src/share/vm/gc_interface/collectedHeap.hpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6690
1772223a25a2
parent 0
f90c822e73f8
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
aoqi@0 26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
aoqi@0 27
aoqi@0 28 #include "gc_interface/gcCause.hpp"
aoqi@0 29 #include "gc_implementation/shared/gcWhen.hpp"
aoqi@0 30 #include "memory/allocation.hpp"
aoqi@0 31 #include "memory/barrierSet.hpp"
aoqi@0 32 #include "runtime/handles.hpp"
aoqi@0 33 #include "runtime/perfData.hpp"
aoqi@0 34 #include "runtime/safepoint.hpp"
aoqi@0 35 #include "utilities/events.hpp"
aoqi@0 36
aoqi@0 37 // A "CollectedHeap" is an implementation of a java heap for HotSpot. This
aoqi@0 38 // is an abstract class: there may be many different kinds of heaps. This
aoqi@0 39 // class defines the functions that a heap must implement, and contains
aoqi@0 40 // infrastructure common to all heaps.
aoqi@0 41
aoqi@0 42 class AdaptiveSizePolicy;
aoqi@0 43 class BarrierSet;
aoqi@0 44 class CollectorPolicy;
aoqi@0 45 class GCHeapSummary;
aoqi@0 46 class GCTimer;
aoqi@0 47 class GCTracer;
aoqi@0 48 class MetaspaceSummary;
aoqi@0 49 class Thread;
aoqi@0 50 class ThreadClosure;
aoqi@0 51 class VirtualSpaceSummary;
aoqi@0 52 class nmethod;
aoqi@0 53
aoqi@0 54 class GCMessage : public FormatBuffer<1024> {
aoqi@0 55 public:
aoqi@0 56 bool is_before;
aoqi@0 57
aoqi@0 58 public:
aoqi@0 59 GCMessage() {}
aoqi@0 60 };
aoqi@0 61
aoqi@0 62 class GCHeapLog : public EventLogBase<GCMessage> {
aoqi@0 63 private:
aoqi@0 64 void log_heap(bool before);
aoqi@0 65
aoqi@0 66 public:
aoqi@0 67 GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
aoqi@0 68
aoqi@0 69 void log_heap_before() {
aoqi@0 70 log_heap(true);
aoqi@0 71 }
aoqi@0 72 void log_heap_after() {
aoqi@0 73 log_heap(false);
aoqi@0 74 }
aoqi@0 75 };
aoqi@0 76
aoqi@0 77 //
aoqi@0 78 // CollectedHeap
aoqi@0 79 // SharedHeap
aoqi@0 80 // GenCollectedHeap
aoqi@0 81 // G1CollectedHeap
aoqi@0 82 // ParallelScavengeHeap
aoqi@0 83 //
aoqi@0 84 class CollectedHeap : public CHeapObj<mtInternal> {
aoqi@0 85 friend class VMStructs;
aoqi@0 86 friend class IsGCActiveMark; // Block structured external access to _is_gc_active
aoqi@0 87
aoqi@0 88 #ifdef ASSERT
aoqi@0 89 static int _fire_out_of_memory_count;
aoqi@0 90 #endif
aoqi@0 91
aoqi@0 92 // Used for filler objects (static, but initialized in ctor).
aoqi@0 93 static size_t _filler_array_max_size;
aoqi@0 94
aoqi@0 95 GCHeapLog* _gc_heap_log;
aoqi@0 96
aoqi@0 97 // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
aoqi@0 98 bool _defer_initial_card_mark;
aoqi@0 99
aoqi@0 100 protected:
aoqi@0 101 MemRegion _reserved;
aoqi@0 102 BarrierSet* _barrier_set;
aoqi@0 103 bool _is_gc_active;
aoqi@0 104 uint _n_par_threads;
aoqi@0 105
aoqi@0 106 unsigned int _total_collections; // ... started
aoqi@0 107 unsigned int _total_full_collections; // ... started
aoqi@0 108 NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
aoqi@0 109 NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
aoqi@0 110
aoqi@0 111 // Reason for current garbage collection. Should be set to
aoqi@0 112 // a value reflecting no collection between collections.
