src/cpu/sparc/vm/sparc.ad

Tue, 09 Oct 2012 10:11:38 +0200

author
roland
date
Tue, 09 Oct 2012 10:11:38 +0200
changeset 4159
8e47bac5643a
parent 4134
859c45fb8cea
child 4160
f6badecb7ea7
permissions
-rw-r--r--

7054512: Compress class pointers after perm gen removal
Summary: support of compress class pointers in the compilers.
Reviewed-by: kvn, twisti

     1 //
     2 // Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 extern bool use_block_zeroing(Node* count);
   465 // Macros to extract hi & lo halves from a long pair.
   466 // G0 is not part of any long pair, so assert on that.
   467 // Prevents accidentally using G1 instead of G0.
   468 #define LONG_HI_REG(x) (x)
   469 #define LONG_LO_REG(x) (x)
   471 %}
   473 source %{
   474 #define __ _masm.
   476 // tertiary op of a LoadP or StoreP encoding
   477 #define REGP_OP true
   479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   481 static Register reg_to_register_object(int register_encoding);
   483 // Used by the DFA in dfa_sparc.cpp.
   484 // Check for being able to use a V9 branch-on-register.  Requires a
   485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   486 // extended.  Doesn't work following an integer ADD, for example, because of
   487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   489 // replace them with zero, which could become sign-extension in a different OS
   490 // release.  There's no obvious reason why an interrupt will ever fill these
   491 // bits with non-zero junk (the registers are reloaded with standard LD
   492 // instructions which either zero-fill or sign-fill).
   493 bool can_branch_register( Node *bol, Node *cmp ) {
   494   if( !BranchOnRegister ) return false;
   495 #ifdef _LP64
   496   if( cmp->Opcode() == Op_CmpP )
   497     return true;  // No problems with pointer compares
   498 #endif
   499   if( cmp->Opcode() == Op_CmpL )
   500     return true;  // No problems with long compares
   502   if( !SparcV9RegsHiBitsZero ) return false;
   503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   504       bol->as_Bool()->_test._test != BoolTest::eq )
   505      return false;
   507   // Check for comparing against a 'safe' value.  Any operation which
   508   // clears out the high word is safe.  Thus, loads and certain shifts
   509   // are safe, as are non-negative constants.  Any operation which
   510   // preserves zero bits in the high word is safe as long as each of its
   511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   512   // inputs are safe.  At present, the only important case to recognize
   513   // seems to be loads.  Constants should fold away, and shifts &
   514   // logicals can use the 'cc' forms.
   515   Node *x = cmp->in(1);
   516   if( x->is_Load() ) return true;
   517   if( x->is_Phi() ) {
   518     for( uint i = 1; i < x->req(); i++ )
   519       if( !x->in(i)->is_Load() )
   520         return false;
   521     return true;
   522   }
   523   return false;
   524 }
   526 bool use_block_zeroing(Node* count) {
   527   // Use BIS for zeroing if count is not constant
   528   // or it is >= BlockZeroingLowLimit.
   529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
   530 }
   532 // ****************************************************************************
   534 // REQUIRED FUNCTIONALITY
   536 // !!!!! Special hack to get all type of calls to specify the byte offset
   537 //       from the start of the call to the point where the return address
   538 //       will point.
   539 //       The "return address" is the address of the call instruction, plus 8.
   541 int MachCallStaticJavaNode::ret_addr_offset() {
   542   int offset = NativeCall::instruction_size;  // call; delay slot
   543   if (_method_handle_invoke)
   544     offset += 4;  // restore SP
   545   return offset;
   546 }
   548 int MachCallDynamicJavaNode::ret_addr_offset() {
   549   int vtable_index = this->_vtable_index;
   550   if (vtable_index < 0) {
   551     // must be invalid_vtable_index, not nonvirtual_vtable_index
   552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
   553     return (NativeMovConstReg::instruction_size +
   554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   555   } else {
   556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   559     int klass_load_size;
   560     if (UseCompressedKlassPointers) {
   561       assert(Universe::heap() != NULL, "java heap should be initialized");
   562       if (Universe::narrow_klass_base() == NULL)
   563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   564       else
   565         klass_load_size = 3*BytesPerInstWord;
   566     } else {
   567       klass_load_size = 1*BytesPerInstWord;
   568     }
   569     if (Assembler::is_simm13(v_off)) {
   570       return klass_load_size +
   571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   572              NativeCall::instruction_size);  // call; delay slot
   573     } else {
   574       return klass_load_size +
   575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   576              NativeCall::instruction_size);  // call; delay slot
   577     }
   578   }
   579 }
   581 int MachCallRuntimeNode::ret_addr_offset() {
   582 #ifdef _LP64
   583   if (MacroAssembler::is_far_target(entry_point())) {
   584     return NativeFarCall::instruction_size;
   585   } else {
   586     return NativeCall::instruction_size;
   587   }
   588 #else
   589   return NativeCall::instruction_size;  // call; delay slot
   590 #endif
   591 }
   593 // Indicate if the safepoint node needs the polling page as an input.
   594 // Since Sparc does not have absolute addressing, it does.
   595 bool SafePointNode::needs_polling_address_input() {
   596   return true;
   597 }
   599 // emit an interrupt that is caught by the debugger (for debugging compiler)
   600 void emit_break(CodeBuffer &cbuf) {
   601   MacroAssembler _masm(&cbuf);
   602   __ breakpoint_trap();
   603 }
   605 #ifndef PRODUCT
   606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   607   st->print("TA");
   608 }
   609 #endif
   611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   612   emit_break(cbuf);
   613 }
   615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   616   return MachNode::size(ra_);
   617 }
   619 // Traceable jump
   620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   621   MacroAssembler _masm(&cbuf);
   622   Register rdest = reg_to_register_object(jump_target);
   623   __ JMP(rdest, 0);
   624   __ delayed()->nop();
   625 }
   627 // Traceable jump and set exception pc
   628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   629   MacroAssembler _masm(&cbuf);
   630   Register rdest = reg_to_register_object(jump_target);
   631   __ JMP(rdest, 0);
   632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   633 }
   635 void emit_nop(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ nop();
   638 }
   640 void emit_illtrap(CodeBuffer &cbuf) {
   641   MacroAssembler _masm(&cbuf);
   642   __ illtrap(0);
   643 }
   646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   647   assert(n->rule() != loadUB_rule, "");
   649   intptr_t offset = 0;
   650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   651   const Node* addr = n->get_base_and_disp(offset, adr_type);
   652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   655   atype = atype->add_offset(offset);
   656   assert(disp32 == offset, "wrong disp32");
   657   return atype->_offset;
   658 }
   661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   662   assert(n->rule() != loadUB_rule, "");
   664   intptr_t offset = 0;
   665   Node* addr = n->in(2);
   666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   668     Node* a = addr->in(2/*AddPNode::Address*/);
   669     Node* o = addr->in(3/*AddPNode::Offset*/);
   670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   672     assert(atype->isa_oop_ptr(), "still an oop");
   673   }
   674   offset = atype->is_ptr()->_offset;
   675   if (offset != Type::OffsetBot)  offset += disp32;
   676   return offset;
   677 }
   679 static inline jdouble replicate_immI(int con, int count, int width) {
   680   // Load a constant replicated "count" times with width "width"
   681   assert(count*width == 8 && width <= 4, "sanity");
   682   int bit_width = width * 8;
   683   jlong val = con;
   684   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   685   for (int i = 0; i < count - 1; i++) {
   686     val |= (val << bit_width);
   687   }
   688   jdouble dval = *((jdouble*) &val);  // coerce to double type
   689   return dval;
   690 }
   692 static inline jdouble replicate_immF(float con) {
   693   // Replicate float con 2 times and pack into vector.
   694   int val = *((int*)&con);
   695   jlong lval = val;
   696   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
   697   jdouble dval = *((jdouble*) &lval);  // coerce to double type
   698   return dval;
   699 }
   701 // Standard Sparc opcode form2 field breakdown
   702 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   703   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   704   int op = (f30 << 30) |
   705            (f29 << 29) |
   706            (f25 << 25) |
   707            (f22 << 22) |
   708            (f20 << 20) |
   709            (f19 << 19) |
   710            (f0  <<  0);
   711   cbuf.insts()->emit_int32(op);
   712 }
   714 // Standard Sparc opcode form2 field breakdown
   715 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   716   f0 >>= 10;           // Drop 10 bits
   717   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   718   int op = (f30 << 30) |
   719            (f25 << 25) |
   720            (f22 << 22) |
   721            (f0  <<  0);
   722   cbuf.insts()->emit_int32(op);
   723 }
   725 // Standard Sparc opcode form3 field breakdown
   726 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   727   int op = (f30 << 30) |
   728            (f25 << 25) |
   729            (f19 << 19) |
   730            (f14 << 14) |
   731            (f5  <<  5) |
   732            (f0  <<  0);
   733   cbuf.insts()->emit_int32(op);
   734 }
   736 // Standard Sparc opcode form3 field breakdown
   737 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   738   simm13 &= (1<<13)-1; // Mask to 13 bits
   739   int op = (f30 << 30) |
   740            (f25 << 25) |
   741            (f19 << 19) |
   742            (f14 << 14) |
   743            (1   << 13) | // bit to indicate immediate-mode
   744            (simm13<<0);
   745   cbuf.insts()->emit_int32(op);
   746 }
   748 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   749   simm10 &= (1<<10)-1; // Mask to 10 bits
   750   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   751 }
   753 #ifdef ASSERT
   754 // Helper function for VerifyOops in emit_form3_mem_reg
   755 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   756   warning("VerifyOops encountered unexpected instruction:");
   757   n->dump(2);
   758   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   759 }
   760 #endif
   763 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   764                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   766 #ifdef ASSERT
   767   // The following code implements the +VerifyOops feature.
   768   // It verifies oop values which are loaded into or stored out of
   769   // the current method activation.  +VerifyOops complements techniques
   770   // like ScavengeALot, because it eagerly inspects oops in transit,
   771   // as they enter or leave the stack, as opposed to ScavengeALot,
   772   // which inspects oops "at rest", in the stack or heap, at safepoints.
   773   // For this reason, +VerifyOops can sometimes detect bugs very close
   774   // to their point of creation.  It can also serve as a cross-check
   775   // on the validity of oop maps, when used toegether with ScavengeALot.
   777   // It would be good to verify oops at other points, especially
   778   // when an oop is used as a base pointer for a load or store.
   779   // This is presently difficult, because it is hard to know when
   780   // a base address is biased or not.  (If we had such information,
   781   // it would be easy and useful to make a two-argument version of
   782   // verify_oop which unbiases the base, and performs verification.)
   784   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   785   bool is_verified_oop_base  = false;
   786   bool is_verified_oop_load  = false;
   787   bool is_verified_oop_store = false;
   788   int tmp_enc = -1;
   789   if (VerifyOops && src1_enc != R_SP_enc) {
   790     // classify the op, mainly for an assert check
   791     int st_op = 0, ld_op = 0;
   792     switch (primary) {
   793     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   794     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   795     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   796     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   797     case Assembler::std_op3:  st_op = Op_StoreL; break;
   798     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   799     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   801     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   802     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
   803     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   804     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   805     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   806     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   807     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   808     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   809     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   810     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   811     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   813     default: ShouldNotReachHere();
   814     }
   815     if (tertiary == REGP_OP) {
   816       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   817       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   818       else                          ShouldNotReachHere();
   819       if (st_op) {
   820         // a store
   821         // inputs are (0:control, 1:memory, 2:address, 3:value)
   822         Node* n2 = n->in(3);
   823         if (n2 != NULL) {
   824           const Type* t = n2->bottom_type();
   825           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   826         }
   827       } else {
   828         // a load
   829         const Type* t = n->bottom_type();
   830         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   831       }
   832     }
   834     if (ld_op) {
   835       // a Load
   836       // inputs are (0:control, 1:memory, 2:address)
   837       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   838           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   839           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   840           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   841           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   842           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   843           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   844           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   845           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   846           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   847           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   848           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   849           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   850           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
   851           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
   852           !(n->rule() == loadUB_rule)) {
   853         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   854       }
   855     } else if (st_op) {
   856       // a Store
   857       // inputs are (0:control, 1:memory, 2:address, 3:value)
   858       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   859           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   860           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   861           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   862           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   863           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
   864           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   865         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   866       }
   867     }
   869     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   870       Node* addr = n->in(2);
   871       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   872         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   873         if (atype != NULL) {
   874           intptr_t offset = get_offset_from_base(n, atype, disp32);
   875           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   876           if (offset != offset_2) {
   877             get_offset_from_base(n, atype, disp32);
   878             get_offset_from_base_2(n, atype, disp32);
   879           }
   880           assert(offset == offset_2, "different offsets");
   881           if (offset == disp32) {
   882             // we now know that src1 is a true oop pointer
   883             is_verified_oop_base = true;
   884             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   885               if( primary == Assembler::ldd_op3 ) {
   886                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   887               } else {
   888                 tmp_enc = dst_enc;
   889                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   890                 assert(src1_enc != dst_enc, "");
   891               }
   892             }
   893           }
   894           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   895                        || offset == oopDesc::mark_offset_in_bytes())) {
   896                       // loading the mark should not be allowed either, but
   897                       // we don't check this since it conflicts with InlineObjectHash
   898                       // usage of LoadINode to get the mark. We could keep the
   899                       // check if we create a new LoadMarkNode
   900             // but do not verify the object before its header is initialized
   901             ShouldNotReachHere();
   902           }
   903         }
   904       }
   905     }
   906   }
   907 #endif
   909   uint instr;
   910   instr = (Assembler::ldst_op << 30)
   911         | (dst_enc        << 25)
   912         | (primary        << 19)
   913         | (src1_enc       << 14);
   915   uint index = src2_enc;
   916   int disp = disp32;
   918   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   919     disp += STACK_BIAS;
   921   // We should have a compiler bailout here rather than a guarantee.
   922   // Better yet would be some mechanism to handle variable-size matches correctly.
   923   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   925   if( disp == 0 ) {
   926     // use reg-reg form
   927     // bit 13 is already zero
   928     instr |= index;
   929   } else {
   930     // use reg-imm form
   931     instr |= 0x00002000;          // set bit 13 to one
   932     instr |= disp & 0x1FFF;
   933   }
   935   cbuf.insts()->emit_int32(instr);
   937 #ifdef ASSERT
   938   {
   939     MacroAssembler _masm(&cbuf);
   940     if (is_verified_oop_base) {
   941       __ verify_oop(reg_to_register_object(src1_enc));
   942     }
   943     if (is_verified_oop_store) {
   944       __ verify_oop(reg_to_register_object(dst_enc));
   945     }
   946     if (tmp_enc != -1) {
   947       __ mov(O7, reg_to_register_object(tmp_enc));
   948     }
   949     if (is_verified_oop_load) {
   950       __ verify_oop(reg_to_register_object(dst_enc));
   951     }
   952   }
   953 #endif
   954 }
   956 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   957   // The method which records debug information at every safepoint
   958   // expects the call to be the first instruction in the snippet as
   959   // it creates a PcDesc structure which tracks the offset of a call
   960   // from the start of the codeBlob. This offset is computed as
   961   // code_end() - code_begin() of the code which has been emitted
   962   // so far.
   963   // In this particular case we have skirted around the problem by
   964   // putting the "mov" instruction in the delay slot but the problem
   965   // may bite us again at some other point and a cleaner/generic
   966   // solution using relocations would be needed.
   967   MacroAssembler _masm(&cbuf);
   968   __ set_inst_mark();
   970   // We flush the current window just so that there is a valid stack copy
   971   // the fact that the current window becomes active again instantly is
   972   // not a problem there is nothing live in it.
   974 #ifdef ASSERT
   975   int startpos = __ offset();
   976 #endif /* ASSERT */
   978   __ call((address)entry_point, rtype);
   980   if (preserve_g2)   __ delayed()->mov(G2, L7);
   981   else __ delayed()->nop();
   983   if (preserve_g2)   __ mov(L7, G2);
   985 #ifdef ASSERT
   986   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   987 #ifdef _LP64
   988     // Trash argument dump slots.
   989     __ set(0xb0b8ac0db0b8ac0d, G1);
   990     __ mov(G1, G5);
   991     __ stx(G1, SP, STACK_BIAS + 0x80);
   992     __ stx(G1, SP, STACK_BIAS + 0x88);
   993     __ stx(G1, SP, STACK_BIAS + 0x90);
   994     __ stx(G1, SP, STACK_BIAS + 0x98);
   995     __ stx(G1, SP, STACK_BIAS + 0xA0);
   996     __ stx(G1, SP, STACK_BIAS + 0xA8);
   997 #else // _LP64
   998     // this is also a native call, so smash the first 7 stack locations,
   999     // and the various registers
  1001     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
  1002     // while [SP+0x44..0x58] are the argument dump slots.
  1003     __ set((intptr_t)0xbaadf00d, G1);
  1004     __ mov(G1, G5);
  1005     __ sllx(G1, 32, G1);
  1006     __ or3(G1, G5, G1);
  1007     __ mov(G1, G5);
  1008     __ stx(G1, SP, 0x40);
  1009     __ stx(G1, SP, 0x48);
  1010     __ stx(G1, SP, 0x50);
  1011     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1012 #endif // _LP64
  1014 #endif /*ASSERT*/
  1017 //=============================================================================
  1018 // REQUIRED FUNCTIONALITY for encoding
  1019 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1020 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1023 //=============================================================================
  1024 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
  1026 int Compile::ConstantTable::calculate_table_base_offset() const {
  1027   if (UseRDPCForConstantTableBase) {
  1028     // The table base offset might be less but then it fits into
  1029     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
  1030     return Assembler::min_simm13();
  1031   } else {
  1032     int offset = -(size() / 2);
  1033     if (!Assembler::is_simm13(offset)) {
  1034       offset = Assembler::min_simm13();
  1036     return offset;
  1040 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1041   Compile* C = ra_->C;
  1042   Compile::ConstantTable& constant_table = C->constant_table();
  1043   MacroAssembler _masm(&cbuf);
  1045   Register r = as_Register(ra_->get_encode(this));
  1046   CodeSection* consts_section = __ code()->consts();
  1047   int consts_size = consts_section->align_at_start(consts_section->size());
  1048   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1050   if (UseRDPCForConstantTableBase) {
  1051     // For the following RDPC logic to work correctly the consts
  1052     // section must be allocated right before the insts section.  This
  1053     // assert checks for that.  The layout and the SECT_* constants
  1054     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1055     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1056     int insts_offset = __ offset();
  1058     // Layout:
  1059     //
  1060     // |----------- consts section ------------|----------- insts section -----------...
  1061     // |------ constant table -----|- padding -|------------------x----
  1062     //                                                            \ current PC (RDPC instruction)
  1063     // |<------------- consts_size ----------->|<- insts_offset ->|
  1064     //                                                            \ table base
  1065     // The table base offset is later added to the load displacement
  1066     // so it has to be negative.
  1067     int table_base_offset = -(consts_size + insts_offset);
  1068     int disp;
  1070     // If the displacement from the current PC to the constant table
  1071     // base fits into simm13 we set the constant table base to the
  1072     // current PC.
  1073     if (Assembler::is_simm13(table_base_offset)) {
  1074       constant_table.set_table_base_offset(table_base_offset);
  1075       disp = 0;
  1076     } else {
  1077       // Otherwise we set the constant table base offset to the
  1078       // maximum negative displacement of load instructions to keep
  1079       // the disp as small as possible:
  1080       //
  1081       // |<------------- consts_size ----------->|<- insts_offset ->|
  1082       // |<--------- min_simm13 --------->|<-------- disp --------->|
  1083       //                                  \ table base
  1084       table_base_offset = Assembler::min_simm13();
  1085       constant_table.set_table_base_offset(table_base_offset);
  1086       disp = (consts_size + insts_offset) + table_base_offset;
  1089     __ rdpc(r);
  1091     if (disp != 0) {
  1092       assert(r != O7, "need temporary");
  1093       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1096   else {
  1097     // Materialize the constant table base.
  1098     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1099     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1100     AddressLiteral base(baseaddr, rspec);
  1101     __ set(base, r);
  1105 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1106   if (UseRDPCForConstantTableBase) {
  1107     // This is really the worst case but generally it's only 1 instruction.
  1108     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1109   } else {
  1110     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1114 #ifndef PRODUCT
  1115 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1116   char reg[128];
  1117   ra_->dump_register(this, reg);
  1118   if (UseRDPCForConstantTableBase) {
  1119     st->print("RDPC   %s\t! constant table base", reg);
  1120   } else {
  1121     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1124 #endif
  1127 //=============================================================================
  1129 #ifndef PRODUCT
  1130 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1131   Compile* C = ra_->C;
  1133   for (int i = 0; i < OptoPrologueNops; i++) {
  1134     st->print_cr("NOP"); st->print("\t");
  1137   if( VerifyThread ) {
  1138     st->print_cr("Verify_Thread"); st->print("\t");
  1141   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1143   // Calls to C2R adapters often do not accept exceptional returns.
  1144   // We require that their callers must bang for them.  But be careful, because
  1145   // some VM calls (such as call site linkage) can use several kilobytes of
  1146   // stack.  But the stack safety zone should account for that.
  1147   // See bugs 4446381, 4468289, 4497237.
  1148   if (C->need_stack_bang(framesize)) {
  1149     st->print_cr("! stack bang"); st->print("\t");
  1152   if (Assembler::is_simm13(-framesize)) {
  1153     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1154   } else {
  1155     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1156     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1157     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1161 #endif
  1163 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1164   Compile* C = ra_->C;
  1165   MacroAssembler _masm(&cbuf);
  1167   for (int i = 0; i < OptoPrologueNops; i++) {
  1168     __ nop();
  1171   __ verify_thread();
  1173   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1174   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1175   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1177   // Calls to C2R adapters often do not accept exceptional returns.
  1178   // We require that their callers must bang for them.  But be careful, because
  1179   // some VM calls (such as call site linkage) can use several kilobytes of
  1180   // stack.  But the stack safety zone should account for that.
  1181   // See bugs 4446381, 4468289, 4497237.
  1182   if (C->need_stack_bang(framesize)) {
  1183     __ generate_stack_overflow_check(framesize);
  1186   if (Assembler::is_simm13(-framesize)) {
  1187     __ save(SP, -framesize, SP);
  1188   } else {
  1189     __ sethi(-framesize & ~0x3ff, G3);
  1190     __ add(G3, -framesize & 0x3ff, G3);
  1191     __ save(SP, G3, SP);
  1193   C->set_frame_complete( __ offset() );
  1195   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
  1196     // NOTE: We set the table base offset here because users might be
  1197     // emitted before MachConstantBaseNode.
  1198     Compile::ConstantTable& constant_table = C->constant_table();
  1199     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1203 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1204   return MachNode::size(ra_);
  1207 int MachPrologNode::reloc() const {
  1208   return 10; // a large enough number
  1211 //=============================================================================
  1212 #ifndef PRODUCT
  1213 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1214   Compile* C = ra_->C;
  1216   if( do_polling() && ra_->C->is_method_compilation() ) {
  1217     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1218 #ifdef _LP64
  1219     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1220 #else
  1221     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1222 #endif
  1225   if( do_polling() )
  1226     st->print("RET\n\t");
  1228   st->print("RESTORE");
  1230 #endif
  1232 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1233   MacroAssembler _masm(&cbuf);
  1234   Compile* C = ra_->C;
  1236   __ verify_thread();
  1238   // If this does safepoint polling, then do it here
  1239   if( do_polling() && ra_->C->is_method_compilation() ) {
  1240     AddressLiteral polling_page(os::get_polling_page());
  1241     __ sethi(polling_page, L0);
  1242     __ relocate(relocInfo::poll_return_type);
  1243     __ ld_ptr( L0, 0, G0 );
  1246   // If this is a return, then stuff the restore in the delay slot
  1247   if( do_polling() ) {
  1248     __ ret();
  1249     __ delayed()->restore();
  1250   } else {
  1251     __ restore();
  1255 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1256   return MachNode::size(ra_);
  1259 int MachEpilogNode::reloc() const {
  1260   return 16; // a large enough number
  1263 const Pipeline * MachEpilogNode::pipeline() const {
  1264   return MachNode::pipeline_class();
  1267 int MachEpilogNode::safepoint_offset() const {
  1268   assert( do_polling(), "no return for this epilog node");
  1269   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1272 //=============================================================================
  1274 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1275 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1276 static enum RC rc_class( OptoReg::Name reg ) {
  1277   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1278   if (OptoReg::is_stack(reg)) return rc_stack;
  1279   VMReg r = OptoReg::as_VMReg(reg);
  1280   if (r->is_Register()) return rc_int;
  1281   assert(r->is_FloatRegister(), "must be");
  1282   return rc_float;
  1285 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1286   if( cbuf ) {
  1287     // Better yet would be some mechanism to handle variable-size matches correctly
  1288     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1289       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1290     } else {
  1291       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1294 #ifndef PRODUCT
  1295   else if( !do_size ) {
  1296     if( size != 0 ) st->print("\n\t");
  1297     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1298     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1300 #endif
  1301   return size+4;
  1304 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1305   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1306 #ifndef PRODUCT
  1307   else if( !do_size ) {
  1308     if( size != 0 ) st->print("\n\t");
  1309     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1311 #endif
  1312   return size+4;
  1315 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1316                                         PhaseRegAlloc *ra_,
  1317                                         bool do_size,
  1318                                         outputStream* st ) const {
  1319   // Get registers to move
  1320   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1321   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1322   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1323   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1325   enum RC src_second_rc = rc_class(src_second);
  1326   enum RC src_first_rc = rc_class(src_first);
  1327   enum RC dst_second_rc = rc_class(dst_second);
  1328   enum RC dst_first_rc = rc_class(dst_first);
  1330   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1332   // Generate spill code!
  1333   int size = 0;
  1335   if( src_first == dst_first && src_second == dst_second )
  1336     return size;            // Self copy, no move
  1338   // --------------------------------------
  1339   // Check for mem-mem move.  Load into unused float registers and fall into
  1340   // the float-store case.
  1341   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1342     int offset = ra_->reg2offset(src_first);
  1343     // Further check for aligned-adjacent pair, so we can use a double load
  1344     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1345       src_second    = OptoReg::Name(R_F31_num);
  1346       src_second_rc = rc_float;
  1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1348     } else {
  1349       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1351     src_first    = OptoReg::Name(R_F30_num);
  1352     src_first_rc = rc_float;
  1355   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1356     int offset = ra_->reg2offset(src_second);
  1357     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1358     src_second    = OptoReg::Name(R_F31_num);
  1359     src_second_rc = rc_float;
  1362   // --------------------------------------
  1363   // Check for float->int copy; requires a trip through memory
  1364   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1365     int offset = frame::register_save_words*wordSize;
  1366     if (cbuf) {
  1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1368       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1369       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1370       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1372 #ifndef PRODUCT
  1373     else if (!do_size) {
  1374       if (size != 0) st->print("\n\t");
  1375       st->print(  "SUB    R_SP,16,R_SP\n");
  1376       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1377       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1378       st->print("\tADD    R_SP,16,R_SP\n");
  1380 #endif
  1381     size += 16;
  1384   // Check for float->int copy on T4
  1385   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1386     // Further check for aligned-adjacent pair, so we can use a double move
  1387     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1388       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1389     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1391   // Check for int->float copy on T4
  1392   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1393     // Further check for aligned-adjacent pair, so we can use a double move
  1394     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1395       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1396     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1399   // --------------------------------------
  1400   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1401   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1402   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1403   // there.  Misaligned sources only come from native-long-returns (handled
  1404   // special below).
  1405 #ifndef _LP64
  1406   if( src_first_rc == rc_int &&     // source is already big-endian
  1407       src_second_rc != rc_bad &&    // 64-bit move
  1408       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1409     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1410     // Do the big-endian flop.
  1411     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1412     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1414 #endif
  1416   // --------------------------------------
  1417   // Check for integer reg-reg copy
  1418   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1419 #ifndef _LP64
  1420     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1421       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1422       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1423       //       operand contains the least significant word of the 64-bit value and vice versa.
  1424       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1425       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1426       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1427       if( cbuf ) {
  1428         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1429         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1430         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1431 #ifndef PRODUCT
  1432       } else if( !do_size ) {
  1433         if( size != 0 ) st->print("\n\t");
  1434         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1435         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1436         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1437 #endif
  1439       return size+12;
  1441     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1442       // returning a long value in I0/I1
  1443       // a SpillCopy must be able to target a return instruction's reg_class
  1444       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1445       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1446       //       operand contains the least significant word of the 64-bit value and vice versa.
  1447       OptoReg::Name tdest = dst_first;
  1449       if (src_first == dst_first) {
  1450         tdest = OptoReg::Name(R_O7_num);
  1451         size += 4;
  1454       if( cbuf ) {
  1455         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1456         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1457         // ShrL_reg_imm6
  1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1459         // ShrR_reg_imm6  src, 0, dst
  1460         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1461         if (tdest != dst_first) {
  1462           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1465 #ifndef PRODUCT
  1466       else if( !do_size ) {
  1467         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1468         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1469         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1470         if (tdest != dst_first) {
  1471           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1474 #endif // PRODUCT
  1475       return size+8;
  1477 #endif // !_LP64
  1478     // Else normal reg-reg copy
  1479     assert( src_second != dst_first, "smashed second before evacuating it" );
  1480     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1481     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1482     // This moves an aligned adjacent pair.
  1483     // See if we are done.
