src/share/vm/runtime/advancedThresholdPolicy.cpp

Mon, 14 Apr 2014 08:24:28 +0200

author
anoll
date
Mon, 14 Apr 2014 08:24:28 +0200
changeset 6649
7150b16fda52
parent 5151
91eba9f82325
child 6876
710a3c8b516e
child 7179
7301840ea20e
permissions
-rw-r--r--

8029436: CICompilerCount is not updated when the number of compiler threads is adjusted to the number of CPUs
Summary: CICompilerCount is updated in AdvancedThresholdPolicy::initialize, SimpleThresholdPolicy::initialize and NonTieredCompPolicy::initialize. A warning is printed if the usersets both, CICompilerCount and CICompilerCountPerCPU.
Reviewed-by: kvn, twisti
Contributed-by: Tobias Hartmann <tobias.hartmann@oracle.com>

     1 /*
     2  * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "runtime/advancedThresholdPolicy.hpp"
    27 #include "runtime/simpleThresholdPolicy.inline.hpp"
    29 #ifdef TIERED
    30 // Print an event.
    31 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
    32                                              int bci, CompLevel level) {
    33   tty->print(" rate=");
    34   if (mh->prev_time() == 0) tty->print("n/a");
    35   else tty->print("%f", mh->rate());
    37   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
    38                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
    40 }
    42 void AdvancedThresholdPolicy::initialize() {
    43   // Turn on ergonomic compiler count selection
    44   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    45     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
    46   }
    47   int count = CICompilerCount;
    48   if (CICompilerCountPerCPU) {
    49     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    50     int log_cpu = log2_intptr(os::active_processor_count());
    51     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
    52     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
    53   }
    55   set_c1_count(MAX2(count / 3, 1));
    56   set_c2_count(MAX2(count - c1_count(), 1));
    57   FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
    59   // Some inlining tuning
    60 #ifdef X86
    61   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    62     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
    63   }
    64 #endif
    66 #ifdef SPARC
    67   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    68     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
    69   }
    70 #endif
    72   set_increase_threshold_at_ratio();
    73   set_start_time(os::javaTimeMillis());
    74 }
    76 // update_rate() is called from select_task() while holding a compile queue lock.
    77 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
    78   JavaThread* THREAD = JavaThread::current();
    79   if (is_old(m)) {
    80     // We don't remove old methods from the queue,
    81     // so we can just zero the rate.
    82     m->set_rate(0, THREAD);
    83     return;
    84   }
    86   // We don't update the rate if we've just came out of a safepoint.
    87   // delta_s is the time since last safepoint in milliseconds.
    88   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
    89   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
    90   // How many events were there since the last time?
    91   int event_count = m->invocation_count() + m->backedge_count();
    92   int delta_e = event_count - m->prev_event_count();
    94   // We should be running for at least 1ms.
    95   if (delta_s >= TieredRateUpdateMinTime) {
    96     // And we must've taken the previous point at least 1ms before.
    97     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
    98       m->set_prev_time(t, THREAD);
    99       m->set_prev_event_count(event_count, THREAD);
   100       m->set_rate((float)delta_e / (float)delta_t, THREAD); // Rate is events per millisecond
   101     } else
   102       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
   103         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
   104         m->set_rate(0, THREAD);
   105       }
   106   }
   107 }
   109 // Check if this method has been stale from a given number of milliseconds.
   110 // See select_task().
   111 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
   112   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
   113   jlong delta_t = t - m->prev_time();
   114   if (delta_t > timeout && delta_s > timeout) {
   115     int event_count = m->invocation_count() + m->backedge_count();
   116     int delta_e = event_count - m->prev_event_count();
   117     // Return true if there were no events.
   118     return delta_e == 0;
   119   }
   120   return false;
   121 }
   123 // We don't remove old methods from the compile queue even if they have
   124 // very low activity. See select_task().
