src/share/vm/runtime/safepoint.cpp

Thu, 24 Nov 2016 11:27:57 +0100

author
tschatzl
date
Thu, 24 Nov 2016 11:27:57 +0100
changeset 9982
72053ed6f8d4
parent 9896
1b8c45b8216a
child 9931
fd44df5e3bc3
permissions
-rw-r--r--

8057003: Large reference arrays cause extremely long synchronization times
Summary: Slice large object arrays into parts so that the synchronization of marking threads with an STW pause request does not take long.
Reviewed-by: ehelin, pliden
Contributed-by: maoliang.ml@alibaba-inc.com

     1 /*
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/codeCache.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "interpreter/interpreter.hpp"
    35 #include "jfr/jfrEvents.hpp"
    36 #include "memory/resourceArea.hpp"
    37 #include "memory/universe.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "oops/symbol.hpp"
    40 #include "runtime/compilationPolicy.hpp"
    41 #include "runtime/deoptimization.hpp"
    42 #include "runtime/frame.inline.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/mutexLocker.hpp"
    45 #include "runtime/orderAccess.inline.hpp"
    46 #include "runtime/osThread.hpp"
    47 #include "runtime/safepoint.hpp"
    48 #include "runtime/signature.hpp"
    49 #include "runtime/stubCodeGenerator.hpp"
    50 #include "runtime/stubRoutines.hpp"
    51 #include "runtime/sweeper.hpp"
    52 #include "runtime/synchronizer.hpp"
    53 #include "runtime/thread.inline.hpp"
    54 #include "services/runtimeService.hpp"
    55 #include "utilities/events.hpp"
    56 #include "utilities/macros.hpp"
    57 #ifdef TARGET_ARCH_x86
    58 # include "nativeInst_x86.hpp"
    59 # include "vmreg_x86.inline.hpp"
    60 #endif
    61 #ifdef TARGET_ARCH_sparc
    62 # include "nativeInst_sparc.hpp"
    63 # include "vmreg_sparc.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_zero
    66 # include "nativeInst_zero.hpp"
    67 # include "vmreg_zero.inline.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_arm
    70 # include "nativeInst_arm.hpp"
    71 # include "vmreg_arm.inline.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_ppc
    74 # include "nativeInst_ppc.hpp"
    75 # include "vmreg_ppc.inline.hpp"
    76 #endif
    77 #if INCLUDE_ALL_GCS
    78 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    79 #include "gc_implementation/shared/suspendibleThreadSet.hpp"
    80 #endif // INCLUDE_ALL_GCS
    81 #ifdef COMPILER1
    82 #include "c1/c1_globals.hpp"
    83 #endif
    85 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    87 template <typename E>
    88 static void set_current_safepoint_id(E* event, int adjustment = 0) {
    89   assert(event != NULL, "invariant");
    90   event->set_safepointId(SafepointSynchronize::safepoint_counter() + adjustment);
    91 }
    93 static void post_safepoint_begin_event(EventSafepointBegin* event,
    94                                        int thread_count,
    95                                        int critical_thread_count) {
    96   assert(event != NULL, "invariant");
    97   assert(event->should_commit(), "invariant");
    98   set_current_safepoint_id(event);
    99   event->set_totalThreadCount(thread_count);
   100   event->set_jniCriticalThreadCount(critical_thread_count);
   101   event->commit();
   102 }
   104 static void post_safepoint_cleanup_event(EventSafepointCleanup* event) {
   105   assert(event != NULL, "invariant");
   106   assert(event->should_commit(), "invariant");
   107   set_current_safepoint_id(event);
   108   event->commit();
   109 }
   111 static void post_safepoint_synchronize_event(EventSafepointStateSynchronization* event,
   112                                              int initial_number_of_threads,
   113                                              int threads_waiting_to_block,
   114                                              unsigned int iterations) {
   115   assert(event != NULL, "invariant");
   116   if (event->should_commit()) {
   117     // Group this event together with the ones committed after the counter is increased
   118     set_current_safepoint_id(event, 1);
   119     event->set_initialThreadCount(initial_number_of_threads);
   120     event->set_runningThreadCount(threads_waiting_to_block);
   121     event->set_iterations(iterations);
   122     event->commit();
   123   }
   124 }
   126 static void post_safepoint_wait_blocked_event(EventSafepointWaitBlocked* event,
   127                                               int initial_threads_waiting_to_block) {
   128   assert(event != NULL, "invariant");
   129   assert(event->should_commit(), "invariant");
   130   set_current_safepoint_id(event);
   131   event->set_runningThreadCount(initial_threads_waiting_to_block);
   132   event->commit();
   133 }
   135 static void post_safepoint_cleanup_task_event(EventSafepointCleanupTask* event,
   136                                               const char* name) {
   137   assert(event != NULL, "invariant");
   138   if (event->should_commit()) {
   139     set_current_safepoint_id(event);
   140     event->set_name(name);
   141     event->commit();
   142   }
   143 }
   145 static void post_safepoint_end_event(EventSafepointEnd* event) {
   146   assert(event != NULL, "invariant");
   147   if (event->should_commit()) {
   148     // Group this event together with the ones committed before the counter increased
   149     set_current_safepoint_id(event, -1);
   150     event->commit();
   151   }
   152 }
   154 // --------------------------------------------------------------------------------------------------
   155 // Implementation of Safepoint begin/end
   157 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
   158 volatile int  SafepointSynchronize::_waiting_to_block = 0;
   159 volatile int SafepointSynchronize::_safepoint_counter = 0;
   160 int SafepointSynchronize::_current_jni_active_count = 0;
   161 long  SafepointSynchronize::_end_of_last_safepoint = 0;
   162 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
   163 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
   164 static bool timeout_error_printed = false;
   166 // Roll all threads forward to a safepoint and suspend them all
   167 void SafepointSynchronize::begin() {
   168   EventSafepointBegin begin_event;
   169   Thread* myThread = Thread::current();
   170   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
   172   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   173     _safepoint_begin_time = os::javaTimeNanos();
   174     _ts_of_current_safepoint = tty->time_stamp().seconds();
   175   }
   177 #if INCLUDE_ALL_GCS
   178   if (UseConcMarkSweepGC) {
   179     // In the future we should investigate whether CMS can use the
   180     // more-general mechanism below.  DLD (01/05).
