src/cpu/sparc/vm/sparc.ad

Tue, 09 Oct 2012 07:41:27 +0200

author
rbackman
date
Tue, 09 Oct 2012 07:41:27 +0200
changeset 4151
6e5a59a8e4a7
parent 4134
859c45fb8cea
child 4159
8e47bac5643a
permissions
-rw-r--r--

Merge

     1 //
     2 // Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedOops && UseCompressedKlassPointers) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       if (Universe::narrow_oop_base() == NULL)
   563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   564       else
   565         klass_load_size = 3*BytesPerInstWord;
   566     } else {
   567       klass_load_size = 1*BytesPerInstWord;
   568     }
   569     if (Assembler::is_simm13(v_off)) {
   570       return klass_load_size +
   571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   572              NativeCall::instruction_size);  // call; delay slot
   573     } else {
   574       return klass_load_size +
   575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   576              NativeCall::instruction_size);  // call; delay slot
   577     }
   578   }
   579 }
   581 int MachCallRuntimeNode::ret_addr_offset() {
   582 #ifdef _LP64
   583   if (MacroAssembler::is_far_target(entry_point())) {
   584     return NativeFarCall::instruction_size;
   585   } else {
   586     return NativeCall::instruction_size;
   587   }
   588 #else
   589   return NativeCall::instruction_size;  // call; delay slot
   590 #endif
   591 }
   593 // Indicate if the safepoint node needs the polling page as an input.
   594 // Since Sparc does not have absolute addressing, it does.
   595 bool SafePointNode::needs_polling_address_input() {
   596   return true;
   597 }
   599 // emit an interrupt that is caught by the debugger (for debugging compiler)
   600 void emit_break(CodeBuffer &cbuf) {
   601   MacroAssembler _masm(&cbuf);
   602   __ breakpoint_trap();
   603 }
   605 #ifndef PRODUCT
   606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   607   st->print("TA");
   608 }
   609 #endif
   611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   612   emit_break(cbuf);
   613 }
   615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   616   return MachNode::size(ra_);
   617 }
   619 // Traceable jump
   620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   621   MacroAssembler _masm(&cbuf);
   622   Register rdest = reg_to_register_object(jump_target);
   623   __ JMP(rdest, 0);
   624   __ delayed()->nop();
   625 }
   627 // Traceable jump and set exception pc
   628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   629   MacroAssembler _masm(&cbuf);
   630   Register rdest = reg_to_register_object(jump_target);
   631   __ JMP(rdest, 0);
   632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   633 }
   635 void emit_nop(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ nop();
   638 }
   640 void emit_illtrap(CodeBuffer &cbuf) {
   641   MacroAssembler _masm(&cbuf);
   642   __ illtrap(0);
   643 }
   646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   647   assert(n->rule() != loadUB_rule, "");
   649   intptr_t offset = 0;
   650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   651   const Node* addr = n->get_base_and_disp(offset, adr_type);
   652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   655   atype = atype->add_offset(offset);
   656   assert(disp32 == offset, "wrong disp32");
   657   return atype->_offset;
   658 }
   661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   662   assert(n->rule() != loadUB_rule, "");
   664   intptr_t offset = 0;
   665   Node* addr = n->in(2);
   666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   668     Node* a = addr->in(2/*AddPNode::Address*/);
   669     Node* o = addr->in(3/*AddPNode::Offset*/);
   670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   672     assert(atype->isa_oop_ptr(), "still an oop");
   673   }
   674   offset = atype->is_ptr()->_offset;
   675   if (offset != Type::OffsetBot)  offset += disp32;
   676   return offset;
   677 }
   679 static inline jdouble replicate_immI(int con, int count, int width) {
   680   // Load a constant replicated "count" times with width "width"
   681   assert(count*width == 8 && width <= 4, "sanity");
   682   int bit_width = width * 8;
   683   jlong val = con;
   684   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   685   for (int i = 0; i < count - 1; i++) {
   686     val |= (val << bit_width);
   687   }
   688   jdouble dval = *((jdouble*) &val);  // coerce to double type
   689   return dval;
   690 }
   692 static inline jdouble replicate_immF(float con) {
   693   // Replicate float con 2 times and pack into vector.
   694   int val = *((int*)&con);
   695   jlong lval = val;
   696   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   697   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   698   return dval;
   699 }
   701 // Standard Sparc opcode form2 field breakdown
   702 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   703   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   704   int op = (f30 << 30) |
   705            (f29 << 29) |
   706            (f25 << 25) |
   707            (f22 << 22) |
   708            (f20 << 20) |
   709            (f19 << 19) |
   710            (f0  <<  0);
   711   cbuf.insts()->emit_int32(op);
   712 }
   714 // Standard Sparc opcode form2 field breakdown
   715 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   716   f0 >>= 10;           // Drop 10 bits
   717   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   718   int op = (f30 << 30) |
   719            (f25 << 25) |
   720            (f22 << 22) |
   721            (f0  <<  0);
   722   cbuf.insts()->emit_int32(op);
   723 }
   725 // Standard Sparc opcode form3 field breakdown
   726 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   727   int op = (f30 << 30) |
   728            (f25 << 25) |
   729            (f19 << 19) |
   730            (f14 << 14) |
   731            (f5  <<  5) |
   732            (f0  <<  0);
   733   cbuf.insts()->emit_int32(op);
   734 }
   736 // Standard Sparc opcode form3 field breakdown
   737 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   738   simm13 &= (1<<13)-1; // Mask to 13 bits
   739   int op = (f30 << 30) |
   740            (f25 << 25) |
   741            (f19 << 19) |
   742            (f14 << 14) |
   743            (1   << 13) | // bit to indicate immediate-mode
   744            (simm13<<0);
   745   cbuf.insts()->emit_int32(op);
   746 }
   748 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   749   simm10 &= (1<<10)-1; // Mask to 10 bits
   750   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   751 }
   753 #ifdef ASSERT
   754 // Helper function for VerifyOops in emit_form3_mem_reg
   755 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   756   warning("VerifyOops encountered unexpected instruction:");
   757   n->dump(2);
   758   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   759 }
   760 #endif
   763 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   764                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   766 #ifdef ASSERT
   767   // The following code implements the +VerifyOops feature.
   768   // It verifies oop values which are loaded into or stored out of
   769   // the current method activation.  +VerifyOops complements techniques
   770   // like ScavengeALot, because it eagerly inspects oops in transit,
   771   // as they enter or leave the stack, as opposed to ScavengeALot,
   772   // which inspects oops "at rest", in the stack or heap, at safepoints.
   773   // For this reason, +VerifyOops can sometimes detect bugs very close
   774   // to their point of creation.  It can also serve as a cross-check
   775   // on the validity of oop maps, when used toegether with ScavengeALot.
   777   // It would be good to verify oops at other points, especially
   778   // when an oop is used as a base pointer for a load or store.
   779   // This is presently difficult, because it is hard to know when
   780   // a base address is biased or not.  (If we had such information,
   781   // it would be easy and useful to make a two-argument version of
   782   // verify_oop which unbiases the base, and performs verification.)
   784   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   785   bool is_verified_oop_base  = false;
   786   bool is_verified_oop_load  = false;
   787   bool is_verified_oop_store = false;
   788   int tmp_enc = -1;
   789   if (VerifyOops && src1_enc != R_SP_enc) {
   790     // classify the op, mainly for an assert check
   791     int st_op = 0, ld_op = 0;
   792     switch (primary) {
   793     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   794     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   795     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   796     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   797     case Assembler::std_op3:  st_op = Op_StoreL; break;
   798     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   799     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   801     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   802     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   803     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   804     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   805     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   806     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   807     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   808     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   809     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   810     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   811     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   813     default: ShouldNotReachHere();
   814     }
   815     if (tertiary == REGP_OP) {
   816       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   817       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   818       else                          ShouldNotReachHere();
   819       if (st_op) {
   820         // a store
   821         // inputs are (0:control, 1:memory, 2:address, 3:value)
   822         Node* n2 = n->in(3);
   823         if (n2 != NULL) {
   824           const Type* t = n2->bottom_type();
   825           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   826         }
   827       } else {
   828         // a load
   829         const Type* t = n->bottom_type();
   830         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   831       }
   832     }
   834     if (ld_op) {
   835       // a Load
   836       // inputs are (0:control, 1:memory, 2:address)
   837       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   838           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   839           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   840           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   841           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   843           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   844           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   845           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   846           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   847           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   848           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   849           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   850           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   851           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   852           !(n->rule() == loadUB_rule)) {
   853         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   854       }
   855     } else if (st_op) {
   856       // a Store
   857       // inputs are (0:control, 1:memory, 2:address, 3:value)
   858       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   859           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   860           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   861           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   862           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   863           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   864           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   865         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   866       }
   867     }
   869     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   870       Node* addr = n->in(2);
   871       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   872         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   873         if (atype != NULL) {
   874           intptr_t offset = get_offset_from_base(n, atype, disp32);
   875           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   876           if (offset != offset_2) {
   877             get_offset_from_base(n, atype, disp32);
   878             get_offset_from_base_2(n, atype, disp32);
   879           }
   880           assert(offset == offset_2, "different offsets");
   881           if (offset == disp32) {
   882             // we now know that src1 is a true oop pointer
   883             is_verified_oop_base = true;
   884             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   885               if( primary == Assembler::ldd_op3 ) {
   886                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   887               } else {
   888                 tmp_enc = dst_enc;
   889                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   890                 assert(src1_enc != dst_enc, "");
   891               }
   892             }
   893           }
   894           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   895                        || offset == oopDesc::mark_offset_in_bytes())) {
   896                       // loading the mark should not be allowed either, but
   897                       // we don't check this since it conflicts with InlineObjectHash
   898                       // usage of LoadINode to get the mark. We could keep the
   899                       // check if we create a new LoadMarkNode
   900             // but do not verify the object before its header is initialized
   901             ShouldNotReachHere();
   902           }
   903         }
   904       }
   905     }
   906   }
   907 #endif
   909   uint instr;
   910   instr = (Assembler::ldst_op << 30)
   911         | (dst_enc        << 25)
   912         | (primary        << 19)
   913         | (src1_enc       << 14);
   915   uint index = src2_enc;
   916   int disp = disp32;
   918   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   919     disp += STACK_BIAS;
   921   // We should have a compiler bailout here rather than a guarantee.
   922   // Better yet would be some mechanism to handle variable-size matches correctly.
   923   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   925   if( disp == 0 ) {
   926     // use reg-reg form
   927     // bit 13 is already zero
   928     instr |= index;
   929   } else {
   930     // use reg-imm form
   931     instr |= 0x00002000;          // set bit 13 to one
   932     instr |= disp & 0x1FFF;
   933   }
   935   cbuf.insts()->emit_int32(instr);
   937 #ifdef ASSERT
   938   {
   939     MacroAssembler _masm(&cbuf);
   940     if (is_verified_oop_base) {
   941       __ verify_oop(reg_to_register_object(src1_enc));
   942     }
   943     if (is_verified_oop_store) {
   944       __ verify_oop(reg_to_register_object(dst_enc));
   945     }
   946     if (tmp_enc != -1) {
   947       __ mov(O7, reg_to_register_object(tmp_enc));
   948     }
   949     if (is_verified_oop_load) {
   950       __ verify_oop(reg_to_register_object(dst_enc));
   951     }
   952   }
   953 #endif
   954 }
   956 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   957   // The method which records debug information at every safepoint
   958   // expects the call to be the first instruction in the snippet as
   959   // it creates a PcDesc structure which tracks the offset of a call
   960   // from the start of the codeBlob. This offset is computed as
   961   // code_end() - code_begin() of the code which has been emitted
   962   // so far.
   963   // In this particular case we have skirted around the problem by
   964   // putting the "mov" instruction in the delay slot but the problem
   965   // may bite us again at some other point and a cleaner/generic
   966   // solution using relocations would be needed.
   967   MacroAssembler _masm(&cbuf);
   968   __ set_inst_mark();
   970   // We flush the current window just so that there is a valid stack copy
   971   // the fact that the current window becomes active again instantly is
   972   // not a problem there is nothing live in it.
   974 #ifdef ASSERT
   975   int startpos = __ offset();
   976 #endif /* ASSERT */
   978   __ call((address)entry_point, rtype);
   980   if (preserve_g2)   __ delayed()->mov(G2, L7);
   981   else __ delayed()->nop();
   983   if (preserve_g2)   __ mov(L7, G2);
   985 #ifdef ASSERT
   986   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   987 #ifdef _LP64
   988     // Trash argument dump slots.
   989     __ set(0xb0b8ac0db0b8ac0d, G1);
   990     __ mov(G1, G5);
   991     __ stx(G1, SP, STACK_BIAS + 0x80);
   992     __ stx(G1, SP, STACK_BIAS + 0x88);
   993     __ stx(G1, SP, STACK_BIAS + 0x90);
   994     __ stx(G1, SP, STACK_BIAS + 0x98);
   995     __ stx(G1, SP, STACK_BIAS + 0xA0);
   996     __ stx(G1, SP, STACK_BIAS + 0xA8);
   997 #else // _LP64
   998     // this is also a native call, so smash the first 7 stack locations,
   999     // and the various registers
  1001     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1002     // while [SP+0x44..0x58] are the argument dump slots.
  1003     __ set((intptr_t)0xbaadf00d, G1);
  1004     __ mov(G1, G5);
  1005     __ sllx(G1, 32, G1);
  1006     __ or3(G1, G5, G1);
  1007     __ mov(G1, G5);
  1008     __ stx(G1, SP, 0x40);
  1009     __ stx(G1, SP, 0x48);
  1010     __ stx(G1, SP, 0x50);
  1011     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1012 #endif // _LP64
  1014 #endif /*ASSERT*/
  1017 //=============================================================================
  1018 // REQUIRED FUNCTIONALITY for encoding
  1019 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1020 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1023 //=============================================================================
  1024 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1026 int Compile::ConstantTable::calculate_table_base_offset() const {
  1027   if (UseRDPCForConstantTableBase) {
  1028     // The table base offset might be less but then it fits into
  1029     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1030     return Assembler::min_simm13();
  1031   } else {
  1032     int offset = -(size() / 2);
  1033     if (!Assembler::is_simm13(offset)) {
  1034       offset = Assembler::min_simm13();
  1036     return offset;
  1040 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1041   Compile* C = ra_->C;
  1042   Compile::ConstantTable& constant_table = C->constant_table();
  1043   MacroAssembler _masm(&cbuf);
  1045   Register r = as_Register(ra_->get_encode(this));
  1046   CodeSection* consts_section = __ code()->consts();
  1047   int consts_size = consts_section->align_at_start(consts_section->size());
  1048   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1050   if (UseRDPCForConstantTableBase) {
  1051     // For the following RDPC logic to work correctly the consts
  1052     // section must be allocated right before the insts section.  This
  1053     // assert checks for that.  The layout and the SECT_* constants
  1054     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1055     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1056     int insts_offset = __ offset();
  1058     // Layout:
  1059     //
  1060     // |----------- consts section ------------|----------- insts section -----------...
  1061     // |------ constant table -----|- padding -|------------------x----
  1062     //                                                            \ current PC (RDPC instruction)
  1063     // |<------------- consts_size ----------->|<- insts_offset ->|
  1064     //                                                            \ table base
  1065     // The table base offset is later added to the load displacement
  1066     // so it has to be negative.
  1067     int table_base_offset = -(consts_size + insts_offset);
  1068     int disp;
  1070     // If the displacement from the current PC to the constant table
  1071     // base fits into simm13 we set the constant table base to the
  1072     // current PC.
  1073     if (Assembler::is_simm13(table_base_offset)) {
  1074       constant_table.set_table_base_offset(table_base_offset);
  1075       disp = 0;
  1076     } else {
  1077       // Otherwise we set the constant table base offset to the
  1078       // maximum negative displacement of load instructions to keep
  1079       // the disp as small as possible:
  1080       //
  1081       // |<------------- consts_size ----------->|<- insts_offset ->|
  1082       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1083       //                                  \ table base
  1084       table_base_offset = Assembler::min_simm13();
  1085       constant_table.set_table_base_offset(table_base_offset);
  1086       disp = (consts_size + insts_offset) + table_base_offset;
  1089     __ rdpc(r);
  1091     if (disp != 0) {
  1092       assert(r != O7, "need temporary");
  1093       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1096   else {
  1097     // Materialize the constant table base.
  1098     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1099     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1100     AddressLiteral base(baseaddr, rspec);
  1101     __ set(base, r);
  1105 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1106   if (UseRDPCForConstantTableBase) {
  1107     // This is really the worst case but generally it's only 1 instruction.
  1108     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1109   } else {
  1110     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1114 #ifndef PRODUCT
  1115 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1116   char reg[128];
  1117   ra_->dump_register(this, reg);
  1118   if (UseRDPCForConstantTableBase) {
  1119     st->print("RDPC   %s\t! constant table base", reg);
  1120   } else {
  1121     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1124 #endif
  1127 //=============================================================================
  1129 #ifndef PRODUCT
  1130 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1131   Compile* C = ra_->C;
  1133   for (int i = 0; i < OptoPrologueNops; i++) {
  1134     st->print_cr("NOP"); st->print("\t");
  1137   if( VerifyThread ) {
  1138     st->print_cr("Verify_Thread"); st->print("\t");
  1141   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1143   // Calls to C2R adapters often do not accept exceptional returns.
  1144   // We require that their callers must bang for them.  But be careful, because
  1145   // some VM calls (such as call site linkage) can use several kilobytes of
  1146   // stack.  But the stack safety zone should account for that.
  1147   // See bugs 4446381, 4468289, 4497237.
  1148   if (C->need_stack_bang(framesize)) {
  1149     st->print_cr("! stack bang"); st->print("\t");
  1152   if (Assembler::is_simm13(-framesize)) {
  1153     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1154   } else {
  1155     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1156     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1157     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1161 #endif
  1163 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1164   Compile* C = ra_->C;
  1165   MacroAssembler _masm(&cbuf);
  1167   for (int i = 0; i < OptoPrologueNops; i++) {
  1168     __ nop();
  1171   __ verify_thread();
  1173   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1174   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1175   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1177   // Calls to C2R adapters often do not accept exceptional returns.
  1178   // We require that their callers must bang for them.  But be careful, because
  1179   // some VM calls (such as call site linkage) can use several kilobytes of
  1180   // stack.  But the stack safety zone should account for that.
  1181   // See bugs 4446381, 4468289, 4497237.
  1182   if (C->need_stack_bang(framesize)) {
  1183     __ generate_stack_overflow_check(framesize);
  1186   if (Assembler::is_simm13(-framesize)) {
  1187     __ save(SP, -framesize, SP);
  1188   } else {
  1189     __ sethi(-framesize & ~0x3ff, G3);
  1190     __ add(G3, -framesize & 0x3ff, G3);
  1191     __ save(SP, G3, SP);
  1193   C->set_frame_complete( __ offset() );
  1195   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1196     // NOTE: We set the table base offset here because users might be
  1197     // emitted before MachConstantBaseNode.
  1198     Compile::ConstantTable& constant_table = C->constant_table();
  1199     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1203 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1204   return MachNode::size(ra_);
  1207 int MachPrologNode::reloc() const {
  1208   return 10; // a large enough number
  1211 //=============================================================================
  1212 #ifndef PRODUCT
  1213 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1214   Compile* C = ra_->C;
  1216   if( do_polling() && ra_->C->is_method_compilation() ) {
  1217     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1218 #ifdef _LP64
  1219     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1220 #else
  1221     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1222 #endif
  1225   if( do_polling() )
  1226     st->print("RET\n\t");
  1228   st->print("RESTORE");
  1230 #endif
  1232 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1233   MacroAssembler _masm(&cbuf);
  1234   Compile* C = ra_->C;
  1236   __ verify_thread();
  1238   // If this does safepoint polling, then do it here
  1239   if( do_polling() && ra_->C->is_method_compilation() ) {
  1240     AddressLiteral polling_page(os::get_polling_page());
  1241     __ sethi(polling_page, L0);
  1242     __ relocate(relocInfo::poll_return_type);
  1243     __ ld_ptr( L0, 0, G0 );
  1246   // If this is a return, then stuff the restore in the delay slot
  1247   if( do_polling() ) {
  1248     __ ret();
  1249     __ delayed()->restore();
  1250   } else {
  1251     __ restore();
  1255 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1256   return MachNode::size(ra_);
  1259 int MachEpilogNode::reloc() const {
  1260   return 16; // a large enough number
  1263 const Pipeline * MachEpilogNode::pipeline() const {
  1264   return MachNode::pipeline_class();
  1267 int MachEpilogNode::safepoint_offset() const {
  1268   assert( do_polling(), "no return for this epilog node");
  1269   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1272 //=============================================================================
  1274 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1275 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1276 static enum RC rc_class( OptoReg::Name reg ) {
  1277   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1278   if (OptoReg::is_stack(reg)) return rc_stack;
  1279   VMReg r = OptoReg::as_VMReg(reg);
  1280   if (r->is_Register()) return rc_int;
  1281   assert(r->is_FloatRegister(), "must be");
  1282   return rc_float;
  1285 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1286   if( cbuf ) {
  1287     // Better yet would be some mechanism to handle variable-size matches correctly
  1288     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1289       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1290     } else {
  1291       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1294 #ifndef PRODUCT
  1295   else if( !do_size ) {
  1296     if( size != 0 ) st->print("\n\t");
  1297     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1298     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1300 #endif
  1301   return size+4;
  1304 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1305   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1306 #ifndef PRODUCT
  1307   else if( !do_size ) {
  1308     if( size != 0 ) st->print("\n\t");
  1309     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1311 #endif
  1312   return size+4;
  1315 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1316                                         PhaseRegAlloc *ra_,
  1317                                         bool do_size,
  1318                                         outputStream* st ) const {
  1319   // Get registers to move
  1320   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1321   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1322   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1323   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1325   enum RC src_second_rc = rc_class(src_second);
  1326   enum RC src_first_rc = rc_class(src_first);
  1327   enum RC dst_second_rc = rc_class(dst_second);
  1328   enum RC dst_first_rc = rc_class(dst_first);
  1330   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1332   // Generate spill code!
  1333   int size = 0;
  1335   if( src_first == dst_first && src_second == dst_second )
  1336     return size;            // Self copy, no move
  1338   // --------------------------------------
  1339   // Check for mem-mem move.  Load into unused float registers and fall into
  1340   // the float-store case.
  1341   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1342     int offset = ra_->reg2offset(src_first);
  1343     // Further check for aligned-adjacent pair, so we can use a double load
  1344     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1345       src_second    = OptoReg::Name(R_F31_num);
  1346       src_second_rc = rc_float;
  1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1348     } else {
  1349       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1351     src_first    = OptoReg::Name(R_F30_num);
  1352     src_first_rc = rc_float;
  1355   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1356     int offset = ra_->reg2offset(src_second);
  1357     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1358     src_second    = OptoReg::Name(R_F31_num);
  1359     src_second_rc = rc_float;
  1362   // --------------------------------------
  1363   // Check for float->int copy; requires a trip through memory
  1364   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1365     int offset = frame::register_save_words*wordSize;
  1366     if (cbuf) {
  1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1368       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1369       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1370       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1372 #ifndef PRODUCT
  1373     else if (!do_size) {
  1374       if (size != 0) st->print("\n\t");
  1375       st->print(  "SUB    R_SP,16,R_SP\n");
  1376       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1377       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1378       st->print("\tADD    R_SP,16,R_SP\n");
  1380 #endif
  1381     size += 16;
  1384   // Check for float->int copy on T4
  1385   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1386     // Further check for aligned-adjacent pair, so we can use a double move
  1387     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1388       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1389     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1391   // Check for int->float copy on T4
  1392   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1393     // Further check for aligned-adjacent pair, so we can use a double move
  1394     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1395       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1396     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1399   // --------------------------------------
  1400   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1401   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1402   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1403   // there.  Misaligned sources only come from native-long-returns (handled
  1404   // special below).
  1405 #ifndef _LP64
  1406   if( src_first_rc == rc_int &&     // source is already big-endian
  1407       src_second_rc != rc_bad &&    // 64-bit move
  1408       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1409     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1410     // Do the big-endian flop.
  1411     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1412     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1414 #endif
  1416   // --------------------------------------
  1417   // Check for integer reg-reg copy
  1418   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1419 #ifndef _LP64
  1420     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1421       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1422       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1423       //       operand contains the least significant word of the 64-bit value and vice versa.
  1424       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1425       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1426       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1427       if( cbuf ) {
  1428         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1429         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1430         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1431 #ifndef PRODUCT
  1432       } else if( !do_size ) {
  1433         if( size != 0 ) st->print("\n\t");
  1434         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1435         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1436         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1437 #endif
  1439       return size+12;
  1441     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1442       // returning a long value in I0/I1
  1443       // a SpillCopy must be able to target a return instruction's reg_class
  1444       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1445       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1446       //       operand contains the least significant word of the 64-bit value and vice versa.
  1447       OptoReg::Name tdest = dst_first;
  1449       if (src_first == dst_first) {
  1450         tdest = OptoReg::Name(R_O7_num);
  1451         size += 4;
  1454       if( cbuf ) {
  1455         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1456         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1457         // ShrL_reg_imm6
  1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1459         // ShrR_reg_imm6  src, 0, dst
  1460         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1461         if (tdest != dst_first) {
  1462           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1465 #ifndef PRODUCT
  1466       else if( !do_size ) {
  1467         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1468         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1469         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1470         if (tdest != dst_first) {
  1471           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1474 #endif // PRODUCT
  1475       return size+8;
  1477 #endif // !_LP64
  1478     // Else normal reg-reg copy
  1479     assert( src_second != dst_first, "smashed second before evacuating it" );
  1480     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1481     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1482     // This moves an aligned adjacent pair.
  1483     // See if we are done.
  1484     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1485       return size;
  1488   // Check for integer store
  1489   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1490     int offset = ra_->reg2offset(dst_first);
  1491     // Further check for aligned-adjacent pair, so we can use a double store
  1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1493       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1494     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1497   // Check for integer load
  1498   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1499     int offset = ra_->reg2offset(src_first);
  1500     // Further check for aligned-adjacent pair, so we can use a double load
  1501     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1502       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1503     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1506   // Check for float reg-reg copy
  1507   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1508     // Further check for aligned-adjacent pair, so we can use a double move
  1509     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1510       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1511     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1514   // Check for float store
  1515   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1516     int offset = ra_->reg2offset(dst_first);
  1517     // Further check for aligned-adjacent pair, so we can use a double store
  1518     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1519       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1520     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1523   // Check for float load
  1524   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1525     int offset = ra_->reg2offset(src_first);
  1526     // Further check for aligned-adjacent pair, so we can use a double load
  1527     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1528       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1529     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1532   // --------------------------------------------------------------------
  1533   // Check for hi bits still needing moving.  Only happens for misaligned
  1534   // arguments to native calls.
  1535   if( src_second == dst_second )
  1536     return size;               // Self copy; no move
  1537   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1539 #ifndef _LP64
  1540   // In the LP64 build, all registers can be moved as aligned/adjacent
  1541   // pairs, so there's never any need to move the high bits separately.
  1542   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1543   // all sorts of silly alignment problems.
  1545   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1546   // 32-bits of a 64-bit register, but are needed in low bits of another
  1547   // register (else it's a hi-bits-to-hi-bits copy which should have
  1548   // happened already as part of a 64-bit move)
  1549   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1550     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1551     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1552     // Shift src_second down to dst_second's low bits.
  1553     if( cbuf ) {
  1554       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1555 #ifndef PRODUCT
  1556     } else if( !do_size ) {
  1557       if( size != 0 ) st->print("\n\t");
  1558       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1559 #endif
  1561     return size+4;
  1564   // Check for high word integer store.  Must down-shift the hi bits
  1565   // into a temp register, then fall into the case of storing int bits.
  1566   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1567     // Shift src_second down to dst_second's low bits.
  1568     if( cbuf ) {
  1569       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1570 #ifndef PRODUCT
  1571     } else if( !do_size ) {
  1572       if( size != 0 ) st->print("\n\t");
  1573       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1574 #endif
  1576     size+=4;
  1577     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1580   // Check for high word integer load
  1581   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1582     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1584   // Check for high word integer store
  1585   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1586     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1588   // Check for high word float store
  1589   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1590     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1592 #endif // !_LP64
  1594   Unimplemented();
  1597 #ifndef PRODUCT
  1598 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1599   implementation( NULL, ra_, false, st );
  1601 #endif
  1603 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1604   implementation( &cbuf, ra_, false, NULL );
  1607 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1608   return implementation( NULL, ra_, true, NULL );
  1611 //=============================================================================
  1612 #ifndef PRODUCT
  1613 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1614   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1616 #endif
  1618 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1619   MacroAssembler _masm(&cbuf);
  1620   for(int i = 0; i < _count; i += 1) {
  1621     __ nop();
  1625 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1626   return 4 * _count;
  1630 //=============================================================================
  1631 #ifndef PRODUCT
  1632 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1633   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1634   int reg = ra_->get_reg_first(this);
  1635   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1637 #endif
  1639 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1640   MacroAssembler _masm(&cbuf);
  1641   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1642   int reg = ra_->get_encode(this);
  1644   if (Assembler::is_simm13(offset)) {
  1645      __ add(SP, offset, reg_to_register_object(reg));
  1646   } else {
  1647      __ set(offset, O7);
  1648      __ add(SP, O7, reg_to_register_object(reg));
  1652 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1653   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1654   assert(ra_ == ra_->C->regalloc(), "sanity");
  1655   return ra_->C->scratch_emit_size(this);
  1658 //=============================================================================
  1660 // emit call stub, compiled java to interpretor
  1661 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1663   // Stub is fixed up when the corresponding call is converted from calling
  1664   // compiled code to calling interpreted code.
  1665   // set (empty), G5
  1666   // jmp -1
  1668   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1670   MacroAssembler _masm(&cbuf);
  1672   address base =
  1673   __ start_a_stub(Compile::MAX_stubs_size);
  1674   if (base == NULL)  return;  // CodeBuffer::expand failed
  1676   // static stub relocation stores the instruction address of the call
  1677   __ relocate(static_stub_Relocation::spec(mark));
  1679   __ set_metadata(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1681   __ set_inst_mark();
  1682   AddressLiteral addrlit(-1);
  1683   __ JUMP(addrlit, G3, 0);
  1685   __ delayed()->nop();
  1687   // Update current stubs pointer and restore code_end.
  1688   __ end_a_stub();
  1691 // size of call stub, compiled java to interpretor
  1692 uint size_java_to_interp() {
  1693   // This doesn't need to be accurate but it must be larger or equal to
  1694   // the real size of the stub.
  1695   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1696           NativeJump::instruction_size + // sethi; jmp; nop
  1697           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1699 // relocation entries for call stub, compiled java to interpretor
  1700 uint reloc_java_to_interp() {
  1701   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1705 //=============================================================================
  1706 #ifndef PRODUCT
  1707 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1708   st->print_cr("\nUEP:");
  1709 #ifdef    _LP64
  1710   if (UseCompressedOops) {
  1711     assert(Universe::heap() != NULL, "java heap should be initialized");
  1712     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1713     st->print_cr("\tSLL    R_G5,3,R_G5");
  1714     if (Universe::narrow_oop_base() != NULL)
  1715       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1716   } else {
  1717     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1719   st->print_cr("\tCMP    R_G5,R_G3" );
  1720   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1721 #else  // _LP64
  1722   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1723   st->print_cr("\tCMP    R_G5,R_G3" );
  1724   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1725 #endif // _LP64
  1727 #endif
  1729 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1730   MacroAssembler _masm(&cbuf);
  1731   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1732   Register temp_reg   = G3;
  1733   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1735   // Load klass from receiver
  1736   __ load_klass(O0, temp_reg);
  1737   // Compare against expected klass
  1738   __ cmp(temp_reg, G5_ic_reg);
  1739   // Branch to miss code, checks xcc or icc depending
  1740   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1743 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1744   return MachNode::size(ra_);
  1748 //=============================================================================
  1750 uint size_exception_handler() {
  1751   if (TraceJumps) {
  1752     return (400); // just a guess
  1754   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1757 uint size_deopt_handler() {
  1758   if (TraceJumps) {
  1759     return (400); // just a guess
  1761   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1764 // Emit exception handler code.
  1765 int emit_exception_handler(CodeBuffer& cbuf) {
  1766   Register temp_reg = G3;
  1767   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1768   MacroAssembler _masm(&cbuf);
  1770   address base =
  1771   __ start_a_stub(size_exception_handler());
  1772   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1774   int offset = __ offset();
  1776   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1777   __ delayed()->nop();
  1779   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1781   __ end_a_stub();
  1783   return offset;
  1786 int emit_deopt_handler(CodeBuffer& cbuf) {
  1787   // Can't use any of the current frame's registers as we may have deopted
  1788   // at a poll and everything (including G3) can be live.
  1789   Register temp_reg = L0;
  1790   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1791   MacroAssembler _masm(&cbuf);
  1793   address base =
  1794   __ start_a_stub(size_deopt_handler());
  1795   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1797   int offset = __ offset();
  1798   __ save_frame(0);
  1799   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1800   __ delayed()->restore();
  1802   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1804   __ end_a_stub();
  1805   return offset;
  1809 // Given a register encoding, produce a Integer Register object
  1810 static Register reg_to_register_object(int register_encoding) {
  1811   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1812   return as_Register(register_encoding);
  1815 // Given a register encoding, produce a single-precision Float Register object
  1816 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1817   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1818   return as_SingleFloatRegister(register_encoding);
  1821 // Given a register encoding, produce a double-precision Float Register object
  1822 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1823   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1824   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1825   return as_DoubleFloatRegister(register_encoding);
  1828 const bool Matcher::match_rule_supported(int opcode) {
  1829   if (!has_match_rule(opcode))
  1830     return false;
  1832   switch (opcode) {
  1833   case Op_CountLeadingZerosI:
  1834   case Op_CountLeadingZerosL:
  1835   case Op_CountTrailingZerosI:
  1836   case Op_CountTrailingZerosL:
  1837   case Op_PopCountI:
  1838   case Op_PopCountL:
  1839     if (!UsePopCountInstruction)
  1840       return false;
  1841   case Op_CompareAndSwapL:
  1842 #ifdef _LP64
  1843   case Op_CompareAndSwapP:
  1844 #endif
  1845     if (!VM_Version::supports_cx8())
  1846       return false;
  1847     break;
  1850   return true;  // Per default match rules are supported.
  1853 int Matcher::regnum_to_fpu_offset(int regnum) {
  1854   return regnum - 32; // The FP registers are in the second chunk
  1857 #ifdef ASSERT
  1858 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1859 #endif
  1861 // Vector width in bytes
  1862 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1863   assert(MaxVectorSize == 8, "");
  1864   return 8;
  1867 // Vector ideal reg
  1868 const int Matcher::vector_ideal_reg(int size) {
  1869   assert(MaxVectorSize == 8, "");
  1870   return Op_RegD;
  1873 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1874   fatal("vector shift is not supported");
  1875   return Node::NotAMachineReg;
  1878 // Limits on vector size (number of elements) loaded into vector.
  1879 const int Matcher::max_vector_size(const BasicType bt) {
  1880   assert(is_java_primitive(bt), "only primitive type vectors");
  1881   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1884 const int Matcher::min_vector_size(const BasicType bt) {
  1885   return max_vector_size(bt); // Same as max.
  1888 // SPARC doesn't support misaligned vectors store/load.
  1889 const bool Matcher::misaligned_vectors_ok() {
  1890   return false;
  1893 // USII supports fxtof through the whole range of number, USIII doesn't
  1894 const bool Matcher::convL2FSupported(void) {
  1895   return VM_Version::has_fast_fxtof();
  1898 // Is this branch offset short enough that a short branch can be used?
  1899 //
  1900 // NOTE: If the platform does not provide any short branch variants, then
  1901 //       this method should return false for offset 0.
  1902 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1903   // The passed offset is relative to address of the branch.
  1904   // Don't need to adjust the offset.
  1905   return UseCBCond && Assembler::is_simm12(offset);
  1908 const bool Matcher::isSimpleConstant64(jlong value) {
  1909   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1910   // Depends on optimizations in MacroAssembler::setx.
  1911   int hi = (int)(value >> 32);
  1912   int lo = (int)(value & ~0);
  1913   return (hi == 0) || (hi == -1) || (lo == 0);
  1916 // No scaling for the parameter the ClearArray node.
  1917 const bool Matcher::init_array_count_is_in_bytes = true;
  1919 // Threshold size for cleararray.
  1920 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1922 // No additional cost for CMOVL.
  1923 const int Matcher::long_cmove_cost() { return 0; }
  1925 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1926 const int Matcher::float_cmove_cost() {
  1927   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1930 // Should the Matcher clone shifts on addressing modes, expecting them to
  1931 // be subsumed into complex addressing expressions or compute them into
  1932 // registers?  True for Intel but false for most RISCs
  1933 const bool Matcher::clone_shift_expressions = false;
  1935 // Do we need to mask the count passed to shift instructions or does
  1936 // the cpu only look at the lower 5/6 bits anyway?
