src/share/vm/runtime/safepoint.cpp

Wed, 14 Oct 2020 17:44:48 +0800

author
aoqi
date
Wed, 14 Oct 2020 17:44:48 +0800
changeset 9931
fd44df5e3bc3
parent 9806
758c07667682
parent 9896
1b8c45b8216a
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "classfile/symbolTable.hpp"
    33 #include "classfile/systemDictionary.hpp"
    34 #include "code/codeCache.hpp"
    35 #include "code/icBuffer.hpp"
    36 #include "code/nmethod.hpp"
    37 #include "code/pcDesc.hpp"
    38 #include "code/scopeDesc.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/interpreter.hpp"
    41 #include "jfr/jfrEvents.hpp"
    42 #include "memory/resourceArea.hpp"
    43 #include "memory/universe.inline.hpp"
    44 #include "oops/oop.inline.hpp"
    45 #include "oops/symbol.hpp"
    46 #include "runtime/compilationPolicy.hpp"
    47 #include "runtime/deoptimization.hpp"
    48 #include "runtime/frame.inline.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/orderAccess.inline.hpp"
    52 #include "runtime/osThread.hpp"
    53 #include "runtime/safepoint.hpp"
    54 #include "runtime/signature.hpp"
    55 #include "runtime/stubCodeGenerator.hpp"
    56 #include "runtime/stubRoutines.hpp"
    57 #include "runtime/sweeper.hpp"
    58 #include "runtime/synchronizer.hpp"
    59 #include "runtime/thread.inline.hpp"
    60 #include "services/runtimeService.hpp"
    61 #include "utilities/events.hpp"
    62 #include "utilities/macros.hpp"
    63 #ifdef TARGET_ARCH_x86
    64 # include "nativeInst_x86.hpp"
    65 # include "vmreg_x86.inline.hpp"
    66 #endif
    67 #ifdef TARGET_ARCH_sparc
    68 # include "nativeInst_sparc.hpp"
    69 # include "vmreg_sparc.inline.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_zero
    72 # include "nativeInst_zero.hpp"
    73 # include "vmreg_zero.inline.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_arm
    76 # include "nativeInst_arm.hpp"
    77 # include "vmreg_arm.inline.hpp"
    78 #endif
    79 #ifdef TARGET_ARCH_ppc
    80 # include "nativeInst_ppc.hpp"
    81 # include "vmreg_ppc.inline.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_mips
    84 # include "nativeInst_mips.hpp"
    85 # include "vmreg_mips.inline.hpp"
    86 #endif
    87 #if INCLUDE_ALL_GCS
    88 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    89 #include "gc_implementation/shared/suspendibleThreadSet.hpp"
    90 #endif // INCLUDE_ALL_GCS
    91 #ifdef COMPILER1
    92 #include "c1/c1_globals.hpp"
    93 #endif
    95 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    97 template <typename E>
    98 static void set_current_safepoint_id(E* event, int adjustment = 0) {
    99   assert(event != NULL, "invariant");
   100   event->set_safepointId(SafepointSynchronize::safepoint_counter() + adjustment);
   101 }
   103 static void post_safepoint_begin_event(EventSafepointBegin* event,
   104                                        int thread_count,
   105                                        int critical_thread_count) {
   106   assert(event != NULL, "invariant");
   107   assert(event->should_commit(), "invariant");
   108   set_current_safepoint_id(event);
   109   event->set_totalThreadCount(thread_count);
   110   event->set_jniCriticalThreadCount(critical_thread_count);
   111   event->commit();
   112 }
   114 static void post_safepoint_cleanup_event(EventSafepointCleanup* event) {
   115   assert(event != NULL, "invariant");
   116   assert(event->should_commit(), "invariant");
   117   set_current_safepoint_id(event);
   118   event->commit();
   119 }
   121 static void post_safepoint_synchronize_event(EventSafepointStateSynchronization* event,
   122                                              int initial_number_of_threads,
   123                                              int threads_waiting_to_block,
   124                                              unsigned int iterations) {
   125   assert(event != NULL, "invariant");
   126   if (event->should_commit()) {
   127     // Group this event together with the ones committed after the counter is increased
   128     set_current_safepoint_id(event, 1);
   129     event->set_initialThreadCount(initial_number_of_threads);
   130     event->set_runningThreadCount(threads_waiting_to_block);
   131     event->set_iterations(iterations);
   132     event->commit();
   133   }
   134 }
   136 static void post_safepoint_wait_blocked_event(EventSafepointWaitBlocked* event,
   137                                               int initial_threads_waiting_to_block) {
   138   assert(event != NULL, "invariant");
   139   assert(event->should_commit(), "invariant");
   140   set_current_safepoint_id(event);
   141   event->set_runningThreadCount(initial_threads_waiting_to_block);
   142   event->commit();
   143 }
   145 static void post_safepoint_cleanup_task_event(EventSafepointCleanupTask* event,
   146                                               const char* name) {
   147   assert(event != NULL, "invariant");
   148   if (event->should_commit()) {
   149     set_current_safepoint_id(event);
   150     event->set_name(name);
   151     event->commit();
   152   }
   153 }
   155 static void post_safepoint_end_event(EventSafepointEnd* event) {
   156   assert(event != NULL, "invariant");
   157   if (event->should_commit()) {
   158     // Group this event together with the ones committed before the counter increased
   159     set_current_safepoint_id(event, -1);
   160     event->commit();
   161   }
   162 }
   164 // --------------------------------------------------------------------------------------------------
   165 // Implementation of Safepoint begin/end
   167 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
   168 volatile int  SafepointSynchronize::_waiting_to_block = 0;
   169 volatile int SafepointSynchronize::_safepoint_counter = 0;
   170 int SafepointSynchronize::_current_jni_active_count = 0;
   171 long  SafepointSynchronize::_end_of_last_safepoint = 0;
   172 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
   173 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
   174 static bool timeout_error_printed = false;
   176 // Roll all threads forward to a safepoint and suspend them all
   177 void SafepointSynchronize::begin() {
   178   EventSafepointBegin begin_event;
   179   Thread* myThread = Thread::current();
   180   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
   182   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   183     _safepoint_begin_time = os::javaTimeNanos();
   184     _ts_of_current_safepoint = tty->time_stamp().seconds();
   185   }
   187 #if INCLUDE_ALL_GCS
   188   if (UseConcMarkSweepGC) {
   189     // In the future we should investigate whether CMS can use the
   190     // more-general mechanism below.  DLD (01/05).
