src/share/vm/gc_interface/collectedHeap.hpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6690
1772223a25a2
parent 0
f90c822e73f8
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
    28 #include "gc_interface/gcCause.hpp"
    29 #include "gc_implementation/shared/gcWhen.hpp"
    30 #include "memory/allocation.hpp"
    31 #include "memory/barrierSet.hpp"
    32 #include "runtime/handles.hpp"
    33 #include "runtime/perfData.hpp"
    34 #include "runtime/safepoint.hpp"
    35 #include "utilities/events.hpp"
    37 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
    38 // is an abstract class: there may be many different kinds of heaps.  This
    39 // class defines the functions that a heap must implement, and contains
    40 // infrastructure common to all heaps.
    42 class AdaptiveSizePolicy;
    43 class BarrierSet;
    44 class CollectorPolicy;
    45 class GCHeapSummary;
    46 class GCTimer;
    47 class GCTracer;
    48 class MetaspaceSummary;
    49 class Thread;
    50 class ThreadClosure;
    51 class VirtualSpaceSummary;
    52 class nmethod;
    54 class GCMessage : public FormatBuffer<1024> {
    55  public:
    56   bool is_before;
    58  public:
    59   GCMessage() {}
    60 };
    62 class GCHeapLog : public EventLogBase<GCMessage> {
    63  private:
    64   void log_heap(bool before);
    66  public:
    67   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
    69   void log_heap_before() {
    70     log_heap(true);
    71   }
    72   void log_heap_after() {
    73     log_heap(false);
    74   }
    75 };
    77 //
    78 // CollectedHeap
    79 //   SharedHeap
    80 //     GenCollectedHeap
    81 //     G1CollectedHeap
    82 //   ParallelScavengeHeap
    83 //
    84 class CollectedHeap : public CHeapObj<mtInternal> {
    85   friend class VMStructs;
    86   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
    88 #ifdef ASSERT
    89   static int       _fire_out_of_memory_count;
    90 #endif
    92   // Used for filler objects (static, but initialized in ctor).
    93   static size_t _filler_array_max_size;
    95   GCHeapLog* _gc_heap_log;
    97   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
    98   bool _defer_initial_card_mark;
   100  protected:
   101   MemRegion _reserved;
   102   BarrierSet* _barrier_set;
   103   bool _is_gc_active;
   104   uint _n_par_threads;
   106   unsigned int _total_collections;          // ... started
   107   unsigned int _total_full_collections;     // ... started
   108   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
   109   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
   111   // Reason for current garbage collection.  Should be set to
   112   // a value reflecting no collection between collections.
   113   GCCause::Cause _gc_cause;
   114   GCCause::Cause _gc_lastcause;
   115   PerfStringVariable* _perf_gc_cause;
   116   PerfStringVariable* _perf_gc_lastcause;
   118   // Constructor
   119   CollectedHeap();
   121   // Do common initializations that must follow instance construction,
   122   // for example, those needing virtual calls.
   123   // This code could perhaps be moved into initialize() but would
   124   // be slightly more awkward because we want the latter to be a
   125   // pure virtual.
   126   void pre_initialize();
   128   // Create a new tlab. All TLAB allocations must go through this.
   129   virtual HeapWord* allocate_new_tlab(size_t size);
   131   // Accumulate statistics on all tlabs.
   132   virtual void accumulate_statistics_all_tlabs();
   134   // Reinitialize tlabs before resuming mutators.
   135   virtual void resize_all_tlabs();
   137   // Allocate from the current thread's TLAB, with broken-out slow path.
   138   inline static HeapWord* allocate_from_tlab(KlassHandle klass, Thread* thread, size_t size);
   139   static HeapWord* allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size);
   141   // Allocate an uninitialized block of the given size, or returns NULL if
   142   // this is impossible.
   143   inline static HeapWord* common_mem_allocate_noinit(KlassHandle klass, size_t size, TRAPS);
   145   // Like allocate_init, but the block returned by a successful allocation
   146   // is guaranteed initialized to zeros.