   181     ConcurrentMarkSweepThread::synchronize(false);
   182   } else if (UseG1GC) {
   183     SuspendibleThreadSet::synchronize();
   184   }
   185 #endif // INCLUDE_ALL_GCS
   187   // By getting the Threads_lock, we assure that no threads are about to start or
   188   // exit. It is released again in SafepointSynchronize::end().
   189   Threads_lock->lock();
   191   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
   193   int nof_threads = Threads::number_of_threads();
   195   if (TraceSafepoint) {
   196     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
   197   }
   199   RuntimeService::record_safepoint_begin();
   201   MutexLocker mu(Safepoint_lock);
   203   // Reset the count of active JNI critical threads
   204   _current_jni_active_count = 0;
   206   // Set number of threads to wait for, before we initiate the callbacks
   207   _waiting_to_block = nof_threads;
   208   TryingToBlock     = 0 ;
   209   int still_running = nof_threads;
   211   // Save the starting time, so that it can be compared to see if this has taken
   212   // too long to complete.
   213   jlong safepoint_limit_time = 0;
   214   timeout_error_printed = false;
   216   // PrintSafepointStatisticsTimeout can be specified separately. When
   217   // specified, PrintSafepointStatistics will be set to true in
   218   // deferred_initialize_stat method. The initialization has to be done
   219   // early enough to avoid any races. See bug 6880029 for details.
   220   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   221     deferred_initialize_stat();
   222   }
   224   // Begin the process of bringing the system to a safepoint.
   225   // Java threads can be in several different states and are
   226   // stopped by different mechanisms:
   227   //
   228   //  1. Running interpreted
   229   //     The interpeter dispatch table is changed to force it to
   230   //     check for a safepoint condition between bytecodes.
   231   //  2. Running in native code
   232   //     When returning from the native code, a Java thread must check
   233   //     the safepoint _state to see if we must block.  If the
   234   //     VM thread sees a Java thread in native, it does
   235   //     not wait for this thread to block.  The order of the memory
   236   //     writes and reads of both the safepoint state and the Java
   237   //     threads state is critical.  In order to guarantee that the
   238   //     memory writes are serialized with respect to each other,
   239   //     the VM thread issues a memory barrier instruction
   240   //     (on MP systems).  In order to avoid the overhead of issuing
   241   //     a memory barrier for each Java thread making native calls, each Java
   242   //     thread performs a write to a single memory page after changing
   243   //     the thread state.  The VM thread performs a sequence of
   244   //     mprotect OS calls which forces all previous writes from all
   245   //     Java threads to be serialized.  This is done in the
   246   //     os::serialize_thread_states() call.  This has proven to be
   247   //     much more efficient than executing a membar instruction
   248   //     on every call to native code.
   249   //  3. Running compiled Code
   250   //     Compiled code reads a global (Safepoint Polling) page that
   251   //     is set to fault if we are trying to get to a safepoint.
   252   //  4. Blocked
   253   //     A thread which is blocked will not be allowed to return from the
   254   //     block condition until the safepoint operation is complete.
   255   //  5. In VM or Transitioning between states
   256   //     If a Java thread is currently running in the VM or transitioning
   257   //     between states, the safepointing code will wait for the thread to
   258   //     block itself when it attempts transitions to a new state.
   259   //
   260   EventSafepointStateSynchronization sync_event;
   261   int initial_running = 0;
   263   _state            = _synchronizing;
   264   OrderAccess::fence();
   266   // Flush all thread states to memory
   267   if (!UseMembar) {
   268     os::serialize_thread_states();
   269   }
   271   // Make interpreter safepoint aware
   272   Interpreter::notice_safepoints();
   274   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   275     // Make polling safepoint aware
   276     guarantee (PageArmed == 0, "invariant") ;
   277     PageArmed = 1 ;
   278     os::make_polling_page_unreadable();
   279   }
   281   // Consider using active_processor_count() ... but that call is expensive.
   282   int ncpus = os::processor_count() ;
   284 #ifdef ASSERT
   285   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   286     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   287     // Clear the visited flag to ensure that the critical counts are collected properly.
   288     cur->set_visited_for_critical_count(false);
   289   }
   290 #endif // ASSERT
   292   if (SafepointTimeout)
   293     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   295   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   296   unsigned int iterations = 0;
   297   int steps = 0 ;
   298   while(still_running > 0) {
   299     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   300       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   301       ThreadSafepointState *cur_state = cur->safepoint_state();
   302       if (cur_state->is_running()) {
   303         cur_state->examine_state_of_thread();
   304         if (!cur_state->is_running()) {
   305            still_running--;
   306            // consider adjusting steps downward:
   307            //   steps = 0
   308            //   steps -= NNN
   309            //   steps >>= 1
   310            //   steps = MIN(steps, 2000-100)
   311            //   if (iterations != 0) steps -= NNN
   312         }
   313         if (TraceSafepoint && Verbose) cur_state->print();
   314       }
   315     }
   317     if (iterations == 0) {
   318       initial_running = still_running;
   319       if (PrintSafepointStatistics) {
   320         begin_statistics(nof_threads, still_running);
   321       }
   322     }
   324     if (still_running > 0) {
   325       // Check for if it takes to long
   326       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   327         print_safepoint_timeout(_spinning_timeout);
   328       }
   330       // Spin to avoid context switching.
   331       // There's a tension between allowing the mutators to run (and rendezvous)
   332       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   333       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   334       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   335       // Blocking or yielding incur their own penalties in the form of context switching
   336       // and the resultant loss of $ residency.
   337       //
   338       // Further complicating matters is that yield() does not work as naively expected
   339       // on many platforms -- yield() does not guarantee that any other ready threads
   340       // will run.   As such we revert yield_all() after some number of iterations.
