src/cpu/ppc/vm/assembler_ppc.cpp

Thu, 20 Mar 2014 11:03:06 +0100

author
goetz
date
Thu, 20 Mar 2014 11:03:06 +0100
changeset 6515
71a71b0bc844
parent 6458
ec28f9c041ff
child 6876
710a3c8b516e
child 7358
327e7269f90d
permissions
-rw-r--r--

8037915: PPC64/AIX: Several smaller fixes
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright 2012, 2014 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #include "utilities/macros.hpp"
    40 #if INCLUDE_ALL_GCS
    41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    43 #include "gc_implementation/g1/heapRegion.hpp"
    44 #endif // INCLUDE_ALL_GCS
    46 #ifdef PRODUCT
    47 #define BLOCK_COMMENT(str) // nothing
    48 #else
    49 #define BLOCK_COMMENT(str) block_comment(str)
    50 #endif
    52 int AbstractAssembler::code_fill_byte() {
    53   return 0x00;                  // illegal instruction 0x00000000
    54 }
    56 void Assembler::print_instruction(int inst) {
    57   Unimplemented();
    58 }
    60 // Patch instruction `inst' at offset `inst_pos' to refer to
    61 // `dest_pos' and return the resulting instruction.  We should have
    62 // pcs, not offsets, but since all is relative, it will work out fine.
    63 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
    64   int m = 0; // mask for displacement field
    65   int v = 0; // new value for displacement field
    67   switch (inv_op_ppc(inst)) {
    68   case b_op:  m = li(-1); v = li(disp(dest_pos, inst_pos)); break;
    69   case bc_op: m = bd(-1); v = bd(disp(dest_pos, inst_pos)); break;
    70     default: ShouldNotReachHere();
    71   }
    72   return inst & ~m | v;
    73 }
    75 // Return the offset, relative to _code_begin, of the destination of
    76 // the branch inst at offset pos.
    77 int Assembler::branch_destination(int inst, int pos) {
    78   int r = 0;
    79   switch (inv_op_ppc(inst)) {
    80     case b_op:  r = bxx_destination_offset(inst, pos); break;
    81     case bc_op: r = inv_bd_field(inst, pos); break;
    82     default: ShouldNotReachHere();
    83   }
    84   return r;
    85 }
    87 // Low-level andi-one-instruction-macro.
    88 void Assembler::andi(Register a, Register s, const int ui16) {
    89   assert(is_uimm(ui16, 16), "must be 16-bit unsigned immediate");
    90   if (is_power_of_2_long(((jlong) ui16)+1)) {
    91     // pow2minus1
    92     clrldi(a, s, 64-log2_long((((jlong) ui16)+1)));
    93   } else if (is_power_of_2_long((jlong) ui16)) {
    94     // pow2
    95     rlwinm(a, s, 0, 31-log2_long((jlong) ui16), 31-log2_long((jlong) ui16));
    96   } else if (is_power_of_2_long((jlong)-ui16)) {
    97     // negpow2
    98     clrrdi(a, s, log2_long((jlong)-ui16));
    99   } else {
   100     andi_(a, s, ui16);
   101   }
   102 }
   104 // RegisterOrConstant version.