  1484     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1485       return size;
  1488   // Check for integer store
  1489   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1490     int offset = ra_->reg2offset(dst_first);
  1491     // Further check for aligned-adjacent pair, so we can use a double store
  1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1493       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1494     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1497   // Check for integer load
  1498   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1499     int offset = ra_->reg2offset(src_first);
  1500     // Further check for aligned-adjacent pair, so we can use a double load
  1501     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1502       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1503     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1506   // Check for float reg-reg copy
  1507   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1508     // Further check for aligned-adjacent pair, so we can use a double move
  1509     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1510       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1511     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1514   // Check for float store
  1515   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1516     int offset = ra_->reg2offset(dst_first);
  1517     // Further check for aligned-adjacent pair, so we can use a double store
  1518     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1519       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1520     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1523   // Check for float load
  1524   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1525     int offset = ra_->reg2offset(src_first);
  1526     // Further check for aligned-adjacent pair, so we can use a double load
  1527     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1528       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1529     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1532   // --------------------------------------------------------------------
  1533   // Check for hi bits still needing moving.  Only happens for misaligned
  1534   // arguments to native calls.
  1535   if( src_second == dst_second )
  1536     return size;               // Self copy; no move
  1537   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1539 #ifndef _LP64
  1540   // In the LP64 build, all registers can be moved as aligned/adjacent
  1541   // pairs, so there's never any need to move the high bits separately.
  1542   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1543   // all sorts of silly alignment problems.
  1545   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1546   // 32-bits of a 64-bit register, but are needed in low bits of another
  1547   // register (else it's a hi-bits-to-hi-bits copy which should have
  1548   // happened already as part of a 64-bit move)
  1549   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1550     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1551     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1552     // Shift src_second down to dst_second's low bits.
  1553     if( cbuf ) {
  1554       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1555 #ifndef PRODUCT
  1556     } else if( !do_size ) {
  1557       if( size != 0 ) st->print("\n\t");
  1558       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1559 #endif
  1561     return size+4;
  1564   // Check for high word integer store.  Must down-shift the hi bits
  1565   // into a temp register, then fall into the case of storing int bits.
  1566   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1567     // Shift src_second down to dst_second's low bits.
  1568     if( cbuf ) {
  1569       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1570 #ifndef PRODUCT
  1571     } else if( !do_size ) {
  1572       if( size != 0 ) st->print("\n\t");
  1573       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1574 #endif
  1576     size+=4;
  1577     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1580   // Check for high word integer load
  1581   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1582     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1584   // Check for high word integer store
  1585   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1586     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1588   // Check for high word float store
  1589   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1590     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1592 #endif // !_LP64
  1594   Unimplemented();
  1597 #ifndef PRODUCT
  1598 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1599   implementation( NULL, ra_, false, st );
  1601 #endif
  1603 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1604   implementation( &cbuf, ra_, false, NULL );
  1607 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1608   return implementation( NULL, ra_, true, NULL );
  1611 //=============================================================================
  1612 #ifndef PRODUCT
  1613 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1614   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1616 #endif
  1618 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1619   MacroAssembler _masm(&cbuf);
  1620   for(int i = 0; i < _count; i += 1) {
  1621     __ nop();
  1625 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1626   return 4 * _count;
  1630 //=============================================================================
  1631 #ifndef PRODUCT
  1632 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1633   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1634   int reg = ra_->get_reg_first(this);
  1635   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1637 #endif
  1639 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1640   MacroAssembler _masm(&cbuf);
  1641   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1642   int reg = ra_->get_encode(this);
  1644   if (Assembler::is_simm13(offset)) {
  1645      __ add(SP, offset, reg_to_register_object(reg));
  1646   } else {
  1647      __ set(offset, O7);
  1648      __ add(SP, O7, reg_to_register_object(reg));
  1652 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1653   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1654   assert(ra_ == ra_->C->regalloc(), "sanity");
  1655   return ra_->C->scratch_emit_size(this);
  1658 //=============================================================================
  1660 // emit call stub, compiled java to interpretor
  1661 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1663   // Stub is fixed up when the corresponding call is converted from calling
  1664   // compiled code to calling interpreted code.
  1665   // set (empty), G5
  1666   // jmp -1
  1668   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1670   MacroAssembler _masm(&cbuf);
  1672   address base =
  1673   __ start_a_stub(Compile::MAX_stubs_size);
  1674   if (base == NULL)  return;  // CodeBuffer::expand failed
  1676   // static stub relocation stores the instruction address of the call
  1677   __ relocate(static_stub_Relocation::spec(mark));
  1679   __ set_metadata(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1681   __ set_inst_mark();
  1682   AddressLiteral addrlit(-1);
  1683   __ JUMP(addrlit, G3, 0);
  1685   __ delayed()->nop();
  1687   // Update current stubs pointer and restore code_end.
  1688   __ end_a_stub();
  1691 // size of call stub, compiled java to interpretor
  1692 uint size_java_to_interp() {
  1693   // This doesn't need to be accurate but it must be larger or equal to
  1694   // the real size of the stub.
  1695   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1696           NativeJump::instruction_size + // sethi; jmp; nop
  1697           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1699 // relocation entries for call stub, compiled java to interpretor
  1700 uint reloc_java_to_interp() {
  1701   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1705 //=============================================================================
  1706 #ifndef PRODUCT
  1707 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1708   st->print_cr("\nUEP:");
  1709 #ifdef    _LP64
  1710   if (UseCompressedKlassPointers) {
  1711     assert(Universe::heap() != NULL, "java heap should be initialized");
  1712     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1713     st->print_cr("\tSLL    R_G5,3,R_G5");
  1714     if (Universe::narrow_klass_base() != NULL)
  1715       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1716   } else {
  1717     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1719   st->print_cr("\tCMP    R_G5,R_G3" );
  1720   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1721 #else  // _LP64
  1722   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1723   st->print_cr("\tCMP    R_G5,R_G3" );
  1724   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1725 #endif // _LP64
  1727 #endif
  1729 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1730   MacroAssembler _masm(&cbuf);
  1731   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1732   Register temp_reg   = G3;
  1733   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1735   // Load klass from receiver
  1736   __ load_klass(O0, temp_reg);
  1737   // Compare against expected klass
  1738   __ cmp(temp_reg, G5_ic_reg);
  1739   // Branch to miss code, checks xcc or icc depending
  1740   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1743 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1744   return MachNode::size(ra_);
  1748 //=============================================================================
  1750 uint size_exception_handler() {
  1751   if (TraceJumps) {
  1752     return (400); // just a guess
  1754   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1757 uint size_deopt_handler() {
  1758   if (TraceJumps) {
  1759     return (400); // just a guess
  1761   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1764 // Emit exception handler code.
  1765 int emit_exception_handler(CodeBuffer& cbuf) {
  1766   Register temp_reg = G3;
  1767   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1768   MacroAssembler _masm(&cbuf);
  1770   address base =
  1771   __ start_a_stub(size_exception_handler());
  1772   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1774   int offset = __ offset();
  1776   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1777   __ delayed()->nop();
  1779   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1781   __ end_a_stub();
  1783   return offset;
  1786 int emit_deopt_handler(CodeBuffer& cbuf) {
  1787   // Can't use any of the current frame's registers as we may have deopted
  1788   // at a poll and everything (including G3) can be live.
  1789   Register temp_reg = L0;
  1790   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1791   MacroAssembler _masm(&cbuf);
  1793   address base =
  1794   __ start_a_stub(size_deopt_handler());
  1795   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1797   int offset = __ offset();
  1798   __ save_frame(0);
  1799   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1800   __ delayed()->restore();
  1802   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1804   __ end_a_stub();
  1805   return offset;
  1809 // Given a register encoding, produce a Integer Register object
  1810 static Register reg_to_register_object(int register_encoding) {
  1811   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1812   return as_Register(register_encoding);
  1815 // Given a register encoding, produce a single-precision Float Register object
  1816 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1817   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1818   return as_SingleFloatRegister(register_encoding);
  1821 // Given a register encoding, produce a double-precision Float Register object
  1822 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1823   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1824   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1825   return as_DoubleFloatRegister(register_encoding);
  1828 const bool Matcher::match_rule_supported(int opcode) {
  1829   if (!has_match_rule(opcode))
  1830     return false;
  1832   switch (opcode) {
  1833   case Op_CountLeadingZerosI:
  1834   case Op_CountLeadingZerosL:
  1835   case Op_CountTrailingZerosI:
  1836   case Op_CountTrailingZerosL:
  1837   case Op_PopCountI:
  1838   case Op_PopCountL:
  1839     if (!UsePopCountInstruction)
  1840       return false;
  1841   case Op_CompareAndSwapL:
  1842 #ifdef _LP64
  1843   case Op_CompareAndSwapP:
  1844 #endif
  1845     if (!VM_Version::supports_cx8())
  1846       return false;
  1847     break;
  1850   return true;  // Per default match rules are supported.
  1853 int Matcher::regnum_to_fpu_offset(int regnum) {
  1854   return regnum - 32; // The FP registers are in the second chunk
  1857 #ifdef ASSERT
  1858 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1859 #endif
  1861 // Vector width in bytes
  1862 const int Matcher::vector_width_in_bytes(BasicType bt) {
  1863   assert(MaxVectorSize == 8, "");
  1864   return 8;
  1867 // Vector ideal reg
  1868 const int Matcher::vector_ideal_reg(int size) {
  1869   assert(MaxVectorSize == 8, "");
  1870   return Op_RegD;
  1873 const int Matcher::vector_shift_count_ideal_reg(int size) {
  1874   fatal("vector shift is not supported");
  1875   return Node::NotAMachineReg;
  1878 // Limits on vector size (number of elements) loaded into vector.
  1879 const int Matcher::max_vector_size(const BasicType bt) {
  1880   assert(is_java_primitive(bt), "only primitive type vectors");
  1881   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  1884 const int Matcher::min_vector_size(const BasicType bt) {
  1885   return max_vector_size(bt); // Same as max.
  1888 // SPARC doesn't support misaligned vectors store/load.
  1889 const bool Matcher::misaligned_vectors_ok() {
  1890   return false;
  1893 // USII supports fxtof through the whole range of number, USIII doesn't
  1894 const bool Matcher::convL2FSupported(void) {
  1895   return VM_Version::has_fast_fxtof();
  1898 // Is this branch offset short enough that a short branch can be used?
  1899 //
  1900 // NOTE: If the platform does not provide any short branch variants, then
  1901 //       this method should return false for offset 0.
  1902 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  1903   // The passed offset is relative to address of the branch.
  1904   // Don't need to adjust the offset.
  1905   return UseCBCond && Assembler::is_simm12(offset);
  1908 const bool Matcher::isSimpleConstant64(jlong value) {
  1909   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1910   // Depends on optimizations in MacroAssembler::setx.
  1911   int hi = (int)(value >> 32);
  1912   int lo = (int)(value & ~0);
  1913   return (hi == 0) || (hi == -1) || (lo == 0);
  1916 // No scaling for the parameter the ClearArray node.
  1917 const bool Matcher::init_array_count_is_in_bytes = true;
  1919 // Threshold size for cleararray.
  1920 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1922 // No additional cost for CMOVL.
  1923 const int Matcher::long_cmove_cost() { return 0; }
  1925 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
  1926 const int Matcher::float_cmove_cost() {
  1927   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
  1930 // Should the Matcher clone shifts on addressing modes, expecting them to
  1931 // be subsumed into complex addressing expressions or compute them into
  1932 // registers?  True for Intel but false for most RISCs
  1933 const bool Matcher::clone_shift_expressions = false;
  1935 // Do we need to mask the count passed to shift instructions or does
  1936 // the cpu only look at the lower 5/6 bits anyway?
  1937 const bool Matcher::need_masked_shift_count = false;
  1939 bool Matcher::narrow_oop_use_complex_address() {
  1940   NOT_LP64(ShouldNotCallThis());
  1941   assert(UseCompressedOops, "only for compressed oops code");
  1942   return false;
  1945 bool Matcher::narrow_klass_use_complex_address() {
  1946   NOT_LP64(ShouldNotCallThis());
  1947   assert(UseCompressedKlassPointers, "only for compressed klass code");
  1948   return false;
  1951 // Is it better to copy float constants, or load them directly from memory?
  1952 // Intel can load a float constant from a direct address, requiring no
  1953 // extra registers.  Most RISCs will have to materialize an address into a
  1954 // register first, so they would do better to copy the constant from stack.
  1955 const bool Matcher::rematerialize_float_constants = false;
  1957 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1958 // needed.  Else we split the double into 2 integer pieces and move it
  1959 // piece-by-piece.  Only happens when passing doubles into C code as the
  1960 // Java calling convention forces doubles to be aligned.
  1961 #ifdef _LP64
  1962 const bool Matcher::misaligned_doubles_ok = true;
  1963 #else
  1964 const bool Matcher::misaligned_doubles_ok = false;
  1965 #endif
  1967 // No-op on SPARC.
  1968 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1971 // Advertise here if the CPU requires explicit rounding operations
  1972 // to implement the UseStrictFP mode.
  1973 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1975 // Are floats conerted to double when stored to stack during deoptimization?
  1976 // Sparc does not handle callee-save floats.
  1977 bool Matcher::float_in_double() { return false; }
  1979 // Do ints take an entire long register or just half?
  1980 // Note that we if-def off of _LP64.
  1981 // The relevant question is how the int is callee-saved.  In _LP64
  1982 // the whole long is written but de-opt'ing will have to extract
  1983 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1984 #ifdef _LP64
  1985 const bool Matcher::int_in_long = true;
  1986 #else
  1987 const bool Matcher::int_in_long = false;
  1988 #endif
  1990 // Return whether or not this register is ever used as an argument.  This
  1991 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1992 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1993 // arguments in those registers not be available to the callee.
  1994 bool Matcher::can_be_java_arg( int reg ) {
  1995   // Standard sparc 6 args in registers
  1996   if( reg == R_I0_num ||
  1997       reg == R_I1_num ||
  1998       reg == R_I2_num ||
  1999       reg == R_I3_num ||
  2000       reg == R_I4_num ||
  2001       reg == R_I5_num ) return true;
  2002 #ifdef _LP64
  2003   // 64-bit builds can pass 64-bit pointers and longs in
  2004   // the high I registers
  2005   if( reg == R_I0H_num ||
  2006       reg == R_I1H_num ||
  2007       reg == R_I2H_num ||
  2008       reg == R_I3H_num ||
  2009       reg == R_I4H_num ||
  2010       reg == R_I5H_num ) return true;
  2012   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  2013     return true;
  2016 #else
  2017   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  2018   // Longs cannot be passed in O regs, because O regs become I regs
  2019   // after a 'save' and I regs get their high bits chopped off on
  2020   // interrupt.
  2021   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  2022   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  2023 #endif
  2024   // A few float args in registers
  2025   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  2027   return false;
  2030 bool Matcher::is_spillable_arg( int reg ) {
  2031   return can_be_java_arg(reg);
  2034 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  2035   // Use hardware SDIVX instruction when it is
  2036   // faster than a code which use multiply.
  2037   return VM_Version::has_fast_idiv();
  2040 // Register for DIVI projection of divmodI
  2041 RegMask Matcher::divI_proj_mask() {
  2042   ShouldNotReachHere();
  2043   return RegMask();
  2046 // Register for MODI projection of divmodI
  2047 RegMask Matcher::modI_proj_mask() {
  2048   ShouldNotReachHere();
  2049   return RegMask();
  2052 // Register for DIVL projection of divmodL
  2053 RegMask Matcher::divL_proj_mask() {
  2054   ShouldNotReachHere();
  2055   return RegMask();
  2058 // Register for MODL projection of divmodL
  2059 RegMask Matcher::modL_proj_mask() {
  2060   ShouldNotReachHere();
  2061   return RegMask();
  2064 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2065   return L7_REGP_mask();
  2068 %}
  2071 // The intptr_t operand types, defined by textual substitution.
  2072 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  2073 #ifdef _LP64
  2074 #define immX      immL
  2075 #define immX13    immL13
  2076 #define immX13m7  immL13m7
  2077 #define iRegX     iRegL
  2078 #define g1RegX    g1RegL
  2079 #else
  2080 #define immX      immI
  2081 #define immX13    immI13
  2082 #define immX13m7  immI13m7
  2083 #define iRegX     iRegI
  2084 #define g1RegX    g1RegI
  2085 #endif
  2087 //----------ENCODING BLOCK-----------------------------------------------------
  2088 // This block specifies the encoding classes used by the compiler to output
  2089 // byte streams.  Encoding classes are parameterized macros used by
  2090 // Machine Instruction Nodes in order to generate the bit encoding of the
  2091 // instruction.  Operands specify their base encoding interface with the
  2092 // interface keyword.  There are currently supported four interfaces,
  2093 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2094 // operand to generate a function which returns its register number when
  2095 // queried.   CONST_INTER causes an operand to generate a function which
  2096 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2097 // operand to generate four functions which return the Base Register, the
  2098 // Index Register, the Scale Value, and the Offset Value of the operand when
  2099 // queried.  COND_INTER causes an operand to generate six functions which
  2100 // return the encoding code (ie - encoding bits for the instruction)
  2101 // associated with each basic boolean condition for a conditional instruction.
  2102 //
  2103 // Instructions specify two basic values for encoding.  Again, a function
  2104 // is available to check if the constant displacement is an oop. They use the
  2105 // ins_encode keyword to specify their encoding classes (which must be
  2106 // a sequence of enc_class names, and their parameters, specified in
  2107 // the encoding block), and they use the
  2108 // opcode keyword to specify, in order, their primary, secondary, and
  2109 // tertiary opcode.  Only the opcode sections which a particular instruction
  2110 // needs for encoding need to be specified.
  2111 encode %{
  2112   enc_class enc_untested %{
  2113 #ifdef ASSERT
  2114     MacroAssembler _masm(&cbuf);
  2115     __ untested("encoding");
  2116 #endif
  2117   %}
  2119   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2120     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2121                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2122   %}
  2124   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2125     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2126                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2127   %}
  2129   enc_class form3_mem_prefetch_read( memory mem ) %{
  2130     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2131                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2132   %}
  2134   enc_class form3_mem_prefetch_write( memory mem ) %{
  2135     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2136                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2137   %}
  2139   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2140     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2141     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2142     guarantee($mem$$index == R_G0_enc, "double index?");
  2143     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2144     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2145     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2146     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2147   %}
  2149   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2150     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
  2151     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
  2152     guarantee($mem$$index == R_G0_enc, "double index?");
  2153     // Load long with 2 instructions
  2154     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2155     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2156   %}
  2158   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2159   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2160     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2161     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2162   %}
  2164   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2165     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2166     if( $rs2$$reg != $rd$$reg )
  2167       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2168   %}
  2170   // Target lo half of long
  2171   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2172     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2173     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2174       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2175   %}
  2177   // Source lo half of long
  2178   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2179     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2180     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2181       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2182   %}
  2184   // Target hi half of long
  2185   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2186     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2187   %}
  2189   // Source lo half of long, and leave it sign extended.
  2190   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2191     // Sign extend low half
  2192     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2193   %}
  2195   // Source hi half of long, and leave it sign extended.
  2196   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2197     // Shift high half to low half
  2198     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2199   %}
  2201   // Source hi half of long
  2202   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2203     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2204     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2205       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2206   %}
  2208   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2209     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2210   %}
  2212   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2213     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2214     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2215   %}
  2217   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2218     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2219     // clear if nothing else is happening
  2220     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2221     // blt,a,pn done
  2222     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2223     // mov dst,-1 in delay slot
  2224     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2225   %}
  2227   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2228     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2229   %}
  2231   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2232     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2233   %}
  2235   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2236     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2237   %}
  2239   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2240     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2241   %}
  2243   enc_class move_return_pc_to_o1() %{
  2244     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2245   %}
  2247 #ifdef _LP64
  2248   /* %%% merge with enc_to_bool */
  2249   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2250     MacroAssembler _masm(&cbuf);
  2252     Register   src_reg = reg_to_register_object($src$$reg);
  2253     Register   dst_reg = reg_to_register_object($dst$$reg);
  2254     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2255   %}
  2256 #endif
  2258   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2259     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2260     MacroAssembler _masm(&cbuf);
  2262     Register   p_reg = reg_to_register_object($p$$reg);
  2263     Register   q_reg = reg_to_register_object($q$$reg);
  2264     Register   y_reg = reg_to_register_object($y$$reg);
  2265     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2267     __ subcc( p_reg, q_reg,   p_reg );
  2268     __ add  ( p_reg, y_reg, tmp_reg );
  2269     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2270   %}
  2272   enc_class form_d2i_helper(regD src, regF dst) %{
  2273     // fcmp %fcc0,$src,$src
  2274     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2275     // branch %fcc0 not-nan, predict taken
  2276     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2277     // fdtoi $src,$dst
  2278     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2279     // fitos $dst,$dst (if nan)
  2280     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2281     // clear $dst (if nan)
  2282     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2283     // carry on here...
  2284   %}
  2286   enc_class form_d2l_helper(regD src, regD dst) %{
  2287     // fcmp %fcc0,$src,$src  check for NAN
  2288     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2289     // branch %fcc0 not-nan, predict taken
  2290     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2291     // fdtox $src,$dst   convert in delay slot
  2292     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2293     // fxtod $dst,$dst  (if nan)
  2294     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2295     // clear $dst (if nan)
  2296     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2297     // carry on here...
  2298   %}
  2300   enc_class form_f2i_helper(regF src, regF dst) %{
  2301     // fcmps %fcc0,$src,$src
  2302     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2303     // branch %fcc0 not-nan, predict taken
  2304     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2305     // fstoi $src,$dst
  2306     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2307     // fitos $dst,$dst (if nan)
  2308     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2309     // clear $dst (if nan)
  2310     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2311     // carry on here...
  2312   %}
  2314   enc_class form_f2l_helper(regF src, regD dst) %{
  2315     // fcmps %fcc0,$src,$src
  2316     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2317     // branch %fcc0 not-nan, predict taken
  2318     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2319     // fstox $src,$dst
  2320     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2321     // fxtod $dst,$dst (if nan)
  2322     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2323     // clear $dst (if nan)
  2324     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2325     // carry on here...
  2326   %}
  2328   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2329   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2330   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2331   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2333   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2335   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2336   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2338   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2339     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2340   %}
  2342   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2343     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2344   %}
  2346   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2347     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2348   %}
  2350   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2351     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2352   %}
  2354   enc_class form3_convI2F(regF rs2, regF rd) %{
  2355     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2356   %}
  2358   // Encloding class for traceable jumps
  2359   enc_class form_jmpl(g3RegP dest) %{
  2360     emit_jmpl(cbuf, $dest$$reg);
  2361   %}
  2363   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2364     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2365   %}
  2367   enc_class form2_nop() %{
  2368     emit_nop(cbuf);
  2369   %}
  2371   enc_class form2_illtrap() %{
  2372     emit_illtrap(cbuf);
  2373   %}
  2376   // Compare longs and convert into -1, 0, 1.
  2377   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2378     // CMP $src1,$src2
  2379     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2380     // blt,a,pn done
  2381     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2382     // mov dst,-1 in delay slot
  2383     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2384     // bgt,a,pn done
  2385     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2386     // mov dst,1 in delay slot
  2387     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2388     // CLR    $dst
  2389     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2390   %}
  2392   enc_class enc_PartialSubtypeCheck() %{
  2393     MacroAssembler _masm(&cbuf);
  2394     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2395     __ delayed()->nop();
  2396   %}
  2398   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2399     MacroAssembler _masm(&cbuf);
  2400     Label* L = $labl$$label;
  2401     Assembler::Predict predict_taken =
  2402       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2404     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2405     __ delayed()->nop();
  2406   %}
  2408   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2409     MacroAssembler _masm(&cbuf);
  2410     Label* L = $labl$$label;
  2411     Assembler::Predict predict_taken =
  2412       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2414     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2415     __ delayed()->nop();
  2416   %}
  2418   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2419     int op = (Assembler::arith_op << 30) |
  2420              ($dst$$reg << 25) |
  2421              (Assembler::movcc_op3 << 19) |
  2422              (1 << 18) |                    // cc2 bit for 'icc'
  2423              ($cmp$$cmpcode << 14) |
  2424              (0 << 13) |                    // select register move
  2425              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2426              ($src$$reg << 0);
  2427     cbuf.insts()->emit_int32(op);
  2428   %}
  2430   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2431     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2432     int op = (Assembler::arith_op << 30) |
  2433              ($dst$$reg << 25) |
  2434              (Assembler::movcc_op3 << 19) |
  2435              (1 << 18) |                    // cc2 bit for 'icc'
  2436              ($cmp$$cmpcode << 14) |
  2437              (1 << 13) |                    // select immediate move
  2438              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2439              (simm11 << 0);
  2440     cbuf.insts()->emit_int32(op);
  2441   %}
  2443   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2444     int op = (Assembler::arith_op << 30) |
  2445              ($dst$$reg << 25) |
  2446              (Assembler::movcc_op3 << 19) |
  2447              (0 << 18) |                    // cc2 bit for 'fccX'
  2448              ($cmp$$cmpcode << 14) |
  2449              (0 << 13) |                    // select register move
  2450              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2451              ($src$$reg << 0);
  2452     cbuf.insts()->emit_int32(op);
  2453   %}
  2455   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2456     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2457     int op = (Assembler::arith_op << 30) |
  2458              ($dst$$reg << 25) |
  2459              (Assembler::movcc_op3 << 19) |
  2460              (0 << 18) |                    // cc2 bit for 'fccX'
  2461              ($cmp$$cmpcode << 14) |
  2462              (1 << 13) |                    // select immediate move
  2463              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2464              (simm11 << 0);
  2465     cbuf.insts()->emit_int32(op);
  2466   %}
  2468   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2469     int op = (Assembler::arith_op << 30) |
  2470              ($dst$$reg << 25) |
  2471              (Assembler::fpop2_op3 << 19) |
  2472              (0 << 18) |
  2473              ($cmp$$cmpcode << 14) |
  2474              (1 << 13) |                    // select register move
  2475              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2476              ($primary << 5) |              // select single, double or quad
  2477              ($src$$reg << 0);
  2478     cbuf.insts()->emit_int32(op);
  2479   %}
  2481   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2482     int op = (Assembler::arith_op << 30) |
  2483              ($dst$$reg << 25) |
  2484              (Assembler::fpop2_op3 << 19) |
  2485              (0 << 18) |
  2486              ($cmp$$cmpcode << 14) |
  2487              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2488              ($primary << 5) |              // select single, double or quad
  2489              ($src$$reg << 0);
  2490     cbuf.insts()->emit_int32(op);
  2491   %}
  2493   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2494   // the condition comes from opcode-field instead of an argument.
  2495   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2496     int op = (Assembler::arith_op << 30) |
  2497              ($dst$$reg << 25) |
  2498              (Assembler::movcc_op3 << 19) |
  2499              (1 << 18) |                    // cc2 bit for 'icc'
  2500              ($primary << 14) |
  2501              (0 << 13) |                    // select register move
  2502              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2503              ($src$$reg << 0);
  2504     cbuf.insts()->emit_int32(op);
  2505   %}
  2507   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2508     int op = (Assembler::arith_op << 30) |
  2509              ($dst$$reg << 25) |
  2510              (Assembler::movcc_op3 << 19) |
  2511              (6 << 16) |                    // cc2 bit for 'xcc'
  2512              ($primary << 14) |
  2513              (0 << 13) |                    // select register move
  2514              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2515              ($src$$reg << 0);
  2516     cbuf.insts()->emit_int32(op);
  2517   %}
  2519   enc_class Set13( immI13 src, iRegI rd ) %{
  2520     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2521   %}
  2523   enc_class SetHi22( immI src, iRegI rd ) %{
  2524     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2525   %}
  2527   enc_class Set32( immI src, iRegI rd ) %{
  2528     MacroAssembler _masm(&cbuf);
  2529     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2530   %}
  2532   enc_class call_epilog %{
  2533     if( VerifyStackAtCalls ) {
  2534       MacroAssembler _masm(&cbuf);
  2535       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2536       Register temp_reg = G3;
  2537       __ add(SP, framesize, temp_reg);
  2538       __ cmp(temp_reg, FP);
  2539       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2541   %}
  2543   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2544   // to G1 so the register allocator will not have to deal with the misaligned register
  2545   // pair.
  2546   enc_class adjust_long_from_native_call %{
  2547 #ifndef _LP64
  2548     if (returns_long()) {
  2549       //    sllx  O0,32,O0
  2550       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2551       //    srl   O1,0,O1
  2552       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2553       //    or    O0,O1,G1
  2554       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2556 #endif
  2557   %}
  2559   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2560     // CALL directly to the runtime
  2561     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2562     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2563                     /*preserve_g2=*/true);
  2564   %}
  2566   enc_class preserve_SP %{
  2567     MacroAssembler _masm(&cbuf);
  2568     __ mov(SP, L7_mh_SP_save);
  2569   %}
  2571   enc_class restore_SP %{
  2572     MacroAssembler _masm(&cbuf);
  2573     __ mov(L7_mh_SP_save, SP);
  2574   %}
  2576   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2577     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2578     // who we intended to call.
  2579     if ( !_method ) {
  2580       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2581     } else if (_optimized_virtual) {
  2582       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2583     } else {
  2584       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2586     if( _method ) {  // Emit stub for static call
  2587       emit_java_to_interp(cbuf);
  2589   %}
  2591   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2592     MacroAssembler _masm(&cbuf);
  2593     __ set_inst_mark();
  2594     int vtable_index = this->_vtable_index;
  2595     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2596     if (vtable_index < 0) {
  2597       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2598       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  2599       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2600       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2601       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2602       __ ic_call((address)$meth$$method);
  2603     } else {
  2604       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2605       // Just go thru the vtable
  2606       // get receiver klass (receiver already checked for non-null)
  2607       // If we end up going thru a c2i adapter interpreter expects method in G5
  2608       int off = __ offset();
  2609       __ load_klass(O0, G3_scratch);
  2610       int klass_load_size;
  2611       if (UseCompressedKlassPointers) {
  2612         assert(Universe::heap() != NULL, "java heap should be initialized");
  2613         if (Universe::narrow_klass_base() == NULL)
  2614           klass_load_size = 2*BytesPerInstWord;
  2615         else
  2616           klass_load_size = 3*BytesPerInstWord;
  2617       } else {
  2618         klass_load_size = 1*BytesPerInstWord;
  2620       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2621       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2622       if (Assembler::is_simm13(v_off)) {
  2623         __ ld_ptr(G3, v_off, G5_method);
  2624       } else {
  2625         // Generate 2 instructions
  2626         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2627         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2628         // ld_ptr, set_hi, set
  2629         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2630                "Unexpected instruction size(s)");
  2631         __ ld_ptr(G3, G5_method, G5_method);
  2633       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2634       // However it may very well end up in handle_wrong_method if the
  2635       // method is abstract for the particular class.