   341       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   342       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   343       // can actually increase the time it takes the VM thread to detect that a system-wide
   344       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   345       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   346       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   347       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   348       // will eventually wake up and detect that all mutators are safe, at which point
   349       // we'll again make progress.
   350       //
   351       // Beware too that that the VMThread typically runs at elevated priority.
   352       // Its default priority is higher than the default mutator priority.
   353       // Obviously, this complicates spinning.
   354       //
   355       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   356       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   357       //
   358       // See the comments in synchronizer.cpp for additional remarks on spinning.
   359       //
   360       // In the future we might:
   361       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   362       //    This is tricky as the path used by a thread exiting the JVM (say on
   363       //    on JNI call-out) simply stores into its state field.  The burden
   364       //    is placed on the VM thread, which must poll (spin).
   365       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   366       //    we might aggressively scan the stacks of threads that are already safe.
   367       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   368       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   369       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   370       // 5. Check system saturation.  If the system is not fully saturated then
   371       //    simply spin and avoid sleep/yield.
   372       // 6. As still-running mutators rendezvous they could unpark the sleeping
   373       //    VMthread.  This works well for still-running mutators that become
   374       //    safe.  The VMthread must still poll for mutators that call-out.
   375       // 7. Drive the policy on time-since-begin instead of iterations.
   376       // 8. Consider making the spin duration a function of the # of CPUs:
   377       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   378       //    Alternately, instead of counting iterations of the outer loop
   379       //    we could count the # of threads visited in the inner loop, above.
   380       // 9. On windows consider using the return value from SwitchThreadTo()
   381       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   383       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   384          guarantee (PageArmed == 0, "invariant") ;
   385          PageArmed = 1 ;
   386          os::make_polling_page_unreadable();
   387       }
   389       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   390       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   391       ++steps ;
   392       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   393         SpinPause() ;     // MP-Polite spin
   394       } else
   395       if (steps < DeferThrSuspendLoopCount) {
   396         os::NakedYield() ;
   397       } else {
   398         os::yield_all(steps) ;
   399         // Alternately, the VM thread could transiently depress its scheduling priority or
   400         // transiently increase the priority of the tardy mutator(s).
   401       }
   403       iterations ++ ;
   404     }
   405     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   406   }
   407   assert(still_running == 0, "sanity check");
   409   if (PrintSafepointStatistics) {
   410     update_statistics_on_spin_end();
   411   }
   413   if (sync_event.should_commit()) {
   414     post_safepoint_synchronize_event(&sync_event, initial_running, _waiting_to_block, iterations);
   415   }
   417   // wait until all threads are stopped
   418   {
   419     EventSafepointWaitBlocked wait_blocked_event;
   420     int initial_waiting_to_block = _waiting_to_block;
   422     while (_waiting_to_block > 0) {
   423       if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   424       if (!SafepointTimeout || timeout_error_printed) {
   425         Safepoint_lock->wait(true);  // true, means with no safepoint checks
   426       } else {
   427         // Compute remaining time
   428         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   430         // If there is no remaining time, then there is an error
   431         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   432           print_safepoint_timeout(_blocking_timeout);
   433         }
   434       }
   435     }
   436     assert(_waiting_to_block == 0, "sanity check");
   438 #ifndef PRODUCT
   439     if (SafepointTimeout) {
   440       jlong current_time = os::javaTimeNanos();
   441       if (safepoint_limit_time < current_time) {
   442         tty->print_cr("# SafepointSynchronize: Finished after "
   443                       INT64_FORMAT_W(6) " ms",
   444                       ((current_time - safepoint_limit_time) / MICROUNITS +
   445                        SafepointTimeoutDelay));
   446       }
   447     }
   448 #endif
   450     assert((_safepoint_counter & 0x1) == 0, "must be even");
   451     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   452     _safepoint_counter ++;
   454     // Record state
   455     _state = _synchronized;
   457     OrderAccess::fence();
   459     if (wait_blocked_event.should_commit()) {
   460       post_safepoint_wait_blocked_event(&wait_blocked_event, initial_waiting_to_block);
   461     }
   462   }
   464 #ifdef ASSERT
   465   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   466     // make sure all the threads were visited
   467     assert(cur->was_visited_for_critical_count(), "missed a thread");
   468   }
   469 #endif // ASSERT
   471   // Update the count of active JNI critical regions
   472   GC_locker::set_jni_lock_count(_current_jni_active_count);
   474   if (TraceSafepoint) {
   475     VM_Operation *op = VMThread::vm_operation();
   476     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   477   }
   479   RuntimeService::record_safepoint_synchronized();
   480   if (PrintSafepointStatistics) {
   481     update_statistics_on_sync_end(os::javaTimeNanos());
   482   }
   484   // Call stuff that needs to be run when a safepoint is just about to be completed
   485   {
   486     EventSafepointCleanup cleanup_event;
   487     do_cleanup_tasks();
   488     if (cleanup_event.should_commit()) {
   489       post_safepoint_cleanup_event(&cleanup_event);
   490     }
   491   }
   493   if (PrintSafepointStatistics) {
   494     // Record how much time spend on the above cleanup tasks
   495     update_statistics_on_cleanup_end(os::javaTimeNanos());
   496   }
   498   if (begin_event.should_commit()) {
   499     post_safepoint_begin_event(&begin_event, nof_threads, _current_jni_active_count);
   500   }
   501 }
   503 // Wake up all threads, so they are ready to resume execution after the safepoint
   504 // operation has been carried out
   505 void SafepointSynchronize::end() {
   507   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   508   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   509   EventSafepointEnd event;
   510   _safepoint_counter ++;
   511   // memory fence isn't required here since an odd _safepoint_counter
   512   // value can do no harm and a fence is issued below anyway.
   514   DEBUG_ONLY(Thread* myThread = Thread::current();)
   515   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   517   if (PrintSafepointStatistics) {
   518     end_statistics(os::javaTimeNanos());
   519   }
   521 #ifdef ASSERT
   522   // A pending_exception cannot be installed during a safepoint.  The threads
   523   // may install an async exception after they come back from a safepoint into
   524   // pending_exception after they unblock.  But that should happen later.