aoqi@0 113 GCCause::Cause _gc_cause;
aoqi@0 114 GCCause::Cause _gc_lastcause;
aoqi@0 115 PerfStringVariable* _perf_gc_cause;
aoqi@0 116 PerfStringVariable* _perf_gc_lastcause;
aoqi@0 117
aoqi@0 118 // Constructor
aoqi@0 119 CollectedHeap();
aoqi@0 120
aoqi@0 121 // Do common initializations that must follow instance construction,
aoqi@0 122 // for example, those needing virtual calls.
aoqi@0 123 // This code could perhaps be moved into initialize() but would
aoqi@0 124 // be slightly more awkward because we want the latter to be a
aoqi@0 125 // pure virtual.
aoqi@0 126 void pre_initialize();
aoqi@0 127
aoqi@0 128 // Create a new tlab. All TLAB allocations must go through this.
aoqi@0 129 virtual HeapWord* allocate_new_tlab(size_t size);
aoqi@0 130
aoqi@0 131 // Accumulate statistics on all tlabs.
aoqi@0 132 virtual void accumulate_statistics_all_tlabs();
aoqi@0 133
aoqi@0 134 // Reinitialize tlabs before resuming mutators.
aoqi@0 135 virtual void resize_all_tlabs();
aoqi@0 136
aoqi@0 137 // Allocate from the current thread's TLAB, with broken-out slow path.
aoqi@0 138 inline static HeapWord* allocate_from_tlab(KlassHandle klass, Thread* thread, size_t size);
aoqi@0 139 static HeapWord* allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size);
aoqi@0 140
aoqi@0 141 // Allocate an uninitialized block of the given size, or returns NULL if
aoqi@0 142 // this is impossible.
aoqi@0 143 inline static HeapWord* common_mem_allocate_noinit(KlassHandle klass, size_t size, TRAPS);
aoqi@0 144
aoqi@0 145 // Like allocate_init, but the block returned by a successful allocation
aoqi@0 146 // is guaranteed initialized to zeros.
aoqi@0 147 inline static HeapWord* common_mem_allocate_init(KlassHandle klass, size_t size, TRAPS);
aoqi@0 148
aoqi@0 149 // Helper functions for (VM) allocation.
aoqi@0 150 inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
aoqi@0 151 inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
aoqi@0 152 HeapWord* objPtr);
aoqi@0 153
aoqi@0 154 inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, int size);
aoqi@0 155
aoqi@0 156 inline static void post_allocation_setup_array(KlassHandle klass,
aoqi@0 157 HeapWord* obj, int length);
aoqi@0 158
aoqi@0 159 // Clears an allocated object.
aoqi@0 160 inline static void init_obj(HeapWord* obj, size_t size);
aoqi@0 161
aoqi@0 162 // Filler object utilities.
aoqi@0 163 static inline size_t filler_array_hdr_size();
aoqi@0 164 static inline size_t filler_array_min_size();
aoqi@0 165
aoqi@0 166 DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
aoqi@0 167 DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
aoqi@0 168
aoqi@0 169 // Fill with a single array; caller must ensure filler_array_min_size() <=
aoqi@0 170 // words <= filler_array_max_size().
aoqi@0 171 static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
aoqi@0 172
aoqi@0 173 // Fill with a single object (either an int array or a java.lang.Object).
aoqi@0 174 static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
aoqi@0 175
aoqi@0 176 virtual void trace_heap(GCWhen::Type when, GCTracer* tracer);
aoqi@0 177
aoqi@0 178 // Verification functions
aoqi@0 179 virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
aoqi@0 180 PRODUCT_RETURN;
aoqi@0 181 virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
aoqi@0 182 PRODUCT_RETURN;
aoqi@0 183 debug_only(static void check_for_valid_allocation_state();)
aoqi@0 184
aoqi@0 185 public:
aoqi@0 186 enum Name {
aoqi@0 187 Abstract,
aoqi@0 188 SharedHeap,
aoqi@0 189 GenCollectedHeap,
aoqi@0 190 ParallelScavengeHeap,
aoqi@0 191 G1CollectedHeap
aoqi@0 192 };
aoqi@0 193
aoqi@0 194 static inline size_t filler_array_max_size() {
aoqi@0 195 return _filler_array_max_size;
aoqi@0 196 }
aoqi@0 197
aoqi@0 198 virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
aoqi@0 199
aoqi@0 200 /**
aoqi@0 201 * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
aoqi@0 202 * and JNI_OK on success.
aoqi@0 203 */
aoqi@0 204 virtual jint initialize() = 0;
aoqi@0 205
aoqi@0 206 // In many heaps, there will be a need to perform some initialization activities
aoqi@0 207 // after the Universe is fully formed, but before general heap allocation is allowed.