  2636       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
  2637       // jump to target (either compiled code or c2iadapter)
  2638       __ jmpl(G3_scratch, G0, O7);
  2639       __ delayed()->nop();
  2641   %}
  2643   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2644     MacroAssembler _masm(&cbuf);
  2646     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2647     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2648                               // we might be calling a C2I adapter which needs it.
  2650     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2651     // Load nmethod
  2652     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
  2654     // CALL to compiled java, indirect the contents of G3
  2655     __ set_inst_mark();
  2656     __ callr(temp_reg, G0);
  2657     __ delayed()->nop();
  2658   %}
  2660 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2661     MacroAssembler _masm(&cbuf);
  2662     Register Rdividend = reg_to_register_object($src1$$reg);
  2663     Register Rdivisor = reg_to_register_object($src2$$reg);
  2664     Register Rresult = reg_to_register_object($dst$$reg);
  2666     __ sra(Rdivisor, 0, Rdivisor);
  2667     __ sra(Rdividend, 0, Rdividend);
  2668     __ sdivx(Rdividend, Rdivisor, Rresult);
  2669 %}
  2671 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2672     MacroAssembler _masm(&cbuf);
  2674     Register Rdividend = reg_to_register_object($src1$$reg);
  2675     int divisor = $imm$$constant;
  2676     Register Rresult = reg_to_register_object($dst$$reg);
  2678     __ sra(Rdividend, 0, Rdividend);
  2679     __ sdivx(Rdividend, divisor, Rresult);
  2680 %}
  2682 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2683     MacroAssembler _masm(&cbuf);
  2684     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2685     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2686     Register Rdst  = reg_to_register_object($dst$$reg);
  2688     __ sra( Rsrc1, 0, Rsrc1 );
  2689     __ sra( Rsrc2, 0, Rsrc2 );
  2690     __ mulx( Rsrc1, Rsrc2, Rdst );
  2691     __ srlx( Rdst, 32, Rdst );
  2692 %}
  2694 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2695     MacroAssembler _masm(&cbuf);
  2696     Register Rdividend = reg_to_register_object($src1$$reg);
  2697     Register Rdivisor = reg_to_register_object($src2$$reg);
  2698     Register Rresult = reg_to_register_object($dst$$reg);
  2699     Register Rscratch = reg_to_register_object($scratch$$reg);
  2701     assert(Rdividend != Rscratch, "");
  2702     assert(Rdivisor  != Rscratch, "");
  2704     __ sra(Rdividend, 0, Rdividend);
  2705     __ sra(Rdivisor, 0, Rdivisor);
  2706     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2707     __ mulx(Rscratch, Rdivisor, Rscratch);
  2708     __ sub(Rdividend, Rscratch, Rresult);
  2709 %}
  2711 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2712     MacroAssembler _masm(&cbuf);
  2714     Register Rdividend = reg_to_register_object($src1$$reg);
  2715     int divisor = $imm$$constant;
  2716     Register Rresult = reg_to_register_object($dst$$reg);
  2717     Register Rscratch = reg_to_register_object($scratch$$reg);
  2719     assert(Rdividend != Rscratch, "");
  2721     __ sra(Rdividend, 0, Rdividend);
  2722     __ sdivx(Rdividend, divisor, Rscratch);
  2723     __ mulx(Rscratch, divisor, Rscratch);
  2724     __ sub(Rdividend, Rscratch, Rresult);
  2725 %}
  2727 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2728     MacroAssembler _masm(&cbuf);
  2730     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2731     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2733     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2734 %}
  2736 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2737     MacroAssembler _masm(&cbuf);
  2739     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2740     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2742     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2743 %}
  2745 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2746     MacroAssembler _masm(&cbuf);
  2748     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2749     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2751     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2752 %}
  2754 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2755     MacroAssembler _masm(&cbuf);
  2757     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2758     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2760     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2761 %}
  2763 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2764     MacroAssembler _masm(&cbuf);
  2766     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2767     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2769     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2770 %}
  2772 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2773     MacroAssembler _masm(&cbuf);
  2775     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2776     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2778     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2779 %}
  2781 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2782     MacroAssembler _masm(&cbuf);
  2784     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2785     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2787     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2788 %}
  2790 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2791     MacroAssembler _masm(&cbuf);
  2793     Register Roop  = reg_to_register_object($oop$$reg);
  2794     Register Rbox  = reg_to_register_object($box$$reg);
  2795     Register Rscratch = reg_to_register_object($scratch$$reg);
  2796     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2798     assert(Roop  != Rscratch, "");
  2799     assert(Roop  != Rmark, "");
  2800     assert(Rbox  != Rscratch, "");
  2801     assert(Rbox  != Rmark, "");
  2803     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2804 %}
  2806 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2807     MacroAssembler _masm(&cbuf);
  2809     Register Roop  = reg_to_register_object($oop$$reg);
  2810     Register Rbox  = reg_to_register_object($box$$reg);
  2811     Register Rscratch = reg_to_register_object($scratch$$reg);
  2812     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2814     assert(Roop  != Rscratch, "");
  2815     assert(Roop  != Rmark, "");
  2816     assert(Rbox  != Rscratch, "");
  2817     assert(Rbox  != Rmark, "");
  2819     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2820   %}
  2822   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2823     MacroAssembler _masm(&cbuf);
  2824     Register Rmem = reg_to_register_object($mem$$reg);
  2825     Register Rold = reg_to_register_object($old$$reg);
  2826     Register Rnew = reg_to_register_object($new$$reg);
  2828     // casx_under_lock picks 1 of 3 encodings:
  2829     // For 32-bit pointers you get a 32-bit CAS
  2830     // For 64-bit pointers you get a 64-bit CASX
  2831     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2832     __ cmp( Rold, Rnew );
  2833   %}
  2835   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2836     Register Rmem = reg_to_register_object($mem$$reg);
  2837     Register Rold = reg_to_register_object($old$$reg);
  2838     Register Rnew = reg_to_register_object($new$$reg);
  2840     MacroAssembler _masm(&cbuf);
  2841     __ mov(Rnew, O7);
  2842     __ casx(Rmem, Rold, O7);
  2843     __ cmp( Rold, O7 );
  2844   %}
  2846   // raw int cas, used for compareAndSwap
  2847   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2848     Register Rmem = reg_to_register_object($mem$$reg);
  2849     Register Rold = reg_to_register_object($old$$reg);
  2850     Register Rnew = reg_to_register_object($new$$reg);
  2852     MacroAssembler _masm(&cbuf);
  2853     __ mov(Rnew, O7);
  2854     __ cas(Rmem, Rold, O7);
  2855     __ cmp( Rold, O7 );
  2856   %}
  2858   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2859     Register Rres = reg_to_register_object($res$$reg);
  2861     MacroAssembler _masm(&cbuf);
  2862     __ mov(1, Rres);
  2863     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2864   %}
  2866   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2867     Register Rres = reg_to_register_object($res$$reg);
  2869     MacroAssembler _masm(&cbuf);
  2870     __ mov(1, Rres);
  2871     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2872   %}
  2874   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2875     MacroAssembler _masm(&cbuf);
  2876     Register Rdst = reg_to_register_object($dst$$reg);
  2877     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2878                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2879     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2880                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2882     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2883     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2884   %}
  2887   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2888     Label Ldone, Lloop;
  2889     MacroAssembler _masm(&cbuf);
  2891     Register   str1_reg = reg_to_register_object($str1$$reg);
  2892     Register   str2_reg = reg_to_register_object($str2$$reg);
  2893     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2894     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2895     Register result_reg = reg_to_register_object($result$$reg);
  2897     assert(result_reg != str1_reg &&
  2898            result_reg != str2_reg &&
  2899            result_reg != cnt1_reg &&
  2900            result_reg != cnt2_reg ,
  2901            "need different registers");
  2903     // Compute the minimum of the string lengths(str1_reg) and the
  2904     // difference of the string lengths (stack)
  2906     // See if the lengths are different, and calculate min in str1_reg.
  2907     // Stash diff in O7 in case we need it for a tie-breaker.
  2908     Label Lskip;
  2909     __ subcc(cnt1_reg, cnt2_reg, O7);
  2910     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2911     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2912     // cnt2 is shorter, so use its count:
  2913     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2914     __ bind(Lskip);
  2916     // reallocate cnt1_reg, cnt2_reg, result_reg
  2917     // Note:  limit_reg holds the string length pre-scaled by 2
  2918     Register limit_reg =   cnt1_reg;
  2919     Register  chr2_reg =   cnt2_reg;
  2920     Register  chr1_reg = result_reg;
  2921     // str{12} are the base pointers
  2923     // Is the minimum length zero?
  2924     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2925     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2926     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2928     // Load first characters
  2929     __ lduh(str1_reg, 0, chr1_reg);
  2930     __ lduh(str2_reg, 0, chr2_reg);
  2932     // Compare first characters
  2933     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2934     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2935     assert(chr1_reg == result_reg, "result must be pre-placed");
  2936     __ delayed()->nop();
  2939       // Check after comparing first character to see if strings are equivalent
  2940       Label LSkip2;
  2941       // Check if the strings start at same location
  2942       __ cmp(str1_reg, str2_reg);
  2943       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2944       __ delayed()->nop();
  2946       // Check if the length difference is zero (in O7)
  2947       __ cmp(G0, O7);
  2948       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2949       __ delayed()->mov(G0, result_reg);  // result is zero
  2951       // Strings might not be equal
  2952       __ bind(LSkip2);
  2955     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2956     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2957     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2959     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2960     __ add(str1_reg, limit_reg, str1_reg);
  2961     __ add(str2_reg, limit_reg, str2_reg);
  2962     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2964     // Compare the rest of the characters
  2965     __ lduh(str1_reg, limit_reg, chr1_reg);
  2966     __ bind(Lloop);
  2967     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2968     __ lduh(str2_reg, limit_reg, chr2_reg);
  2969     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2970     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2971     assert(chr1_reg == result_reg, "result must be pre-placed");
  2972     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2973     // annul LDUH if branch is not taken to prevent access past end of string
  2974     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2975     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2977     // If strings are equal up to min length, return the length difference.
  2978     __ mov(O7, result_reg);
  2980     // Otherwise, return the difference between the first mismatched chars.
  2981     __ bind(Ldone);
  2982   %}
  2984 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2985     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2986     MacroAssembler _masm(&cbuf);
  2988     Register   str1_reg = reg_to_register_object($str1$$reg);
  2989     Register   str2_reg = reg_to_register_object($str2$$reg);
  2990     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2991     Register   tmp1_reg = O7;
  2992     Register result_reg = reg_to_register_object($result$$reg);
  2994     assert(result_reg != str1_reg &&
  2995            result_reg != str2_reg &&
  2996            result_reg !=  cnt_reg &&
  2997            result_reg != tmp1_reg ,
  2998            "need different registers");
  3000     __ cmp(str1_reg, str2_reg); //same char[] ?
  3001     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3002     __ delayed()->add(G0, 1, result_reg);
  3004     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  3005     __ delayed()->add(G0, 1, result_reg); // count == 0
  3007     //rename registers
  3008     Register limit_reg =    cnt_reg;
  3009     Register  chr1_reg = result_reg;
  3010     Register  chr2_reg =   tmp1_reg;
  3012     //check for alignment and position the pointers to the ends
  3013     __ or3(str1_reg, str2_reg, chr1_reg);
  3014     __ andcc(chr1_reg, 0x3, chr1_reg);
  3015     // notZero means at least one not 4-byte aligned.
  3016     // We could optimize the case when both arrays are not aligned
  3017     // but it is not frequent case and it requires additional checks.
  3018     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  3019     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  3021     // Compare char[] arrays aligned to 4 bytes.
  3022     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  3023                           chr1_reg, chr2_reg, Ldone);
  3024     __ ba(Ldone);
  3025     __ delayed()->add(G0, 1, result_reg);
  3027     // char by char compare
  3028     __ bind(Lchar);
  3029     __ add(str1_reg, limit_reg, str1_reg);
  3030     __ add(str2_reg, limit_reg, str2_reg);
  3031     __ neg(limit_reg); //negate count
  3033     __ lduh(str1_reg, limit_reg, chr1_reg);
  3034     // Lchar_loop
  3035     __ bind(Lchar_loop);
  3036     __ lduh(str2_reg, limit_reg, chr2_reg);
  3037     __ cmp(chr1_reg, chr2_reg);
  3038     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  3039     __ delayed()->mov(G0, result_reg); //not equal
  3040     __ inccc(limit_reg, sizeof(jchar));
  3041     // annul LDUH if branch is not taken to prevent access past end of string
  3042     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  3043     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  3045     __ add(G0, 1, result_reg);  //equal
  3047     __ bind(Ldone);
  3048   %}
  3050 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  3051     Label Lvector, Ldone, Lloop;
  3052     MacroAssembler _masm(&cbuf);
  3054     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3055     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3056     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3057     Register   tmp2_reg = O7;
  3058     Register result_reg = reg_to_register_object($result$$reg);
  3060     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3061     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3063     // return true if the same array
  3064     __ cmp(ary1_reg, ary2_reg);
  3065     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3066     __ delayed()->add(G0, 1, result_reg); // equal
  3068     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3069     __ delayed()->mov(G0, result_reg);    // not equal
  3071     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3072     __ delayed()->mov(G0, result_reg);    // not equal
  3074     //load the lengths of arrays
  3075     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3076     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3078     // return false if the two arrays are not equal length
  3079     __ cmp(tmp1_reg, tmp2_reg);
  3080     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3081     __ delayed()->mov(G0, result_reg);     // not equal
  3083     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3084     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3086     // load array addresses
  3087     __ add(ary1_reg, base_offset, ary1_reg);
  3088     __ add(ary2_reg, base_offset, ary2_reg);
  3090     // renaming registers
  3091     Register chr1_reg  =  result_reg; // for characters in ary1
  3092     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3093     Register limit_reg =  tmp1_reg;   // length
  3095     // set byte count
  3096     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3098     // Compare char[] arrays aligned to 4 bytes.
  3099     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3100                           chr1_reg, chr2_reg, Ldone);
  3101     __ add(G0, 1, result_reg); // equals
  3103     __ bind(Ldone);
  3104   %}
  3106   enc_class enc_rethrow() %{
  3107     cbuf.set_insts_mark();
  3108     Register temp_reg = G3;
  3109     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3110     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3111     MacroAssembler _masm(&cbuf);
  3112 #ifdef ASSERT
  3113     __ save_frame(0);
  3114     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3115     __ sethi(last_rethrow_addrlit, L1);
  3116     Address addr(L1, last_rethrow_addrlit.low10());
  3117     __ get_pc(L2);
  3118     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3119     __ st_ptr(L2, addr);
  3120     __ restore();
  3121 #endif
  3122     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3123     __ delayed()->nop();
  3124   %}
  3126   enc_class emit_mem_nop() %{
  3127     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3128     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3129   %}
  3131   enc_class emit_fadd_nop() %{
  3132     // Generates the instruction FMOVS f31,f31
  3133     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3134   %}
  3136   enc_class emit_br_nop() %{
  3137     // Generates the instruction BPN,PN .
  3138     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3139   %}
  3141   enc_class enc_membar_acquire %{
  3142     MacroAssembler _masm(&cbuf);
  3143     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3144   %}
  3146   enc_class enc_membar_release %{
  3147     MacroAssembler _masm(&cbuf);
  3148     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3149   %}
  3151   enc_class enc_membar_volatile %{
  3152     MacroAssembler _masm(&cbuf);
  3153     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3154   %}
  3156 %}
  3158 //----------FRAME--------------------------------------------------------------
  3159 // Definition of frame structure and management information.
  3160 //
  3161 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3162 //                             |   (to get allocators register number
  3163 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3164 //  r   CALLER     |        |
  3165 //  o     |        +--------+      pad to even-align allocators stack-slot
  3166 //  w     V        |  pad0  |        numbers; owned by CALLER
  3167 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3168 //  h     ^        |   in   |  5
  3169 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3170 //  |     |        |        |  3
  3171 //  |     |        +--------+
  3172 //  V     |        | old out|      Empty on Intel, window on Sparc
  3173 //        |    old |preserve|      Must be even aligned.
  3174 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3175 //        |        |   in   |  3   area for Intel ret address
  3176 //     Owned by    |preserve|      Empty on Sparc.
  3177 //       SELF      +--------+
  3178 //        |        |  pad2  |  2   pad to align old SP
  3179 //        |        +--------+  1
  3180 //        |        | locks  |  0
  3181 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3182 //        |        |  pad1  | 11   pad to align new SP
  3183 //        |        +--------+
  3184 //        |        |        | 10
  3185 //        |        | spills |  9   spills
  3186 //        V        |        |  8   (pad0 slot for callee)
  3187 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3188 //        ^        |  out   |  7
  3189 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3190 //     Owned by    +--------+
  3191 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3192 //        |    new |preserve|      Must be even-aligned.
  3193 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3194 //        |        |        |
  3195 //
  3196 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3197 //         known from SELF's arguments and the Java calling convention.
  3198 //         Region 6-7 is determined per call site.
  3199 // Note 2: If the calling convention leaves holes in the incoming argument
  3200 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3201 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3202 //         incoming area, as the Java calling convention is completely under
  3203 //         the control of the AD file.  Doubles can be sorted and packed to
  3204 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3205 //         varargs C calling conventions.
  3206 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3207 //         even aligned with pad0 as needed.
  3208 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3209 //         region 6-11 is even aligned; it may be padded out more so that
  3210 //         the region from SP to FP meets the minimum stack alignment.
  3212 frame %{
  3213   // What direction does stack grow in (assumed to be same for native & Java)
  3214   stack_direction(TOWARDS_LOW);
  3216   // These two registers define part of the calling convention
  3217   // between compiled code and the interpreter.
  3218   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
  3219   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3221   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3222   cisc_spilling_operand_name(indOffset);
  3224   // Number of stack slots consumed by a Monitor enter
  3225 #ifdef _LP64
  3226   sync_stack_slots(2);
  3227 #else
  3228   sync_stack_slots(1);
  3229 #endif
  3231   // Compiled code's Frame Pointer
  3232   frame_pointer(R_SP);
  3234   // Stack alignment requirement
  3235   stack_alignment(StackAlignmentInBytes);
  3236   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3237   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3239   // Number of stack slots between incoming argument block and the start of
  3240   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3241   // EPILOG must remove this many slots.
  3242   in_preserve_stack_slots(0);
  3244   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3245   // for calls to C.  Supports the var-args backing area for register parms.
  3246   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3247 #ifdef _LP64
  3248   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3249   varargs_C_out_slots_killed(12);
  3250 #else
  3251   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3252   varargs_C_out_slots_killed( 7);
  3253 #endif
  3255   // The after-PROLOG location of the return address.  Location of
  3256   // return address specifies a type (REG or STACK) and a number
  3257   // representing the register number (i.e. - use a register name) or
  3258   // stack slot.
  3259   return_addr(REG R_I7);          // Ret Addr is in register I7
  3261   // Body of function which returns an OptoRegs array locating
  3262   // arguments either in registers or in stack slots for calling
  3263   // java
  3264   calling_convention %{
  3265     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3267   %}
  3269   // Body of function which returns an OptoRegs array locating
  3270   // arguments either in registers or in stack slots for callin
  3271   // C.
  3272   c_calling_convention %{
  3273     // This is obviously always outgoing
  3274     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3275   %}
  3277   // Location of native (C/C++) and interpreter return values.  This is specified to
  3278   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3279   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3280   // to and from the register pairs is done by the appropriate call and epilog
  3281   // opcodes.  This simplifies the register allocator.
  3282   c_return_value %{
  3283     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3284 #ifdef     _LP64
  3285     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3286     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3287     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3288     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3289 #else  // !_LP64
  3290     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3291     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3292     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3293     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3294 #endif
  3295     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3296                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3297   %}
  3299   // Location of compiled Java return values.  Same as C
  3300   return_value %{
  3301     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3302 #ifdef     _LP64
  3303     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3304     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3305     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3306     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3307 #else  // !_LP64
  3308     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3309     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3310     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3311     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3312 #endif
  3313     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3314                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3315   %}
  3317 %}
  3320 //----------ATTRIBUTES---------------------------------------------------------
  3321 //----------Operand Attributes-------------------------------------------------
  3322 op_attrib op_cost(1);          // Required cost attribute
  3324 //----------Instruction Attributes---------------------------------------------
  3325 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3326 ins_attrib ins_size(32);           // Required size attribute (in bits)
  3327 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
  3328 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
  3329                                    // non-matching short branch variant of some
  3330                                                             // long branch?
  3332 //----------OPERANDS-----------------------------------------------------------
  3333 // Operand definitions must precede instruction definitions for correct parsing
  3334 // in the ADLC because operands constitute user defined types which are used in
  3335 // instruction definitions.
  3337 //----------Simple Operands----------------------------------------------------
  3338 // Immediate Operands
  3339 // Integer Immediate: 32-bit
  3340 operand immI() %{
  3341   match(ConI);
  3343   op_cost(0);
  3344   // formats are generated automatically for constants and base registers
  3345   format %{ %}
  3346   interface(CONST_INTER);
  3347 %}
  3349 // Integer Immediate: 8-bit
  3350 operand immI8() %{
  3351   predicate(Assembler::is_simm8(n->get_int()));
  3352   match(ConI);
  3353   op_cost(0);
  3354   format %{ %}
  3355   interface(CONST_INTER);
  3356 %}
  3358 // Integer Immediate: 13-bit
  3359 operand immI13() %{
  3360   predicate(Assembler::is_simm13(n->get_int()));
  3361   match(ConI);
  3362   op_cost(0);
  3364   format %{ %}
  3365   interface(CONST_INTER);
  3366 %}
  3368 // Integer Immediate: 13-bit minus 7
  3369 operand immI13m7() %{
  3370   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3371   match(ConI);
  3372   op_cost(0);
  3374   format %{ %}
  3375   interface(CONST_INTER);
  3376 %}
  3378 // Integer Immediate: 16-bit
  3379 operand immI16() %{
  3380   predicate(Assembler::is_simm16(n->get_int()));
  3381   match(ConI);
  3382   op_cost(0);
  3383   format %{ %}
  3384   interface(CONST_INTER);
  3385 %}
  3387 // Unsigned (positive) Integer Immediate: 13-bit
  3388 operand immU13() %{
  3389   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3390   match(ConI);
  3391   op_cost(0);
  3393   format %{ %}
  3394   interface(CONST_INTER);
  3395 %}
  3397 // Integer Immediate: 6-bit
  3398 operand immU6() %{
  3399   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3400   match(ConI);
  3401   op_cost(0);
  3402   format %{ %}
  3403   interface(CONST_INTER);
  3404 %}
  3406 // Integer Immediate: 11-bit
  3407 operand immI11() %{
  3408   predicate(Assembler::is_simm11(n->get_int()));
  3409   match(ConI);
  3410   op_cost(0);
  3411   format %{ %}
  3412   interface(CONST_INTER);
  3413 %}
  3415 // Integer Immediate: 5-bit
  3416 operand immI5() %{
  3417   predicate(Assembler::is_simm5(n->get_int()));
  3418   match(ConI);
  3419   op_cost(0);
  3420   format %{ %}
  3421   interface(CONST_INTER);
  3422 %}
  3424 // Integer Immediate: 0-bit
  3425 operand immI0() %{
  3426   predicate(n->get_int() == 0);
  3427   match(ConI);
  3428   op_cost(0);
  3430   format %{ %}
  3431   interface(CONST_INTER);
  3432 %}
  3434 // Integer Immediate: the value 10
  3435 operand immI10() %{
  3436   predicate(n->get_int() == 10);
  3437   match(ConI);
  3438   op_cost(0);
  3440   format %{ %}
  3441   interface(CONST_INTER);
  3442 %}
  3444 // Integer Immediate: the values 0-31
  3445 operand immU5() %{
  3446   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3447   match(ConI);
  3448   op_cost(0);
  3450   format %{ %}
  3451   interface(CONST_INTER);
  3452 %}
  3454 // Integer Immediate: the values 1-31
  3455 operand immI_1_31() %{
  3456   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3457   match(ConI);
  3458   op_cost(0);
  3460   format %{ %}
  3461   interface(CONST_INTER);
  3462 %}
  3464 // Integer Immediate: the values 32-63
  3465 operand immI_32_63() %{
  3466   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3467   match(ConI);
  3468   op_cost(0);
  3470   format %{ %}
  3471   interface(CONST_INTER);
  3472 %}
  3474 // Immediates for special shifts (sign extend)
  3476 // Integer Immediate: the value 16
  3477 operand immI_16() %{
  3478   predicate(n->get_int() == 16);
  3479   match(ConI);
  3480   op_cost(0);
  3482   format %{ %}
  3483   interface(CONST_INTER);
  3484 %}
  3486 // Integer Immediate: the value 24
  3487 operand immI_24() %{
  3488   predicate(n->get_int() == 24);
  3489   match(ConI);
  3490   op_cost(0);
  3492   format %{ %}
  3493   interface(CONST_INTER);
  3494 %}
  3496 // Integer Immediate: the value 255
  3497 operand immI_255() %{
  3498   predicate( n->get_int() == 255 );
  3499   match(ConI);
  3500   op_cost(0);
  3502   format %{ %}
  3503   interface(CONST_INTER);
  3504 %}
  3506 // Integer Immediate: the value 65535
  3507 operand immI_65535() %{
  3508   predicate(n->get_int() == 65535);
  3509   match(ConI);
  3510   op_cost(0);
  3512   format %{ %}
  3513   interface(CONST_INTER);
  3514 %}
  3516 // Long Immediate: the value FF
  3517 operand immL_FF() %{
  3518   predicate( n->get_long() == 0xFFL );
  3519   match(ConL);
  3520   op_cost(0);
  3522   format %{ %}
  3523   interface(CONST_INTER);
  3524 %}
  3526 // Long Immediate: the value FFFF
  3527 operand immL_FFFF() %{
  3528   predicate( n->get_long() == 0xFFFFL );
  3529   match(ConL);
  3530   op_cost(0);
  3532   format %{ %}
  3533   interface(CONST_INTER);
  3534 %}
  3536 // Pointer Immediate: 32 or 64-bit
  3537 operand immP() %{
  3538   match(ConP);
  3540   op_cost(5);
  3541   // formats are generated automatically for constants and base registers
  3542   format %{ %}
  3543   interface(CONST_INTER);
  3544 %}
  3546 #ifdef _LP64
  3547 // Pointer Immediate: 64-bit
  3548 operand immP_set() %{
  3549   predicate(!VM_Version::is_niagara_plus());
  3550   match(ConP);
  3552   op_cost(5);
  3553   // formats are generated automatically for constants and base registers
  3554   format %{ %}
  3555   interface(CONST_INTER);
  3556 %}
  3558 // Pointer Immediate: 64-bit
  3559 // From Niagara2 processors on a load should be better than materializing.