   525   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   526     assert (!(cur->has_pending_exception() &&
   527               cur->safepoint_state()->is_at_poll_safepoint()),
   528             "safepoint installed a pending exception");
   529   }
   530 #endif // ASSERT
   532   if (PageArmed) {
   533     // Make polling safepoint aware
   534     os::make_polling_page_readable();
   535     PageArmed = 0 ;
   536   }
   538   // Remove safepoint check from interpreter
   539   Interpreter::ignore_safepoints();
   541   {
   542     MutexLocker mu(Safepoint_lock);
   544     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   546     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   547     // when they get restarted.
   548     _state = _not_synchronized;
   549     OrderAccess::fence();
   551     if (TraceSafepoint) {
   552        tty->print_cr("Leaving safepoint region");
   553     }
   555     // Start suspended threads
   556     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   557       // A problem occurring on Solaris is when attempting to restart threads
   558       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   559       // to the next one (since it has been running the longest).  We then have
   560       // to wait for a cpu to become available before we can continue restarting
   561       // threads.
   562       // FIXME: This causes the performance of the VM to degrade when active and with
   563       // large numbers of threads.  Apparently this is due to the synchronous nature
   564       // of suspending threads.
   565       //
   566       // TODO-FIXME: the comments above are vestigial and no longer apply.
   567       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   568       if (VMThreadHintNoPreempt) {
   569         os::hint_no_preempt();
   570       }
   571       ThreadSafepointState* cur_state = current->safepoint_state();
   572       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   573       cur_state->restart();
   574       assert(cur_state->is_running(), "safepoint state has not been reset");
   575     }
   577     RuntimeService::record_safepoint_end();
   579     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   580     // blocked in signal_thread_blocked
   581     Threads_lock->unlock();
   583   }
   584 #if INCLUDE_ALL_GCS
   585   // If there are any concurrent GC threads resume them.
   586   if (UseConcMarkSweepGC) {
   587     ConcurrentMarkSweepThread::desynchronize(false);
   588   } else if (UseG1GC) {
   589     SuspendibleThreadSet::desynchronize();
   590   }
   591 #endif // INCLUDE_ALL_GCS
   592   // record this time so VMThread can keep track how much time has elasped
   593   // since last safepoint.
   594   _end_of_last_safepoint = os::javaTimeMillis();
   595   if (event.should_commit()) {
   596     post_safepoint_end_event(&event);
   597   }
   598 }
   600 bool SafepointSynchronize::is_cleanup_needed() {
   601   // Need a safepoint if some inline cache buffers is non-empty
   602   if (!InlineCacheBuffer::is_empty()) return true;
   603   return false;
   604 }
   608 // Various cleaning tasks that should be done periodically at safepoints
   609 void SafepointSynchronize::do_cleanup_tasks() {
   610   {
   611     const char* name = "deflating idle monitors";
   612     EventSafepointCleanupTask event;
   613     TraceTime t1(name, TraceSafepointCleanupTime);
   614     ObjectSynchronizer::deflate_idle_monitors();
   615     if (event.should_commit()) {
   616       post_safepoint_cleanup_task_event(&event, name);
   617     }
   618   }
   620   {
   621     const char* name = "updating inline caches";
   622     EventSafepointCleanupTask event;
   623     TraceTime t2(name, TraceSafepointCleanupTime);
   624     InlineCacheBuffer::update_inline_caches();
   625     if (event.should_commit()) {
   626       post_safepoint_cleanup_task_event(&event, name);
   627     }
   628   }
   629   {
   630     const char* name = "compilation policy safepoint handler";
   631     EventSafepointCleanupTask event;
   632     TraceTime t3(name, TraceSafepointCleanupTime);
   633     CompilationPolicy::policy()->do_safepoint_work();
   634     if (event.should_commit()) {
   635       post_safepoint_cleanup_task_event(&event, name);
   636     }
   637   }
   639   {
   640     const char* name = "mark nmethods";
   641     EventSafepointCleanupTask event;
   642     TraceTime t4(name, TraceSafepointCleanupTime);
   643     NMethodSweeper::mark_active_nmethods();
   644     if (event.should_commit()) {
   645       post_safepoint_cleanup_task_event(&event, name);
   646     }
   647   }
   649   if (SymbolTable::needs_rehashing()) {
   650     const char* name = "rehashing symbol table";
   651     EventSafepointCleanupTask event;
   652     TraceTime t5(name, TraceSafepointCleanupTime);
   653     SymbolTable::rehash_table();
   654     if (event.should_commit()) {
   655       post_safepoint_cleanup_task_event(&event, name);
   656     }
   657   }
   659   if (StringTable::needs_rehashing()) {
   660     const char* name = "rehashing string table";
   661     EventSafepointCleanupTask event;
   662     TraceTime t6(name, TraceSafepointCleanupTime);
   663     StringTable::rehash_table();
   664     if (event.should_commit()) {
   665       post_safepoint_cleanup_task_event(&event, name);
   666     }
   667   }
   669   // rotate log files?
   670   if (UseGCLogFileRotation) {
   671     TraceTime t8("rotating gc logs", TraceSafepointCleanupTime);
   672     gclog_or_tty->rotate_log(false);
   673   }
   675   {
   676     // CMS delays purging the CLDG until the beginning of the next safepoint and to
   677     // make sure concurrent sweep is done
   678     TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime);
   679     ClassLoaderDataGraph::purge_if_needed();
   680   }
   681 }
   684 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   685   switch(state) {
   686   case _thread_in_native:
   687     // native threads are safe if they have no java stack or have walkable stack
   688     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   690    // blocked threads should have already have walkable stack
   691   case _thread_blocked:
   692     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   693     return true;
   695   default:
   696     return false;
   697   }
   698 }
   701 // See if the thread is running inside a lazy critical native and
   702 // update the thread critical count if so.  Also set a suspend flag to
   703 // cause the native wrapper to return into the JVM to do the unlock
   704 // once the native finishes.