   191     ConcurrentMarkSweepThread::synchronize(false);
   192   } else if (UseG1GC) {
   193     SuspendibleThreadSet::synchronize();
   194   }
   195 #endif // INCLUDE_ALL_GCS
   197   // By getting the Threads_lock, we assure that no threads are about to start or
   198   // exit. It is released again in SafepointSynchronize::end().
   199   Threads_lock->lock();
   201   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
   203   int nof_threads = Threads::number_of_threads();
   205   if (TraceSafepoint) {
   206     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
   207   }
   209   RuntimeService::record_safepoint_begin();
   211   MutexLocker mu(Safepoint_lock);
   213   // Reset the count of active JNI critical threads
   214   _current_jni_active_count = 0;
   216   // Set number of threads to wait for, before we initiate the callbacks
   217   _waiting_to_block = nof_threads;
   218   TryingToBlock     = 0 ;
   219   int still_running = nof_threads;
   221   // Save the starting time, so that it can be compared to see if this has taken
   222   // too long to complete.
   223   jlong safepoint_limit_time = 0;
   224   timeout_error_printed = false;
   226   // PrintSafepointStatisticsTimeout can be specified separately. When
   227   // specified, PrintSafepointStatistics will be set to true in
   228   // deferred_initialize_stat method. The initialization has to be done
   229   // early enough to avoid any races. See bug 6880029 for details.
   230   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
   231     deferred_initialize_stat();
   232   }
   234   // Begin the process of bringing the system to a safepoint.
   235   // Java threads can be in several different states and are
   236   // stopped by different mechanisms:
   237   //
   238   //  1. Running interpreted
   239   //     The interpeter dispatch table is changed to force it to
   240   //     check for a safepoint condition between bytecodes.
   241   //  2. Running in native code
   242   //     When returning from the native code, a Java thread must check
   243   //     the safepoint _state to see if we must block.  If the
   244   //     VM thread sees a Java thread in native, it does
   245   //     not wait for this thread to block.  The order of the memory
   246   //     writes and reads of both the safepoint state and the Java
   247   //     threads state is critical.  In order to guarantee that the
   248   //     memory writes are serialized with respect to each other,
   249   //     the VM thread issues a memory barrier instruction
   250   //     (on MP systems).  In order to avoid the overhead of issuing
   251   //     a memory barrier for each Java thread making native calls, each Java
   252   //     thread performs a write to a single memory page after changing
   253   //     the thread state.  The VM thread performs a sequence of
   254   //     mprotect OS calls which forces all previous writes from all
   255   //     Java threads to be serialized.  This is done in the
   256   //     os::serialize_thread_states() call.  This has proven to be
   257   //     much more efficient than executing a membar instruction
   258   //     on every call to native code.
   259   //  3. Running compiled Code
   260   //     Compiled code reads a global (Safepoint Polling) page that
   261   //     is set to fault if we are trying to get to a safepoint.
   262   //  4. Blocked
   263   //     A thread which is blocked will not be allowed to return from the
   264   //     block condition until the safepoint operation is complete.
   265   //  5. In VM or Transitioning between states
   266   //     If a Java thread is currently running in the VM or transitioning
   267   //     between states, the safepointing code will wait for the thread to
   268   //     block itself when it attempts transitions to a new state.
   269   //
   270   EventSafepointStateSynchronization sync_event;
   271   int initial_running = 0;
   273   _state            = _synchronizing;
   274   OrderAccess::fence();
   276   // Flush all thread states to memory
   277   if (!UseMembar) {
   278     os::serialize_thread_states();
   279   }
   281   // Make interpreter safepoint aware
   282   Interpreter::notice_safepoints();
   284   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
   285     // Make polling safepoint aware
   286     guarantee (PageArmed == 0, "invariant") ;
   287     PageArmed = 1 ;
   288     os::make_polling_page_unreadable();
   289   }
   291   // Consider using active_processor_count() ... but that call is expensive.
   292   int ncpus = os::processor_count() ;
   294 #ifdef ASSERT
   295   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   296     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
   297     // Clear the visited flag to ensure that the critical counts are collected properly.
   298     cur->set_visited_for_critical_count(false);
   299   }
   300 #endif // ASSERT
   302   if (SafepointTimeout)
   303     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
   305   // Iterate through all threads until it have been determined how to stop them all at a safepoint
   306   unsigned int iterations = 0;
   307   int steps = 0 ;
   308   while(still_running > 0) {
   309     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   310       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
   311       ThreadSafepointState *cur_state = cur->safepoint_state();
   312       if (cur_state->is_running()) {
   313         cur_state->examine_state_of_thread();
   314         if (!cur_state->is_running()) {
   315            still_running--;
   316            // consider adjusting steps downward:
   317            //   steps = 0
   318            //   steps -= NNN
   319            //   steps >>= 1
   320            //   steps = MIN(steps, 2000-100)
   321            //   if (iterations != 0) steps -= NNN
   322         }
   323         if (TraceSafepoint && Verbose) cur_state->print();
   324       }
   325     }
   327     if (iterations == 0) {
   328       initial_running = still_running;
   329       if (PrintSafepointStatistics) {
   330         begin_statistics(nof_threads, still_running);
   331       }
   332     }
   334     if (still_running > 0) {
   335       // Check for if it takes to long
   336       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
   337         print_safepoint_timeout(_spinning_timeout);
   338       }
   340       // Spin to avoid context switching.
   341       // There's a tension between allowing the mutators to run (and rendezvous)
   342       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
   343       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
   344       // spinning by the VM thread on a saturated system can increase rendezvous latency.
   345       // Blocking or yielding incur their own penalties in the form of context switching
   346       // and the resultant loss of $ residency.
   347       //
   348       // Further complicating matters is that yield() does not work as naively expected
   349       // on many platforms -- yield() does not guarantee that any other ready threads
   350       // will run.   As such we revert yield_all() after some number of iterations.