aoqi@0 208 // This is the correct place to place such initialization methods.
aoqi@0 209 virtual void post_initialize() = 0;
aoqi@0 210
aoqi@0 211 // Stop any onging concurrent work and prepare for exit.
aoqi@0 212 virtual void stop() {}
aoqi@0 213
aoqi@0 214 MemRegion reserved_region() const { return _reserved; }
aoqi@0 215 address base() const { return (address)reserved_region().start(); }
aoqi@0 216
aoqi@0 217 virtual size_t capacity() const = 0;
aoqi@0 218 virtual size_t used() const = 0;
aoqi@0 219
aoqi@0 220 // Return "true" if the part of the heap that allocates Java
aoqi@0 221 // objects has reached the maximal committed limit that it can
aoqi@0 222 // reach, without a garbage collection.
aoqi@0 223 virtual bool is_maximal_no_gc() const = 0;
aoqi@0 224
aoqi@0 225 // Support for java.lang.Runtime.maxMemory(): return the maximum amount of
aoqi@0 226 // memory that the vm could make available for storing 'normal' java objects.
aoqi@0 227 // This is based on the reserved address space, but should not include space
aoqi@0 228 // that the vm uses internally for bookkeeping or temporary storage
aoqi@0 229 // (e.g., in the case of the young gen, one of the survivor
aoqi@0 230 // spaces).
aoqi@0 231 virtual size_t max_capacity() const = 0;
aoqi@0 232
aoqi@0 233 // Returns "TRUE" if "p" points into the reserved area of the heap.
aoqi@0 234 bool is_in_reserved(const void* p) const {
aoqi@0 235 return _reserved.contains(p);
aoqi@0 236 }
aoqi@0 237
aoqi@0 238 bool is_in_reserved_or_null(const void* p) const {
aoqi@0 239 return p == NULL || is_in_reserved(p);
aoqi@0 240 }
aoqi@0 241
aoqi@0 242 // Returns "TRUE" iff "p" points into the committed areas of the heap.
aoqi@0 243 // Since this method can be expensive in general, we restrict its
aoqi@0 244 // use to assertion checking only.
aoqi@0 245 virtual bool is_in(const void* p) const = 0;
aoqi@0 246
aoqi@0 247 bool is_in_or_null(const void* p) const {
aoqi@0 248 return p == NULL || is_in(p);
aoqi@0 249 }
aoqi@0 250
aoqi@0 251 bool is_in_place(Metadata** p) {
aoqi@0 252 return !Universe::heap()->is_in(p);
aoqi@0 253 }
aoqi@0 254 bool is_in_place(oop* p) { return Universe::heap()->is_in(p); }
aoqi@0 255 bool is_in_place(narrowOop* p) {
aoqi@0 256 oop o = oopDesc::load_decode_heap_oop_not_null(p);
aoqi@0 257 return Universe::heap()->is_in((const void*)o);
aoqi@0 258 }
aoqi@0 259
aoqi@0 260 // Let's define some terms: a "closed" subset of a heap is one that
aoqi@0 261 //
aoqi@0 262 // 1) contains all currently-allocated objects, and
aoqi@0 263 //
aoqi@0 264 // 2) is closed under reference: no object in the closed subset
aoqi@0 265 // references one outside the closed subset.
aoqi@0 266 //
aoqi@0 267 // Membership in a heap's closed subset is useful for assertions.
aoqi@0 268 // Clearly, the entire heap is a closed subset, so the default
aoqi@0 269 // implementation is to use "is_in_reserved". But this may not be too
aoqi@0 270 // liberal to perform useful checking. Also, the "is_in" predicate
aoqi@0 271 // defines a closed subset, but may be too expensive, since "is_in"
aoqi@0 272 // verifies that its argument points to an object head. The
aoqi@0 273 // "closed_subset" method allows a heap to define an intermediate
aoqi@0 274 // predicate, allowing more precise checking than "is_in_reserved" at
aoqi@0 275 // lower cost than "is_in."
aoqi@0 276
aoqi@0 277 // One important case is a heap composed of disjoint contiguous spaces,
aoqi@0 278 // such as the Garbage-First collector. Such heaps have a convenient
aoqi@0 279 // closed subset consisting of the allocated portions of those
aoqi@0 280 // contiguous spaces.