  3560 operand immP_load() %{
  3561   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3562   match(ConP);
  3564   op_cost(5);
  3565   // formats are generated automatically for constants and base registers
  3566   format %{ %}
  3567   interface(CONST_INTER);
  3568 %}
  3570 // Pointer Immediate: 64-bit
  3571 operand immP_no_oop_cheap() %{
  3572   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3573   match(ConP);
  3575   op_cost(5);
  3576   // formats are generated automatically for constants and base registers
  3577   format %{ %}
  3578   interface(CONST_INTER);
  3579 %}
  3580 #endif
  3582 operand immP13() %{
  3583   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3584   match(ConP);
  3585   op_cost(0);
  3587   format %{ %}
  3588   interface(CONST_INTER);
  3589 %}
  3591 operand immP0() %{
  3592   predicate(n->get_ptr() == 0);
  3593   match(ConP);
  3594   op_cost(0);
  3596   format %{ %}
  3597   interface(CONST_INTER);
  3598 %}
  3600 operand immP_poll() %{
  3601   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3602   match(ConP);
  3604   // formats are generated automatically for constants and base registers
  3605   format %{ %}
  3606   interface(CONST_INTER);
  3607 %}
  3609 // Pointer Immediate
  3610 operand immN()
  3611 %{
  3612   match(ConN);
  3614   op_cost(10);
  3615   format %{ %}
  3616   interface(CONST_INTER);
  3617 %}
  3619 operand immNKlass()
  3620 %{
  3621   match(ConNKlass);
  3623   op_cost(10);
  3624   format %{ %}
  3625   interface(CONST_INTER);
  3626 %}
  3628 // NULL Pointer Immediate
  3629 operand immN0()
  3630 %{
  3631   predicate(n->get_narrowcon() == 0);
  3632   match(ConN);
  3634   op_cost(0);
  3635   format %{ %}
  3636   interface(CONST_INTER);
  3637 %}
  3639 operand immL() %{
  3640   match(ConL);
  3641   op_cost(40);
  3642   // formats are generated automatically for constants and base registers
  3643   format %{ %}
  3644   interface(CONST_INTER);
  3645 %}
  3647 operand immL0() %{
  3648   predicate(n->get_long() == 0L);
  3649   match(ConL);
  3650   op_cost(0);
  3651   // formats are generated automatically for constants and base registers
  3652   format %{ %}
  3653   interface(CONST_INTER);
  3654 %}
  3656 // Integer Immediate: 5-bit
  3657 operand immL5() %{
  3658   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
  3659   match(ConL);
  3660   op_cost(0);
  3661   format %{ %}
  3662   interface(CONST_INTER);
  3663 %}
  3665 // Long Immediate: 13-bit
  3666 operand immL13() %{
  3667   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3668   match(ConL);
  3669   op_cost(0);
  3671   format %{ %}
  3672   interface(CONST_INTER);
  3673 %}
  3675 // Long Immediate: 13-bit minus 7
  3676 operand immL13m7() %{
  3677   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3678   match(ConL);
  3679   op_cost(0);
  3681   format %{ %}
  3682   interface(CONST_INTER);
  3683 %}
  3685 // Long Immediate: low 32-bit mask
  3686 operand immL_32bits() %{
  3687   predicate(n->get_long() == 0xFFFFFFFFL);
  3688   match(ConL);
  3689   op_cost(0);
  3691   format %{ %}
  3692   interface(CONST_INTER);
  3693 %}
  3695 // Long Immediate: cheap (materialize in <= 3 instructions)
  3696 operand immL_cheap() %{
  3697   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3698   match(ConL);
  3699   op_cost(0);
  3701   format %{ %}
  3702   interface(CONST_INTER);
  3703 %}
  3705 // Long Immediate: expensive (materialize in > 3 instructions)
  3706 operand immL_expensive() %{
  3707   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3708   match(ConL);
  3709   op_cost(0);
  3711   format %{ %}
  3712   interface(CONST_INTER);
  3713 %}
  3715 // Double Immediate
  3716 operand immD() %{
  3717   match(ConD);
  3719   op_cost(40);
  3720   format %{ %}
  3721   interface(CONST_INTER);
  3722 %}
  3724 operand immD0() %{
  3725 #ifdef _LP64
  3726   // on 64-bit architectures this comparision is faster
  3727   predicate(jlong_cast(n->getd()) == 0);
  3728 #else
  3729   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3730 #endif
  3731   match(ConD);
  3733   op_cost(0);
  3734   format %{ %}
  3735   interface(CONST_INTER);
  3736 %}
  3738 // Float Immediate
  3739 operand immF() %{
  3740   match(ConF);
  3742   op_cost(20);
  3743   format %{ %}
  3744   interface(CONST_INTER);
  3745 %}
  3747 // Float Immediate: 0
  3748 operand immF0() %{
  3749   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3750   match(ConF);
  3752   op_cost(0);
  3753   format %{ %}
  3754   interface(CONST_INTER);
  3755 %}
  3757 // Integer Register Operands
  3758 // Integer Register
  3759 operand iRegI() %{
  3760   constraint(ALLOC_IN_RC(int_reg));
  3761   match(RegI);
  3763   match(notemp_iRegI);
  3764   match(g1RegI);
  3765   match(o0RegI);
  3766   match(iRegIsafe);
  3768   format %{ %}
  3769   interface(REG_INTER);
  3770 %}
  3772 operand notemp_iRegI() %{
  3773   constraint(ALLOC_IN_RC(notemp_int_reg));
  3774   match(RegI);
  3776   match(o0RegI);
  3778   format %{ %}
  3779   interface(REG_INTER);
  3780 %}
  3782 operand o0RegI() %{
  3783   constraint(ALLOC_IN_RC(o0_regI));
  3784   match(iRegI);
  3786   format %{ %}
  3787   interface(REG_INTER);
  3788 %}
  3790 // Pointer Register
  3791 operand iRegP() %{
  3792   constraint(ALLOC_IN_RC(ptr_reg));
  3793   match(RegP);
  3795   match(lock_ptr_RegP);
  3796   match(g1RegP);
  3797   match(g2RegP);
  3798   match(g3RegP);
  3799   match(g4RegP);
  3800   match(i0RegP);
  3801   match(o0RegP);
  3802   match(o1RegP);
  3803   match(l7RegP);
  3805   format %{ %}
  3806   interface(REG_INTER);
  3807 %}
  3809 operand sp_ptr_RegP() %{
  3810   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3811   match(RegP);
  3812   match(iRegP);
  3814   format %{ %}
  3815   interface(REG_INTER);
  3816 %}
  3818 operand lock_ptr_RegP() %{
  3819   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3820   match(RegP);
  3821   match(i0RegP);
  3822   match(o0RegP);
  3823   match(o1RegP);
  3824   match(l7RegP);
  3826   format %{ %}
  3827   interface(REG_INTER);
  3828 %}
  3830 operand g1RegP() %{
  3831   constraint(ALLOC_IN_RC(g1_regP));
  3832   match(iRegP);
  3834   format %{ %}
  3835   interface(REG_INTER);
  3836 %}
  3838 operand g2RegP() %{
  3839   constraint(ALLOC_IN_RC(g2_regP));
  3840   match(iRegP);
  3842   format %{ %}
  3843   interface(REG_INTER);
  3844 %}
  3846 operand g3RegP() %{
  3847   constraint(ALLOC_IN_RC(g3_regP));
  3848   match(iRegP);
  3850   format %{ %}
  3851   interface(REG_INTER);
  3852 %}
  3854 operand g1RegI() %{
  3855   constraint(ALLOC_IN_RC(g1_regI));
  3856   match(iRegI);
  3858   format %{ %}
  3859   interface(REG_INTER);
  3860 %}
  3862 operand g3RegI() %{
  3863   constraint(ALLOC_IN_RC(g3_regI));
  3864   match(iRegI);
  3866   format %{ %}
  3867   interface(REG_INTER);
  3868 %}
  3870 operand g4RegI() %{
  3871   constraint(ALLOC_IN_RC(g4_regI));
  3872   match(iRegI);
  3874   format %{ %}
  3875   interface(REG_INTER);
  3876 %}
  3878 operand g4RegP() %{
  3879   constraint(ALLOC_IN_RC(g4_regP));
  3880   match(iRegP);
  3882   format %{ %}
  3883   interface(REG_INTER);
  3884 %}
  3886 operand i0RegP() %{
  3887   constraint(ALLOC_IN_RC(i0_regP));
  3888   match(iRegP);
  3890   format %{ %}
  3891   interface(REG_INTER);
  3892 %}
  3894 operand o0RegP() %{
  3895   constraint(ALLOC_IN_RC(o0_regP));
  3896   match(iRegP);
  3898   format %{ %}
  3899   interface(REG_INTER);
  3900 %}
  3902 operand o1RegP() %{
  3903   constraint(ALLOC_IN_RC(o1_regP));
  3904   match(iRegP);
  3906   format %{ %}
  3907   interface(REG_INTER);
  3908 %}
  3910 operand o2RegP() %{
  3911   constraint(ALLOC_IN_RC(o2_regP));
  3912   match(iRegP);
  3914   format %{ %}
  3915   interface(REG_INTER);
  3916 %}
  3918 operand o7RegP() %{
  3919   constraint(ALLOC_IN_RC(o7_regP));
  3920   match(iRegP);
  3922   format %{ %}
  3923   interface(REG_INTER);
  3924 %}
  3926 operand l7RegP() %{
  3927   constraint(ALLOC_IN_RC(l7_regP));
  3928   match(iRegP);
  3930   format %{ %}
  3931   interface(REG_INTER);
  3932 %}
  3934 operand o7RegI() %{
  3935   constraint(ALLOC_IN_RC(o7_regI));
  3936   match(iRegI);
  3938   format %{ %}
  3939   interface(REG_INTER);
  3940 %}
  3942 operand iRegN() %{
  3943   constraint(ALLOC_IN_RC(int_reg));
  3944   match(RegN);
  3946   format %{ %}
  3947   interface(REG_INTER);
  3948 %}
  3950 // Long Register
  3951 operand iRegL() %{
  3952   constraint(ALLOC_IN_RC(long_reg));
  3953   match(RegL);
  3955   format %{ %}
  3956   interface(REG_INTER);
  3957 %}
  3959 operand o2RegL() %{
  3960   constraint(ALLOC_IN_RC(o2_regL));
  3961   match(iRegL);
  3963   format %{ %}
  3964   interface(REG_INTER);
  3965 %}
  3967 operand o7RegL() %{
  3968   constraint(ALLOC_IN_RC(o7_regL));
  3969   match(iRegL);
  3971   format %{ %}
  3972   interface(REG_INTER);
  3973 %}
  3975 operand g1RegL() %{
  3976   constraint(ALLOC_IN_RC(g1_regL));
  3977   match(iRegL);
  3979   format %{ %}
  3980   interface(REG_INTER);
  3981 %}
  3983 operand g3RegL() %{
  3984   constraint(ALLOC_IN_RC(g3_regL));
  3985   match(iRegL);
  3987   format %{ %}
  3988   interface(REG_INTER);
  3989 %}
  3991 // Int Register safe
  3992 // This is 64bit safe
  3993 operand iRegIsafe() %{
  3994   constraint(ALLOC_IN_RC(long_reg));
  3996   match(iRegI);
  3998   format %{ %}
  3999   interface(REG_INTER);
  4000 %}
  4002 // Condition Code Flag Register
  4003 operand flagsReg() %{
  4004   constraint(ALLOC_IN_RC(int_flags));
  4005   match(RegFlags);
  4007   format %{ "ccr" %} // both ICC and XCC
  4008   interface(REG_INTER);
  4009 %}
  4011 // Condition Code Register, unsigned comparisons.
  4012 operand flagsRegU() %{
  4013   constraint(ALLOC_IN_RC(int_flags));
  4014   match(RegFlags);
  4016   format %{ "icc_U" %}
  4017   interface(REG_INTER);
  4018 %}
  4020 // Condition Code Register, pointer comparisons.
  4021 operand flagsRegP() %{
  4022   constraint(ALLOC_IN_RC(int_flags));
  4023   match(RegFlags);
  4025 #ifdef _LP64
  4026   format %{ "xcc_P" %}
  4027 #else
  4028   format %{ "icc_P" %}
  4029 #endif
  4030   interface(REG_INTER);
  4031 %}
  4033 // Condition Code Register, long comparisons.
  4034 operand flagsRegL() %{
  4035   constraint(ALLOC_IN_RC(int_flags));
  4036   match(RegFlags);
  4038   format %{ "xcc_L" %}
  4039   interface(REG_INTER);
  4040 %}
  4042 // Condition Code Register, floating comparisons, unordered same as "less".
  4043 operand flagsRegF() %{
  4044   constraint(ALLOC_IN_RC(float_flags));
  4045   match(RegFlags);
  4046   match(flagsRegF0);
  4048   format %{ %}
  4049   interface(REG_INTER);
  4050 %}
  4052 operand flagsRegF0() %{
  4053   constraint(ALLOC_IN_RC(float_flag0));
  4054   match(RegFlags);
  4056   format %{ %}
  4057   interface(REG_INTER);
  4058 %}
  4061 // Condition Code Flag Register used by long compare
  4062 operand flagsReg_long_LTGE() %{
  4063   constraint(ALLOC_IN_RC(int_flags));
  4064   match(RegFlags);
  4065   format %{ "icc_LTGE" %}
  4066   interface(REG_INTER);
  4067 %}
  4068 operand flagsReg_long_EQNE() %{
  4069   constraint(ALLOC_IN_RC(int_flags));
  4070   match(RegFlags);
  4071   format %{ "icc_EQNE" %}
  4072   interface(REG_INTER);
  4073 %}
  4074 operand flagsReg_long_LEGT() %{
  4075   constraint(ALLOC_IN_RC(int_flags));
  4076   match(RegFlags);
  4077   format %{ "icc_LEGT" %}
  4078   interface(REG_INTER);
  4079 %}
  4082 operand regD() %{
  4083   constraint(ALLOC_IN_RC(dflt_reg));
  4084   match(RegD);
  4086   match(regD_low);
  4088   format %{ %}
  4089   interface(REG_INTER);
  4090 %}
  4092 operand regF() %{
  4093   constraint(ALLOC_IN_RC(sflt_reg));
  4094   match(RegF);
  4096   format %{ %}
  4097   interface(REG_INTER);
  4098 %}
  4100 operand regD_low() %{
  4101   constraint(ALLOC_IN_RC(dflt_low_reg));
  4102   match(regD);
  4104   format %{ %}
  4105   interface(REG_INTER);
  4106 %}
  4108 // Special Registers
  4110 // Method Register
  4111 operand inline_cache_regP(iRegP reg) %{
  4112   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4113   match(reg);
  4114   format %{ %}
  4115   interface(REG_INTER);
  4116 %}
  4118 operand interpreter_method_oop_regP(iRegP reg) %{
  4119   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4120   match(reg);
  4121   format %{ %}
  4122   interface(REG_INTER);
  4123 %}
  4126 //----------Complex Operands---------------------------------------------------
  4127 // Indirect Memory Reference
  4128 operand indirect(sp_ptr_RegP reg) %{
  4129   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4130   match(reg);
  4132   op_cost(100);
  4133   format %{ "[$reg]" %}
  4134   interface(MEMORY_INTER) %{
  4135     base($reg);
  4136     index(0x0);
  4137     scale(0x0);
  4138     disp(0x0);
  4139   %}
  4140 %}
  4142 // Indirect with simm13 Offset
  4143 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4144   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4145   match(AddP reg offset);
  4147   op_cost(100);
  4148   format %{ "[$reg + $offset]" %}
  4149   interface(MEMORY_INTER) %{
  4150     base($reg);
  4151     index(0x0);
  4152     scale(0x0);
  4153     disp($offset);
  4154   %}
  4155 %}
  4157 // Indirect with simm13 Offset minus 7
  4158 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4159   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4160   match(AddP reg offset);
  4162   op_cost(100);
  4163   format %{ "[$reg + $offset]" %}
  4164   interface(MEMORY_INTER) %{
  4165     base($reg);
  4166     index(0x0);
  4167     scale(0x0);
  4168     disp($offset);
  4169   %}
  4170 %}
  4172 // Note:  Intel has a swapped version also, like this:
  4173 //operand indOffsetX(iRegI reg, immP offset) %{
  4174 //  constraint(ALLOC_IN_RC(int_reg));
  4175 //  match(AddP offset reg);
  4176 //
  4177 //  op_cost(100);
  4178 //  format %{ "[$reg + $offset]" %}
  4179 //  interface(MEMORY_INTER) %{
  4180 //    base($reg);
  4181 //    index(0x0);
  4182 //    scale(0x0);
  4183 //    disp($offset);
  4184 //  %}
  4185 //%}
  4186 //// However, it doesn't make sense for SPARC, since
  4187 // we have no particularly good way to embed oops in
  4188 // single instructions.
  4190 // Indirect with Register Index
  4191 operand indIndex(iRegP addr, iRegX index) %{
  4192   constraint(ALLOC_IN_RC(ptr_reg));
  4193   match(AddP addr index);
  4195   op_cost(100);
  4196   format %{ "[$addr + $index]" %}
  4197   interface(MEMORY_INTER) %{
  4198     base($addr);
  4199     index($index);
  4200     scale(0x0);
  4201     disp(0x0);
  4202   %}
  4203 %}
  4205 //----------Special Memory Operands--------------------------------------------
  4206 // Stack Slot Operand - This operand is used for loading and storing temporary
  4207 //                      values on the stack where a match requires a value to
  4208 //                      flow through memory.
  4209 operand stackSlotI(sRegI reg) %{
  4210   constraint(ALLOC_IN_RC(stack_slots));
  4211   op_cost(100);
  4212   //match(RegI);
  4213   format %{ "[$reg]" %}
  4214   interface(MEMORY_INTER) %{
  4215     base(0xE);   // R_SP
  4216     index(0x0);
  4217     scale(0x0);
  4218     disp($reg);  // Stack Offset
  4219   %}
  4220 %}
  4222 operand stackSlotP(sRegP reg) %{
  4223   constraint(ALLOC_IN_RC(stack_slots));
  4224   op_cost(100);
  4225   //match(RegP);
  4226   format %{ "[$reg]" %}
  4227   interface(MEMORY_INTER) %{
  4228     base(0xE);   // R_SP
  4229     index(0x0);
  4230     scale(0x0);
  4231     disp($reg);  // Stack Offset
  4232   %}
  4233 %}
  4235 operand stackSlotF(sRegF reg) %{
  4236   constraint(ALLOC_IN_RC(stack_slots));
  4237   op_cost(100);
  4238   //match(RegF);
  4239   format %{ "[$reg]" %}
  4240   interface(MEMORY_INTER) %{
  4241     base(0xE);   // R_SP
  4242     index(0x0);
  4243     scale(0x0);
  4244     disp($reg);  // Stack Offset
  4245   %}
  4246 %}
  4247 operand stackSlotD(sRegD reg) %{
  4248   constraint(ALLOC_IN_RC(stack_slots));
  4249   op_cost(100);
  4250   //match(RegD);
  4251   format %{ "[$reg]" %}
  4252   interface(MEMORY_INTER) %{
  4253     base(0xE);   // R_SP
  4254     index(0x0);
  4255     scale(0x0);
  4256     disp($reg);  // Stack Offset
  4257   %}
  4258 %}
  4259 operand stackSlotL(sRegL reg) %{
  4260   constraint(ALLOC_IN_RC(stack_slots));
  4261   op_cost(100);
  4262   //match(RegL);
  4263   format %{ "[$reg]" %}
  4264   interface(MEMORY_INTER) %{
  4265     base(0xE);   // R_SP
  4266     index(0x0);
  4267     scale(0x0);
  4268     disp($reg);  // Stack Offset
  4269   %}
  4270 %}
  4272 // Operands for expressing Control Flow
  4273 // NOTE:  Label is a predefined operand which should not be redefined in
  4274 //        the AD file.  It is generically handled within the ADLC.
  4276 //----------Conditional Branch Operands----------------------------------------
  4277 // Comparison Op  - This is the operation of the comparison, and is limited to
  4278 //                  the following set of codes:
  4279 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4280 //
  4281 // Other attributes of the comparison, such as unsignedness, are specified
  4282 // by the comparison instruction that sets a condition code flags register.
  4283 // That result is represented by a flags operand whose subtype is appropriate
  4284 // to the unsignedness (etc.) of the comparison.
  4285 //
  4286 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4287 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4288 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4290 operand cmpOp() %{
  4291   match(Bool);
  4293   format %{ "" %}
  4294   interface(COND_INTER) %{
  4295     equal(0x1);
  4296     not_equal(0x9);
  4297     less(0x3);
  4298     greater_equal(0xB);
  4299     less_equal(0x2);
  4300     greater(0xA);
  4301   %}
  4302 %}
  4304 // Comparison Op, unsigned
  4305 operand cmpOpU() %{
  4306   match(Bool);
  4308   format %{ "u" %}
  4309   interface(COND_INTER) %{
  4310     equal(0x1);
  4311     not_equal(0x9);
  4312     less(0x5);
  4313     greater_equal(0xD);
  4314     less_equal(0x4);
  4315     greater(0xC);
  4316   %}
  4317 %}
  4319 // Comparison Op, pointer (same as unsigned)
  4320 operand cmpOpP() %{
  4321   match(Bool);
  4323   format %{ "p" %}
  4324   interface(COND_INTER) %{
  4325     equal(0x1);
  4326     not_equal(0x9);
  4327     less(0x5);
  4328     greater_equal(0xD);
  4329     less_equal(0x4);
  4330     greater(0xC);
  4331   %}
  4332 %}
  4334 // Comparison Op, branch-register encoding
  4335 operand cmpOp_reg() %{
  4336   match(Bool);
  4338   format %{ "" %}
  4339   interface(COND_INTER) %{
  4340     equal        (0x1);
  4341     not_equal    (0x5);
  4342     less         (0x3);
  4343     greater_equal(0x7);
  4344     less_equal   (0x2);
  4345     greater      (0x6);
  4346   %}
  4347 %}
  4349 // Comparison Code, floating, unordered same as less
  4350 operand cmpOpF() %{
  4351   match(Bool);
  4353   format %{ "fl" %}
  4354   interface(COND_INTER) %{
  4355     equal(0x9);
  4356     not_equal(0x1);
  4357     less(0x3);
  4358     greater_equal(0xB);
  4359     less_equal(0xE);
  4360     greater(0x6);
  4361   %}
  4362 %}
  4364 // Used by long compare
  4365 operand cmpOp_commute() %{
  4366   match(Bool);
  4368   format %{ "" %}
  4369   interface(COND_INTER) %{
  4370     equal(0x1);
  4371     not_equal(0x9);
  4372     less(0xA);
  4373     greater_equal(0x2);
  4374     less_equal(0xB);
  4375     greater(0x3);
  4376   %}
  4377 %}
  4379 //----------OPERAND CLASSES----------------------------------------------------
  4380 // Operand Classes are groups of operands that are used to simplify
  4381 // instruction definitions by not requiring the AD writer to specify separate
  4382 // instructions for every form of operand when the instruction accepts
  4383 // multiple operand types with the same basic encoding and format.  The classic
  4384 // case of this is memory operands.
  4385 opclass memory( indirect, indOffset13, indIndex );
  4386 opclass indIndexMemory( indIndex );
  4388 //----------PIPELINE-----------------------------------------------------------
  4389 pipeline %{
  4391 //----------ATTRIBUTES---------------------------------------------------------
  4392 attributes %{
  4393   fixed_size_instructions;           // Fixed size instructions
  4394   branch_has_delay_slot;             // Branch has delay slot following
  4395   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4396   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4397   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4398   instruction_fetch_units = 1;       // of 16 bytes
  4400   // List of nop instructions
  4401   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4402 %}
  4404 //----------RESOURCES----------------------------------------------------------
  4405 // Resources are the functional units available to the machine
  4406 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4408 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4409 // Pipeline Description specifies the stages in the machine's pipeline
  4411 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4413 //----------PIPELINE CLASSES---------------------------------------------------
  4414 // Pipeline Classes describe the stages in which input and output are
  4415 // referenced by the hardware pipeline.
  4417 // Integer ALU reg-reg operation
  4418 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4419     single_instruction;
  4420     dst   : E(write);
  4421     src1  : R(read);
  4422     src2  : R(read);
  4423     IALU  : R;
  4424 %}
  4426 // Integer ALU reg-reg long operation
  4427 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4428     instruction_count(2);
  4429     dst   : E(write);
  4430     src1  : R(read);
  4431     src2  : R(read);
  4432     IALU  : R;
  4433     IALU  : R;
  4434 %}
  4436 // Integer ALU reg-reg long dependent operation
  4437 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4438     instruction_count(1); multiple_bundles;
  4439     dst   : E(write);
  4440     src1  : R(read);
  4441     src2  : R(read);
  4442     cr    : E(write);
  4443     IALU  : R(2);
  4444 %}
  4446 // Integer ALU reg-imm operaion
  4447 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4448     single_instruction;
  4449     dst   : E(write);
  4450     src1  : R(read);
  4451     IALU  : R;
  4452 %}
  4454 // Integer ALU reg-reg operation with condition code
  4455 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4456     single_instruction;
  4457     dst   : E(write);
  4458     cr    : E(write);
  4459     src1  : R(read);
  4460     src2  : R(read);
  4461     IALU  : R;
  4462 %}
  4464 // Integer ALU reg-imm operation with condition code
  4465 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4466     single_instruction;
  4467     dst   : E(write);
  4468     cr    : E(write);
  4469     src1  : R(read);
  4470     IALU  : R;
  4471 %}
  4473 // Integer ALU zero-reg operation
  4474 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4475     single_instruction;
  4476     dst   : E(write);
  4477     src2  : R(read);
  4478     IALU  : R;
  4479 %}
  4481 // Integer ALU zero-reg operation with condition code only
  4482 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4483     single_instruction;
  4484     cr    : E(write);
  4485     src   : R(read);
  4486     IALU  : R;
  4487 %}
  4489 // Integer ALU reg-reg operation with condition code only
  4490 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4491     single_instruction;
  4492     cr    : E(write);
  4493     src1  : R(read);
  4494     src2  : R(read);
  4495     IALU  : R;
  4496 %}
  4498 // Integer ALU reg-imm operation with condition code only
  4499 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4500     single_instruction;
  4501     cr    : E(write);
  4502     src1  : R(read);
  4503     IALU  : R;
  4504 %}
  4506 // Integer ALU reg-reg-zero operation with condition code only
  4507 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4508     single_instruction;
  4509     cr    : E(write);
  4510     src1  : R(read);
  4511     src2  : R(read);
  4512     IALU  : R;
  4513 %}
  4515 // Integer ALU reg-imm-zero operation with condition code only
  4516 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4517     single_instruction;
  4518     cr    : E(write);
  4519     src1  : R(read);
  4520     IALU  : R;
  4521 %}
  4523 // Integer ALU reg-reg operation with condition code, src1 modified
  4524 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4525     single_instruction;
  4526     cr    : E(write);
  4527     src1  : E(write);
  4528     src1  : R(read);
  4529     src2  : R(read);
  4530     IALU  : R;
  4531 %}
  4533 // Integer ALU reg-imm operation with condition code, src1 modified
  4534 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4535     single_instruction;
  4536     cr    : E(write);
  4537     src1  : E(write);
  4538     src1  : R(read);
  4539     IALU  : R;
  4540 %}
  4542 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4543     multiple_bundles;
  4544     dst   : E(write)+4;
  4545     cr    : E(write);
  4546     src1  : R(read);
  4547     src2  : R(read);
  4548     IALU  : R(3);
  4549     BR    : R(2);
  4550 %}
  4552 // Integer ALU operation
  4553 pipe_class ialu_none(iRegI dst) %{
  4554     single_instruction;
  4555     dst   : E(write);
  4556     IALU  : R;
  4557 %}
  4559 // Integer ALU reg operation
  4560 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4561     single_instruction; may_have_no_code;
  4562     dst   : E(write);
  4563     src   : R(read);
  4564     IALU  : R;
  4565 %}
  4567 // Integer ALU reg conditional operation
  4568 // This instruction has a 1 cycle stall, and cannot execute
  4569 // in the same cycle as the instruction setting the condition
  4570 // code. We kludge this by pretending to read the condition code
  4571 // 1 cycle earlier, and by marking the functional units as busy
  4572 // for 2 cycles with the result available 1 cycle later than
  4573 // is really the case.