   351       // Yield_all() is implemented as a short unconditional sleep on some platforms.
   352       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
   353       // can actually increase the time it takes the VM thread to detect that a system-wide
   354       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
   355       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
   356       // In that case the mutators will be stalled waiting for the safepoint to complete and the
   357       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
   358       // will eventually wake up and detect that all mutators are safe, at which point
   359       // we'll again make progress.
   360       //
   361       // Beware too that that the VMThread typically runs at elevated priority.
   362       // Its default priority is higher than the default mutator priority.
   363       // Obviously, this complicates spinning.
   364       //
   365       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
   366       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
   367       //
   368       // See the comments in synchronizer.cpp for additional remarks on spinning.
   369       //
   370       // In the future we might:
   371       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
   372       //    This is tricky as the path used by a thread exiting the JVM (say on
   373       //    on JNI call-out) simply stores into its state field.  The burden
   374       //    is placed on the VM thread, which must poll (spin).
   375       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
   376       //    we might aggressively scan the stacks of threads that are already safe.
   377       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
   378       //    If all the mutators are ONPROC there's no reason to sleep or yield.
   379       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
   380       // 5. Check system saturation.  If the system is not fully saturated then
   381       //    simply spin and avoid sleep/yield.
   382       // 6. As still-running mutators rendezvous they could unpark the sleeping
   383       //    VMthread.  This works well for still-running mutators that become
   384       //    safe.  The VMthread must still poll for mutators that call-out.
   385       // 7. Drive the policy on time-since-begin instead of iterations.
   386       // 8. Consider making the spin duration a function of the # of CPUs:
   387       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
   388       //    Alternately, instead of counting iterations of the outer loop
   389       //    we could count the # of threads visited in the inner loop, above.
   390       // 9. On windows consider using the return value from SwitchThreadTo()
   391       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
   393       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
   394          guarantee (PageArmed == 0, "invariant") ;
   395          PageArmed = 1 ;
   396          os::make_polling_page_unreadable();
   397       }
   399       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
   400       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
   401       ++steps ;
   402       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
   403         SpinPause() ;     // MP-Polite spin
   404       } else
   405       if (steps < DeferThrSuspendLoopCount) {
   406         os::NakedYield() ;
   407       } else {
   408         os::yield_all(steps) ;
   409         // Alternately, the VM thread could transiently depress its scheduling priority or
   410         // transiently increase the priority of the tardy mutator(s).
   411       }
   413       iterations ++ ;
   414     }
   415     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
   416   }
   417   assert(still_running == 0, "sanity check");
   419   if (PrintSafepointStatistics) {
   420     update_statistics_on_spin_end();
   421   }
   423   if (sync_event.should_commit()) {
   424     post_safepoint_synchronize_event(&sync_event, initial_running, _waiting_to_block, iterations);
   425   }
   427   // wait until all threads are stopped
   428   {
   429     EventSafepointWaitBlocked wait_blocked_event;
   430     int initial_waiting_to_block = _waiting_to_block;
   432     while (_waiting_to_block > 0) {
   433       if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
   434       if (!SafepointTimeout || timeout_error_printed) {
   435         Safepoint_lock->wait(true);  // true, means with no safepoint checks
   436       } else {
   437         // Compute remaining time
   438         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
   440         // If there is no remaining time, then there is an error
   441         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
   442           print_safepoint_timeout(_blocking_timeout);
   443         }
   444       }
   445     }
   446     assert(_waiting_to_block == 0, "sanity check");
   448 #ifndef PRODUCT
   449     if (SafepointTimeout) {
   450       jlong current_time = os::javaTimeNanos();
   451       if (safepoint_limit_time < current_time) {
   452         tty->print_cr("# SafepointSynchronize: Finished after "
   453                       INT64_FORMAT_W(6) " ms",
   454                       ((current_time - safepoint_limit_time) / MICROUNITS +
   455                        SafepointTimeoutDelay));
   456       }
   457     }
   458 #endif
   460     assert((_safepoint_counter & 0x1) == 0, "must be even");
   461     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   462     _safepoint_counter ++;
   464     // Record state
   465     _state = _synchronized;
   467     OrderAccess::fence();
   469     if (wait_blocked_event.should_commit()) {
   470       post_safepoint_wait_blocked_event(&wait_blocked_event, initial_waiting_to_block);
   471     }
   472   }
   474 #ifdef ASSERT
   475   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
   476     // make sure all the threads were visited
   477     assert(cur->was_visited_for_critical_count(), "missed a thread");
   478   }
   479 #endif // ASSERT
   481   // Update the count of active JNI critical regions
   482   GC_locker::set_jni_lock_count(_current_jni_active_count);
   484   if (TraceSafepoint) {
   485     VM_Operation *op = VMThread::vm_operation();
   486     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
   487   }
   489   RuntimeService::record_safepoint_synchronized();
   490   if (PrintSafepointStatistics) {
   491     update_statistics_on_sync_end(os::javaTimeNanos());
   492   }
   494   // Call stuff that needs to be run when a safepoint is just about to be completed
   495   {
   496     EventSafepointCleanup cleanup_event;
   497     do_cleanup_tasks();
   498     if (cleanup_event.should_commit()) {
   499       post_safepoint_cleanup_event(&cleanup_event);
   500     }
   501   }
   503   if (PrintSafepointStatistics) {
   504     // Record how much time spend on the above cleanup tasks
   505     update_statistics_on_cleanup_end(os::javaTimeNanos());
   506   }
   508   if (begin_event.should_commit()) {
   509     post_safepoint_begin_event(&begin_event, nof_threads, _current_jni_active_count);
   510   }
   511 }
   513 // Wake up all threads, so they are ready to resume execution after the safepoint
   514 // operation has been carried out
   515 void SafepointSynchronize::end() {
   517   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
   518   assert((_safepoint_counter & 0x1) == 1, "must be odd");
   519   EventSafepointEnd event;
   520   _safepoint_counter ++;
   521   // memory fence isn't required here since an odd _safepoint_counter
   522   // value can do no harm and a fence is issued below anyway.