aoqi@0 281
aoqi@0 282 // Return "TRUE" iff the given pointer points into the heap's defined
aoqi@0 283 // closed subset (which defaults to the entire heap).
aoqi@0 284 virtual bool is_in_closed_subset(const void* p) const {
aoqi@0 285 return is_in_reserved(p);
aoqi@0 286 }
aoqi@0 287
aoqi@0 288 bool is_in_closed_subset_or_null(const void* p) const {
aoqi@0 289 return p == NULL || is_in_closed_subset(p);
aoqi@0 290 }
aoqi@0 291
aoqi@0 292 #ifdef ASSERT
aoqi@0 293 // Returns true if "p" is in the part of the
aoqi@0 294 // heap being collected.
aoqi@0 295 virtual bool is_in_partial_collection(const void *p) = 0;
aoqi@0 296 #endif
aoqi@0 297
aoqi@0 298 // An object is scavengable if its location may move during a scavenge.
aoqi@0 299 // (A scavenge is a GC which is not a full GC.)
aoqi@0 300 virtual bool is_scavengable(const void *p) = 0;
aoqi@0 301
aoqi@0 302 void set_gc_cause(GCCause::Cause v) {
aoqi@0 303 if (UsePerfData) {
aoqi@0 304 _gc_lastcause = _gc_cause;
aoqi@0 305 _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
aoqi@0 306 _perf_gc_cause->set_value(GCCause::to_string(v));
aoqi@0 307 }
aoqi@0 308 _gc_cause = v;
aoqi@0 309 }
aoqi@0 310 GCCause::Cause gc_cause() { return _gc_cause; }
aoqi@0 311
aoqi@0 312 // Number of threads currently working on GC tasks.
aoqi@0 313 uint n_par_threads() { return _n_par_threads; }
aoqi@0 314
aoqi@0 315 // May be overridden to set additional parallelism.
aoqi@0 316 virtual void set_par_threads(uint t) { _n_par_threads = t; };
aoqi@0 317
aoqi@0 318 // General obj/array allocation facilities.
aoqi@0 319 inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
aoqi@0 320 inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
aoqi@0 321 inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
aoqi@0 322
aoqi@0 323 inline static void post_allocation_install_obj_klass(KlassHandle klass,
aoqi@0 324 oop obj);
aoqi@0 325
aoqi@0 326 // Raw memory allocation facilities
aoqi@0 327 // The obj and array allocate methods are covers for these methods.
aoqi@0 328 // mem_allocate() should never be
aoqi@0 329 // called to allocate TLABs, only individual objects.
aoqi@0 330 virtual HeapWord* mem_allocate(size_t size,
aoqi@0 331 bool* gc_overhead_limit_was_exceeded) = 0;
aoqi@0 332
aoqi@0 333 // Utilities for turning raw memory into filler objects.
aoqi@0 334 //
aoqi@0 335 // min_fill_size() is the smallest region that can be filled.
aoqi@0 336 // fill_with_objects() can fill arbitrary-sized regions of the heap using
aoqi@0 337 // multiple objects. fill_with_object() is for regions known to be smaller
aoqi@0 338 // than the largest array of integers; it uses a single object to fill the
aoqi@0 339 // region and has slightly less overhead.
aoqi@0 340 static size_t min_fill_size() {
aoqi@0 341 return size_t(align_object_size(oopDesc::header_size()));
aoqi@0 342 }
aoqi@0 343
aoqi@0 344 static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
aoqi@0 345
aoqi@0 346 static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
aoqi@0 347 static void fill_with_object(MemRegion region, bool zap = true) {
aoqi@0 348 fill_with_object(region.start(), region.word_size(), zap);
aoqi@0 349 }
aoqi@0 350 static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
aoqi@0 351 fill_with_object(start, pointer_delta(end, start), zap);
aoqi@0 352 }
aoqi@0 353
aoqi@0 354 // Some heaps may offer a contiguous region for shared non-blocking
aoqi@0 355 // allocation, via inlined code (by exporting the address of the top and
aoqi@0 356 // end fields defining the extent of the contiguous allocation region.)
aoqi@0 357
aoqi@0 358 // This function returns "true" iff the heap supports this kind of
aoqi@0 359 // allocation. (Default is "no".)
aoqi@0 360 virtual bool supports_inline_contig_alloc() const {
aoqi@0 361 return false;
aoqi@0 362 }
aoqi@0 363 // These functions return the addresses of the fields that define the
aoqi@0 364 // boundaries of the contiguous allocation area. (These fields should be
aoqi@0 365 // physically near to one another.)