  4574 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4575     single_instruction;
  4576     op2_out : C(write);
  4577     op1     : R(read);
  4578     cr      : R(read);       // This is really E, with a 1 cycle stall
  4579     BR      : R(2);
  4580     MS      : R(2);
  4581 %}
  4583 #ifdef _LP64
  4584 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4585     instruction_count(1); multiple_bundles;
  4586     dst     : C(write)+1;
  4587     src     : R(read)+1;
  4588     IALU    : R(1);
  4589     BR      : E(2);
  4590     MS      : E(2);
  4591 %}
  4592 #endif
  4594 // Integer ALU reg operation
  4595 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4596     single_instruction; may_have_no_code;
  4597     dst   : E(write);
  4598     src   : R(read);
  4599     IALU  : R;
  4600 %}
  4601 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4602     single_instruction; may_have_no_code;
  4603     dst   : E(write);
  4604     src   : R(read);
  4605     IALU  : R;
  4606 %}
  4608 // Two integer ALU reg operations
  4609 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4610     instruction_count(2);
  4611     dst   : E(write);
  4612     src   : R(read);
  4613     A0    : R;
  4614     A1    : R;
  4615 %}
  4617 // Two integer ALU reg operations
  4618 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4619     instruction_count(2); may_have_no_code;
  4620     dst   : E(write);
  4621     src   : R(read);
  4622     A0    : R;
  4623     A1    : R;
  4624 %}
  4626 // Integer ALU imm operation
  4627 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4628     single_instruction;
  4629     dst   : E(write);
  4630     IALU  : R;
  4631 %}
  4633 // Integer ALU reg-reg with carry operation
  4634 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4635     single_instruction;
  4636     dst   : E(write);
  4637     src1  : R(read);
  4638     src2  : R(read);
  4639     IALU  : R;
  4640 %}
  4642 // Integer ALU cc operation
  4643 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4644     single_instruction;
  4645     dst   : E(write);
  4646     cc    : R(read);
  4647     IALU  : R;
  4648 %}
  4650 // Integer ALU cc / second IALU operation
  4651 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4652     instruction_count(1); multiple_bundles;
  4653     dst   : E(write)+1;
  4654     src   : R(read);
  4655     IALU  : R;
  4656 %}
  4658 // Integer ALU cc / second IALU operation
  4659 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4660     instruction_count(1); multiple_bundles;
  4661     dst   : E(write)+1;
  4662     p     : R(read);
  4663     q     : R(read);
  4664     IALU  : R;
  4665 %}
  4667 // Integer ALU hi-lo-reg operation
  4668 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4669     instruction_count(1); multiple_bundles;
  4670     dst   : E(write)+1;
  4671     IALU  : R(2);
  4672 %}
  4674 // Float ALU hi-lo-reg operation (with temp)
  4675 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4676     instruction_count(1); multiple_bundles;
  4677     dst   : E(write)+1;
  4678     IALU  : R(2);
  4679 %}
  4681 // Long Constant
  4682 pipe_class loadConL( iRegL dst, immL src ) %{
  4683     instruction_count(2); multiple_bundles;
  4684     dst   : E(write)+1;
  4685     IALU  : R(2);
  4686     IALU  : R(2);
  4687 %}
  4689 // Pointer Constant
  4690 pipe_class loadConP( iRegP dst, immP src ) %{
  4691     instruction_count(0); multiple_bundles;
  4692     fixed_latency(6);
  4693 %}
  4695 // Polling Address
  4696 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4697 #ifdef _LP64
  4698     instruction_count(0); multiple_bundles;
  4699     fixed_latency(6);
  4700 #else
  4701     dst   : E(write);
  4702     IALU  : R;
  4703 #endif
  4704 %}
  4706 // Long Constant small
  4707 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4708     instruction_count(2);
  4709     dst   : E(write);
  4710     IALU  : R;
  4711     IALU  : R;
  4712 %}
  4714 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4715 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4716     instruction_count(1); multiple_bundles;
  4717     src   : R(read);
  4718     dst   : M(write)+1;
  4719     IALU  : R;
  4720     MS    : E;
  4721 %}
  4723 // Integer ALU nop operation
  4724 pipe_class ialu_nop() %{
  4725     single_instruction;
  4726     IALU  : R;
  4727 %}
  4729 // Integer ALU nop operation
  4730 pipe_class ialu_nop_A0() %{
  4731     single_instruction;
  4732     A0    : R;
  4733 %}
  4735 // Integer ALU nop operation
  4736 pipe_class ialu_nop_A1() %{
  4737     single_instruction;
  4738     A1    : R;
  4739 %}
  4741 // Integer Multiply reg-reg operation
  4742 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4743     single_instruction;
  4744     dst   : E(write);
  4745     src1  : R(read);
  4746     src2  : R(read);
  4747     MS    : R(5);
  4748 %}
  4750 // Integer Multiply reg-imm operation
  4751 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4752     single_instruction;
  4753     dst   : E(write);
  4754     src1  : R(read);
  4755     MS    : R(5);
  4756 %}
  4758 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4759     single_instruction;
  4760     dst   : E(write)+4;
  4761     src1  : R(read);
  4762     src2  : R(read);
  4763     MS    : R(6);
  4764 %}
  4766 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4767     single_instruction;
  4768     dst   : E(write)+4;
  4769     src1  : R(read);
  4770     MS    : R(6);
  4771 %}
  4773 // Integer Divide reg-reg
  4774 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4775     instruction_count(1); multiple_bundles;
  4776     dst   : E(write);
  4777     temp  : E(write);
  4778     src1  : R(read);
  4779     src2  : R(read);
  4780     temp  : R(read);
  4781     MS    : R(38);
  4782 %}
  4784 // Integer Divide reg-imm
  4785 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4786     instruction_count(1); multiple_bundles;
  4787     dst   : E(write);
  4788     temp  : E(write);
  4789     src1  : R(read);
  4790     temp  : R(read);
  4791     MS    : R(38);
  4792 %}
  4794 // Long Divide
  4795 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4796     dst  : E(write)+71;
  4797     src1 : R(read);
  4798     src2 : R(read)+1;
  4799     MS   : R(70);
  4800 %}
  4802 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4803     dst  : E(write)+71;
  4804     src1 : R(read);
  4805     MS   : R(70);
  4806 %}
  4808 // Floating Point Add Float
  4809 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4810     single_instruction;
  4811     dst   : X(write);
  4812     src1  : E(read);
  4813     src2  : E(read);
  4814     FA    : R;
  4815 %}
  4817 // Floating Point Add Double
  4818 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4819     single_instruction;
  4820     dst   : X(write);
  4821     src1  : E(read);
  4822     src2  : E(read);
  4823     FA    : R;
  4824 %}
  4826 // Floating Point Conditional Move based on integer flags
  4827 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4828     single_instruction;
  4829     dst   : X(write);
  4830     src   : E(read);
  4831     cr    : R(read);
  4832     FA    : R(2);
  4833     BR    : R(2);
  4834 %}
  4836 // Floating Point Conditional Move based on integer flags
  4837 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4838     single_instruction;
  4839     dst   : X(write);
  4840     src   : E(read);
  4841     cr    : R(read);
  4842     FA    : R(2);
  4843     BR    : R(2);
  4844 %}
  4846 // Floating Point Multiply Float
  4847 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4848     single_instruction;
  4849     dst   : X(write);
  4850     src1  : E(read);
  4851     src2  : E(read);
  4852     FM    : R;
  4853 %}
  4855 // Floating Point Multiply Double
  4856 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4857     single_instruction;
  4858     dst   : X(write);
  4859     src1  : E(read);
  4860     src2  : E(read);
  4861     FM    : R;
  4862 %}
  4864 // Floating Point Divide Float
  4865 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4866     single_instruction;
  4867     dst   : X(write);
  4868     src1  : E(read);
  4869     src2  : E(read);
  4870     FM    : R;
  4871     FDIV  : C(14);
  4872 %}
  4874 // Floating Point Divide Double
  4875 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4876     single_instruction;
  4877     dst   : X(write);
  4878     src1  : E(read);
  4879     src2  : E(read);
  4880     FM    : R;
  4881     FDIV  : C(17);
  4882 %}
  4884 // Floating Point Move/Negate/Abs Float
  4885 pipe_class faddF_reg(regF dst, regF src) %{
  4886     single_instruction;
  4887     dst   : W(write);
  4888     src   : E(read);
  4889     FA    : R(1);
  4890 %}
  4892 // Floating Point Move/Negate/Abs Double
  4893 pipe_class faddD_reg(regD dst, regD src) %{
  4894     single_instruction;
  4895     dst   : W(write);
  4896     src   : E(read);
  4897     FA    : R;
  4898 %}
  4900 // Floating Point Convert F->D
  4901 pipe_class fcvtF2D(regD dst, regF src) %{
  4902     single_instruction;
  4903     dst   : X(write);
  4904     src   : E(read);
  4905     FA    : R;
  4906 %}
  4908 // Floating Point Convert I->D
  4909 pipe_class fcvtI2D(regD dst, regF src) %{
  4910     single_instruction;
  4911     dst   : X(write);
  4912     src   : E(read);
  4913     FA    : R;
  4914 %}
  4916 // Floating Point Convert LHi->D
  4917 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4918     single_instruction;
  4919     dst   : X(write);
  4920     src   : E(read);
  4921     FA    : R;
  4922 %}
  4924 // Floating Point Convert L->D
  4925 pipe_class fcvtL2D(regD dst, regF src) %{
  4926     single_instruction;
  4927     dst   : X(write);
  4928     src   : E(read);
  4929     FA    : R;
  4930 %}
  4932 // Floating Point Convert L->F
  4933 pipe_class fcvtL2F(regD dst, regF src) %{
  4934     single_instruction;
  4935     dst   : X(write);
  4936     src   : E(read);
  4937     FA    : R;
  4938 %}
  4940 // Floating Point Convert D->F
  4941 pipe_class fcvtD2F(regD dst, regF src) %{
  4942     single_instruction;
  4943     dst   : X(write);
  4944     src   : E(read);
  4945     FA    : R;
  4946 %}
  4948 // Floating Point Convert I->L
  4949 pipe_class fcvtI2L(regD dst, regF src) %{
  4950     single_instruction;
  4951     dst   : X(write);
  4952     src   : E(read);
  4953     FA    : R;
  4954 %}
  4956 // Floating Point Convert D->F
  4957 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4958     instruction_count(1); multiple_bundles;
  4959     dst   : X(write)+6;
  4960     src   : E(read);
  4961     FA    : R;
  4962 %}
  4964 // Floating Point Convert D->L
  4965 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4966     instruction_count(1); multiple_bundles;
  4967     dst   : X(write)+6;
  4968     src   : E(read);
  4969     FA    : R;
  4970 %}
  4972 // Floating Point Convert F->I
  4973 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4974     instruction_count(1); multiple_bundles;
  4975     dst   : X(write)+6;
  4976     src   : E(read);
  4977     FA    : R;
  4978 %}
  4980 // Floating Point Convert F->L
  4981 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4982     instruction_count(1); multiple_bundles;
  4983     dst   : X(write)+6;
  4984     src   : E(read);
  4985     FA    : R;
  4986 %}
  4988 // Floating Point Convert I->F
  4989 pipe_class fcvtI2F(regF dst, regF src) %{
  4990     single_instruction;
  4991     dst   : X(write);
  4992     src   : E(read);
  4993     FA    : R;
  4994 %}
  4996 // Floating Point Compare
  4997 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4998     single_instruction;
  4999     cr    : X(write);
  5000     src1  : E(read);
  5001     src2  : E(read);
  5002     FA    : R;
  5003 %}
  5005 // Floating Point Compare
  5006 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  5007     single_instruction;
  5008     cr    : X(write);
  5009     src1  : E(read);
  5010     src2  : E(read);
  5011     FA    : R;
  5012 %}
  5014 // Floating Add Nop
  5015 pipe_class fadd_nop() %{
  5016     single_instruction;
  5017     FA  : R;
  5018 %}
  5020 // Integer Store to Memory
  5021 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  5022     single_instruction;
  5023     mem   : R(read);
  5024     src   : C(read);
  5025     MS    : R;
  5026 %}
  5028 // Integer Store to Memory
  5029 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  5030     single_instruction;
  5031     mem   : R(read);
  5032     src   : C(read);
  5033     MS    : R;
  5034 %}
  5036 // Integer Store Zero to Memory
  5037 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5038     single_instruction;
  5039     mem   : R(read);
  5040     MS    : R;
  5041 %}
  5043 // Special Stack Slot Store
  5044 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5045     single_instruction;
  5046     stkSlot : R(read);
  5047     src     : C(read);
  5048     MS      : R;
  5049 %}
  5051 // Special Stack Slot Store
  5052 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5053     instruction_count(2); multiple_bundles;
  5054     stkSlot : R(read);
  5055     src     : C(read);
  5056     MS      : R(2);
  5057 %}
  5059 // Float Store
  5060 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5061     single_instruction;
  5062     mem : R(read);
  5063     src : C(read);
  5064     MS  : R;
  5065 %}
  5067 // Float Store
  5068 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5069     single_instruction;
  5070     mem : R(read);
  5071     MS  : R;
  5072 %}
  5074 // Double Store
  5075 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5076     instruction_count(1);
  5077     mem : R(read);
  5078     src : C(read);
  5079     MS  : R;
  5080 %}
  5082 // Double Store
  5083 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5084     single_instruction;
  5085     mem : R(read);
  5086     MS  : R;
  5087 %}
  5089 // Special Stack Slot Float Store
  5090 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5091     single_instruction;
  5092     stkSlot : R(read);
  5093     src     : C(read);
  5094     MS      : R;
  5095 %}
  5097 // Special Stack Slot Double Store
  5098 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5099     single_instruction;
  5100     stkSlot : R(read);
  5101     src     : C(read);
  5102     MS      : R;
  5103 %}
  5105 // Integer Load (when sign bit propagation not needed)
  5106 pipe_class iload_mem(iRegI dst, memory mem) %{
  5107     single_instruction;
  5108     mem : R(read);
  5109     dst : C(write);
  5110     MS  : R;
  5111 %}
  5113 // Integer Load from stack operand
  5114 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5115     single_instruction;
  5116     mem : R(read);
  5117     dst : C(write);
  5118     MS  : R;
  5119 %}
  5121 // Integer Load (when sign bit propagation or masking is needed)
  5122 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5123     single_instruction;
  5124     mem : R(read);
  5125     dst : M(write);
  5126     MS  : R;
  5127 %}
  5129 // Float Load
  5130 pipe_class floadF_mem(regF dst, memory mem) %{
  5131     single_instruction;
  5132     mem : R(read);
  5133     dst : M(write);
  5134     MS  : R;
  5135 %}
  5137 // Float Load
  5138 pipe_class floadD_mem(regD dst, memory mem) %{
  5139     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5140     mem : R(read);
  5141     dst : M(write);
  5142     MS  : R;
  5143 %}
  5145 // Float Load
  5146 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5147     single_instruction;
  5148     stkSlot : R(read);
  5149     dst : M(write);
  5150     MS  : R;
  5151 %}
  5153 // Float Load
  5154 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5155     single_instruction;
  5156     stkSlot : R(read);
  5157     dst : M(write);
  5158     MS  : R;
  5159 %}
  5161 // Memory Nop
  5162 pipe_class mem_nop() %{
  5163     single_instruction;
  5164     MS  : R;
  5165 %}
  5167 pipe_class sethi(iRegP dst, immI src) %{
  5168     single_instruction;
  5169     dst  : E(write);
  5170     IALU : R;
  5171 %}
  5173 pipe_class loadPollP(iRegP poll) %{
  5174     single_instruction;
  5175     poll : R(read);
  5176     MS   : R;
  5177 %}
  5179 pipe_class br(Universe br, label labl) %{
  5180     single_instruction_with_delay_slot;
  5181     BR  : R;
  5182 %}
  5184 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5185     single_instruction_with_delay_slot;
  5186     cr    : E(read);
  5187     BR    : R;
  5188 %}
  5190 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5191     single_instruction_with_delay_slot;
  5192     op1 : E(read);
  5193     BR  : R;
  5194     MS  : R;
  5195 %}
  5197 // Compare and branch
  5198 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
  5199     instruction_count(2); has_delay_slot;
  5200     cr    : E(write);
  5201     src1  : R(read);
  5202     src2  : R(read);
  5203     IALU  : R;
  5204     BR    : R;
  5205 %}
  5207 // Compare and branch
  5208 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
  5209     instruction_count(2); has_delay_slot;
  5210     cr    : E(write);
  5211     src1  : R(read);
  5212     IALU  : R;
  5213     BR    : R;
  5214 %}
  5216 // Compare and branch using cbcond
  5217 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
  5218     single_instruction;
  5219     src1  : E(read);
  5220     src2  : E(read);
  5221     IALU  : R;
  5222     BR    : R;
  5223 %}
  5225 // Compare and branch using cbcond
  5226 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
  5227     single_instruction;
  5228     src1  : E(read);
  5229     IALU  : R;
  5230     BR    : R;
  5231 %}
  5233 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5234     single_instruction_with_delay_slot;
  5235     cr    : E(read);
  5236     BR    : R;
  5237 %}
  5239 pipe_class br_nop() %{
  5240     single_instruction;
  5241     BR  : R;
  5242 %}
  5244 pipe_class simple_call(method meth) %{
  5245     instruction_count(2); multiple_bundles; force_serialization;
  5246     fixed_latency(100);
  5247     BR  : R(1);
  5248     MS  : R(1);
  5249     A0  : R(1);
  5250 %}
  5252 pipe_class compiled_call(method meth) %{
  5253     instruction_count(1); multiple_bundles; force_serialization;
  5254     fixed_latency(100);
  5255     MS  : R(1);
  5256 %}
  5258 pipe_class call(method meth) %{
  5259     instruction_count(0); multiple_bundles; force_serialization;
  5260     fixed_latency(100);
  5261 %}
  5263 pipe_class tail_call(Universe ignore, label labl) %{
  5264     single_instruction; has_delay_slot;
  5265     fixed_latency(100);
  5266     BR  : R(1);
  5267     MS  : R(1);
  5268 %}
  5270 pipe_class ret(Universe ignore) %{
  5271     single_instruction; has_delay_slot;
  5272     BR  : R(1);
  5273     MS  : R(1);
  5274 %}
  5276 pipe_class ret_poll(g3RegP poll) %{
  5277     instruction_count(3); has_delay_slot;
  5278     poll : E(read);
  5279     MS   : R;
  5280 %}
  5282 // The real do-nothing guy
  5283 pipe_class empty( ) %{
  5284     instruction_count(0);
  5285 %}
  5287 pipe_class long_memory_op() %{
  5288     instruction_count(0); multiple_bundles; force_serialization;
  5289     fixed_latency(25);
  5290     MS  : R(1);
  5291 %}
  5293 // Check-cast
  5294 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5295     array : R(read);
  5296     match  : R(read);
  5297     IALU   : R(2);
  5298     BR     : R(2);
  5299     MS     : R;
  5300 %}
  5302 // Convert FPU flags into +1,0,-1
  5303 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5304     src1  : E(read);
  5305     src2  : E(read);
  5306     dst   : E(write);
  5307     FA    : R;
  5308     MS    : R(2);
  5309     BR    : R(2);
  5310 %}
  5312 // Compare for p < q, and conditionally add y
  5313 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5314     p     : E(read);
  5315     q     : E(read);
  5316     y     : E(read);
  5317     IALU  : R(3)
  5318 %}
  5320 // Perform a compare, then move conditionally in a branch delay slot.
  5321 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5322     src2   : E(read);
  5323     srcdst : E(read);
  5324     IALU   : R;
  5325     BR     : R;
  5326 %}
  5328 // Define the class for the Nop node
  5329 define %{
  5330    MachNop = ialu_nop;
  5331 %}
  5333 %}
  5335 //----------INSTRUCTIONS-------------------------------------------------------
  5337 //------------Special Stack Slot instructions - no match rules-----------------
  5338 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5339   // No match rule to avoid chain rule match.
  5340   effect(DEF dst, USE src);
  5341   ins_cost(MEMORY_REF_COST);
  5342   size(4);
  5343   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5344   opcode(Assembler::ldf_op3);
  5345   ins_encode(simple_form3_mem_reg(src, dst));
  5346   ins_pipe(floadF_stk);
  5347 %}
  5349 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5350   // No match rule to avoid chain rule match.
  5351   effect(DEF dst, USE src);
  5352   ins_cost(MEMORY_REF_COST);
  5353   size(4);
  5354   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5355   opcode(Assembler::lddf_op3);
  5356   ins_encode(simple_form3_mem_reg(src, dst));
  5357   ins_pipe(floadD_stk);
  5358 %}
  5360 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5361   // No match rule to avoid chain rule match.
  5362   effect(DEF dst, USE src);
  5363   ins_cost(MEMORY_REF_COST);
  5364   size(4);
  5365   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5366   opcode(Assembler::stf_op3);
  5367   ins_encode(simple_form3_mem_reg(dst, src));
  5368   ins_pipe(fstoreF_stk_reg);
  5369 %}
  5371 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5372   // No match rule to avoid chain rule match.
  5373   effect(DEF dst, USE src);
  5374   ins_cost(MEMORY_REF_COST);
  5375   size(4);
  5376   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5377   opcode(Assembler::stdf_op3);
  5378   ins_encode(simple_form3_mem_reg(dst, src));
  5379   ins_pipe(fstoreD_stk_reg);
  5380 %}
  5382 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5383   effect(DEF dst, USE src);
  5384   ins_cost(MEMORY_REF_COST*2);
  5385   size(8);
  5386   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5387             "STW    R_G0,$dst.lo" %}
  5388   opcode(Assembler::stw_op3);
  5389   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5390   ins_pipe(lstoreI_stk_reg);
  5391 %}
  5393 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5394   // No match rule to avoid chain rule match.
  5395   effect(DEF dst, USE src);
  5396   ins_cost(MEMORY_REF_COST);
  5397   size(4);
  5398   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5399   opcode(Assembler::stx_op3);
  5400   ins_encode(simple_form3_mem_reg( dst, src ) );
  5401   ins_pipe(istore_stk_reg);
  5402 %}
  5404 //---------- Chain stack slots between similar types --------
  5406 // Load integer from stack slot
  5407 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5408   match(Set dst src);
  5409   ins_cost(MEMORY_REF_COST);
  5411   size(4);
  5412   format %{ "LDUW   $src,$dst\t!stk" %}
  5413   opcode(Assembler::lduw_op3);
  5414   ins_encode(simple_form3_mem_reg( src, dst ) );
  5415   ins_pipe(iload_mem);
  5416 %}
  5418 // Store integer to stack slot
  5419 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5420   match(Set dst src);
  5421   ins_cost(MEMORY_REF_COST);
  5423   size(4);
  5424   format %{ "STW    $src,$dst\t!stk" %}
  5425   opcode(Assembler::stw_op3);
  5426   ins_encode(simple_form3_mem_reg( dst, src ) );
  5427   ins_pipe(istore_mem_reg);
  5428 %}
  5430 // Load long from stack slot
  5431 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5432   match(Set dst src);
  5434   ins_cost(MEMORY_REF_COST);
  5435   size(4);
  5436   format %{ "LDX    $src,$dst\t! long" %}
  5437   opcode(Assembler::ldx_op3);
  5438   ins_encode(simple_form3_mem_reg( src, dst ) );
  5439   ins_pipe(iload_mem);
  5440 %}
  5442 // Store long to stack slot
  5443 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5444   match(Set dst src);
  5446   ins_cost(MEMORY_REF_COST);
  5447   size(4);
  5448   format %{ "STX    $src,$dst\t! long" %}
  5449   opcode(Assembler::stx_op3);
  5450   ins_encode(simple_form3_mem_reg( dst, src ) );
  5451   ins_pipe(istore_mem_reg);
  5452 %}
  5454 #ifdef _LP64
  5455 // Load pointer from stack slot, 64-bit encoding
  5456 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5457   match(Set dst src);
  5458   ins_cost(MEMORY_REF_COST);
  5459   size(4);
  5460   format %{ "LDX    $src,$dst\t!ptr" %}
  5461   opcode(Assembler::ldx_op3);
  5462   ins_encode(simple_form3_mem_reg( src, dst ) );
  5463   ins_pipe(iload_mem);
  5464 %}
  5466 // Store pointer to stack slot
  5467 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5468   match(Set dst src);
  5469   ins_cost(MEMORY_REF_COST);
  5470   size(4);
  5471   format %{ "STX    $src,$dst\t!ptr" %}
  5472   opcode(Assembler::stx_op3);
  5473   ins_encode(simple_form3_mem_reg( dst, src ) );
  5474   ins_pipe(istore_mem_reg);
  5475 %}
  5476 #else // _LP64
  5477 // Load pointer from stack slot, 32-bit encoding
  5478 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5479   match(Set dst src);
  5480   ins_cost(MEMORY_REF_COST);
  5481   format %{ "LDUW   $src,$dst\t!ptr" %}
  5482   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5483   ins_encode(simple_form3_mem_reg( src, dst ) );
  5484   ins_pipe(iload_mem);
  5485 %}
  5487 // Store pointer to stack slot
  5488 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5489   match(Set dst src);
  5490   ins_cost(MEMORY_REF_COST);
  5491   format %{ "STW    $src,$dst\t!ptr" %}
  5492   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5493   ins_encode(simple_form3_mem_reg( dst, src ) );
  5494   ins_pipe(istore_mem_reg);
  5495 %}
  5496 #endif // _LP64
  5498 //------------Special Nop instructions for bundling - no match rules-----------
  5499 // Nop using the A0 functional unit
  5500 instruct Nop_A0() %{
  5501   ins_cost(0);
  5503   format %{ "NOP    ! Alu Pipeline" %}
  5504   opcode(Assembler::or_op3, Assembler::arith_op);
  5505   ins_encode( form2_nop() );
  5506   ins_pipe(ialu_nop_A0);
  5507 %}
  5509 // Nop using the A1 functional unit
  5510 instruct Nop_A1( ) %{
  5511   ins_cost(0);
  5513   format %{ "NOP    ! Alu Pipeline" %}
  5514   opcode(Assembler::or_op3, Assembler::arith_op);
  5515   ins_encode( form2_nop() );
  5516   ins_pipe(ialu_nop_A1);
  5517 %}
  5519 // Nop using the memory functional unit
  5520 instruct Nop_MS( ) %{
  5521   ins_cost(0);
  5523   format %{ "NOP    ! Memory Pipeline" %}
  5524   ins_encode( emit_mem_nop );
  5525   ins_pipe(mem_nop);
  5526 %}
  5528 // Nop using the floating add functional unit
  5529 instruct Nop_FA( ) %{
  5530   ins_cost(0);
  5532   format %{ "NOP    ! Floating Add Pipeline" %}
  5533   ins_encode( emit_fadd_nop );
  5534   ins_pipe(fadd_nop);
  5535 %}
  5537 // Nop using the branch functional unit
  5538 instruct Nop_BR( ) %{
  5539   ins_cost(0);
  5541   format %{ "NOP    ! Branch Pipeline" %}
  5542   ins_encode( emit_br_nop );
  5543   ins_pipe(br_nop);
  5544 %}
  5546 //----------Load/Store/Move Instructions---------------------------------------
  5547 //----------Load Instructions--------------------------------------------------
  5548 // Load Byte (8bit signed)
  5549 instruct loadB(iRegI dst, memory mem) %{
  5550   match(Set dst (LoadB mem));
  5551   ins_cost(MEMORY_REF_COST);
  5553   size(4);
  5554   format %{ "LDSB   $mem,$dst\t! byte" %}
  5555   ins_encode %{
  5556     __ ldsb($mem$$Address, $dst$$Register);
  5557   %}
  5558   ins_pipe(iload_mask_mem);
  5559 %}
  5561 // Load Byte (8bit signed) into a Long Register
  5562 instruct loadB2L(iRegL dst, memory mem) %{
  5563   match(Set dst (ConvI2L (LoadB mem)));
  5564   ins_cost(MEMORY_REF_COST);
  5566   size(4);
  5567   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5568   ins_encode %{
  5569     __ ldsb($mem$$Address, $dst$$Register);
  5570   %}
  5571   ins_pipe(iload_mask_mem);
  5572 %}
  5574 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5575 instruct loadUB(iRegI dst, memory mem) %{
  5576   match(Set dst (LoadUB mem));
  5577   ins_cost(MEMORY_REF_COST);
  5579   size(4);
  5580   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5581   ins_encode %{
  5582     __ ldub($mem$$Address, $dst$$Register);
  5583   %}
  5584   ins_pipe(iload_mem);
  5585 %}
  5587 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5588 instruct loadUB2L(iRegL dst, memory mem) %{
  5589   match(Set dst (ConvI2L (LoadUB mem)));
  5590   ins_cost(MEMORY_REF_COST);
  5592   size(4);
  5593   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5594   ins_encode %{
  5595     __ ldub($mem$$Address, $dst$$Register);
  5596   %}
  5597   ins_pipe(iload_mem);
  5598 %}
  5600 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5601 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5602   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5603   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5605   size(2*4);
  5606   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5607             "AND    $dst,$mask,$dst" %}
  5608   ins_encode %{
  5609     __ ldub($mem$$Address, $dst$$Register);
  5610     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5611   %}
  5612   ins_pipe(iload_mem);
  5613 %}
  5615 // Load Short (16bit signed)
  5616 instruct loadS(iRegI dst, memory mem) %{
  5617   match(Set dst (LoadS mem));
  5618   ins_cost(MEMORY_REF_COST);
  5620   size(4);
  5621   format %{ "LDSH   $mem,$dst\t! short" %}
  5622   ins_encode %{
  5623     __ ldsh($mem$$Address, $dst$$Register);
  5624   %}
  5625   ins_pipe(iload_mask_mem);
  5626 %}
  5628 // Load Short (16 bit signed) to Byte (8 bit signed)
  5629 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5630   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5631   ins_cost(MEMORY_REF_COST);
  5633   size(4);
  5635   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5636   ins_encode %{
  5637     __ ldsb($mem$$Address, $dst$$Register, 1);
  5638   %}
  5639   ins_pipe(iload_mask_mem);
  5640 %}
  5642 // Load Short (16bit signed) into a Long Register
  5643 instruct loadS2L(iRegL dst, memory mem) %{
  5644   match(Set dst (ConvI2L (LoadS mem)));
  5645   ins_cost(MEMORY_REF_COST);
  5647   size(4);
  5648   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5649   ins_encode %{
  5650     __ ldsh($mem$$Address, $dst$$Register);
  5651   %}
  5652   ins_pipe(iload_mask_mem);
  5653 %}
  5655 // Load Unsigned Short/Char (16bit UNsigned)
  5656 instruct loadUS(iRegI dst, memory mem) %{
  5657   match(Set dst (LoadUS mem));
  5658   ins_cost(MEMORY_REF_COST);
  5660   size(4);
  5661   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5662   ins_encode %{
  5663     __ lduh($mem$$Address, $dst$$Register);
  5664   %}
  5665   ins_pipe(iload_mem);
  5666 %}
  5668 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5669 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5670   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5671   ins_cost(MEMORY_REF_COST);
  5673   size(4);
  5674   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5675   ins_encode %{
  5676     __ ldsb($mem$$Address, $dst$$Register, 1);
  5677   %}
  5678   ins_pipe(iload_mask_mem);
  5679 %}
  5681 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5682 instruct loadUS2L(iRegL dst, memory mem) %{
  5683   match(Set dst (ConvI2L (LoadUS mem)));
  5684   ins_cost(MEMORY_REF_COST);
  5686   size(4);
  5687   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5688   ins_encode %{
  5689     __ lduh($mem$$Address, $dst$$Register);
  5690   %}
  5691   ins_pipe(iload_mem);
  5692 %}
  5694 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5695 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5696   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5697   ins_cost(MEMORY_REF_COST);
  5699   size(4);
  5700   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5701   ins_encode %{
  5702     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5703   %}
  5704   ins_pipe(iload_mem);
  5705 %}
  5707 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5708 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5709   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5710   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5712   size(2*4);
  5713   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5714             "AND    $dst,$mask,$dst" %}
  5715   ins_encode %{
  5716     Register Rdst = $dst$$Register;
  5717     __ lduh($mem$$Address, Rdst);
  5718     __ and3(Rdst, $mask$$constant, Rdst);
  5719   %}
  5720   ins_pipe(iload_mem);
  5721 %}
  5723 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5724 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5725   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5726   effect(TEMP dst, TEMP tmp);
  5727   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5729   size((3+1)*4);  // set may use two instructions.