  1937 const bool Matcher::need_masked_shift_count = false;
  1939 bool Matcher::narrow_oop_use_complex_address() {
  1940   NOT_LP64(ShouldNotCallThis());
  1941   assert(UseCompressedOops, "only for compressed oops code");
  1942   return false;
  1945 // Is it better to copy float constants, or load them directly from memory?
  1946 // Intel can load a float constant from a direct address, requiring no
  1947 // extra registers.  Most RISCs will have to materialize an address into a
  1948 // register first, so they would do better to copy the constant from stack.
  1949 const bool Matcher::rematerialize_float_constants = false;
  1951 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1952 // needed.  Else we split the double into 2 integer pieces and move it
  1953 // piece-by-piece.  Only happens when passing doubles into C code as the
  1954 // Java calling convention forces doubles to be aligned.
  1955 #ifdef _LP64
  1956 const bool Matcher::misaligned_doubles_ok = true;
  1957 #else
  1958 const bool Matcher::misaligned_doubles_ok = false;
  1959 #endif
  1961 // No-op on SPARC.
  1962 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1965 // Advertise here if the CPU requires explicit rounding operations
  1966 // to implement the UseStrictFP mode.
  1967 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1969 // Are floats conerted to double when stored to stack during deoptimization?
  1970 // Sparc does not handle callee-save floats.
  1971 bool Matcher::float_in_double() { return false; }
  1973 // Do ints take an entire long register or just half?
  1974 // Note that we if-def off of _LP64.
  1975 // The relevant question is how the int is callee-saved.  In _LP64
  1976 // the whole long is written but de-opt'ing will have to extract
  1977 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1978 #ifdef _LP64
  1979 const bool Matcher::int_in_long = true;
  1980 #else
  1981 const bool Matcher::int_in_long = false;
  1982 #endif
  1984 // Return whether or not this register is ever used as an argument.  This
  1985 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1986 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1987 // arguments in those registers not be available to the callee.
  1988 bool Matcher::can_be_java_arg( int reg ) {
  1989   // Standard sparc 6 args in registers
  1990   if( reg == R_I0_num ||
  1991       reg == R_I1_num ||
  1992       reg == R_I2_num ||
  1993       reg == R_I3_num ||
  1994       reg == R_I4_num ||
  1995       reg == R_I5_num ) return true;
  1996 #ifdef _LP64
  1997   // 64-bit builds can pass 64-bit pointers and longs in
  1998   // the high I registers
  1999   if( reg == R_I0H_num ||
  2000       reg == R_I1H_num ||
  2001       reg == R_I2H_num ||
  2002       reg == R_I3H_num ||
  2003       reg == R_I4H_num ||
  2004       reg == R_I5H_num ) return true;
  2006   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  2007     return true;
  2010 #else
  2011   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  2012   // Longs cannot be passed in O regs, because O regs become I regs
  2013   // after a 'save' and I regs get their high bits chopped off on
  2014   // interrupt.
  2015   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  2016   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  2017 #endif
  2018   // A few float args in registers
  2019   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  2021   return false;
  2024 bool Matcher::is_spillable_arg( int reg ) {
  2025   return can_be_java_arg(reg);
  2028 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  2029   // Use hardware SDIVX instruction when it is
  2030   // faster than a code which use multiply.
  2031   return VM_Version::has_fast_idiv();
  2034 // Register for DIVI projection of divmodI
  2035 RegMask Matcher::divI_proj_mask() {
  2036   ShouldNotReachHere();
  2037   return RegMask();
  2040 // Register for MODI projection of divmodI
  2041 RegMask Matcher::modI_proj_mask() {
  2042   ShouldNotReachHere();
  2043   return RegMask();
  2046 // Register for DIVL projection of divmodL
  2047 RegMask Matcher::divL_proj_mask() {
  2048   ShouldNotReachHere();
  2049   return RegMask();
  2052 // Register for MODL projection of divmodL
  2053 RegMask Matcher::modL_proj_mask() {
  2054   ShouldNotReachHere();
  2055   return RegMask();
  2058 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2059   return L7_REGP_mask();
  2062 %}
  2065 // The intptr_t operand types, defined by textual substitution.
  2066 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2067 #ifdef _LP64
  2068 #define immX      immL
  2069 #define immX13    immL13
  2070 #define immX13m7  immL13m7
  2071 #define iRegX     iRegL
  2072 #define g1RegX    g1RegL
  2073 #else
  2074 #define immX      immI
  2075 #define immX13    immI13
  2076 #define immX13m7  immI13m7
  2077 #define iRegX     iRegI
  2078 #define g1RegX    g1RegI
  2079 #endif
  2081 //----------ENCODING BLOCK-----------------------------------------------------
  2082 // This block specifies the encoding classes used by the compiler to output
  2083 // byte streams.  Encoding classes are parameterized macros used by
  2084 // Machine Instruction Nodes in order to generate the bit encoding of the
  2085 // instruction.  Operands specify their base encoding interface with the
  2086 // interface keyword.  There are currently supported four interfaces,
  2087 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2088 // operand to generate a function which returns its register number when
  2089 // queried.   CONST_INTER causes an operand to generate a function which
  2090 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2091 // operand to generate four functions which return the Base Register, the
  2092 // Index Register, the Scale Value, and the Offset Value of the operand when
  2093 // queried.  COND_INTER causes an operand to generate six functions which
  2094 // return the encoding code (ie - encoding bits for the instruction)
  2095 // associated with each basic boolean condition for a conditional instruction.
  2096 //
  2097 // Instructions specify two basic values for encoding.  Again, a function
  2098 // is available to check if the constant displacement is an oop. They use the
  2099 // ins_encode keyword to specify their encoding classes (which must be
  2100 // a sequence of enc_class names, and their parameters, specified in
  2101 // the encoding block), and they use the
  2102 // opcode keyword to specify, in order, their primary, secondary, and
  2103 // tertiary opcode.  Only the opcode sections which a particular instruction
  2104 // needs for encoding need to be specified.
  2105 encode %{
  2106   enc_class enc_untested %{
  2107 #ifdef ASSERT
  2108     MacroAssembler _masm(&cbuf);
  2109     __ untested("encoding");
  2110 #endif
  2111   %}
  2113   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2114     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2115                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2116   %}
  2118   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2119     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2120                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2121   %}
  2123   enc_class form3_mem_prefetch_read( memory mem ) %{
  2124     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2125                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2126   %}
  2128   enc_class form3_mem_prefetch_write( memory mem ) %{
  2129     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2130                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2131   %}
  2133   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2134     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2135     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2136     guarantee($mem$$index == R_G0_enc, "double index?");
  2137     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2138     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2139     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2140     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2141   %}
  2143   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2144     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2145     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2146     guarantee($mem$$index == R_G0_enc, "double index?");
  2147     // Load long with 2 instructions
  2148     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2149     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2150   %}
  2152   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2153   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2154     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2155     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2156   %}
  2158   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2159     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2160     if( $rs2$$reg != $rd$$reg )
  2161       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2162   %}
  2164   // Target lo half of long
  2165   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2166     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2167     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2168       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2169   %}
  2171   // Source lo half of long
  2172   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2173     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2174     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2175       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2176   %}
  2178   // Target hi half of long
  2179   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2180     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2181   %}
  2183   // Source lo half of long, and leave it sign extended.
  2184   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2185     // Sign extend low half
  2186     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2187   %}
  2189   // Source hi half of long, and leave it sign extended.
  2190   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2191     // Shift high half to low half
  2192     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2193   %}
  2195   // Source hi half of long
  2196   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2197     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2198     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2199       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2200   %}
  2202   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2203     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2204   %}
  2206   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2207     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2208     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2209   %}
  2211   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2212     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2213     // clear if nothing else is happening
  2214     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2215     // blt,a,pn done
  2216     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2217     // mov dst,-1 in delay slot
  2218     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2219   %}
  2221   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2222     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2223   %}
  2225   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2226     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2227   %}
  2229   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2230     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2231   %}
  2233   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2234     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2235   %}
  2237   enc_class move_return_pc_to_o1() %{
  2238     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2239   %}
  2241 #ifdef _LP64
  2242   /* %%% merge with enc_to_bool */
  2243   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2244     MacroAssembler _masm(&cbuf);
  2246     Register   src_reg = reg_to_register_object($src$$reg);
  2247     Register   dst_reg = reg_to_register_object($dst$$reg);
  2248     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2249   %}
  2250 #endif
  2252   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2253     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2254     MacroAssembler _masm(&cbuf);
  2256     Register   p_reg = reg_to_register_object($p$$reg);
  2257     Register   q_reg = reg_to_register_object($q$$reg);
  2258     Register   y_reg = reg_to_register_object($y$$reg);
  2259     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2261     __ subcc( p_reg, q_reg,   p_reg );
  2262     __ add  ( p_reg, y_reg, tmp_reg );
  2263     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2264   %}
  2266   enc_class form_d2i_helper(regD src, regF dst) %{
  2267     // fcmp %fcc0,$src,$src
  2268     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2269     // branch %fcc0 not-nan, predict taken
  2270     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2271     // fdtoi $src,$dst
  2272     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2273     // fitos $dst,$dst (if nan)
  2274     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2275     // clear $dst (if nan)
  2276     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2277     // carry on here...
  2278   %}
  2280   enc_class form_d2l_helper(regD src, regD dst) %{
  2281     // fcmp %fcc0,$src,$src  check for NAN
  2282     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2283     // branch %fcc0 not-nan, predict taken
  2284     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2285     // fdtox $src,$dst   convert in delay slot
  2286     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2287     // fxtod $dst,$dst  (if nan)
  2288     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2289     // clear $dst (if nan)
  2290     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2291     // carry on here...
  2292   %}
  2294   enc_class form_f2i_helper(regF src, regF dst) %{
  2295     // fcmps %fcc0,$src,$src
  2296     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2297     // branch %fcc0 not-nan, predict taken
  2298     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2299     // fstoi $src,$dst
  2300     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2301     // fitos $dst,$dst (if nan)
  2302     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2303     // clear $dst (if nan)
  2304     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2305     // carry on here...
  2306   %}
  2308   enc_class form_f2l_helper(regF src, regD dst) %{
  2309     // fcmps %fcc0,$src,$src
  2310     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2311     // branch %fcc0 not-nan, predict taken
  2312     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2313     // fstox $src,$dst
  2314     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2315     // fxtod $dst,$dst (if nan)
  2316     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2317     // clear $dst (if nan)
  2318     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2319     // carry on here...
  2320   %}
  2322   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2323   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2324   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2325   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2327   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2329   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2330   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2332   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2333     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2334   %}
  2336   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2337     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2338   %}
  2340   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2341     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2342   %}
  2344   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2345     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2346   %}
  2348   enc_class form3_convI2F(regF rs2, regF rd) %{
  2349     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2350   %}
  2352   // Encloding class for traceable jumps
  2353   enc_class form_jmpl(g3RegP dest) %{
  2354     emit_jmpl(cbuf, $dest$$reg);
  2355   %}
  2357   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2358     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2359   %}
  2361   enc_class form2_nop() %{
  2362     emit_nop(cbuf);
  2363   %}
  2365   enc_class form2_illtrap() %{
  2366     emit_illtrap(cbuf);
  2367   %}
  2370   // Compare longs and convert into -1, 0, 1.
  2371   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2372     // CMP $src1,$src2
  2373     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2374     // blt,a,pn done
  2375     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2376     // mov dst,-1 in delay slot
  2377     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2378     // bgt,a,pn done
  2379     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2380     // mov dst,1 in delay slot
  2381     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2382     // CLR    $dst
  2383     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2384   %}
  2386   enc_class enc_PartialSubtypeCheck() %{
  2387     MacroAssembler _masm(&cbuf);
  2388     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2389     __ delayed()->nop();
  2390   %}
  2392   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2393     MacroAssembler _masm(&cbuf);
  2394     Label* L = $labl$$label;
  2395     Assembler::Predict predict_taken =
  2396       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2398     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2399     __ delayed()->nop();
  2400   %}
  2402   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2403     MacroAssembler _masm(&cbuf);
  2404     Label* L = $labl$$label;
  2405     Assembler::Predict predict_taken =
  2406       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2408     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2409     __ delayed()->nop();
  2410   %}
  2412   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2413     int op = (Assembler::arith_op << 30) |
  2414              ($dst$$reg << 25) |
  2415              (Assembler::movcc_op3 << 19) |
  2416              (1 << 18) |                    // cc2 bit for 'icc'
  2417              ($cmp$$cmpcode << 14) |
  2418              (0 << 13) |                    // select register move
  2419              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2420              ($src$$reg << 0);
  2421     cbuf.insts()->emit_int32(op);
  2422   %}
  2424   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2425     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2426     int op = (Assembler::arith_op << 30) |
  2427              ($dst$$reg << 25) |
  2428              (Assembler::movcc_op3 << 19) |
  2429              (1 << 18) |                    // cc2 bit for 'icc'
  2430              ($cmp$$cmpcode << 14) |
  2431              (1 << 13) |                    // select immediate move
  2432              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2433              (simm11 << 0);
  2434     cbuf.insts()->emit_int32(op);
  2435   %}
  2437   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2438     int op = (Assembler::arith_op << 30) |
  2439              ($dst$$reg << 25) |
  2440              (Assembler::movcc_op3 << 19) |
  2441              (0 << 18) |                    // cc2 bit for 'fccX'
  2442              ($cmp$$cmpcode << 14) |
  2443              (0 << 13) |                    // select register move
  2444              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2445              ($src$$reg << 0);
  2446     cbuf.insts()->emit_int32(op);
  2447   %}
  2449   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2450     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2451     int op = (Assembler::arith_op << 30) |
  2452              ($dst$$reg << 25) |
  2453              (Assembler::movcc_op3 << 19) |
  2454              (0 << 18) |                    // cc2 bit for 'fccX'
  2455              ($cmp$$cmpcode << 14) |
  2456              (1 << 13) |                    // select immediate move
  2457              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2458              (simm11 << 0);
  2459     cbuf.insts()->emit_int32(op);
  2460   %}
  2462   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2463     int op = (Assembler::arith_op << 30) |
  2464              ($dst$$reg << 25) |
  2465              (Assembler::fpop2_op3 << 19) |
  2466              (0 << 18) |
  2467              ($cmp$$cmpcode << 14) |
  2468              (1 << 13) |                    // select register move
  2469              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2470              ($primary << 5) |              // select single, double or quad
  2471              ($src$$reg << 0);
  2472     cbuf.insts()->emit_int32(op);
  2473   %}
  2475   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2476     int op = (Assembler::arith_op << 30) |
  2477              ($dst$$reg << 25) |
  2478              (Assembler::fpop2_op3 << 19) |
  2479              (0 << 18) |
  2480              ($cmp$$cmpcode << 14) |
  2481              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2482              ($primary << 5) |              // select single, double or quad
  2483              ($src$$reg << 0);
  2484     cbuf.insts()->emit_int32(op);
  2485   %}
  2487   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2488   // the condition comes from opcode-field instead of an argument.
  2489   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2490     int op = (Assembler::arith_op << 30) |
  2491              ($dst$$reg << 25) |
  2492              (Assembler::movcc_op3 << 19) |
  2493              (1 << 18) |                    // cc2 bit for 'icc'
  2494              ($primary << 14) |
  2495              (0 << 13) |                    // select register move
  2496              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2497              ($src$$reg << 0);
  2498     cbuf.insts()->emit_int32(op);
  2499   %}
  2501   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2502     int op = (Assembler::arith_op << 30) |
  2503              ($dst$$reg << 25) |
  2504              (Assembler::movcc_op3 << 19) |
  2505              (6 << 16) |                    // cc2 bit for 'xcc'
  2506              ($primary << 14) |
  2507              (0 << 13) |                    // select register move
  2508              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2509              ($src$$reg << 0);
  2510     cbuf.insts()->emit_int32(op);
  2511   %}
  2513   enc_class Set13( immI13 src, iRegI rd ) %{
  2514     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2515   %}
  2517   enc_class SetHi22( immI src, iRegI rd ) %{
  2518     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2519   %}
  2521   enc_class Set32( immI src, iRegI rd ) %{
  2522     MacroAssembler _masm(&cbuf);
  2523     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2524   %}
  2526   enc_class call_epilog %{
  2527     if( VerifyStackAtCalls ) {
  2528       MacroAssembler _masm(&cbuf);
  2529       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2530       Register temp_reg = G3;
  2531       __ add(SP, framesize, temp_reg);
  2532       __ cmp(temp_reg, FP);
  2533       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2535   %}
  2537   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2538   // to G1 so the register allocator will not have to deal with the misaligned register
  2539   // pair.
  2540   enc_class adjust_long_from_native_call %{
  2541 #ifndef _LP64
  2542     if (returns_long()) {
  2543       //    sllx  O0,32,O0
  2544       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2545       //    srl   O1,0,O1
  2546       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2547       //    or    O0,O1,G1
  2548       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2550 #endif
  2551   %}
  2553   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2554     // CALL directly to the runtime
  2555     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2556     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2557                     /*preserve_g2=*/true);
  2558   %}
  2560   enc_class preserve_SP %{
  2561     MacroAssembler _masm(&cbuf);
  2562     __ mov(SP, L7_mh_SP_save);
  2563   %}
  2565   enc_class restore_SP %{
  2566     MacroAssembler _masm(&cbuf);
  2567     __ mov(L7_mh_SP_save, SP);
  2568   %}
  2570   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2571     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2572     // who we intended to call.
  2573     if ( !_method ) {
  2574       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2575     } else if (_optimized_virtual) {
  2576       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2577     } else {
  2578       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2580     if( _method ) {  // Emit stub for static call
  2581       emit_java_to_interp(cbuf);
  2583   %}
  2585   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2586     MacroAssembler _masm(&cbuf);
  2587     __ set_inst_mark();
  2588     int vtable_index = this->_vtable_index;
  2589     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2590     if (vtable_index < 0) {
  2591       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2592       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2593       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2594       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2595       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2596       __ ic_call((address)$meth$$method);
  2597     } else {
  2598       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2599       // Just go thru the vtable
  2600       // get receiver klass (receiver already checked for non-null)
  2601       // If we end up going thru a c2i adapter interpreter expects method in G5
  2602       int off = __ offset();
  2603       __ load_klass(O0, G3_scratch);
  2604       int klass_load_size;
  2605       if (UseCompressedOops && UseCompressedKlassPointers) {
  2606         assert(Universe::heap() != NULL, "java heap should be initialized");
  2607         if (Universe::narrow_oop_base() == NULL)
  2608           klass_load_size = 2*BytesPerInstWord;
  2609         else
  2610           klass_load_size = 3*BytesPerInstWord;
  2611       } else {
  2612         klass_load_size = 1*BytesPerInstWord;
  2614       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2615       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2616       if (Assembler::is_simm13(v_off)) {
  2617         __ ld_ptr(G3, v_off, G5_method);
  2618       } else {
  2619         // Generate 2 instructions
  2620         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2621         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2622         // ld_ptr, set_hi, set
  2623         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2624                "Unexpected instruction size(s)");
  2625         __ ld_ptr(G3, G5_method, G5_method);
  2627       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2628       // However it may very well end up in handle_wrong_method if the
  2629       // method is abstract for the particular class.
  2630       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2631       // jump to target (either compiled code or c2iadapter)
  2632       __ jmpl(G3_scratch, G0, O7);
  2633       __ delayed()->nop();
  2635   %}
  2637   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2638     MacroAssembler _masm(&cbuf);
  2640     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2641     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2642                               // we might be calling a C2I adapter which needs it.
  2644     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2645     // Load nmethod
  2646     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2648     // CALL to compiled java, indirect the contents of G3
  2649     __ set_inst_mark();
  2650     __ callr(temp_reg, G0);
  2651     __ delayed()->nop();
  2652   %}
  2654 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2655     MacroAssembler _masm(&cbuf);
  2656     Register Rdividend = reg_to_register_object($src1$$reg);
  2657     Register Rdivisor = reg_to_register_object($src2$$reg);
  2658     Register Rresult = reg_to_register_object($dst$$reg);
  2660     __ sra(Rdivisor, 0, Rdivisor);
  2661     __ sra(Rdividend, 0, Rdividend);
  2662     __ sdivx(Rdividend, Rdivisor, Rresult);
  2663 %}
  2665 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2666     MacroAssembler _masm(&cbuf);
  2668     Register Rdividend = reg_to_register_object($src1$$reg);
  2669     int divisor = $imm$$constant;
  2670     Register Rresult = reg_to_register_object($dst$$reg);
  2672     __ sra(Rdividend, 0, Rdividend);
  2673     __ sdivx(Rdividend, divisor, Rresult);
  2674 %}
  2676 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2677     MacroAssembler _masm(&cbuf);
  2678     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2679     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2680     Register Rdst  = reg_to_register_object($dst$$reg);
  2682     __ sra( Rsrc1, 0, Rsrc1 );
  2683     __ sra( Rsrc2, 0, Rsrc2 );
  2684     __ mulx( Rsrc1, Rsrc2, Rdst );
  2685     __ srlx( Rdst, 32, Rdst );
  2686 %}
  2688 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2689     MacroAssembler _masm(&cbuf);
  2690     Register Rdividend = reg_to_register_object($src1$$reg);
  2691     Register Rdivisor = reg_to_register_object($src2$$reg);
  2692     Register Rresult = reg_to_register_object($dst$$reg);
  2693     Register Rscratch = reg_to_register_object($scratch$$reg);
  2695     assert(Rdividend != Rscratch, "");
  2696     assert(Rdivisor  != Rscratch, "");
  2698     __ sra(Rdividend, 0, Rdividend);
  2699     __ sra(Rdivisor, 0, Rdivisor);
  2700     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2701     __ mulx(Rscratch, Rdivisor, Rscratch);
  2702     __ sub(Rdividend, Rscratch, Rresult);
  2703 %}
  2705 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2706     MacroAssembler _masm(&cbuf);
  2708     Register Rdividend = reg_to_register_object($src1$$reg);
  2709     int divisor = $imm$$constant;
  2710     Register Rresult = reg_to_register_object($dst$$reg);
  2711     Register Rscratch = reg_to_register_object($scratch$$reg);
  2713     assert(Rdividend != Rscratch, "");
  2715     __ sra(Rdividend, 0, Rdividend);
  2716     __ sdivx(Rdividend, divisor, Rscratch);
  2717     __ mulx(Rscratch, divisor, Rscratch);
  2718     __ sub(Rdividend, Rscratch, Rresult);
  2719 %}
  2721 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2722     MacroAssembler _masm(&cbuf);
  2724     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2725     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2727     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2728 %}
  2730 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2731     MacroAssembler _masm(&cbuf);
  2733     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2734     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2736     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2737 %}
  2739 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2740     MacroAssembler _masm(&cbuf);
  2742     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2743     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2745     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2746 %}
  2748 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2749     MacroAssembler _masm(&cbuf);
  2751     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2752     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2754     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2755 %}
  2757 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2758     MacroAssembler _masm(&cbuf);
  2760     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2761     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2763     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2764 %}
  2766 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2767     MacroAssembler _masm(&cbuf);
  2769     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2770     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2772     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2773 %}
  2775 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2776     MacroAssembler _masm(&cbuf);
  2778     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2779     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2781     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2782 %}
  2784 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2785     MacroAssembler _masm(&cbuf);
  2787     Register Roop  = reg_to_register_object($oop$$reg);
  2788     Register Rbox  = reg_to_register_object($box$$reg);
  2789     Register Rscratch = reg_to_register_object($scratch$$reg);
  2790     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2792     assert(Roop  != Rscratch, "");
  2793     assert(Roop  != Rmark, "");
  2794     assert(Rbox  != Rscratch, "");
  2795     assert(Rbox  != Rmark, "");
  2797     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2798 %}
  2800 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2801     MacroAssembler _masm(&cbuf);
  2803     Register Roop  = reg_to_register_object($oop$$reg);
  2804     Register Rbox  = reg_to_register_object($box$$reg);
  2805     Register Rscratch = reg_to_register_object($scratch$$reg);
  2806     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2808     assert(Roop  != Rscratch, "");
  2809     assert(Roop  != Rmark, "");
  2810     assert(Rbox  != Rscratch, "");
  2811     assert(Rbox  != Rmark, "");
  2813     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2814   %}
  2816   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2817     MacroAssembler _masm(&cbuf);
  2818     Register Rmem = reg_to_register_object($mem$$reg);
  2819     Register Rold = reg_to_register_object($old$$reg);
  2820     Register Rnew = reg_to_register_object($new$$reg);
  2822     // casx_under_lock picks 1 of 3 encodings:
  2823     // For 32-bit pointers you get a 32-bit CAS
  2824     // For 64-bit pointers you get a 64-bit CASX
  2825     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2826     __ cmp( Rold, Rnew );
  2827   %}
  2829   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2830     Register Rmem = reg_to_register_object($mem$$reg);
  2831     Register Rold = reg_to_register_object($old$$reg);
  2832     Register Rnew = reg_to_register_object($new$$reg);
  2834     MacroAssembler _masm(&cbuf);
  2835     __ mov(Rnew, O7);
  2836     __ casx(Rmem, Rold, O7);
  2837     __ cmp( Rold, O7 );
  2838   %}
  2840   // raw int cas, used for compareAndSwap
  2841   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2842     Register Rmem = reg_to_register_object($mem$$reg);
  2843     Register Rold = reg_to_register_object($old$$reg);
  2844     Register Rnew = reg_to_register_object($new$$reg);
  2846     MacroAssembler _masm(&cbuf);
  2847     __ mov(Rnew, O7);
  2848     __ cas(Rmem, Rold, O7);
  2849     __ cmp( Rold, O7 );
  2850   %}
  2852   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2853     Register Rres = reg_to_register_object($res$$reg);
  2855     MacroAssembler _masm(&cbuf);
  2856     __ mov(1, Rres);
  2857     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2858   %}
  2860   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2861     Register Rres = reg_to_register_object($res$$reg);
  2863     MacroAssembler _masm(&cbuf);
  2864     __ mov(1, Rres);
  2865     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2866   %}
  2868   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2869     MacroAssembler _masm(&cbuf);
  2870     Register Rdst = reg_to_register_object($dst$$reg);
  2871     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2872                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2873     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2874                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2876     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2877     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2878   %}
  2881   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2882     Label Ldone, Lloop;
  2883     MacroAssembler _masm(&cbuf);
  2885     Register   str1_reg = reg_to_register_object($str1$$reg);
  2886     Register   str2_reg = reg_to_register_object($str2$$reg);
  2887     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2888     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2889     Register result_reg = reg_to_register_object($result$$reg);
  2891     assert(result_reg != str1_reg &&
  2892            result_reg != str2_reg &&
  2893            result_reg != cnt1_reg &&
  2894            result_reg != cnt2_reg ,
  2895            "need different registers");
  2897     // Compute the minimum of the string lengths(str1_reg) and the
  2898     // difference of the string lengths (stack)
  2900     // See if the lengths are different, and calculate min in str1_reg.
  2901     // Stash diff in O7 in case we need it for a tie-breaker.
  2902     Label Lskip;
  2903     __ subcc(cnt1_reg, cnt2_reg, O7);
  2904     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2905     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2906     // cnt2 is shorter, so use its count:
  2907     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2908     __ bind(Lskip);
  2910     // reallocate cnt1_reg, cnt2_reg, result_reg
  2911     // Note:  limit_reg holds the string length pre-scaled by 2
  2912     Register limit_reg =   cnt1_reg;
  2913     Register  chr2_reg =   cnt2_reg;
  2914     Register  chr1_reg = result_reg;
  2915     // str{12} are the base pointers
  2917     // Is the minimum length zero?
  2918     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2919     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2920     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2922     // Load first characters
  2923     __ lduh(str1_reg, 0, chr1_reg);
  2924     __ lduh(str2_reg, 0, chr2_reg);
  2926     // Compare first characters
  2927     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2928     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2929     assert(chr1_reg == result_reg, "result must be pre-placed");
  2930     __ delayed()->nop();
  2933       // Check after comparing first character to see if strings are equivalent
  2934       Label LSkip2;
  2935       // Check if the strings start at same location
  2936       __ cmp(str1_reg, str2_reg);
  2937       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2938       __ delayed()->nop();
  2940       // Check if the length difference is zero (in O7)
  2941       __ cmp(G0, O7);
  2942       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2943       __ delayed()->mov(G0, result_reg);  // result is zero
  2945       // Strings might not be equal
  2946       __ bind(LSkip2);
  2949     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2950     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2951     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2953     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2954     __ add(str1_reg, limit_reg, str1_reg);
  2955     __ add(str2_reg, limit_reg, str2_reg);
  2956     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2958     // Compare the rest of the characters
  2959     __ lduh(str1_reg, limit_reg, chr1_reg);
  2960     __ bind(Lloop);
  2961     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2962     __ lduh(str2_reg, limit_reg, chr2_reg);
  2963     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2964     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2965     assert(chr1_reg == result_reg, "result must be pre-placed");
  2966     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2967     // annul LDUH if branch is not taken to prevent access past end of string
  2968     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2969     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2971     // If strings are equal up to min length, return the length difference.
  2972     __ mov(O7, result_reg);
  2974     // Otherwise, return the difference between the first mismatched chars.
  2975     __ bind(Ldone);
  2976   %}
  2978 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2979     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2980     MacroAssembler _masm(&cbuf);
  2982     Register   str1_reg = reg_to_register_object($str1$$reg);
  2983     Register   str2_reg = reg_to_register_object($str2$$reg);
  2984     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2985     Register   tmp1_reg = O7;
  2986     Register result_reg = reg_to_register_object($result$$reg);
  2988     assert(result_reg != str1_reg &&
  2989            result_reg != str2_reg &&
  2990            result_reg !=  cnt_reg &&
  2991            result_reg != tmp1_reg ,
  2992            "need different registers");
  2994     __ cmp(str1_reg, str2_reg); //same char[] ?
  2995     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2996     __ delayed()->add(G0, 1, result_reg);
  2998     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2999     __ delayed()->add(G0, 1, result_reg); // count == 0
  3001     //rename registers
  3002     Register limit_reg =    cnt_reg;
  3003     Register  chr1_reg = result_reg;
  3004     Register  chr2_reg =   tmp1_reg;
  3006     //check for alignment and position the pointers to the ends
  3007     __ or3(str1_reg, str2_reg, chr1_reg);
  3008     __ andcc(chr1_reg, 0x3, chr1_reg);
  3009     // notZero means at least one not 4-byte aligned.
  3010     // We could optimize the case when both arrays are not aligned
  3011     // but it is not frequent case and it requires additional checks.
  3012     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  3013     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  3015     // Compare char[] arrays aligned to 4 bytes.
  3016     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  3017                           chr1_reg, chr2_reg, Ldone);
  3018     __ ba(Ldone);
  3019     __ delayed()->add(G0, 1, result_reg);
  3021     // char by char compare
  3022     __ bind(Lchar);
  3023     __ add(str1_reg, limit_reg, str1_reg);
  3024     __ add(str2_reg, limit_reg, str2_reg);
  3025     __ neg(limit_reg); //negate count
  3027     __ lduh(str1_reg, limit_reg, chr1_reg);
  3028     // Lchar_loop
  3029     __ bind(Lchar_loop);
  3030     __ lduh(str2_reg, limit_reg, chr2_reg);
  3031     __ cmp(chr1_reg, chr2_reg);
  3032     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3033     __ delayed()->mov(G0, result_reg); //not equal
  3034     __ inccc(limit_reg, sizeof(jchar));
  3035     // annul LDUH if branch is not taken to prevent access past end of string
  3036     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3037     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3039     __ add(G0, 1, result_reg);  //equal
  3041     __ bind(Ldone);
  3042   %}
  3044 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3045     Label Lvector, Ldone, Lloop;
  3046     MacroAssembler _masm(&cbuf);
  3048     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3049     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3050     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3051     Register   tmp2_reg = O7;
  3052     Register result_reg = reg_to_register_object($result$$reg);
  3054     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3055     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3057     // return true if the same array
  3058     __ cmp(ary1_reg, ary2_reg);
  3059     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3060     __ delayed()->add(G0, 1, result_reg); // equal
  3062     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3063     __ delayed()->mov(G0, result_reg);    // not equal
  3065     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3066     __ delayed()->mov(G0, result_reg);    // not equal
  3068     //load the lengths of arrays
  3069     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3070     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3072     // return false if the two arrays are not equal length
  3073     __ cmp(tmp1_reg, tmp2_reg);
  3074     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3075     __ delayed()->mov(G0, result_reg);     // not equal
  3077     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3078     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3080     // load array addresses
  3081     __ add(ary1_reg, base_offset, ary1_reg);
  3082     __ add(ary2_reg, base_offset, ary2_reg);
  3084     // renaming registers
  3085     Register chr1_reg  =  result_reg; // for characters in ary1
  3086     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3087     Register limit_reg =  tmp1_reg;   // length
  3089     // set byte count
  3090     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3092     // Compare char[] arrays aligned to 4 bytes.
  3093     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3094                           chr1_reg, chr2_reg, Ldone);
  3095     __ add(G0, 1, result_reg); // equals
  3097     __ bind(Ldone);
  3098   %}
  3100   enc_class enc_rethrow() %{
  3101     cbuf.set_insts_mark();
  3102     Register temp_reg = G3;
  3103     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3104     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3105     MacroAssembler _masm(&cbuf);
  3106 #ifdef ASSERT
  3107     __ save_frame(0);
  3108     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3109     __ sethi(last_rethrow_addrlit, L1);
  3110     Address addr(L1, last_rethrow_addrlit.low10());
  3111     __ get_pc(L2);
  3112     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3113     __ st_ptr(L2, addr);
  3114     __ restore();
  3115 #endif
  3116     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3117     __ delayed()->nop();
  3118   %}
  3120   enc_class emit_mem_nop() %{
  3121     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3122     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3123   %}
  3125   enc_class emit_fadd_nop() %{
  3126     // Generates the instruction FMOVS f31,f31
  3127     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3128   %}
  3130   enc_class emit_br_nop() %{
  3131     // Generates the instruction BPN,PN .
  3132     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3133   %}
  3135   enc_class enc_membar_acquire %{
  3136     MacroAssembler _masm(&cbuf);
  3137     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3138   %}
  3140   enc_class enc_membar_release %{
  3141     MacroAssembler _masm(&cbuf);
  3142     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3143   %}
  3145   enc_class enc_membar_volatile %{
  3146     MacroAssembler _masm(&cbuf);
  3147     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3148   %}
  3150 %}
  3152 //----------FRAME--------------------------------------------------------------
  3153 // Definition of frame structure and management information.
  3154 //
  3155 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3156 //                             |   (to get allocators register number
  3157 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3158 //  r   CALLER     |        |
  3159 //  o     |        +--------+      pad to even-align allocators stack-slot
  3160 //  w     V        |  pad0  |        numbers; owned by CALLER
  3161 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3162 //  h     ^        |   in   |  5
  3163 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3164 //  |     |        |        |  3
  3165 //  |     |        +--------+
  3166 //  V     |        | old out|      Empty on Intel, window on Sparc
  3167 //        |    old |preserve|      Must be even aligned.
  3168 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3169 //        |        |   in   |  3   area for Intel ret address
  3170 //     Owned by    |preserve|      Empty on Sparc.
  3171 //       SELF      +--------+
  3172 //        |        |  pad2  |  2   pad to align old SP
  3173 //        |        +--------+  1
  3174 //        |        | locks  |  0
  3175 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3176 //        |        |  pad1  | 11   pad to align new SP
  3177 //        |        +--------+
  3178 //        |        |        | 10
  3179 //        |        | spills |  9   spills
  3180 //        V        |        |  8   (pad0 slot for callee)
  3181 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3182 //        ^        |  out   |  7
  3183 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3184 //     Owned by    +--------+
  3185 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3186 //        |    new |preserve|      Must be even-aligned.
  3187 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3188 //        |        |        |
  3189 //
  3190 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3191 //         known from SELF's arguments and the Java calling convention.
  3192 //         Region 6-7 is determined per call site.
  3193 // Note 2: If the calling convention leaves holes in the incoming argument
  3194 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3195 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3196 //         incoming area, as the Java calling convention is completely under
  3197 //         the control of the AD file.  Doubles can be sorted and packed to
  3198 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3199 //         varargs C calling conventions.
  3200 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3201 //         even aligned with pad0 as needed.
  3202 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3203 //         region 6-11 is even aligned; it may be padded out more so that
  3204 //         the region from SP to FP meets the minimum stack alignment.
  3206 frame %{
  3207   // What direction does stack grow in (assumed to be same for native & Java)
  3208   stack_direction(TOWARDS_LOW);
  3210   // These two registers define part of the calling convention
  3211   // between compiled code and the interpreter.
  3212   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3213   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3215   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3216   cisc_spilling_operand_name(indOffset);
  3218   // Number of stack slots consumed by a Monitor enter
  3219 #ifdef _LP64
  3220   sync_stack_slots(2);
  3221 #else
  3222   sync_stack_slots(1);
  3223 #endif
  3225   // Compiled code's Frame Pointer
  3226   frame_pointer(R_SP);
  3228   // Stack alignment requirement
  3229   stack_alignment(StackAlignmentInBytes);
  3230   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3231   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3233   // Number of stack slots between incoming argument block and the start of
  3234   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3235   // EPILOG must remove this many slots.