   524   DEBUG_ONLY(Thread* myThread = Thread::current();)
   525   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
   527   if (PrintSafepointStatistics) {
   528     end_statistics(os::javaTimeNanos());
   529   }
   531 #ifdef ASSERT
   532   // A pending_exception cannot be installed during a safepoint.  The threads
   533   // may install an async exception after they come back from a safepoint into
   534   // pending_exception after they unblock.  But that should happen later.
   535   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
   536     assert (!(cur->has_pending_exception() &&
   537               cur->safepoint_state()->is_at_poll_safepoint()),
   538             "safepoint installed a pending exception");
   539   }
   540 #endif // ASSERT
   542   if (PageArmed) {
   543     // Make polling safepoint aware
   544     os::make_polling_page_readable();
   545     PageArmed = 0 ;
   546   }
   548   // Remove safepoint check from interpreter
   549   Interpreter::ignore_safepoints();
   551   {
   552     MutexLocker mu(Safepoint_lock);
   554     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
   556     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
   557     // when they get restarted.
   558     _state = _not_synchronized;
   559     OrderAccess::fence();
   561     if (TraceSafepoint) {
   562        tty->print_cr("Leaving safepoint region");
   563     }
   565     // Start suspended threads
   566     for(JavaThread *current = Threads::first(); current; current = current->next()) {
   567       // A problem occurring on Solaris is when attempting to restart threads
   568       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
   569       // to the next one (since it has been running the longest).  We then have
   570       // to wait for a cpu to become available before we can continue restarting
   571       // threads.
   572       // FIXME: This causes the performance of the VM to degrade when active and with
   573       // large numbers of threads.  Apparently this is due to the synchronous nature
   574       // of suspending threads.
   575       //
   576       // TODO-FIXME: the comments above are vestigial and no longer apply.
   577       // Furthermore, using solaris' schedctl in this particular context confers no benefit
   578       if (VMThreadHintNoPreempt) {
   579         os::hint_no_preempt();
   580       }
   581       ThreadSafepointState* cur_state = current->safepoint_state();
   582       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
   583       cur_state->restart();
   584       assert(cur_state->is_running(), "safepoint state has not been reset");
   585     }
   587     RuntimeService::record_safepoint_end();
   589     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
   590     // blocked in signal_thread_blocked
   591     Threads_lock->unlock();
   593   }
   594 #if INCLUDE_ALL_GCS
   595   // If there are any concurrent GC threads resume them.
   596   if (UseConcMarkSweepGC) {
   597     ConcurrentMarkSweepThread::desynchronize(false);
   598   } else if (UseG1GC) {
   599     SuspendibleThreadSet::desynchronize();
   600   }
   601 #endif // INCLUDE_ALL_GCS
   602   // record this time so VMThread can keep track how much time has elasped
   603   // since last safepoint.
   604   _end_of_last_safepoint = os::javaTimeMillis();
   605   if (event.should_commit()) {
   606     post_safepoint_end_event(&event);
   607   }
   608 }
   610 bool SafepointSynchronize::is_cleanup_needed() {
   611   // Need a safepoint if some inline cache buffers is non-empty
   612   if (!InlineCacheBuffer::is_empty()) return true;
   613   return false;
   614 }
   618 // Various cleaning tasks that should be done periodically at safepoints
   619 void SafepointSynchronize::do_cleanup_tasks() {
   620   {
   621     const char* name = "deflating idle monitors";
   622     EventSafepointCleanupTask event;
   623     TraceTime t1(name, TraceSafepointCleanupTime);
   624     ObjectSynchronizer::deflate_idle_monitors();
   625     if (event.should_commit()) {
   626       post_safepoint_cleanup_task_event(&event, name);
   627     }
   628   }
   630   {
   631     const char* name = "updating inline caches";
   632     EventSafepointCleanupTask event;
   633     TraceTime t2(name, TraceSafepointCleanupTime);
   634     InlineCacheBuffer::update_inline_caches();
   635     if (event.should_commit()) {
   636       post_safepoint_cleanup_task_event(&event, name);
   637     }
   638   }
   639   {
   640     const char* name = "compilation policy safepoint handler";
   641     EventSafepointCleanupTask event;
   642     TraceTime t3(name, TraceSafepointCleanupTime);
   643     CompilationPolicy::policy()->do_safepoint_work();
   644     if (event.should_commit()) {
   645       post_safepoint_cleanup_task_event(&event, name);
   646     }
   647   }
   649   {
   650     const char* name = "mark nmethods";
   651     EventSafepointCleanupTask event;
   652     TraceTime t4(name, TraceSafepointCleanupTime);
   653     NMethodSweeper::mark_active_nmethods();
   654     if (event.should_commit()) {
   655       post_safepoint_cleanup_task_event(&event, name);
   656     }
   657   }
   659   if (SymbolTable::needs_rehashing()) {
   660     const char* name = "rehashing symbol table";
   661     EventSafepointCleanupTask event;
   662     TraceTime t5(name, TraceSafepointCleanupTime);
   663     SymbolTable::rehash_table();
   664     if (event.should_commit()) {
   665       post_safepoint_cleanup_task_event(&event, name);
   666     }
   667   }
   669   if (StringTable::needs_rehashing()) {
   670     const char* name = "rehashing string table";
   671     EventSafepointCleanupTask event;
   672     TraceTime t6(name, TraceSafepointCleanupTime);
   673     StringTable::rehash_table();
   674     if (event.should_commit()) {
   675       post_safepoint_cleanup_task_event(&event, name);
   676     }
   677   }
   679   // rotate log files?
   680   if (UseGCLogFileRotation) {
   681     TraceTime t8("rotating gc logs", TraceSafepointCleanupTime);
   682     gclog_or_tty->rotate_log(false);
   683   }
   685   {
   686     // CMS delays purging the CLDG until the beginning of the next safepoint and to
   687     // make sure concurrent sweep is done
   688     TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime);
   689     ClassLoaderDataGraph::purge_if_needed();
   690   }
   691 }
   694 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
   695   switch(state) {
   696   case _thread_in_native:
   697     // native threads are safe if they have no java stack or have walkable stack
   698     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
   700    // blocked threads should have already have walkable stack
   701   case _thread_blocked:
   702     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
   703     return true;
   705   default:
   706     return false;
   707   }
   708 }
   711 // See if the thread is running inside a lazy critical native and
   712 // update the thread critical count if so.  Also set a suspend flag to
   713 // cause the native wrapper to return into the JVM to do the unlock
   714 // once the native finishes.