aoqi@0 366 virtual HeapWord** top_addr() const {
aoqi@0 367 guarantee(false, "inline contiguous allocation not supported");
aoqi@0 368 return NULL;
aoqi@0 369 }
aoqi@0 370 virtual HeapWord** end_addr() const {
aoqi@0 371 guarantee(false, "inline contiguous allocation not supported");
aoqi@0 372 return NULL;
aoqi@0 373 }
aoqi@0 374
aoqi@0 375 // Some heaps may be in an unparseable state at certain times between
aoqi@0 376 // collections. This may be necessary for efficient implementation of
aoqi@0 377 // certain allocation-related activities. Calling this function before
aoqi@0 378 // attempting to parse a heap ensures that the heap is in a parsable
aoqi@0 379 // state (provided other concurrent activity does not introduce
aoqi@0 380 // unparsability). It is normally expected, therefore, that this
aoqi@0 381 // method is invoked with the world stopped.
aoqi@0 382 // NOTE: if you override this method, make sure you call
aoqi@0 383 // super::ensure_parsability so that the non-generational
aoqi@0 384 // part of the work gets done. See implementation of
aoqi@0 385 // CollectedHeap::ensure_parsability and, for instance,
aoqi@0 386 // that of GenCollectedHeap::ensure_parsability().
aoqi@0 387 // The argument "retire_tlabs" controls whether existing TLABs
aoqi@0 388 // are merely filled or also retired, thus preventing further
aoqi@0 389 // allocation from them and necessitating allocation of new TLABs.
aoqi@0 390 virtual void ensure_parsability(bool retire_tlabs);
aoqi@0 391
aoqi@0 392 // Return an estimate of the maximum allocation that could be performed
aoqi@0 393 // without triggering any collection or expansion activity. In a
aoqi@0 394 // generational collector, for example, this is probably the largest
aoqi@0 395 // allocation that could be supported (without expansion) in the youngest
aoqi@0 396 // generation. It is "unsafe" because no locks are taken; the result
aoqi@0 397 // should be treated as an approximation, not a guarantee, for use in
aoqi@0 398 // heuristic resizing decisions.
aoqi@0 399 virtual size_t unsafe_max_alloc() = 0;
aoqi@0 400
aoqi@0 401 // Section on thread-local allocation buffers (TLABs)
aoqi@0 402 // If the heap supports thread-local allocation buffers, it should override
aoqi@0 403 // the following methods:
aoqi@0 404 // Returns "true" iff the heap supports thread-local allocation buffers.
aoqi@0 405 // The default is "no".
aoqi@0 406 virtual bool supports_tlab_allocation() const = 0;
aoqi@0 407
aoqi@0 408 // The amount of space available for thread-local allocation buffers.
aoqi@0 409 virtual size_t tlab_capacity(Thread *thr) const = 0;
aoqi@0 410
aoqi@0 411 // The amount of used space for thread-local allocation buffers for the given thread.
aoqi@0 412 virtual size_t tlab_used(Thread *thr) const = 0;
aoqi@0 413
aoqi@0 414 virtual size_t max_tlab_size() const;
aoqi@0 415
aoqi@0 416 // An estimate of the maximum allocation that could be performed
aoqi@0 417 // for thread-local allocation buffers without triggering any
aoqi@0 418 // collection or expansion activity.
aoqi@0 419 virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
aoqi@0 420 guarantee(false, "thread-local allocation buffers not supported");
aoqi@0 421 return 0;
aoqi@0 422 }
aoqi@0 423
aoqi@0 424 // Can a compiler initialize a new object without store barriers?
aoqi@0 425 // This permission only extends from the creation of a new object
aoqi@0 426 // via a TLAB up to the first subsequent safepoint. If such permission
aoqi@0 427 // is granted for this heap type, the compiler promises to call
aoqi@0 428 // defer_store_barrier() below on any slow path allocation of
aoqi@0 429 // a new object for which such initializing store barriers will
aoqi@0 430 // have been elided.
aoqi@0 431 virtual bool can_elide_tlab_store_barriers() const = 0;
aoqi@0 432
aoqi@0 433 // If a compiler is eliding store barriers for TLAB-allocated objects,
aoqi@0 434 // there is probably a corresponding slow path which can produce
aoqi@0 435 // an object allocated anywhere. The compiler's runtime support
aoqi@0 436 // promises to call this function on such a slow-path-allocated
aoqi@0 437 // object before performing initializations that have elided
aoqi@0 438 // store barriers. Returns new_obj, or maybe a safer copy thereof.