  3236   in_preserve_stack_slots(0);
  3238   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3239   // for calls to C.  Supports the var-args backing area for register parms.
  3240   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3241 #ifdef _LP64
  3242   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3243   varargs_C_out_slots_killed(12);
  3244 #else
  3245   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3246   varargs_C_out_slots_killed( 7);
  3247 #endif
  3249   // The after-PROLOG location of the return address.  Location of
  3250   // return address specifies a type (REG or STACK) and a number
  3251   // representing the register number (i.e. - use a register name) or
  3252   // stack slot.
  3253   return_addr(REG R_I7);          // Ret Addr is in register I7
  3255   // Body of function which returns an OptoRegs array locating
  3256   // arguments either in registers or in stack slots for calling
  3257   // java
  3258   calling_convention %{
  3259     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3261   %}
  3263   // Body of function which returns an OptoRegs array locating
  3264   // arguments either in registers or in stack slots for callin
  3265   // C.
  3266   c_calling_convention %{
  3267     // This is obviously always outgoing
  3268     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3269   %}
  3271   // Location of native (C/C++) and interpreter return values.  This is specified to
  3272   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3273   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3274   // to and from the register pairs is done by the appropriate call and epilog
  3275   // opcodes.  This simplifies the register allocator.
  3276   c_return_value %{
  3277     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3278 #ifdef     _LP64
  3279     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3280     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3281     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3282     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3283 #else  // !_LP64
  3284     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3285     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3286     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3287     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3288 #endif
  3289     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3290                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3291   %}
  3293   // Location of compiled Java return values.  Same as C
  3294   return_value %{
  3295     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3296 #ifdef     _LP64
  3297     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3298     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3299     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3300     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3301 #else  // !_LP64
  3302     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3303     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3304     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3305     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3306 #endif
  3307     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3308                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3309   %}
  3311 %}
  3314 //----------ATTRIBUTES---------------------------------------------------------
  3315 //----------Operand Attributes-------------------------------------------------
  3316 op_attrib op_cost(1);          // Required cost attribute
  3318 //----------Instruction Attributes---------------------------------------------
  3319 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3320 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3321 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3322 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3323                                    // non-matching short branch variant of some
  3324                                                             // long branch?
  3326 //----------OPERANDS-----------------------------------------------------------
  3327 // Operand definitions must precede instruction definitions for correct parsing
  3328 // in the ADLC because operands constitute user defined types which are used in
  3329 // instruction definitions.
  3331 //----------Simple Operands----------------------------------------------------
  3332 // Immediate Operands
  3333 // Integer Immediate: 32-bit
  3334 operand immI() %{
  3335   match(ConI);
  3337   op_cost(0);
  3338   // formats are generated automatically for constants and base registers
  3339   format %{ %}
  3340   interface(CONST_INTER);
  3341 %}
  3343 // Integer Immediate: 8-bit
  3344 operand immI8() %{
  3345   predicate(Assembler::is_simm8(n->get_int()));
  3346   match(ConI);
  3347   op_cost(0);
  3348   format %{ %}
  3349   interface(CONST_INTER);
  3350 %}
  3352 // Integer Immediate: 13-bit
  3353 operand immI13() %{
  3354   predicate(Assembler::is_simm13(n->get_int()));
  3355   match(ConI);
  3356   op_cost(0);
  3358   format %{ %}
  3359   interface(CONST_INTER);
  3360 %}
  3362 // Integer Immediate: 13-bit minus 7
  3363 operand immI13m7() %{
  3364   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3365   match(ConI);
  3366   op_cost(0);
  3368   format %{ %}
  3369   interface(CONST_INTER);
  3370 %}
  3372 // Integer Immediate: 16-bit
  3373 operand immI16() %{
  3374   predicate(Assembler::is_simm16(n->get_int()));
  3375   match(ConI);
  3376   op_cost(0);
  3377   format %{ %}
  3378   interface(CONST_INTER);
  3379 %}
  3381 // Unsigned (positive) Integer Immediate: 13-bit
  3382 operand immU13() %{
  3383   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3384   match(ConI);
  3385   op_cost(0);
  3387   format %{ %}
  3388   interface(CONST_INTER);
  3389 %}
  3391 // Integer Immediate: 6-bit
  3392 operand immU6() %{
  3393   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3394   match(ConI);
  3395   op_cost(0);
  3396   format %{ %}
  3397   interface(CONST_INTER);
  3398 %}
  3400 // Integer Immediate: 11-bit
  3401 operand immI11() %{
  3402   predicate(Assembler::is_simm11(n->get_int()));
  3403   match(ConI);
  3404   op_cost(0);
  3405   format %{ %}
  3406   interface(CONST_INTER);
  3407 %}
  3409 // Integer Immediate: 5-bit
  3410 operand immI5() %{
  3411   predicate(Assembler::is_simm5(n->get_int()));
  3412   match(ConI);
  3413   op_cost(0);
  3414   format %{ %}
  3415   interface(CONST_INTER);
  3416 %}
  3418 // Integer Immediate: 0-bit
  3419 operand immI0() %{
  3420   predicate(n->get_int() == 0);
  3421   match(ConI);
  3422   op_cost(0);
  3424   format %{ %}
  3425   interface(CONST_INTER);
  3426 %}
  3428 // Integer Immediate: the value 10
  3429 operand immI10() %{
  3430   predicate(n->get_int() == 10);
  3431   match(ConI);
  3432   op_cost(0);
  3434   format %{ %}
  3435   interface(CONST_INTER);
  3436 %}
  3438 // Integer Immediate: the values 0-31
  3439 operand immU5() %{
  3440   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3441   match(ConI);
  3442   op_cost(0);
  3444   format %{ %}
  3445   interface(CONST_INTER);
  3446 %}
  3448 // Integer Immediate: the values 1-31
  3449 operand immI_1_31() %{
  3450   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3451   match(ConI);
  3452   op_cost(0);
  3454   format %{ %}
  3455   interface(CONST_INTER);
  3456 %}
  3458 // Integer Immediate: the values 32-63
  3459 operand immI_32_63() %{
  3460   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3461   match(ConI);
  3462   op_cost(0);
  3464   format %{ %}
  3465   interface(CONST_INTER);
  3466 %}
  3468 // Immediates for special shifts (sign extend)
  3470 // Integer Immediate: the value 16
  3471 operand immI_16() %{
  3472   predicate(n->get_int() == 16);
  3473   match(ConI);
  3474   op_cost(0);
  3476   format %{ %}
  3477   interface(CONST_INTER);
  3478 %}
  3480 // Integer Immediate: the value 24
  3481 operand immI_24() %{
  3482   predicate(n->get_int() == 24);
  3483   match(ConI);
  3484   op_cost(0);
  3486   format %{ %}
  3487   interface(CONST_INTER);
  3488 %}
  3490 // Integer Immediate: the value 255
  3491 operand immI_255() %{
  3492   predicate( n->get_int() == 255 );
  3493   match(ConI);
  3494   op_cost(0);
  3496   format %{ %}
  3497   interface(CONST_INTER);
  3498 %}
  3500 // Integer Immediate: the value 65535
  3501 operand immI_65535() %{
  3502   predicate(n->get_int() == 65535);
  3503   match(ConI);
  3504   op_cost(0);
  3506   format %{ %}
  3507   interface(CONST_INTER);
  3508 %}
  3510 // Long Immediate: the value FF
  3511 operand immL_FF() %{
  3512   predicate( n->get_long() == 0xFFL );
  3513   match(ConL);
  3514   op_cost(0);
  3516   format %{ %}
  3517   interface(CONST_INTER);
  3518 %}
  3520 // Long Immediate: the value FFFF
  3521 operand immL_FFFF() %{
  3522   predicate( n->get_long() == 0xFFFFL );
  3523   match(ConL);
  3524   op_cost(0);
  3526   format %{ %}
  3527   interface(CONST_INTER);
  3528 %}
  3530 // Pointer Immediate: 32 or 64-bit
  3531 operand immP() %{
  3532   match(ConP);
  3534   op_cost(5);
  3535   // formats are generated automatically for constants and base registers
  3536   format %{ %}
  3537   interface(CONST_INTER);
  3538 %}
  3540 #ifdef _LP64
  3541 // Pointer Immediate: 64-bit
  3542 operand immP_set() %{
  3543   predicate(!VM_Version::is_niagara_plus());
  3544   match(ConP);
  3546   op_cost(5);
  3547   // formats are generated automatically for constants and base registers
  3548   format %{ %}
  3549   interface(CONST_INTER);
  3550 %}
  3552 // Pointer Immediate: 64-bit
  3553 // From Niagara2 processors on a load should be better than materializing.
  3554 operand immP_load() %{
  3555   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3556   match(ConP);
  3558   op_cost(5);
  3559   // formats are generated automatically for constants and base registers
  3560   format %{ %}
  3561   interface(CONST_INTER);
  3562 %}
  3564 // Pointer Immediate: 64-bit
  3565 operand immP_no_oop_cheap() %{
  3566   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3567   match(ConP);
  3569   op_cost(5);
  3570   // formats are generated automatically for constants and base registers
  3571   format %{ %}
  3572   interface(CONST_INTER);
  3573 %}
  3574 #endif
  3576 operand immP13() %{
  3577   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3578   match(ConP);
  3579   op_cost(0);
  3581   format %{ %}
  3582   interface(CONST_INTER);
  3583 %}
  3585 operand immP0() %{
  3586   predicate(n->get_ptr() == 0);
  3587   match(ConP);
  3588   op_cost(0);
  3590   format %{ %}
  3591   interface(CONST_INTER);
  3592 %}
  3594 operand immP_poll() %{
  3595   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3596   match(ConP);
  3598   // formats are generated automatically for constants and base registers
  3599   format %{ %}
  3600   interface(CONST_INTER);
  3601 %}
  3603 // Pointer Immediate
  3604 operand immN()
  3605 %{
  3606   match(ConN);
  3608   op_cost(10);
  3609   format %{ %}
  3610   interface(CONST_INTER);
  3611 %}
  3613 // NULL Pointer Immediate
  3614 operand immN0()
  3615 %{
  3616   predicate(n->get_narrowcon() == 0);
  3617   match(ConN);
  3619   op_cost(0);
  3620   format %{ %}
  3621   interface(CONST_INTER);
  3622 %}
  3624 operand immL() %{
  3625   match(ConL);
  3626   op_cost(40);
  3627   // formats are generated automatically for constants and base registers
  3628   format %{ %}
  3629   interface(CONST_INTER);
  3630 %}
  3632 operand immL0() %{
  3633   predicate(n->get_long() == 0L);
  3634   match(ConL);
  3635   op_cost(0);
  3636   // formats are generated automatically for constants and base registers
  3637   format %{ %}
  3638   interface(CONST_INTER);
  3639 %}
  3641 // Integer Immediate: 5-bit
  3642 operand immL5() %{
  3643   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3644   match(ConL);
  3645   op_cost(0);
  3646   format %{ %}
  3647   interface(CONST_INTER);
  3648 %}
  3650 // Long Immediate: 13-bit
  3651 operand immL13() %{
  3652   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3653   match(ConL);
  3654   op_cost(0);
  3656   format %{ %}
  3657   interface(CONST_INTER);
  3658 %}
  3660 // Long Immediate: 13-bit minus 7
  3661 operand immL13m7() %{
  3662   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3663   match(ConL);
  3664   op_cost(0);
  3666   format %{ %}
  3667   interface(CONST_INTER);
  3668 %}
  3670 // Long Immediate: low 32-bit mask
  3671 operand immL_32bits() %{
  3672   predicate(n->get_long() == 0xFFFFFFFFL);
  3673   match(ConL);
  3674   op_cost(0);
  3676   format %{ %}
  3677   interface(CONST_INTER);
  3678 %}
  3680 // Long Immediate: cheap (materialize in <= 3 instructions)
  3681 operand immL_cheap() %{
  3682   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3683   match(ConL);
  3684   op_cost(0);
  3686   format %{ %}
  3687   interface(CONST_INTER);
  3688 %}
  3690 // Long Immediate: expensive (materialize in > 3 instructions)
  3691 operand immL_expensive() %{
  3692   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3693   match(ConL);
  3694   op_cost(0);
  3696   format %{ %}
  3697   interface(CONST_INTER);
  3698 %}
  3700 // Double Immediate
  3701 operand immD() %{
  3702   match(ConD);
  3704   op_cost(40);
  3705   format %{ %}
  3706   interface(CONST_INTER);
  3707 %}
  3709 operand immD0() %{
  3710 #ifdef _LP64
  3711   // on 64-bit architectures this comparision is faster
  3712   predicate(jlong_cast(n->getd()) == 0);
  3713 #else
  3714   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3715 #endif
  3716   match(ConD);
  3718   op_cost(0);
  3719   format %{ %}
  3720   interface(CONST_INTER);
  3721 %}
  3723 // Float Immediate
  3724 operand immF() %{
  3725   match(ConF);
  3727   op_cost(20);
  3728   format %{ %}
  3729   interface(CONST_INTER);
  3730 %}
  3732 // Float Immediate: 0
  3733 operand immF0() %{
  3734   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3735   match(ConF);
  3737   op_cost(0);
  3738   format %{ %}
  3739   interface(CONST_INTER);
  3740 %}
  3742 // Integer Register Operands
  3743 // Integer Register
  3744 operand iRegI() %{
  3745   constraint(ALLOC_IN_RC(int_reg));
  3746   match(RegI);
  3748   match(notemp_iRegI);
  3749   match(g1RegI);
  3750   match(o0RegI);
  3751   match(iRegIsafe);
  3753   format %{ %}
  3754   interface(REG_INTER);
  3755 %}
  3757 operand notemp_iRegI() %{
  3758   constraint(ALLOC_IN_RC(notemp_int_reg));
  3759   match(RegI);
  3761   match(o0RegI);
  3763   format %{ %}
  3764   interface(REG_INTER);
  3765 %}
  3767 operand o0RegI() %{
  3768   constraint(ALLOC_IN_RC(o0_regI));
  3769   match(iRegI);
  3771   format %{ %}
  3772   interface(REG_INTER);
  3773 %}
  3775 // Pointer Register
  3776 operand iRegP() %{
  3777   constraint(ALLOC_IN_RC(ptr_reg));
  3778   match(RegP);
  3780   match(lock_ptr_RegP);
  3781   match(g1RegP);
  3782   match(g2RegP);
  3783   match(g3RegP);
  3784   match(g4RegP);
  3785   match(i0RegP);
  3786   match(o0RegP);
  3787   match(o1RegP);
  3788   match(l7RegP);
  3790   format %{ %}
  3791   interface(REG_INTER);
  3792 %}
  3794 operand sp_ptr_RegP() %{
  3795   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3796   match(RegP);
  3797   match(iRegP);
  3799   format %{ %}
  3800   interface(REG_INTER);
  3801 %}
  3803 operand lock_ptr_RegP() %{
  3804   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3805   match(RegP);
  3806   match(i0RegP);
  3807   match(o0RegP);
  3808   match(o1RegP);
  3809   match(l7RegP);
  3811   format %{ %}
  3812   interface(REG_INTER);
  3813 %}
  3815 operand g1RegP() %{
  3816   constraint(ALLOC_IN_RC(g1_regP));
  3817   match(iRegP);
  3819   format %{ %}
  3820   interface(REG_INTER);
  3821 %}
  3823 operand g2RegP() %{
  3824   constraint(ALLOC_IN_RC(g2_regP));
  3825   match(iRegP);
  3827   format %{ %}
  3828   interface(REG_INTER);
  3829 %}
  3831 operand g3RegP() %{
  3832   constraint(ALLOC_IN_RC(g3_regP));
  3833   match(iRegP);
  3835   format %{ %}
  3836   interface(REG_INTER);
  3837 %}
  3839 operand g1RegI() %{
  3840   constraint(ALLOC_IN_RC(g1_regI));
  3841   match(iRegI);
  3843   format %{ %}
  3844   interface(REG_INTER);
  3845 %}
  3847 operand g3RegI() %{
  3848   constraint(ALLOC_IN_RC(g3_regI));
  3849   match(iRegI);
  3851   format %{ %}
  3852   interface(REG_INTER);
  3853 %}
  3855 operand g4RegI() %{
  3856   constraint(ALLOC_IN_RC(g4_regI));
  3857   match(iRegI);
  3859   format %{ %}
  3860   interface(REG_INTER);
  3861 %}
  3863 operand g4RegP() %{
  3864   constraint(ALLOC_IN_RC(g4_regP));
  3865   match(iRegP);
  3867   format %{ %}
  3868   interface(REG_INTER);
  3869 %}
  3871 operand i0RegP() %{
  3872   constraint(ALLOC_IN_RC(i0_regP));
  3873   match(iRegP);
  3875   format %{ %}
  3876   interface(REG_INTER);
  3877 %}
  3879 operand o0RegP() %{
  3880   constraint(ALLOC_IN_RC(o0_regP));
  3881   match(iRegP);
  3883   format %{ %}
  3884   interface(REG_INTER);
  3885 %}
  3887 operand o1RegP() %{
  3888   constraint(ALLOC_IN_RC(o1_regP));
  3889   match(iRegP);
  3891   format %{ %}
  3892   interface(REG_INTER);
  3893 %}
  3895 operand o2RegP() %{
  3896   constraint(ALLOC_IN_RC(o2_regP));
  3897   match(iRegP);
  3899   format %{ %}
  3900   interface(REG_INTER);
  3901 %}
  3903 operand o7RegP() %{
  3904   constraint(ALLOC_IN_RC(o7_regP));
  3905   match(iRegP);
  3907   format %{ %}
  3908   interface(REG_INTER);
  3909 %}
  3911 operand l7RegP() %{
  3912   constraint(ALLOC_IN_RC(l7_regP));
  3913   match(iRegP);
  3915   format %{ %}
  3916   interface(REG_INTER);
  3917 %}
  3919 operand o7RegI() %{
  3920   constraint(ALLOC_IN_RC(o7_regI));
  3921   match(iRegI);
  3923   format %{ %}
  3924   interface(REG_INTER);
  3925 %}
  3927 operand iRegN() %{
  3928   constraint(ALLOC_IN_RC(int_reg));
  3929   match(RegN);
  3931   format %{ %}
  3932   interface(REG_INTER);
  3933 %}
  3935 // Long Register
  3936 operand iRegL() %{
  3937   constraint(ALLOC_IN_RC(long_reg));
  3938   match(RegL);
  3940   format %{ %}
  3941   interface(REG_INTER);
  3942 %}
  3944 operand o2RegL() %{
  3945   constraint(ALLOC_IN_RC(o2_regL));
  3946   match(iRegL);
  3948   format %{ %}
  3949   interface(REG_INTER);
  3950 %}
  3952 operand o7RegL() %{
  3953   constraint(ALLOC_IN_RC(o7_regL));
  3954   match(iRegL);
  3956   format %{ %}
  3957   interface(REG_INTER);
  3958 %}
  3960 operand g1RegL() %{
  3961   constraint(ALLOC_IN_RC(g1_regL));
  3962   match(iRegL);
  3964   format %{ %}
  3965   interface(REG_INTER);
  3966 %}
  3968 operand g3RegL() %{
  3969   constraint(ALLOC_IN_RC(g3_regL));
  3970   match(iRegL);
  3972   format %{ %}
  3973   interface(REG_INTER);
  3974 %}
  3976 // Int Register safe
  3977 // This is 64bit safe
  3978 operand iRegIsafe() %{
  3979   constraint(ALLOC_IN_RC(long_reg));
  3981   match(iRegI);
  3983   format %{ %}
  3984   interface(REG_INTER);
  3985 %}
  3987 // Condition Code Flag Register
  3988 operand flagsReg() %{
  3989   constraint(ALLOC_IN_RC(int_flags));
  3990   match(RegFlags);
  3992   format %{ "ccr" %} // both ICC and XCC
  3993   interface(REG_INTER);
  3994 %}
  3996 // Condition Code Register, unsigned comparisons.
  3997 operand flagsRegU() %{
  3998   constraint(ALLOC_IN_RC(int_flags));
  3999   match(RegFlags);
  4001   format %{ "icc_U" %}
  4002   interface(REG_INTER);
  4003 %}
  4005 // Condition Code Register, pointer comparisons.
  4006 operand flagsRegP() %{
  4007   constraint(ALLOC_IN_RC(int_flags));
  4008   match(RegFlags);
  4010 #ifdef _LP64
  4011   format %{ "xcc_P" %}
  4012 #else
  4013   format %{ "icc_P" %}
  4014 #endif
  4015   interface(REG_INTER);
  4016 %}
  4018 // Condition Code Register, long comparisons.
  4019 operand flagsRegL() %{
  4020   constraint(ALLOC_IN_RC(int_flags));
  4021   match(RegFlags);
  4023   format %{ "xcc_L" %}
  4024   interface(REG_INTER);
  4025 %}
  4027 // Condition Code Register, floating comparisons, unordered same as "less".
  4028 operand flagsRegF() %{
  4029   constraint(ALLOC_IN_RC(float_flags));
  4030   match(RegFlags);
  4031   match(flagsRegF0);
  4033   format %{ %}
  4034   interface(REG_INTER);
  4035 %}
  4037 operand flagsRegF0() %{
  4038   constraint(ALLOC_IN_RC(float_flag0));
  4039   match(RegFlags);
  4041   format %{ %}
  4042   interface(REG_INTER);
  4043 %}
  4046 // Condition Code Flag Register used by long compare
  4047 operand flagsReg_long_LTGE() %{
  4048   constraint(ALLOC_IN_RC(int_flags));
  4049   match(RegFlags);
  4050   format %{ "icc_LTGE" %}
  4051   interface(REG_INTER);
  4052 %}
  4053 operand flagsReg_long_EQNE() %{
  4054   constraint(ALLOC_IN_RC(int_flags));
  4055   match(RegFlags);
  4056   format %{ "icc_EQNE" %}
  4057   interface(REG_INTER);
  4058 %}
  4059 operand flagsReg_long_LEGT() %{
  4060   constraint(ALLOC_IN_RC(int_flags));
  4061   match(RegFlags);
  4062   format %{ "icc_LEGT" %}
  4063   interface(REG_INTER);
  4064 %}
  4067 operand regD() %{
  4068   constraint(ALLOC_IN_RC(dflt_reg));
  4069   match(RegD);
  4071   match(regD_low);
  4073   format %{ %}
  4074   interface(REG_INTER);
  4075 %}
  4077 operand regF() %{
  4078   constraint(ALLOC_IN_RC(sflt_reg));
  4079   match(RegF);
  4081   format %{ %}
  4082   interface(REG_INTER);
  4083 %}
  4085 operand regD_low() %{
  4086   constraint(ALLOC_IN_RC(dflt_low_reg));
  4087   match(regD);
  4089   format %{ %}
  4090   interface(REG_INTER);
  4091 %}
  4093 // Special Registers
  4095 // Method Register
  4096 operand inline_cache_regP(iRegP reg) %{
  4097   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4098   match(reg);
  4099   format %{ %}
  4100   interface(REG_INTER);
  4101 %}
  4103 operand interpreter_method_oop_regP(iRegP reg) %{
  4104   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4105   match(reg);
  4106   format %{ %}
  4107   interface(REG_INTER);
  4108 %}
  4111 //----------Complex Operands---------------------------------------------------
  4112 // Indirect Memory Reference
  4113 operand indirect(sp_ptr_RegP reg) %{
  4114   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4115   match(reg);
  4117   op_cost(100);
  4118   format %{ "[$reg]" %}
  4119   interface(MEMORY_INTER) %{
  4120     base($reg);
  4121     index(0x0);
  4122     scale(0x0);
  4123     disp(0x0);
  4124   %}
  4125 %}
  4127 // Indirect with simm13 Offset
  4128 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4129   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4130   match(AddP reg offset);
  4132   op_cost(100);
  4133   format %{ "[$reg + $offset]" %}
  4134   interface(MEMORY_INTER) %{
  4135     base($reg);
  4136     index(0x0);
  4137     scale(0x0);
  4138     disp($offset);
  4139   %}
  4140 %}
  4142 // Indirect with simm13 Offset minus 7
  4143 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4144   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4145   match(AddP reg offset);
  4147   op_cost(100);
  4148   format %{ "[$reg + $offset]" %}
  4149   interface(MEMORY_INTER) %{
  4150     base($reg);
  4151     index(0x0);
  4152     scale(0x0);
  4153     disp($offset);
  4154   %}
  4155 %}
  4157 // Note:  Intel has a swapped version also, like this:
  4158 //operand indOffsetX(iRegI reg, immP offset) %{
  4159 //  constraint(ALLOC_IN_RC(int_reg));
  4160 //  match(AddP offset reg);
  4161 //
  4162 //  op_cost(100);
  4163 //  format %{ "[$reg + $offset]" %}
  4164 //  interface(MEMORY_INTER) %{
  4165 //    base($reg);
  4166 //    index(0x0);
  4167 //    scale(0x0);
  4168 //    disp($offset);
  4169 //  %}
  4170 //%}
  4171 //// However, it doesn't make sense for SPARC, since
  4172 // we have no particularly good way to embed oops in
  4173 // single instructions.
  4175 // Indirect with Register Index
  4176 operand indIndex(iRegP addr, iRegX index) %{
  4177   constraint(ALLOC_IN_RC(ptr_reg));
  4178   match(AddP addr index);
  4180   op_cost(100);
  4181   format %{ "[$addr + $index]" %}
  4182   interface(MEMORY_INTER) %{
  4183     base($addr);
  4184     index($index);
  4185     scale(0x0);
  4186     disp(0x0);
  4187   %}
  4188 %}
  4190 //----------Special Memory Operands--------------------------------------------
  4191 // Stack Slot Operand - This operand is used for loading and storing temporary
  4192 //                      values on the stack where a match requires a value to
  4193 //                      flow through memory.
  4194 operand stackSlotI(sRegI reg) %{
  4195   constraint(ALLOC_IN_RC(stack_slots));
  4196   op_cost(100);
  4197   //match(RegI);
  4198   format %{ "[$reg]" %}
  4199   interface(MEMORY_INTER) %{
  4200     base(0xE);   // R_SP
  4201     index(0x0);
  4202     scale(0x0);
  4203     disp($reg);  // Stack Offset
  4204   %}
  4205 %}
  4207 operand stackSlotP(sRegP reg) %{
  4208   constraint(ALLOC_IN_RC(stack_slots));
  4209   op_cost(100);
  4210   //match(RegP);
  4211   format %{ "[$reg]" %}
  4212   interface(MEMORY_INTER) %{
  4213     base(0xE);   // R_SP
  4214     index(0x0);
  4215     scale(0x0);
  4216     disp($reg);  // Stack Offset
  4217   %}
  4218 %}
  4220 operand stackSlotF(sRegF reg) %{
  4221   constraint(ALLOC_IN_RC(stack_slots));
  4222   op_cost(100);
  4223   //match(RegF);
  4224   format %{ "[$reg]" %}
  4225   interface(MEMORY_INTER) %{
  4226     base(0xE);   // R_SP
  4227     index(0x0);
  4228     scale(0x0);
  4229     disp($reg);  // Stack Offset
  4230   %}
  4231 %}
  4232 operand stackSlotD(sRegD reg) %{
  4233   constraint(ALLOC_IN_RC(stack_slots));
  4234   op_cost(100);
  4235   //match(RegD);
  4236   format %{ "[$reg]" %}
  4237   interface(MEMORY_INTER) %{
  4238     base(0xE);   // R_SP
  4239     index(0x0);
  4240     scale(0x0);
  4241     disp($reg);  // Stack Offset
  4242   %}
  4243 %}
  4244 operand stackSlotL(sRegL reg) %{
  4245   constraint(ALLOC_IN_RC(stack_slots));
  4246   op_cost(100);
  4247   //match(RegL);
  4248   format %{ "[$reg]" %}
  4249   interface(MEMORY_INTER) %{
  4250     base(0xE);   // R_SP
  4251     index(0x0);
  4252     scale(0x0);
  4253     disp($reg);  // Stack Offset
  4254   %}
  4255 %}
  4257 // Operands for expressing Control Flow
  4258 // NOTE:  Label is a predefined operand which should not be redefined in
  4259 //        the AD file.  It is generically handled within the ADLC.
  4261 //----------Conditional Branch Operands----------------------------------------
  4262 // Comparison Op  - This is the operation of the comparison, and is limited to
  4263 //                  the following set of codes:
  4264 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4265 //
  4266 // Other attributes of the comparison, such as unsignedness, are specified
  4267 // by the comparison instruction that sets a condition code flags register.
  4268 // That result is represented by a flags operand whose subtype is appropriate
  4269 // to the unsignedness (etc.) of the comparison.
  4270 //
  4271 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4272 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4273 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4275 operand cmpOp() %{
  4276   match(Bool);
  4278   format %{ "" %}
  4279   interface(COND_INTER) %{
  4280     equal(0x1);
  4281     not_equal(0x9);
  4282     less(0x3);
  4283     greater_equal(0xB);
  4284     less_equal(0x2);
  4285     greater(0xA);
  4286   %}
  4287 %}
  4289 // Comparison Op, unsigned
  4290 operand cmpOpU() %{
  4291   match(Bool);
  4293   format %{ "u" %}
  4294   interface(COND_INTER) %{
  4295     equal(0x1);
  4296     not_equal(0x9);
  4297     less(0x5);
  4298     greater_equal(0xD);
  4299     less_equal(0x4);
  4300     greater(0xC);
  4301   %}
  4302 %}
  4304 // Comparison Op, pointer (same as unsigned)
  4305 operand cmpOpP() %{
  4306   match(Bool);
  4308   format %{ "p" %}
  4309   interface(COND_INTER) %{
  4310     equal(0x1);
  4311     not_equal(0x9);
  4312     less(0x5);
  4313     greater_equal(0xD);
  4314     less_equal(0x4);
  4315     greater(0xC);
  4316   %}
  4317 %}
  4319 // Comparison Op, branch-register encoding
  4320 operand cmpOp_reg() %{
  4321   match(Bool);
  4323   format %{ "" %}
  4324   interface(COND_INTER) %{
  4325     equal        (0x1);
  4326     not_equal    (0x5);
  4327     less         (0x3);
  4328     greater_equal(0x7);
  4329     less_equal   (0x2);
  4330     greater      (0x6);
  4331   %}
  4332 %}
  4334 // Comparison Code, floating, unordered same as less
  4335 operand cmpOpF() %{
  4336   match(Bool);
  4338   format %{ "fl" %}
  4339   interface(COND_INTER) %{
  4340     equal(0x9);
  4341     not_equal(0x1);
  4342     less(0x3);
  4343     greater_equal(0xB);
  4344     less_equal(0xE);
  4345     greater(0x6);
  4346   %}
  4347 %}
  4349 // Used by long compare
  4350 operand cmpOp_commute() %{
  4351   match(Bool);
  4353   format %{ "" %}
  4354   interface(COND_INTER) %{
  4355     equal(0x1);
  4356     not_equal(0x9);
  4357     less(0xA);
  4358     greater_equal(0x2);
  4359     less_equal(0xB);
  4360     greater(0x3);
  4361   %}
  4362 %}
  4364 //----------OPERAND CLASSES----------------------------------------------------
  4365 // Operand Classes are groups of operands that are used to simplify
  4366 // instruction definitions by not requiring the AD writer to specify separate
  4367 // instructions for every form of operand when the instruction accepts
  4368 // multiple operand types with the same basic encoding and format.  The classic
  4369 // case of this is memory operands.
  4370 opclass memory( indirect, indOffset13, indIndex );
  4371 opclass indIndexMemory( indIndex );
  4373 //----------PIPELINE-----------------------------------------------------------
  4374 pipeline %{
  4376 //----------ATTRIBUTES---------------------------------------------------------
  4377 attributes %{
  4378   fixed_size_instructions;           // Fixed size instructions
  4379   branch_has_delay_slot;             // Branch has delay slot following
  4380   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4381   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4382   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4383   instruction_fetch_units = 1;       // of 16 bytes
  4385   // List of nop instructions
  4386   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4387 %}
  4389 //----------RESOURCES----------------------------------------------------------
  4390 // Resources are the functional units available to the machine
  4391 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4393 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4394 // Pipeline Description specifies the stages in the machine's pipeline
  4396 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4398 //----------PIPELINE CLASSES---------------------------------------------------
  4399 // Pipeline Classes describe the stages in which input and output are
  4400 // referenced by the hardware pipeline.
  4402 // Integer ALU reg-reg operation
  4403 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4404     single_instruction;
  4405     dst   : E(write);
  4406     src1  : R(read);
  4407     src2  : R(read);
  4408     IALU  : R;
  4409 %}
  4411 // Integer ALU reg-reg long operation
  4412 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4413     instruction_count(2);
  4414     dst   : E(write);
  4415     src1  : R(read);
  4416     src2  : R(read);
  4417     IALU  : R;
  4418     IALU  : R;
  4419 %}
  4421 // Integer ALU reg-reg long dependent operation
  4422 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4423     instruction_count(1); multiple_bundles;
  4424     dst   : E(write);
  4425     src1  : R(read);
  4426     src2  : R(read);
  4427     cr    : E(write);
  4428     IALU  : R(2);
  4429 %}
  4431 // Integer ALU reg-imm operaion
  4432 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4433     single_instruction;
  4434     dst   : E(write);
  4435     src1  : R(read);
  4436     IALU  : R;
  4437 %}
  4439 // Integer ALU reg-reg operation with condition code
  4440 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4441     single_instruction;
  4442     dst   : E(write);
  4443     cr    : E(write);
  4444     src1  : R(read);
  4445     src2  : R(read);
  4446     IALU  : R;
  4447 %}
  4449 // Integer ALU reg-imm operation with condition code
  4450 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4451     single_instruction;
  4452     dst   : E(write);
  4453     cr    : E(write);
  4454     src1  : R(read);
  4455     IALU  : R;
  4456 %}
  4458 // Integer ALU zero-reg operation
  4459 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4460     single_instruction;
  4461     dst   : E(write);
  4462     src2  : R(read);
  4463     IALU  : R;
  4464 %}
  4466 // Integer ALU zero-reg operation with condition code only
  4467 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4468     single_instruction;
  4469     cr    : E(write);
  4470     src   : R(read);
  4471     IALU  : R;
  4472 %}
  4474 // Integer ALU reg-reg operation with condition code only
  4475 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4476     single_instruction;
  4477     cr    : E(write);
  4478     src1  : R(read);
  4479     src2  : R(read);
  4480     IALU  : R;
  4481 %}
  4483 // Integer ALU reg-imm operation with condition code only
  4484 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4485     single_instruction;
  4486     cr    : E(write);
  4487     src1  : R(read);
  4488     IALU  : R;
  4489 %}
  4491 // Integer ALU reg-reg-zero operation with condition code only
  4492 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4493     single_instruction;
  4494     cr    : E(write);
  4495     src1  : R(read);
  4496     src2  : R(read);
  4497     IALU  : R;
  4498 %}
  4500 // Integer ALU reg-imm-zero operation with condition code only
  4501 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4502     single_instruction;
  4503     cr    : E(write);
  4504     src1  : R(read);
  4505     IALU  : R;
  4506 %}
  4508 // Integer ALU reg-reg operation with condition code, src1 modified
  4509 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4510     single_instruction;
  4511     cr    : E(write);
  4512     src1  : E(write);
  4513     src1  : R(read);
  4514     src2  : R(read);
  4515     IALU  : R;
  4516 %}
  4518 // Integer ALU reg-imm operation with condition code, src1 modified
  4519 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4520     single_instruction;
  4521     cr    : E(write);
  4522     src1  : E(write);
  4523     src1  : R(read);
  4524     IALU  : R;
  4525 %}
  4527 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4528     multiple_bundles;
  4529     dst   : E(write)+4;
  4530     cr    : E(write);
  4531     src1  : R(read);
  4532     src2  : R(read);
  4533     IALU  : R(3);
  4534     BR    : R(2);
  4535 %}
  4537 // Integer ALU operation
  4538 pipe_class ialu_none(iRegI dst) %{
  4539     single_instruction;
  4540     dst   : E(write);
  4541     IALU  : R;
  4542 %}
  4544 // Integer ALU reg operation
  4545 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4546     single_instruction; may_have_no_code;
  4547     dst   : E(write);
  4548     src   : R(read);
  4549     IALU  : R;
  4550 %}
  4552 // Integer ALU reg conditional operation
  4553 // This instruction has a 1 cycle stall, and cannot execute
  4554 // in the same cycle as the instruction setting the condition
  4555 // code. We kludge this by pretending to read the condition code
  4556 // 1 cycle earlier, and by marking the functional units as busy
  4557 // for 2 cycles with the result available 1 cycle later than
  4558 // is really the case.