   147   inline static HeapWord* common_mem_allocate_init(KlassHandle klass, size_t size, TRAPS);
   149   // Helper functions for (VM) allocation.
   150   inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
   151   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
   152                                                             HeapWord* objPtr);
   154   inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, int size);
   156   inline static void post_allocation_setup_array(KlassHandle klass,
   157                                                  HeapWord* obj, int length);
   159   // Clears an allocated object.
   160   inline static void init_obj(HeapWord* obj, size_t size);
   162   // Filler object utilities.
   163   static inline size_t filler_array_hdr_size();
   164   static inline size_t filler_array_min_size();
   166   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
   167   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
   169   // Fill with a single array; caller must ensure filler_array_min_size() <=
   170   // words <= filler_array_max_size().
   171   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
   173   // Fill with a single object (either an int array or a java.lang.Object).
   174   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
   176   virtual void trace_heap(GCWhen::Type when, GCTracer* tracer);
   178   // Verification functions
   179   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
   180     PRODUCT_RETURN;
   181   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
   182     PRODUCT_RETURN;
   183   debug_only(static void check_for_valid_allocation_state();)
   185  public:
   186   enum Name {
   187     Abstract,
   188     SharedHeap,
   189     GenCollectedHeap,
   190     ParallelScavengeHeap,
   191     G1CollectedHeap
   192   };
   194   static inline size_t filler_array_max_size() {
   195     return _filler_array_max_size;
   196   }
   198   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
   200   /**
   201    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
   202    * and JNI_OK on success.
   203    */
   204   virtual jint initialize() = 0;
   206   // In many heaps, there will be a need to perform some initialization activities
   207   // after the Universe is fully formed, but before general heap allocation is allowed.
   208   // This is the correct place to place such initialization methods.
   209   virtual void post_initialize() = 0;
   211   // Stop any onging concurrent work and prepare for exit.
   212   virtual void stop() {}
   214   MemRegion reserved_region() const { return _reserved; }
   215   address base() const { return (address)reserved_region().start(); }
   217   virtual size_t capacity() const = 0;
   218   virtual size_t used() const = 0;
   220   // Return "true" if the part of the heap that allocates Java
   221   // objects has reached the maximal committed limit that it can
   222   // reach, without a garbage collection.
   223   virtual bool is_maximal_no_gc() const = 0;
   225   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
   226   // memory that the vm could make available for storing 'normal' java objects.
   227   // This is based on the reserved address space, but should not include space
   228   // that the vm uses internally for bookkeeping or temporary storage
   229   // (e.g., in the case of the young gen, one of the survivor
   230   // spaces).
   231   virtual size_t max_capacity() const = 0;
   233   // Returns "TRUE" if "p" points into the reserved area of the heap.
   234   bool is_in_reserved(const void* p) const {
   235     return _reserved.contains(p);
   236   }
   238   bool is_in_reserved_or_null(const void* p) const {
   239     return p == NULL || is_in_reserved(p);
   240   }
   242   // Returns "TRUE" iff "p" points into the committed areas of the heap.
   243   // Since this method can be expensive in general, we restrict its
   244   // use to assertion checking only.
   245   virtual bool is_in(const void* p) const = 0;
   247   bool is_in_or_null(const void* p) const {
   248     return p == NULL || is_in(p);
   249   }
   251   bool is_in_place(Metadata** p) {
   252     return !Universe::heap()->is_in(p);
   253   }
   254   bool is_in_place(oop* p) { return Universe::heap()->is_in(p); }
   255   bool is_in_place(narrowOop* p) {
   256     oop o = oopDesc::load_decode_heap_oop_not_null(p);
   257     return Universe::heap()->is_in((const void*)o);
   258   }
   260   // Let's define some terms: a "closed" subset of a heap is one that
   261   //
   262   // 1) contains all currently-allocated objects, and
   263   //
   264   // 2) is closed under reference: no object in the closed subset
   265   //    references one outside the closed subset.
   266   //
   267   // Membership in a heap's closed subset is useful for assertions.