   125 bool AdvancedThresholdPolicy::is_old(Method* method) {
   126   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
   127 }
   129 double AdvancedThresholdPolicy::weight(Method* method) {
   130   return (method->rate() + 1) * ((method->invocation_count() + 1) *  (method->backedge_count() + 1));
   131 }
   133 // Apply heuristics and return true if x should be compiled before y
   134 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
   135   if (x->highest_comp_level() > y->highest_comp_level()) {
   136     // recompilation after deopt
   137     return true;
   138   } else
   139     if (x->highest_comp_level() == y->highest_comp_level()) {
   140       if (weight(x) > weight(y)) {
   141         return true;
   142       }
   143     }
   144   return false;
   145 }
   147 // Is method profiled enough?
   148 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
   149   MethodData* mdo = method->method_data();
   150   if (mdo != NULL) {
   151     int i = mdo->invocation_count_delta();
   152     int b = mdo->backedge_count_delta();
   153     return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
   154   }
   155   return false;
   156 }
   158 // Called with the queue locked and with at least one element
   159 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
   160   CompileTask *max_task = NULL;
   161   Method* max_method = NULL;
   162   jlong t = os::javaTimeMillis();
   163   // Iterate through the queue and find a method with a maximum rate.
   164   for (CompileTask* task = compile_queue->first(); task != NULL;) {
   165     CompileTask* next_task = task->next();
   166     Method* method = task->method();
   167     MethodData* mdo = method->method_data();
   168     update_rate(t, method);
   169     if (max_task == NULL) {
   170       max_task = task;
   171       max_method = method;
   172     } else {
   173       // If a method has been stale for some time, remove it from the queue.
   174       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
   175         if (PrintTieredEvents) {
   176           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
   177         }
   178         CompileTaskWrapper ctw(task); // Frees the task
   179         compile_queue->remove(task);
   180         method->clear_queued_for_compilation();
   181         task = next_task;
   182         continue;
   183       }
   185       // Select a method with a higher rate
   186       if (compare_methods(method, max_method)) {
   187         max_task = task;
   188         max_method = method;
   189       }
   190     }
   191     task = next_task;
   192   }
   194   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
   195       && is_method_profiled(max_method)) {
   196     max_task->set_comp_level(CompLevel_limited_profile);
   197     if (PrintTieredEvents) {
   198       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
   199     }
   200   }
   202   return max_task;
   203 }
   205 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
   206   double queue_size = CompileBroker::queue_size(level);
   207   int comp_count = compiler_count(level);
   208   double k = queue_size / (feedback_k * comp_count) + 1;
   210   // Increase C1 compile threshold when the code cache is filled more
   211   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
   212   // The main intention is to keep enough free space for C2 compiled code
   213   // to achieve peak performance if the code cache is under stress.
   214   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
   215     double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
   216     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
   217       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
   218     }
   219   }
   220   return k;
   221 }
   223 // Call and loop predicates determine whether a transition to a higher
   224 // compilation level should be performed (pointers to predicate functions
   225 // are passed to common()).
   226 // Tier?LoadFeedback is basically a coefficient that determines of
   227 // how many methods per compiler thread can be in the queue before
   228 // the threshold values double.
   229 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
   230   switch(cur_level) {
   231   case CompLevel_none:
   232   case CompLevel_limited_profile: {
   233     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   234     return loop_predicate_helper<CompLevel_none>(i, b, k);
   235   }
   236   case CompLevel_full_profile: {
   237     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   238     return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
   239   }
   240   default:
   241     return true;
   242   }
   243 }
   245 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
   246   switch(cur_level) {
   247   case CompLevel_none:
   248   case CompLevel_limited_profile: {
   249     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   250     return call_predicate_helper<CompLevel_none>(i, b, k);
   251   }
   252   case CompLevel_full_profile: {
   253     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   254     return call_predicate_helper<CompLevel_full_profile>(i, b, k);
   255   }
   256   default:
   257     return true;
   258   }
   259 }
   261 // If a method is old enough and is still in the interpreter we would want to
   262 // start profiling without waiting for the compiled method to arrive.
   263 // We also take the load on compilers into the account.