   105 void Assembler::ld(Register d, RegisterOrConstant roc, Register s1) {
   106   if (roc.is_constant()) {
   107     if (s1 == noreg) {
   108       int simm16_rest = load_const_optimized(d, roc.as_constant(), noreg, true);
   109       Assembler::ld(d, simm16_rest, d);
   110     } else if (is_simm(roc.as_constant(), 16)) {
   111       Assembler::ld(d, roc.as_constant(), s1);
   112     } else {
   113       load_const_optimized(d, roc.as_constant());
   114       Assembler::ldx(d, d, s1);
   115     }
   116   } else {
   117     if (s1 == noreg)
   118       Assembler::ld(d, 0, roc.as_register());
   119     else
   120       Assembler::ldx(d, roc.as_register(), s1);
   121   }
   122 }
   124 void Assembler::lwa(Register d, RegisterOrConstant roc, Register s1) {
   125   if (roc.is_constant()) {
   126     if (s1 == noreg) {
   127       int simm16_rest = load_const_optimized(d, roc.as_constant(), noreg, true);
   128       Assembler::lwa(d, simm16_rest, d);
   129     } else if (is_simm(roc.as_constant(), 16)) {
   130       Assembler::lwa(d, roc.as_constant(), s1);
   131     } else {
   132       load_const_optimized(d, roc.as_constant());
   133       Assembler::lwax(d, d, s1);
   134     }
   135   } else {
   136     if (s1 == noreg)
   137       Assembler::lwa(d, 0, roc.as_register());
   138     else
   139       Assembler::lwax(d, roc.as_register(), s1);
   140   }
   141 }
   143 void Assembler::lwz(Register d, RegisterOrConstant roc, Register s1) {
   144   if (roc.is_constant()) {
   145     if (s1 == noreg) {
   146       int simm16_rest = load_const_optimized(d, roc.as_constant(), noreg, true);
   147       Assembler::lwz(d, simm16_rest, d);
   148     } else if (is_simm(roc.as_constant(), 16)) {
   149       Assembler::lwz(d, roc.as_constant(), s1);
   150     } else {
   151       load_const_optimized(d, roc.as_constant());
   152       Assembler::lwzx(d, d, s1);
   153     }
   154   } else {
   155     if (s1 == noreg)
   156       Assembler::lwz(d, 0, roc.as_register());
   157     else
   158       Assembler::lwzx(d, roc.as_register(), s1);
   159   }
   160 }
   162 void Assembler::lha(Register d, RegisterOrConstant roc, Register s1) {
   163   if (roc.is_constant()) {
   164     if (s1 == noreg) {
   165       int simm16_rest = load_const_optimized(d, roc.as_constant(), noreg, true);
   166       Assembler::lha(d, simm16_rest, d);
   167     } else if (is_simm(roc.as_constant(), 16)) {
   168       Assembler::lha(d, roc.as_constant(), s1);
   169     } else {
   170       load_const_optimized(d, roc.as_constant());
   171       Assembler::lhax(d, d, s1);
   172     }
   173   } else {
   174     if (s1 == noreg)
   175       Assembler::lha(d, 0, roc.as_register());
   176     else
   177       Assembler::lhax(d, roc.as_register(), s1);
   178   }
   179 }
   181 void Assembler::lhz(Register d, RegisterOrConstant roc, Register s1) {
   182   if (roc.is_constant()) {
   183     if (s1 == noreg) {
   184       int simm16_rest = load_const_optimized(d, roc.as_constant(), noreg, true);
   185       Assembler::lhz(d, simm16_rest, d);
   186     } else if (is_simm(roc.as_constant(), 16)) {
   187       Assembler::lhz(d, roc.as_constant(), s1);
   188     } else {
   189       load_const_optimized(d, roc.as_constant());
   190       Assembler::lhzx(d, d, s1);
   191     }
   192   } else {
   193     if (s1 == noreg)
   194       Assembler::lhz(d, 0, roc.as_register());
   195     else
   196       Assembler::lhzx(d, roc.as_register(), s1);
   197   }
   198 }
   200 void Assembler::lbz(Register d, RegisterOrConstant roc, Register s1) {
   201   if (roc.is_constant()) {
   202     if (s1 == noreg) {
   203       int simm16_rest = load_const_optimized(d, roc.as_constant(), noreg, true);
   204       Assembler::lbz(d, simm16_rest, d);
   205     } else if (is_simm(roc.as_constant(), 16)) {
   206       Assembler::lbz(d, roc.as_constant(), s1);
   207     } else {
   208       load_const_optimized(d, roc.as_constant());
   209       Assembler::lbzx(d, d, s1);
   210     }
   211   } else {
   212     if (s1 == noreg)
   213       Assembler::lbz(d, 0, roc.as_register());
   214     else
   215       Assembler::lbzx(d, roc.as_register(), s1);
   216   }
   217 }
   219 void Assembler::std(Register d, RegisterOrConstant roc, Register s1, Register tmp) {