   715 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
   716   if (state == _thread_in_native &&
   717       thread->has_last_Java_frame() &&
   718       thread->frame_anchor()->walkable()) {
   719     // This thread might be in a critical native nmethod so look at
   720     // the top of the stack and increment the critical count if it
   721     // is.
   722     frame wrapper_frame = thread->last_frame();
   723     CodeBlob* stub_cb = wrapper_frame.cb();
   724     if (stub_cb != NULL &&
   725         stub_cb->is_nmethod() &&
   726         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
   727       // A thread could potentially be in a critical native across
   728       // more than one safepoint, so only update the critical state on
   729       // the first one.  When it returns it will perform the unlock.
   730       if (!thread->do_critical_native_unlock()) {
   731 #ifdef ASSERT
   732         if (!thread->in_critical()) {
   733           GC_locker::increment_debug_jni_lock_count();
   734         }
   735 #endif
   736         thread->enter_critical();
   737         // Make sure the native wrapper calls back on return to
   738         // perform the needed critical unlock.
   739         thread->set_critical_native_unlock();
   740       }
   741     }
   742   }
   743 }
   747 // -------------------------------------------------------------------------------------------------------
   748 // Implementation of Safepoint callback point
   750 void SafepointSynchronize::block(JavaThread *thread) {
   751   assert(thread != NULL, "thread must be set");
   752   assert(thread->is_Java_thread(), "not a Java thread");
   754   // Threads shouldn't block if they are in the middle of printing, but...
   755   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
   757   // Only bail from the block() call if the thread is gone from the
   758   // thread list; starting to exit should still block.
   759   if (thread->is_terminated()) {
   760      // block current thread if we come here from native code when VM is gone
   761      thread->block_if_vm_exited();
   763      // otherwise do nothing
   764      return;
   765   }
   767   JavaThreadState state = thread->thread_state();
   768   thread->frame_anchor()->make_walkable(thread);
   770   // Check that we have a valid thread_state at this point
   771   switch(state) {
   772     case _thread_in_vm_trans:
   773     case _thread_in_Java:        // From compiled code
   775       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
   776       // we pretend we are still in the VM.
   777       thread->set_thread_state(_thread_in_vm);
   779       if (is_synchronizing()) {
   780          Atomic::inc (&TryingToBlock) ;
   781       }
   783       // We will always be holding the Safepoint_lock when we are examine the state
   784       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
   785       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
   786       Safepoint_lock->lock_without_safepoint_check();
   787       if (is_synchronizing()) {
   788         // Decrement the number of threads to wait for and signal vm thread
   789         assert(_waiting_to_block > 0, "sanity check");
   790         _waiting_to_block--;
   791         thread->safepoint_state()->set_has_called_back(true);
   793         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
   794         if (thread->in_critical()) {
   795           // Notice that this thread is in a critical section
   796           increment_jni_active_count();
   797         }
   799         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
   800         if (_waiting_to_block == 0) {
   801           Safepoint_lock->notify_all();
   802         }
   803       }
   805       // We transition the thread to state _thread_blocked here, but
   806       // we can't do our usual check for external suspension and then
   807       // self-suspend after the lock_without_safepoint_check() call
   808       // below because we are often called during transitions while
   809       // we hold different locks. That would leave us suspended while
   810       // holding a resource which results in deadlocks.
   811       thread->set_thread_state(_thread_blocked);
   812       Safepoint_lock->unlock();
   814       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
   815       // the entire safepoint, the threads will all line up here during the safepoint.
   816       Threads_lock->lock_without_safepoint_check();
   817       // restore original state. This is important if the thread comes from compiled code, so it
   818       // will continue to execute with the _thread_in_Java state.
   819       thread->set_thread_state(state);
   820       Threads_lock->unlock();
   821       break;
   823     case _thread_in_native_trans:
   824     case _thread_blocked_trans:
   825     case _thread_new_trans:
   826       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
   827         thread->print_thread_state();
   828         fatal("Deadlock in safepoint code.  "
   829               "Should have called back to the VM before blocking.");
   830       }
   832       // We transition the thread to state _thread_blocked here, but
   833       // we can't do our usual check for external suspension and then
   834       // self-suspend after the lock_without_safepoint_check() call
   835       // below because we are often called during transitions while
   836       // we hold different locks. That would leave us suspended while
   837       // holding a resource which results in deadlocks.
   838       thread->set_thread_state(_thread_blocked);
   840       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
   841       // the safepoint code might still be waiting for it to block. We need to change the state here,
   842       // so it can see that it is at a safepoint.
   844       // Block until the safepoint operation is completed.
   845       Threads_lock->lock_without_safepoint_check();
   847       // Restore state
   848       thread->set_thread_state(state);
   850       Threads_lock->unlock();
   851       break;
   853     default:
   854      fatal(err_msg("Illegal threadstate encountered: %d", state));
   855   }
   857   // Check for pending. async. exceptions or suspends - except if the
   858   // thread was blocked inside the VM. has_special_runtime_exit_condition()
   859   // is called last since it grabs a lock and we only want to do that when
   860   // we must.
   861   //
   862   // Note: we never deliver an async exception at a polling point as the
   863   // compiler may not have an exception handler for it. The polling
   864   // code will notice the async and deoptimize and the exception will
   865   // be delivered. (Polling at a return point is ok though). Sure is
   866   // a lot of bother for a deprecated feature...
   867   //
   868   // We don't deliver an async exception if the thread state is
   869   // _thread_in_native_trans so JNI functions won't be called with
   870   // a surprising pending exception. If the thread state is going back to java,
   871   // async exception is checked in check_special_condition_for_native_trans().