   268   // Clearly, the entire heap is a closed subset, so the default
   269   // implementation is to use "is_in_reserved".  But this may not be too
   270   // liberal to perform useful checking.  Also, the "is_in" predicate
   271   // defines a closed subset, but may be too expensive, since "is_in"
   272   // verifies that its argument points to an object head.  The
   273   // "closed_subset" method allows a heap to define an intermediate
   274   // predicate, allowing more precise checking than "is_in_reserved" at
   275   // lower cost than "is_in."
   277   // One important case is a heap composed of disjoint contiguous spaces,
   278   // such as the Garbage-First collector.  Such heaps have a convenient
   279   // closed subset consisting of the allocated portions of those
   280   // contiguous spaces.
   282   // Return "TRUE" iff the given pointer points into the heap's defined
   283   // closed subset (which defaults to the entire heap).
   284   virtual bool is_in_closed_subset(const void* p) const {
   285     return is_in_reserved(p);
   286   }
   288   bool is_in_closed_subset_or_null(const void* p) const {
   289     return p == NULL || is_in_closed_subset(p);
   290   }
   292 #ifdef ASSERT
   293   // Returns true if "p" is in the part of the
   294   // heap being collected.
   295   virtual bool is_in_partial_collection(const void *p) = 0;
   296 #endif
   298   // An object is scavengable if its location may move during a scavenge.
   299   // (A scavenge is a GC which is not a full GC.)
   300   virtual bool is_scavengable(const void *p) = 0;
   302   void set_gc_cause(GCCause::Cause v) {
   303      if (UsePerfData) {
   304        _gc_lastcause = _gc_cause;
   305        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
   306        _perf_gc_cause->set_value(GCCause::to_string(v));
   307      }
   308     _gc_cause = v;
   309   }
   310   GCCause::Cause gc_cause() { return _gc_cause; }
   312   // Number of threads currently working on GC tasks.
   313   uint n_par_threads() { return _n_par_threads; }
   315   // May be overridden to set additional parallelism.
   316   virtual void set_par_threads(uint t) { _n_par_threads = t; };
   318   // General obj/array allocation facilities.
   319   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
   320   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
   321   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
   323   inline static void post_allocation_install_obj_klass(KlassHandle klass,
   324                                                        oop obj);
   326   // Raw memory allocation facilities
   327   // The obj and array allocate methods are covers for these methods.
   328   // mem_allocate() should never be
   329   // called to allocate TLABs, only individual objects.
   330   virtual HeapWord* mem_allocate(size_t size,
   331                                  bool* gc_overhead_limit_was_exceeded) = 0;
   333   // Utilities for turning raw memory into filler objects.
   334   //
   335   // min_fill_size() is the smallest region that can be filled.
   336   // fill_with_objects() can fill arbitrary-sized regions of the heap using
   337   // multiple objects.  fill_with_object() is for regions known to be smaller
   338   // than the largest array of integers; it uses a single object to fill the
   339   // region and has slightly less overhead.
   340   static size_t min_fill_size() {
   341     return size_t(align_object_size(oopDesc::header_size()));
   342   }
   344   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
   346   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
   347   static void fill_with_object(MemRegion region, bool zap = true) {
   348     fill_with_object(region.start(), region.word_size(), zap);
   349   }
   350   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
   351     fill_with_object(start, pointer_delta(end, start), zap);
   352   }
   354   // Some heaps may offer a contiguous region for shared non-blocking
   355   // allocation, via inlined code (by exporting the address of the top and
   356   // end fields defining the extent of the contiguous allocation region.)
   358   // This function returns "true" iff the heap supports this kind of
   359   // allocation.  (Default is "no".)
   360   virtual bool supports_inline_contig_alloc() const {
   361     return false;
   362   }
   363   // These functions return the addresses of the fields that define the
   364   // boundaries of the contiguous allocation area.  (These fields should be
   365   // physically near to one another.)