   220   if (roc.is_constant()) {
   221     if (s1 == noreg) {
   222       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
   223       int simm16_rest = load_const_optimized(tmp, roc.as_constant(), noreg, true);
   224       Assembler::std(d, simm16_rest, tmp);
   225     } else if (is_simm(roc.as_constant(), 16)) {
   226       Assembler::std(d, roc.as_constant(), s1);
   227     } else {
   228       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
   229       load_const_optimized(tmp, roc.as_constant());
   230       Assembler::stdx(d, tmp, s1);
   231     }
   232   } else {
   233     if (s1 == noreg)
   234       Assembler::std(d, 0, roc.as_register());
   235     else
   236       Assembler::stdx(d, roc.as_register(), s1);
   237   }
   238 }
   240 void Assembler::stw(Register d, RegisterOrConstant roc, Register s1, Register tmp) {
   241   if (roc.is_constant()) {
   242     if (s1 == noreg) {
   243       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
   244       int simm16_rest = load_const_optimized(tmp, roc.as_constant(), noreg, true);
   245       Assembler::stw(d, simm16_rest, tmp);
   246     } else if (is_simm(roc.as_constant(), 16)) {
   247       Assembler::stw(d, roc.as_constant(), s1);
   248     } else {
   249       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
   250       load_const_optimized(tmp, roc.as_constant());
   251       Assembler::stwx(d, tmp, s1);
   252     }
   253   } else {
   254     if (s1 == noreg)
   255       Assembler::stw(d, 0, roc.as_register());
   256     else
   257       Assembler::stwx(d, roc.as_register(), s1);
   258   }
   259 }
   261 void Assembler::sth(Register d, RegisterOrConstant roc, Register s1, Register tmp) {
   262   if (roc.is_constant()) {
   263     if (s1 == noreg) {
   264       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
   265       int simm16_rest = load_const_optimized(tmp, roc.as_constant(), noreg, true);
   266       Assembler::sth(d, simm16_rest, tmp);
   267     } else if (is_simm(roc.as_constant(), 16)) {
   268       Assembler::sth(d, roc.as_constant(), s1);
   269     } else {
   270       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
   271       load_const_optimized(tmp, roc.as_constant());
   272       Assembler::sthx(d, tmp, s1);
   273     }
   274   } else {
   275     if (s1 == noreg)
   276       Assembler::sth(d, 0, roc.as_register());
   277     else
   278       Assembler::sthx(d, roc.as_register(), s1);
   279   }
   280 }
   282 void Assembler::stb(Register d, RegisterOrConstant roc, Register s1, Register tmp) {
   283   if (roc.is_constant()) {
   284     if (s1 == noreg) {
   285       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
   286       int simm16_rest = load_const_optimized(tmp, roc.as_constant(), noreg, true);
   287       Assembler::stb(d, simm16_rest, tmp);
   288     } else if (is_simm(roc.as_constant(), 16)) {
   289       Assembler::stb(d, roc.as_constant(), s1);
   290     } else {
   291       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
   292       load_const_optimized(tmp, roc.as_constant());
   293       Assembler::stbx(d, tmp, s1);
   294     }
   295   } else {
   296     if (s1 == noreg)
   297       Assembler::stb(d, 0, roc.as_register());
   298     else
   299       Assembler::stbx(d, roc.as_register(), s1);
   300   }
   301 }
   303 void Assembler::add(Register d, RegisterOrConstant roc, Register s1) {
   304   if (roc.is_constant()) {
   305     intptr_t c = roc.as_constant();
   306     assert(is_simm(c, 16), "too big");
   307     addi(d, s1, (int)c);
   308   }
   309   else add(d, roc.as_register(), s1);
   310 }
   312 void Assembler::subf(Register d, RegisterOrConstant roc, Register s1) {
   313   if (roc.is_constant()) {
   314     intptr_t c = roc.as_constant();
   315     assert(is_simm(-c, 16), "too big");
   316     addi(d, s1, (int)-c);
   317   }
   318   else subf(d, roc.as_register(), s1);
   319 }
   321 void Assembler::cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1) {
   322   if (roc.is_constant()) {
   323     intptr_t c = roc.as_constant();
   324     assert(is_simm(c, 16), "too big");
   325     cmpdi(d, s1, (int)c);
   326   }
   327   else cmpd(d, roc.as_register(), s1);
   328 }
   330 // Load a 64 bit constant. Patchable.