   705 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
   706   if (state == _thread_in_native &&
   707       thread->has_last_Java_frame() &&
   708       thread->frame_anchor()->walkable()) {
   709     // This thread might be in a critical native nmethod so look at
   710     // the top of the stack and increment the critical count if it
   711     // is.
   712     frame wrapper_frame = thread->last_frame();
   713     CodeBlob* stub_cb = wrapper_frame.cb();
   714     if (stub_cb != NULL &&
   715         stub_cb->is_nmethod() &&
   716         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
   717       // A thread could potentially be in a critical native across
   718       // more than one safepoint, so only update the critical state on
   719       // the first one.  When it returns it will perform the unlock.
   720       if (!thread->do_critical_native_unlock()) {
   721 #ifdef ASSERT
   722         if (!thread->in_critical()) {
   723           GC_locker::increment_debug_jni_lock_count();
   724         }
   725 #endif
   726         thread->enter_critical();
   727         // Make sure the native wrapper calls back on return to
   728         // perform the needed critical unlock.
   729         thread->set_critical_native_unlock();
   730       }
   731     }
   732   }
   733 }
   737 // -------------------------------------------------------------------------------------------------------
   738 // Implementation of Safepoint callback point
   740 void SafepointSynchronize::block(JavaThread *thread) {
   741   assert(thread != NULL, "thread must be set");
   742   assert(thread->is_Java_thread(), "not a Java thread");
   744   // Threads shouldn't block if they are in the middle of printing, but...
   745   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   747   // Only bail from the block() call if the thread is gone from the
   748   // thread list; starting to exit should still block.
   749   if (thread->is_terminated()) {
   750      // block current thread if we come here from native code when VM is gone
   751      thread->block_if_vm_exited();
   753      // otherwise do nothing
   754      return;
   755   }
   757   JavaThreadState state = thread->thread_state();
   758   thread->frame_anchor()->make_walkable(thread);
   760   // Check that we have a valid thread_state at this point
   761   switch(state) {
   762     case _thread_in_vm_trans:
   763     case _thread_in_Java:        // From compiled code
   765       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   766       // we pretend we are still in the VM.
   767       thread->set_thread_state(_thread_in_vm);
   769       if (is_synchronizing()) {
   770          Atomic::inc (&TryingToBlock) ;
   771       }
   773       // We will always be holding the Safepoint_lock when we are examine the state
   774       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   775       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   776       Safepoint_lock->lock_without_safepoint_check();
   777       if (is_synchronizing()) {
   778         // Decrement the number of threads to wait for and signal vm thread
   779         assert(_waiting_to_block > 0, "sanity check");
   780         _waiting_to_block--;
   781         thread->safepoint_state()->set_has_called_back(true);
   783         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
   784         if (thread->in_critical()) {
   785           // Notice that this thread is in a critical section
   786           increment_jni_active_count();
   787         }
   789         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   790         if (_waiting_to_block == 0) {
   791           Safepoint_lock->notify_all();
   792         }
   793       }
   795       // We transition the thread to state _thread_blocked here, but
   796       // we can't do our usual check for external suspension and then
   797       // self-suspend after the lock_without_safepoint_check() call
   798       // below because we are often called during transitions while
   799       // we hold different locks. That would leave us suspended while
   800       // holding a resource which results in deadlocks.
   801       thread->set_thread_state(_thread_blocked);
   802       Safepoint_lock->unlock();
   804       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   805       // the entire safepoint, the threads will all line up here during the safepoint.
   806       Threads_lock->lock_without_safepoint_check();
   807       // restore original state. This is important if the thread comes from compiled code, so it
   808       // will continue to execute with the _thread_in_Java state.
   809       thread->set_thread_state(state);
   810       Threads_lock->unlock();
   811       break;
   813     case _thread_in_native_trans:
   814     case _thread_blocked_trans:
   815     case _thread_new_trans:
   816       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   817         thread->print_thread_state();
   818         fatal("Deadlock in safepoint code.  "
   819               "Should have called back to the VM before blocking.");
   820       }
   822       // We transition the thread to state _thread_blocked here, but
   823       // we can't do our usual check for external suspension and then
   824       // self-suspend after the lock_without_safepoint_check() call
   825       // below because we are often called during transitions while
   826       // we hold different locks. That would leave us suspended while
   827       // holding a resource which results in deadlocks.
   828       thread->set_thread_state(_thread_blocked);
   830       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   831       // the safepoint code might still be waiting for it to block. We need to change the state here,
   832       // so it can see that it is at a safepoint.
   834       // Block until the safepoint operation is completed.
   835       Threads_lock->lock_without_safepoint_check();
   837       // Restore state
   838       thread->set_thread_state(state);
   840       Threads_lock->unlock();
   841       break;
   843     default:
   844      fatal(err_msg("Illegal threadstate encountered: %d", state));
   845   }
   847   // Check for pending. async. exceptions or suspends - except if the
   848   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   849   // is called last since it grabs a lock and we only want to do that when
   850   // we must.
   851   //
   852   // Note: we never deliver an async exception at a polling point as the
   853   // compiler may not have an exception handler for it. The polling
   854   // code will notice the async and deoptimize and the exception will
   855   // be delivered. (Polling at a return point is ok though). Sure is
   856   // a lot of bother for a deprecated feature...
   857   //
   858   // We don't deliver an async exception if the thread state is
   859   // _thread_in_native_trans so JNI functions won't be called with
   860   // a surprising pending exception. If the thread state is going back to java,
   861   // async exception is checked in check_special_condition_for_native_trans().
   863   if (state != _thread_blocked_trans &&
   864       state != _thread_in_vm_trans &&
   865       thread->has_special_runtime_exit_condition()) {
   866     thread->handle_special_runtime_exit_condition(
   867       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   868   }
   869 }
   871 // ------------------------------------------------------------------------------------------------------
   872 // Exception handlers
   875 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   876   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   877   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   878   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   880   if (ShowSafepointMsgs) {
   881     tty->print("handle_polling_page_exception: ");
   882   }
   884   if (PrintSafepointStatistics) {
   885     inc_page_trap_count();
   886   }
   888   ThreadSafepointState* state = thread->safepoint_state();
   890   state->handle_polling_page_exception();
   891 }
   894 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   895   if (!timeout_error_printed) {
   896     timeout_error_printed = true;
   897     // Print out the thread infor which didn't reach the safepoint for debugging
   898     // purposes (useful when there are lots of threads in the debugger).