   264 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
   265   if (cur_level == CompLevel_none &&
   266       CompileBroker::queue_size(CompLevel_full_optimization) <=
   267       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   268     int i = method->invocation_count();
   269     int b = method->backedge_count();
   270     double k = Tier0ProfilingStartPercentage / 100.0;
   271     return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
   272   }
   273   return false;
   274 }
   276 // Inlining control: if we're compiling a profiled method with C1 and the callee
   277 // is known to have OSRed in a C2 version, don't inline it.
   278 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
   279   CompLevel comp_level = (CompLevel)env->comp_level();
   280   if (comp_level == CompLevel_full_profile ||
   281       comp_level == CompLevel_limited_profile) {
   282     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
   283   }
   284   return false;
   285 }
   287 // Create MDO if necessary.
   288 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
   289   if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
   290   if (mh->method_data() == NULL) {
   291     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
   292   }
   293 }
   296 /*
   297  * Method states:
   298  *   0 - interpreter (CompLevel_none)
   299  *   1 - pure C1 (CompLevel_simple)
   300  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
   301  *   3 - C1 with full profiling (CompLevel_full_profile)
   302  *   4 - C2 (CompLevel_full_optimization)
   303  *
   304  * Common state transition patterns:
   305  * a. 0 -> 3 -> 4.
   306  *    The most common path. But note that even in this straightforward case
   307  *    profiling can start at level 0 and finish at level 3.
   308  *
   309  * b. 0 -> 2 -> 3 -> 4.
   310  *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
   311  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
   312  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
   313  *
   314  * c. 0 -> (3->2) -> 4.
   315  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
   316  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
   317  *    of the method to 2, because it'll allow it to run much faster without full profiling while c2
   318  *    is compiling.
   319  *
   320  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
   321  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
   322  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
   323  *
   324  * e. 0 -> 4.
   325  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
   326  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
   327  *    the compiled version already exists).
   328  *
   329  * Note that since state 0 can be reached from any other state via deoptimization different loops
   330  * are possible.
   331  *
   332  */
   334 // Common transition function. Given a predicate determines if a method should transition to another level.
   335 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
   336   CompLevel next_level = cur_level;
   337   int i = method->invocation_count();
   338   int b = method->backedge_count();
   340   if (is_trivial(method)) {
   341     next_level = CompLevel_simple;
   342   } else {
   343     switch(cur_level) {
   344     case CompLevel_none:
   345       // If we were at full profile level, would we switch to full opt?
   346       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
   347         next_level = CompLevel_full_optimization;
   348       } else if ((this->*p)(i, b, cur_level)) {
   349         // C1-generated fully profiled code is about 30% slower than the limited profile
   350         // code that has only invocation and backedge counters. The observation is that
   351         // if C2 queue is large enough we can spend too much time in the fully profiled code
   352         // while waiting for C2 to pick the method from the queue. To alleviate this problem
   353         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
   354         // we choose to compile a limited profiled version and then recompile with full profiling
   355         // when the load on C2 goes down.
   356         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
   357                                  Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   358           next_level = CompLevel_limited_profile;
   359         } else {
   360           next_level = CompLevel_full_profile;
   361         }
   362       }
   363       break;
   364     case CompLevel_limited_profile:
   365       if (is_method_profiled(method)) {
   366         // Special case: we got here because this method was fully profiled in the interpreter.
   367         next_level = CompLevel_full_optimization;
   368       } else {
   369         MethodData* mdo = method->method_data();
   370         if (mdo != NULL) {
   371           if (mdo->would_profile()) {
   372             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
   373                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
   374                                      (this->*p)(i, b, cur_level))) {
   375               next_level = CompLevel_full_profile;
   376             }
   377           } else {
   378             next_level = CompLevel_full_optimization;
   379           }
   380         }
   381       }
   382       break;
   383     case CompLevel_full_profile:
   384       {
   385         MethodData* mdo = method->method_data();
   386         if (mdo != NULL) {
   387           if (mdo->would_profile()) {
   388             int mdo_i = mdo->invocation_count_delta();
   389             int mdo_b = mdo->backedge_count_delta();
   390             if ((this->*p)(mdo_i, mdo_b, cur_level)) {
   391               next_level = CompLevel_full_optimization;
   392             }
   393           } else {
   394             next_level = CompLevel_full_optimization;
   395           }
   396         }
   397       }
   398       break;
   399     }
   400   }
   401   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
   402 }
   404 // Determine if a method should be compiled with a normal entry point at a different level.