   331 void Assembler::load_const(Register d, long x, Register tmp) {
   332   // 64-bit value: x = xa xb xc xd
   333   int xa = (x >> 48) & 0xffff;
   334   int xb = (x >> 32) & 0xffff;
   335   int xc = (x >> 16) & 0xffff;
   336   int xd = (x >>  0) & 0xffff;
   337   if (tmp == noreg) {
   338     Assembler::lis( d, (int)(short)xa);
   339     Assembler::ori( d, d, (unsigned int)xb);
   340     Assembler::sldi(d, d, 32);
   341     Assembler::oris(d, d, (unsigned int)xc);
   342     Assembler::ori( d, d, (unsigned int)xd);
   343   } else {
   344     // exploit instruction level parallelism if we have a tmp register
   345     assert_different_registers(d, tmp);
   346     Assembler::lis(tmp, (int)(short)xa);
   347     Assembler::lis(d, (int)(short)xc);
   348     Assembler::ori(tmp, tmp, (unsigned int)xb);
   349     Assembler::ori(d, d, (unsigned int)xd);
   350     Assembler::insrdi(d, tmp, 32, 0);
   351   }
   352 }
   354 // Load a 64 bit constant, optimized, not identifyable.
   355 // Tmp can be used to increase ILP. Set return_simm16_rest=true to get a
   356 // 16 bit immediate offset.
   357 int Assembler::load_const_optimized(Register d, long x, Register tmp, bool return_simm16_rest) {
   358   // Avoid accidentally trying to use R0 for indexed addressing.
   359   assert(d != R0, "R0 not allowed");
   360   assert_different_registers(d, tmp);
   362   short xa, xb, xc, xd; // Four 16-bit chunks of const.
   363   long rem = x;         // Remaining part of const.
   365   xd = rem & 0xFFFF;    // Lowest 16-bit chunk.
   366   rem = (rem >> 16) + ((unsigned short)xd >> 15); // Compensation for sign extend.
   368   if (rem == 0) { // opt 1: simm16
   369     li(d, xd);
   370     return 0;
   371   }
   373   xc = rem & 0xFFFF; // Next 16-bit chunk.
   374   rem = (rem >> 16) + ((unsigned short)xc >> 15); // Compensation for sign extend.
   376   if (rem == 0) { // opt 2: simm32
   377     lis(d, xc);
   378   } else { // High 32 bits needed.
   380     if (tmp != noreg) { // opt 3: We have a temp reg.
   381       // No carry propagation between xc and higher chunks here (use logical instructions).
   382       xa = (x >> 48) & 0xffff;
   383       xb = (x >> 32) & 0xffff; // No sign compensation, we use lis+ori or li to allow usage of R0.
   384       bool load_xa = (xa != 0) || (xb < 0);
   385       bool return_xd = false;
   387       if (load_xa) { lis(tmp, xa); }
   388       if (xc) { lis(d, xc); }
   389       if (load_xa) {
   390         if (xb) { ori(tmp, tmp, (unsigned short)xb); } // No addi, we support tmp == R0.
   391       } else {
   392         li(tmp, xb); // non-negative
   393       }
   394       if (xc) {
   395         if (return_simm16_rest && xd >= 0) { return_xd = true; } // >= 0 to avoid carry propagation after insrdi/rldimi.