   873   if (state != _thread_blocked_trans &&
   874       state != _thread_in_vm_trans &&
   875       thread->has_special_runtime_exit_condition()) {
   876     thread->handle_special_runtime_exit_condition(
   877       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
   878   }
   879 }
   881 // ------------------------------------------------------------------------------------------------------
   882 // Exception handlers
   885 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
   886   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
   887   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
   888   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
   890   if (ShowSafepointMsgs) {
   891     tty->print("handle_polling_page_exception: ");
   892   }
   894   if (PrintSafepointStatistics) {
   895     inc_page_trap_count();
   896   }
   898   ThreadSafepointState* state = thread->safepoint_state();
   900   state->handle_polling_page_exception();
   901 }
   904 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
   905   if (!timeout_error_printed) {
   906     timeout_error_printed = true;
   907     // Print out the thread infor which didn't reach the safepoint for debugging
   908     // purposes (useful when there are lots of threads in the debugger).
   909     tty->cr();
   910     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
   911     if (reason ==  _spinning_timeout) {
   912       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
   913     } else if (reason == _blocking_timeout) {
   914       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
   915     }
   917     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
   918     ThreadSafepointState *cur_state;
   919     ResourceMark rm;
   920     for(JavaThread *cur_thread = Threads::first(); cur_thread;
   921         cur_thread = cur_thread->next()) {
   922       cur_state = cur_thread->safepoint_state();
   924       if (cur_thread->thread_state() != _thread_blocked &&
   925           ((reason == _spinning_timeout && cur_state->is_running()) ||
   926            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
   927         tty->print("# ");
   928         cur_thread->print();
   929         tty->cr();
   930       }
   931     }
   932     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
   933   }
   935   // To debug the long safepoint, specify both AbortVMOnSafepointTimeout &
   936   // ShowMessageBoxOnError.
   937   if (AbortVMOnSafepointTimeout) {
   938     char msg[1024];
   939     VM_Operation *op = VMThread::vm_operation();
   940     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
   941             SafepointTimeoutDelay,
   942             op != NULL ? op->name() : "no vm operation");
   943     fatal(msg);
   944   }
   945 }
   948 // -------------------------------------------------------------------------------------------------------
   949 // Implementation of ThreadSafepointState
   951 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
   952   _thread = thread;
   953   _type   = _running;
   954   _has_called_back = false;
   955   _at_poll_safepoint = false;
   956 }
   958 void ThreadSafepointState::create(JavaThread *thread) {
   959   ThreadSafepointState *state = new ThreadSafepointState(thread);
   960   thread->set_safepoint_state(state);
   961 }
   963 void ThreadSafepointState::destroy(JavaThread *thread) {
   964   if (thread->safepoint_state()) {
   965     delete(thread->safepoint_state());
   966     thread->set_safepoint_state(NULL);
   967   }
   968 }
   970 void ThreadSafepointState::examine_state_of_thread() {
   971   assert(is_running(), "better be running or just have hit safepoint poll");
   973   JavaThreadState state = _thread->thread_state();
   975   // Save the state at the start of safepoint processing.
   976   _orig_thread_state = state;
   978   // Check for a thread that is suspended. Note that thread resume tries
   979   // to grab the Threads_lock which we own here, so a thread cannot be
   980   // resumed during safepoint synchronization.
   982   // We check to see if this thread is suspended without locking to
   983   // avoid deadlocking with a third thread that is waiting for this
   984   // thread to be suspended. The third thread can notice the safepoint
   985   // that we're trying to start at the beginning of its SR_lock->wait()
   986   // call. If that happens, then the third thread will block on the
   987   // safepoint while still holding the underlying SR_lock. We won't be
   988   // able to get the SR_lock and we'll deadlock.
   989   //
   990   // We don't need to grab the SR_lock here for two reasons:
   991   // 1) The suspend flags are both volatile and are set with an
   992   //    Atomic::cmpxchg() call so we should see the suspended
   993   //    state right away.
   994   // 2) We're being called from the safepoint polling loop; if
   995   //    we don't see the suspended state on this iteration, then
   996   //    we'll come around again.
   997   //
   998   bool is_suspended = _thread->is_ext_suspended();
   999   if (is_suspended) {
  1000     roll_forward(_at_safepoint);
  1001     return;
  1004   // Some JavaThread states have an initial safepoint state of
  1005   // running, but are actually at a safepoint. We will happily
  1006   // agree and update the safepoint state here.
  1007   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
  1008     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
  1009     roll_forward(_at_safepoint);
  1010     return;
  1013   if (state == _thread_in_vm) {
  1014     roll_forward(_call_back);
  1015     return;
  1018   // All other thread states will continue to run until they
  1019   // transition and self-block in state _blocked
  1020   // Safepoint polling in compiled code causes the Java threads to do the same.
  1021   // Note: new threads may require a malloc so they must be allowed to finish
  1023   assert(is_running(), "examine_state_of_thread on non-running thread");
  1024   return;
  1027 // Returns true is thread could not be rolled forward at present position.
  1028 void ThreadSafepointState::roll_forward(suspend_type type) {
  1029   _type = type;
  1031   switch(_type) {
  1032     case _at_safepoint:
  1033       SafepointSynchronize::signal_thread_at_safepoint();
  1034       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
  1035       if (_thread->in_critical()) {
  1036         // Notice that this thread is in a critical section
  1037         SafepointSynchronize::increment_jni_active_count();
  1039       break;
  1041     case _call_back:
  1042       set_has_called_back(false);
  1043       break;
  1045     case _running:
  1046     default:
  1047       ShouldNotReachHere();
  1051 void ThreadSafepointState::restart() {
  1052   switch(type()) {
  1053     case _at_safepoint:
  1054     case _call_back:
  1055       break;
  1057     case _running:
  1058     default:
  1059        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
  1060                       _thread, _type);
  1061        _thread->print();
  1062       ShouldNotReachHere();
  1064   _type = _running;
  1065   set_has_called_back(false);
  1069 void ThreadSafepointState::print_on(outputStream *st) const {
  1070   const char *s = NULL;
  1072   switch(_type) {
  1073     case _running                : s = "_running";              break;
  1074     case _at_safepoint           : s = "_at_safepoint";         break;
  1075     case _call_back              : s = "_call_back";            break;
  1076     default:
  1077       ShouldNotReachHere();
  1080   st->print_cr("Thread: " INTPTR_FORMAT
  1081               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
  1082                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
  1083                _at_poll_safepoint);
  1085   _thread->print_thread_state_on(st);
  1089 // ---------------------------------------------------------------------------------------------------------------------
  1091 // Block the thread at the safepoint poll or poll return.