  4559 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4560     single_instruction;
  4561     op2_out : C(write);
  4562     op1     : R(read);
  4563     cr      : R(read);       // This is really E, with a 1 cycle stall
  4564     BR      : R(2);
  4565     MS      : R(2);
  4566 %}
  4568 #ifdef _LP64
  4569 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4570     instruction_count(1); multiple_bundles;
  4571     dst     : C(write)+1;
  4572     src     : R(read)+1;
  4573     IALU    : R(1);
  4574     BR      : E(2);
  4575     MS      : E(2);
  4576 %}
  4577 #endif
  4579 // Integer ALU reg operation
  4580 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4581     single_instruction; may_have_no_code;
  4582     dst   : E(write);
  4583     src   : R(read);
  4584     IALU  : R;
  4585 %}
  4586 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4587     single_instruction; may_have_no_code;
  4588     dst   : E(write);
  4589     src   : R(read);
  4590     IALU  : R;
  4591 %}
  4593 // Two integer ALU reg operations
  4594 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4595     instruction_count(2);
  4596     dst   : E(write);
  4597     src   : R(read);
  4598     A0    : R;
  4599     A1    : R;
  4600 %}
  4602 // Two integer ALU reg operations
  4603 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4604     instruction_count(2); may_have_no_code;
  4605     dst   : E(write);
  4606     src   : R(read);
  4607     A0    : R;
  4608     A1    : R;
  4609 %}
  4611 // Integer ALU imm operation
  4612 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4613     single_instruction;
  4614     dst   : E(write);
  4615     IALU  : R;
  4616 %}
  4618 // Integer ALU reg-reg with carry operation
  4619 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4620     single_instruction;
  4621     dst   : E(write);
  4622     src1  : R(read);
  4623     src2  : R(read);
  4624     IALU  : R;
  4625 %}
  4627 // Integer ALU cc operation
  4628 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4629     single_instruction;
  4630     dst   : E(write);
  4631     cc    : R(read);
  4632     IALU  : R;
  4633 %}
  4635 // Integer ALU cc / second IALU operation
  4636 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4637     instruction_count(1); multiple_bundles;
  4638     dst   : E(write)+1;
  4639     src   : R(read);
  4640     IALU  : R;
  4641 %}
  4643 // Integer ALU cc / second IALU operation
  4644 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4645     instruction_count(1); multiple_bundles;
  4646     dst   : E(write)+1;
  4647     p     : R(read);
  4648     q     : R(read);
  4649     IALU  : R;
  4650 %}
  4652 // Integer ALU hi-lo-reg operation
  4653 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4654     instruction_count(1); multiple_bundles;
  4655     dst   : E(write)+1;
  4656     IALU  : R(2);
  4657 %}
  4659 // Float ALU hi-lo-reg operation (with temp)
  4660 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4661     instruction_count(1); multiple_bundles;
  4662     dst   : E(write)+1;
  4663     IALU  : R(2);
  4664 %}
  4666 // Long Constant
  4667 pipe_class loadConL( iRegL dst, immL src ) %{
  4668     instruction_count(2); multiple_bundles;
  4669     dst   : E(write)+1;
  4670     IALU  : R(2);
  4671     IALU  : R(2);
  4672 %}
  4674 // Pointer Constant
  4675 pipe_class loadConP( iRegP dst, immP src ) %{
  4676     instruction_count(0); multiple_bundles;
  4677     fixed_latency(6);
  4678 %}
  4680 // Polling Address
  4681 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4682 #ifdef _LP64
  4683     instruction_count(0); multiple_bundles;
  4684     fixed_latency(6);
  4685 #else
  4686     dst   : E(write);
  4687     IALU  : R;
  4688 #endif
  4689 %}
  4691 // Long Constant small
  4692 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4693     instruction_count(2);
  4694     dst   : E(write);
  4695     IALU  : R;
  4696     IALU  : R;
  4697 %}
  4699 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4700 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4701     instruction_count(1); multiple_bundles;
  4702     src   : R(read);
  4703     dst   : M(write)+1;
  4704     IALU  : R;
  4705     MS    : E;
  4706 %}
  4708 // Integer ALU nop operation
  4709 pipe_class ialu_nop() %{
  4710     single_instruction;
  4711     IALU  : R;
  4712 %}
  4714 // Integer ALU nop operation
  4715 pipe_class ialu_nop_A0() %{
  4716     single_instruction;
  4717     A0    : R;
  4718 %}
  4720 // Integer ALU nop operation
  4721 pipe_class ialu_nop_A1() %{
  4722     single_instruction;
  4723     A1    : R;
  4724 %}
  4726 // Integer Multiply reg-reg operation
  4727 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4728     single_instruction;
  4729     dst   : E(write);
  4730     src1  : R(read);
  4731     src2  : R(read);
  4732     MS    : R(5);
  4733 %}
  4735 // Integer Multiply reg-imm operation
  4736 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4737     single_instruction;
  4738     dst   : E(write);
  4739     src1  : R(read);
  4740     MS    : R(5);
  4741 %}
  4743 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4744     single_instruction;
  4745     dst   : E(write)+4;
  4746     src1  : R(read);
  4747     src2  : R(read);
  4748     MS    : R(6);
  4749 %}
  4751 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4752     single_instruction;
  4753     dst   : E(write)+4;
  4754     src1  : R(read);
  4755     MS    : R(6);
  4756 %}
  4758 // Integer Divide reg-reg
  4759 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4760     instruction_count(1); multiple_bundles;
  4761     dst   : E(write);
  4762     temp  : E(write);
  4763     src1  : R(read);
  4764     src2  : R(read);
  4765     temp  : R(read);
  4766     MS    : R(38);
  4767 %}
  4769 // Integer Divide reg-imm
  4770 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4771     instruction_count(1); multiple_bundles;
  4772     dst   : E(write);
  4773     temp  : E(write);
  4774     src1  : R(read);
  4775     temp  : R(read);
  4776     MS    : R(38);
  4777 %}
  4779 // Long Divide
  4780 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4781     dst  : E(write)+71;
  4782     src1 : R(read);
  4783     src2 : R(read)+1;
  4784     MS   : R(70);
  4785 %}
  4787 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4788     dst  : E(write)+71;
  4789     src1 : R(read);
  4790     MS   : R(70);
  4791 %}
  4793 // Floating Point Add Float
  4794 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4795     single_instruction;
  4796     dst   : X(write);
  4797     src1  : E(read);
  4798     src2  : E(read);
  4799     FA    : R;
  4800 %}
  4802 // Floating Point Add Double
  4803 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4804     single_instruction;
  4805     dst   : X(write);
  4806     src1  : E(read);
  4807     src2  : E(read);
  4808     FA    : R;
  4809 %}
  4811 // Floating Point Conditional Move based on integer flags
  4812 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4813     single_instruction;
  4814     dst   : X(write);
  4815     src   : E(read);
  4816     cr    : R(read);
  4817     FA    : R(2);
  4818     BR    : R(2);
  4819 %}
  4821 // Floating Point Conditional Move based on integer flags
  4822 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4823     single_instruction;
  4824     dst   : X(write);
  4825     src   : E(read);
  4826     cr    : R(read);
  4827     FA    : R(2);
  4828     BR    : R(2);
  4829 %}
  4831 // Floating Point Multiply Float
  4832 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4833     single_instruction;
  4834     dst   : X(write);
  4835     src1  : E(read);
  4836     src2  : E(read);
  4837     FM    : R;
  4838 %}
  4840 // Floating Point Multiply Double
  4841 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4842     single_instruction;
  4843     dst   : X(write);
  4844     src1  : E(read);
  4845     src2  : E(read);
  4846     FM    : R;
  4847 %}
  4849 // Floating Point Divide Float
  4850 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4851     single_instruction;
  4852     dst   : X(write);
  4853     src1  : E(read);
  4854     src2  : E(read);
  4855     FM    : R;
  4856     FDIV  : C(14);
  4857 %}
  4859 // Floating Point Divide Double
  4860 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4861     single_instruction;
  4862     dst   : X(write);
  4863     src1  : E(read);
  4864     src2  : E(read);
  4865     FM    : R;
  4866     FDIV  : C(17);
  4867 %}
  4869 // Floating Point Move/Negate/Abs Float
  4870 pipe_class faddF_reg(regF dst, regF src) %{
  4871     single_instruction;
  4872     dst   : W(write);
  4873     src   : E(read);
  4874     FA    : R(1);
  4875 %}
  4877 // Floating Point Move/Negate/Abs Double
  4878 pipe_class faddD_reg(regD dst, regD src) %{
  4879     single_instruction;
  4880     dst   : W(write);
  4881     src   : E(read);
  4882     FA    : R;
  4883 %}
  4885 // Floating Point Convert F->D
  4886 pipe_class fcvtF2D(regD dst, regF src) %{
  4887     single_instruction;
  4888     dst   : X(write);
  4889     src   : E(read);
  4890     FA    : R;
  4891 %}
  4893 // Floating Point Convert I->D
  4894 pipe_class fcvtI2D(regD dst, regF src) %{
  4895     single_instruction;
  4896     dst   : X(write);
  4897     src   : E(read);
  4898     FA    : R;
  4899 %}
  4901 // Floating Point Convert LHi->D
  4902 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4903     single_instruction;
  4904     dst   : X(write);
  4905     src   : E(read);
  4906     FA    : R;
  4907 %}
  4909 // Floating Point Convert L->D
  4910 pipe_class fcvtL2D(regD dst, regF src) %{
  4911     single_instruction;
  4912     dst   : X(write);
  4913     src   : E(read);
  4914     FA    : R;
  4915 %}
  4917 // Floating Point Convert L->F
  4918 pipe_class fcvtL2F(regD dst, regF src) %{
  4919     single_instruction;
  4920     dst   : X(write);
  4921     src   : E(read);
  4922     FA    : R;
  4923 %}
  4925 // Floating Point Convert D->F
  4926 pipe_class fcvtD2F(regD dst, regF src) %{
  4927     single_instruction;
  4928     dst   : X(write);
  4929     src   : E(read);
  4930     FA    : R;
  4931 %}
  4933 // Floating Point Convert I->L
  4934 pipe_class fcvtI2L(regD dst, regF src) %{
  4935     single_instruction;
  4936     dst   : X(write);
  4937     src   : E(read);
  4938     FA    : R;
  4939 %}
  4941 // Floating Point Convert D->F
  4942 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4943     instruction_count(1); multiple_bundles;
  4944     dst   : X(write)+6;
  4945     src   : E(read);
  4946     FA    : R;
  4947 %}
  4949 // Floating Point Convert D->L
  4950 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4951     instruction_count(1); multiple_bundles;
  4952     dst   : X(write)+6;
  4953     src   : E(read);
  4954     FA    : R;
  4955 %}
  4957 // Floating Point Convert F->I
  4958 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4959     instruction_count(1); multiple_bundles;
  4960     dst   : X(write)+6;
  4961     src   : E(read);
  4962     FA    : R;
  4963 %}
  4965 // Floating Point Convert F->L
  4966 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4967     instruction_count(1); multiple_bundles;
  4968     dst   : X(write)+6;
  4969     src   : E(read);
  4970     FA    : R;
  4971 %}
  4973 // Floating Point Convert I->F
  4974 pipe_class fcvtI2F(regF dst, regF src) %{
  4975     single_instruction;
  4976     dst   : X(write);
  4977     src   : E(read);
  4978     FA    : R;
  4979 %}
  4981 // Floating Point Compare
  4982 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4983     single_instruction;
  4984     cr    : X(write);
  4985     src1  : E(read);
  4986     src2  : E(read);
  4987     FA    : R;
  4988 %}
  4990 // Floating Point Compare
  4991 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4992     single_instruction;
  4993     cr    : X(write);
  4994     src1  : E(read);
  4995     src2  : E(read);
  4996     FA    : R;
  4997 %}
  4999 // Floating Add Nop
  5000 pipe_class fadd_nop() %{
  5001     single_instruction;
  5002     FA  : R;
  5003 %}
  5005 // Integer Store to Memory
  5006 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5007     single_instruction;
  5008     mem   : R(read);
  5009     src   : C(read);
  5010     MS    : R;
  5011 %}
  5013 // Integer Store to Memory
  5014 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5015     single_instruction;
  5016     mem   : R(read);
  5017     src   : C(read);
  5018     MS    : R;
  5019 %}
  5021 // Integer Store Zero to Memory
  5022 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5023     single_instruction;
  5024     mem   : R(read);
  5025     MS    : R;
  5026 %}
  5028 // Special Stack Slot Store
  5029 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5030     single_instruction;
  5031     stkSlot : R(read);
  5032     src     : C(read);
  5033     MS      : R;
  5034 %}
  5036 // Special Stack Slot Store
  5037 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5038     instruction_count(2); multiple_bundles;
  5039     stkSlot : R(read);
  5040     src     : C(read);
  5041     MS      : R(2);
  5042 %}
  5044 // Float Store
  5045 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5046     single_instruction;
  5047     mem : R(read);
  5048     src : C(read);
  5049     MS  : R;
  5050 %}
  5052 // Float Store
  5053 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5054     single_instruction;
  5055     mem : R(read);
  5056     MS  : R;
  5057 %}
  5059 // Double Store
  5060 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5061     instruction_count(1);
  5062     mem : R(read);
  5063     src : C(read);
  5064     MS  : R;
  5065 %}
  5067 // Double Store
  5068 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5069     single_instruction;
  5070     mem : R(read);
  5071     MS  : R;
  5072 %}
  5074 // Special Stack Slot Float Store
  5075 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5076     single_instruction;
  5077     stkSlot : R(read);
  5078     src     : C(read);
  5079     MS      : R;
  5080 %}
  5082 // Special Stack Slot Double Store
  5083 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5084     single_instruction;
  5085     stkSlot : R(read);
  5086     src     : C(read);
  5087     MS      : R;
  5088 %}
  5090 // Integer Load (when sign bit propagation not needed)
  5091 pipe_class iload_mem(iRegI dst, memory mem) %{
  5092     single_instruction;
  5093     mem : R(read);
  5094     dst : C(write);
  5095     MS  : R;
  5096 %}
  5098 // Integer Load from stack operand
  5099 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5100     single_instruction;
  5101     mem : R(read);
  5102     dst : C(write);
  5103     MS  : R;
  5104 %}
  5106 // Integer Load (when sign bit propagation or masking is needed)
  5107 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5108     single_instruction;
  5109     mem : R(read);
  5110     dst : M(write);
  5111     MS  : R;
  5112 %}
  5114 // Float Load
  5115 pipe_class floadF_mem(regF dst, memory mem) %{
  5116     single_instruction;
  5117     mem : R(read);
  5118     dst : M(write);
  5119     MS  : R;
  5120 %}
  5122 // Float Load
  5123 pipe_class floadD_mem(regD dst, memory mem) %{
  5124     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5125     mem : R(read);
  5126     dst : M(write);
  5127     MS  : R;
  5128 %}
  5130 // Float Load
  5131 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5132     single_instruction;
  5133     stkSlot : R(read);
  5134     dst : M(write);
  5135     MS  : R;
  5136 %}
  5138 // Float Load
  5139 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5140     single_instruction;
  5141     stkSlot : R(read);
  5142     dst : M(write);
  5143     MS  : R;
  5144 %}
  5146 // Memory Nop
  5147 pipe_class mem_nop() %{
  5148     single_instruction;
  5149     MS  : R;
  5150 %}
  5152 pipe_class sethi(iRegP dst, immI src) %{
  5153     single_instruction;
  5154     dst  : E(write);
  5155     IALU : R;
  5156 %}
  5158 pipe_class loadPollP(iRegP poll) %{
  5159     single_instruction;
  5160     poll : R(read);
  5161     MS   : R;
  5162 %}
  5164 pipe_class br(Universe br, label labl) %{
  5165     single_instruction_with_delay_slot;
  5166     BR  : R;
  5167 %}
  5169 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5170     single_instruction_with_delay_slot;
  5171     cr    : E(read);
  5172     BR    : R;
  5173 %}
  5175 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5176     single_instruction_with_delay_slot;
  5177     op1 : E(read);
  5178     BR  : R;
  5179     MS  : R;
  5180 %}
  5182 // Compare and branch
  5183 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5184     instruction_count(2); has_delay_slot;
  5185     cr    : E(write);
  5186     src1  : R(read);
  5187     src2  : R(read);
  5188     IALU  : R;
  5189     BR    : R;
  5190 %}
  5192 // Compare and branch
  5193 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5194     instruction_count(2); has_delay_slot;
  5195     cr    : E(write);
  5196     src1  : R(read);
  5197     IALU  : R;
  5198     BR    : R;
  5199 %}
  5201 // Compare and branch using cbcond
  5202 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5203     single_instruction;
  5204     src1  : E(read);
  5205     src2  : E(read);
  5206     IALU  : R;
  5207     BR    : R;
  5208 %}
  5210 // Compare and branch using cbcond
  5211 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5212     single_instruction;
  5213     src1  : E(read);
  5214     IALU  : R;
  5215     BR    : R;
  5216 %}
  5218 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5219     single_instruction_with_delay_slot;
  5220     cr    : E(read);
  5221     BR    : R;
  5222 %}
  5224 pipe_class br_nop() %{
  5225     single_instruction;
  5226     BR  : R;
  5227 %}
  5229 pipe_class simple_call(method meth) %{
  5230     instruction_count(2); multiple_bundles; force_serialization;
  5231     fixed_latency(100);
  5232     BR  : R(1);
  5233     MS  : R(1);
  5234     A0  : R(1);
  5235 %}
  5237 pipe_class compiled_call(method meth) %{
  5238     instruction_count(1); multiple_bundles; force_serialization;
  5239     fixed_latency(100);
  5240     MS  : R(1);
  5241 %}
  5243 pipe_class call(method meth) %{
  5244     instruction_count(0); multiple_bundles; force_serialization;
  5245     fixed_latency(100);
  5246 %}
  5248 pipe_class tail_call(Universe ignore, label labl) %{
  5249     single_instruction; has_delay_slot;
  5250     fixed_latency(100);
  5251     BR  : R(1);
  5252     MS  : R(1);
  5253 %}
  5255 pipe_class ret(Universe ignore) %{
  5256     single_instruction; has_delay_slot;
  5257     BR  : R(1);
  5258     MS  : R(1);
  5259 %}
  5261 pipe_class ret_poll(g3RegP poll) %{
  5262     instruction_count(3); has_delay_slot;
  5263     poll : E(read);
  5264     MS   : R;
  5265 %}
  5267 // The real do-nothing guy
  5268 pipe_class empty( ) %{
  5269     instruction_count(0);
  5270 %}
  5272 pipe_class long_memory_op() %{
  5273     instruction_count(0); multiple_bundles; force_serialization;
  5274     fixed_latency(25);
  5275     MS  : R(1);
  5276 %}
  5278 // Check-cast
  5279 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5280     array : R(read);
  5281     match  : R(read);
  5282     IALU   : R(2);
  5283     BR     : R(2);
  5284     MS     : R;
  5285 %}
  5287 // Convert FPU flags into +1,0,-1
  5288 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5289     src1  : E(read);
  5290     src2  : E(read);
  5291     dst   : E(write);
  5292     FA    : R;
  5293     MS    : R(2);
  5294     BR    : R(2);
  5295 %}
  5297 // Compare for p < q, and conditionally add y
  5298 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5299     p     : E(read);
  5300     q     : E(read);
  5301     y     : E(read);
  5302     IALU  : R(3)
  5303 %}
  5305 // Perform a compare, then move conditionally in a branch delay slot.
  5306 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5307     src2   : E(read);
  5308     srcdst : E(read);
  5309     IALU   : R;
  5310     BR     : R;
  5311 %}
  5313 // Define the class for the Nop node
  5314 define %{
  5315    MachNop = ialu_nop;
  5316 %}
  5318 %}
  5320 //----------INSTRUCTIONS-------------------------------------------------------
  5322 //------------Special Stack Slot instructions - no match rules-----------------
  5323 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5324   // No match rule to avoid chain rule match.
  5325   effect(DEF dst, USE src);
  5326   ins_cost(MEMORY_REF_COST);
  5327   size(4);
  5328   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5329   opcode(Assembler::ldf_op3);
  5330   ins_encode(simple_form3_mem_reg(src, dst));
  5331   ins_pipe(floadF_stk);
  5332 %}
  5334 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5335   // No match rule to avoid chain rule match.
  5336   effect(DEF dst, USE src);
  5337   ins_cost(MEMORY_REF_COST);
  5338   size(4);
  5339   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5340   opcode(Assembler::lddf_op3);
  5341   ins_encode(simple_form3_mem_reg(src, dst));
  5342   ins_pipe(floadD_stk);
  5343 %}
  5345 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5346   // No match rule to avoid chain rule match.
  5347   effect(DEF dst, USE src);
  5348   ins_cost(MEMORY_REF_COST);
  5349   size(4);
  5350   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5351   opcode(Assembler::stf_op3);
  5352   ins_encode(simple_form3_mem_reg(dst, src));
  5353   ins_pipe(fstoreF_stk_reg);
  5354 %}
  5356 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5357   // No match rule to avoid chain rule match.
  5358   effect(DEF dst, USE src);
  5359   ins_cost(MEMORY_REF_COST);
  5360   size(4);
  5361   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5362   opcode(Assembler::stdf_op3);
  5363   ins_encode(simple_form3_mem_reg(dst, src));
  5364   ins_pipe(fstoreD_stk_reg);
  5365 %}
  5367 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5368   effect(DEF dst, USE src);
  5369   ins_cost(MEMORY_REF_COST*2);
  5370   size(8);
  5371   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5372             "STW    R_G0,$dst.lo" %}
  5373   opcode(Assembler::stw_op3);
  5374   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5375   ins_pipe(lstoreI_stk_reg);
  5376 %}
  5378 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5379   // No match rule to avoid chain rule match.
  5380   effect(DEF dst, USE src);
  5381   ins_cost(MEMORY_REF_COST);
  5382   size(4);
  5383   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5384   opcode(Assembler::stx_op3);
  5385   ins_encode(simple_form3_mem_reg( dst, src ) );
  5386   ins_pipe(istore_stk_reg);
  5387 %}
  5389 //---------- Chain stack slots between similar types --------
  5391 // Load integer from stack slot
  5392 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5393   match(Set dst src);
  5394   ins_cost(MEMORY_REF_COST);
  5396   size(4);
  5397   format %{ "LDUW   $src,$dst\t!stk" %}
  5398   opcode(Assembler::lduw_op3);
  5399   ins_encode(simple_form3_mem_reg( src, dst ) );
  5400   ins_pipe(iload_mem);
  5401 %}
  5403 // Store integer to stack slot
  5404 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5405   match(Set dst src);
  5406   ins_cost(MEMORY_REF_COST);
  5408   size(4);
  5409   format %{ "STW    $src,$dst\t!stk" %}
  5410   opcode(Assembler::stw_op3);
  5411   ins_encode(simple_form3_mem_reg( dst, src ) );
  5412   ins_pipe(istore_mem_reg);
  5413 %}
  5415 // Load long from stack slot
  5416 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5417   match(Set dst src);
  5419   ins_cost(MEMORY_REF_COST);
  5420   size(4);
  5421   format %{ "LDX    $src,$dst\t! long" %}
  5422   opcode(Assembler::ldx_op3);
  5423   ins_encode(simple_form3_mem_reg( src, dst ) );
  5424   ins_pipe(iload_mem);
  5425 %}
  5427 // Store long to stack slot
  5428 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5429   match(Set dst src);
  5431   ins_cost(MEMORY_REF_COST);
  5432   size(4);
  5433   format %{ "STX    $src,$dst\t! long" %}
  5434   opcode(Assembler::stx_op3);
  5435   ins_encode(simple_form3_mem_reg( dst, src ) );
  5436   ins_pipe(istore_mem_reg);
  5437 %}
  5439 #ifdef _LP64
  5440 // Load pointer from stack slot, 64-bit encoding
  5441 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5442   match(Set dst src);
  5443   ins_cost(MEMORY_REF_COST);
  5444   size(4);
  5445   format %{ "LDX    $src,$dst\t!ptr" %}
  5446   opcode(Assembler::ldx_op3);
  5447   ins_encode(simple_form3_mem_reg( src, dst ) );
  5448   ins_pipe(iload_mem);
  5449 %}
  5451 // Store pointer to stack slot
  5452 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5453   match(Set dst src);
  5454   ins_cost(MEMORY_REF_COST);
  5455   size(4);
  5456   format %{ "STX    $src,$dst\t!ptr" %}
  5457   opcode(Assembler::stx_op3);
  5458   ins_encode(simple_form3_mem_reg( dst, src ) );
  5459   ins_pipe(istore_mem_reg);
  5460 %}
  5461 #else // _LP64
  5462 // Load pointer from stack slot, 32-bit encoding
  5463 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5464   match(Set dst src);
  5465   ins_cost(MEMORY_REF_COST);
  5466   format %{ "LDUW   $src,$dst\t!ptr" %}
  5467   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5468   ins_encode(simple_form3_mem_reg( src, dst ) );
  5469   ins_pipe(iload_mem);
  5470 %}
  5472 // Store pointer to stack slot
  5473 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5474   match(Set dst src);
  5475   ins_cost(MEMORY_REF_COST);
  5476   format %{ "STW    $src,$dst\t!ptr" %}
  5477   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5478   ins_encode(simple_form3_mem_reg( dst, src ) );
  5479   ins_pipe(istore_mem_reg);
  5480 %}
  5481 #endif // _LP64
  5483 //------------Special Nop instructions for bundling - no match rules-----------
  5484 // Nop using the A0 functional unit
  5485 instruct Nop_A0() %{
  5486   ins_cost(0);
  5488   format %{ "NOP    ! Alu Pipeline" %}
  5489   opcode(Assembler::or_op3, Assembler::arith_op);
  5490   ins_encode( form2_nop() );
  5491   ins_pipe(ialu_nop_A0);
  5492 %}
  5494 // Nop using the A1 functional unit
  5495 instruct Nop_A1( ) %{
  5496   ins_cost(0);
  5498   format %{ "NOP    ! Alu Pipeline" %}
  5499   opcode(Assembler::or_op3, Assembler::arith_op);
  5500   ins_encode( form2_nop() );
  5501   ins_pipe(ialu_nop_A1);
  5502 %}
  5504 // Nop using the memory functional unit
  5505 instruct Nop_MS( ) %{
  5506   ins_cost(0);
  5508   format %{ "NOP    ! Memory Pipeline" %}
  5509   ins_encode( emit_mem_nop );
  5510   ins_pipe(mem_nop);
  5511 %}
  5513 // Nop using the floating add functional unit
  5514 instruct Nop_FA( ) %{
  5515   ins_cost(0);
  5517   format %{ "NOP    ! Floating Add Pipeline" %}
  5518   ins_encode( emit_fadd_nop );
  5519   ins_pipe(fadd_nop);
  5520 %}
  5522 // Nop using the branch functional unit
  5523 instruct Nop_BR( ) %{
  5524   ins_cost(0);
  5526   format %{ "NOP    ! Branch Pipeline" %}
  5527   ins_encode( emit_br_nop );
  5528   ins_pipe(br_nop);
  5529 %}
  5531 //----------Load/Store/Move Instructions---------------------------------------
  5532 //----------Load Instructions--------------------------------------------------
  5533 // Load Byte (8bit signed)
  5534 instruct loadB(iRegI dst, memory mem) %{
  5535   match(Set dst (LoadB mem));
  5536   ins_cost(MEMORY_REF_COST);
  5538   size(4);
  5539   format %{ "LDSB   $mem,$dst\t! byte" %}
  5540   ins_encode %{
  5541     __ ldsb($mem$$Address, $dst$$Register);
  5542   %}
  5543   ins_pipe(iload_mask_mem);
  5544 %}
  5546 // Load Byte (8bit signed) into a Long Register
  5547 instruct loadB2L(iRegL dst, memory mem) %{
  5548   match(Set dst (ConvI2L (LoadB mem)));
  5549   ins_cost(MEMORY_REF_COST);
  5551   size(4);
  5552   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5553   ins_encode %{
  5554     __ ldsb($mem$$Address, $dst$$Register);
  5555   %}
  5556   ins_pipe(iload_mask_mem);
  5557 %}
  5559 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5560 instruct loadUB(iRegI dst, memory mem) %{
  5561   match(Set dst (LoadUB mem));
  5562   ins_cost(MEMORY_REF_COST);
  5564   size(4);
  5565   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5566   ins_encode %{
  5567     __ ldub($mem$$Address, $dst$$Register);
  5568   %}
  5569   ins_pipe(iload_mem);
  5570 %}
  5572 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5573 instruct loadUB2L(iRegL dst, memory mem) %{
  5574   match(Set dst (ConvI2L (LoadUB mem)));
  5575   ins_cost(MEMORY_REF_COST);
  5577   size(4);
  5578   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5579   ins_encode %{
  5580     __ ldub($mem$$Address, $dst$$Register);
  5581   %}
  5582   ins_pipe(iload_mem);
  5583 %}
  5585 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5586 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5587   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5588   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5590   size(2*4);
  5591   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5592             "AND    $dst,$mask,$dst" %}
  5593   ins_encode %{
  5594     __ ldub($mem$$Address, $dst$$Register);
  5595     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5596   %}
  5597   ins_pipe(iload_mem);
  5598 %}
  5600 // Load Short (16bit signed)
  5601 instruct loadS(iRegI dst, memory mem) %{
  5602   match(Set dst (LoadS mem));
  5603   ins_cost(MEMORY_REF_COST);
  5605   size(4);
  5606   format %{ "LDSH   $mem,$dst\t! short" %}
  5607   ins_encode %{
  5608     __ ldsh($mem$$Address, $dst$$Register);
  5609   %}
  5610   ins_pipe(iload_mask_mem);
  5611 %}
  5613 // Load Short (16 bit signed) to Byte (8 bit signed)
  5614 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5615   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5616   ins_cost(MEMORY_REF_COST);
  5618   size(4);
  5620   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5621   ins_encode %{
  5622     __ ldsb($mem$$Address, $dst$$Register, 1);
  5623   %}
  5624   ins_pipe(iload_mask_mem);
  5625 %}
  5627 // Load Short (16bit signed) into a Long Register
  5628 instruct loadS2L(iRegL dst, memory mem) %{
  5629   match(Set dst (ConvI2L (LoadS mem)));
  5630   ins_cost(MEMORY_REF_COST);
  5632   size(4);
  5633   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5634   ins_encode %{
  5635     __ ldsh($mem$$Address, $dst$$Register);
  5636   %}
  5637   ins_pipe(iload_mask_mem);
  5638 %}
  5640 // Load Unsigned Short/Char (16bit UNsigned)
  5641 instruct loadUS(iRegI dst, memory mem) %{
  5642   match(Set dst (LoadUS mem));
  5643   ins_cost(MEMORY_REF_COST);
  5645   size(4);
  5646   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5647   ins_encode %{
  5648     __ lduh($mem$$Address, $dst$$Register);
  5649   %}
  5650   ins_pipe(iload_mem);
  5651 %}
  5653 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5654 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5655   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5656   ins_cost(MEMORY_REF_COST);
  5658   size(4);
  5659   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5660   ins_encode %{
  5661     __ ldsb($mem$$Address, $dst$$Register, 1);
  5662   %}
  5663   ins_pipe(iload_mask_mem);
  5664 %}
  5666 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5667 instruct loadUS2L(iRegL dst, memory mem) %{
  5668   match(Set dst (ConvI2L (LoadUS mem)));
  5669   ins_cost(MEMORY_REF_COST);
  5671   size(4);
  5672   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5673   ins_encode %{
  5674     __ lduh($mem$$Address, $dst$$Register);
  5675   %}
  5676   ins_pipe(iload_mem);
  5677 %}
  5679 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5680 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5681   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5682   ins_cost(MEMORY_REF_COST);
  5684   size(4);
  5685   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5686   ins_encode %{
  5687     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5688   %}
  5689   ins_pipe(iload_mem);
  5690 %}
  5692 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5693 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5694   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5695   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5697   size(2*4);
  5698   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5699             "AND    $dst,$mask,$dst" %}
  5700   ins_encode %{
  5701     Register Rdst = $dst$$Register;
  5702     __ lduh($mem$$Address, Rdst);
  5703     __ and3(Rdst, $mask$$constant, Rdst);
  5704   %}
  5705   ins_pipe(iload_mem);
  5706 %}
  5708 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5709 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5710   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5711   effect(TEMP dst, TEMP tmp);
  5712   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5714   size((3+1)*4);  // set may use two instructions.
  5715   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5716             "SET    $mask,$tmp\n\t"
  5717             "AND    $dst,$tmp,$dst" %}
  5718   ins_encode %{
  5719     Register Rdst = $dst$$Register;
  5720     Register Rtmp = $tmp$$Register;
  5721     __ lduh($mem$$Address, Rdst);
  5722     __ set($mask$$constant, Rtmp);
  5723     __ and3(Rdst, Rtmp, Rdst);
  5724   %}
  5725   ins_pipe(iload_mem);
  5726 %}
  5728 // Load Integer
  5729 instruct loadI(iRegI dst, memory mem) %{
  5730   match(Set dst (LoadI mem));
  5731   ins_cost(MEMORY_REF_COST);
  5733   size(4);
  5734   format %{ "LDUW   $mem,$dst\t! int" %}
  5735   ins_encode %{
  5736     __ lduw($mem$$Address, $dst$$Register);
  5737   %}
  5738   ins_pipe(iload_mem);
  5739 %}
  5741 // Load Integer to Byte (8 bit signed)
  5742 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5743   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5744   ins_cost(MEMORY_REF_COST);
  5746   size(4);
  5748   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5749   ins_encode %{
  5750     __ ldsb($mem$$Address, $dst$$Register, 3);
  5751   %}
  5752   ins_pipe(iload_mask_mem);
  5753 %}
  5755 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5756 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5757   match(Set dst (AndI (LoadI mem) mask));
  5758   ins_cost(MEMORY_REF_COST);
  5760   size(4);
  5762   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5763   ins_encode %{
  5764     __ ldub($mem$$Address, $dst$$Register, 3);
  5765   %}
  5766   ins_pipe(iload_mask_mem);
  5767 %}
  5769 // Load Integer to Short (16 bit signed)
  5770 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5771   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5772   ins_cost(MEMORY_REF_COST);
  5774   size(4);
  5776   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5777   ins_encode %{
  5778     __ ldsh($mem$$Address, $dst$$Register, 2);
  5779   %}
  5780   ins_pipe(iload_mask_mem);
  5781 %}
  5783 // Load Integer to Unsigned Short (16 bit UNsigned)
  5784 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5785   match(Set dst (AndI (LoadI mem) mask));
  5786   ins_cost(MEMORY_REF_COST);
  5788   size(4);
  5790   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5791   ins_encode %{
  5792     __ lduh($mem$$Address, $dst$$Register, 2);
  5793   %}
  5794   ins_pipe(iload_mask_mem);
  5795 %}
  5797 // Load Integer into a Long Register
  5798 instruct loadI2L(iRegL dst, memory mem) %{
  5799   match(Set dst (ConvI2L (LoadI mem)));
  5800   ins_cost(MEMORY_REF_COST);
  5802   size(4);
  5803   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5804   ins_encode %{
  5805     __ ldsw($mem$$Address, $dst$$Register);
  5806   %}
  5807   ins_pipe(iload_mask_mem);
  5808 %}
  5810 // Load Integer with mask 0xFF into a Long Register
  5811 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5812   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5813   ins_cost(MEMORY_REF_COST);
  5815   size(4);
  5816   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5817   ins_encode %{
  5818     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5819   %}
  5820   ins_pipe(iload_mem);
  5821 %}
  5823 // Load Integer with mask 0xFFFF into a Long Register
  5824 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5825   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5826   ins_cost(MEMORY_REF_COST);
  5828   size(4);
  5829   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5830   ins_encode %{
  5831     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5832   %}
  5833   ins_pipe(iload_mem);
  5834 %}
  5836 // Load Integer with a 13-bit mask into a Long Register
  5837 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5838   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5839   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5841   size(2*4);
  5842   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5843             "AND    $dst,$mask,$dst" %}
  5844   ins_encode %{
  5845     Register Rdst = $dst$$Register;
  5846     __ lduw($mem$$Address, Rdst);
  5847     __ and3(Rdst, $mask$$constant, Rdst);
  5848   %}
  5849   ins_pipe(iload_mem);
  5850 %}
  5852 // Load Integer with a 32-bit mask into a Long Register
  5853 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5854   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5855   effect(TEMP dst, TEMP tmp);
  5856   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5858   size((3+1)*4);  // set may use two instructions.