aoqi@0 439 virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
aoqi@0 440
aoqi@0 441 // Answers whether an initializing store to a new object currently
aoqi@0 442 // allocated at the given address doesn't need a store
aoqi@0 443 // barrier. Returns "true" if it doesn't need an initializing
aoqi@0 444 // store barrier; answers "false" if it does.
aoqi@0 445 virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
aoqi@0 446
aoqi@0 447 // If a compiler is eliding store barriers for TLAB-allocated objects,
aoqi@0 448 // we will be informed of a slow-path allocation by a call
aoqi@0 449 // to new_store_pre_barrier() above. Such a call precedes the
aoqi@0 450 // initialization of the object itself, and no post-store-barriers will
aoqi@0 451 // be issued. Some heap types require that the barrier strictly follows
aoqi@0 452 // the initializing stores. (This is currently implemented by deferring the
aoqi@0 453 // barrier until the next slow-path allocation or gc-related safepoint.)
aoqi@0 454 // This interface answers whether a particular heap type needs the card
aoqi@0 455 // mark to be thus strictly sequenced after the stores.
aoqi@0 456 virtual bool card_mark_must_follow_store() const = 0;
aoqi@0 457
aoqi@0 458 // If the CollectedHeap was asked to defer a store barrier above,
aoqi@0 459 // this informs it to flush such a deferred store barrier to the
aoqi@0 460 // remembered set.
aoqi@0 461 virtual void flush_deferred_store_barrier(JavaThread* thread);
aoqi@0 462
aoqi@0 463 // Does this heap support heap inspection (+PrintClassHistogram?)
aoqi@0 464 virtual bool supports_heap_inspection() const = 0;
aoqi@0 465
aoqi@0 466 // Perform a collection of the heap; intended for use in implementing
aoqi@0 467 // "System.gc". This probably implies as full a collection as the
aoqi@0 468 // "CollectedHeap" supports.
aoqi@0 469 virtual void collect(GCCause::Cause cause) = 0;
aoqi@0 470
aoqi@0 471 // Perform a full collection
aoqi@0 472 virtual void do_full_collection(bool clear_all_soft_refs) = 0;
aoqi@0 473
aoqi@0 474 // This interface assumes that it's being called by the
aoqi@0 475 // vm thread. It collects the heap assuming that the
aoqi@0 476 // heap lock is already held and that we are executing in
aoqi@0 477 // the context of the vm thread.
aoqi@0 478 virtual void collect_as_vm_thread(GCCause::Cause cause);
aoqi@0 479
aoqi@0 480 // Returns the barrier set for this heap
aoqi@0 481 BarrierSet* barrier_set() { return _barrier_set; }
aoqi@0 482
aoqi@0 483 // Returns "true" iff there is a stop-world GC in progress. (I assume
aoqi@0 484 // that it should answer "false" for the concurrent part of a concurrent
aoqi@0 485 // collector -- dld).
aoqi@0 486 bool is_gc_active() const { return _is_gc_active; }
aoqi@0 487
aoqi@0 488 // Total number of GC collections (started)
aoqi@0 489 unsigned int total_collections() const { return _total_collections; }
aoqi@0 490 unsigned int total_full_collections() const { return _total_full_collections;}
aoqi@0 491
aoqi@0 492 // Increment total number of GC collections (started)
aoqi@0 493 // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
aoqi@0 494 void increment_total_collections(bool full = false) {
aoqi@0 495 _total_collections++;
aoqi@0 496 if (full) {
aoqi@0 497 increment_total_full_collections();
aoqi@0 498 }
aoqi@0 499 }
aoqi@0 500
aoqi@0 501 void increment_total_full_collections() { _total_full_collections++; }
aoqi@0 502
aoqi@0 503 // Return the AdaptiveSizePolicy for the heap.
aoqi@0 504 virtual AdaptiveSizePolicy* size_policy() = 0;
aoqi@0 505
aoqi@0 506 // Return the CollectorPolicy for the heap
aoqi@0 507 virtual CollectorPolicy* collector_policy() const = 0;
aoqi@0 508
aoqi@0 509 void oop_iterate_no_header(OopClosure* cl);
aoqi@0 510
aoqi@0 511 // Iterate over all the ref-containing fields of all objects, calling
aoqi@0 512 // "cl.do_oop" on each.