   366   virtual HeapWord** top_addr() const {
   367     guarantee(false, "inline contiguous allocation not supported");
   368     return NULL;
   369   }
   370   virtual HeapWord** end_addr() const {
   371     guarantee(false, "inline contiguous allocation not supported");
   372     return NULL;
   373   }
   375   // Some heaps may be in an unparseable state at certain times between
   376   // collections. This may be necessary for efficient implementation of
   377   // certain allocation-related activities. Calling this function before
   378   // attempting to parse a heap ensures that the heap is in a parsable
   379   // state (provided other concurrent activity does not introduce
   380   // unparsability). It is normally expected, therefore, that this
   381   // method is invoked with the world stopped.
   382   // NOTE: if you override this method, make sure you call
   383   // super::ensure_parsability so that the non-generational
   384   // part of the work gets done. See implementation of
   385   // CollectedHeap::ensure_parsability and, for instance,
   386   // that of GenCollectedHeap::ensure_parsability().
   387   // The argument "retire_tlabs" controls whether existing TLABs
   388   // are merely filled or also retired, thus preventing further
   389   // allocation from them and necessitating allocation of new TLABs.
   390   virtual void ensure_parsability(bool retire_tlabs);
   392   // Return an estimate of the maximum allocation that could be performed
   393   // without triggering any collection or expansion activity.  In a
   394   // generational collector, for example, this is probably the largest
   395   // allocation that could be supported (without expansion) in the youngest
   396   // generation.  It is "unsafe" because no locks are taken; the result
   397   // should be treated as an approximation, not a guarantee, for use in
   398   // heuristic resizing decisions.
   399   virtual size_t unsafe_max_alloc() = 0;
   401   // Section on thread-local allocation buffers (TLABs)
   402   // If the heap supports thread-local allocation buffers, it should override
   403   // the following methods:
   404   // Returns "true" iff the heap supports thread-local allocation buffers.
   405   // The default is "no".
   406   virtual bool supports_tlab_allocation() const = 0;
   408   // The amount of space available for thread-local allocation buffers.
   409   virtual size_t tlab_capacity(Thread *thr) const = 0;
   411   // The amount of used space for thread-local allocation buffers for the given thread.
   412   virtual size_t tlab_used(Thread *thr) const = 0;
   414   virtual size_t max_tlab_size() const;
   416   // An estimate of the maximum allocation that could be performed
   417   // for thread-local allocation buffers without triggering any
   418   // collection or expansion activity.
   419   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
   420     guarantee(false, "thread-local allocation buffers not supported");
   421     return 0;
   422   }
   424   // Can a compiler initialize a new object without store barriers?
   425   // This permission only extends from the creation of a new object
   426   // via a TLAB up to the first subsequent safepoint. If such permission
   427   // is granted for this heap type, the compiler promises to call
   428   // defer_store_barrier() below on any slow path allocation of
   429   // a new object for which such initializing store barriers will
   430   // have been elided.
   431   virtual bool can_elide_tlab_store_barriers() const = 0;
   433   // If a compiler is eliding store barriers for TLAB-allocated objects,
   434   // there is probably a corresponding slow path which can produce
   435   // an object allocated anywhere.  The compiler's runtime support
   436   // promises to call this function on such a slow-path-allocated
   437   // object before performing initializations that have elided
   438   // store barriers. Returns new_obj, or maybe a safer copy thereof.
   439   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
   441   // Answers whether an initializing store to a new object currently
   442   // allocated at the given address doesn't need a store
   443   // barrier. Returns "true" if it doesn't need an initializing
   444   // store barrier; answers "false" if it does.
   445   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
   447   // If a compiler is eliding store barriers for TLAB-allocated objects,
   448   // we will be informed of a slow-path allocation by a call
   449   // to new_store_pre_barrier() above. Such a call precedes the
   450   // initialization of the object itself, and no post-store-barriers will
   451   // be issued. Some heap types require that the barrier strictly follows
   452   // the initializing stores. (This is currently implemented by deferring the
   453   // barrier until the next slow-path allocation or gc-related safepoint.)