   899     tty->cr();
   900     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   901     if (reason ==  _spinning_timeout) {
   902       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   903     } else if (reason == _blocking_timeout) {
   904       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   905     }
   907     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   908     ThreadSafepointState *cur_state;
   909     ResourceMark rm;
   910     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   911         cur_thread = cur_thread->next()) {
   912       cur_state = cur_thread->safepoint_state();
   914       if (cur_thread->thread_state() != _thread_blocked &&
   915           ((reason == _spinning_timeout && cur_state->is_running()) ||
   916            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   917         tty->print("# ");
   918         cur_thread->print();
   919         tty->cr();
   920       }
   921     }
   922     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   923   }
   925   // To debug the long safepoint, specify both AbortVMOnSafepointTimeout &
   926   // ShowMessageBoxOnError.
   927   if (AbortVMOnSafepointTimeout) {
   928     char msg[1024];
   929     VM_Operation *op = VMThread::vm_operation();
   930     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   931             SafepointTimeoutDelay,
   932             op != NULL ? op->name() : "no vm operation");
   933     fatal(msg);
   934   }
   935 }
   938 // -------------------------------------------------------------------------------------------------------
   939 // Implementation of ThreadSafepointState
   941 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   942   _thread = thread;
   943   _type   = _running;
   944   _has_called_back = false;
   945   _at_poll_safepoint = false;
   946 }
   948 void ThreadSafepointState::create(JavaThread *thread) {
   949   ThreadSafepointState *state = new ThreadSafepointState(thread);
   950   thread->set_safepoint_state(state);
   951 }
   953 void ThreadSafepointState::destroy(JavaThread *thread) {
   954   if (thread->safepoint_state()) {
   955     delete(thread->safepoint_state());
   956     thread->set_safepoint_state(NULL);
   957   }
   958 }
   960 void ThreadSafepointState::examine_state_of_thread() {
   961   assert(is_running(), "better be running or just have hit safepoint poll");
   963   JavaThreadState state = _thread->thread_state();
   965   // Save the state at the start of safepoint processing.
   966   _orig_thread_state = state;
   968   // Check for a thread that is suspended. Note that thread resume tries
   969   // to grab the Threads_lock which we own here, so a thread cannot be
   970   // resumed during safepoint synchronization.
   972   // We check to see if this thread is suspended without locking to
   973   // avoid deadlocking with a third thread that is waiting for this
   974   // thread to be suspended. The third thread can notice the safepoint
   975   // that we're trying to start at the beginning of its SR_lock->wait()
   976   // call. If that happens, then the third thread will block on the
   977   // safepoint while still holding the underlying SR_lock. We won't be
   978   // able to get the SR_lock and we'll deadlock.
   979   //
   980   // We don't need to grab the SR_lock here for two reasons:
   981   // 1) The suspend flags are both volatile and are set with an
   982   //    Atomic::cmpxchg() call so we should see the suspended
   983   //    state right away.
   984   // 2) We're being called from the safepoint polling loop; if
   985   //    we don't see the suspended state on this iteration, then
   986   //    we'll come around again.
   987   //
   988   bool is_suspended = _thread->is_ext_suspended();
   989   if (is_suspended) {
   990     roll_forward(_at_safepoint);
   991     return;
   992   }
   994   // Some JavaThread states have an initial safepoint state of
   995   // running, but are actually at a safepoint. We will happily
   996   // agree and update the safepoint state here.
   997   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
   998     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
   999     roll_forward(_at_safepoint);
  1000     return;
  1003   if (state == _thread_in_vm) {
  1004     roll_forward(_call_back);
  1005     return;
  1008   // All other thread states will continue to run until they
  1009   // transition and self-block in state _blocked
  1010   // Safepoint polling in compiled code causes the Java threads to do the same.
  1011   // Note: new threads may require a malloc so they must be allowed to finish
  1013   assert(is_running(), "examine_state_of_thread on non-running thread");
  1014   return;
  1017 // Returns true is thread could not be rolled forward at present position.
  1018 void ThreadSafepointState::roll_forward(suspend_type type) {
  1019   _type = type;
  1021   switch(_type) {
  1022     case _at_safepoint:
  1023       SafepointSynchronize::signal_thread_at_safepoint();
  1024       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
  1025       if (_thread->in_critical()) {
  1026         // Notice that this thread is in a critical section
  1027         SafepointSynchronize::increment_jni_active_count();
  1029       break;
  1031     case _call_back:
  1032       set_has_called_back(false);
  1033       break;
  1035     case _running:
  1036     default:
  1037       ShouldNotReachHere();
  1041 void ThreadSafepointState::restart() {
  1042   switch(type()) {
  1043     case _at_safepoint:
  1044     case _call_back:
  1045       break;
  1047     case _running:
  1048     default:
  1049        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
  1050                       _thread, _type);
  1051        _thread->print();
  1052       ShouldNotReachHere();
  1054   _type = _running;
  1055   set_has_called_back(false);
  1059 void ThreadSafepointState::print_on(outputStream *st) const {
  1060   const char *s = NULL;
  1062   switch(_type) {
  1063     case _running                : s = "_running";              break;
  1064     case _at_safepoint           : s = "_at_safepoint";         break;
  1065     case _call_back              : s = "_call_back";            break;
  1066     default:
  1067       ShouldNotReachHere();
  1070   st->print_cr("Thread: " INTPTR_FORMAT
  1071               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
  1072                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
  1073                _at_poll_safepoint);
  1075   _thread->print_thread_state_on(st);
  1079 // ---------------------------------------------------------------------------------------------------------------------
  1081 // Block the thread at the safepoint poll or poll return.