   396         else if (xd) { addi(d, d, xd); }
   397       } else {
   398         li(d, xd);
   399       }
   400       insrdi(d, tmp, 32, 0);
   401       return return_xd ? xd : 0; // non-negative
   402     }
   404     xb = rem & 0xFFFF; // Next 16-bit chunk.
   405     rem = (rem >> 16) + ((unsigned short)xb >> 15); // Compensation for sign extend.
   407     xa = rem & 0xFFFF; // Highest 16-bit chunk.
   409     // opt 4: avoid adding 0
   410     if (xa) { // Highest 16-bit needed?
   411       lis(d, xa);
   412       if (xb) { addi(d, d, xb); }
   413     } else {
   414       li(d, xb);
   415     }
   416     sldi(d, d, 32);
   417     if (xc) { addis(d, d, xc); }
   418   }
   420   // opt 5: Return offset to be inserted into following instruction.
   421   if (return_simm16_rest) return xd;
   423   if (xd) { addi(d, d, xd); }
   424   return 0;
   425 }
   427 #ifndef PRODUCT
   428 // Test of ppc assembler.
   429 void Assembler::test_asm() {
   430   // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
   431   addi(   R0,  R1,  10);
   432   addis(  R5,  R2,  11);
   433   addic_( R3,  R31, 42);
   434   subfic( R21, R12, 2112);
   435   add(    R3,  R2,  R1);
   436   add_(   R11, R22, R30);
   437   subf(   R7,  R6,  R5);
   438   subf_(  R8,  R9,  R4);
   439   addc(   R11, R12, R13);
   440   addc_(  R14, R14, R14);
   441   subfc(  R15, R16, R17);
   442   subfc_( R18, R20, R19);
   443   adde(   R20, R22, R24);
   444   adde_(  R29, R27, R26);
   445   subfe(  R28, R1,  R0);
   446   subfe_( R21, R11, R29);
   447   neg(    R21, R22);
   448   neg_(   R13, R23);
   449   mulli(  R0,  R11, -31);
   450   mulld(  R1,  R18, R21);
   451   mulld_( R2,  R17, R22);
   452   mullw(  R3,  R16, R23);
   453   mullw_( R4,  R15, R24);
   454   divd(   R5,  R14, R25);
   455   divd_(  R6,  R13, R26);
   456   divw(   R7,  R12, R27);
   457   divw_(  R8,  R11, R28);
   459   li(     R3, -4711);
   461   // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
   462   cmpi(   CCR7,  0, R27, 4711);
   463   cmp(    CCR0, 1, R14, R11);
   464   cmpli(  CCR5,  1, R17, 45);
   465   cmpl(   CCR3, 0, R9,  R10);
   467   cmpwi(  CCR7,  R27, 4711);
   468   cmpw(   CCR0, R14, R11);
   469   cmplwi( CCR5,  R17, 45);
   470   cmplw(  CCR3, R9,  R10);
   472   cmpdi(  CCR7,  R27, 4711);
   473   cmpd(   CCR0, R14, R11);
   474   cmpldi( CCR5,  R17, 45);
   475   cmpld(  CCR3, R9,  R10);
   477   // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
   478   andi_(  R4,  R5,  0xff);
   479   andis_( R12, R13, 0x7b51);
   480   ori(    R1,  R4,  13);
   481   oris(   R3,  R5,  177);
   482   xori(   R7,  R6,  51);
   483   xoris(  R29, R0,  1);
   484   andr(   R17, R21, R16);
   485   and_(   R3,  R5,  R15);
   486   orr(    R2,  R1,  R9);
   487   or_(    R17, R15, R11);
   488   xorr(   R19, R18, R10);