   454   // This interface answers whether a particular heap type needs the card
   455   // mark to be thus strictly sequenced after the stores.
   456   virtual bool card_mark_must_follow_store() const = 0;
   458   // If the CollectedHeap was asked to defer a store barrier above,
   459   // this informs it to flush such a deferred store barrier to the
   460   // remembered set.
   461   virtual void flush_deferred_store_barrier(JavaThread* thread);
   463   // Does this heap support heap inspection (+PrintClassHistogram?)
   464   virtual bool supports_heap_inspection() const = 0;
   466   // Perform a collection of the heap; intended for use in implementing
   467   // "System.gc".  This probably implies as full a collection as the
   468   // "CollectedHeap" supports.
   469   virtual void collect(GCCause::Cause cause) = 0;
   471   // Perform a full collection
   472   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
   474   // This interface assumes that it's being called by the
   475   // vm thread. It collects the heap assuming that the
   476   // heap lock is already held and that we are executing in
   477   // the context of the vm thread.
   478   virtual void collect_as_vm_thread(GCCause::Cause cause);
   480   // Returns the barrier set for this heap
   481   BarrierSet* barrier_set() { return _barrier_set; }
   483   // Returns "true" iff there is a stop-world GC in progress.  (I assume
   484   // that it should answer "false" for the concurrent part of a concurrent
   485   // collector -- dld).
   486   bool is_gc_active() const { return _is_gc_active; }
   488   // Total number of GC collections (started)
   489   unsigned int total_collections() const { return _total_collections; }
   490   unsigned int total_full_collections() const { return _total_full_collections;}
   492   // Increment total number of GC collections (started)
   493   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
   494   void increment_total_collections(bool full = false) {
   495     _total_collections++;
   496     if (full) {
   497       increment_total_full_collections();
   498     }
   499   }
   501   void increment_total_full_collections() { _total_full_collections++; }
   503   // Return the AdaptiveSizePolicy for the heap.
   504   virtual AdaptiveSizePolicy* size_policy() = 0;
   506   // Return the CollectorPolicy for the heap
   507   virtual CollectorPolicy* collector_policy() const = 0;
   509   void oop_iterate_no_header(OopClosure* cl);
   511   // Iterate over all the ref-containing fields of all objects, calling
   512   // "cl.do_oop" on each.
   513   virtual void oop_iterate(ExtendedOopClosure* cl) = 0;
   515   // Iterate over all objects, calling "cl.do_object" on each.
   516   virtual void object_iterate(ObjectClosure* cl) = 0;
   518   // Similar to object_iterate() except iterates only
   519   // over live objects.
   520   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
   522   // NOTE! There is no requirement that a collector implement these
   523   // functions.
   524   //
   525   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   526   // each address in the (reserved) heap is a member of exactly
   527   // one block.  The defining characteristic of a block is that it is
   528   // possible to find its size, and thus to progress forward to the next
   529   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   530   // represent Java objects, or they might be free blocks in a
   531   // free-list-based heap (or subheap), as long as the two kinds are
   532   // distinguishable and the size of each is determinable.
   534   // Returns the address of the start of the "block" that contains the
   535   // address "addr".  We say "blocks" instead of "object" since some heaps
   536   // may not pack objects densely; a chunk may either be an object or a
   537   // non-object.
   538   virtual HeapWord* block_start(const void* addr) const = 0;
   540   // Requires "addr" to be the start of a chunk, and returns its size.
   541   // "addr + size" is required to be the start of a new chunk, or the end
   542   // of the active area of the heap.
   543   virtual size_t block_size(const HeapWord* addr) const = 0;
   545   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   546   // the block is an object.
   547   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   549   // Returns the longest time (in ms) that has elapsed since the last
   550   // time that any part of the heap was examined by a garbage collection.
   551   virtual jlong millis_since_last_gc() = 0;
   553   // Perform any cleanup actions necessary before allowing a verification.