  5859   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5860             "SET    $mask,$tmp\n\t"
  5861             "AND    $dst,$tmp,$dst" %}
  5862   ins_encode %{
  5863     Register Rdst = $dst$$Register;
  5864     Register Rtmp = $tmp$$Register;
  5865     __ lduw($mem$$Address, Rdst);
  5866     __ set($mask$$constant, Rtmp);
  5867     __ and3(Rdst, Rtmp, Rdst);
  5868   %}
  5869   ins_pipe(iload_mem);
  5870 %}
  5872 // Load Unsigned Integer into a Long Register
  5873 instruct loadUI2L(iRegL dst, memory mem) %{
  5874   match(Set dst (LoadUI2L mem));
  5875   ins_cost(MEMORY_REF_COST);
  5877   size(4);
  5878   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5879   ins_encode %{
  5880     __ lduw($mem$$Address, $dst$$Register);
  5881   %}
  5882   ins_pipe(iload_mem);
  5883 %}
  5885 // Load Long - aligned
  5886 instruct loadL(iRegL dst, memory mem ) %{
  5887   match(Set dst (LoadL mem));
  5888   ins_cost(MEMORY_REF_COST);
  5890   size(4);
  5891   format %{ "LDX    $mem,$dst\t! long" %}
  5892   ins_encode %{
  5893     __ ldx($mem$$Address, $dst$$Register);
  5894   %}
  5895   ins_pipe(iload_mem);
  5896 %}
  5898 // Load Long - UNaligned
  5899 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5900   match(Set dst (LoadL_unaligned mem));
  5901   effect(KILL tmp);
  5902   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5903   size(16);
  5904   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5905           "\tLDUW   $mem  ,$dst\n"
  5906           "\tSLLX   #32, $dst, $dst\n"
  5907           "\tOR     $dst, R_O7, $dst" %}
  5908   opcode(Assembler::lduw_op3);
  5909   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5910   ins_pipe(iload_mem);
  5911 %}
  5913 // Load Range
  5914 instruct loadRange(iRegI dst, memory mem) %{
  5915   match(Set dst (LoadRange mem));
  5916   ins_cost(MEMORY_REF_COST);
  5918   size(4);
  5919   format %{ "LDUW   $mem,$dst\t! range" %}
  5920   opcode(Assembler::lduw_op3);
  5921   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5922   ins_pipe(iload_mem);
  5923 %}
  5925 // Load Integer into %f register (for fitos/fitod)
  5926 instruct loadI_freg(regF dst, memory mem) %{
  5927   match(Set dst (LoadI mem));
  5928   ins_cost(MEMORY_REF_COST);
  5929   size(4);
  5931   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5932   opcode(Assembler::ldf_op3);
  5933   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5934   ins_pipe(floadF_mem);
  5935 %}
  5937 // Load Pointer
  5938 instruct loadP(iRegP dst, memory mem) %{
  5939   match(Set dst (LoadP mem));
  5940   ins_cost(MEMORY_REF_COST);
  5941   size(4);
  5943 #ifndef _LP64
  5944   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5945   ins_encode %{
  5946     __ lduw($mem$$Address, $dst$$Register);
  5947   %}
  5948 #else
  5949   format %{ "LDX    $mem,$dst\t! ptr" %}
  5950   ins_encode %{
  5951     __ ldx($mem$$Address, $dst$$Register);
  5952   %}
  5953 #endif
  5954   ins_pipe(iload_mem);
  5955 %}
  5957 // Load Compressed Pointer
  5958 instruct loadN(iRegN dst, memory mem) %{
  5959   match(Set dst (LoadN mem));
  5960   ins_cost(MEMORY_REF_COST);
  5961   size(4);
  5963   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5964   ins_encode %{
  5965     __ lduw($mem$$Address, $dst$$Register);
  5966   %}
  5967   ins_pipe(iload_mem);
  5968 %}
  5970 // Load Klass Pointer
  5971 instruct loadKlass(iRegP dst, memory mem) %{
  5972   match(Set dst (LoadKlass mem));
  5973   ins_cost(MEMORY_REF_COST);
  5974   size(4);
  5976 #ifndef _LP64
  5977   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5978   ins_encode %{
  5979     __ lduw($mem$$Address, $dst$$Register);
  5980   %}
  5981 #else
  5982   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5983   ins_encode %{
  5984     __ ldx($mem$$Address, $dst$$Register);
  5985   %}
  5986 #endif
  5987   ins_pipe(iload_mem);
  5988 %}
  5990 // Load narrow Klass Pointer
  5991 instruct loadNKlass(iRegN dst, memory mem) %{
  5992   match(Set dst (LoadNKlass mem));
  5993   ins_cost(MEMORY_REF_COST);
  5994   size(4);
  5996   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5997   ins_encode %{
  5998     __ lduw($mem$$Address, $dst$$Register);
  5999   %}
  6000   ins_pipe(iload_mem);
  6001 %}
  6003 // Load Double
  6004 instruct loadD(regD dst, memory mem) %{
  6005   match(Set dst (LoadD mem));
  6006   ins_cost(MEMORY_REF_COST);
  6008   size(4);
  6009   format %{ "LDDF   $mem,$dst" %}
  6010   opcode(Assembler::lddf_op3);
  6011   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6012   ins_pipe(floadD_mem);
  6013 %}
  6015 // Load Double - UNaligned
  6016 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6017   match(Set dst (LoadD_unaligned mem));
  6018   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6019   size(8);
  6020   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6021           "\tLDF    $mem+4,$dst.lo\t!" %}
  6022   opcode(Assembler::ldf_op3);
  6023   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6024   ins_pipe(iload_mem);
  6025 %}
  6027 // Load Float
  6028 instruct loadF(regF dst, memory mem) %{
  6029   match(Set dst (LoadF mem));
  6030   ins_cost(MEMORY_REF_COST);
  6032   size(4);
  6033   format %{ "LDF    $mem,$dst" %}
  6034   opcode(Assembler::ldf_op3);
  6035   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6036   ins_pipe(floadF_mem);
  6037 %}
  6039 // Load Constant
  6040 instruct loadConI( iRegI dst, immI src ) %{
  6041   match(Set dst src);
  6042   ins_cost(DEFAULT_COST * 3/2);
  6043   format %{ "SET    $src,$dst" %}
  6044   ins_encode( Set32(src, dst) );
  6045   ins_pipe(ialu_hi_lo_reg);
  6046 %}
  6048 instruct loadConI13( iRegI dst, immI13 src ) %{
  6049   match(Set dst src);
  6051   size(4);
  6052   format %{ "MOV    $src,$dst" %}
  6053   ins_encode( Set13( src, dst ) );
  6054   ins_pipe(ialu_imm);
  6055 %}
  6057 #ifndef _LP64
  6058 instruct loadConP(iRegP dst, immP con) %{
  6059   match(Set dst con);
  6060   ins_cost(DEFAULT_COST * 3/2);
  6061   format %{ "SET    $con,$dst\t!ptr" %}
  6062   ins_encode %{
  6063     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6064       intptr_t val = $con$$constant;
  6065     if (constant_reloc == relocInfo::oop_type) {
  6066       __ set_oop_constant((jobject) val, $dst$$Register);
  6067     } else if (constant_reloc == relocInfo::metadata_type) {
  6068       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6069     } else {          // non-oop pointers, e.g. card mark base, heap top
  6070       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6071       __ set(val, $dst$$Register);
  6073   %}
  6074   ins_pipe(loadConP);
  6075 %}
  6076 #else
  6077 instruct loadConP_set(iRegP dst, immP_set con) %{
  6078   match(Set dst con);
  6079   ins_cost(DEFAULT_COST * 3/2);
  6080   format %{ "SET    $con,$dst\t! ptr" %}
  6081   ins_encode %{
  6082     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6083       intptr_t val = $con$$constant;
  6084     if (constant_reloc == relocInfo::oop_type) {
  6085       __ set_oop_constant((jobject) val, $dst$$Register);
  6086     } else if (constant_reloc == relocInfo::metadata_type) {
  6087       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6088     } else {          // non-oop pointers, e.g. card mark base, heap top
  6089       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6090       __ set(val, $dst$$Register);
  6092   %}
  6093   ins_pipe(loadConP);
  6094 %}
  6096 instruct loadConP_load(iRegP dst, immP_load con) %{
  6097   match(Set dst con);
  6098   ins_cost(MEMORY_REF_COST);
  6099   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6100   ins_encode %{
  6101     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6102     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6103   %}
  6104   ins_pipe(loadConP);
  6105 %}
  6107 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6108   match(Set dst con);
  6109   ins_cost(DEFAULT_COST * 3/2);
  6110   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6111   ins_encode %{
  6112     __ set($con$$constant, $dst$$Register);
  6113   %}
  6114   ins_pipe(loadConP);
  6115 %}
  6116 #endif // _LP64
  6118 instruct loadConP0(iRegP dst, immP0 src) %{
  6119   match(Set dst src);
  6121   size(4);
  6122   format %{ "CLR    $dst\t!ptr" %}
  6123   ins_encode %{
  6124     __ clr($dst$$Register);
  6125   %}
  6126   ins_pipe(ialu_imm);
  6127 %}
  6129 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6130   match(Set dst src);
  6131   ins_cost(DEFAULT_COST);
  6132   format %{ "SET    $src,$dst\t!ptr" %}
  6133   ins_encode %{
  6134     AddressLiteral polling_page(os::get_polling_page());
  6135     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6136   %}
  6137   ins_pipe(loadConP_poll);
  6138 %}
  6140 instruct loadConN0(iRegN dst, immN0 src) %{
  6141   match(Set dst src);
  6143   size(4);
  6144   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6145   ins_encode %{
  6146     __ clr($dst$$Register);
  6147   %}
  6148   ins_pipe(ialu_imm);
  6149 %}
  6151 instruct loadConN(iRegN dst, immN src) %{
  6152   match(Set dst src);
  6153   ins_cost(DEFAULT_COST * 3/2);
  6154   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6155   ins_encode %{
  6156     Register dst = $dst$$Register;
  6157     __ set_narrow_oop((jobject)$src$$constant, dst);
  6158   %}
  6159   ins_pipe(ialu_hi_lo_reg);
  6160 %}
  6162 // Materialize long value (predicated by immL_cheap).
  6163 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6164   match(Set dst con);
  6165   effect(KILL tmp);
  6166   ins_cost(DEFAULT_COST * 3);
  6167   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6168   ins_encode %{
  6169     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6170   %}
  6171   ins_pipe(loadConL);
  6172 %}
  6174 // Load long value from constant table (predicated by immL_expensive).
  6175 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6176   match(Set dst con);
  6177   ins_cost(MEMORY_REF_COST);
  6178   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6179   ins_encode %{
  6180       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6181     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6182   %}
  6183   ins_pipe(loadConL);
  6184 %}
  6186 instruct loadConL0( iRegL dst, immL0 src ) %{
  6187   match(Set dst src);
  6188   ins_cost(DEFAULT_COST);
  6189   size(4);
  6190   format %{ "CLR    $dst\t! long" %}
  6191   ins_encode( Set13( src, dst ) );
  6192   ins_pipe(ialu_imm);
  6193 %}
  6195 instruct loadConL13( iRegL dst, immL13 src ) %{
  6196   match(Set dst src);
  6197   ins_cost(DEFAULT_COST * 2);
  6199   size(4);
  6200   format %{ "MOV    $src,$dst\t! long" %}
  6201   ins_encode( Set13( src, dst ) );
  6202   ins_pipe(ialu_imm);
  6203 %}
  6205 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6206   match(Set dst con);
  6207   effect(KILL tmp);
  6208   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6209   ins_encode %{
  6210       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6211     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6212   %}
  6213   ins_pipe(loadConFD);
  6214 %}
  6216 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6217   match(Set dst con);
  6218   effect(KILL tmp);
  6219   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6220   ins_encode %{
  6221     // XXX This is a quick fix for 6833573.
  6222     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6223     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6224     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6225   %}
  6226   ins_pipe(loadConFD);
  6227 %}
  6229 // Prefetch instructions.
  6230 // Must be safe to execute with invalid address (cannot fault).
  6232 instruct prefetchr( memory mem ) %{
  6233   match( PrefetchRead mem );
  6234   ins_cost(MEMORY_REF_COST);
  6235   size(4);
  6237   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6238   opcode(Assembler::prefetch_op3);
  6239   ins_encode( form3_mem_prefetch_read( mem ) );
  6240   ins_pipe(iload_mem);
  6241 %}
  6243 instruct prefetchw( memory mem ) %{
  6244   match( PrefetchWrite mem );
  6245   ins_cost(MEMORY_REF_COST);
  6246   size(4);
  6248   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6249   opcode(Assembler::prefetch_op3);
  6250   ins_encode( form3_mem_prefetch_write( mem ) );
  6251   ins_pipe(iload_mem);
  6252 %}
  6254 // Prefetch instructions for allocation.
  6256 instruct prefetchAlloc( memory mem ) %{
  6257   predicate(AllocatePrefetchInstr == 0);
  6258   match( PrefetchAllocation mem );
  6259   ins_cost(MEMORY_REF_COST);
  6260   size(4);
  6262   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6263   opcode(Assembler::prefetch_op3);
  6264   ins_encode( form3_mem_prefetch_write( mem ) );
  6265   ins_pipe(iload_mem);
  6266 %}
  6268 // Use BIS instruction to prefetch for allocation.
  6269 // Could fault, need space at the end of TLAB.
  6270 instruct prefetchAlloc_bis( iRegP dst ) %{
  6271   predicate(AllocatePrefetchInstr == 1);
  6272   match( PrefetchAllocation dst );
  6273   ins_cost(MEMORY_REF_COST);
  6274   size(4);
  6276   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6277   ins_encode %{
  6278     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6279   %}
  6280   ins_pipe(istore_mem_reg);
  6281 %}
  6283 // Next code is used for finding next cache line address to prefetch.
  6284 #ifndef _LP64
  6285 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6286   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6287   ins_cost(DEFAULT_COST);
  6288   size(4);
  6290   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6291   ins_encode %{
  6292     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6293   %}
  6294   ins_pipe(ialu_reg_imm);
  6295 %}
  6296 #else
  6297 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6298   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6299   ins_cost(DEFAULT_COST);
  6300   size(4);
  6302   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6303   ins_encode %{
  6304     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6305   %}
  6306   ins_pipe(ialu_reg_imm);
  6307 %}
  6308 #endif
  6310 //----------Store Instructions-------------------------------------------------
  6311 // Store Byte
  6312 instruct storeB(memory mem, iRegI src) %{
  6313   match(Set mem (StoreB mem src));
  6314   ins_cost(MEMORY_REF_COST);
  6316   size(4);
  6317   format %{ "STB    $src,$mem\t! byte" %}
  6318   opcode(Assembler::stb_op3);
  6319   ins_encode(simple_form3_mem_reg( mem, src ) );
  6320   ins_pipe(istore_mem_reg);
  6321 %}
  6323 instruct storeB0(memory mem, immI0 src) %{
  6324   match(Set mem (StoreB mem src));
  6325   ins_cost(MEMORY_REF_COST);
  6327   size(4);
  6328   format %{ "STB    $src,$mem\t! byte" %}
  6329   opcode(Assembler::stb_op3);
  6330   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6331   ins_pipe(istore_mem_zero);
  6332 %}
  6334 instruct storeCM0(memory mem, immI0 src) %{
  6335   match(Set mem (StoreCM mem src));
  6336   ins_cost(MEMORY_REF_COST);
  6338   size(4);
  6339   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6340   opcode(Assembler::stb_op3);
  6341   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6342   ins_pipe(istore_mem_zero);
  6343 %}
  6345 // Store Char/Short
  6346 instruct storeC(memory mem, iRegI src) %{
  6347   match(Set mem (StoreC mem src));
  6348   ins_cost(MEMORY_REF_COST);
  6350   size(4);
  6351   format %{ "STH    $src,$mem\t! short" %}
  6352   opcode(Assembler::sth_op3);
  6353   ins_encode(simple_form3_mem_reg( mem, src ) );
  6354   ins_pipe(istore_mem_reg);
  6355 %}
  6357 instruct storeC0(memory mem, immI0 src) %{
  6358   match(Set mem (StoreC mem src));
  6359   ins_cost(MEMORY_REF_COST);
  6361   size(4);
  6362   format %{ "STH    $src,$mem\t! short" %}
  6363   opcode(Assembler::sth_op3);
  6364   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6365   ins_pipe(istore_mem_zero);
  6366 %}
  6368 // Store Integer
  6369 instruct storeI(memory mem, iRegI src) %{
  6370   match(Set mem (StoreI mem src));
  6371   ins_cost(MEMORY_REF_COST);
  6373   size(4);
  6374   format %{ "STW    $src,$mem" %}
  6375   opcode(Assembler::stw_op3);
  6376   ins_encode(simple_form3_mem_reg( mem, src ) );
  6377   ins_pipe(istore_mem_reg);
  6378 %}
  6380 // Store Long
  6381 instruct storeL(memory mem, iRegL src) %{
  6382   match(Set mem (StoreL mem src));
  6383   ins_cost(MEMORY_REF_COST);
  6384   size(4);
  6385   format %{ "STX    $src,$mem\t! long" %}
  6386   opcode(Assembler::stx_op3);
  6387   ins_encode(simple_form3_mem_reg( mem, src ) );
  6388   ins_pipe(istore_mem_reg);
  6389 %}
  6391 instruct storeI0(memory mem, immI0 src) %{
  6392   match(Set mem (StoreI mem src));
  6393   ins_cost(MEMORY_REF_COST);
  6395   size(4);
  6396   format %{ "STW    $src,$mem" %}
  6397   opcode(Assembler::stw_op3);
  6398   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6399   ins_pipe(istore_mem_zero);
  6400 %}
  6402 instruct storeL0(memory mem, immL0 src) %{
  6403   match(Set mem (StoreL mem src));
  6404   ins_cost(MEMORY_REF_COST);
  6406   size(4);
  6407   format %{ "STX    $src,$mem" %}
  6408   opcode(Assembler::stx_op3);
  6409   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6410   ins_pipe(istore_mem_zero);
  6411 %}
  6413 // Store Integer from float register (used after fstoi)
  6414 instruct storeI_Freg(memory mem, regF src) %{
  6415   match(Set mem (StoreI mem src));
  6416   ins_cost(MEMORY_REF_COST);
  6418   size(4);
  6419   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6420   opcode(Assembler::stf_op3);
  6421   ins_encode(simple_form3_mem_reg( mem, src ) );
  6422   ins_pipe(fstoreF_mem_reg);
  6423 %}
  6425 // Store Pointer
  6426 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6427   match(Set dst (StoreP dst src));
  6428   ins_cost(MEMORY_REF_COST);
  6429   size(4);
  6431 #ifndef _LP64
  6432   format %{ "STW    $src,$dst\t! ptr" %}
  6433   opcode(Assembler::stw_op3, 0, REGP_OP);
  6434 #else
  6435   format %{ "STX    $src,$dst\t! ptr" %}
  6436   opcode(Assembler::stx_op3, 0, REGP_OP);
  6437 #endif
  6438   ins_encode( form3_mem_reg( dst, src ) );
  6439   ins_pipe(istore_mem_spORreg);
  6440 %}
  6442 instruct storeP0(memory dst, immP0 src) %{
  6443   match(Set dst (StoreP dst src));
  6444   ins_cost(MEMORY_REF_COST);
  6445   size(4);
  6447 #ifndef _LP64
  6448   format %{ "STW    $src,$dst\t! ptr" %}
  6449   opcode(Assembler::stw_op3, 0, REGP_OP);
  6450 #else
  6451   format %{ "STX    $src,$dst\t! ptr" %}
  6452   opcode(Assembler::stx_op3, 0, REGP_OP);
  6453 #endif
  6454   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6455   ins_pipe(istore_mem_zero);
  6456 %}
  6458 // Store Compressed Pointer
  6459 instruct storeN(memory dst, iRegN src) %{
  6460    match(Set dst (StoreN dst src));
  6461    ins_cost(MEMORY_REF_COST);
  6462    size(4);
  6464    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6465    ins_encode %{
  6466      Register base = as_Register($dst$$base);
  6467      Register index = as_Register($dst$$index);
  6468      Register src = $src$$Register;
  6469      if (index != G0) {
  6470        __ stw(src, base, index);
  6471      } else {
  6472        __ stw(src, base, $dst$$disp);
  6474    %}
  6475    ins_pipe(istore_mem_spORreg);
  6476 %}
  6478 instruct storeN0(memory dst, immN0 src) %{
  6479    match(Set dst (StoreN dst src));
  6480    ins_cost(MEMORY_REF_COST);
  6481    size(4);
  6483    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6484    ins_encode %{
  6485      Register base = as_Register($dst$$base);
  6486      Register index = as_Register($dst$$index);
  6487      if (index != G0) {
  6488        __ stw(0, base, index);
  6489      } else {
  6490        __ stw(0, base, $dst$$disp);
  6492    %}
  6493    ins_pipe(istore_mem_zero);
  6494 %}
  6496 // Store Double
  6497 instruct storeD( memory mem, regD src) %{
  6498   match(Set mem (StoreD mem src));
  6499   ins_cost(MEMORY_REF_COST);
  6501   size(4);
  6502   format %{ "STDF   $src,$mem" %}
  6503   opcode(Assembler::stdf_op3);
  6504   ins_encode(simple_form3_mem_reg( mem, src ) );
  6505   ins_pipe(fstoreD_mem_reg);
  6506 %}
  6508 instruct storeD0( memory mem, immD0 src) %{
  6509   match(Set mem (StoreD mem src));
  6510   ins_cost(MEMORY_REF_COST);
  6512   size(4);
  6513   format %{ "STX    $src,$mem" %}
  6514   opcode(Assembler::stx_op3);
  6515   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6516   ins_pipe(fstoreD_mem_zero);
  6517 %}
  6519 // Store Float
  6520 instruct storeF( memory mem, regF src) %{
  6521   match(Set mem (StoreF mem src));
  6522   ins_cost(MEMORY_REF_COST);
  6524   size(4);
  6525   format %{ "STF    $src,$mem" %}
  6526   opcode(Assembler::stf_op3);
  6527   ins_encode(simple_form3_mem_reg( mem, src ) );
  6528   ins_pipe(fstoreF_mem_reg);
  6529 %}
  6531 instruct storeF0( memory mem, immF0 src) %{
  6532   match(Set mem (StoreF mem src));
  6533   ins_cost(MEMORY_REF_COST);
  6535   size(4);
  6536   format %{ "STW    $src,$mem\t! storeF0" %}
  6537   opcode(Assembler::stw_op3);
  6538   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6539   ins_pipe(fstoreF_mem_zero);
  6540 %}
  6542 // Convert oop pointer into compressed form
  6543 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6544   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6545   match(Set dst (EncodeP src));
  6546   format %{ "encode_heap_oop $src, $dst" %}
  6547   ins_encode %{
  6548     __ encode_heap_oop($src$$Register, $dst$$Register);
  6549   %}
  6550   ins_pipe(ialu_reg);
  6551 %}
  6553 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6554   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6555   match(Set dst (EncodeP src));
  6556   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6557   ins_encode %{
  6558     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6559   %}
  6560   ins_pipe(ialu_reg);
  6561 %}
  6563 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6564   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6565             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6566   match(Set dst (DecodeN src));
  6567   format %{ "decode_heap_oop $src, $dst" %}
  6568   ins_encode %{
  6569     __ decode_heap_oop($src$$Register, $dst$$Register);
  6570   %}
  6571   ins_pipe(ialu_reg);
  6572 %}
  6574 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6575   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6576             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6577   match(Set dst (DecodeN src));
  6578   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6579   ins_encode %{
  6580     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6581   %}
  6582   ins_pipe(ialu_reg);
  6583 %}
  6586 //----------MemBar Instructions-----------------------------------------------
  6587 // Memory barrier flavors
  6589 instruct membar_acquire() %{
  6590   match(MemBarAcquire);
  6591   ins_cost(4*MEMORY_REF_COST);
  6593   size(0);
  6594   format %{ "MEMBAR-acquire" %}
  6595   ins_encode( enc_membar_acquire );
  6596   ins_pipe(long_memory_op);
  6597 %}
  6599 instruct membar_acquire_lock() %{
  6600   match(MemBarAcquireLock);
  6601   ins_cost(0);
  6603   size(0);
  6604   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6605   ins_encode( );
  6606   ins_pipe(empty);
  6607 %}
  6609 instruct membar_release() %{
  6610   match(MemBarRelease);
  6611   ins_cost(4*MEMORY_REF_COST);
  6613   size(0);
  6614   format %{ "MEMBAR-release" %}
  6615   ins_encode( enc_membar_release );
  6616   ins_pipe(long_memory_op);
  6617 %}
  6619 instruct membar_release_lock() %{
  6620   match(MemBarReleaseLock);
  6621   ins_cost(0);
  6623   size(0);
  6624   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6625   ins_encode( );
  6626   ins_pipe(empty);
  6627 %}
  6629 instruct membar_volatile() %{
  6630   match(MemBarVolatile);
  6631   ins_cost(4*MEMORY_REF_COST);
  6633   size(4);
  6634   format %{ "MEMBAR-volatile" %}
  6635   ins_encode( enc_membar_volatile );
  6636   ins_pipe(long_memory_op);
  6637 %}
  6639 instruct unnecessary_membar_volatile() %{
  6640   match(MemBarVolatile);
  6641   predicate(Matcher::post_store_load_barrier(n));
  6642   ins_cost(0);
  6644   size(0);
  6645   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6646   ins_encode( );
  6647   ins_pipe(empty);
  6648 %}
  6650 instruct membar_storestore() %{
  6651   match(MemBarStoreStore);
  6652   ins_cost(0);
  6654   size(0);
  6655   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6656   ins_encode( );
  6657   ins_pipe(empty);
  6658 %}
  6660 //----------Register Move Instructions-----------------------------------------
  6661 instruct roundDouble_nop(regD dst) %{
  6662   match(Set dst (RoundDouble dst));
  6663   ins_cost(0);
  6664   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6665   ins_encode( );
  6666   ins_pipe(empty);
  6667 %}
  6670 instruct roundFloat_nop(regF dst) %{
  6671   match(Set dst (RoundFloat dst));
  6672   ins_cost(0);
  6673   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6674   ins_encode( );
  6675   ins_pipe(empty);
  6676 %}
  6679 // Cast Index to Pointer for unsafe natives
  6680 instruct castX2P(iRegX src, iRegP dst) %{
  6681   match(Set dst (CastX2P src));
  6683   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6684   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6685   ins_pipe(ialu_reg);
  6686 %}
  6688 // Cast Pointer to Index for unsafe natives
  6689 instruct castP2X(iRegP src, iRegX dst) %{
  6690   match(Set dst (CastP2X src));
  6692   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6693   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6694   ins_pipe(ialu_reg);
  6695 %}
  6697 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6698   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6699   match(Set stkSlot src);   // chain rule
  6700   ins_cost(MEMORY_REF_COST);
  6701   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6702   opcode(Assembler::stdf_op3);
  6703   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6704   ins_pipe(fstoreD_stk_reg);
  6705 %}
  6707 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6708   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6709   match(Set dst stkSlot);   // chain rule
  6710   ins_cost(MEMORY_REF_COST);
  6711   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6712   opcode(Assembler::lddf_op3);
  6713   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6714   ins_pipe(floadD_stk);
  6715 %}
  6717 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6718   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6719   match(Set stkSlot src);   // chain rule
  6720   ins_cost(MEMORY_REF_COST);
  6721   format %{ "STF   $src,$stkSlot\t!stk" %}
  6722   opcode(Assembler::stf_op3);
  6723   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6724   ins_pipe(fstoreF_stk_reg);
  6725 %}
  6727 //----------Conditional Move---------------------------------------------------
  6728 // Conditional move
  6729 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6730   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6731   ins_cost(150);
  6732   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6733   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6734   ins_pipe(ialu_reg);
  6735 %}
  6737 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6738   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6739   ins_cost(140);
  6740   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6741   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6742   ins_pipe(ialu_imm);
  6743 %}
  6745 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6746   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6747   ins_cost(150);
  6748   size(4);
  6749   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6750   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6751   ins_pipe(ialu_reg);
  6752 %}
  6754 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6755   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6756   ins_cost(140);
  6757   size(4);
  6758   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6759   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6760   ins_pipe(ialu_imm);
  6761 %}
  6763 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6764   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6765   ins_cost(150);
  6766   size(4);
  6767   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6768   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6769   ins_pipe(ialu_reg);
  6770 %}
  6772 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6773   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6774   ins_cost(140);
  6775   size(4);
  6776   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6777   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6778   ins_pipe(ialu_imm);
  6779 %}
  6781 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6782   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6783   ins_cost(150);
  6784   size(4);
  6785   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6786   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6787   ins_pipe(ialu_reg);
  6788 %}
  6790 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6791   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6792   ins_cost(140);
  6793   size(4);
  6794   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6795   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6796   ins_pipe(ialu_imm);
  6797 %}
  6799 // Conditional move for RegN. Only cmov(reg,reg).
  6800 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6801   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6802   ins_cost(150);
  6803   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6804   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6805   ins_pipe(ialu_reg);
  6806 %}
  6808 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6809 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6810   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6811   ins_cost(150);
  6812   size(4);
  6813   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6814   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6815   ins_pipe(ialu_reg);
  6816 %}
  6818 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6819 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6820   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6821   ins_cost(150);
  6822   size(4);
  6823   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6824   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6825   ins_pipe(ialu_reg);
  6826 %}
  6828 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6829   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6830   ins_cost(150);
  6831   size(4);
  6832   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6833   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6834   ins_pipe(ialu_reg);
  6835 %}
  6837 // Conditional move
  6838 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6839   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6840   ins_cost(150);
  6841   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6842   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6843   ins_pipe(ialu_reg);
  6844 %}
  6846 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6847   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6848   ins_cost(140);
  6849   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6850   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6851   ins_pipe(ialu_imm);
  6852 %}
  6854 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6855 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6856   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6857   ins_cost(150);
  6859   size(4);
  6860   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6861   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6862   ins_pipe(ialu_reg);
  6863 %}
  6865 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6866   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6867   ins_cost(150);
  6869   size(4);
  6870   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6871   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6872   ins_pipe(ialu_reg);
  6873 %}
  6875 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6876   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6877   ins_cost(140);
  6879   size(4);
  6880   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6881   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6882   ins_pipe(ialu_imm);
  6883 %}
  6885 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6886   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6887   ins_cost(140);
  6889   size(4);
  6890   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6891   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6892   ins_pipe(ialu_imm);
  6893 %}
  6895 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6896   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6897   ins_cost(150);
  6898   size(4);
  6899   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6900   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6901   ins_pipe(ialu_imm);
  6902 %}
  6904 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6905   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6906   ins_cost(140);
  6907   size(4);
  6908   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6909   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6910   ins_pipe(ialu_imm);
  6911 %}
  6913 // Conditional move
  6914 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6915   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6916   ins_cost(150);
  6917   opcode(0x101);
  6918   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6919   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6920   ins_pipe(int_conditional_float_move);
  6921 %}
  6923 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6924   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6925   ins_cost(150);
  6927   size(4);
  6928   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6929   opcode(0x101);
  6930   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6931   ins_pipe(int_conditional_float_move);
  6932 %}
  6934 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6935   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6936   ins_cost(150);
  6938   size(4);
  6939   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6940   opcode(0x101);
  6941   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6942   ins_pipe(int_conditional_float_move);
  6943 %}
  6945 // Conditional move,
  6946 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6947   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6948   ins_cost(150);
  6949   size(4);
  6950   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6951   opcode(0x1);
  6952   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6953   ins_pipe(int_conditional_double_move);
  6954 %}
  6956 // Conditional move
  6957 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6958   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6959   ins_cost(150);
  6960   size(4);
  6961   opcode(0x102);
  6962   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6963   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6964   ins_pipe(int_conditional_double_move);
  6965 %}
  6967 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6968   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6969   ins_cost(150);
  6971   size(4);
  6972   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6973   opcode(0x102);
  6974   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6975   ins_pipe(int_conditional_double_move);
  6976 %}
  6978 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  6979   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6980   ins_cost(150);
  6982   size(4);
  6983   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6984   opcode(0x102);
  6985   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6986   ins_pipe(int_conditional_double_move);
  6987 %}
  6989 // Conditional move,
  6990 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6991   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6992   ins_cost(150);
  6993   size(4);
  6994   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6995   opcode(0x2);
  6996   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6997   ins_pipe(int_conditional_double_move);
  6998 %}
  7000 // Conditional move
  7001 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7002   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7003   ins_cost(150);
  7004   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7005   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7006   ins_pipe(ialu_reg);
  7007 %}
  7009 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7010   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7011   ins_cost(140);
  7012   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7013   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7014   ins_pipe(ialu_imm);
  7015 %}
  7017 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7018   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7019   ins_cost(150);
  7021   size(4);
  7022   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7023   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7024   ins_pipe(ialu_reg);
  7025 %}
  7028 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7029   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7030   ins_cost(150);
  7032   size(4);
  7033   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7034   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7035   ins_pipe(ialu_reg);
  7036 %}
  7039 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7040   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7041   ins_cost(150);
  7043   size(4);
  7044   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7045   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7046   ins_pipe(ialu_reg);
  7047 %}
  7051 //----------OS and Locking Instructions----------------------------------------
  7053 // This name is KNOWN by the ADLC and cannot be changed.
  7054 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7055 // for this guy.
  7056 instruct tlsLoadP(g2RegP dst) %{
  7057   match(Set dst (ThreadLocal));
  7059   size(0);
  7060   ins_cost(0);
  7061   format %{ "# TLS is in G2" %}
  7062   ins_encode( /*empty encoding*/ );
  7063   ins_pipe(ialu_none);
  7064 %}
  7066 instruct checkCastPP( iRegP dst ) %{
  7067   match(Set dst (CheckCastPP dst));
  7069   size(0);
  7070   format %{ "# checkcastPP of $dst" %}
  7071   ins_encode( /*empty encoding*/ );
  7072   ins_pipe(empty);
  7073 %}
  7076 instruct castPP( iRegP dst ) %{
  7077   match(Set dst (CastPP dst));
  7078   format %{ "# castPP of $dst" %}
  7079   ins_encode( /*empty encoding*/ );
  7080   ins_pipe(empty);
  7081 %}
  7083 instruct castII( iRegI dst ) %{
  7084   match(Set dst (CastII dst));
  7085   format %{ "# castII of $dst" %}
  7086   ins_encode( /*empty encoding*/ );
  7087   ins_cost(0);
  7088   ins_pipe(empty);
  7089 %}
  7091 //----------Arithmetic Instructions--------------------------------------------
  7092 // Addition Instructions
  7093 // Register Addition
  7094 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7095   match(Set dst (AddI src1 src2));
  7097   size(4);
  7098   format %{ "ADD    $src1,$src2,$dst" %}
  7099   ins_encode %{
  7100     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7101   %}
  7102   ins_pipe(ialu_reg_reg);
  7103 %}
  7105 // Immediate Addition
  7106 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7107   match(Set dst (AddI src1 src2));
  7109   size(4);
  7110   format %{ "ADD    $src1,$src2,$dst" %}
  7111   opcode(Assembler::add_op3, Assembler::arith_op);
  7112   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7113   ins_pipe(ialu_reg_imm);
  7114 %}
  7116 // Pointer Register Addition
  7117 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7118   match(Set dst (AddP src1 src2));
  7120   size(4);
  7121   format %{ "ADD    $src1,$src2,$dst" %}
  7122   opcode(Assembler::add_op3, Assembler::arith_op);
  7123   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7124   ins_pipe(ialu_reg_reg);
  7125 %}
  7127 // Pointer Immediate Addition
  7128 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7129   match(Set dst (AddP src1 src2));
  7131   size(4);
  7132   format %{ "ADD    $src1,$src2,$dst" %}
  7133   opcode(Assembler::add_op3, Assembler::arith_op);
  7134   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7135   ins_pipe(ialu_reg_imm);
  7136 %}
  7138 // Long Addition
  7139 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7140   match(Set dst (AddL src1 src2));
  7142   size(4);
  7143   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7144   opcode(Assembler::add_op3, Assembler::arith_op);
  7145   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7146   ins_pipe(ialu_reg_reg);
  7147 %}
  7149 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7150   match(Set dst (AddL src1 con));
  7152   size(4);
  7153   format %{ "ADD    $src1,$con,$dst" %}
  7154   opcode(Assembler::add_op3, Assembler::arith_op);
  7155   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7156   ins_pipe(ialu_reg_imm);
  7157 %}
  7159 //----------Conditional_store--------------------------------------------------
  7160 // Conditional-store of the updated heap-top.
  7161 // Used during allocation of the shared heap.
  7162 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7164 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7165 instruct loadPLocked(iRegP dst, memory mem) %{
  7166   match(Set dst (LoadPLocked mem));
  7167   ins_cost(MEMORY_REF_COST);
  7169 #ifndef _LP64
  7170   size(4);
  7171   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7172   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7173 #else
  7174   format %{ "LDX    $mem,$dst\t! ptr" %}
  7175   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7176 #endif
  7177   ins_encode( form3_mem_reg( mem, dst ) );
  7178   ins_pipe(iload_mem);
  7179 %}
  7181 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7182   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7183   effect( KILL newval );
  7184   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7185             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7186   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7187   ins_pipe( long_memory_op );
  7188 %}
  7190 // Conditional-store of an int value.
  7191 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7192   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7193   effect( KILL newval );
  7194   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7195             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7196   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7197   ins_pipe( long_memory_op );
  7198 %}
  7200 // Conditional-store of a long value.