   405 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
   406   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
   407                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
   408   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
   410   // If OSR method level is greater than the regular method level, the levels should be
   411   // equalized by raising the regular method level in order to avoid OSRs during each
   412   // invocation of the method.
   413   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
   414     MethodData* mdo = method->method_data();
   415     guarantee(mdo != NULL, "MDO should not be NULL");
   416     if (mdo->invocation_count() >= 1) {
   417       next_level = CompLevel_full_optimization;
   418     }
   419   } else {
   420     next_level = MAX2(osr_level, next_level);
   421   }
   422   return next_level;
   423 }
   425 // Determine if we should do an OSR compilation of a given method.
   426 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
   427   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
   428   if (cur_level == CompLevel_none) {
   429     // If there is a live OSR method that means that we deopted to the interpreter
   430     // for the transition.
   431     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
   432     if (osr_level > CompLevel_none) {
   433       return osr_level;
   434     }
   435   }
   436   return next_level;
   437 }
   439 // Update the rate and submit compile
   440 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
   441   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
   442   update_rate(os::javaTimeMillis(), mh());
   443   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
   444 }
   446 // Handle the invocation event.
   447 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
   448                                                       CompLevel level, nmethod* nm, JavaThread* thread) {
   449   if (should_create_mdo(mh(), level)) {
   450     create_mdo(mh, thread);
   451   }
   452   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
   453     CompLevel next_level = call_event(mh(), level);
   454     if (next_level != level) {
   455       compile(mh, InvocationEntryBci, next_level, thread);
   456     }
   457   }
   458 }
   460 // Handle the back branch event. Notice that we can compile the method
   461 // with a regular entry from here.
   462 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
   463                                                        int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
   464   if (should_create_mdo(mh(), level)) {
   465     create_mdo(mh, thread);
   466   }
   467   // Check if MDO should be created for the inlined method
   468   if (should_create_mdo(imh(), level)) {
   469     create_mdo(imh, thread);
   470   }
   472   if (is_compilation_enabled()) {
   473     CompLevel next_osr_level = loop_event(imh(), level);
   474     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
   475     // At the very least compile the OSR version
   476     if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_osr_level != level) {
   477       compile(imh, bci, next_osr_level, thread);
   478     }
   480     // Use loop event as an opportunity to also check if there's been
   481     // enough calls.
   482     CompLevel cur_level, next_level;
   483     if (mh() != imh()) { // If there is an enclosing method
   484       guarantee(nm != NULL, "Should have nmethod here");
   485       cur_level = comp_level(mh());
   486       next_level = call_event(mh(), cur_level);
   488       if (max_osr_level == CompLevel_full_optimization) {
   489         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
   490         bool make_not_entrant = false;
   491         if (nm->is_osr_method()) {
   492           // This is an osr method, just make it not entrant and recompile later if needed
   493           make_not_entrant = true;
   494         } else {
   495           if (next_level != CompLevel_full_optimization) {
   496             // next_level is not full opt, so we need to recompile the
   497             // enclosing method without the inlinee
   498             cur_level = CompLevel_none;
   499             make_not_entrant = true;
   500           }
   501         }
   502         if (make_not_entrant) {
   503           if (PrintTieredEvents) {
   504             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
   505             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
   506           }
   507           nm->make_not_entrant();
   508         }
   509       }
   510       if (!CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
   511         // Fix up next_level if necessary to avoid deopts
   512         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
   513           next_level = CompLevel_full_profile;
   514         }
   515         if (cur_level != next_level) {
   516           compile(mh, InvocationEntryBci, next_level, thread);
   517         }
   518       }
   519     } else {
   520       cur_level = comp_level(imh());
   521       next_level = call_event(imh(), cur_level);
   522       if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_level != cur_level) {
   523         compile(imh, InvocationEntryBci, next_level, thread);
   524       }
   525     }
   526   }
   527 }
   529 #endif // TIERED

mercurial