   489   xor_(   R31, R21, R11);
   490   nand(   R5,  R7,  R3);
   491   nand_(  R3,  R1,  R0);
   492   nor(    R2,  R3,  R5);
   493   nor_(   R3,  R6,  R8);
   494   andc(   R25, R12, R11);
   495   andc_(  R24, R22, R21);
   496   orc(    R20, R10, R12);
   497   orc_(   R22, R2,  R13);
   499   nop();
   501   // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
   502   sld(    R5,  R6,  R8);
   503   sld_(   R3,  R5,  R9);
   504   slw(    R2,  R1,  R10);
   505   slw_(   R6,  R26, R16);
   506   srd(    R16, R24, R8);
   507   srd_(   R21, R14, R7);
   508   srw(    R22, R25, R29);
   509   srw_(   R5,  R18, R17);
   510   srad(   R7,  R11, R0);
   511   srad_(  R9,  R13, R1);
   512   sraw(   R7,  R15, R2);
   513   sraw_(  R4,  R17, R3);
   514   sldi(   R3,  R18, 63);
   515   sldi_(  R2,  R20, 30);
   516   slwi(   R1,  R21, 30);
   517   slwi_(  R7,  R23, 8);
   518   srdi(   R0,  R19, 2);
   519   srdi_(  R12, R24, 5);
   520   srwi(   R13, R27, 6);
   521   srwi_(  R14, R29, 7);
   522   sradi(  R15, R30, 9);
   523   sradi_( R16, R31, 19);
   524   srawi(  R17, R31, 15);
   525   srawi_( R18, R31, 12);
   527   clrrdi( R3, R30, 5);
   528   clrldi( R9, R10, 11);
   530   rldicr( R19, R20, 13, 15);
   531   rldicr_(R20, R20, 16, 14);
   532   rldicl( R21, R21, 30, 33);
   533   rldicl_(R22, R1,  20, 25);
   534   rlwinm( R23, R2,  25, 10, 11);
   535   rlwinm_(R24, R3,  12, 13, 14);
   537   // PPC 1, section 3.3.2 Fixed-Point Load Instructions
   538   lwzx(   R3,  R5, R7);
   539   lwz(    R11,  0, R1);
   540   lwzu(   R31, -4, R11);
   542   lwax(   R3,  R5, R7);
   543   lwa(    R31, -4, R11);
   544   lhzx(   R3,  R5, R7);
   545   lhz(    R31, -4, R11);
   546   lhzu(   R31, -4, R11);
   549   lhax(   R3,  R5, R7);
   550   lha(    R31, -4, R11);
   551   lhau(   R11,  0, R1);
   553   lbzx(   R3,  R5, R7);
   554   lbz(    R31, -4, R11);
   555   lbzu(   R11,  0, R1);
   557   ld(     R31, -4, R11);
   558   ldx(    R3,  R5, R7);
   559   ldu(    R31, -4, R11);
   561   //  PPC 1, section 3.3.3 Fixed-Point Store Instructions
   562   stwx(   R3,  R5, R7);
   563   stw(    R31, -4, R11);
   564   stwu(   R11,  0, R1);
   566   sthx(   R3,  R5, R7 );
   567   sth(    R31, -4, R11);
   568   sthu(   R31, -4, R11);
   570   stbx(   R3,  R5, R7);
   571   stb(    R31, -4, R11);
   572   stbu(   R31, -4, R11);
   574   std(    R31, -4, R11);
   575   stdx(   R3,  R5, R7);
   576   stdu(   R31, -4, R11);
   578  // PPC 1, section 3.3.13 Move To/From System Register Instructions
   579   mtlr(   R3);
   580   mflr(   R3);
   581   mtctr(  R3);
   582   mfctr(  R3);
   583   mtcrf(  0xff, R15);
   584   mtcr(   R15);
   585   mtcrf(  0x03, R15);
   586   mtcr(   R15);
   587   mfcr(   R15);
   589  // PPC 1, section 2.4.1 Branch Instructions
   590   Label lbl1, lbl2, lbl3;