  1092 void ThreadSafepointState::handle_polling_page_exception() {
  1094   // Check state.  block() will set thread state to thread_in_vm which will
  1095   // cause the safepoint state _type to become _call_back.
  1096   assert(type() == ThreadSafepointState::_running,
  1097          "polling page exception on thread not running state");
  1099   // Step 1: Find the nmethod from the return address
  1100   if (ShowSafepointMsgs && Verbose) {
  1101     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
  1103   address real_return_addr = thread()->saved_exception_pc();
  1105   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
  1106   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
  1107   nmethod* nm = (nmethod*)cb;
  1109   // Find frame of caller
  1110   frame stub_fr = thread()->last_frame();
  1111   CodeBlob* stub_cb = stub_fr.cb();
  1112   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
  1113   RegisterMap map(thread(), true);
  1114   frame caller_fr = stub_fr.sender(&map);
  1116   // Should only be poll_return or poll
  1117   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
  1119   // This is a poll immediately before a return. The exception handling code
  1120   // has already had the effect of causing the return to occur, so the execution
  1121   // will continue immediately after the call. In addition, the oopmap at the
  1122   // return point does not mark the return value as an oop (if it is), so
  1123   // it needs a handle here to be updated.
  1124   if( nm->is_at_poll_return(real_return_addr) ) {
  1125     // See if return type is an oop.
  1126     bool return_oop = nm->method()->is_returning_oop();
  1127     Handle return_value;
  1128     if (return_oop) {
  1129       // The oop result has been saved on the stack together with all
  1130       // the other registers. In order to preserve it over GCs we need
  1131       // to keep it in a handle.
  1132       oop result = caller_fr.saved_oop_result(&map);
  1133       assert(result == NULL || result->is_oop(), "must be oop");
  1134       return_value = Handle(thread(), result);
  1135       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
  1138     // Block the thread
  1139     SafepointSynchronize::block(thread());
  1141     // restore oop result, if any
  1142     if (return_oop) {
  1143       caller_fr.set_saved_oop_result(&map, return_value());
  1147   // This is a safepoint poll. Verify the return address and block.
  1148   else {
  1149     set_at_poll_safepoint(true);
  1151     // verify the blob built the "return address" correctly
  1152     assert(real_return_addr == caller_fr.pc(), "must match");
  1154     // Block the thread
  1155     SafepointSynchronize::block(thread());
  1156     set_at_poll_safepoint(false);
  1158     // If we have a pending async exception deoptimize the frame
  1159     // as otherwise we may never deliver it.
  1160     if (thread()->has_async_condition()) {
  1161       ThreadInVMfromJavaNoAsyncException __tiv(thread());
  1162       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
  1165     // If an exception has been installed we must check for a pending deoptimization
  1166     // Deoptimize frame if exception has been thrown.
  1168     if (thread()->has_pending_exception() ) {
  1169       RegisterMap map(thread(), true);
  1170       frame caller_fr = stub_fr.sender(&map);
  1171       if (caller_fr.is_deoptimized_frame()) {
  1172         // The exception patch will destroy registers that are still
  1173         // live and will be needed during deoptimization. Defer the
  1174         // Async exception should have defered the exception until the
  1175         // next safepoint which will be detected when we get into
  1176         // the interpreter so if we have an exception now things
  1177         // are messed up.
  1179         fatal("Exception installed and deoptimization is pending");
  1186 //
  1187 //                     Statistics & Instrumentations
  1188 //
  1189 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
  1190 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
  1191 int    SafepointSynchronize::_cur_stat_index = 0;
  1192 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
  1193 julong SafepointSynchronize::_coalesced_vmop_count = 0;
  1194 jlong  SafepointSynchronize::_max_sync_time = 0;
  1195 jlong  SafepointSynchronize::_max_vmop_time = 0;
  1196 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
  1198 static jlong  cleanup_end_time = 0;
  1199 static bool   need_to_track_page_armed_status = false;
  1200 static bool   init_done = false;
  1202 // Helper method to print the header.
  1203 static void print_header() {
  1204   tty->print("         vmop                    "
  1205              "[threads: total initially_running wait_to_block]    ");
  1206   tty->print("[time: spin block sync cleanup vmop] ");
  1208   // no page armed status printed out if it is always armed.
  1209   if (need_to_track_page_armed_status) {
  1210     tty->print("page_armed ");
  1213   tty->print_cr("page_trap_count");
  1216 void SafepointSynchronize::deferred_initialize_stat() {
  1217   if (init_done) return;
  1219   if (PrintSafepointStatisticsCount <= 0) {
  1220     fatal("Wrong PrintSafepointStatisticsCount");
  1223   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
  1224   // be printed right away, in which case, _safepoint_stats will regress to
  1225   // a single element array. Otherwise, it is a circular ring buffer with default
  1226   // size of PrintSafepointStatisticsCount.
  1227   int stats_array_size;
  1228   if (PrintSafepointStatisticsTimeout > 0) {
  1229     stats_array_size = 1;
  1230     PrintSafepointStatistics = true;
  1231   } else {
  1232     stats_array_size = PrintSafepointStatisticsCount;
  1234   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
  1235                                                  * sizeof(SafepointStats), mtInternal);
  1236   guarantee(_safepoint_stats != NULL,
  1237             "not enough memory for safepoint instrumentation data");
  1239   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
  1240     need_to_track_page_armed_status = true;
  1242   init_done = true;
  1245 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
  1246   assert(init_done, "safepoint statistics array hasn't been initialized");
  1247   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1249   spstat->_time_stamp = _ts_of_current_safepoint;
  1251   VM_Operation *op = VMThread::vm_operation();
  1252   spstat->_vmop_type = (op != NULL ? op->type() : -1);
  1253   if (op != NULL) {
  1254     _safepoint_reasons[spstat->_vmop_type]++;
  1257   spstat->_nof_total_threads = nof_threads;
  1258   spstat->_nof_initial_running_threads = nof_running;
  1259   spstat->_nof_threads_hit_page_trap = 0;
  1261   // Records the start time of spinning. The real time spent on spinning
  1262   // will be adjusted when spin is done. Same trick is applied for time
  1263   // spent on waiting for threads to block.