aoqi@0 513 virtual void oop_iterate(ExtendedOopClosure* cl) = 0;
aoqi@0 514
aoqi@0 515 // Iterate over all objects, calling "cl.do_object" on each.
aoqi@0 516 virtual void object_iterate(ObjectClosure* cl) = 0;
aoqi@0 517
aoqi@0 518 // Similar to object_iterate() except iterates only
aoqi@0 519 // over live objects.
aoqi@0 520 virtual void safe_object_iterate(ObjectClosure* cl) = 0;
aoqi@0 521
aoqi@0 522 // NOTE! There is no requirement that a collector implement these
aoqi@0 523 // functions.
aoqi@0 524 //
aoqi@0 525 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
aoqi@0 526 // each address in the (reserved) heap is a member of exactly
aoqi@0 527 // one block. The defining characteristic of a block is that it is
aoqi@0 528 // possible to find its size, and thus to progress forward to the next
aoqi@0 529 // block. (Blocks may be of different sizes.) Thus, blocks may
aoqi@0 530 // represent Java objects, or they might be free blocks in a
aoqi@0 531 // free-list-based heap (or subheap), as long as the two kinds are
aoqi@0 532 // distinguishable and the size of each is determinable.
aoqi@0 533
aoqi@0 534 // Returns the address of the start of the "block" that contains the
aoqi@0 535 // address "addr". We say "blocks" instead of "object" since some heaps
aoqi@0 536 // may not pack objects densely; a chunk may either be an object or a
aoqi@0 537 // non-object.
aoqi@0 538 virtual HeapWord* block_start(const void* addr) const = 0;
aoqi@0 539
aoqi@0 540 // Requires "addr" to be the start of a chunk, and returns its size.
aoqi@0 541 // "addr + size" is required to be the start of a new chunk, or the end
aoqi@0 542 // of the active area of the heap.
aoqi@0 543 virtual size_t block_size(const HeapWord* addr) const = 0;
aoqi@0 544
aoqi@0 545 // Requires "addr" to be the start of a block, and returns "TRUE" iff
aoqi@0 546 // the block is an object.
aoqi@0 547 virtual bool block_is_obj(const HeapWord* addr) const = 0;
aoqi@0 548
aoqi@0 549 // Returns the longest time (in ms) that has elapsed since the last
aoqi@0 550 // time that any part of the heap was examined by a garbage collection.
aoqi@0 551 virtual jlong millis_since_last_gc() = 0;
aoqi@0 552
aoqi@0 553 // Perform any cleanup actions necessary before allowing a verification.
aoqi@0 554 virtual void prepare_for_verify() = 0;
aoqi@0 555
aoqi@0 556 // Generate any dumps preceding or following a full gc
aoqi@0 557 void pre_full_gc_dump(GCTimer* timer);
aoqi@0 558 void post_full_gc_dump(GCTimer* timer);
aoqi@0 559
aoqi@0 560 VirtualSpaceSummary create_heap_space_summary();
aoqi@0 561 GCHeapSummary create_heap_summary();
aoqi@0 562
aoqi@0 563 MetaspaceSummary create_metaspace_summary();
aoqi@0 564
aoqi@0 565 // Print heap information on the given outputStream.
aoqi@0 566 virtual void print_on(outputStream* st) const = 0;
aoqi@0 567 // The default behavior is to call print_on() on tty.
aoqi@0 568 virtual void print() const {
aoqi@0 569 print_on(tty);
aoqi@0 570 }
aoqi@0 571 // Print more detailed heap information on the given
aoqi@0 572 // outputStream. The default behavior is to call print_on(). It is
aoqi@0 573 // up to each subclass to override it and add any additional output
aoqi@0 574 // it needs.
aoqi@0 575 virtual void print_extended_on(outputStream* st) const {
aoqi@0 576 print_on(st);
aoqi@0 577 }
aoqi@0 578
aoqi@0 579 virtual void print_on_error(outputStream* st) const {
aoqi@0 580 st->print_cr("Heap:");
aoqi@0 581 print_extended_on(st);
aoqi@0 582 st->cr();
aoqi@0 583
aoqi@0 584 _barrier_set->print_on(st);
aoqi@0 585 }
aoqi@0 586
aoqi@0 587 // Print all GC threads (other than the VM thread)
aoqi@0 588 // used by this heap.