  7201 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7202   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7203   effect( KILL newval );
  7204   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7205             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7206   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7207   ins_pipe( long_memory_op );
  7208 %}
  7210 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7212 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7213   predicate(VM_Version::supports_cx8());
  7214   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7215   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7216   format %{
  7217             "MOV    $newval,O7\n\t"
  7218             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7219             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7220             "MOV    1,$res\n\t"
  7221             "MOVne  xcc,R_G0,$res"
  7222   %}
  7223   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7224               enc_lflags_ne_to_boolean(res) );
  7225   ins_pipe( long_memory_op );
  7226 %}
  7229 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7230   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7231   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7232   format %{
  7233             "MOV    $newval,O7\n\t"
  7234             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7235             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7236             "MOV    1,$res\n\t"
  7237             "MOVne  icc,R_G0,$res"
  7238   %}
  7239   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7240               enc_iflags_ne_to_boolean(res) );
  7241   ins_pipe( long_memory_op );
  7242 %}
  7244 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7245 #ifdef _LP64
  7246   predicate(VM_Version::supports_cx8());
  7247 #endif
  7248   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7249   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7250   format %{
  7251             "MOV    $newval,O7\n\t"
  7252             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7253             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7254             "MOV    1,$res\n\t"
  7255             "MOVne  xcc,R_G0,$res"
  7256   %}
  7257 #ifdef _LP64
  7258   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7259               enc_lflags_ne_to_boolean(res) );
  7260 #else
  7261   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7262               enc_iflags_ne_to_boolean(res) );
  7263 #endif
  7264   ins_pipe( long_memory_op );
  7265 %}
  7267 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7268   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7269   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7270   format %{
  7271             "MOV    $newval,O7\n\t"
  7272             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7273             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7274             "MOV    1,$res\n\t"
  7275             "MOVne  icc,R_G0,$res"
  7276   %}
  7277   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7278               enc_iflags_ne_to_boolean(res) );
  7279   ins_pipe( long_memory_op );
  7280 %}
  7282 instruct xchgI( memory mem, iRegI newval) %{
  7283   match(Set newval (GetAndSetI mem newval));
  7284   format %{ "SWAP  [$mem],$newval" %}
  7285   size(4);
  7286   ins_encode %{
  7287     __ swap($mem$$Address, $newval$$Register);
  7288   %}
  7289   ins_pipe( long_memory_op );
  7290 %}
  7292 #ifndef _LP64
  7293 instruct xchgP( memory mem, iRegP newval) %{
  7294   match(Set newval (GetAndSetP mem newval));
  7295   format %{ "SWAP  [$mem],$newval" %}
  7296   size(4);
  7297   ins_encode %{
  7298     __ swap($mem$$Address, $newval$$Register);
  7299   %}
  7300   ins_pipe( long_memory_op );
  7301 %}
  7302 #endif
  7304 instruct xchgN( memory mem, iRegN newval) %{
  7305   match(Set newval (GetAndSetN mem newval));
  7306   format %{ "SWAP  [$mem],$newval" %}
  7307   size(4);
  7308   ins_encode %{
  7309     __ swap($mem$$Address, $newval$$Register);
  7310   %}
  7311   ins_pipe( long_memory_op );
  7312 %}
  7314 //---------------------
  7315 // Subtraction Instructions
  7316 // Register Subtraction
  7317 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7318   match(Set dst (SubI src1 src2));
  7320   size(4);
  7321   format %{ "SUB    $src1,$src2,$dst" %}
  7322   opcode(Assembler::sub_op3, Assembler::arith_op);
  7323   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7324   ins_pipe(ialu_reg_reg);
  7325 %}
  7327 // Immediate Subtraction
  7328 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7329   match(Set dst (SubI src1 src2));
  7331   size(4);
  7332   format %{ "SUB    $src1,$src2,$dst" %}
  7333   opcode(Assembler::sub_op3, Assembler::arith_op);
  7334   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7335   ins_pipe(ialu_reg_imm);
  7336 %}
  7338 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7339   match(Set dst (SubI zero src2));
  7341   size(4);
  7342   format %{ "NEG    $src2,$dst" %}
  7343   opcode(Assembler::sub_op3, Assembler::arith_op);
  7344   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7345   ins_pipe(ialu_zero_reg);
  7346 %}
  7348 // Long subtraction
  7349 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7350   match(Set dst (SubL src1 src2));
  7352   size(4);
  7353   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7354   opcode(Assembler::sub_op3, Assembler::arith_op);
  7355   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7356   ins_pipe(ialu_reg_reg);
  7357 %}
  7359 // Immediate Subtraction
  7360 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7361   match(Set dst (SubL src1 con));
  7363   size(4);
  7364   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7365   opcode(Assembler::sub_op3, Assembler::arith_op);
  7366   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7367   ins_pipe(ialu_reg_imm);
  7368 %}
  7370 // Long negation
  7371 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7372   match(Set dst (SubL zero src2));
  7374   size(4);
  7375   format %{ "NEG    $src2,$dst\t! long" %}
  7376   opcode(Assembler::sub_op3, Assembler::arith_op);
  7377   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7378   ins_pipe(ialu_zero_reg);
  7379 %}
  7381 // Multiplication Instructions
  7382 // Integer Multiplication
  7383 // Register Multiplication
  7384 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7385   match(Set dst (MulI src1 src2));
  7387   size(4);
  7388   format %{ "MULX   $src1,$src2,$dst" %}
  7389   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7390   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7391   ins_pipe(imul_reg_reg);
  7392 %}
  7394 // Immediate Multiplication
  7395 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7396   match(Set dst (MulI src1 src2));
  7398   size(4);
  7399   format %{ "MULX   $src1,$src2,$dst" %}
  7400   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7401   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7402   ins_pipe(imul_reg_imm);
  7403 %}
  7405 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7406   match(Set dst (MulL src1 src2));
  7407   ins_cost(DEFAULT_COST * 5);
  7408   size(4);
  7409   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7410   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7411   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7412   ins_pipe(mulL_reg_reg);
  7413 %}
  7415 // Immediate Multiplication
  7416 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7417   match(Set dst (MulL src1 src2));
  7418   ins_cost(DEFAULT_COST * 5);
  7419   size(4);
  7420   format %{ "MULX   $src1,$src2,$dst" %}
  7421   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7422   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7423   ins_pipe(mulL_reg_imm);
  7424 %}
  7426 // Integer Division
  7427 // Register Division
  7428 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7429   match(Set dst (DivI src1 src2));
  7430   ins_cost((2+71)*DEFAULT_COST);
  7432   format %{ "SRA     $src2,0,$src2\n\t"
  7433             "SRA     $src1,0,$src1\n\t"
  7434             "SDIVX   $src1,$src2,$dst" %}
  7435   ins_encode( idiv_reg( src1, src2, dst ) );
  7436   ins_pipe(sdiv_reg_reg);
  7437 %}
  7439 // Immediate Division
  7440 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7441   match(Set dst (DivI src1 src2));
  7442   ins_cost((2+71)*DEFAULT_COST);
  7444   format %{ "SRA     $src1,0,$src1\n\t"
  7445             "SDIVX   $src1,$src2,$dst" %}
  7446   ins_encode( idiv_imm( src1, src2, dst ) );
  7447   ins_pipe(sdiv_reg_imm);
  7448 %}
  7450 //----------Div-By-10-Expansion------------------------------------------------
  7451 // Extract hi bits of a 32x32->64 bit multiply.
  7452 // Expand rule only, not matched
  7453 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7454   effect( DEF dst, USE src1, USE src2 );
  7455   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7456             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7457   ins_encode( enc_mul_hi(dst,src1,src2));
  7458   ins_pipe(sdiv_reg_reg);
  7459 %}
  7461 // Magic constant, reciprocal of 10
  7462 instruct loadConI_x66666667(iRegIsafe dst) %{
  7463   effect( DEF dst );
  7465   size(8);
  7466   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7467   ins_encode( Set32(0x66666667, dst) );
  7468   ins_pipe(ialu_hi_lo_reg);
  7469 %}
  7471 // Register Shift Right Arithmetic Long by 32-63
  7472 instruct sra_31( iRegI dst, iRegI src ) %{
  7473   effect( DEF dst, USE src );
  7474   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7475   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7476   ins_pipe(ialu_reg_reg);
  7477 %}
  7479 // Arithmetic Shift Right by 8-bit immediate
  7480 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7481   effect( DEF dst, USE src );
  7482   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7483   opcode(Assembler::sra_op3, Assembler::arith_op);
  7484   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7485   ins_pipe(ialu_reg_imm);
  7486 %}
  7488 // Integer DIV with 10
  7489 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7490   match(Set dst (DivI src div));
  7491   ins_cost((6+6)*DEFAULT_COST);
  7492   expand %{
  7493     iRegIsafe tmp1;               // Killed temps;
  7494     iRegIsafe tmp2;               // Killed temps;
  7495     iRegI tmp3;                   // Killed temps;
  7496     iRegI tmp4;                   // Killed temps;
  7497     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7498     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7499     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7500     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7501     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7502   %}
  7503 %}
  7505 // Register Long Division
  7506 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7507   match(Set dst (DivL src1 src2));
  7508   ins_cost(DEFAULT_COST*71);
  7509   size(4);
  7510   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7511   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7512   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7513   ins_pipe(divL_reg_reg);
  7514 %}
  7516 // Register Long Division
  7517 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7518   match(Set dst (DivL src1 src2));
  7519   ins_cost(DEFAULT_COST*71);
  7520   size(4);
  7521   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7522   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7523   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7524   ins_pipe(divL_reg_imm);
  7525 %}
  7527 // Integer Remainder
  7528 // Register Remainder
  7529 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7530   match(Set dst (ModI src1 src2));
  7531   effect( KILL ccr, KILL temp);
  7533   format %{ "SREM   $src1,$src2,$dst" %}
  7534   ins_encode( irem_reg(src1, src2, dst, temp) );
  7535   ins_pipe(sdiv_reg_reg);
  7536 %}
  7538 // Immediate Remainder
  7539 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7540   match(Set dst (ModI src1 src2));
  7541   effect( KILL ccr, KILL temp);
  7543   format %{ "SREM   $src1,$src2,$dst" %}
  7544   ins_encode( irem_imm(src1, src2, dst, temp) );
  7545   ins_pipe(sdiv_reg_imm);
  7546 %}
  7548 // Register Long Remainder
  7549 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7550   effect(DEF dst, USE src1, USE src2);
  7551   size(4);
  7552   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7553   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7554   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7555   ins_pipe(divL_reg_reg);
  7556 %}
  7558 // Register Long Division
  7559 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7560   effect(DEF dst, USE src1, USE src2);
  7561   size(4);
  7562   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7563   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7564   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7565   ins_pipe(divL_reg_imm);
  7566 %}
  7568 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7569   effect(DEF dst, USE src1, USE src2);
  7570   size(4);
  7571   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7572   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7573   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7574   ins_pipe(mulL_reg_reg);
  7575 %}
  7577 // Immediate Multiplication
  7578 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7579   effect(DEF dst, USE src1, USE src2);
  7580   size(4);
  7581   format %{ "MULX   $src1,$src2,$dst" %}
  7582   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7583   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7584   ins_pipe(mulL_reg_imm);
  7585 %}
  7587 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7588   effect(DEF dst, USE src1, USE src2);
  7589   size(4);
  7590   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7591   opcode(Assembler::sub_op3, Assembler::arith_op);
  7592   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7593   ins_pipe(ialu_reg_reg);
  7594 %}
  7596 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7597   effect(DEF dst, USE src1, USE src2);
  7598   size(4);
  7599   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7600   opcode(Assembler::sub_op3, Assembler::arith_op);
  7601   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7602   ins_pipe(ialu_reg_reg);
  7603 %}
  7605 // Register Long Remainder
  7606 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7607   match(Set dst (ModL src1 src2));
  7608   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7609   expand %{
  7610     iRegL tmp1;
  7611     iRegL tmp2;
  7612     divL_reg_reg_1(tmp1, src1, src2);
  7613     mulL_reg_reg_1(tmp2, tmp1, src2);
  7614     subL_reg_reg_1(dst,  src1, tmp2);
  7615   %}
  7616 %}
  7618 // Register Long Remainder
  7619 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7620   match(Set dst (ModL src1 src2));
  7621   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7622   expand %{
  7623     iRegL tmp1;
  7624     iRegL tmp2;
  7625     divL_reg_imm13_1(tmp1, src1, src2);
  7626     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7627     subL_reg_reg_2  (dst,  src1, tmp2);
  7628   %}
  7629 %}
  7631 // Integer Shift Instructions
  7632 // Register Shift Left
  7633 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7634   match(Set dst (LShiftI src1 src2));
  7636   size(4);
  7637   format %{ "SLL    $src1,$src2,$dst" %}
  7638   opcode(Assembler::sll_op3, Assembler::arith_op);
  7639   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7640   ins_pipe(ialu_reg_reg);
  7641 %}
  7643 // Register Shift Left Immediate
  7644 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7645   match(Set dst (LShiftI src1 src2));
  7647   size(4);
  7648   format %{ "SLL    $src1,$src2,$dst" %}
  7649   opcode(Assembler::sll_op3, Assembler::arith_op);
  7650   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7651   ins_pipe(ialu_reg_imm);
  7652 %}
  7654 // Register Shift Left
  7655 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7656   match(Set dst (LShiftL src1 src2));
  7658   size(4);
  7659   format %{ "SLLX   $src1,$src2,$dst" %}
  7660   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7661   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7662   ins_pipe(ialu_reg_reg);
  7663 %}
  7665 // Register Shift Left Immediate
  7666 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7667   match(Set dst (LShiftL src1 src2));
  7669   size(4);
  7670   format %{ "SLLX   $src1,$src2,$dst" %}
  7671   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7672   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7673   ins_pipe(ialu_reg_imm);
  7674 %}
  7676 // Register Arithmetic Shift Right
  7677 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7678   match(Set dst (RShiftI src1 src2));
  7679   size(4);
  7680   format %{ "SRA    $src1,$src2,$dst" %}
  7681   opcode(Assembler::sra_op3, Assembler::arith_op);
  7682   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7683   ins_pipe(ialu_reg_reg);
  7684 %}
  7686 // Register Arithmetic Shift Right Immediate
  7687 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7688   match(Set dst (RShiftI src1 src2));
  7690   size(4);
  7691   format %{ "SRA    $src1,$src2,$dst" %}
  7692   opcode(Assembler::sra_op3, Assembler::arith_op);
  7693   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7694   ins_pipe(ialu_reg_imm);
  7695 %}
  7697 // Register Shift Right Arithmatic Long
  7698 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7699   match(Set dst (RShiftL src1 src2));
  7701   size(4);
  7702   format %{ "SRAX   $src1,$src2,$dst" %}
  7703   opcode(Assembler::srax_op3, Assembler::arith_op);
  7704   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7705   ins_pipe(ialu_reg_reg);
  7706 %}
  7708 // Register Shift Left Immediate
  7709 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7710   match(Set dst (RShiftL src1 src2));
  7712   size(4);
  7713   format %{ "SRAX   $src1,$src2,$dst" %}
  7714   opcode(Assembler::srax_op3, Assembler::arith_op);
  7715   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7716   ins_pipe(ialu_reg_imm);
  7717 %}
  7719 // Register Shift Right
  7720 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7721   match(Set dst (URShiftI src1 src2));
  7723   size(4);
  7724   format %{ "SRL    $src1,$src2,$dst" %}
  7725   opcode(Assembler::srl_op3, Assembler::arith_op);
  7726   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7727   ins_pipe(ialu_reg_reg);
  7728 %}
  7730 // Register Shift Right Immediate
  7731 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7732   match(Set dst (URShiftI src1 src2));
  7734   size(4);
  7735   format %{ "SRL    $src1,$src2,$dst" %}
  7736   opcode(Assembler::srl_op3, Assembler::arith_op);
  7737   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7738   ins_pipe(ialu_reg_imm);
  7739 %}
  7741 // Register Shift Right
  7742 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7743   match(Set dst (URShiftL src1 src2));
  7745   size(4);
  7746   format %{ "SRLX   $src1,$src2,$dst" %}
  7747   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7748   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7749   ins_pipe(ialu_reg_reg);
  7750 %}
  7752 // Register Shift Right Immediate
  7753 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7754   match(Set dst (URShiftL src1 src2));
  7756   size(4);
  7757   format %{ "SRLX   $src1,$src2,$dst" %}
  7758   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7759   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7760   ins_pipe(ialu_reg_imm);
  7761 %}
  7763 // Register Shift Right Immediate with a CastP2X
  7764 #ifdef _LP64
  7765 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7766   match(Set dst (URShiftL (CastP2X src1) src2));
  7767   size(4);
  7768   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7769   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7770   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7771   ins_pipe(ialu_reg_imm);
  7772 %}
  7773 #else
  7774 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7775   match(Set dst (URShiftI (CastP2X src1) src2));
  7776   size(4);
  7777   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7778   opcode(Assembler::srl_op3, Assembler::arith_op);
  7779   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7780   ins_pipe(ialu_reg_imm);
  7781 %}
  7782 #endif
  7785 //----------Floating Point Arithmetic Instructions-----------------------------
  7787 //  Add float single precision
  7788 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7789   match(Set dst (AddF src1 src2));
  7791   size(4);
  7792   format %{ "FADDS  $src1,$src2,$dst" %}
  7793   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7794   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7795   ins_pipe(faddF_reg_reg);
  7796 %}
  7798 //  Add float double precision
  7799 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7800   match(Set dst (AddD src1 src2));
  7802   size(4);
  7803   format %{ "FADDD  $src1,$src2,$dst" %}
  7804   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7805   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7806   ins_pipe(faddD_reg_reg);
  7807 %}
  7809 //  Sub float single precision
  7810 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7811   match(Set dst (SubF src1 src2));
  7813   size(4);
  7814   format %{ "FSUBS  $src1,$src2,$dst" %}
  7815   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7816   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7817   ins_pipe(faddF_reg_reg);
  7818 %}
  7820 //  Sub float double precision
  7821 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7822   match(Set dst (SubD src1 src2));
  7824   size(4);
  7825   format %{ "FSUBD  $src1,$src2,$dst" %}
  7826   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7827   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7828   ins_pipe(faddD_reg_reg);
  7829 %}
  7831 //  Mul float single precision
  7832 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7833   match(Set dst (MulF src1 src2));
  7835   size(4);
  7836   format %{ "FMULS  $src1,$src2,$dst" %}
  7837   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7838   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7839   ins_pipe(fmulF_reg_reg);
  7840 %}
  7842 //  Mul float double precision
  7843 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7844   match(Set dst (MulD src1 src2));
  7846   size(4);
  7847   format %{ "FMULD  $src1,$src2,$dst" %}
  7848   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7849   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7850   ins_pipe(fmulD_reg_reg);
  7851 %}
  7853 //  Div float single precision
  7854 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7855   match(Set dst (DivF src1 src2));
  7857   size(4);
  7858   format %{ "FDIVS  $src1,$src2,$dst" %}
  7859   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7860   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7861   ins_pipe(fdivF_reg_reg);
  7862 %}
  7864 //  Div float double precision
  7865 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7866   match(Set dst (DivD src1 src2));
  7868   size(4);
  7869   format %{ "FDIVD  $src1,$src2,$dst" %}
  7870   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7871   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7872   ins_pipe(fdivD_reg_reg);
  7873 %}
  7875 //  Absolute float double precision
  7876 instruct absD_reg(regD dst, regD src) %{
  7877   match(Set dst (AbsD src));
  7879   format %{ "FABSd  $src,$dst" %}
  7880   ins_encode(fabsd(dst, src));
  7881   ins_pipe(faddD_reg);
  7882 %}
  7884 //  Absolute float single precision
  7885 instruct absF_reg(regF dst, regF src) %{
  7886   match(Set dst (AbsF src));
  7888   format %{ "FABSs  $src,$dst" %}
  7889   ins_encode(fabss(dst, src));
  7890   ins_pipe(faddF_reg);
  7891 %}
  7893 instruct negF_reg(regF dst, regF src) %{
  7894   match(Set dst (NegF src));
  7896   size(4);
  7897   format %{ "FNEGs  $src,$dst" %}
  7898   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7899   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7900   ins_pipe(faddF_reg);
  7901 %}
  7903 instruct negD_reg(regD dst, regD src) %{
  7904   match(Set dst (NegD src));
  7906   format %{ "FNEGd  $src,$dst" %}
  7907   ins_encode(fnegd(dst, src));
  7908   ins_pipe(faddD_reg);
  7909 %}
  7911 //  Sqrt float double precision
  7912 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7913   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7915   size(4);
  7916   format %{ "FSQRTS $src,$dst" %}
  7917   ins_encode(fsqrts(dst, src));
  7918   ins_pipe(fdivF_reg_reg);
  7919 %}
  7921 //  Sqrt float double precision
  7922 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7923   match(Set dst (SqrtD src));
  7925   size(4);
  7926   format %{ "FSQRTD $src,$dst" %}
  7927   ins_encode(fsqrtd(dst, src));
  7928   ins_pipe(fdivD_reg_reg);
  7929 %}
  7931 //----------Logical Instructions-----------------------------------------------
  7932 // And Instructions
  7933 // Register And
  7934 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7935   match(Set dst (AndI src1 src2));
  7937   size(4);
  7938   format %{ "AND    $src1,$src2,$dst" %}
  7939   opcode(Assembler::and_op3, Assembler::arith_op);
  7940   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7941   ins_pipe(ialu_reg_reg);
  7942 %}
  7944 // Immediate And
  7945 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7946   match(Set dst (AndI src1 src2));
  7948   size(4);
  7949   format %{ "AND    $src1,$src2,$dst" %}
  7950   opcode(Assembler::and_op3, Assembler::arith_op);
  7951   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7952   ins_pipe(ialu_reg_imm);
  7953 %}
  7955 // Register And Long
  7956 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7957   match(Set dst (AndL src1 src2));
  7959   ins_cost(DEFAULT_COST);
  7960   size(4);
  7961   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7962   opcode(Assembler::and_op3, Assembler::arith_op);
  7963   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7964   ins_pipe(ialu_reg_reg);
  7965 %}
  7967 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7968   match(Set dst (AndL src1 con));
  7970   ins_cost(DEFAULT_COST);
  7971   size(4);
  7972   format %{ "AND    $src1,$con,$dst\t! long" %}
  7973   opcode(Assembler::and_op3, Assembler::arith_op);
  7974   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7975   ins_pipe(ialu_reg_imm);
  7976 %}
  7978 // Or Instructions
  7979 // Register Or
  7980 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7981   match(Set dst (OrI src1 src2));
  7983   size(4);
  7984   format %{ "OR     $src1,$src2,$dst" %}
  7985   opcode(Assembler::or_op3, Assembler::arith_op);
  7986   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7987   ins_pipe(ialu_reg_reg);
  7988 %}
  7990 // Immediate Or
  7991 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7992   match(Set dst (OrI src1 src2));
  7994   size(4);
  7995   format %{ "OR     $src1,$src2,$dst" %}
  7996   opcode(Assembler::or_op3, Assembler::arith_op);
  7997   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7998   ins_pipe(ialu_reg_imm);
  7999 %}
  8001 // Register Or Long
  8002 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8003   match(Set dst (OrL src1 src2));
  8005   ins_cost(DEFAULT_COST);
  8006   size(4);
  8007   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8008   opcode(Assembler::or_op3, Assembler::arith_op);
  8009   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8010   ins_pipe(ialu_reg_reg);
  8011 %}
  8013 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8014   match(Set dst (OrL src1 con));
  8015   ins_cost(DEFAULT_COST*2);
  8017   ins_cost(DEFAULT_COST);
  8018   size(4);
  8019   format %{ "OR     $src1,$con,$dst\t! long" %}
  8020   opcode(Assembler::or_op3, Assembler::arith_op);
  8021   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8022   ins_pipe(ialu_reg_imm);
  8023 %}
  8025 #ifndef _LP64
  8027 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8028 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8029   match(Set dst (OrI src1 (CastP2X src2)));
  8031   size(4);
  8032   format %{ "OR     $src1,$src2,$dst" %}
  8033   opcode(Assembler::or_op3, Assembler::arith_op);
  8034   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8035   ins_pipe(ialu_reg_reg);
  8036 %}
  8038 #else
  8040 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8041   match(Set dst (OrL src1 (CastP2X src2)));
  8043   ins_cost(DEFAULT_COST);
  8044   size(4);
  8045   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8046   opcode(Assembler::or_op3, Assembler::arith_op);
  8047   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8048   ins_pipe(ialu_reg_reg);
  8049 %}
  8051 #endif
  8053 // Xor Instructions
  8054 // Register Xor
  8055 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8056   match(Set dst (XorI src1 src2));
  8058   size(4);
  8059   format %{ "XOR    $src1,$src2,$dst" %}
  8060   opcode(Assembler::xor_op3, Assembler::arith_op);
  8061   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8062   ins_pipe(ialu_reg_reg);
  8063 %}
  8065 // Immediate Xor
  8066 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8067   match(Set dst (XorI src1 src2));
  8069   size(4);
  8070   format %{ "XOR    $src1,$src2,$dst" %}
  8071   opcode(Assembler::xor_op3, Assembler::arith_op);
  8072   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8073   ins_pipe(ialu_reg_imm);
  8074 %}
  8076 // Register Xor Long
  8077 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8078   match(Set dst (XorL src1 src2));
  8080   ins_cost(DEFAULT_COST);
  8081   size(4);
  8082   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8083   opcode(Assembler::xor_op3, Assembler::arith_op);
  8084   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8085   ins_pipe(ialu_reg_reg);
  8086 %}
  8088 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8089   match(Set dst (XorL src1 con));
  8091   ins_cost(DEFAULT_COST);
  8092   size(4);
  8093   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8094   opcode(Assembler::xor_op3, Assembler::arith_op);
  8095   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8096   ins_pipe(ialu_reg_imm);
  8097 %}
  8099 //----------Convert to Boolean-------------------------------------------------
  8100 // Nice hack for 32-bit tests but doesn't work for
  8101 // 64-bit pointers.
  8102 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8103   match(Set dst (Conv2B src));
  8104   effect( KILL ccr );
  8105   ins_cost(DEFAULT_COST*2);
  8106   format %{ "CMP    R_G0,$src\n\t"
  8107             "ADDX   R_G0,0,$dst" %}
  8108   ins_encode( enc_to_bool( src, dst ) );
  8109   ins_pipe(ialu_reg_ialu);
  8110 %}
  8112 #ifndef _LP64
  8113 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8114   match(Set dst (Conv2B src));
  8115   effect( KILL ccr );
  8116   ins_cost(DEFAULT_COST*2);
  8117   format %{ "CMP    R_G0,$src\n\t"
  8118             "ADDX   R_G0,0,$dst" %}
  8119   ins_encode( enc_to_bool( src, dst ) );
  8120   ins_pipe(ialu_reg_ialu);
  8121 %}
  8122 #else
  8123 instruct convP2B( iRegI dst, iRegP src ) %{
  8124   match(Set dst (Conv2B src));
  8125   ins_cost(DEFAULT_COST*2);
  8126   format %{ "MOV    $src,$dst\n\t"
  8127             "MOVRNZ $src,1,$dst" %}
  8128   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8129   ins_pipe(ialu_clr_and_mover);
  8130 %}
  8131 #endif
  8133 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8134   match(Set dst (CmpLTMask src zero));
  8135   effect(KILL ccr);
  8136   size(4);
  8137   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8138   ins_encode %{
  8139     __ sra($src$$Register, 31, $dst$$Register);
  8140   %}
  8141   ins_pipe(ialu_reg_imm);
  8142 %}
  8144 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8145   match(Set dst (CmpLTMask p q));
  8146   effect( KILL ccr );
  8147   ins_cost(DEFAULT_COST*4);
  8148   format %{ "CMP    $p,$q\n\t"
  8149             "MOV    #0,$dst\n\t"
  8150             "BLT,a  .+8\n\t"
  8151             "MOV    #-1,$dst" %}
  8152   ins_encode( enc_ltmask(p,q,dst) );
  8153   ins_pipe(ialu_reg_reg_ialu);
  8154 %}
  8156 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8157   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8158   effect(KILL ccr, TEMP tmp);
  8159   ins_cost(DEFAULT_COST*3);
  8161   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8162             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8163             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8164   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8165   ins_pipe( cadd_cmpltmask );
  8166 %}
  8169 //-----------------------------------------------------------------
  8170 // Direct raw moves between float and general registers using VIS3.
  8172 //  ins_pipe(faddF_reg);
  8173 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8174   predicate(UseVIS >= 3);
  8175   match(Set dst (MoveF2I src));
  8177   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8178   ins_encode %{
  8179     __ movstouw($src$$FloatRegister, $dst$$Register);
  8180   %}
  8181   ins_pipe(ialu_reg_reg);
  8182 %}
  8184 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8185   predicate(UseVIS >= 3);
  8186   match(Set dst (MoveI2F src));
  8188   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8189   ins_encode %{
  8190     __ movwtos($src$$Register, $dst$$FloatRegister);
  8191   %}
  8192   ins_pipe(ialu_reg_reg);
  8193 %}
  8195 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8196   predicate(UseVIS >= 3);
  8197   match(Set dst (MoveD2L src));
  8199   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8200   ins_encode %{
  8201     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8202   %}
  8203   ins_pipe(ialu_reg_reg);
  8204 %}
  8206 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8207   predicate(UseVIS >= 3);
  8208   match(Set dst (MoveL2D src));
  8210   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8211   ins_encode %{
  8212     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8213   %}
  8214   ins_pipe(ialu_reg_reg);
  8215 %}
  8218 // Raw moves between float and general registers using stack.
  8220 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8221   match(Set dst (MoveF2I src));
  8222   effect(DEF dst, USE src);
  8223   ins_cost(MEMORY_REF_COST);
  8225   size(4);
  8226   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8227   opcode(Assembler::lduw_op3);
  8228   ins_encode(simple_form3_mem_reg( src, dst ) );
  8229   ins_pipe(iload_mem);
  8230 %}
  8232 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8233   match(Set dst (MoveI2F src));
  8234   effect(DEF dst, USE src);
  8235   ins_cost(MEMORY_REF_COST);
  8237   size(4);
  8238   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8239   opcode(Assembler::ldf_op3);
  8240   ins_encode(simple_form3_mem_reg(src, dst));
  8241   ins_pipe(floadF_stk);
  8242 %}
  8244 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8245   match(Set dst (MoveD2L src));
  8246   effect(DEF dst, USE src);
  8247   ins_cost(MEMORY_REF_COST);
  8249   size(4);
  8250   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8251   opcode(Assembler::ldx_op3);
  8252   ins_encode(simple_form3_mem_reg( src, dst ) );
  8253   ins_pipe(iload_mem);
  8254 %}
  8256 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8257   match(Set dst (MoveL2D src));
  8258   effect(DEF dst, USE src);
  8259   ins_cost(MEMORY_REF_COST);
  8261   size(4);
  8262   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8263   opcode(Assembler::lddf_op3);
  8264   ins_encode(simple_form3_mem_reg(src, dst));
  8265   ins_pipe(floadD_stk);
  8266 %}
  8268 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8269   match(Set dst (MoveF2I src));
  8270   effect(DEF dst, USE src);
  8271   ins_cost(MEMORY_REF_COST);
  8273   size(4);
  8274   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8275   opcode(Assembler::stf_op3);
  8276   ins_encode(simple_form3_mem_reg(dst, src));
  8277   ins_pipe(fstoreF_stk_reg);
  8278 %}
  8280 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8281   match(Set dst (MoveI2F src));
  8282   effect(DEF dst, USE src);
  8283   ins_cost(MEMORY_REF_COST);
  8285   size(4);
  8286   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8287   opcode(Assembler::stw_op3);
  8288   ins_encode(simple_form3_mem_reg( dst, src ) );
  8289   ins_pipe(istore_mem_reg);
  8290 %}
  8292 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8293   match(Set dst (MoveD2L src));
  8294   effect(DEF dst, USE src);
  8295   ins_cost(MEMORY_REF_COST);
  8297   size(4);
  8298   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8299   opcode(Assembler::stdf_op3);
  8300   ins_encode(simple_form3_mem_reg(dst, src));
  8301   ins_pipe(fstoreD_stk_reg);
  8302 %}
  8304 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8305   match(Set dst (MoveL2D src));
  8306   effect(DEF dst, USE src);
  8307   ins_cost(MEMORY_REF_COST);
  8309   size(4);
  8310   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8311   opcode(Assembler::stx_op3);
  8312   ins_encode(simple_form3_mem_reg( dst, src ) );
  8313   ins_pipe(istore_mem_reg);
  8314 %}
  8317 //----------Arithmetic Conversion Instructions---------------------------------
  8318 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8320 instruct convD2F_reg(regF dst, regD src) %{
  8321   match(Set dst (ConvD2F src));
  8322   size(4);
  8323   format %{ "FDTOS  $src,$dst" %}
  8324   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8325   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8326   ins_pipe(fcvtD2F);
  8327 %}
  8330 // Convert a double to an int in a float register.
  8331 // If the double is a NAN, stuff a zero in instead.
  8332 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8333   effect(DEF dst, USE src, KILL fcc0);
  8334   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8335             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8336             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8337             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8338             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8339       "skip:" %}
  8340   ins_encode(form_d2i_helper(src,dst));
  8341   ins_pipe(fcvtD2I);
  8342 %}
  8344 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8345   match(Set dst (ConvD2I src));
  8346   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8347   expand %{
  8348     regF tmp;
  8349     convD2I_helper(tmp, src);
  8350     regF_to_stkI(dst, tmp);
  8351   %}
  8352 %}
  8354 instruct convD2I_reg(iRegI dst, regD src) %{
  8355   predicate(UseVIS >= 3);
  8356   match(Set dst (ConvD2I src));
  8357   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8358   expand %{
  8359     regF tmp;
  8360     convD2I_helper(tmp, src);
  8361     MoveF2I_reg_reg(dst, tmp);
  8362   %}
  8363 %}
  8366 // Convert a double to a long in a double register.
  8367 // If the double is a NAN, stuff a zero in instead.
  8368 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8369   effect(DEF dst, USE src, KILL fcc0);
  8370   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8371             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8372             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8373             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8374             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8375       "skip:" %}
  8376   ins_encode(form_d2l_helper(src,dst));
  8377   ins_pipe(fcvtD2L);
  8378 %}
  8380 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8381   match(Set dst (ConvD2L src));
  8382   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8383   expand %{
  8384     regD tmp;
  8385     convD2L_helper(tmp, src);
  8386     regD_to_stkL(dst, tmp);
  8387   %}
  8388 %}
  8390 instruct convD2L_reg(iRegL dst, regD src) %{
  8391   predicate(UseVIS >= 3);
  8392   match(Set dst (ConvD2L src));
  8393   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8394   expand %{
  8395     regD tmp;
  8396     convD2L_helper(tmp, src);
  8397     MoveD2L_reg_reg(dst, tmp);
  8398   %}
  8399 %}
  8402 instruct convF2D_reg(regD dst, regF src) %{
  8403   match(Set dst (ConvF2D src));
  8404   format %{ "FSTOD  $src,$dst" %}
  8405   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8406   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8407   ins_pipe(fcvtF2D);
  8408 %}
  8411 // Convert a float to an int in a float register.
  8412 // If the float is a NAN, stuff a zero in instead.
  8413 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8414   effect(DEF dst, USE src, KILL fcc0);
  8415   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8416             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8417             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8418             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8419             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8420       "skip:" %}
  8421   ins_encode(form_f2i_helper(src,dst));
  8422   ins_pipe(fcvtF2I);
  8423 %}
  8425 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8426   match(Set dst (ConvF2I src));
  8427   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8428   expand %{
  8429     regF tmp;
  8430     convF2I_helper(tmp, src);
  8431     regF_to_stkI(dst, tmp);
  8432   %}
  8433 %}
  8435 instruct convF2I_reg(iRegI dst, regF src) %{
  8436   predicate(UseVIS >= 3);
  8437   match(Set dst (ConvF2I src));
  8438   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8439   expand %{
  8440     regF tmp;
  8441     convF2I_helper(tmp, src);
  8442     MoveF2I_reg_reg(dst, tmp);
  8443   %}
  8444 %}
  8447 // Convert a float to a long in a float register.
  8448 // If the float is a NAN, stuff a zero in instead.