  1082 void ThreadSafepointState::handle_polling_page_exception() {
  1084   // Check state.  block() will set thread state to thread_in_vm which will
  1085   // cause the safepoint state _type to become _call_back.
  1086   assert(type() == ThreadSafepointState::_running,
  1087          "polling page exception on thread not running state");
  1089   // Step 1: Find the nmethod from the return address
  1090   if (ShowSafepointMsgs && Verbose) {
  1091     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
  1093   address real_return_addr = thread()->saved_exception_pc();
  1095   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
  1096   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
  1097   nmethod* nm = (nmethod*)cb;
  1099   // Find frame of caller
  1100   frame stub_fr = thread()->last_frame();
  1101   CodeBlob* stub_cb = stub_fr.cb();
  1102   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
  1103   RegisterMap map(thread(), true);
  1104   frame caller_fr = stub_fr.sender(&map);
  1106   // Should only be poll_return or poll
  1107   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
  1109   // This is a poll immediately before a return. The exception handling code
  1110   // has already had the effect of causing the return to occur, so the execution
  1111   // will continue immediately after the call. In addition, the oopmap at the
  1112   // return point does not mark the return value as an oop (if it is), so
  1113   // it needs a handle here to be updated.
  1114   if( nm->is_at_poll_return(real_return_addr) ) {
  1115     // See if return type is an oop.
  1116     bool return_oop = nm->method()->is_returning_oop();
  1117     Handle return_value;
  1118     if (return_oop) {
  1119       // The oop result has been saved on the stack together with all
  1120       // the other registers. In order to preserve it over GCs we need
  1121       // to keep it in a handle.
  1122       oop result = caller_fr.saved_oop_result(&map);
  1123       assert(result == NULL || result->is_oop(), "must be oop");
  1124       return_value = Handle(thread(), result);
  1125       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
  1128     // Block the thread
  1129     SafepointSynchronize::block(thread());
  1131     // restore oop result, if any
  1132     if (return_oop) {
  1133       caller_fr.set_saved_oop_result(&map, return_value());
  1137   // This is a safepoint poll. Verify the return address and block.
  1138   else {
  1139     set_at_poll_safepoint(true);
  1141     // verify the blob built the "return address" correctly
  1142     assert(real_return_addr == caller_fr.pc(), "must match");
  1144     // Block the thread
  1145     SafepointSynchronize::block(thread());
  1146     set_at_poll_safepoint(false);
  1148     // If we have a pending async exception deoptimize the frame
  1149     // as otherwise we may never deliver it.
  1150     if (thread()->has_async_condition()) {
  1151       ThreadInVMfromJavaNoAsyncException __tiv(thread());
  1152       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
  1155     // If an exception has been installed we must check for a pending deoptimization
  1156     // Deoptimize frame if exception has been thrown.
  1158     if (thread()->has_pending_exception() ) {
  1159       RegisterMap map(thread(), true);
  1160       frame caller_fr = stub_fr.sender(&map);
  1161       if (caller_fr.is_deoptimized_frame()) {
  1162         // The exception patch will destroy registers that are still
  1163         // live and will be needed during deoptimization. Defer the
  1164         // Async exception should have defered the exception until the
  1165         // next safepoint which will be detected when we get into
  1166         // the interpreter so if we have an exception now things
  1167         // are messed up.
  1169         fatal("Exception installed and deoptimization is pending");
  1176 //
  1177 //                     Statistics & Instrumentations
  1178 //
  1179 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
  1180 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
  1181 int    SafepointSynchronize::_cur_stat_index = 0;
  1182 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
  1183 julong SafepointSynchronize::_coalesced_vmop_count = 0;
  1184 jlong  SafepointSynchronize::_max_sync_time = 0;
  1185 jlong  SafepointSynchronize::_max_vmop_time = 0;
  1186 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
  1188 static jlong  cleanup_end_time = 0;
  1189 static bool   need_to_track_page_armed_status = false;
  1190 static bool   init_done = false;
  1192 // Helper method to print the header.
  1193 static void print_header() {
  1194   tty->print("         vmop                    "
  1195              "[threads: total initially_running wait_to_block]    ");
  1196   tty->print("[time: spin block sync cleanup vmop] ");
  1198   // no page armed status printed out if it is always armed.
  1199   if (need_to_track_page_armed_status) {
  1200     tty->print("page_armed ");
  1203   tty->print_cr("page_trap_count");
  1206 void SafepointSynchronize::deferred_initialize_stat() {
  1207   if (init_done) return;
  1209   if (PrintSafepointStatisticsCount <= 0) {
  1210     fatal("Wrong PrintSafepointStatisticsCount");
  1213   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1214   // be printed right away, in which case, _safepoint_stats will regress to
  1215   // a single element array. Otherwise, it is a circular ring buffer with default
  1216   // size of PrintSafepointStatisticsCount.
  1217   int stats_array_size;
  1218   if (PrintSafepointStatisticsTimeout > 0) {
  1219     stats_array_size = 1;
  1220     PrintSafepointStatistics = true;
  1221   } else {
  1222     stats_array_size = PrintSafepointStatisticsCount;
  1224   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1225                                                  * sizeof(SafepointStats), mtInternal);
  1226   guarantee(_safepoint_stats != NULL,
  1227             "not enough memory for safepoint instrumentation data");
  1229   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1230     need_to_track_page_armed_status = true;
  1232   init_done = true;
  1235 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1236   assert(init_done, "safepoint statistics array hasn't been initialized");
  1237   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1239   spstat->_time_stamp = _ts_of_current_safepoint;
  1241   VM_Operation *op = VMThread::vm_operation();
  1242   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1243   if (op != NULL) {
  1244     _safepoint_reasons[spstat->_vmop_type]++;
  1247   spstat->_nof_total_threads = nof_threads;
  1248   spstat->_nof_initial_running_threads = nof_running;
  1249   spstat->_nof_threads_hit_page_trap = 0;
  1251   // Records the start time of spinning. The real time spent on spinning
  1252   // will be adjusted when spin is done. Same trick is applied for time
  1253   // spent on waiting for threads to block.