  5730   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5731             "SET    $mask,$tmp\n\t"
  5732             "AND    $dst,$tmp,$dst" %}
  5733   ins_encode %{
  5734     Register Rdst = $dst$$Register;
  5735     Register Rtmp = $tmp$$Register;
  5736     __ lduh($mem$$Address, Rdst);
  5737     __ set($mask$$constant, Rtmp);
  5738     __ and3(Rdst, Rtmp, Rdst);
  5739   %}
  5740   ins_pipe(iload_mem);
  5741 %}
  5743 // Load Integer
  5744 instruct loadI(iRegI dst, memory mem) %{
  5745   match(Set dst (LoadI mem));
  5746   ins_cost(MEMORY_REF_COST);
  5748   size(4);
  5749   format %{ "LDUW   $mem,$dst\t! int" %}
  5750   ins_encode %{
  5751     __ lduw($mem$$Address, $dst$$Register);
  5752   %}
  5753   ins_pipe(iload_mem);
  5754 %}
  5756 // Load Integer to Byte (8 bit signed)
  5757 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5758   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5759   ins_cost(MEMORY_REF_COST);
  5761   size(4);
  5763   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5764   ins_encode %{
  5765     __ ldsb($mem$$Address, $dst$$Register, 3);
  5766   %}
  5767   ins_pipe(iload_mask_mem);
  5768 %}
  5770 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5771 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5772   match(Set dst (AndI (LoadI mem) mask));
  5773   ins_cost(MEMORY_REF_COST);
  5775   size(4);
  5777   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5778   ins_encode %{
  5779     __ ldub($mem$$Address, $dst$$Register, 3);
  5780   %}
  5781   ins_pipe(iload_mask_mem);
  5782 %}
  5784 // Load Integer to Short (16 bit signed)
  5785 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5786   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5787   ins_cost(MEMORY_REF_COST);
  5789   size(4);
  5791   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5792   ins_encode %{
  5793     __ ldsh($mem$$Address, $dst$$Register, 2);
  5794   %}
  5795   ins_pipe(iload_mask_mem);
  5796 %}
  5798 // Load Integer to Unsigned Short (16 bit UNsigned)
  5799 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5800   match(Set dst (AndI (LoadI mem) mask));
  5801   ins_cost(MEMORY_REF_COST);
  5803   size(4);
  5805   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5806   ins_encode %{
  5807     __ lduh($mem$$Address, $dst$$Register, 2);
  5808   %}
  5809   ins_pipe(iload_mask_mem);
  5810 %}
  5812 // Load Integer into a Long Register
  5813 instruct loadI2L(iRegL dst, memory mem) %{
  5814   match(Set dst (ConvI2L (LoadI mem)));
  5815   ins_cost(MEMORY_REF_COST);
  5817   size(4);
  5818   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5819   ins_encode %{
  5820     __ ldsw($mem$$Address, $dst$$Register);
  5821   %}
  5822   ins_pipe(iload_mask_mem);
  5823 %}
  5825 // Load Integer with mask 0xFF into a Long Register
  5826 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5827   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5828   ins_cost(MEMORY_REF_COST);
  5830   size(4);
  5831   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5832   ins_encode %{
  5833     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5834   %}
  5835   ins_pipe(iload_mem);
  5836 %}
  5838 // Load Integer with mask 0xFFFF into a Long Register
  5839 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5840   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5841   ins_cost(MEMORY_REF_COST);
  5843   size(4);
  5844   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5845   ins_encode %{
  5846     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5847   %}
  5848   ins_pipe(iload_mem);
  5849 %}
  5851 // Load Integer with a 13-bit mask into a Long Register
  5852 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5853   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5854   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5856   size(2*4);
  5857   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5858             "AND    $dst,$mask,$dst" %}
  5859   ins_encode %{
  5860     Register Rdst = $dst$$Register;
  5861     __ lduw($mem$$Address, Rdst);
  5862     __ and3(Rdst, $mask$$constant, Rdst);
  5863   %}
  5864   ins_pipe(iload_mem);
  5865 %}
  5867 // Load Integer with a 32-bit mask into a Long Register
  5868 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5869   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5870   effect(TEMP dst, TEMP tmp);
  5871   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5873   size((3+1)*4);  // set may use two instructions.
  5874   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5875             "SET    $mask,$tmp\n\t"
  5876             "AND    $dst,$tmp,$dst" %}
  5877   ins_encode %{
  5878     Register Rdst = $dst$$Register;
  5879     Register Rtmp = $tmp$$Register;
  5880     __ lduw($mem$$Address, Rdst);
  5881     __ set($mask$$constant, Rtmp);
  5882     __ and3(Rdst, Rtmp, Rdst);
  5883   %}
  5884   ins_pipe(iload_mem);
  5885 %}
  5887 // Load Unsigned Integer into a Long Register
  5888 instruct loadUI2L(iRegL dst, memory mem) %{
  5889   match(Set dst (LoadUI2L mem));
  5890   ins_cost(MEMORY_REF_COST);
  5892   size(4);
  5893   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5894   ins_encode %{
  5895     __ lduw($mem$$Address, $dst$$Register);
  5896   %}
  5897   ins_pipe(iload_mem);
  5898 %}
  5900 // Load Long - aligned
  5901 instruct loadL(iRegL dst, memory mem ) %{
  5902   match(Set dst (LoadL mem));
  5903   ins_cost(MEMORY_REF_COST);
  5905   size(4);
  5906   format %{ "LDX    $mem,$dst\t! long" %}
  5907   ins_encode %{
  5908     __ ldx($mem$$Address, $dst$$Register);
  5909   %}
  5910   ins_pipe(iload_mem);
  5911 %}
  5913 // Load Long - UNaligned
  5914 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5915   match(Set dst (LoadL_unaligned mem));
  5916   effect(KILL tmp);
  5917   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5918   size(16);
  5919   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5920           "\tLDUW   $mem  ,$dst\n"
  5921           "\tSLLX   #32, $dst, $dst\n"
  5922           "\tOR     $dst, R_O7, $dst" %}
  5923   opcode(Assembler::lduw_op3);
  5924   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5925   ins_pipe(iload_mem);
  5926 %}
  5928 // Load Range
  5929 instruct loadRange(iRegI dst, memory mem) %{
  5930   match(Set dst (LoadRange mem));
  5931   ins_cost(MEMORY_REF_COST);
  5933   size(4);
  5934   format %{ "LDUW   $mem,$dst\t! range" %}
  5935   opcode(Assembler::lduw_op3);
  5936   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5937   ins_pipe(iload_mem);
  5938 %}
  5940 // Load Integer into %f register (for fitos/fitod)
  5941 instruct loadI_freg(regF dst, memory mem) %{
  5942   match(Set dst (LoadI mem));
  5943   ins_cost(MEMORY_REF_COST);
  5944   size(4);
  5946   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5947   opcode(Assembler::ldf_op3);
  5948   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5949   ins_pipe(floadF_mem);
  5950 %}
  5952 // Load Pointer
  5953 instruct loadP(iRegP dst, memory mem) %{
  5954   match(Set dst (LoadP mem));
  5955   ins_cost(MEMORY_REF_COST);
  5956   size(4);
  5958 #ifndef _LP64
  5959   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5960   ins_encode %{
  5961     __ lduw($mem$$Address, $dst$$Register);
  5962   %}
  5963 #else
  5964   format %{ "LDX    $mem,$dst\t! ptr" %}
  5965   ins_encode %{
  5966     __ ldx($mem$$Address, $dst$$Register);
  5967   %}
  5968 #endif
  5969   ins_pipe(iload_mem);
  5970 %}
  5972 // Load Compressed Pointer
  5973 instruct loadN(iRegN dst, memory mem) %{
  5974   match(Set dst (LoadN mem));
  5975   ins_cost(MEMORY_REF_COST);
  5976   size(4);
  5978   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5979   ins_encode %{
  5980     __ lduw($mem$$Address, $dst$$Register);
  5981   %}
  5982   ins_pipe(iload_mem);
  5983 %}
  5985 // Load Klass Pointer
  5986 instruct loadKlass(iRegP dst, memory mem) %{
  5987   match(Set dst (LoadKlass mem));
  5988   ins_cost(MEMORY_REF_COST);
  5989   size(4);
  5991 #ifndef _LP64
  5992   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5993   ins_encode %{
  5994     __ lduw($mem$$Address, $dst$$Register);
  5995   %}
  5996 #else
  5997   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5998   ins_encode %{
  5999     __ ldx($mem$$Address, $dst$$Register);
  6000   %}
  6001 #endif
  6002   ins_pipe(iload_mem);
  6003 %}
  6005 // Load narrow Klass Pointer
  6006 instruct loadNKlass(iRegN dst, memory mem) %{
  6007   match(Set dst (LoadNKlass mem));
  6008   ins_cost(MEMORY_REF_COST);
  6009   size(4);
  6011   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  6012   ins_encode %{
  6013     __ lduw($mem$$Address, $dst$$Register);
  6014   %}
  6015   ins_pipe(iload_mem);
  6016 %}
  6018 // Load Double
  6019 instruct loadD(regD dst, memory mem) %{
  6020   match(Set dst (LoadD mem));
  6021   ins_cost(MEMORY_REF_COST);
  6023   size(4);
  6024   format %{ "LDDF   $mem,$dst" %}
  6025   opcode(Assembler::lddf_op3);
  6026   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6027   ins_pipe(floadD_mem);
  6028 %}
  6030 // Load Double - UNaligned
  6031 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6032   match(Set dst (LoadD_unaligned mem));
  6033   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6034   size(8);
  6035   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6036           "\tLDF    $mem+4,$dst.lo\t!" %}
  6037   opcode(Assembler::ldf_op3);
  6038   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6039   ins_pipe(iload_mem);
  6040 %}
  6042 // Load Float
  6043 instruct loadF(regF dst, memory mem) %{
  6044   match(Set dst (LoadF mem));
  6045   ins_cost(MEMORY_REF_COST);
  6047   size(4);
  6048   format %{ "LDF    $mem,$dst" %}
  6049   opcode(Assembler::ldf_op3);
  6050   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6051   ins_pipe(floadF_mem);
  6052 %}
  6054 // Load Constant
  6055 instruct loadConI( iRegI dst, immI src ) %{
  6056   match(Set dst src);
  6057   ins_cost(DEFAULT_COST * 3/2);
  6058   format %{ "SET    $src,$dst" %}
  6059   ins_encode( Set32(src, dst) );
  6060   ins_pipe(ialu_hi_lo_reg);
  6061 %}
  6063 instruct loadConI13( iRegI dst, immI13 src ) %{
  6064   match(Set dst src);
  6066   size(4);
  6067   format %{ "MOV    $src,$dst" %}
  6068   ins_encode( Set13( src, dst ) );
  6069   ins_pipe(ialu_imm);
  6070 %}
  6072 #ifndef _LP64
  6073 instruct loadConP(iRegP dst, immP con) %{
  6074   match(Set dst con);
  6075   ins_cost(DEFAULT_COST * 3/2);
  6076   format %{ "SET    $con,$dst\t!ptr" %}
  6077   ins_encode %{
  6078     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6079       intptr_t val = $con$$constant;
  6080     if (constant_reloc == relocInfo::oop_type) {
  6081       __ set_oop_constant((jobject) val, $dst$$Register);
  6082     } else if (constant_reloc == relocInfo::metadata_type) {
  6083       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6084     } else {          // non-oop pointers, e.g. card mark base, heap top
  6085       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6086       __ set(val, $dst$$Register);
  6088   %}
  6089   ins_pipe(loadConP);
  6090 %}
  6091 #else
  6092 instruct loadConP_set(iRegP dst, immP_set con) %{
  6093   match(Set dst con);
  6094   ins_cost(DEFAULT_COST * 3/2);
  6095   format %{ "SET    $con,$dst\t! ptr" %}
  6096   ins_encode %{
  6097     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
  6098       intptr_t val = $con$$constant;
  6099     if (constant_reloc == relocInfo::oop_type) {
  6100       __ set_oop_constant((jobject) val, $dst$$Register);
  6101     } else if (constant_reloc == relocInfo::metadata_type) {
  6102       __ set_metadata_constant((Metadata*)val, $dst$$Register);
  6103     } else {          // non-oop pointers, e.g. card mark base, heap top
  6104       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
  6105       __ set(val, $dst$$Register);
  6107   %}
  6108   ins_pipe(loadConP);
  6109 %}
  6111 instruct loadConP_load(iRegP dst, immP_load con) %{
  6112   match(Set dst con);
  6113   ins_cost(MEMORY_REF_COST);
  6114   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6115   ins_encode %{
  6116     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6117     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6118   %}
  6119   ins_pipe(loadConP);
  6120 %}
  6122 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6123   match(Set dst con);
  6124   ins_cost(DEFAULT_COST * 3/2);
  6125   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6126   ins_encode %{
  6127     __ set($con$$constant, $dst$$Register);
  6128   %}
  6129   ins_pipe(loadConP);
  6130 %}
  6131 #endif // _LP64
  6133 instruct loadConP0(iRegP dst, immP0 src) %{
  6134   match(Set dst src);
  6136   size(4);
  6137   format %{ "CLR    $dst\t!ptr" %}
  6138   ins_encode %{
  6139     __ clr($dst$$Register);
  6140   %}
  6141   ins_pipe(ialu_imm);
  6142 %}
  6144 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6145   match(Set dst src);
  6146   ins_cost(DEFAULT_COST);
  6147   format %{ "SET    $src,$dst\t!ptr" %}
  6148   ins_encode %{
  6149     AddressLiteral polling_page(os::get_polling_page());
  6150     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6151   %}
  6152   ins_pipe(loadConP_poll);
  6153 %}
  6155 instruct loadConN0(iRegN dst, immN0 src) %{
  6156   match(Set dst src);
  6158   size(4);
  6159   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6160   ins_encode %{
  6161     __ clr($dst$$Register);
  6162   %}
  6163   ins_pipe(ialu_imm);
  6164 %}
  6166 instruct loadConN(iRegN dst, immN src) %{
  6167   match(Set dst src);
  6168   ins_cost(DEFAULT_COST * 3/2);
  6169   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6170   ins_encode %{
  6171     Register dst = $dst$$Register;
  6172     __ set_narrow_oop((jobject)$src$$constant, dst);
  6173   %}
  6174   ins_pipe(ialu_hi_lo_reg);
  6175 %}
  6177 instruct loadConNKlass(iRegN dst, immNKlass src) %{
  6178   match(Set dst src);
  6179   ins_cost(DEFAULT_COST * 3/2);
  6180   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
  6181   ins_encode %{
  6182     Register dst = $dst$$Register;
  6183     __ set_narrow_klass((Klass*)$src$$constant, dst);
  6184   %}
  6185   ins_pipe(ialu_hi_lo_reg);
  6186 %}
  6188 // Materialize long value (predicated by immL_cheap).
  6189 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6190   match(Set dst con);
  6191   effect(KILL tmp);
  6192   ins_cost(DEFAULT_COST * 3);
  6193   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6194   ins_encode %{
  6195     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6196   %}
  6197   ins_pipe(loadConL);
  6198 %}
  6200 // Load long value from constant table (predicated by immL_expensive).
  6201 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6202   match(Set dst con);
  6203   ins_cost(MEMORY_REF_COST);
  6204   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6205   ins_encode %{
  6206       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6207     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6208   %}
  6209   ins_pipe(loadConL);
  6210 %}
  6212 instruct loadConL0( iRegL dst, immL0 src ) %{
  6213   match(Set dst src);
  6214   ins_cost(DEFAULT_COST);
  6215   size(4);
  6216   format %{ "CLR    $dst\t! long" %}
  6217   ins_encode( Set13( src, dst ) );
  6218   ins_pipe(ialu_imm);
  6219 %}
  6221 instruct loadConL13( iRegL dst, immL13 src ) %{
  6222   match(Set dst src);
  6223   ins_cost(DEFAULT_COST * 2);
  6225   size(4);
  6226   format %{ "MOV    $src,$dst\t! long" %}
  6227   ins_encode( Set13( src, dst ) );
  6228   ins_pipe(ialu_imm);
  6229 %}
  6231 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6232   match(Set dst con);
  6233   effect(KILL tmp);
  6234   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6235   ins_encode %{
  6236       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6237     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6238   %}
  6239   ins_pipe(loadConFD);
  6240 %}
  6242 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6243   match(Set dst con);
  6244   effect(KILL tmp);
  6245   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6246   ins_encode %{
  6247     // XXX This is a quick fix for 6833573.
  6248     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6249     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6250     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6251   %}
  6252   ins_pipe(loadConFD);
  6253 %}
  6255 // Prefetch instructions.
  6256 // Must be safe to execute with invalid address (cannot fault).
  6258 instruct prefetchr( memory mem ) %{
  6259   match( PrefetchRead mem );
  6260   ins_cost(MEMORY_REF_COST);
  6261   size(4);
  6263   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6264   opcode(Assembler::prefetch_op3);
  6265   ins_encode( form3_mem_prefetch_read( mem ) );
  6266   ins_pipe(iload_mem);
  6267 %}
  6269 instruct prefetchw( memory mem ) %{
  6270   match( PrefetchWrite mem );
  6271   ins_cost(MEMORY_REF_COST);
  6272   size(4);
  6274   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6275   opcode(Assembler::prefetch_op3);
  6276   ins_encode( form3_mem_prefetch_write( mem ) );
  6277   ins_pipe(iload_mem);
  6278 %}
  6280 // Prefetch instructions for allocation.
  6282 instruct prefetchAlloc( memory mem ) %{
  6283   predicate(AllocatePrefetchInstr == 0);
  6284   match( PrefetchAllocation mem );
  6285   ins_cost(MEMORY_REF_COST);
  6286   size(4);
  6288   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
  6289   opcode(Assembler::prefetch_op3);
  6290   ins_encode( form3_mem_prefetch_write( mem ) );
  6291   ins_pipe(iload_mem);
  6292 %}
  6294 // Use BIS instruction to prefetch for allocation.
  6295 // Could fault, need space at the end of TLAB.
  6296 instruct prefetchAlloc_bis( iRegP dst ) %{
  6297   predicate(AllocatePrefetchInstr == 1);
  6298   match( PrefetchAllocation dst );
  6299   ins_cost(MEMORY_REF_COST);
  6300   size(4);
  6302   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
  6303   ins_encode %{
  6304     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  6305   %}
  6306   ins_pipe(istore_mem_reg);
  6307 %}
  6309 // Next code is used for finding next cache line address to prefetch.
  6310 #ifndef _LP64
  6311 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
  6312   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
  6313   ins_cost(DEFAULT_COST);
  6314   size(4);
  6316   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6317   ins_encode %{
  6318     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6319   %}
  6320   ins_pipe(ialu_reg_imm);
  6321 %}
  6322 #else
  6323 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
  6324   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
  6325   ins_cost(DEFAULT_COST);
  6326   size(4);
  6328   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
  6329   ins_encode %{
  6330     __ and3($src$$Register, $mask$$constant, $dst$$Register);
  6331   %}
  6332   ins_pipe(ialu_reg_imm);
  6333 %}
  6334 #endif
  6336 //----------Store Instructions-------------------------------------------------
  6337 // Store Byte
  6338 instruct storeB(memory mem, iRegI src) %{
  6339   match(Set mem (StoreB mem src));
  6340   ins_cost(MEMORY_REF_COST);
  6342   size(4);
  6343   format %{ "STB    $src,$mem\t! byte" %}
  6344   opcode(Assembler::stb_op3);
  6345   ins_encode(simple_form3_mem_reg( mem, src ) );
  6346   ins_pipe(istore_mem_reg);
  6347 %}
  6349 instruct storeB0(memory mem, immI0 src) %{
  6350   match(Set mem (StoreB mem src));
  6351   ins_cost(MEMORY_REF_COST);
  6353   size(4);
  6354   format %{ "STB    $src,$mem\t! byte" %}
  6355   opcode(Assembler::stb_op3);
  6356   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6357   ins_pipe(istore_mem_zero);
  6358 %}
  6360 instruct storeCM0(memory mem, immI0 src) %{
  6361   match(Set mem (StoreCM mem src));
  6362   ins_cost(MEMORY_REF_COST);
  6364   size(4);
  6365   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6366   opcode(Assembler::stb_op3);
  6367   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6368   ins_pipe(istore_mem_zero);
  6369 %}
  6371 // Store Char/Short
  6372 instruct storeC(memory mem, iRegI src) %{
  6373   match(Set mem (StoreC mem src));
  6374   ins_cost(MEMORY_REF_COST);
  6376   size(4);
  6377   format %{ "STH    $src,$mem\t! short" %}
  6378   opcode(Assembler::sth_op3);
  6379   ins_encode(simple_form3_mem_reg( mem, src ) );
  6380   ins_pipe(istore_mem_reg);
  6381 %}
  6383 instruct storeC0(memory mem, immI0 src) %{
  6384   match(Set mem (StoreC mem src));
  6385   ins_cost(MEMORY_REF_COST);
  6387   size(4);
  6388   format %{ "STH    $src,$mem\t! short" %}
  6389   opcode(Assembler::sth_op3);
  6390   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6391   ins_pipe(istore_mem_zero);
  6392 %}
  6394 // Store Integer
  6395 instruct storeI(memory mem, iRegI src) %{
  6396   match(Set mem (StoreI mem src));
  6397   ins_cost(MEMORY_REF_COST);
  6399   size(4);
  6400   format %{ "STW    $src,$mem" %}
  6401   opcode(Assembler::stw_op3);
  6402   ins_encode(simple_form3_mem_reg( mem, src ) );
  6403   ins_pipe(istore_mem_reg);
  6404 %}
  6406 // Store Long
  6407 instruct storeL(memory mem, iRegL src) %{
  6408   match(Set mem (StoreL mem src));
  6409   ins_cost(MEMORY_REF_COST);
  6410   size(4);
  6411   format %{ "STX    $src,$mem\t! long" %}
  6412   opcode(Assembler::stx_op3);
  6413   ins_encode(simple_form3_mem_reg( mem, src ) );
  6414   ins_pipe(istore_mem_reg);
  6415 %}
  6417 instruct storeI0(memory mem, immI0 src) %{
  6418   match(Set mem (StoreI mem src));
  6419   ins_cost(MEMORY_REF_COST);
  6421   size(4);
  6422   format %{ "STW    $src,$mem" %}
  6423   opcode(Assembler::stw_op3);
  6424   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6425   ins_pipe(istore_mem_zero);
  6426 %}
  6428 instruct storeL0(memory mem, immL0 src) %{
  6429   match(Set mem (StoreL mem src));
  6430   ins_cost(MEMORY_REF_COST);
  6432   size(4);
  6433   format %{ "STX    $src,$mem" %}
  6434   opcode(Assembler::stx_op3);
  6435   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6436   ins_pipe(istore_mem_zero);
  6437 %}
  6439 // Store Integer from float register (used after fstoi)
  6440 instruct storeI_Freg(memory mem, regF src) %{
  6441   match(Set mem (StoreI mem src));
  6442   ins_cost(MEMORY_REF_COST);
  6444   size(4);
  6445   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6446   opcode(Assembler::stf_op3);
  6447   ins_encode(simple_form3_mem_reg( mem, src ) );
  6448   ins_pipe(fstoreF_mem_reg);
  6449 %}
  6451 // Store Pointer
  6452 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6453   match(Set dst (StoreP dst src));
  6454   ins_cost(MEMORY_REF_COST);
  6455   size(4);
  6457 #ifndef _LP64
  6458   format %{ "STW    $src,$dst\t! ptr" %}
  6459   opcode(Assembler::stw_op3, 0, REGP_OP);
  6460 #else
  6461   format %{ "STX    $src,$dst\t! ptr" %}
  6462   opcode(Assembler::stx_op3, 0, REGP_OP);
  6463 #endif
  6464   ins_encode( form3_mem_reg( dst, src ) );
  6465   ins_pipe(istore_mem_spORreg);
  6466 %}
  6468 instruct storeP0(memory dst, immP0 src) %{
  6469   match(Set dst (StoreP dst src));
  6470   ins_cost(MEMORY_REF_COST);
  6471   size(4);
  6473 #ifndef _LP64
  6474   format %{ "STW    $src,$dst\t! ptr" %}
  6475   opcode(Assembler::stw_op3, 0, REGP_OP);
  6476 #else
  6477   format %{ "STX    $src,$dst\t! ptr" %}
  6478   opcode(Assembler::stx_op3, 0, REGP_OP);
  6479 #endif
  6480   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6481   ins_pipe(istore_mem_zero);
  6482 %}
  6484 // Store Compressed Pointer
  6485 instruct storeN(memory dst, iRegN src) %{
  6486    match(Set dst (StoreN dst src));
  6487    ins_cost(MEMORY_REF_COST);
  6488    size(4);
  6490    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6491    ins_encode %{
  6492      Register base = as_Register($dst$$base);
  6493      Register index = as_Register($dst$$index);
  6494      Register src = $src$$Register;
  6495      if (index != G0) {
  6496        __ stw(src, base, index);
  6497      } else {
  6498        __ stw(src, base, $dst$$disp);
  6500    %}
  6501    ins_pipe(istore_mem_spORreg);
  6502 %}
  6504 instruct storeNKlass(memory dst, iRegN src) %{
  6505    match(Set dst (StoreNKlass dst src));
  6506    ins_cost(MEMORY_REF_COST);
  6507    size(4);
  6509    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
  6510    ins_encode %{
  6511      Register base = as_Register($dst$$base);
  6512      Register index = as_Register($dst$$index);
  6513      Register src = $src$$Register;
  6514      if (index != G0) {
  6515        __ stw(src, base, index);
  6516      } else {
  6517        __ stw(src, base, $dst$$disp);
  6519    %}
  6520    ins_pipe(istore_mem_spORreg);
  6521 %}
  6523 instruct storeN0(memory dst, immN0 src) %{
  6524    match(Set dst (StoreN dst src));
  6525    ins_cost(MEMORY_REF_COST);
  6526    size(4);
  6528    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6529    ins_encode %{
  6530      Register base = as_Register($dst$$base);
  6531      Register index = as_Register($dst$$index);
  6532      if (index != G0) {
  6533        __ stw(0, base, index);
  6534      } else {
  6535        __ stw(0, base, $dst$$disp);
  6537    %}
  6538    ins_pipe(istore_mem_zero);
  6539 %}
  6541 // Store Double
  6542 instruct storeD( memory mem, regD src) %{
  6543   match(Set mem (StoreD mem src));
  6544   ins_cost(MEMORY_REF_COST);
  6546   size(4);
  6547   format %{ "STDF   $src,$mem" %}
  6548   opcode(Assembler::stdf_op3);
  6549   ins_encode(simple_form3_mem_reg( mem, src ) );
  6550   ins_pipe(fstoreD_mem_reg);
  6551 %}
  6553 instruct storeD0( memory mem, immD0 src) %{
  6554   match(Set mem (StoreD mem src));
  6555   ins_cost(MEMORY_REF_COST);
  6557   size(4);
  6558   format %{ "STX    $src,$mem" %}
  6559   opcode(Assembler::stx_op3);
  6560   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6561   ins_pipe(fstoreD_mem_zero);
  6562 %}
  6564 // Store Float
  6565 instruct storeF( memory mem, regF src) %{
  6566   match(Set mem (StoreF mem src));
  6567   ins_cost(MEMORY_REF_COST);
  6569   size(4);
  6570   format %{ "STF    $src,$mem" %}
  6571   opcode(Assembler::stf_op3);
  6572   ins_encode(simple_form3_mem_reg( mem, src ) );
  6573   ins_pipe(fstoreF_mem_reg);
  6574 %}
  6576 instruct storeF0( memory mem, immF0 src) %{
  6577   match(Set mem (StoreF mem src));
  6578   ins_cost(MEMORY_REF_COST);
  6580   size(4);
  6581   format %{ "STW    $src,$mem\t! storeF0" %}
  6582   opcode(Assembler::stw_op3);
  6583   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6584   ins_pipe(fstoreF_mem_zero);
  6585 %}
  6587 // Convert oop pointer into compressed form
  6588 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6589   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6590   match(Set dst (EncodeP src));
  6591   format %{ "encode_heap_oop $src, $dst" %}
  6592   ins_encode %{
  6593     __ encode_heap_oop($src$$Register, $dst$$Register);
  6594   %}
  6595   ins_pipe(ialu_reg);
  6596 %}
  6598 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6599   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6600   match(Set dst (EncodeP src));
  6601   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6602   ins_encode %{
  6603     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6604   %}
  6605   ins_pipe(ialu_reg);
  6606 %}
  6608 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6609   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6610             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6611   match(Set dst (DecodeN src));
  6612   format %{ "decode_heap_oop $src, $dst" %}
  6613   ins_encode %{
  6614     __ decode_heap_oop($src$$Register, $dst$$Register);
  6615   %}
  6616   ins_pipe(ialu_reg);
  6617 %}
  6619 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6620   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6621             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6622   match(Set dst (DecodeN src));
  6623   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6624   ins_encode %{
  6625     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6626   %}
  6627   ins_pipe(ialu_reg);
  6628 %}
  6630 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
  6631   match(Set dst (EncodePKlass src));
  6632   format %{ "encode_klass_not_null $src, $dst" %}
  6633   ins_encode %{
  6634     __ encode_klass_not_null($src$$Register, $dst$$Register);
  6635   %}
  6636   ins_pipe(ialu_reg);
  6637 %}
  6639 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
  6640   match(Set dst (DecodeNKlass src));
  6641   format %{ "decode_klass_not_null $src, $dst" %}
  6642   ins_encode %{
  6643     __ decode_klass_not_null($src$$Register, $dst$$Register);
  6644   %}
  6645   ins_pipe(ialu_reg);
  6646 %}
  6648 //----------MemBar Instructions-----------------------------------------------
  6649 // Memory barrier flavors
  6651 instruct membar_acquire() %{
  6652   match(MemBarAcquire);
  6653   ins_cost(4*MEMORY_REF_COST);
  6655   size(0);
  6656   format %{ "MEMBAR-acquire" %}
  6657   ins_encode( enc_membar_acquire );
  6658   ins_pipe(long_memory_op);
  6659 %}
  6661 instruct membar_acquire_lock() %{
  6662   match(MemBarAcquireLock);
  6663   ins_cost(0);
  6665   size(0);
  6666   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6667   ins_encode( );
  6668   ins_pipe(empty);
  6669 %}
  6671 instruct membar_release() %{
  6672   match(MemBarRelease);
  6673   ins_cost(4*MEMORY_REF_COST);
  6675   size(0);
  6676   format %{ "MEMBAR-release" %}
  6677   ins_encode( enc_membar_release );
  6678   ins_pipe(long_memory_op);
  6679 %}
  6681 instruct membar_release_lock() %{
  6682   match(MemBarReleaseLock);
  6683   ins_cost(0);
  6685   size(0);
  6686   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6687   ins_encode( );
  6688   ins_pipe(empty);
  6689 %}
  6691 instruct membar_volatile() %{
  6692   match(MemBarVolatile);
  6693   ins_cost(4*MEMORY_REF_COST);
  6695   size(4);
  6696   format %{ "MEMBAR-volatile" %}
  6697   ins_encode( enc_membar_volatile );
  6698   ins_pipe(long_memory_op);
  6699 %}
  6701 instruct unnecessary_membar_volatile() %{
  6702   match(MemBarVolatile);
  6703   predicate(Matcher::post_store_load_barrier(n));
  6704   ins_cost(0);
  6706   size(0);
  6707   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6708   ins_encode( );
  6709   ins_pipe(empty);
  6710 %}
  6712 instruct membar_storestore() %{
  6713   match(MemBarStoreStore);
  6714   ins_cost(0);
  6716   size(0);
  6717   format %{ "!MEMBAR-storestore (empty encoding)" %}
  6718   ins_encode( );
  6719   ins_pipe(empty);
  6720 %}
  6722 //----------Register Move Instructions-----------------------------------------
  6723 instruct roundDouble_nop(regD dst) %{
  6724   match(Set dst (RoundDouble dst));
  6725   ins_cost(0);
  6726   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6727   ins_encode( );
  6728   ins_pipe(empty);
  6729 %}
  6732 instruct roundFloat_nop(regF dst) %{
  6733   match(Set dst (RoundFloat dst));
  6734   ins_cost(0);
  6735   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6736   ins_encode( );
  6737   ins_pipe(empty);
  6738 %}
  6741 // Cast Index to Pointer for unsafe natives
  6742 instruct castX2P(iRegX src, iRegP dst) %{
  6743   match(Set dst (CastX2P src));
  6745   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6746   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6747   ins_pipe(ialu_reg);
  6748 %}
  6750 // Cast Pointer to Index for unsafe natives
  6751 instruct castP2X(iRegP src, iRegX dst) %{
  6752   match(Set dst (CastP2X src));
  6754   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6755   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6756   ins_pipe(ialu_reg);
  6757 %}
  6759 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6760   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6761   match(Set stkSlot src);   // chain rule
  6762   ins_cost(MEMORY_REF_COST);
  6763   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6764   opcode(Assembler::stdf_op3);
  6765   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6766   ins_pipe(fstoreD_stk_reg);
  6767 %}
  6769 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6770   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6771   match(Set dst stkSlot);   // chain rule
  6772   ins_cost(MEMORY_REF_COST);
  6773   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6774   opcode(Assembler::lddf_op3);
  6775   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6776   ins_pipe(floadD_stk);
  6777 %}
  6779 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6780   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6781   match(Set stkSlot src);   // chain rule
  6782   ins_cost(MEMORY_REF_COST);
  6783   format %{ "STF   $src,$stkSlot\t!stk" %}
  6784   opcode(Assembler::stf_op3);
  6785   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6786   ins_pipe(fstoreF_stk_reg);
  6787 %}
  6789 //----------Conditional Move---------------------------------------------------
  6790 // Conditional move
  6791 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6792   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6793   ins_cost(150);
  6794   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6795   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6796   ins_pipe(ialu_reg);
  6797 %}
  6799 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6800   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6801   ins_cost(140);
  6802   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6803   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6804   ins_pipe(ialu_imm);
  6805 %}
  6807 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6808   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6809   ins_cost(150);
  6810   size(4);
  6811   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6812   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6813   ins_pipe(ialu_reg);
  6814 %}
  6816 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6817   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6818   ins_cost(140);
  6819   size(4);
  6820   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6821   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6822   ins_pipe(ialu_imm);
  6823 %}
  6825 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6826   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6827   ins_cost(150);
  6828   size(4);
  6829   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6830   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6831   ins_pipe(ialu_reg);
  6832 %}
  6834 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6835   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6836   ins_cost(140);
  6837   size(4);
  6838   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6839   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6840   ins_pipe(ialu_imm);
  6841 %}
  6843 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6844   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6845   ins_cost(150);
  6846   size(4);
  6847   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6848   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6849   ins_pipe(ialu_reg);
  6850 %}
  6852 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6853   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6854   ins_cost(140);
  6855   size(4);
  6856   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6857   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6858   ins_pipe(ialu_imm);
  6859 %}
  6861 // Conditional move for RegN. Only cmov(reg,reg).