  8449 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8450   effect(DEF dst, USE src, KILL fcc0);
  8451   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8452             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8453             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8454             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8455             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8456       "skip:" %}
  8457   ins_encode(form_f2l_helper(src,dst));
  8458   ins_pipe(fcvtF2L);
  8459 %}
  8461 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8462   match(Set dst (ConvF2L src));
  8463   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8464   expand %{
  8465     regD tmp;
  8466     convF2L_helper(tmp, src);
  8467     regD_to_stkL(dst, tmp);
  8468   %}
  8469 %}
  8471 instruct convF2L_reg(iRegL dst, regF src) %{
  8472   predicate(UseVIS >= 3);
  8473   match(Set dst (ConvF2L src));
  8474   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8475   expand %{
  8476     regD tmp;
  8477     convF2L_helper(tmp, src);
  8478     MoveD2L_reg_reg(dst, tmp);
  8479   %}
  8480 %}
  8483 instruct convI2D_helper(regD dst, regF tmp) %{
  8484   effect(USE tmp, DEF dst);
  8485   format %{ "FITOD  $tmp,$dst" %}
  8486   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8487   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8488   ins_pipe(fcvtI2D);
  8489 %}
  8491 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8492   match(Set dst (ConvI2D src));
  8493   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8494   expand %{
  8495     regF tmp;
  8496     stkI_to_regF(tmp, src);
  8497     convI2D_helper(dst, tmp);
  8498   %}
  8499 %}
  8501 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8502   predicate(UseVIS >= 3);
  8503   match(Set dst (ConvI2D src));
  8504   expand %{
  8505     regF tmp;
  8506     MoveI2F_reg_reg(tmp, src);
  8507     convI2D_helper(dst, tmp);
  8508   %}
  8509 %}
  8511 instruct convI2D_mem(regD_low dst, memory mem) %{
  8512   match(Set dst (ConvI2D (LoadI mem)));
  8513   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8514   size(8);
  8515   format %{ "LDF    $mem,$dst\n\t"
  8516             "FITOD  $dst,$dst" %}
  8517   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8518   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8519   ins_pipe(floadF_mem);
  8520 %}
  8523 instruct convI2F_helper(regF dst, regF tmp) %{
  8524   effect(DEF dst, USE tmp);
  8525   format %{ "FITOS  $tmp,$dst" %}
  8526   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8527   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8528   ins_pipe(fcvtI2F);
  8529 %}
  8531 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8532   match(Set dst (ConvI2F src));
  8533   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8534   expand %{
  8535     regF tmp;
  8536     stkI_to_regF(tmp,src);
  8537     convI2F_helper(dst, tmp);
  8538   %}
  8539 %}
  8541 instruct convI2F_reg(regF dst, iRegI src) %{
  8542   predicate(UseVIS >= 3);
  8543   match(Set dst (ConvI2F src));
  8544   ins_cost(DEFAULT_COST);
  8545   expand %{
  8546     regF tmp;
  8547     MoveI2F_reg_reg(tmp, src);
  8548     convI2F_helper(dst, tmp);
  8549   %}
  8550 %}
  8552 instruct convI2F_mem( regF dst, memory mem ) %{
  8553   match(Set dst (ConvI2F (LoadI mem)));
  8554   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8555   size(8);
  8556   format %{ "LDF    $mem,$dst\n\t"
  8557             "FITOS  $dst,$dst" %}
  8558   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8559   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8560   ins_pipe(floadF_mem);
  8561 %}
  8564 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8565   match(Set dst (ConvI2L src));
  8566   size(4);
  8567   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8568   opcode(Assembler::sra_op3, Assembler::arith_op);
  8569   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8570   ins_pipe(ialu_reg_reg);
  8571 %}
  8573 // Zero-extend convert int to long
  8574 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8575   match(Set dst (AndL (ConvI2L src) mask) );
  8576   size(4);
  8577   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8578   opcode(Assembler::srl_op3, Assembler::arith_op);
  8579   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8580   ins_pipe(ialu_reg_reg);
  8581 %}
  8583 // Zero-extend long
  8584 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8585   match(Set dst (AndL src mask) );
  8586   size(4);
  8587   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8588   opcode(Assembler::srl_op3, Assembler::arith_op);
  8589   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8590   ins_pipe(ialu_reg_reg);
  8591 %}
  8594 //-----------
  8595 // Long to Double conversion using V8 opcodes.
  8596 // Still useful because cheetah traps and becomes
  8597 // amazingly slow for some common numbers.
  8599 // Magic constant, 0x43300000
  8600 instruct loadConI_x43300000(iRegI dst) %{
  8601   effect(DEF dst);
  8602   size(4);
  8603   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8604   ins_encode(SetHi22(0x43300000, dst));
  8605   ins_pipe(ialu_none);
  8606 %}
  8608 // Magic constant, 0x41f00000
  8609 instruct loadConI_x41f00000(iRegI dst) %{
  8610   effect(DEF dst);
  8611   size(4);
  8612   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8613   ins_encode(SetHi22(0x41f00000, dst));
  8614   ins_pipe(ialu_none);
  8615 %}
  8617 // Construct a double from two float halves
  8618 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8619   effect(DEF dst, USE src1, USE src2);
  8620   size(8);
  8621   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8622             "FMOVS  $src2.lo,$dst.lo" %}
  8623   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8624   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8625   ins_pipe(faddD_reg_reg);
  8626 %}
  8628 // Convert integer in high half of a double register (in the lower half of
  8629 // the double register file) to double
  8630 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8631   effect(DEF dst, USE src);
  8632   size(4);
  8633   format %{ "FITOD  $src,$dst" %}
  8634   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8635   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8636   ins_pipe(fcvtLHi2D);
  8637 %}
  8639 // Add float double precision
  8640 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8641   effect(DEF dst, USE src1, USE src2);
  8642   size(4);
  8643   format %{ "FADDD  $src1,$src2,$dst" %}
  8644   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8645   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8646   ins_pipe(faddD_reg_reg);
  8647 %}
  8649 // Sub float double precision
  8650 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8651   effect(DEF dst, USE src1, USE src2);
  8652   size(4);
  8653   format %{ "FSUBD  $src1,$src2,$dst" %}
  8654   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8655   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8656   ins_pipe(faddD_reg_reg);
  8657 %}
  8659 // Mul float double precision
  8660 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8661   effect(DEF dst, USE src1, USE src2);
  8662   size(4);
  8663   format %{ "FMULD  $src1,$src2,$dst" %}
  8664   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8665   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8666   ins_pipe(fmulD_reg_reg);
  8667 %}
  8669 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8670   match(Set dst (ConvL2D src));
  8671   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8673   expand %{
  8674     regD_low   tmpsrc;
  8675     iRegI      ix43300000;
  8676     iRegI      ix41f00000;
  8677     stackSlotL lx43300000;
  8678     stackSlotL lx41f00000;
  8679     regD_low   dx43300000;
  8680     regD       dx41f00000;
  8681     regD       tmp1;
  8682     regD_low   tmp2;
  8683     regD       tmp3;
  8684     regD       tmp4;
  8686     stkL_to_regD(tmpsrc, src);
  8688     loadConI_x43300000(ix43300000);
  8689     loadConI_x41f00000(ix41f00000);
  8690     regI_to_stkLHi(lx43300000, ix43300000);
  8691     regI_to_stkLHi(lx41f00000, ix41f00000);
  8692     stkL_to_regD(dx43300000, lx43300000);
  8693     stkL_to_regD(dx41f00000, lx41f00000);
  8695     convI2D_regDHi_regD(tmp1, tmpsrc);
  8696     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8697     subD_regD_regD(tmp3, tmp2, dx43300000);
  8698     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8699     addD_regD_regD(dst, tmp3, tmp4);
  8700   %}
  8701 %}
  8703 // Long to Double conversion using fast fxtof
  8704 instruct convL2D_helper(regD dst, regD tmp) %{
  8705   effect(DEF dst, USE tmp);
  8706   size(4);
  8707   format %{ "FXTOD  $tmp,$dst" %}
  8708   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8709   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8710   ins_pipe(fcvtL2D);
  8711 %}
  8713 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8714   predicate(VM_Version::has_fast_fxtof());
  8715   match(Set dst (ConvL2D src));
  8716   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8717   expand %{
  8718     regD tmp;
  8719     stkL_to_regD(tmp, src);
  8720     convL2D_helper(dst, tmp);
  8721   %}
  8722 %}
  8724 instruct convL2D_reg(regD dst, iRegL src) %{
  8725   predicate(UseVIS >= 3);
  8726   match(Set dst (ConvL2D src));
  8727   expand %{
  8728     regD tmp;
  8729     MoveL2D_reg_reg(tmp, src);
  8730     convL2D_helper(dst, tmp);
  8731   %}
  8732 %}
  8734 // Long to Float conversion using fast fxtof
  8735 instruct convL2F_helper(regF dst, regD tmp) %{
  8736   effect(DEF dst, USE tmp);
  8737   size(4);
  8738   format %{ "FXTOS  $tmp,$dst" %}
  8739   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8740   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8741   ins_pipe(fcvtL2F);
  8742 %}
  8744 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8745   match(Set dst (ConvL2F src));
  8746   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8747   expand %{
  8748     regD tmp;
  8749     stkL_to_regD(tmp, src);
  8750     convL2F_helper(dst, tmp);
  8751   %}
  8752 %}
  8754 instruct convL2F_reg(regF dst, iRegL src) %{
  8755   predicate(UseVIS >= 3);
  8756   match(Set dst (ConvL2F src));
  8757   ins_cost(DEFAULT_COST);
  8758   expand %{
  8759     regD tmp;
  8760     MoveL2D_reg_reg(tmp, src);
  8761     convL2F_helper(dst, tmp);
  8762   %}
  8763 %}
  8765 //-----------
  8767 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8768   match(Set dst (ConvL2I src));
  8769 #ifndef _LP64
  8770   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8771   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8772   ins_pipe(ialu_move_reg_I_to_L);
  8773 #else
  8774   size(4);
  8775   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8776   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8777   ins_pipe(ialu_reg);
  8778 #endif
  8779 %}
  8781 // Register Shift Right Immediate
  8782 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8783   match(Set dst (ConvL2I (RShiftL src cnt)));
  8785   size(4);
  8786   format %{ "SRAX   $src,$cnt,$dst" %}
  8787   opcode(Assembler::srax_op3, Assembler::arith_op);
  8788   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8789   ins_pipe(ialu_reg_imm);
  8790 %}
  8792 //----------Control Flow Instructions------------------------------------------
  8793 // Compare Instructions
  8794 // Compare Integers
  8795 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8796   match(Set icc (CmpI op1 op2));
  8797   effect( DEF icc, USE op1, USE op2 );
  8799   size(4);
  8800   format %{ "CMP    $op1,$op2" %}
  8801   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8802   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8803   ins_pipe(ialu_cconly_reg_reg);
  8804 %}
  8806 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8807   match(Set icc (CmpU op1 op2));
  8809   size(4);
  8810   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8811   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8812   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8813   ins_pipe(ialu_cconly_reg_reg);
  8814 %}
  8816 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8817   match(Set icc (CmpI op1 op2));
  8818   effect( DEF icc, USE op1 );
  8820   size(4);
  8821   format %{ "CMP    $op1,$op2" %}
  8822   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8823   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8824   ins_pipe(ialu_cconly_reg_imm);
  8825 %}
  8827 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8828   match(Set icc (CmpI (AndI op1 op2) zero));
  8830   size(4);
  8831   format %{ "BTST   $op2,$op1" %}
  8832   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8833   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8834   ins_pipe(ialu_cconly_reg_reg_zero);
  8835 %}
  8837 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8838   match(Set icc (CmpI (AndI op1 op2) zero));
  8840   size(4);
  8841   format %{ "BTST   $op2,$op1" %}
  8842   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8843   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8844   ins_pipe(ialu_cconly_reg_imm_zero);
  8845 %}
  8847 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8848   match(Set xcc (CmpL op1 op2));
  8849   effect( DEF xcc, USE op1, USE op2 );
  8851   size(4);
  8852   format %{ "CMP    $op1,$op2\t\t! long" %}
  8853   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8854   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8855   ins_pipe(ialu_cconly_reg_reg);
  8856 %}
  8858 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8859   match(Set xcc (CmpL op1 con));
  8860   effect( DEF xcc, USE op1, USE con );
  8862   size(4);
  8863   format %{ "CMP    $op1,$con\t\t! long" %}
  8864   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8865   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8866   ins_pipe(ialu_cconly_reg_reg);
  8867 %}
  8869 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8870   match(Set xcc (CmpL (AndL op1 op2) zero));
  8871   effect( DEF xcc, USE op1, USE op2 );
  8873   size(4);
  8874   format %{ "BTST   $op1,$op2\t\t! long" %}
  8875   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8876   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8877   ins_pipe(ialu_cconly_reg_reg);
  8878 %}
  8880 // useful for checking the alignment of a pointer:
  8881 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8882   match(Set xcc (CmpL (AndL op1 con) zero));
  8883   effect( DEF xcc, USE op1, USE con );
  8885   size(4);
  8886   format %{ "BTST   $op1,$con\t\t! long" %}
  8887   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8888   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8889   ins_pipe(ialu_cconly_reg_reg);
  8890 %}
  8892 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8893   match(Set icc (CmpU op1 op2));
  8895   size(4);
  8896   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8897   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8898   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8899   ins_pipe(ialu_cconly_reg_imm);
  8900 %}
  8902 // Compare Pointers
  8903 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8904   match(Set pcc (CmpP op1 op2));
  8906   size(4);
  8907   format %{ "CMP    $op1,$op2\t! ptr" %}
  8908   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8909   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8910   ins_pipe(ialu_cconly_reg_reg);
  8911 %}
  8913 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8914   match(Set pcc (CmpP op1 op2));
  8916   size(4);
  8917   format %{ "CMP    $op1,$op2\t! ptr" %}
  8918   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8919   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8920   ins_pipe(ialu_cconly_reg_imm);
  8921 %}
  8923 // Compare Narrow oops
  8924 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8925   match(Set icc (CmpN op1 op2));
  8927   size(4);
  8928   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8929   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8930   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8931   ins_pipe(ialu_cconly_reg_reg);
  8932 %}
  8934 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8935   match(Set icc (CmpN op1 op2));
  8937   size(4);
  8938   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8939   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8940   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8941   ins_pipe(ialu_cconly_reg_imm);
  8942 %}
  8944 //----------Max and Min--------------------------------------------------------
  8945 // Min Instructions
  8946 // Conditional move for min
  8947 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8948   effect( USE_DEF op2, USE op1, USE icc );
  8950   size(4);
  8951   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8952   opcode(Assembler::less);
  8953   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8954   ins_pipe(ialu_reg_flags);
  8955 %}
  8957 // Min Register with Register.
  8958 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8959   match(Set op2 (MinI op1 op2));
  8960   ins_cost(DEFAULT_COST*2);
  8961   expand %{
  8962     flagsReg icc;
  8963     compI_iReg(icc,op1,op2);
  8964     cmovI_reg_lt(op2,op1,icc);
  8965   %}
  8966 %}
  8968 // Max Instructions
  8969 // Conditional move for max
  8970 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8971   effect( USE_DEF op2, USE op1, USE icc );
  8972   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8973   opcode(Assembler::greater);
  8974   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8975   ins_pipe(ialu_reg_flags);
  8976 %}
  8978 // Max Register with Register
  8979 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8980   match(Set op2 (MaxI op1 op2));
  8981   ins_cost(DEFAULT_COST*2);
  8982   expand %{
  8983     flagsReg icc;
  8984     compI_iReg(icc,op1,op2);
  8985     cmovI_reg_gt(op2,op1,icc);
  8986   %}
  8987 %}
  8990 //----------Float Compares----------------------------------------------------
  8991 // Compare floating, generate condition code
  8992 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8993   match(Set fcc (CmpF src1 src2));
  8995   size(4);
  8996   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8997   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8998   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8999   ins_pipe(faddF_fcc_reg_reg_zero);
  9000 %}
  9002 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9003   match(Set fcc (CmpD src1 src2));
  9005   size(4);
  9006   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9007   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9008   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9009   ins_pipe(faddD_fcc_reg_reg_zero);
  9010 %}
  9013 // Compare floating, generate -1,0,1
  9014 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9015   match(Set dst (CmpF3 src1 src2));
  9016   effect(KILL fcc0);
  9017   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9018   format %{ "fcmpl  $dst,$src1,$src2" %}
  9019   // Primary = float
  9020   opcode( true );
  9021   ins_encode( floating_cmp( dst, src1, src2 ) );
  9022   ins_pipe( floating_cmp );
  9023 %}
  9025 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9026   match(Set dst (CmpD3 src1 src2));
  9027   effect(KILL fcc0);
  9028   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9029   format %{ "dcmpl  $dst,$src1,$src2" %}
  9030   // Primary = double (not float)
  9031   opcode( false );
  9032   ins_encode( floating_cmp( dst, src1, src2 ) );
  9033   ins_pipe( floating_cmp );
  9034 %}
  9036 //----------Branches---------------------------------------------------------
  9037 // Jump
  9038 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9039 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9040   match(Jump switch_val);
  9041   effect(TEMP table);
  9043   ins_cost(350);
  9045   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9046              "LD     [O7 + $switch_val], O7\n\t"
  9047              "JUMP   O7" %}
  9048   ins_encode %{
  9049     // Calculate table address into a register.
  9050     Register table_reg;
  9051     Register label_reg = O7;
  9052     // If we are calculating the size of this instruction don't trust
  9053     // zero offsets because they might change when
  9054     // MachConstantBaseNode decides to optimize the constant table
  9055     // base.
  9056     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9057       table_reg = $constanttablebase;
  9058     } else {
  9059       table_reg = O7;
  9060       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9061       __ add($constanttablebase, con_offset, table_reg);
  9064     // Jump to base address + switch value
  9065     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9066     __ jmp(label_reg, G0);
  9067     __ delayed()->nop();
  9068   %}
  9069   ins_pipe(ialu_reg_reg);
  9070 %}
  9072 // Direct Branch.  Use V8 version with longer range.
  9073 instruct branch(label labl) %{
  9074   match(Goto);
  9075   effect(USE labl);
  9077   size(8);
  9078   ins_cost(BRANCH_COST);
  9079   format %{ "BA     $labl" %}
  9080   ins_encode %{
  9081     Label* L = $labl$$label;
  9082     __ ba(*L);
  9083     __ delayed()->nop();
  9084   %}
  9085   ins_pipe(br);
  9086 %}
  9088 // Direct Branch, short with no delay slot
  9089 instruct branch_short(label labl) %{
  9090   match(Goto);
  9091   predicate(UseCBCond);
  9092   effect(USE labl);
  9094   size(4);
  9095   ins_cost(BRANCH_COST);
  9096   format %{ "BA     $labl\t! short branch" %}
  9097   ins_encode %{ 
  9098     Label* L = $labl$$label;
  9099     assert(__ use_cbcond(*L), "back to back cbcond");
  9100     __ ba_short(*L);
  9101   %}
  9102   ins_short_branch(1);
  9103   ins_avoid_back_to_back(1);
  9104   ins_pipe(cbcond_reg_imm);
  9105 %}
  9107 // Conditional Direct Branch
  9108 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9109   match(If cmp icc);
  9110   effect(USE labl);
  9112   size(8);
  9113   ins_cost(BRANCH_COST);
  9114   format %{ "BP$cmp   $icc,$labl" %}
  9115   // Prim = bits 24-22, Secnd = bits 31-30
  9116   ins_encode( enc_bp( labl, cmp, icc ) );
  9117   ins_pipe(br_cc);
  9118 %}
  9120 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9121   match(If cmp icc);
  9122   effect(USE labl);
  9124   ins_cost(BRANCH_COST);
  9125   format %{ "BP$cmp  $icc,$labl" %}
  9126   // Prim = bits 24-22, Secnd = bits 31-30
  9127   ins_encode( enc_bp( labl, cmp, icc ) );
  9128   ins_pipe(br_cc);
  9129 %}
  9131 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9132   match(If cmp pcc);
  9133   effect(USE labl);
  9135   size(8);
  9136   ins_cost(BRANCH_COST);
  9137   format %{ "BP$cmp  $pcc,$labl" %}
  9138   ins_encode %{
  9139     Label* L = $labl$$label;
  9140     Assembler::Predict predict_taken =
  9141       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9143     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9144     __ delayed()->nop();
  9145   %}
  9146   ins_pipe(br_cc);
  9147 %}
  9149 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9150   match(If cmp fcc);
  9151   effect(USE labl);
  9153   size(8);
  9154   ins_cost(BRANCH_COST);
  9155   format %{ "FBP$cmp $fcc,$labl" %}
  9156   ins_encode %{
  9157     Label* L = $labl$$label;
  9158     Assembler::Predict predict_taken =
  9159       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9161     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9162     __ delayed()->nop();
  9163   %}
  9164   ins_pipe(br_fcc);
  9165 %}
  9167 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9168   match(CountedLoopEnd cmp icc);
  9169   effect(USE labl);
  9171   size(8);
  9172   ins_cost(BRANCH_COST);
  9173   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9174   // Prim = bits 24-22, Secnd = bits 31-30
  9175   ins_encode( enc_bp( labl, cmp, icc ) );
  9176   ins_pipe(br_cc);
  9177 %}
  9179 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9180   match(CountedLoopEnd cmp icc);
  9181   effect(USE labl);
  9183   size(8);
  9184   ins_cost(BRANCH_COST);
  9185   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9186   // Prim = bits 24-22, Secnd = bits 31-30
  9187   ins_encode( enc_bp( labl, cmp, icc ) );
  9188   ins_pipe(br_cc);
  9189 %}
  9191 // Compare and branch instructions
  9192 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9193   match(If cmp (CmpI op1 op2));
  9194   effect(USE labl, KILL icc);
  9196   size(12);
  9197   ins_cost(BRANCH_COST);
  9198   format %{ "CMP    $op1,$op2\t! int\n\t"
  9199             "BP$cmp   $labl" %}
  9200   ins_encode %{
  9201     Label* L = $labl$$label;
  9202     Assembler::Predict predict_taken =
  9203       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9204     __ cmp($op1$$Register, $op2$$Register);
  9205     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9206     __ delayed()->nop();
  9207   %}
  9208   ins_pipe(cmp_br_reg_reg);
  9209 %}
  9211 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9212   match(If cmp (CmpI op1 op2));
  9213   effect(USE labl, KILL icc);
  9215   size(12);
  9216   ins_cost(BRANCH_COST);
  9217   format %{ "CMP    $op1,$op2\t! int\n\t"
  9218             "BP$cmp   $labl" %}
  9219   ins_encode %{
  9220     Label* L = $labl$$label;
  9221     Assembler::Predict predict_taken =
  9222       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9223     __ cmp($op1$$Register, $op2$$constant);
  9224     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9225     __ delayed()->nop();
  9226   %}
  9227   ins_pipe(cmp_br_reg_imm);
  9228 %}
  9230 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9231   match(If cmp (CmpU op1 op2));
  9232   effect(USE labl, KILL icc);
  9234   size(12);
  9235   ins_cost(BRANCH_COST);
  9236   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9237             "BP$cmp  $labl" %}
  9238   ins_encode %{
  9239     Label* L = $labl$$label;
  9240     Assembler::Predict predict_taken =
  9241       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9242     __ cmp($op1$$Register, $op2$$Register);
  9243     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9244     __ delayed()->nop();
  9245   %}
  9246   ins_pipe(cmp_br_reg_reg);
  9247 %}
  9249 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9250   match(If cmp (CmpU op1 op2));
  9251   effect(USE labl, KILL icc);
  9253   size(12);
  9254   ins_cost(BRANCH_COST);
  9255   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9256             "BP$cmp  $labl" %}
  9257   ins_encode %{
  9258     Label* L = $labl$$label;
  9259     Assembler::Predict predict_taken =
  9260       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9261     __ cmp($op1$$Register, $op2$$constant);
  9262     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9263     __ delayed()->nop();
  9264   %}
  9265   ins_pipe(cmp_br_reg_imm);
  9266 %}
  9268 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9269   match(If cmp (CmpL op1 op2));
  9270   effect(USE labl, KILL xcc);
  9272   size(12);
  9273   ins_cost(BRANCH_COST);
  9274   format %{ "CMP    $op1,$op2\t! long\n\t"
  9275             "BP$cmp   $labl" %}
  9276   ins_encode %{
  9277     Label* L = $labl$$label;
  9278     Assembler::Predict predict_taken =
  9279       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9280     __ cmp($op1$$Register, $op2$$Register);
  9281     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9282     __ delayed()->nop();
  9283   %}
  9284   ins_pipe(cmp_br_reg_reg);
  9285 %}
  9287 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9288   match(If cmp (CmpL op1 op2));
  9289   effect(USE labl, KILL xcc);
  9291   size(12);
  9292   ins_cost(BRANCH_COST);
  9293   format %{ "CMP    $op1,$op2\t! long\n\t"
  9294             "BP$cmp   $labl" %}
  9295   ins_encode %{
  9296     Label* L = $labl$$label;
  9297     Assembler::Predict predict_taken =
  9298       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9299     __ cmp($op1$$Register, $op2$$constant);
  9300     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9301     __ delayed()->nop();
  9302   %}
  9303   ins_pipe(cmp_br_reg_imm);
  9304 %}
  9306 // Compare Pointers and branch
  9307 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9308   match(If cmp (CmpP op1 op2));
  9309   effect(USE labl, KILL pcc);
  9311   size(12);
  9312   ins_cost(BRANCH_COST);
  9313   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9314             "B$cmp   $labl" %}
  9315   ins_encode %{
  9316     Label* L = $labl$$label;
  9317     Assembler::Predict predict_taken =
  9318       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9319     __ cmp($op1$$Register, $op2$$Register);
  9320     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9321     __ delayed()->nop();
  9322   %}
  9323   ins_pipe(cmp_br_reg_reg);
  9324 %}
  9326 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9327   match(If cmp (CmpP op1 null));
  9328   effect(USE labl, KILL pcc);
  9330   size(12);
  9331   ins_cost(BRANCH_COST);
  9332   format %{ "CMP    $op1,0\t! ptr\n\t"
  9333             "B$cmp   $labl" %}
  9334   ins_encode %{
  9335     Label* L = $labl$$label;
  9336     Assembler::Predict predict_taken =
  9337       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9338     __ cmp($op1$$Register, G0);
  9339     // bpr() is not used here since it has shorter distance.
  9340     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9341     __ delayed()->nop();
  9342   %}
  9343   ins_pipe(cmp_br_reg_reg);
  9344 %}
  9346 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9347   match(If cmp (CmpN op1 op2));
  9348   effect(USE labl, KILL icc);
  9350   size(12);
  9351   ins_cost(BRANCH_COST);
  9352   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9353             "BP$cmp   $labl" %}
  9354   ins_encode %{
  9355     Label* L = $labl$$label;
  9356     Assembler::Predict predict_taken =
  9357       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9358     __ cmp($op1$$Register, $op2$$Register);
  9359     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9360     __ delayed()->nop();
  9361   %}
  9362   ins_pipe(cmp_br_reg_reg);
  9363 %}
  9365 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9366   match(If cmp (CmpN op1 null));
  9367   effect(USE labl, KILL icc);
  9369   size(12);
  9370   ins_cost(BRANCH_COST);
  9371   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9372             "BP$cmp   $labl" %}
  9373   ins_encode %{
  9374     Label* L = $labl$$label;
  9375     Assembler::Predict predict_taken =
  9376       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9377     __ cmp($op1$$Register, G0);
  9378     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9379     __ delayed()->nop();
  9380   %}
  9381   ins_pipe(cmp_br_reg_reg);
  9382 %}
  9384 // Loop back branch
  9385 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9386   match(CountedLoopEnd cmp (CmpI op1 op2));
  9387   effect(USE labl, KILL icc);
  9389   size(12);
  9390   ins_cost(BRANCH_COST);
  9391   format %{ "CMP    $op1,$op2\t! int\n\t"
  9392             "BP$cmp   $labl\t! Loop end" %}
  9393   ins_encode %{
  9394     Label* L = $labl$$label;
  9395     Assembler::Predict predict_taken =
  9396       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9397     __ cmp($op1$$Register, $op2$$Register);
  9398     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9399     __ delayed()->nop();
  9400   %}
  9401   ins_pipe(cmp_br_reg_reg);
  9402 %}
  9404 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9405   match(CountedLoopEnd cmp (CmpI op1 op2));
  9406   effect(USE labl, KILL icc);
  9408   size(12);
  9409   ins_cost(BRANCH_COST);
  9410   format %{ "CMP    $op1,$op2\t! int\n\t"
  9411             "BP$cmp   $labl\t! Loop end" %}
  9412   ins_encode %{
  9413     Label* L = $labl$$label;
  9414     Assembler::Predict predict_taken =
  9415       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9416     __ cmp($op1$$Register, $op2$$constant);
  9417     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9418     __ delayed()->nop();
  9419   %}
  9420   ins_pipe(cmp_br_reg_imm);
  9421 %}
  9423 // Short compare and branch instructions
  9424 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9425   match(If cmp (CmpI op1 op2));
  9426   predicate(UseCBCond);
  9427   effect(USE labl, KILL icc);
  9429   size(4);
  9430   ins_cost(BRANCH_COST);
  9431   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9432   ins_encode %{
  9433     Label* L = $labl$$label;
  9434     assert(__ use_cbcond(*L), "back to back cbcond");
  9435     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9436   %}
  9437   ins_short_branch(1);
  9438   ins_avoid_back_to_back(1);
  9439   ins_pipe(cbcond_reg_reg);
  9440 %}
  9442 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9443   match(If cmp (CmpI op1 op2));
  9444   predicate(UseCBCond);
  9445   effect(USE labl, KILL icc);
  9447   size(4);
  9448   ins_cost(BRANCH_COST);
  9449   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9450   ins_encode %{
  9451     Label* L = $labl$$label;
  9452     assert(__ use_cbcond(*L), "back to back cbcond");
  9453     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9454   %}
  9455   ins_short_branch(1);
  9456   ins_avoid_back_to_back(1);
  9457   ins_pipe(cbcond_reg_imm);
  9458 %}
  9460 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9461   match(If cmp (CmpU op1 op2));
  9462   predicate(UseCBCond);
  9463   effect(USE labl, KILL icc);
  9465   size(4);
  9466   ins_cost(BRANCH_COST);
  9467   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9468   ins_encode %{
  9469     Label* L = $labl$$label;
  9470     assert(__ use_cbcond(*L), "back to back cbcond");
  9471     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9472   %}
  9473   ins_short_branch(1);
  9474   ins_avoid_back_to_back(1);
  9475   ins_pipe(cbcond_reg_reg);
  9476 %}
  9478 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9479   match(If cmp (CmpU op1 op2));
  9480   predicate(UseCBCond);
  9481   effect(USE labl, KILL icc);
  9483   size(4);
  9484   ins_cost(BRANCH_COST);
  9485   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9486   ins_encode %{
  9487     Label* L = $labl$$label;
  9488     assert(__ use_cbcond(*L), "back to back cbcond");
  9489     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9490   %}
  9491   ins_short_branch(1);
  9492   ins_avoid_back_to_back(1);
  9493   ins_pipe(cbcond_reg_imm);
  9494 %}
  9496 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9497   match(If cmp (CmpL op1 op2));
  9498   predicate(UseCBCond);
  9499   effect(USE labl, KILL xcc);
  9501   size(4);
  9502   ins_cost(BRANCH_COST);
  9503   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9504   ins_encode %{
  9505     Label* L = $labl$$label;
  9506     assert(__ use_cbcond(*L), "back to back cbcond");
  9507     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9508   %}
  9509   ins_short_branch(1);
  9510   ins_avoid_back_to_back(1);
  9511   ins_pipe(cbcond_reg_reg);
  9512 %}
  9514 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9515   match(If cmp (CmpL op1 op2));
  9516   predicate(UseCBCond);
  9517   effect(USE labl, KILL xcc);
  9519   size(4);
  9520   ins_cost(BRANCH_COST);
  9521   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9522   ins_encode %{
  9523     Label* L = $labl$$label;
  9524     assert(__ use_cbcond(*L), "back to back cbcond");
  9525     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9526   %}
  9527   ins_short_branch(1);
  9528   ins_avoid_back_to_back(1);
  9529   ins_pipe(cbcond_reg_imm);
  9530 %}
  9532 // Compare Pointers and branch
  9533 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9534   match(If cmp (CmpP op1 op2));
  9535   predicate(UseCBCond);
  9536   effect(USE labl, KILL pcc);
  9538   size(4);
  9539   ins_cost(BRANCH_COST);
  9540 #ifdef _LP64
  9541   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9542 #else
  9543   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9544 #endif
  9545   ins_encode %{
  9546     Label* L = $labl$$label;
  9547     assert(__ use_cbcond(*L), "back to back cbcond");
  9548     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9549   %}
  9550   ins_short_branch(1);
  9551   ins_avoid_back_to_back(1);
  9552   ins_pipe(cbcond_reg_reg);
  9553 %}
  9555 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9556   match(If cmp (CmpP op1 null));
  9557   predicate(UseCBCond);
  9558   effect(USE labl, KILL pcc);
  9560   size(4);
  9561   ins_cost(BRANCH_COST);
  9562 #ifdef _LP64
  9563   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9564 #else
  9565   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9566 #endif
  9567   ins_encode %{
  9568     Label* L = $labl$$label;
  9569     assert(__ use_cbcond(*L), "back to back cbcond");
  9570     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9571   %}
  9572   ins_short_branch(1);
  9573   ins_avoid_back_to_back(1);
  9574   ins_pipe(cbcond_reg_reg);
  9575 %}
  9577 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9578   match(If cmp (CmpN op1 op2));
  9579   predicate(UseCBCond);
  9580   effect(USE labl, KILL icc);
  9582   size(4);
  9583   ins_cost(BRANCH_COST);
  9584   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9585   ins_encode %{
  9586     Label* L = $labl$$label;
  9587     assert(__ use_cbcond(*L), "back to back cbcond");
  9588     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9589   %}
  9590   ins_short_branch(1);
  9591   ins_avoid_back_to_back(1);
  9592   ins_pipe(cbcond_reg_reg);
  9593 %}
  9595 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9596   match(If cmp (CmpN op1 null));
  9597   predicate(UseCBCond);
  9598   effect(USE labl, KILL icc);
  9600   size(4);
  9601   ins_cost(BRANCH_COST);
  9602   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9603   ins_encode %{
  9604     Label* L = $labl$$label;
  9605     assert(__ use_cbcond(*L), "back to back cbcond");
  9606     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9607   %}
  9608   ins_short_branch(1);
  9609   ins_avoid_back_to_back(1);
  9610   ins_pipe(cbcond_reg_reg);
  9611 %}
  9613 // Loop back branch
  9614 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9615   match(CountedLoopEnd cmp (CmpI op1 op2));
  9616   predicate(UseCBCond);
  9617   effect(USE labl, KILL icc);
  9619   size(4);
  9620   ins_cost(BRANCH_COST);
  9621   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9622   ins_encode %{
  9623     Label* L = $labl$$label;
  9624     assert(__ use_cbcond(*L), "back to back cbcond");
  9625     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9626   %}
  9627   ins_short_branch(1);
  9628   ins_avoid_back_to_back(1);
  9629   ins_pipe(cbcond_reg_reg);
  9630 %}
  9632 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9633   match(CountedLoopEnd cmp (CmpI op1 op2));
  9634   predicate(UseCBCond);
  9635   effect(USE labl, KILL icc);
  9637   size(4);
  9638   ins_cost(BRANCH_COST);
  9639   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9640   ins_encode %{
  9641     Label* L = $labl$$label;
  9642     assert(__ use_cbcond(*L), "back to back cbcond");
  9643     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9644   %}
  9645   ins_short_branch(1);
  9646   ins_avoid_back_to_back(1);
  9647   ins_pipe(cbcond_reg_imm);
  9648 %}
  9650 // Branch-on-register tests all 64 bits.  We assume that values
  9651 // in 64-bit registers always remains zero or sign extended
  9652 // unless our code munges the high bits.  Interrupts can chop
  9653 // the high order bits to zero or sign at any time.
  9654 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9655   match(If cmp (CmpI op1 zero));
  9656   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9657   effect(USE labl);
  9659   size(8);
  9660   ins_cost(BRANCH_COST);
  9661   format %{ "BR$cmp   $op1,$labl" %}
  9662   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9663   ins_pipe(br_reg);
  9664 %}
  9666 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9667   match(If cmp (CmpP op1 null));
  9668   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9669   effect(USE labl);
  9671   size(8);
  9672   ins_cost(BRANCH_COST);
  9673   format %{ "BR$cmp   $op1,$labl" %}
  9674   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9675   ins_pipe(br_reg);
  9676 %}
  9678 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9679   match(If cmp (CmpL op1 zero));
  9680   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9681   effect(USE labl);
  9683   size(8);
  9684   ins_cost(BRANCH_COST);
  9685   format %{ "BR$cmp   $op1,$labl" %}
  9686   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9687   ins_pipe(br_reg);
  9688 %}
  9691 // ============================================================================
  9692 // Long Compare
  9693 //
  9694 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9695 // is tricky.  The flavor of compare used depends on whether we are testing
  9696 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9697 // The GE test is the negated LT test.  The LE test can be had by commuting
  9698 // the operands (yielding a GE test) and then negating; negate again for the
  9699 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9700 // NE test is negated from that.
  9702 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9703 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9704 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9705 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9706 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9707 // foo match ends up with the wrong leaf.  One fix is to not match both
  9708 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9709 // both forms beat the trinary form of long-compare and both are very useful
  9710 // on Intel which has so few registers.
  9712 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9713   match(If cmp xcc);
  9714   effect(USE labl);
  9716   size(8);
  9717   ins_cost(BRANCH_COST);
  9718   format %{ "BP$cmp   $xcc,$labl" %}
  9719   ins_encode %{
  9720     Label* L = $labl$$label;
  9721     Assembler::Predict predict_taken =
  9722       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9724     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9725     __ delayed()->nop();
  9726   %}
  9727   ins_pipe(br_cc);
  9728 %}
  9730 // Manifest a CmpL3 result in an integer register.  Very painful.
  9731 // This is the test to avoid.