   554   virtual void prepare_for_verify() = 0;
   556   // Generate any dumps preceding or following a full gc
   557   void pre_full_gc_dump(GCTimer* timer);
   558   void post_full_gc_dump(GCTimer* timer);
   560   VirtualSpaceSummary create_heap_space_summary();
   561   GCHeapSummary create_heap_summary();
   563   MetaspaceSummary create_metaspace_summary();
   565   // Print heap information on the given outputStream.
   566   virtual void print_on(outputStream* st) const = 0;
   567   // The default behavior is to call print_on() on tty.
   568   virtual void print() const {
   569     print_on(tty);
   570   }
   571   // Print more detailed heap information on the given
   572   // outputStream. The default behavior is to call print_on(). It is
   573   // up to each subclass to override it and add any additional output
   574   // it needs.
   575   virtual void print_extended_on(outputStream* st) const {
   576     print_on(st);
   577   }
   579   virtual void print_on_error(outputStream* st) const {
   580     st->print_cr("Heap:");
   581     print_extended_on(st);
   582     st->cr();
   584     _barrier_set->print_on(st);
   585   }
   587   // Print all GC threads (other than the VM thread)
   588   // used by this heap.
   589   virtual void print_gc_threads_on(outputStream* st) const = 0;
   590   // The default behavior is to call print_gc_threads_on() on tty.
   591   void print_gc_threads() {
   592     print_gc_threads_on(tty);
   593   }
   594   // Iterator for all GC threads (other than VM thread)
   595   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
   597   // Print any relevant tracing info that flags imply.
   598   // Default implementation does nothing.
   599   virtual void print_tracing_info() const = 0;
   601   void print_heap_before_gc();
   602   void print_heap_after_gc();
   604   // Registering and unregistering an nmethod (compiled code) with the heap.
   605   // Override with specific mechanism for each specialized heap type.
   606   virtual void register_nmethod(nmethod* nm);
   607   virtual void unregister_nmethod(nmethod* nm);
   609   void trace_heap_before_gc(GCTracer* gc_tracer);
   610   void trace_heap_after_gc(GCTracer* gc_tracer);
   612   // Heap verification
   613   virtual void verify(bool silent, VerifyOption option) = 0;
   615   // Non product verification and debugging.
   616 #ifndef PRODUCT
   617   // Support for PromotionFailureALot.  Return true if it's time to cause a
   618   // promotion failure.  The no-argument version uses
   619   // this->_promotion_failure_alot_count as the counter.
   620   inline bool promotion_should_fail(volatile size_t* count);
   621   inline bool promotion_should_fail();
   623   // Reset the PromotionFailureALot counters.  Should be called at the end of a
   624   // GC in which promotion failure occurred.
   625   inline void reset_promotion_should_fail(volatile size_t* count);
   626   inline void reset_promotion_should_fail();
   627 #endif  // #ifndef PRODUCT
   629 #ifdef ASSERT
   630   static int fired_fake_oom() {
   631     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
   632   }
   633 #endif
   635  public:
   636   // This is a convenience method that is used in cases where
   637   // the actual number of GC worker threads is not pertinent but
   638   // only whether there more than 0.  Use of this method helps
   639   // reduce the occurrence of ParallelGCThreads to uses where the
   640   // actual number may be germane.
   641   static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
   643   /////////////// Unit tests ///////////////
   645   NOT_PRODUCT(static void test_is_in();)
   646 };
   648 // Class to set and reset the GC cause for a CollectedHeap.
   650 class GCCauseSetter : StackObj {
   651   CollectedHeap* _heap;
   652   GCCause::Cause _previous_cause;
   653  public:
   654   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
   655     assert(SafepointSynchronize::is_at_safepoint(),
   656            "This method manipulates heap state without locking");
   657     _heap = heap;
   658     _previous_cause = _heap->gc_cause();
   659     _heap->set_gc_cause(cause);
   660   }
   662   ~GCCauseSetter() {
   663     assert(SafepointSynchronize::is_at_safepoint(),
   664           "This method manipulates heap state without locking");
   665     _heap->set_gc_cause(_previous_cause);
   666   }
   667 };
   669 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP

mercurial