  6862 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6863   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6864   ins_cost(150);
  6865   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6866   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6867   ins_pipe(ialu_reg);
  6868 %}
  6870 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6871 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6872   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6873   ins_cost(150);
  6874   size(4);
  6875   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6876   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6877   ins_pipe(ialu_reg);
  6878 %}
  6880 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6881 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6882   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6883   ins_cost(150);
  6884   size(4);
  6885   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6886   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6887   ins_pipe(ialu_reg);
  6888 %}
  6890 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6891   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6892   ins_cost(150);
  6893   size(4);
  6894   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6895   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6896   ins_pipe(ialu_reg);
  6897 %}
  6899 // Conditional move
  6900 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6901   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6902   ins_cost(150);
  6903   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6904   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6905   ins_pipe(ialu_reg);
  6906 %}
  6908 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6909   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6910   ins_cost(140);
  6911   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6912   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6913   ins_pipe(ialu_imm);
  6914 %}
  6916 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6917 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6918   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6919   ins_cost(150);
  6921   size(4);
  6922   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6923   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6924   ins_pipe(ialu_reg);
  6925 %}
  6927 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6928   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6929   ins_cost(150);
  6931   size(4);
  6932   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6933   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6934   ins_pipe(ialu_reg);
  6935 %}
  6937 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6938   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6939   ins_cost(140);
  6941   size(4);
  6942   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6943   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6944   ins_pipe(ialu_imm);
  6945 %}
  6947 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6948   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6949   ins_cost(140);
  6951   size(4);
  6952   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6953   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6954   ins_pipe(ialu_imm);
  6955 %}
  6957 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6958   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6959   ins_cost(150);
  6960   size(4);
  6961   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6962   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6963   ins_pipe(ialu_imm);
  6964 %}
  6966 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6967   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6968   ins_cost(140);
  6969   size(4);
  6970   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6971   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6972   ins_pipe(ialu_imm);
  6973 %}
  6975 // Conditional move
  6976 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6977   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6978   ins_cost(150);
  6979   opcode(0x101);
  6980   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6981   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6982   ins_pipe(int_conditional_float_move);
  6983 %}
  6985 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6986   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6987   ins_cost(150);
  6989   size(4);
  6990   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6991   opcode(0x101);
  6992   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6993   ins_pipe(int_conditional_float_move);
  6994 %}
  6996 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6997   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6998   ins_cost(150);
  7000   size(4);
  7001   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  7002   opcode(0x101);
  7003   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7004   ins_pipe(int_conditional_float_move);
  7005 %}
  7007 // Conditional move,
  7008 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  7009   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  7010   ins_cost(150);
  7011   size(4);
  7012   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  7013   opcode(0x1);
  7014   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7015   ins_pipe(int_conditional_double_move);
  7016 %}
  7018 // Conditional move
  7019 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  7020   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  7021   ins_cost(150);
  7022   size(4);
  7023   opcode(0x102);
  7024   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  7025   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7026   ins_pipe(int_conditional_double_move);
  7027 %}
  7029 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  7030   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7031   ins_cost(150);
  7033   size(4);
  7034   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7035   opcode(0x102);
  7036   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7037   ins_pipe(int_conditional_double_move);
  7038 %}
  7040 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  7041   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  7042   ins_cost(150);
  7044   size(4);
  7045   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  7046   opcode(0x102);
  7047   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  7048   ins_pipe(int_conditional_double_move);
  7049 %}
  7051 // Conditional move,
  7052 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  7053   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  7054   ins_cost(150);
  7055   size(4);
  7056   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  7057   opcode(0x2);
  7058   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  7059   ins_pipe(int_conditional_double_move);
  7060 %}
  7062 // Conditional move
  7063 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7064   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7065   ins_cost(150);
  7066   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7067   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7068   ins_pipe(ialu_reg);
  7069 %}
  7071 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7072   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7073   ins_cost(140);
  7074   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7075   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7076   ins_pipe(ialu_imm);
  7077 %}
  7079 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7080   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7081   ins_cost(150);
  7083   size(4);
  7084   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7085   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7086   ins_pipe(ialu_reg);
  7087 %}
  7090 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7091   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7092   ins_cost(150);
  7094   size(4);
  7095   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7096   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7097   ins_pipe(ialu_reg);
  7098 %}
  7101 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7102   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7103   ins_cost(150);
  7105   size(4);
  7106   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7107   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7108   ins_pipe(ialu_reg);
  7109 %}
  7113 //----------OS and Locking Instructions----------------------------------------
  7115 // This name is KNOWN by the ADLC and cannot be changed.
  7116 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7117 // for this guy.
  7118 instruct tlsLoadP(g2RegP dst) %{
  7119   match(Set dst (ThreadLocal));
  7121   size(0);
  7122   ins_cost(0);
  7123   format %{ "# TLS is in G2" %}
  7124   ins_encode( /*empty encoding*/ );
  7125   ins_pipe(ialu_none);
  7126 %}
  7128 instruct checkCastPP( iRegP dst ) %{
  7129   match(Set dst (CheckCastPP dst));
  7131   size(0);
  7132   format %{ "# checkcastPP of $dst" %}
  7133   ins_encode( /*empty encoding*/ );
  7134   ins_pipe(empty);
  7135 %}
  7138 instruct castPP( iRegP dst ) %{
  7139   match(Set dst (CastPP dst));
  7140   format %{ "# castPP of $dst" %}
  7141   ins_encode( /*empty encoding*/ );
  7142   ins_pipe(empty);
  7143 %}
  7145 instruct castII( iRegI dst ) %{
  7146   match(Set dst (CastII dst));
  7147   format %{ "# castII of $dst" %}
  7148   ins_encode( /*empty encoding*/ );
  7149   ins_cost(0);
  7150   ins_pipe(empty);
  7151 %}
  7153 //----------Arithmetic Instructions--------------------------------------------
  7154 // Addition Instructions
  7155 // Register Addition
  7156 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7157   match(Set dst (AddI src1 src2));
  7159   size(4);
  7160   format %{ "ADD    $src1,$src2,$dst" %}
  7161   ins_encode %{
  7162     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7163   %}
  7164   ins_pipe(ialu_reg_reg);
  7165 %}
  7167 // Immediate Addition
  7168 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7169   match(Set dst (AddI src1 src2));
  7171   size(4);
  7172   format %{ "ADD    $src1,$src2,$dst" %}
  7173   opcode(Assembler::add_op3, Assembler::arith_op);
  7174   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7175   ins_pipe(ialu_reg_imm);
  7176 %}
  7178 // Pointer Register Addition
  7179 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7180   match(Set dst (AddP src1 src2));
  7182   size(4);
  7183   format %{ "ADD    $src1,$src2,$dst" %}
  7184   opcode(Assembler::add_op3, Assembler::arith_op);
  7185   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7186   ins_pipe(ialu_reg_reg);
  7187 %}
  7189 // Pointer Immediate Addition
  7190 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7191   match(Set dst (AddP src1 src2));
  7193   size(4);
  7194   format %{ "ADD    $src1,$src2,$dst" %}
  7195   opcode(Assembler::add_op3, Assembler::arith_op);
  7196   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7197   ins_pipe(ialu_reg_imm);
  7198 %}
  7200 // Long Addition
  7201 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7202   match(Set dst (AddL src1 src2));
  7204   size(4);
  7205   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7206   opcode(Assembler::add_op3, Assembler::arith_op);
  7207   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7208   ins_pipe(ialu_reg_reg);
  7209 %}
  7211 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7212   match(Set dst (AddL src1 con));
  7214   size(4);
  7215   format %{ "ADD    $src1,$con,$dst" %}
  7216   opcode(Assembler::add_op3, Assembler::arith_op);
  7217   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7218   ins_pipe(ialu_reg_imm);
  7219 %}
  7221 //----------Conditional_store--------------------------------------------------
  7222 // Conditional-store of the updated heap-top.
  7223 // Used during allocation of the shared heap.
  7224 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7226 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7227 instruct loadPLocked(iRegP dst, memory mem) %{
  7228   match(Set dst (LoadPLocked mem));
  7229   ins_cost(MEMORY_REF_COST);
  7231 #ifndef _LP64
  7232   size(4);
  7233   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7234   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7235 #else
  7236   format %{ "LDX    $mem,$dst\t! ptr" %}
  7237   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7238 #endif
  7239   ins_encode( form3_mem_reg( mem, dst ) );
  7240   ins_pipe(iload_mem);
  7241 %}
  7243 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7244   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7245   effect( KILL newval );
  7246   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7247             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7248   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7249   ins_pipe( long_memory_op );
  7250 %}
  7252 // Conditional-store of an int value.
  7253 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7254   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7255   effect( KILL newval );
  7256   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7257             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7258   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7259   ins_pipe( long_memory_op );
  7260 %}
  7262 // Conditional-store of a long value.
  7263 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7264   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7265   effect( KILL newval );
  7266   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7267             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7268   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7269   ins_pipe( long_memory_op );
  7270 %}
  7272 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7274 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7275   predicate(VM_Version::supports_cx8());
  7276   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7277   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7278   format %{
  7279             "MOV    $newval,O7\n\t"
  7280             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7281             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7282             "MOV    1,$res\n\t"
  7283             "MOVne  xcc,R_G0,$res"
  7284   %}
  7285   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7286               enc_lflags_ne_to_boolean(res) );
  7287   ins_pipe( long_memory_op );
  7288 %}
  7291 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7292   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7293   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7294   format %{
  7295             "MOV    $newval,O7\n\t"
  7296             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7297             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7298             "MOV    1,$res\n\t"
  7299             "MOVne  icc,R_G0,$res"
  7300   %}
  7301   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7302               enc_iflags_ne_to_boolean(res) );
  7303   ins_pipe( long_memory_op );
  7304 %}
  7306 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7307 #ifdef _LP64
  7308   predicate(VM_Version::supports_cx8());
  7309 #endif
  7310   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7311   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7312   format %{
  7313             "MOV    $newval,O7\n\t"
  7314             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7315             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7316             "MOV    1,$res\n\t"
  7317             "MOVne  xcc,R_G0,$res"
  7318   %}
  7319 #ifdef _LP64
  7320   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7321               enc_lflags_ne_to_boolean(res) );
  7322 #else
  7323   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7324               enc_iflags_ne_to_boolean(res) );
  7325 #endif
  7326   ins_pipe( long_memory_op );
  7327 %}
  7329 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7330   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7331   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7332   format %{
  7333             "MOV    $newval,O7\n\t"
  7334             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7335             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7336             "MOV    1,$res\n\t"
  7337             "MOVne  icc,R_G0,$res"
  7338   %}
  7339   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7340               enc_iflags_ne_to_boolean(res) );
  7341   ins_pipe( long_memory_op );
  7342 %}
  7344 instruct xchgI( memory mem, iRegI newval) %{
  7345   match(Set newval (GetAndSetI mem newval));
  7346   format %{ "SWAP  [$mem],$newval" %}
  7347   size(4);
  7348   ins_encode %{
  7349     __ swap($mem$$Address, $newval$$Register);
  7350   %}
  7351   ins_pipe( long_memory_op );
  7352 %}
  7354 #ifndef _LP64
  7355 instruct xchgP( memory mem, iRegP newval) %{
  7356   match(Set newval (GetAndSetP mem newval));
  7357   format %{ "SWAP  [$mem],$newval" %}
  7358   size(4);
  7359   ins_encode %{
  7360     __ swap($mem$$Address, $newval$$Register);
  7361   %}
  7362   ins_pipe( long_memory_op );
  7363 %}
  7364 #endif
  7366 instruct xchgN( memory mem, iRegN newval) %{
  7367   match(Set newval (GetAndSetN mem newval));
  7368   format %{ "SWAP  [$mem],$newval" %}
  7369   size(4);
  7370   ins_encode %{
  7371     __ swap($mem$$Address, $newval$$Register);
  7372   %}
  7373   ins_pipe( long_memory_op );
  7374 %}
  7376 //---------------------
  7377 // Subtraction Instructions
  7378 // Register Subtraction
  7379 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7380   match(Set dst (SubI src1 src2));
  7382   size(4);
  7383   format %{ "SUB    $src1,$src2,$dst" %}
  7384   opcode(Assembler::sub_op3, Assembler::arith_op);
  7385   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7386   ins_pipe(ialu_reg_reg);
  7387 %}
  7389 // Immediate Subtraction
  7390 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7391   match(Set dst (SubI src1 src2));
  7393   size(4);
  7394   format %{ "SUB    $src1,$src2,$dst" %}
  7395   opcode(Assembler::sub_op3, Assembler::arith_op);
  7396   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7397   ins_pipe(ialu_reg_imm);
  7398 %}
  7400 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7401   match(Set dst (SubI zero src2));
  7403   size(4);
  7404   format %{ "NEG    $src2,$dst" %}
  7405   opcode(Assembler::sub_op3, Assembler::arith_op);
  7406   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7407   ins_pipe(ialu_zero_reg);
  7408 %}
  7410 // Long subtraction
  7411 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7412   match(Set dst (SubL src1 src2));
  7414   size(4);
  7415   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7416   opcode(Assembler::sub_op3, Assembler::arith_op);
  7417   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7418   ins_pipe(ialu_reg_reg);
  7419 %}
  7421 // Immediate Subtraction
  7422 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7423   match(Set dst (SubL src1 con));
  7425   size(4);
  7426   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7427   opcode(Assembler::sub_op3, Assembler::arith_op);
  7428   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7429   ins_pipe(ialu_reg_imm);
  7430 %}
  7432 // Long negation
  7433 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7434   match(Set dst (SubL zero src2));
  7436   size(4);
  7437   format %{ "NEG    $src2,$dst\t! long" %}
  7438   opcode(Assembler::sub_op3, Assembler::arith_op);
  7439   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7440   ins_pipe(ialu_zero_reg);
  7441 %}
  7443 // Multiplication Instructions
  7444 // Integer Multiplication
  7445 // Register Multiplication
  7446 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7447   match(Set dst (MulI src1 src2));
  7449   size(4);
  7450   format %{ "MULX   $src1,$src2,$dst" %}
  7451   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7452   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7453   ins_pipe(imul_reg_reg);
  7454 %}
  7456 // Immediate Multiplication
  7457 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7458   match(Set dst (MulI src1 src2));
  7460   size(4);
  7461   format %{ "MULX   $src1,$src2,$dst" %}
  7462   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7463   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7464   ins_pipe(imul_reg_imm);
  7465 %}
  7467 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7468   match(Set dst (MulL src1 src2));
  7469   ins_cost(DEFAULT_COST * 5);
  7470   size(4);
  7471   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7472   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7473   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7474   ins_pipe(mulL_reg_reg);
  7475 %}
  7477 // Immediate Multiplication
  7478 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7479   match(Set dst (MulL src1 src2));
  7480   ins_cost(DEFAULT_COST * 5);
  7481   size(4);
  7482   format %{ "MULX   $src1,$src2,$dst" %}
  7483   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7484   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7485   ins_pipe(mulL_reg_imm);
  7486 %}
  7488 // Integer Division
  7489 // Register Division
  7490 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7491   match(Set dst (DivI src1 src2));
  7492   ins_cost((2+71)*DEFAULT_COST);
  7494   format %{ "SRA     $src2,0,$src2\n\t"
  7495             "SRA     $src1,0,$src1\n\t"
  7496             "SDIVX   $src1,$src2,$dst" %}
  7497   ins_encode( idiv_reg( src1, src2, dst ) );
  7498   ins_pipe(sdiv_reg_reg);
  7499 %}
  7501 // Immediate Division
  7502 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7503   match(Set dst (DivI src1 src2));
  7504   ins_cost((2+71)*DEFAULT_COST);
  7506   format %{ "SRA     $src1,0,$src1\n\t"
  7507             "SDIVX   $src1,$src2,$dst" %}
  7508   ins_encode( idiv_imm( src1, src2, dst ) );
  7509   ins_pipe(sdiv_reg_imm);
  7510 %}
  7512 //----------Div-By-10-Expansion------------------------------------------------
  7513 // Extract hi bits of a 32x32->64 bit multiply.
  7514 // Expand rule only, not matched
  7515 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7516   effect( DEF dst, USE src1, USE src2 );
  7517   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7518             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7519   ins_encode( enc_mul_hi(dst,src1,src2));
  7520   ins_pipe(sdiv_reg_reg);
  7521 %}
  7523 // Magic constant, reciprocal of 10
  7524 instruct loadConI_x66666667(iRegIsafe dst) %{
  7525   effect( DEF dst );
  7527   size(8);
  7528   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7529   ins_encode( Set32(0x66666667, dst) );
  7530   ins_pipe(ialu_hi_lo_reg);
  7531 %}
  7533 // Register Shift Right Arithmetic Long by 32-63
  7534 instruct sra_31( iRegI dst, iRegI src ) %{
  7535   effect( DEF dst, USE src );
  7536   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7537   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7538   ins_pipe(ialu_reg_reg);
  7539 %}
  7541 // Arithmetic Shift Right by 8-bit immediate
  7542 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7543   effect( DEF dst, USE src );
  7544   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7545   opcode(Assembler::sra_op3, Assembler::arith_op);
  7546   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7547   ins_pipe(ialu_reg_imm);
  7548 %}
  7550 // Integer DIV with 10
  7551 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7552   match(Set dst (DivI src div));
  7553   ins_cost((6+6)*DEFAULT_COST);
  7554   expand %{
  7555     iRegIsafe tmp1;               // Killed temps;
  7556     iRegIsafe tmp2;               // Killed temps;
  7557     iRegI tmp3;                   // Killed temps;
  7558     iRegI tmp4;                   // Killed temps;
  7559     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7560     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7561     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7562     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7563     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7564   %}
  7565 %}
  7567 // Register Long Division
  7568 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7569   match(Set dst (DivL src1 src2));
  7570   ins_cost(DEFAULT_COST*71);
  7571   size(4);
  7572   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7573   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7574   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7575   ins_pipe(divL_reg_reg);
  7576 %}
  7578 // Register Long Division
  7579 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7580   match(Set dst (DivL src1 src2));
  7581   ins_cost(DEFAULT_COST*71);
  7582   size(4);
  7583   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7584   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7585   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7586   ins_pipe(divL_reg_imm);
  7587 %}
  7589 // Integer Remainder
  7590 // Register Remainder
  7591 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7592   match(Set dst (ModI src1 src2));
  7593   effect( KILL ccr, KILL temp);
  7595   format %{ "SREM   $src1,$src2,$dst" %}
  7596   ins_encode( irem_reg(src1, src2, dst, temp) );
  7597   ins_pipe(sdiv_reg_reg);
  7598 %}
  7600 // Immediate Remainder
  7601 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7602   match(Set dst (ModI src1 src2));
  7603   effect( KILL ccr, KILL temp);
  7605   format %{ "SREM   $src1,$src2,$dst" %}
  7606   ins_encode( irem_imm(src1, src2, dst, temp) );
  7607   ins_pipe(sdiv_reg_imm);
  7608 %}
  7610 // Register Long Remainder
  7611 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7612   effect(DEF dst, USE src1, USE src2);
  7613   size(4);
  7614   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7615   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7616   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7617   ins_pipe(divL_reg_reg);
  7618 %}
  7620 // Register Long Division
  7621 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7622   effect(DEF dst, USE src1, USE src2);
  7623   size(4);
  7624   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7625   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7626   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7627   ins_pipe(divL_reg_imm);
  7628 %}
  7630 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7631   effect(DEF dst, USE src1, USE src2);
  7632   size(4);
  7633   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7634   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7635   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7636   ins_pipe(mulL_reg_reg);
  7637 %}
  7639 // Immediate Multiplication
  7640 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7641   effect(DEF dst, USE src1, USE src2);
  7642   size(4);
  7643   format %{ "MULX   $src1,$src2,$dst" %}
  7644   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7645   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7646   ins_pipe(mulL_reg_imm);
  7647 %}
  7649 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7650   effect(DEF dst, USE src1, USE src2);
  7651   size(4);
  7652   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7653   opcode(Assembler::sub_op3, Assembler::arith_op);
  7654   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7655   ins_pipe(ialu_reg_reg);
  7656 %}
  7658 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7659   effect(DEF dst, USE src1, USE src2);
  7660   size(4);
  7661   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7662   opcode(Assembler::sub_op3, Assembler::arith_op);
  7663   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7664   ins_pipe(ialu_reg_reg);
  7665 %}
  7667 // Register Long Remainder
  7668 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7669   match(Set dst (ModL src1 src2));
  7670   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7671   expand %{
  7672     iRegL tmp1;
  7673     iRegL tmp2;
  7674     divL_reg_reg_1(tmp1, src1, src2);
  7675     mulL_reg_reg_1(tmp2, tmp1, src2);
  7676     subL_reg_reg_1(dst,  src1, tmp2);
  7677   %}
  7678 %}
  7680 // Register Long Remainder
  7681 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7682   match(Set dst (ModL src1 src2));
  7683   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7684   expand %{
  7685     iRegL tmp1;
  7686     iRegL tmp2;
  7687     divL_reg_imm13_1(tmp1, src1, src2);
  7688     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7689     subL_reg_reg_2  (dst,  src1, tmp2);
  7690   %}
  7691 %}
  7693 // Integer Shift Instructions
  7694 // Register Shift Left
  7695 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7696   match(Set dst (LShiftI src1 src2));
  7698   size(4);
  7699   format %{ "SLL    $src1,$src2,$dst" %}
  7700   opcode(Assembler::sll_op3, Assembler::arith_op);
  7701   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7702   ins_pipe(ialu_reg_reg);
  7703 %}
  7705 // Register Shift Left Immediate
  7706 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7707   match(Set dst (LShiftI src1 src2));
  7709   size(4);
  7710   format %{ "SLL    $src1,$src2,$dst" %}
  7711   opcode(Assembler::sll_op3, Assembler::arith_op);
  7712   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7713   ins_pipe(ialu_reg_imm);
  7714 %}
  7716 // Register Shift Left
  7717 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7718   match(Set dst (LShiftL src1 src2));
  7720   size(4);
  7721   format %{ "SLLX   $src1,$src2,$dst" %}
  7722   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7723   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7724   ins_pipe(ialu_reg_reg);
  7725 %}
  7727 // Register Shift Left Immediate
  7728 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7729   match(Set dst (LShiftL src1 src2));
  7731   size(4);
  7732   format %{ "SLLX   $src1,$src2,$dst" %}
  7733   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7734   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7735   ins_pipe(ialu_reg_imm);
  7736 %}
  7738 // Register Arithmetic Shift Right
  7739 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7740   match(Set dst (RShiftI src1 src2));
  7741   size(4);
  7742   format %{ "SRA    $src1,$src2,$dst" %}
  7743   opcode(Assembler::sra_op3, Assembler::arith_op);
  7744   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7745   ins_pipe(ialu_reg_reg);
  7746 %}
  7748 // Register Arithmetic Shift Right Immediate
  7749 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7750   match(Set dst (RShiftI src1 src2));
  7752   size(4);
  7753   format %{ "SRA    $src1,$src2,$dst" %}
  7754   opcode(Assembler::sra_op3, Assembler::arith_op);
  7755   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7756   ins_pipe(ialu_reg_imm);
  7757 %}
  7759 // Register Shift Right Arithmatic Long
  7760 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7761   match(Set dst (RShiftL src1 src2));
  7763   size(4);
  7764   format %{ "SRAX   $src1,$src2,$dst" %}
  7765   opcode(Assembler::srax_op3, Assembler::arith_op);
  7766   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7767   ins_pipe(ialu_reg_reg);
  7768 %}
  7770 // Register Shift Left Immediate
  7771 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7772   match(Set dst (RShiftL src1 src2));
  7774   size(4);
  7775   format %{ "SRAX   $src1,$src2,$dst" %}
  7776   opcode(Assembler::srax_op3, Assembler::arith_op);
  7777   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7778   ins_pipe(ialu_reg_imm);
  7779 %}
  7781 // Register Shift Right
  7782 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7783   match(Set dst (URShiftI src1 src2));
  7785   size(4);
  7786   format %{ "SRL    $src1,$src2,$dst" %}
  7787   opcode(Assembler::srl_op3, Assembler::arith_op);
  7788   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7789   ins_pipe(ialu_reg_reg);
  7790 %}
  7792 // Register Shift Right Immediate
  7793 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7794   match(Set dst (URShiftI src1 src2));
  7796   size(4);
  7797   format %{ "SRL    $src1,$src2,$dst" %}
  7798   opcode(Assembler::srl_op3, Assembler::arith_op);
  7799   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7800   ins_pipe(ialu_reg_imm);
  7801 %}
  7803 // Register Shift Right
  7804 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7805   match(Set dst (URShiftL src1 src2));
  7807   size(4);
  7808   format %{ "SRLX   $src1,$src2,$dst" %}
  7809   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7810   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7811   ins_pipe(ialu_reg_reg);
  7812 %}
  7814 // Register Shift Right Immediate
  7815 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7816   match(Set dst (URShiftL src1 src2));
  7818   size(4);
  7819   format %{ "SRLX   $src1,$src2,$dst" %}
  7820   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7821   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7822   ins_pipe(ialu_reg_imm);
  7823 %}
  7825 // Register Shift Right Immediate with a CastP2X
  7826 #ifdef _LP64
  7827 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7828   match(Set dst (URShiftL (CastP2X src1) src2));
  7829   size(4);
  7830   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7831   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7832   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7833   ins_pipe(ialu_reg_imm);