   591   bind(lbl1);
   593   b(pc());
   594   b(pc() - 8);
   595   b(lbl1);
   596   b(lbl2);
   597   b(lbl3);
   599   bl(pc() - 8);
   600   bl(lbl1);
   601   bl(lbl2);
   603   bcl(4, 10, pc() - 8);
   604   bcl(4, 10, lbl1);
   605   bcl(4, 10, lbl2);
   607   bclr( 4, 6, 0);
   608   bclrl(4, 6, 0);
   610   bind(lbl2);
   612   bcctr( 4, 6, 0);
   613   bcctrl(4, 6, 0);
   615   blt(CCR0, lbl2);
   616   bgt(CCR1, lbl2);
   617   beq(CCR2, lbl2);
   618   bso(CCR3, lbl2);
   619   bge(CCR4, lbl2);
   620   ble(CCR5, lbl2);
   621   bne(CCR6, lbl2);
   622   bns(CCR7, lbl2);
   624   bltl(CCR0, lbl2);
   625   bgtl(CCR1, lbl2);
   626   beql(CCR2, lbl2);
   627   bsol(CCR3, lbl2);
   628   bgel(CCR4, lbl2);
   629   blel(CCR5, lbl2);
   630   bnel(CCR6, lbl2);
   631   bnsl(CCR7, lbl2);
   632   blr();
   634   sync();
   635   icbi( R1, R2);
   636   dcbst(R2, R3);
   638   // FLOATING POINT instructions ppc.
   639   // PPC 1, section 4.6.2 Floating-Point Load Instructions
   640   lfs( F1, -11, R3);
   641   lfsu(F2, 123, R4);
   642   lfsx(F3, R5,  R6);
   643   lfd( F4, 456, R7);
   644   lfdu(F5, 789, R8);
   645   lfdx(F6, R10, R11);
   647   // PPC 1, section 4.6.3 Floating-Point Store Instructions
   648   stfs(  F7,  876, R12);
   649   stfsu( F8,  543, R13);
   650   stfsx( F9,  R14, R15);
   651   stfd(  F10, 210, R16);
   652   stfdu( F11, 111, R17);
   653   stfdx( F12, R18, R19);
   655   // PPC 1, section 4.6.4 Floating-Point Move Instructions
   656   fmr(   F13, F14);
   657   fmr_(  F14, F15);
   658   fneg(  F16, F17);
   659   fneg_( F18, F19);
   660   fabs(  F20, F21);
   661   fabs_( F22, F23);
   662   fnabs( F24, F25);
   663   fnabs_(F26, F27);
   665   // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic
   666   // Instructions
   667   fadd(  F28, F29, F30);
   668   fadd_( F31, F0,  F1);
   669   fadds( F2,  F3,  F4);
   670   fadds_(F5,  F6,  F7);
   671   fsub(  F8,  F9,  F10);
   672   fsub_( F11, F12, F13);
   673   fsubs( F14, F15, F16);
   674   fsubs_(F17, F18, F19);
   675   fmul(  F20, F21, F22);
   676   fmul_( F23, F24, F25);
   677   fmuls( F26, F27, F28);
   678   fmuls_(F29, F30, F31);
   679   fdiv(  F0,  F1,  F2);
   680   fdiv_( F3,  F4,  F5);
   681   fdivs( F6,  F7,  F8);
   682   fdivs_(F9,  F10, F11);
   684   // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion
   685   // Instructions
   686   frsp(  F12, F13);
   687   fctid( F14, F15);
   688   fctidz(F16, F17);
   689   fctiw( F18, F19);
   690   fctiwz(F20, F21);
   691   fcfid( F22, F23);
   693   // PPC 1, section 4.6.7 Floating-Point Compare Instructions
   694   fcmpu( CCR7, F24, F25);
   696   tty->print_cr("\ntest_asm disassembly (0x%lx 0x%lx):", code()->insts_begin(), code()->insts_end());
   697   code()->decode();
   698 }
   700 #endif // !PRODUCT

mercurial