  1254   if (nof_running != 0) {
  1255     spstat->_time_to_spin = os::javaTimeNanos();
  1256   }  else {
  1257     spstat->_time_to_spin = 0;
  1261 void SafepointSynchronize::update_statistics_on_spin_end() {
  1262   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1264   jlong cur_time = os::javaTimeNanos();
  1266   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1267   if (spstat->_nof_initial_running_threads != 0) {
  1268     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1271   if (need_to_track_page_armed_status) {
  1272     spstat->_page_armed = (PageArmed == 1);
  1275   // Records the start time of waiting for to block. Updated when block is done.
  1276   if (_waiting_to_block != 0) {
  1277     spstat->_time_to_wait_to_block = cur_time;
  1278   } else {
  1279     spstat->_time_to_wait_to_block = 0;
  1283 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1284   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1286   if (spstat->_nof_threads_wait_to_block != 0) {
  1287     spstat->_time_to_wait_to_block = end_time -
  1288       spstat->_time_to_wait_to_block;
  1291   // Records the end time of sync which will be used to calculate the total
  1292   // vm operation time. Again, the real time spending in syncing will be deducted
  1293   // from the start of the sync time later when end_statistics is called.
  1294   spstat->_time_to_sync = end_time - _safepoint_begin_time;
  1295   if (spstat->_time_to_sync > _max_sync_time) {
  1296     _max_sync_time = spstat->_time_to_sync;
  1299   spstat->_time_to_do_cleanups = end_time;
  1302 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
  1303   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1305   // Record how long spent in cleanup tasks.
  1306   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
  1308   cleanup_end_time = end_time;
  1311 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1312   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1314   // Update the vm operation time.
  1315   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
  1316   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
  1317     _max_vmop_time = spstat->_time_to_exec_vmop;
  1319   // Only the sync time longer than the specified
  1320   // PrintSafepointStatisticsTimeout will be printed out right away.
  1321   // By default, it is -1 meaning all samples will be put into the list.
  1322   if ( PrintSafepointStatisticsTimeout > 0) {
  1323     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1324       print_statistics();
  1326   } else {
  1327     // The safepoint statistics will be printed out when the _safepoin_stats
  1328     // array fills up.
  1329     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
  1330       print_statistics();
  1331       _cur_stat_index = 0;
  1332     } else {
  1333       _cur_stat_index++;
  1338 void SafepointSynchronize::print_statistics() {
  1339   SafepointStats* sstats = _safepoint_stats;
  1341   for (int index = 0; index <= _cur_stat_index; index++) {
  1342     if (index % 30 == 0) {
  1343       print_header();
  1345     sstats = &_safepoint_stats[index];
  1346     tty->print("%.3f: ", sstats->_time_stamp);
  1347     tty->print("%-26s       ["
  1348                INT32_FORMAT_W(8) INT32_FORMAT_W(11) INT32_FORMAT_W(15)
  1349                "    ]    ",
  1350                sstats->_vmop_type == -1 ? "no vm operation" :
  1351                VM_Operation::name(sstats->_vmop_type),
  1352                sstats->_nof_total_threads,
  1353                sstats->_nof_initial_running_threads,
  1354                sstats->_nof_threads_wait_to_block);
  1355     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1356     tty->print("  ["
  1357                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
  1358                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
  1359                INT64_FORMAT_W(6) "    ]  ",
  1360                sstats->_time_to_spin / MICROUNITS,
  1361                sstats->_time_to_wait_to_block / MICROUNITS,
  1362                sstats->_time_to_sync / MICROUNITS,
  1363                sstats->_time_to_do_cleanups / MICROUNITS,
  1364                sstats->_time_to_exec_vmop / MICROUNITS);
  1366     if (need_to_track_page_armed_status) {
  1367       tty->print(INT32_FORMAT "         ", sstats->_page_armed);
  1369     tty->print_cr(INT32_FORMAT "   ", sstats->_nof_threads_hit_page_trap);
  1373 // This method will be called when VM exits. It will first call
  1374 // print_statistics to print out the rest of the sampling.  Then
  1375 // it tries to summarize the sampling.
  1376 void SafepointSynchronize::print_stat_on_exit() {
  1377   if (_safepoint_stats == NULL) return;
  1379   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1381   // During VM exit, end_statistics may not get called and in that
  1382   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1383   // don't print it out.
  1384   // Approximate the vm op time.
  1385   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1386     os::javaTimeNanos() - cleanup_end_time;
  1388   if ( PrintSafepointStatisticsTimeout < 0 ||
  1389        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1390     print_statistics();
  1392   tty->cr();
  1394   // Print out polling page sampling status.
  1395   if (!need_to_track_page_armed_status) {
  1396     if (UseCompilerSafepoints) {
  1397       tty->print_cr("Polling page always armed");
  1399   } else {
  1400     tty->print_cr("Defer polling page loop count = %d\n",
  1401                  DeferPollingPageLoopCount);
  1404   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1405     if (_safepoint_reasons[index] != 0) {
  1406       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
  1407                     _safepoint_reasons[index]);
  1411   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
  1412                 _coalesced_vmop_count);
  1413   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
  1414                 _max_sync_time / MICROUNITS);
  1415   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
  1416                 INT64_FORMAT_W(5) " ms",
  1417                 _max_vmop_time / MICROUNITS);
  1420 // ------------------------------------------------------------------------------------------------
  1421 // Non-product code
  1423 #ifndef PRODUCT
  1425 void SafepointSynchronize::print_state() {
  1426   if (_state == _not_synchronized) {
  1427     tty->print_cr("not synchronized");
  1428   } else if (_state == _synchronizing || _state == _synchronized) {
  1429     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1430                   "synchronized");
  1432     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1433        cur->safepoint_state()->print();
  1438 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1439   if (ShowSafepointMsgs) {
  1440     va_list ap;
  1441     va_start(ap, format);
  1442     tty->vprint_cr(format, ap);
  1443     va_end(ap);
  1447 #endif // !PRODUCT

mercurial