aoqi@0 589 virtual void print_gc_threads_on(outputStream* st) const = 0;
aoqi@0 590 // The default behavior is to call print_gc_threads_on() on tty.
aoqi@0 591 void print_gc_threads() {
aoqi@0 592 print_gc_threads_on(tty);
aoqi@0 593 }
aoqi@0 594 // Iterator for all GC threads (other than VM thread)
aoqi@0 595 virtual void gc_threads_do(ThreadClosure* tc) const = 0;
aoqi@0 596
aoqi@0 597 // Print any relevant tracing info that flags imply.
aoqi@0 598 // Default implementation does nothing.
aoqi@0 599 virtual void print_tracing_info() const = 0;
aoqi@0 600
aoqi@0 601 void print_heap_before_gc();
aoqi@0 602 void print_heap_after_gc();
aoqi@0 603
aoqi@0 604 // Registering and unregistering an nmethod (compiled code) with the heap.
aoqi@0 605 // Override with specific mechanism for each specialized heap type.
aoqi@0 606 virtual void register_nmethod(nmethod* nm);
aoqi@0 607 virtual void unregister_nmethod(nmethod* nm);
aoqi@0 608
aoqi@0 609 void trace_heap_before_gc(GCTracer* gc_tracer);
aoqi@0 610 void trace_heap_after_gc(GCTracer* gc_tracer);
aoqi@0 611
aoqi@0 612 // Heap verification
aoqi@0 613 virtual void verify(bool silent, VerifyOption option) = 0;
aoqi@0 614
aoqi@0 615 // Non product verification and debugging.
aoqi@0 616 #ifndef PRODUCT
aoqi@0 617 // Support for PromotionFailureALot. Return true if it's time to cause a
aoqi@0 618 // promotion failure. The no-argument version uses
aoqi@0 619 // this->_promotion_failure_alot_count as the counter.
aoqi@0 620 inline bool promotion_should_fail(volatile size_t* count);
aoqi@0 621 inline bool promotion_should_fail();
aoqi@0 622
aoqi@0 623 // Reset the PromotionFailureALot counters. Should be called at the end of a
aoqi@0 624 // GC in which promotion failure occurred.
aoqi@0 625 inline void reset_promotion_should_fail(volatile size_t* count);
aoqi@0 626 inline void reset_promotion_should_fail();
aoqi@0 627 #endif // #ifndef PRODUCT
aoqi@0 628
aoqi@0 629 #ifdef ASSERT
aoqi@0 630 static int fired_fake_oom() {
aoqi@0 631 return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
aoqi@0 632 }
aoqi@0 633 #endif
aoqi@0 634
aoqi@0 635 public:
aoqi@0 636 // This is a convenience method that is used in cases where
aoqi@0 637 // the actual number of GC worker threads is not pertinent but
aoqi@0 638 // only whether there more than 0. Use of this method helps
aoqi@0 639 // reduce the occurrence of ParallelGCThreads to uses where the
aoqi@0 640 // actual number may be germane.
aoqi@0 641 static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
aoqi@0 642
aoqi@0 643 /////////////// Unit tests ///////////////
aoqi@0 644
aoqi@0 645 NOT_PRODUCT(static void test_is_in();)
aoqi@0 646 };
aoqi@0 647
aoqi@0 648 // Class to set and reset the GC cause for a CollectedHeap.
aoqi@0 649
aoqi@0 650 class GCCauseSetter : StackObj {
aoqi@0 651 CollectedHeap* _heap;
aoqi@0 652 GCCause::Cause _previous_cause;
aoqi@0 653 public:
aoqi@0 654 GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
aoqi@0 655 assert(SafepointSynchronize::is_at_safepoint(),
aoqi@0 656 "This method manipulates heap state without locking");
aoqi@0 657 _heap = heap;
aoqi@0 658 _previous_cause = _heap->gc_cause();
aoqi@0 659 _heap->set_gc_cause(cause);
aoqi@0 660 }
aoqi@0 661
aoqi@0 662 ~GCCauseSetter() {
aoqi@0 663 assert(SafepointSynchronize::is_at_safepoint(),
aoqi@0 664 "This method manipulates heap state without locking");
aoqi@0 665 _heap->set_gc_cause(_previous_cause);
aoqi@0 666 }
aoqi@0 667 };
aoqi@0 668
aoqi@0 669 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP

mercurial