  1264   if (nof_running != 0) {
  1265     spstat->_time_to_spin = os::javaTimeNanos();
  1266   }  else {
  1267     spstat->_time_to_spin = 0;
  1271 void SafepointSynchronize::update_statistics_on_spin_end() {
  1272   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1274   jlong cur_time = os::javaTimeNanos();
  1276   spstat->_nof_threads_wait_to_block = _waiting_to_block;
  1277   if (spstat->_nof_initial_running_threads != 0) {
  1278     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
  1281   if (need_to_track_page_armed_status) {
  1282     spstat->_page_armed = (PageArmed == 1);
  1285   // Records the start time of waiting for to block. Updated when block is done.
  1286   if (_waiting_to_block != 0) {
  1287     spstat->_time_to_wait_to_block = cur_time;
  1288   } else {
  1289     spstat->_time_to_wait_to_block = 0;
  1293 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
  1294   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1296   if (spstat->_nof_threads_wait_to_block != 0) {
  1297     spstat->_time_to_wait_to_block = end_time -
  1298       spstat->_time_to_wait_to_block;
  1301   // Records the end time of sync which will be used to calculate the total
  1302   // vm operation time. Again, the real time spending in syncing will be deducted
  1303   // from the start of the sync time later when end_statistics is called.
  1304   spstat->_time_to_sync = end_time - _safepoint_begin_time;
  1305   if (spstat->_time_to_sync > _max_sync_time) {
  1306     _max_sync_time = spstat->_time_to_sync;
  1309   spstat->_time_to_do_cleanups = end_time;
  1312 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
  1313   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1315   // Record how long spent in cleanup tasks.
  1316   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
  1318   cleanup_end_time = end_time;
  1321 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
  1322   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1324   // Update the vm operation time.
  1325   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
  1326   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
  1327     _max_vmop_time = spstat->_time_to_exec_vmop;
  1329   // Only the sync time longer than the specified
  1330   // PrintSafepointStatisticsTimeout will be printed out right away.
  1331   // By default, it is -1 meaning all samples will be put into the list.
  1332   if ( PrintSafepointStatisticsTimeout > 0) {
  1333     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1334       print_statistics();
  1336   } else {
  1337     // The safepoint statistics will be printed out when the _safepoin_stats
  1338     // array fills up.
  1339     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
  1340       print_statistics();
  1341       _cur_stat_index = 0;
  1342     } else {
  1343       _cur_stat_index++;
  1348 void SafepointSynchronize::print_statistics() {
  1349   SafepointStats* sstats = _safepoint_stats;
  1351   for (int index = 0; index <= _cur_stat_index; index++) {
  1352     if (index % 30 == 0) {
  1353       print_header();
  1355     sstats = &_safepoint_stats[index];
  1356     tty->print("%.3f: ", sstats->_time_stamp);
  1357     tty->print("%-26s       ["
  1358                INT32_FORMAT_W(8) INT32_FORMAT_W(11) INT32_FORMAT_W(15)
  1359                "    ]    ",
  1360                sstats->_vmop_type == -1 ? "no vm operation" :
  1361                VM_Operation::name(sstats->_vmop_type),
  1362                sstats->_nof_total_threads,
  1363                sstats->_nof_initial_running_threads,
  1364                sstats->_nof_threads_wait_to_block);
  1365     // "/ MICROUNITS " is to convert the unit from nanos to millis.
  1366     tty->print("  ["
  1367                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
  1368                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
  1369                INT64_FORMAT_W(6) "    ]  ",
  1370                sstats->_time_to_spin / MICROUNITS,
  1371                sstats->_time_to_wait_to_block / MICROUNITS,
  1372                sstats->_time_to_sync / MICROUNITS,
  1373                sstats->_time_to_do_cleanups / MICROUNITS,
  1374                sstats->_time_to_exec_vmop / MICROUNITS);
  1376     if (need_to_track_page_armed_status) {
  1377       tty->print(INT32_FORMAT "         ", sstats->_page_armed);
  1379     tty->print_cr(INT32_FORMAT "   ", sstats->_nof_threads_hit_page_trap);
  1383 // This method will be called when VM exits. It will first call
  1384 // print_statistics to print out the rest of the sampling.  Then
  1385 // it tries to summarize the sampling.
  1386 void SafepointSynchronize::print_stat_on_exit() {
  1387   if (_safepoint_stats == NULL) return;
  1389   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
  1391   // During VM exit, end_statistics may not get called and in that
  1392   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
  1393   // don't print it out.
  1394   // Approximate the vm op time.
  1395   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
  1396     os::javaTimeNanos() - cleanup_end_time;
  1398   if ( PrintSafepointStatisticsTimeout < 0 ||
  1399        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
  1400     print_statistics();
  1402   tty->cr();
  1404   // Print out polling page sampling status.
  1405   if (!need_to_track_page_armed_status) {
  1406     if (UseCompilerSafepoints) {
  1407       tty->print_cr("Polling page always armed");
  1409   } else {
  1410     tty->print_cr("Defer polling page loop count = %d\n",
  1411                  DeferPollingPageLoopCount);
  1414   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
  1415     if (_safepoint_reasons[index] != 0) {
  1416       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
  1417                     _safepoint_reasons[index]);
  1421   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
  1422                 _coalesced_vmop_count);
  1423   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
  1424                 _max_sync_time / MICROUNITS);
  1425   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
  1426                 INT64_FORMAT_W(5) " ms",
  1427                 _max_vmop_time / MICROUNITS);
  1430 // ------------------------------------------------------------------------------------------------
  1431 // Non-product code
  1433 #ifndef PRODUCT
  1435 void SafepointSynchronize::print_state() {
  1436   if (_state == _not_synchronized) {
  1437     tty->print_cr("not synchronized");
  1438   } else if (_state == _synchronizing || _state == _synchronized) {
  1439     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
  1440                   "synchronized");
  1442     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
  1443        cur->safepoint_state()->print();
  1448 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
  1449   if (ShowSafepointMsgs) {
  1450     va_list ap;
  1451     va_start(ap, format);
  1452     tty->vprint_cr(format, ap);
  1453     va_end(ap);
  1457 #endif // !PRODUCT

mercurial