } else {
   345     switch(cur_level) {
   346     case CompLevel_none:
   347       // If we were at full profile level, would we switch to full opt?
   348       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
   349         next_level = CompLevel_full_optimization;
   350       } else if ((this->*p)(i, b, cur_level)) {
   351         // C1-generated fully profiled code is about 30% slower than the limited profile
   352         // code that has only invocation and backedge counters. The observation is that
   353         // if C2 queue is large enough we can spend too much time in the fully profiled code
   354         // while waiting for C2 to pick the method from the queue. To alleviate this problem
   355         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
   356         // we choose to compile a limited profiled version and then recompile with full profiling
   357         // when the load on C2 goes down.
   358         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
   359                                  Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   360           next_level = CompLevel_limited_profile;
   361         } else {
   362           next_level = CompLevel_full_profile;
   363         }
   364       }
   365       break;
   366     case CompLevel_limited_profile:
   367       if (is_method_profiled(method)) {
   368         // Special case: we got here because this method was fully profiled in the interpreter.
   369         next_level = CompLevel_full_optimization;
   370       } else {
   371         MethodData* mdo = method->method_data();
   372         if (mdo != NULL) {
   373           if (mdo->would_profile()) {
   374             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
   375                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
   376                                      (this->*p)(i, b, cur_level))) {
   377               next_level = CompLevel_full_profile;
   378             }
   379           } else {
   380             next_level = CompLevel_full_optimization;
   381           }
   382         }
   383       }
   384       break;
   385     case CompLevel_full_profile:
   386       {
   387         MethodData* mdo = method->method_data();
   388         if (mdo != NULL) {
   389           if (mdo->would_profile()) {
   390             int mdo_i = mdo->invocation_count_delta();
   391             int mdo_b = mdo->backedge_count_delta();
   392             if ((this->*p)(mdo_i, mdo_b, cur_level)) {
   393               next_level = CompLevel_full_optimization;
   394             }
   395           } else {
   396             next_level = CompLevel_full_optimization;
   397           }
   398         }
   399       }
   400       break;
   401     }
   402   }
   403   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
   404 }
   406 // Determine if a method should be compiled with a normal entry point at a different level.
   407 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
   408   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
   409                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
   410   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
   412   // If OSR method level is greater than the regular method level, the levels should be
   413   // equalized by raising the regular method level in order to avoid OSRs during each
   414   // invocation of the method.
   415   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
   416     MethodData* mdo = method->method_data();
   417     guarantee(mdo != NULL, "MDO should not be NULL");
   418     if (mdo->invocation_count() >= 1) {
   419       next_level = CompLevel_full_optimization;
   420     }
   421   } else {
   422     next_level = MAX2(osr_level, next_level);
   423   }
   424   return next_level;
   425 }
   427 // Determine if we should do an OSR compilation of a given method.
   428 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
   429   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
   430   if (cur_level == CompLevel_none) {
   431     // If there is a live OSR method that means that we deopted to the interpreter
   432     // for the transition.
   433     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
   434     if (osr_level > CompLevel_none) {
   435       return osr_level;
   436     }
   437   }
   438   return next_level;
   439 }
   441 // Update the rate and submit compile
   442 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
   443   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
   444   update_rate(os::javaTimeMillis(), mh());
   445   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
   446 }
   448 // Handle the invocation event.
   449 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
   450                                                       CompLevel level, nmethod* nm, JavaThread* thread) {
   451   if (should_create_mdo(mh(), level)) {
   452     create_mdo(mh, thread);
   453   }
   454   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
   455     CompLevel next_level = call_event(mh(), level);
   456     if (next_level != level) {
   457       compile(mh, InvocationEntryBci, next_level, thread);
   458     }
   459   }
   460 }
   462 // Handle the back branch event. Notice that we can compile the method
   463 // with a regular entry from here.
   464 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
   465                                                        int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
   466   if (should_create_mdo(mh(), level)) {
   467     create_mdo(mh, thread);
   468   }
   469   // Check if MDO should be created for the inlined method
   470   if (should_create_mdo(imh(), level)) {
   471     create_mdo(imh, thread);
   472   }
   474   if (is_compilation_enabled()) {
   475     CompLevel next_osr_level = loop_event(imh(), level);
   476     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
   477     // At the very least compile the OSR version
   478     if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_osr_level != level) {
   479       compile(imh, bci, next_osr_level, thread);
   480     }
   482     // Use loop event as an opportunity to also check if there's been
   483     // enough calls.
   484     CompLevel cur_level, next_level;
   485     if (mh() != imh()) { // If there is an enclosing method
   486       guarantee(nm != NULL, "Should have nmethod here");
   487       cur_level = comp_level(mh());
   488       next_level = call_event(mh(), cur_level);
   490       if (max_osr_level == CompLevel_full_optimization) {
   491         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
   492         bool make_not_entrant = false;
   493         if (nm->is_osr_method()) {
   494           // This is an osr method, just make it not entrant and recompile later if needed
   495           make_not_entrant = true;
   496         } else {
   497           if (next_level != CompLevel_full_optimization) {
   498             // next_level is not full opt, so we need to recompile the
   499             // enclosing method without the inlinee
   500             cur_level = CompLevel_none;
   501             make_not_entrant = true;
   502           }
   503         }
   504         if (make_not_entrant) {
   505           if (PrintTieredEvents) {
   506             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
   507             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
   508           }
   509           nm->make_not_entrant();
   510         }
   511       }
   512       if (!CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
   513         // Fix up next_level if necessary to avoid deopts
   514         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
   515           next_level = CompLevel_full_profile;
   516         }
   517         if (cur_level != next_level) {
   518           compile(mh, InvocationEntryBci, next_level, thread);
   519         }
   520       }
   521     } else {
   522       cur_level = comp_level(imh());
   523       next_level = call_event(imh(), cur_level);
   524       if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_level != cur_level) {
   525         compile(imh, InvocationEntryBci, next_level, thread);
   526       }
   527     }
   528   }
   529 }
   531 #endif // TIERED

mercurial