  9732 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9733   match(Set dst (CmpL3 src1 src2) );
  9734   effect( KILL ccr );
  9735   ins_cost(6*DEFAULT_COST);
  9736   size(24);
  9737   format %{ "CMP    $src1,$src2\t\t! long\n"
  9738           "\tBLT,a,pn done\n"
  9739           "\tMOV    -1,$dst\t! delay slot\n"
  9740           "\tBGT,a,pn done\n"
  9741           "\tMOV    1,$dst\t! delay slot\n"
  9742           "\tCLR    $dst\n"
  9743     "done:"     %}
  9744   ins_encode( cmpl_flag(src1,src2,dst) );
  9745   ins_pipe(cmpL_reg);
  9746 %}
  9748 // Conditional move
  9749 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9750   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9751   ins_cost(150);
  9752   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9753   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9754   ins_pipe(ialu_reg);
  9755 %}
  9757 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9758   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9759   ins_cost(140);
  9760   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9761   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9762   ins_pipe(ialu_imm);
  9763 %}
  9765 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9766   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9767   ins_cost(150);
  9768   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9769   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9770   ins_pipe(ialu_reg);
  9771 %}
  9773 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9774   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9775   ins_cost(140);
  9776   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9777   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9778   ins_pipe(ialu_imm);
  9779 %}
  9781 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9782   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9783   ins_cost(150);
  9784   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9785   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9786   ins_pipe(ialu_reg);
  9787 %}
  9789 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9790   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9791   ins_cost(150);
  9792   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9793   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9794   ins_pipe(ialu_reg);
  9795 %}
  9797 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9798   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9799   ins_cost(140);
  9800   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9801   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9802   ins_pipe(ialu_imm);
  9803 %}
  9805 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9806   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9807   ins_cost(150);
  9808   opcode(0x101);
  9809   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9810   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9811   ins_pipe(int_conditional_float_move);
  9812 %}
  9814 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9815   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9816   ins_cost(150);
  9817   opcode(0x102);
  9818   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9819   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9820   ins_pipe(int_conditional_float_move);
  9821 %}
  9823 // ============================================================================
  9824 // Safepoint Instruction
  9825 instruct safePoint_poll(iRegP poll) %{
  9826   match(SafePoint poll);
  9827   effect(USE poll);
  9829   size(4);
  9830 #ifdef _LP64
  9831   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9832 #else
  9833   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9834 #endif
  9835   ins_encode %{
  9836     __ relocate(relocInfo::poll_type);
  9837     __ ld_ptr($poll$$Register, 0, G0);
  9838   %}
  9839   ins_pipe(loadPollP);
  9840 %}
  9842 // ============================================================================
  9843 // Call Instructions
  9844 // Call Java Static Instruction
  9845 instruct CallStaticJavaDirect( method meth ) %{
  9846   match(CallStaticJava);
  9847   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9848   effect(USE meth);
  9850   size(8);
  9851   ins_cost(CALL_COST);
  9852   format %{ "CALL,static  ; NOP ==> " %}
  9853   ins_encode( Java_Static_Call( meth ), call_epilog );
  9854   ins_pipe(simple_call);
  9855 %}
  9857 // Call Java Static Instruction (method handle version)
  9858 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9859   match(CallStaticJava);
  9860   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9861   effect(USE meth, KILL l7_mh_SP_save);
  9863   size(16);
  9864   ins_cost(CALL_COST);
  9865   format %{ "CALL,static/MethodHandle" %}
  9866   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9867   ins_pipe(simple_call);
  9868 %}
  9870 // Call Java Dynamic Instruction
  9871 instruct CallDynamicJavaDirect( method meth ) %{
  9872   match(CallDynamicJava);
  9873   effect(USE meth);
  9875   ins_cost(CALL_COST);
  9876   format %{ "SET    (empty),R_G5\n\t"
  9877             "CALL,dynamic  ; NOP ==> " %}
  9878   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9879   ins_pipe(call);
  9880 %}
  9882 // Call Runtime Instruction
  9883 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9884   match(CallRuntime);
  9885   effect(USE meth, KILL l7);
  9886   ins_cost(CALL_COST);
  9887   format %{ "CALL,runtime" %}
  9888   ins_encode( Java_To_Runtime( meth ),
  9889               call_epilog, adjust_long_from_native_call );
  9890   ins_pipe(simple_call);
  9891 %}
  9893 // Call runtime without safepoint - same as CallRuntime
  9894 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9895   match(CallLeaf);
  9896   effect(USE meth, KILL l7);
  9897   ins_cost(CALL_COST);
  9898   format %{ "CALL,runtime leaf" %}
  9899   ins_encode( Java_To_Runtime( meth ),
  9900               call_epilog,
  9901               adjust_long_from_native_call );
  9902   ins_pipe(simple_call);
  9903 %}
  9905 // Call runtime without safepoint - same as CallLeaf
  9906 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9907   match(CallLeafNoFP);
  9908   effect(USE meth, KILL l7);
  9909   ins_cost(CALL_COST);
  9910   format %{ "CALL,runtime leaf nofp" %}
  9911   ins_encode( Java_To_Runtime( meth ),
  9912               call_epilog,
  9913               adjust_long_from_native_call );
  9914   ins_pipe(simple_call);
  9915 %}
  9917 // Tail Call; Jump from runtime stub to Java code.
  9918 // Also known as an 'interprocedural jump'.
  9919 // Target of jump will eventually return to caller.
  9920 // TailJump below removes the return address.
  9921 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9922   match(TailCall jump_target method_oop );
  9924   ins_cost(CALL_COST);
  9925   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9926   ins_encode(form_jmpl(jump_target));
  9927   ins_pipe(tail_call);
  9928 %}
  9931 // Return Instruction
  9932 instruct Ret() %{
  9933   match(Return);
  9935   // The epilogue node did the ret already.
  9936   size(0);
  9937   format %{ "! return" %}
  9938   ins_encode();
  9939   ins_pipe(empty);
  9940 %}
  9943 // Tail Jump; remove the return address; jump to target.
  9944 // TailCall above leaves the return address around.
  9945 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9946 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9947 // "restore" before this instruction (in Epilogue), we need to materialize it
  9948 // in %i0.
  9949 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9950   match( TailJump jump_target ex_oop );
  9951   ins_cost(CALL_COST);
  9952   format %{ "! discard R_O7\n\t"
  9953             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9954   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9955   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9956   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9957   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9958   ins_pipe(tail_call);
  9959 %}
  9961 // Create exception oop: created by stack-crawling runtime code.
  9962 // Created exception is now available to this handler, and is setup
  9963 // just prior to jumping to this handler.  No code emitted.
  9964 instruct CreateException( o0RegP ex_oop )
  9965 %{
  9966   match(Set ex_oop (CreateEx));
  9967   ins_cost(0);
  9969   size(0);
  9970   // use the following format syntax
  9971   format %{ "! exception oop is in R_O0; no code emitted" %}
  9972   ins_encode();
  9973   ins_pipe(empty);
  9974 %}
  9977 // Rethrow exception:
  9978 // The exception oop will come in the first argument position.
  9979 // Then JUMP (not call) to the rethrow stub code.
  9980 instruct RethrowException()
  9981 %{
  9982   match(Rethrow);
  9983   ins_cost(CALL_COST);
  9985   // use the following format syntax
  9986   format %{ "Jmp    rethrow_stub" %}
  9987   ins_encode(enc_rethrow);
  9988   ins_pipe(tail_call);
  9989 %}
  9992 // Die now
  9993 instruct ShouldNotReachHere( )
  9994 %{
  9995   match(Halt);
  9996   ins_cost(CALL_COST);
  9998   size(4);
  9999   // Use the following format syntax
 10000   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10001   ins_encode( form2_illtrap() );
 10002   ins_pipe(tail_call);
 10003 %}
 10005 // ============================================================================
 10006 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10007 // array for an instance of the superklass.  Set a hidden internal cache on a
 10008 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10009 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10010 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10011   match(Set index (PartialSubtypeCheck sub super));
 10012   effect( KILL pcc, KILL o7 );
 10013   ins_cost(DEFAULT_COST*10);
 10014   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10015   ins_encode( enc_PartialSubtypeCheck() );
 10016   ins_pipe(partial_subtype_check_pipe);
 10017 %}
 10019 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10020   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10021   effect( KILL idx, KILL o7 );
 10022   ins_cost(DEFAULT_COST*10);
 10023   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10024   ins_encode( enc_PartialSubtypeCheck() );
 10025   ins_pipe(partial_subtype_check_pipe);
 10026 %}
 10029 // ============================================================================
 10030 // inlined locking and unlocking
 10032 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10033   match(Set pcc (FastLock object box));
 10035   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10036   ins_cost(100);
 10038   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10039   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10040   ins_pipe(long_memory_op);
 10041 %}
 10044 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10045   match(Set pcc (FastUnlock object box));
 10046   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10047   ins_cost(100);
 10049   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10050   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10051   ins_pipe(long_memory_op);
 10052 %}
 10054 // The encodings are generic.
 10055 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10056   predicate(!use_block_zeroing(n->in(2)) );
 10057   match(Set dummy (ClearArray cnt base));
 10058   effect(TEMP temp, KILL ccr);
 10059   ins_cost(300);
 10060   format %{ "MOV    $cnt,$temp\n"
 10061     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10062     "        BRge   loop\t\t! Clearing loop\n"
 10063     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10065   ins_encode %{
 10066     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10067     Register nof_bytes_arg    = $cnt$$Register;
 10068     Register nof_bytes_tmp    = $temp$$Register;
 10069     Register base_pointer_arg = $base$$Register;
 10071     Label loop;
 10072     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10074     // Loop and clear, walking backwards through the array.
 10075     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10076     __ bind(loop);
 10077     __ deccc(nof_bytes_tmp, 8);
 10078     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10079     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10080     // %%%% this mini-loop must not cross a cache boundary!
 10081   %}
 10082   ins_pipe(long_memory_op);
 10083 %}
 10085 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10086   predicate(use_block_zeroing(n->in(2)));
 10087   match(Set dummy (ClearArray cnt base));
 10088   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10089   ins_cost(300);
 10090   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10092   ins_encode %{
 10094     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10095     Register to    = $base$$Register;
 10096     Register count = $cnt$$Register;
 10098     Label Ldone;
 10099     __ nop(); // Separate short branches
 10100     // Use BIS for zeroing (temp is not used).
 10101     __ bis_zeroing(to, count, G0, Ldone);
 10102     __ bind(Ldone);
 10104   %}
 10105   ins_pipe(long_memory_op);
 10106 %}
 10108 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10109   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10110   match(Set dummy (ClearArray cnt base));
 10111   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10112   ins_cost(300);
 10113   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10115   ins_encode %{
 10117     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10118     Register to    = $base$$Register;
 10119     Register count = $cnt$$Register;
 10120     Register temp  = $tmp$$Register;
 10122     Label Ldone;
 10123     __ nop(); // Separate short branches
 10124     // Use BIS for zeroing
 10125     __ bis_zeroing(to, count, temp, Ldone);
 10126     __ bind(Ldone);
 10128   %}
 10129   ins_pipe(long_memory_op);
 10130 %}
 10132 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10133                         o7RegI tmp, flagsReg ccr) %{
 10134   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10135   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10136   ins_cost(300);
 10137   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10138   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10139   ins_pipe(long_memory_op);
 10140 %}
 10142 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10143                        o7RegI tmp, flagsReg ccr) %{
 10144   match(Set result (StrEquals (Binary str1 str2) cnt));
 10145   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10146   ins_cost(300);
 10147   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10148   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10149   ins_pipe(long_memory_op);
 10150 %}
 10152 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10153                       o7RegI tmp2, flagsReg ccr) %{
 10154   match(Set result (AryEq ary1 ary2));
 10155   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10156   ins_cost(300);
 10157   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10158   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10159   ins_pipe(long_memory_op);
 10160 %}
 10163 //---------- Zeros Count Instructions ------------------------------------------
 10165 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10166   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10167   match(Set dst (CountLeadingZerosI src));
 10168   effect(TEMP dst, TEMP tmp, KILL cr);
 10170   // x |= (x >> 1);
 10171   // x |= (x >> 2);
 10172   // x |= (x >> 4);
 10173   // x |= (x >> 8);
 10174   // x |= (x >> 16);
 10175   // return (WORDBITS - popc(x));
 10176   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10177             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10178             "OR      $dst,$tmp,$dst\n\t"
 10179             "SRL     $dst,2,$tmp\n\t"
 10180             "OR      $dst,$tmp,$dst\n\t"
 10181             "SRL     $dst,4,$tmp\n\t"
 10182             "OR      $dst,$tmp,$dst\n\t"
 10183             "SRL     $dst,8,$tmp\n\t"
 10184             "OR      $dst,$tmp,$dst\n\t"
 10185             "SRL     $dst,16,$tmp\n\t"
 10186             "OR      $dst,$tmp,$dst\n\t"
 10187             "POPC    $dst,$dst\n\t"
 10188             "MOV     32,$tmp\n\t"
 10189             "SUB     $tmp,$dst,$dst" %}
 10190   ins_encode %{
 10191     Register Rdst = $dst$$Register;
 10192     Register Rsrc = $src$$Register;
 10193     Register Rtmp = $tmp$$Register;
 10194     __ srl(Rsrc, 1,    Rtmp);
 10195     __ srl(Rsrc, 0,    Rdst);
 10196     __ or3(Rdst, Rtmp, Rdst);
 10197     __ srl(Rdst, 2,    Rtmp);
 10198     __ or3(Rdst, Rtmp, Rdst);
 10199     __ srl(Rdst, 4,    Rtmp);
 10200     __ or3(Rdst, Rtmp, Rdst);
 10201     __ srl(Rdst, 8,    Rtmp);
 10202     __ or3(Rdst, Rtmp, Rdst);
 10203     __ srl(Rdst, 16,   Rtmp);
 10204     __ or3(Rdst, Rtmp, Rdst);
 10205     __ popc(Rdst, Rdst);
 10206     __ mov(BitsPerInt, Rtmp);
 10207     __ sub(Rtmp, Rdst, Rdst);
 10208   %}
 10209   ins_pipe(ialu_reg);
 10210 %}
 10212 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10213   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10214   match(Set dst (CountLeadingZerosL src));
 10215   effect(TEMP dst, TEMP tmp, KILL cr);
 10217   // x |= (x >> 1);
 10218   // x |= (x >> 2);
 10219   // x |= (x >> 4);
 10220   // x |= (x >> 8);
 10221   // x |= (x >> 16);
 10222   // x |= (x >> 32);
 10223   // return (WORDBITS - popc(x));
 10224   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10225             "OR      $src,$tmp,$dst\n\t"
 10226             "SRLX    $dst,2,$tmp\n\t"
 10227             "OR      $dst,$tmp,$dst\n\t"
 10228             "SRLX    $dst,4,$tmp\n\t"
 10229             "OR      $dst,$tmp,$dst\n\t"
 10230             "SRLX    $dst,8,$tmp\n\t"
 10231             "OR      $dst,$tmp,$dst\n\t"
 10232             "SRLX    $dst,16,$tmp\n\t"
 10233             "OR      $dst,$tmp,$dst\n\t"
 10234             "SRLX    $dst,32,$tmp\n\t"
 10235             "OR      $dst,$tmp,$dst\n\t"
 10236             "POPC    $dst,$dst\n\t"
 10237             "MOV     64,$tmp\n\t"
 10238             "SUB     $tmp,$dst,$dst" %}
 10239   ins_encode %{
 10240     Register Rdst = $dst$$Register;
 10241     Register Rsrc = $src$$Register;
 10242     Register Rtmp = $tmp$$Register;
 10243     __ srlx(Rsrc, 1,    Rtmp);
 10244     __ or3( Rsrc, Rtmp, Rdst);
 10245     __ srlx(Rdst, 2,    Rtmp);
 10246     __ or3( Rdst, Rtmp, Rdst);
 10247     __ srlx(Rdst, 4,    Rtmp);
 10248     __ or3( Rdst, Rtmp, Rdst);
 10249     __ srlx(Rdst, 8,    Rtmp);
 10250     __ or3( Rdst, Rtmp, Rdst);
 10251     __ srlx(Rdst, 16,   Rtmp);
 10252     __ or3( Rdst, Rtmp, Rdst);
 10253     __ srlx(Rdst, 32,   Rtmp);
 10254     __ or3( Rdst, Rtmp, Rdst);
 10255     __ popc(Rdst, Rdst);
 10256     __ mov(BitsPerLong, Rtmp);
 10257     __ sub(Rtmp, Rdst, Rdst);
 10258   %}
 10259   ins_pipe(ialu_reg);
 10260 %}
 10262 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
 10263   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10264   match(Set dst (CountTrailingZerosI src));
 10265   effect(TEMP dst, KILL cr);
 10267   // return popc(~x & (x - 1));
 10268   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10269             "ANDN    $dst,$src,$dst\n\t"
 10270             "SRL     $dst,R_G0,$dst\n\t"
 10271             "POPC    $dst,$dst" %}
 10272   ins_encode %{
 10273     Register Rdst = $dst$$Register;
 10274     Register Rsrc = $src$$Register;
 10275     __ sub(Rsrc, 1, Rdst);
 10276     __ andn(Rdst, Rsrc, Rdst);
 10277     __ srl(Rdst, G0, Rdst);
 10278     __ popc(Rdst, Rdst);
 10279   %}
 10280   ins_pipe(ialu_reg);
 10281 %}
 10283 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10284   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10285   match(Set dst (CountTrailingZerosL src));
 10286   effect(TEMP dst, KILL cr);
 10288   // return popc(~x & (x - 1));
 10289   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10290             "ANDN    $dst,$src,$dst\n\t"
 10291             "POPC    $dst,$dst" %}
 10292   ins_encode %{
 10293     Register Rdst = $dst$$Register;
 10294     Register Rsrc = $src$$Register;
 10295     __ sub(Rsrc, 1, Rdst);
 10296     __ andn(Rdst, Rsrc, Rdst);
 10297     __ popc(Rdst, Rdst);
 10298   %}
 10299   ins_pipe(ialu_reg);
 10300 %}
 10303 //---------- Population Count Instructions -------------------------------------
 10305 instruct popCountI(iRegI dst, iRegI src) %{
 10306   predicate(UsePopCountInstruction);
 10307   match(Set dst (PopCountI src));
 10309   format %{ "POPC   $src, $dst" %}
 10310   ins_encode %{
 10311     __ popc($src$$Register, $dst$$Register);
 10312   %}
 10313   ins_pipe(ialu_reg);
 10314 %}
 10316 // Note: Long.bitCount(long) returns an int.
 10317 instruct popCountL(iRegI dst, iRegL src) %{
 10318   predicate(UsePopCountInstruction);
 10319   match(Set dst (PopCountL src));
 10321   format %{ "POPC   $src, $dst" %}
 10322   ins_encode %{
 10323     __ popc($src$$Register, $dst$$Register);
 10324   %}
 10325   ins_pipe(ialu_reg);
 10326 %}
 10329 // ============================================================================
 10330 //------------Bytes reverse--------------------------------------------------
 10332 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10333   match(Set dst (ReverseBytesI src));
 10335   // Op cost is artificially doubled to make sure that load or store
 10336   // instructions are preferred over this one which requires a spill
 10337   // onto a stack slot.
 10338   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10339   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10341   ins_encode %{
 10342     __ set($src$$disp + STACK_BIAS, O7);
 10343     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10344   %}
 10345   ins_pipe( iload_mem );
 10346 %}
 10348 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10349   match(Set dst (ReverseBytesL src));
 10351   // Op cost is artificially doubled to make sure that load or store
 10352   // instructions are preferred over this one which requires a spill
 10353   // onto a stack slot.
 10354   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10355   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10357   ins_encode %{
 10358     __ set($src$$disp + STACK_BIAS, O7);
 10359     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10360   %}
 10361   ins_pipe( iload_mem );
 10362 %}
 10364 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10365   match(Set dst (ReverseBytesUS src));
 10367   // Op cost is artificially doubled to make sure that load or store
 10368   // instructions are preferred over this one which requires a spill
 10369   // onto a stack slot.
 10370   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10371   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10373   ins_encode %{
 10374     // the value was spilled as an int so bias the load
 10375     __ set($src$$disp + STACK_BIAS + 2, O7);
 10376     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10377   %}
 10378   ins_pipe( iload_mem );
 10379 %}
 10381 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10382   match(Set dst (ReverseBytesS src));
 10384   // Op cost is artificially doubled to make sure that load or store
 10385   // instructions are preferred over this one which requires a spill
 10386   // onto a stack slot.
 10387   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10388   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10390   ins_encode %{
 10391     // the value was spilled as an int so bias the load
 10392     __ set($src$$disp + STACK_BIAS + 2, O7);
 10393     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10394   %}
 10395   ins_pipe( iload_mem );
 10396 %}
 10398 // Load Integer reversed byte order
 10399 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10400   match(Set dst (ReverseBytesI (LoadI src)));
 10402   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10403   size(4);
 10404   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10406   ins_encode %{
 10407     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10408   %}
 10409   ins_pipe(iload_mem);
 10410 %}
 10412 // Load Long - aligned and reversed
 10413 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10414   match(Set dst (ReverseBytesL (LoadL src)));
 10416   ins_cost(MEMORY_REF_COST);
 10417   size(4);
 10418   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10420   ins_encode %{
 10421     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10422   %}
 10423   ins_pipe(iload_mem);
 10424 %}
 10426 // Load unsigned short / char reversed byte order
 10427 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10428   match(Set dst (ReverseBytesUS (LoadUS src)));
 10430   ins_cost(MEMORY_REF_COST);
 10431   size(4);
 10432   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10434   ins_encode %{
 10435     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10436   %}
 10437   ins_pipe(iload_mem);
 10438 %}
 10440 // Load short reversed byte order
 10441 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10442   match(Set dst (ReverseBytesS (LoadS src)));
 10444   ins_cost(MEMORY_REF_COST);
 10445   size(4);
 10446   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10448   ins_encode %{
 10449     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10450   %}
 10451   ins_pipe(iload_mem);
 10452 %}
 10454 // Store Integer reversed byte order
 10455 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10456   match(Set dst (StoreI dst (ReverseBytesI src)));
 10458   ins_cost(MEMORY_REF_COST);
 10459   size(4);
 10460   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10462   ins_encode %{
 10463     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10464   %}
 10465   ins_pipe(istore_mem_reg);
 10466 %}
 10468 // Store Long reversed byte order
 10469 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10470   match(Set dst (StoreL dst (ReverseBytesL src)));
 10472   ins_cost(MEMORY_REF_COST);
 10473   size(4);
 10474   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10476   ins_encode %{
 10477     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10478   %}
 10479   ins_pipe(istore_mem_reg);
 10480 %}
 10482 // Store unsighed short/char reversed byte order
 10483 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10484   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10486   ins_cost(MEMORY_REF_COST);
 10487   size(4);
 10488   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10490   ins_encode %{
 10491     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10492   %}
 10493   ins_pipe(istore_mem_reg);
 10494 %}
 10496 // Store short reversed byte order
 10497 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10498   match(Set dst (StoreC dst (ReverseBytesS src)));
 10500   ins_cost(MEMORY_REF_COST);
 10501   size(4);
 10502   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10504   ins_encode %{
 10505     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10506   %}
 10507   ins_pipe(istore_mem_reg);
 10508 %}
 10510 // ====================VECTOR INSTRUCTIONS=====================================
 10512 // Load Aligned Packed values into a Double Register
 10513 instruct loadV8(regD dst, memory mem) %{
 10514   predicate(n->as_LoadVector()->memory_size() == 8);
 10515   match(Set dst (LoadVector mem));
 10516   ins_cost(MEMORY_REF_COST);
 10517   size(4);
 10518   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10519   ins_encode %{
 10520     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10521   %}
 10522   ins_pipe(floadD_mem);
 10523 %}
 10525 // Store Vector in Double register to memory
 10526 instruct storeV8(memory mem, regD src) %{
 10527   predicate(n->as_StoreVector()->memory_size() == 8);
 10528   match(Set mem (StoreVector mem src));
 10529   ins_cost(MEMORY_REF_COST);
 10530   size(4);
 10531   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10532   ins_encode %{
 10533     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10534   %}
 10535   ins_pipe(fstoreD_mem_reg);
 10536 %}
 10538 // Store Zero into vector in memory
 10539 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10540   predicate(n->as_StoreVector()->memory_size() == 8);
 10541   match(Set mem (StoreVector mem (ReplicateB zero)));
 10542   ins_cost(MEMORY_REF_COST);
 10543   size(4);
 10544   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10545   ins_encode %{
 10546     __ stx(G0, $mem$$Address);
 10547   %}
 10548   ins_pipe(fstoreD_mem_zero);
 10549 %}
 10551 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10552   predicate(n->as_StoreVector()->memory_size() == 8);
 10553   match(Set mem (StoreVector mem (ReplicateS zero)));
 10554   ins_cost(MEMORY_REF_COST);
 10555   size(4);
 10556   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10557   ins_encode %{
 10558     __ stx(G0, $mem$$Address);
 10559   %}
 10560   ins_pipe(fstoreD_mem_zero);
 10561 %}
 10563 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10564   predicate(n->as_StoreVector()->memory_size() == 8);
 10565   match(Set mem (StoreVector mem (ReplicateI zero)));
 10566   ins_cost(MEMORY_REF_COST);
 10567   size(4);
 10568   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10569   ins_encode %{
 10570     __ stx(G0, $mem$$Address);
 10571   %}
 10572   ins_pipe(fstoreD_mem_zero);
 10573 %}
 10575 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10576   predicate(n->as_StoreVector()->memory_size() == 8);
 10577   match(Set mem (StoreVector mem (ReplicateF zero)));
 10578   ins_cost(MEMORY_REF_COST);
 10579   size(4);
 10580   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10581   ins_encode %{
 10582     __ stx(G0, $mem$$Address);
 10583   %}
 10584   ins_pipe(fstoreD_mem_zero);
 10585 %}
 10587 // Replicate scalar to packed byte values into Double register
 10588 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10589   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10590   match(Set dst (ReplicateB src));
 10591   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10592   format %{ "SLLX  $src,56,$tmp\n\t"
 10593             "SRLX  $tmp, 8,$tmp2\n\t"
 10594             "OR    $tmp,$tmp2,$tmp\n\t"
 10595             "SRLX  $tmp,16,$tmp2\n\t"
 10596             "OR    $tmp,$tmp2,$tmp\n\t"
 10597             "SRLX  $tmp,32,$tmp2\n\t"
 10598             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10599             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10600   ins_encode %{
 10601     Register Rsrc = $src$$Register;
 10602     Register Rtmp = $tmp$$Register;
 10603     Register Rtmp2 = $tmp2$$Register;
 10604     __ sllx(Rsrc,    56, Rtmp);
 10605     __ srlx(Rtmp,     8, Rtmp2);
 10606     __ or3 (Rtmp, Rtmp2, Rtmp);
 10607     __ srlx(Rtmp,    16, Rtmp2);
 10608     __ or3 (Rtmp, Rtmp2, Rtmp);
 10609     __ srlx(Rtmp,    32, Rtmp2);
 10610     __ or3 (Rtmp, Rtmp2, Rtmp);
 10611     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10612   %}
 10613   ins_pipe(ialu_reg);
 10614 %}
 10616 // Replicate scalar to packed byte values into Double stack
 10617 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10618   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10619   match(Set dst (ReplicateB src));
 10620   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10621   format %{ "SLLX  $src,56,$tmp\n\t"
 10622             "SRLX  $tmp, 8,$tmp2\n\t"
 10623             "OR    $tmp,$tmp2,$tmp\n\t"
 10624             "SRLX  $tmp,16,$tmp2\n\t"
 10625             "OR    $tmp,$tmp2,$tmp\n\t"
 10626             "SRLX  $tmp,32,$tmp2\n\t"
 10627             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10628             "STX   $tmp,$dst\t! regL to stkD" %}
 10629   ins_encode %{
 10630     Register Rsrc = $src$$Register;
 10631     Register Rtmp = $tmp$$Register;
 10632     Register Rtmp2 = $tmp2$$Register;
 10633     __ sllx(Rsrc,    56, Rtmp);
 10634     __ srlx(Rtmp,     8, Rtmp2);
 10635     __ or3 (Rtmp, Rtmp2, Rtmp);
 10636     __ srlx(Rtmp,    16, Rtmp2);
 10637     __ or3 (Rtmp, Rtmp2, Rtmp);
 10638     __ srlx(Rtmp,    32, Rtmp2);
 10639     __ or3 (Rtmp, Rtmp2, Rtmp);
 10640     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10641     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10642   %}
 10643   ins_pipe(ialu_reg);
 10644 %}
 10646 // Replicate scalar constant to packed byte values in Double register
 10647 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10648   predicate(n->as_Vector()->length() == 8);
 10649   match(Set dst (ReplicateB con));
 10650   effect(KILL tmp);
 10651   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10652   ins_encode %{
 10653     // XXX This is a quick fix for 6833573.
 10654     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10655     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10656     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10657   %}
 10658   ins_pipe(loadConFD);
 10659 %}
 10661 // Replicate scalar to packed char/short values into Double register
 10662 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10663   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10664   match(Set dst (ReplicateS src));
 10665   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10666   format %{ "SLLX  $src,48,$tmp\n\t"
 10667             "SRLX  $tmp,16,$tmp2\n\t"
 10668             "OR    $tmp,$tmp2,$tmp\n\t"
 10669             "SRLX  $tmp,32,$tmp2\n\t"
 10670             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10671             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10672   ins_encode %{
 10673     Register Rsrc = $src$$Register;
 10674     Register Rtmp = $tmp$$Register;
 10675     Register Rtmp2 = $tmp2$$Register;
 10676     __ sllx(Rsrc,    48, Rtmp);
 10677     __ srlx(Rtmp,    16, Rtmp2);
 10678     __ or3 (Rtmp, Rtmp2, Rtmp);
 10679     __ srlx(Rtmp,    32, Rtmp2);
 10680     __ or3 (Rtmp, Rtmp2, Rtmp);
 10681     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10682   %}
 10683   ins_pipe(ialu_reg);
 10684 %}
 10686 // Replicate scalar to packed char/short values into Double stack
 10687 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10688   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10689   match(Set dst (ReplicateS src));
 10690   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10691   format %{ "SLLX  $src,48,$tmp\n\t"
 10692             "SRLX  $tmp,16,$tmp2\n\t"
 10693             "OR    $tmp,$tmp2,$tmp\n\t"
 10694             "SRLX  $tmp,32,$tmp2\n\t"
 10695             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10696             "STX   $tmp,$dst\t! regL to stkD" %}
 10697   ins_encode %{
 10698     Register Rsrc = $src$$Register;
 10699     Register Rtmp = $tmp$$Register;
 10700     Register Rtmp2 = $tmp2$$Register;
 10701     __ sllx(Rsrc,    48, Rtmp);
 10702     __ srlx(Rtmp,    16, Rtmp2);
 10703     __ or3 (Rtmp, Rtmp2, Rtmp);
 10704     __ srlx(Rtmp,    32, Rtmp2);
 10705     __ or3 (Rtmp, Rtmp2, Rtmp);
 10706     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10707     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10708   %}
 10709   ins_pipe(ialu_reg);
 10710 %}
 10712 // Replicate scalar constant to packed char/short values in Double register
 10713 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10714   predicate(n->as_Vector()->length() == 4);
 10715   match(Set dst (ReplicateS con));
 10716   effect(KILL tmp);
 10717   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10718   ins_encode %{
 10719     // XXX This is a quick fix for 6833573.
 10720     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10721     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10722     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10723   %}
 10724   ins_pipe(loadConFD);
 10725 %}
 10727 // Replicate scalar to packed int values into Double register
 10728 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10729   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10730   match(Set dst (ReplicateI src));
 10731   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10732   format %{ "SLLX  $src,32,$tmp\n\t"
 10733             "SRLX  $tmp,32,$tmp2\n\t"
 10734             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10735             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10736   ins_encode %{
 10737     Register Rsrc = $src$$Register;
 10738     Register Rtmp = $tmp$$Register;
 10739     Register Rtmp2 = $tmp2$$Register;
 10740     __ sllx(Rsrc,    32, Rtmp);
 10741     __ srlx(Rtmp,    32, Rtmp2);
 10742     __ or3 (Rtmp, Rtmp2, Rtmp);
 10743     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10744   %}
 10745   ins_pipe(ialu_reg);
 10746 %}
 10748 // Replicate scalar to packed int values into Double stack
 10749 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10750   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10751   match(Set dst (ReplicateI src));
 10752   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10753   format %{ "SLLX  $src,32,$tmp\n\t"
 10754             "SRLX  $tmp,32,$tmp2\n\t"
 10755             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10756             "STX   $tmp,$dst\t! regL to stkD" %}
 10757   ins_encode %{
 10758     Register Rsrc = $src$$Register;
 10759     Register Rtmp = $tmp$$Register;
 10760     Register Rtmp2 = $tmp2$$Register;
 10761     __ sllx(Rsrc,    32, Rtmp);
 10762     __ srlx(Rtmp,    32, Rtmp2);
 10763     __ or3 (Rtmp, Rtmp2, Rtmp);
 10764     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10765     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10766   %}
 10767   ins_pipe(ialu_reg);
 10768 %}
 10770 // Replicate scalar zero constant to packed int values in Double register
 10771 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10772   predicate(n->as_Vector()->length() == 2);
 10773   match(Set dst (ReplicateI con));
 10774   effect(KILL tmp);
 10775   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10776   ins_encode %{
 10777     // XXX This is a quick fix for 6833573.
 10778     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10779     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10780     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10781   %}
 10782   ins_pipe(loadConFD);
 10783 %}
 10785 // Replicate scalar to packed float values into Double stack
 10786 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10787   predicate(n->as_Vector()->length() == 2);
 10788   match(Set dst (ReplicateF src));
 10789   ins_cost(MEMORY_REF_COST*2);
 10790   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10791             "STF    $src,$dst.lo" %}
 10792   opcode(Assembler::stf_op3);
 10793   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10794   ins_pipe(fstoreF_stk_reg);
 10795 %}
 10797 // Replicate scalar zero constant to packed float values in Double register
 10798 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10799   predicate(n->as_Vector()->length() == 2);
 10800   match(Set dst (ReplicateF con));
 10801   effect(KILL tmp);
 10802   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10803   ins_encode %{
 10804     // XXX This is a quick fix for 6833573.
 10805     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10806     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10807     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10808   %}
 10809   ins_pipe(loadConFD);
 10810 %}
 10812 //----------PEEPHOLE RULES-----------------------------------------------------
 10813 // These must follow all instruction definitions as they use the names
 10814 // defined in the instructions definitions.
 10815 //
 10816 // peepmatch ( root_instr_name [preceding_instruction]* );
 10817 //
 10818 // peepconstraint %{
 10819 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10820 //  [, ...] );
 10821 // // instruction numbers are zero-based using left to right order in peepmatch
 10822 //
 10823 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10824 // // provide an instruction_number.operand_name for each operand that appears
 10825 // // in the replacement instruction's match rule
 10826 //
 10827 // ---------VM FLAGS---------------------------------------------------------
 10828 //
 10829 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10830 //
 10831 // Each peephole rule is given an identifying number starting with zero and
 10832 // increasing by one in the order seen by the parser.  An individual peephole
 10833 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10834 // on the command-line.
 10835 //
 10836 // ---------CURRENT LIMITATIONS----------------------------------------------
 10837 //
 10838 // Only match adjacent instructions in same basic block
 10839 // Only equality constraints
 10840 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10841 // Only one replacement instruction
 10842 //
 10843 // ---------EXAMPLE----------------------------------------------------------
 10844 //
 10845 // // pertinent parts of existing instructions in architecture description
 10846 // instruct movI(eRegI dst, eRegI src) %{
 10847 //   match(Set dst (CopyI src));
 10848 // %}
 10849 //
 10850 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10851 //   match(Set dst (AddI dst src));
 10852 //   effect(KILL cr);
 10853 // %}
 10854 //
 10855 // // Change (inc mov) to lea
 10856 // peephole %{
 10857 //   // increment preceeded by register-register move
 10858 //   peepmatch ( incI_eReg movI );
 10859 //   // require that the destination register of the increment
 10860 //   // match the destination register of the move
 10861 //   peepconstraint ( 0.dst == 1.dst );
 10862 //   // construct a replacement instruction that sets
 10863 //   // the destination to ( move's source register + one )
 10864 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10865 // %}
 10866 //
 10868 // // Change load of spilled value to only a spill
 10869 // instruct storeI(memory mem, eRegI src) %{
 10870 //   match(Set mem (StoreI mem src));
 10871 // %}
 10872 //
 10873 // instruct loadI(eRegI dst, memory mem) %{
 10874 //   match(Set dst (LoadI mem));
 10875 // %}
 10876 //
 10877 // peephole %{
 10878 //   peepmatch ( loadI storeI );
 10879 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10880 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10881 // %}
 10883 //----------SMARTSPILL RULES---------------------------------------------------
 10884 // These must follow all instruction definitions as they use the names
 10885 // defined in the instructions definitions.
 10886 //
 10887 // SPARC will probably not have any of these rules due to RISC instruction set.
 10889 //----------PIPELINE-----------------------------------------------------------
 10890 // Rules which define the behavior of the target architectures pipeline.

mercurial