  7834 %}
  7835 #else
  7836 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7837   match(Set dst (URShiftI (CastP2X src1) src2));
  7838   size(4);
  7839   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7840   opcode(Assembler::srl_op3, Assembler::arith_op);
  7841   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7842   ins_pipe(ialu_reg_imm);
  7843 %}
  7844 #endif
  7847 //----------Floating Point Arithmetic Instructions-----------------------------
  7849 //  Add float single precision
  7850 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7851   match(Set dst (AddF src1 src2));
  7853   size(4);
  7854   format %{ "FADDS  $src1,$src2,$dst" %}
  7855   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7856   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7857   ins_pipe(faddF_reg_reg);
  7858 %}
  7860 //  Add float double precision
  7861 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7862   match(Set dst (AddD src1 src2));
  7864   size(4);
  7865   format %{ "FADDD  $src1,$src2,$dst" %}
  7866   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7867   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7868   ins_pipe(faddD_reg_reg);
  7869 %}
  7871 //  Sub float single precision
  7872 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7873   match(Set dst (SubF src1 src2));
  7875   size(4);
  7876   format %{ "FSUBS  $src1,$src2,$dst" %}
  7877   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7878   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7879   ins_pipe(faddF_reg_reg);
  7880 %}
  7882 //  Sub float double precision
  7883 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7884   match(Set dst (SubD src1 src2));
  7886   size(4);
  7887   format %{ "FSUBD  $src1,$src2,$dst" %}
  7888   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7889   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7890   ins_pipe(faddD_reg_reg);
  7891 %}
  7893 //  Mul float single precision
  7894 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7895   match(Set dst (MulF src1 src2));
  7897   size(4);
  7898   format %{ "FMULS  $src1,$src2,$dst" %}
  7899   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7900   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7901   ins_pipe(fmulF_reg_reg);
  7902 %}
  7904 //  Mul float double precision
  7905 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7906   match(Set dst (MulD src1 src2));
  7908   size(4);
  7909   format %{ "FMULD  $src1,$src2,$dst" %}
  7910   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7911   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7912   ins_pipe(fmulD_reg_reg);
  7913 %}
  7915 //  Div float single precision
  7916 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7917   match(Set dst (DivF src1 src2));
  7919   size(4);
  7920   format %{ "FDIVS  $src1,$src2,$dst" %}
  7921   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7922   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7923   ins_pipe(fdivF_reg_reg);
  7924 %}
  7926 //  Div float double precision
  7927 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7928   match(Set dst (DivD src1 src2));
  7930   size(4);
  7931   format %{ "FDIVD  $src1,$src2,$dst" %}
  7932   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7933   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7934   ins_pipe(fdivD_reg_reg);
  7935 %}
  7937 //  Absolute float double precision
  7938 instruct absD_reg(regD dst, regD src) %{
  7939   match(Set dst (AbsD src));
  7941   format %{ "FABSd  $src,$dst" %}
  7942   ins_encode(fabsd(dst, src));
  7943   ins_pipe(faddD_reg);
  7944 %}
  7946 //  Absolute float single precision
  7947 instruct absF_reg(regF dst, regF src) %{
  7948   match(Set dst (AbsF src));
  7950   format %{ "FABSs  $src,$dst" %}
  7951   ins_encode(fabss(dst, src));
  7952   ins_pipe(faddF_reg);
  7953 %}
  7955 instruct negF_reg(regF dst, regF src) %{
  7956   match(Set dst (NegF src));
  7958   size(4);
  7959   format %{ "FNEGs  $src,$dst" %}
  7960   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7961   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7962   ins_pipe(faddF_reg);
  7963 %}
  7965 instruct negD_reg(regD dst, regD src) %{
  7966   match(Set dst (NegD src));
  7968   format %{ "FNEGd  $src,$dst" %}
  7969   ins_encode(fnegd(dst, src));
  7970   ins_pipe(faddD_reg);
  7971 %}
  7973 //  Sqrt float double precision
  7974 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7975   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7977   size(4);
  7978   format %{ "FSQRTS $src,$dst" %}
  7979   ins_encode(fsqrts(dst, src));
  7980   ins_pipe(fdivF_reg_reg);
  7981 %}
  7983 //  Sqrt float double precision
  7984 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7985   match(Set dst (SqrtD src));
  7987   size(4);
  7988   format %{ "FSQRTD $src,$dst" %}
  7989   ins_encode(fsqrtd(dst, src));
  7990   ins_pipe(fdivD_reg_reg);
  7991 %}
  7993 //----------Logical Instructions-----------------------------------------------
  7994 // And Instructions
  7995 // Register And
  7996 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7997   match(Set dst (AndI src1 src2));
  7999   size(4);
  8000   format %{ "AND    $src1,$src2,$dst" %}
  8001   opcode(Assembler::and_op3, Assembler::arith_op);
  8002   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8003   ins_pipe(ialu_reg_reg);
  8004 %}
  8006 // Immediate And
  8007 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8008   match(Set dst (AndI src1 src2));
  8010   size(4);
  8011   format %{ "AND    $src1,$src2,$dst" %}
  8012   opcode(Assembler::and_op3, Assembler::arith_op);
  8013   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8014   ins_pipe(ialu_reg_imm);
  8015 %}
  8017 // Register And Long
  8018 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8019   match(Set dst (AndL src1 src2));
  8021   ins_cost(DEFAULT_COST);
  8022   size(4);
  8023   format %{ "AND    $src1,$src2,$dst\t! long" %}
  8024   opcode(Assembler::and_op3, Assembler::arith_op);
  8025   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8026   ins_pipe(ialu_reg_reg);
  8027 %}
  8029 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8030   match(Set dst (AndL src1 con));
  8032   ins_cost(DEFAULT_COST);
  8033   size(4);
  8034   format %{ "AND    $src1,$con,$dst\t! long" %}
  8035   opcode(Assembler::and_op3, Assembler::arith_op);
  8036   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8037   ins_pipe(ialu_reg_imm);
  8038 %}
  8040 // Or Instructions
  8041 // Register Or
  8042 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8043   match(Set dst (OrI src1 src2));
  8045   size(4);
  8046   format %{ "OR     $src1,$src2,$dst" %}
  8047   opcode(Assembler::or_op3, Assembler::arith_op);
  8048   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8049   ins_pipe(ialu_reg_reg);
  8050 %}
  8052 // Immediate Or
  8053 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8054   match(Set dst (OrI src1 src2));
  8056   size(4);
  8057   format %{ "OR     $src1,$src2,$dst" %}
  8058   opcode(Assembler::or_op3, Assembler::arith_op);
  8059   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8060   ins_pipe(ialu_reg_imm);
  8061 %}
  8063 // Register Or Long
  8064 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8065   match(Set dst (OrL src1 src2));
  8067   ins_cost(DEFAULT_COST);
  8068   size(4);
  8069   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8070   opcode(Assembler::or_op3, Assembler::arith_op);
  8071   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8072   ins_pipe(ialu_reg_reg);
  8073 %}
  8075 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8076   match(Set dst (OrL src1 con));
  8077   ins_cost(DEFAULT_COST*2);
  8079   ins_cost(DEFAULT_COST);
  8080   size(4);
  8081   format %{ "OR     $src1,$con,$dst\t! long" %}
  8082   opcode(Assembler::or_op3, Assembler::arith_op);
  8083   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8084   ins_pipe(ialu_reg_imm);
  8085 %}
  8087 #ifndef _LP64
  8089 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8090 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8091   match(Set dst (OrI src1 (CastP2X src2)));
  8093   size(4);
  8094   format %{ "OR     $src1,$src2,$dst" %}
  8095   opcode(Assembler::or_op3, Assembler::arith_op);
  8096   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8097   ins_pipe(ialu_reg_reg);
  8098 %}
  8100 #else
  8102 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8103   match(Set dst (OrL src1 (CastP2X src2)));
  8105   ins_cost(DEFAULT_COST);
  8106   size(4);
  8107   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8108   opcode(Assembler::or_op3, Assembler::arith_op);
  8109   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8110   ins_pipe(ialu_reg_reg);
  8111 %}
  8113 #endif
  8115 // Xor Instructions
  8116 // Register Xor
  8117 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8118   match(Set dst (XorI src1 src2));
  8120   size(4);
  8121   format %{ "XOR    $src1,$src2,$dst" %}
  8122   opcode(Assembler::xor_op3, Assembler::arith_op);
  8123   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8124   ins_pipe(ialu_reg_reg);
  8125 %}
  8127 // Immediate Xor
  8128 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8129   match(Set dst (XorI src1 src2));
  8131   size(4);
  8132   format %{ "XOR    $src1,$src2,$dst" %}
  8133   opcode(Assembler::xor_op3, Assembler::arith_op);
  8134   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8135   ins_pipe(ialu_reg_imm);
  8136 %}
  8138 // Register Xor Long
  8139 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8140   match(Set dst (XorL src1 src2));
  8142   ins_cost(DEFAULT_COST);
  8143   size(4);
  8144   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8145   opcode(Assembler::xor_op3, Assembler::arith_op);
  8146   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8147   ins_pipe(ialu_reg_reg);
  8148 %}
  8150 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8151   match(Set dst (XorL src1 con));
  8153   ins_cost(DEFAULT_COST);
  8154   size(4);
  8155   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8156   opcode(Assembler::xor_op3, Assembler::arith_op);
  8157   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8158   ins_pipe(ialu_reg_imm);
  8159 %}
  8161 //----------Convert to Boolean-------------------------------------------------
  8162 // Nice hack for 32-bit tests but doesn't work for
  8163 // 64-bit pointers.
  8164 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8165   match(Set dst (Conv2B src));
  8166   effect( KILL ccr );
  8167   ins_cost(DEFAULT_COST*2);
  8168   format %{ "CMP    R_G0,$src\n\t"
  8169             "ADDX   R_G0,0,$dst" %}
  8170   ins_encode( enc_to_bool( src, dst ) );
  8171   ins_pipe(ialu_reg_ialu);
  8172 %}
  8174 #ifndef _LP64
  8175 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8176   match(Set dst (Conv2B src));
  8177   effect( KILL ccr );
  8178   ins_cost(DEFAULT_COST*2);
  8179   format %{ "CMP    R_G0,$src\n\t"
  8180             "ADDX   R_G0,0,$dst" %}
  8181   ins_encode( enc_to_bool( src, dst ) );
  8182   ins_pipe(ialu_reg_ialu);
  8183 %}
  8184 #else
  8185 instruct convP2B( iRegI dst, iRegP src ) %{
  8186   match(Set dst (Conv2B src));
  8187   ins_cost(DEFAULT_COST*2);
  8188   format %{ "MOV    $src,$dst\n\t"
  8189             "MOVRNZ $src,1,$dst" %}
  8190   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8191   ins_pipe(ialu_clr_and_mover);
  8192 %}
  8193 #endif
  8195 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8196   match(Set dst (CmpLTMask src zero));
  8197   effect(KILL ccr);
  8198   size(4);
  8199   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8200   ins_encode %{
  8201     __ sra($src$$Register, 31, $dst$$Register);
  8202   %}
  8203   ins_pipe(ialu_reg_imm);
  8204 %}
  8206 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8207   match(Set dst (CmpLTMask p q));
  8208   effect( KILL ccr );
  8209   ins_cost(DEFAULT_COST*4);
  8210   format %{ "CMP    $p,$q\n\t"
  8211             "MOV    #0,$dst\n\t"
  8212             "BLT,a  .+8\n\t"
  8213             "MOV    #-1,$dst" %}
  8214   ins_encode( enc_ltmask(p,q,dst) );
  8215   ins_pipe(ialu_reg_reg_ialu);
  8216 %}
  8218 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8219   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8220   effect(KILL ccr, TEMP tmp);
  8221   ins_cost(DEFAULT_COST*3);
  8223   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8224             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8225             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8226   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8227   ins_pipe( cadd_cmpltmask );
  8228 %}
  8231 //-----------------------------------------------------------------
  8232 // Direct raw moves between float and general registers using VIS3.
  8234 //  ins_pipe(faddF_reg);
  8235 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8236   predicate(UseVIS >= 3);
  8237   match(Set dst (MoveF2I src));
  8239   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8240   ins_encode %{
  8241     __ movstouw($src$$FloatRegister, $dst$$Register);
  8242   %}
  8243   ins_pipe(ialu_reg_reg);
  8244 %}
  8246 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8247   predicate(UseVIS >= 3);
  8248   match(Set dst (MoveI2F src));
  8250   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8251   ins_encode %{
  8252     __ movwtos($src$$Register, $dst$$FloatRegister);
  8253   %}
  8254   ins_pipe(ialu_reg_reg);
  8255 %}
  8257 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8258   predicate(UseVIS >= 3);
  8259   match(Set dst (MoveD2L src));
  8261   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8262   ins_encode %{
  8263     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8264   %}
  8265   ins_pipe(ialu_reg_reg);
  8266 %}
  8268 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8269   predicate(UseVIS >= 3);
  8270   match(Set dst (MoveL2D src));
  8272   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8273   ins_encode %{
  8274     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8275   %}
  8276   ins_pipe(ialu_reg_reg);
  8277 %}
  8280 // Raw moves between float and general registers using stack.
  8282 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8283   match(Set dst (MoveF2I src));
  8284   effect(DEF dst, USE src);
  8285   ins_cost(MEMORY_REF_COST);
  8287   size(4);
  8288   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8289   opcode(Assembler::lduw_op3);
  8290   ins_encode(simple_form3_mem_reg( src, dst ) );
  8291   ins_pipe(iload_mem);
  8292 %}
  8294 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8295   match(Set dst (MoveI2F src));
  8296   effect(DEF dst, USE src);
  8297   ins_cost(MEMORY_REF_COST);
  8299   size(4);
  8300   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8301   opcode(Assembler::ldf_op3);
  8302   ins_encode(simple_form3_mem_reg(src, dst));
  8303   ins_pipe(floadF_stk);
  8304 %}
  8306 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8307   match(Set dst (MoveD2L src));
  8308   effect(DEF dst, USE src);
  8309   ins_cost(MEMORY_REF_COST);
  8311   size(4);
  8312   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8313   opcode(Assembler::ldx_op3);
  8314   ins_encode(simple_form3_mem_reg( src, dst ) );
  8315   ins_pipe(iload_mem);
  8316 %}
  8318 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8319   match(Set dst (MoveL2D src));
  8320   effect(DEF dst, USE src);
  8321   ins_cost(MEMORY_REF_COST);
  8323   size(4);
  8324   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8325   opcode(Assembler::lddf_op3);
  8326   ins_encode(simple_form3_mem_reg(src, dst));
  8327   ins_pipe(floadD_stk);
  8328 %}
  8330 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8331   match(Set dst (MoveF2I src));
  8332   effect(DEF dst, USE src);
  8333   ins_cost(MEMORY_REF_COST);
  8335   size(4);
  8336   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8337   opcode(Assembler::stf_op3);
  8338   ins_encode(simple_form3_mem_reg(dst, src));
  8339   ins_pipe(fstoreF_stk_reg);
  8340 %}
  8342 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8343   match(Set dst (MoveI2F src));
  8344   effect(DEF dst, USE src);
  8345   ins_cost(MEMORY_REF_COST);
  8347   size(4);
  8348   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8349   opcode(Assembler::stw_op3);
  8350   ins_encode(simple_form3_mem_reg( dst, src ) );
  8351   ins_pipe(istore_mem_reg);
  8352 %}
  8354 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8355   match(Set dst (MoveD2L src));
  8356   effect(DEF dst, USE src);
  8357   ins_cost(MEMORY_REF_COST);
  8359   size(4);
  8360   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8361   opcode(Assembler::stdf_op3);
  8362   ins_encode(simple_form3_mem_reg(dst, src));
  8363   ins_pipe(fstoreD_stk_reg);
  8364 %}
  8366 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8367   match(Set dst (MoveL2D src));
  8368   effect(DEF dst, USE src);
  8369   ins_cost(MEMORY_REF_COST);
  8371   size(4);
  8372   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8373   opcode(Assembler::stx_op3);
  8374   ins_encode(simple_form3_mem_reg( dst, src ) );
  8375   ins_pipe(istore_mem_reg);
  8376 %}
  8379 //----------Arithmetic Conversion Instructions---------------------------------
  8380 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8382 instruct convD2F_reg(regF dst, regD src) %{
  8383   match(Set dst (ConvD2F src));
  8384   size(4);
  8385   format %{ "FDTOS  $src,$dst" %}
  8386   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8387   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8388   ins_pipe(fcvtD2F);
  8389 %}
  8392 // Convert a double to an int in a float register.
  8393 // If the double is a NAN, stuff a zero in instead.
  8394 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8395   effect(DEF dst, USE src, KILL fcc0);
  8396   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8397             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8398             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8399             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8400             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8401       "skip:" %}
  8402   ins_encode(form_d2i_helper(src,dst));
  8403   ins_pipe(fcvtD2I);
  8404 %}
  8406 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8407   match(Set dst (ConvD2I src));
  8408   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8409   expand %{
  8410     regF tmp;
  8411     convD2I_helper(tmp, src);
  8412     regF_to_stkI(dst, tmp);
  8413   %}
  8414 %}
  8416 instruct convD2I_reg(iRegI dst, regD src) %{
  8417   predicate(UseVIS >= 3);
  8418   match(Set dst (ConvD2I src));
  8419   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8420   expand %{
  8421     regF tmp;
  8422     convD2I_helper(tmp, src);
  8423     MoveF2I_reg_reg(dst, tmp);
  8424   %}
  8425 %}
  8428 // Convert a double to a long in a double register.
  8429 // If the double is a NAN, stuff a zero in instead.
  8430 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8431   effect(DEF dst, USE src, KILL fcc0);
  8432   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8433             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8434             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8435             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8436             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8437       "skip:" %}
  8438   ins_encode(form_d2l_helper(src,dst));
  8439   ins_pipe(fcvtD2L);
  8440 %}
  8442 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8443   match(Set dst (ConvD2L src));
  8444   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8445   expand %{
  8446     regD tmp;
  8447     convD2L_helper(tmp, src);
  8448     regD_to_stkL(dst, tmp);
  8449   %}
  8450 %}
  8452 instruct convD2L_reg(iRegL dst, regD src) %{
  8453   predicate(UseVIS >= 3);
  8454   match(Set dst (ConvD2L src));
  8455   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8456   expand %{
  8457     regD tmp;
  8458     convD2L_helper(tmp, src);
  8459     MoveD2L_reg_reg(dst, tmp);
  8460   %}
  8461 %}
  8464 instruct convF2D_reg(regD dst, regF src) %{
  8465   match(Set dst (ConvF2D src));
  8466   format %{ "FSTOD  $src,$dst" %}
  8467   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8468   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8469   ins_pipe(fcvtF2D);
  8470 %}
  8473 // Convert a float to an int in a float register.
  8474 // If the float is a NAN, stuff a zero in instead.
  8475 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8476   effect(DEF dst, USE src, KILL fcc0);
  8477   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8478             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8479             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8480             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8481             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8482       "skip:" %}
  8483   ins_encode(form_f2i_helper(src,dst));
  8484   ins_pipe(fcvtF2I);
  8485 %}
  8487 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8488   match(Set dst (ConvF2I src));
  8489   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8490   expand %{
  8491     regF tmp;
  8492     convF2I_helper(tmp, src);
  8493     regF_to_stkI(dst, tmp);
  8494   %}
  8495 %}
  8497 instruct convF2I_reg(iRegI dst, regF src) %{
  8498   predicate(UseVIS >= 3);
  8499   match(Set dst (ConvF2I src));
  8500   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8501   expand %{
  8502     regF tmp;
  8503     convF2I_helper(tmp, src);
  8504     MoveF2I_reg_reg(dst, tmp);
  8505   %}
  8506 %}
  8509 // Convert a float to a long in a float register.
  8510 // If the float is a NAN, stuff a zero in instead.
  8511 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8512   effect(DEF dst, USE src, KILL fcc0);
  8513   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8514             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8515             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8516             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8517             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8518       "skip:" %}
  8519   ins_encode(form_f2l_helper(src,dst));
  8520   ins_pipe(fcvtF2L);
  8521 %}
  8523 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8524   match(Set dst (ConvF2L src));
  8525   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8526   expand %{
  8527     regD tmp;
  8528     convF2L_helper(tmp, src);
  8529     regD_to_stkL(dst, tmp);
  8530   %}
  8531 %}
  8533 instruct convF2L_reg(iRegL dst, regF src) %{
  8534   predicate(UseVIS >= 3);
  8535   match(Set dst (ConvF2L src));
  8536   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8537   expand %{
  8538     regD tmp;
  8539     convF2L_helper(tmp, src);
  8540     MoveD2L_reg_reg(dst, tmp);
  8541   %}
  8542 %}
  8545 instruct convI2D_helper(regD dst, regF tmp) %{
  8546   effect(USE tmp, DEF dst);
  8547   format %{ "FITOD  $tmp,$dst" %}
  8548   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8549   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8550   ins_pipe(fcvtI2D);
  8551 %}
  8553 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8554   match(Set dst (ConvI2D src));
  8555   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8556   expand %{
  8557     regF tmp;
  8558     stkI_to_regF(tmp, src);
  8559     convI2D_helper(dst, tmp);
  8560   %}
  8561 %}
  8563 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8564   predicate(UseVIS >= 3);
  8565   match(Set dst (ConvI2D src));
  8566   expand %{
  8567     regF tmp;
  8568     MoveI2F_reg_reg(tmp, src);
  8569     convI2D_helper(dst, tmp);
  8570   %}
  8571 %}
  8573 instruct convI2D_mem(regD_low dst, memory mem) %{
  8574   match(Set dst (ConvI2D (LoadI mem)));
  8575   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8576   size(8);
  8577   format %{ "LDF    $mem,$dst\n\t"
  8578             "FITOD  $dst,$dst" %}
  8579   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8580   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8581   ins_pipe(floadF_mem);
  8582 %}
  8585 instruct convI2F_helper(regF dst, regF tmp) %{
  8586   effect(DEF dst, USE tmp);
  8587   format %{ "FITOS  $tmp,$dst" %}
  8588   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8589   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8590   ins_pipe(fcvtI2F);
  8591 %}
  8593 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8594   match(Set dst (ConvI2F src));
  8595   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8596   expand %{
  8597     regF tmp;
  8598     stkI_to_regF(tmp,src);
  8599     convI2F_helper(dst, tmp);
  8600   %}
  8601 %}
  8603 instruct convI2F_reg(regF dst, iRegI src) %{
  8604   predicate(UseVIS >= 3);
  8605   match(Set dst (ConvI2F src));
  8606   ins_cost(DEFAULT_COST);
  8607   expand %{
  8608     regF tmp;
  8609     MoveI2F_reg_reg(tmp, src);
  8610     convI2F_helper(dst, tmp);
  8611   %}
  8612 %}
  8614 instruct convI2F_mem( regF dst, memory mem ) %{
  8615   match(Set dst (ConvI2F (LoadI mem)));
  8616   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8617   size(8);
  8618   format %{ "LDF    $mem,$dst\n\t"
  8619             "FITOS  $dst,$dst" %}
  8620   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8621   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8622   ins_pipe(floadF_mem);
  8623 %}
  8626 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8627   match(Set dst (ConvI2L src));
  8628   size(4);
  8629   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8630   opcode(Assembler::sra_op3, Assembler::arith_op);
  8631   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8632   ins_pipe(ialu_reg_reg);
  8633 %}
  8635 // Zero-extend convert int to long
  8636 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8637   match(Set dst (AndL (ConvI2L src) mask) );
  8638   size(4);
  8639   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8640   opcode(Assembler::srl_op3, Assembler::arith_op);
  8641   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8642   ins_pipe(ialu_reg_reg);
  8643 %}
  8645 // Zero-extend long
  8646 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8647   match(Set dst (AndL src mask) );
  8648   size(4);
  8649   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8650   opcode(Assembler::srl_op3, Assembler::arith_op);
  8651   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8652   ins_pipe(ialu_reg_reg);
  8653 %}
  8656 //-----------
  8657 // Long to Double conversion using V8 opcodes.
  8658 // Still useful because cheetah traps and becomes
  8659 // amazingly slow for some common numbers.
  8661 // Magic constant, 0x43300000
  8662 instruct loadConI_x43300000(iRegI dst) %{
  8663   effect(DEF dst);
  8664   size(4);
  8665   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8666   ins_encode(SetHi22(0x43300000, dst));
  8667   ins_pipe(ialu_none);
  8668 %}
  8670 // Magic constant, 0x41f00000
  8671 instruct loadConI_x41f00000(iRegI dst) %{
  8672   effect(DEF dst);
  8673   size(4);
  8674   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8675   ins_encode(SetHi22(0x41f00000, dst));
  8676   ins_pipe(ialu_none);
  8677 %}
  8679 // Construct a double from two float halves
  8680 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8681   effect(DEF dst, USE src1, USE src2);
  8682   size(8);
  8683   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8684             "FMOVS  $src2.lo,$dst.lo" %}
  8685   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8686   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8687   ins_pipe(faddD_reg_reg);
  8688 %}
  8690 // Convert integer in high half of a double register (in the lower half of
  8691 // the double register file) to double
  8692 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8693   effect(DEF dst, USE src);
  8694   size(4);
  8695   format %{ "FITOD  $src,$dst" %}
  8696   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8697   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8698   ins_pipe(fcvtLHi2D);
  8699 %}
  8701 // Add float double precision
  8702 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8703   effect(DEF dst, USE src1, USE src2);
  8704   size(4);
  8705   format %{ "FADDD  $src1,$src2,$dst" %}
  8706   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8707   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8708   ins_pipe(faddD_reg_reg);
  8709 %}
  8711 // Sub float double precision
  8712 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8713   effect(DEF dst, USE src1, USE src2);
  8714   size(4);
  8715   format %{ "FSUBD  $src1,$src2,$dst" %}
  8716   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8717   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8718   ins_pipe(faddD_reg_reg);
  8719 %}
  8721 // Mul float double precision
  8722 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8723   effect(DEF dst, USE src1, USE src2);
  8724   size(4);
  8725   format %{ "FMULD  $src1,$src2,$dst" %}
  8726   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8727   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8728   ins_pipe(fmulD_reg_reg);
  8729 %}
  8731 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8732   match(Set dst (ConvL2D src));
  8733   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8735   expand %{
  8736     regD_low   tmpsrc;
  8737     iRegI      ix43300000;
  8738     iRegI      ix41f00000;
  8739     stackSlotL lx43300000;
  8740     stackSlotL lx41f00000;
  8741     regD_low   dx43300000;
  8742     regD       dx41f00000;
  8743     regD       tmp1;
  8744     regD_low   tmp2;
  8745     regD       tmp3;
  8746     regD       tmp4;
  8748     stkL_to_regD(tmpsrc, src);
  8750     loadConI_x43300000(ix43300000);
  8751     loadConI_x41f00000(ix41f00000);
  8752     regI_to_stkLHi(lx43300000, ix43300000);
  8753     regI_to_stkLHi(lx41f00000, ix41f00000);
  8754     stkL_to_regD(dx43300000, lx43300000);
  8755     stkL_to_regD(dx41f00000, lx41f00000);
  8757     convI2D_regDHi_regD(tmp1, tmpsrc);
  8758     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8759     subD_regD_regD(tmp3, tmp2, dx43300000);
  8760     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8761     addD_regD_regD(dst, tmp3, tmp4);
  8762   %}
  8763 %}
  8765 // Long to Double conversion using fast fxtof
  8766 instruct convL2D_helper(regD dst, regD tmp) %{
  8767   effect(DEF dst, USE tmp);
  8768   size(4);
  8769   format %{ "FXTOD  $tmp,$dst" %}
  8770   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8771   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8772   ins_pipe(fcvtL2D);
  8773 %}
  8775 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8776   predicate(VM_Version::has_fast_fxtof());
  8777   match(Set dst (ConvL2D src));
  8778   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8779   expand %{
  8780     regD tmp;
  8781     stkL_to_regD(tmp, src);
  8782     convL2D_helper(dst, tmp);
  8783   %}
  8784 %}
  8786 instruct convL2D_reg(regD dst, iRegL src) %{
  8787   predicate(UseVIS >= 3);
  8788   match(Set dst (ConvL2D src));
  8789   expand %{
  8790     regD tmp;
  8791     MoveL2D_reg_reg(tmp, src);
  8792     convL2D_helper(dst, tmp);
  8793   %}
  8794 %}
  8796 // Long to Float conversion using fast fxtof
  8797 instruct convL2F_helper(regF dst, regD tmp) %{
  8798   effect(DEF dst, USE tmp);
  8799   size(4);
  8800   format %{ "FXTOS  $tmp,$dst" %}
  8801   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8802   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8803   ins_pipe(fcvtL2F);
  8804 %}
  8806 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8807   match(Set dst (ConvL2F src));
  8808   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8809   expand %{
  8810     regD tmp;
  8811     stkL_to_regD(tmp, src);
  8812     convL2F_helper(dst, tmp);
  8813   %}
  8814 %}
  8816 instruct convL2F_reg(regF dst, iRegL src) %{
  8817   predicate(UseVIS >= 3);
  8818   match(Set dst (ConvL2F src));
  8819   ins_cost(DEFAULT_COST);
  8820   expand %{
  8821     regD tmp;
  8822     MoveL2D_reg_reg(tmp, src);
  8823     convL2F_helper(dst, tmp);
  8824   %}
  8825 %}
  8827 //-----------
  8829 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8830   match(Set dst (ConvL2I src));
  8831 #ifndef _LP64
  8832   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8833   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8834   ins_pipe(ialu_move_reg_I_to_L);
  8835 #else
  8836   size(4);
  8837   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8838   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8839   ins_pipe(ialu_reg);
  8840 #endif
  8841 %}
  8843 // Register Shift Right Immediate
  8844 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8845   match(Set dst (ConvL2I (RShiftL src cnt)));
  8847   size(4);
  8848   format %{ "SRAX   $src,$cnt,$dst" %}
  8849   opcode(Assembler::srax_op3, Assembler::arith_op);
  8850   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8851   ins_pipe(ialu_reg_imm);
  8852 %}
  8854 //----------Control Flow Instructions------------------------------------------
  8855 // Compare Instructions
  8856 // Compare Integers
  8857 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8858   match(Set icc (CmpI op1 op2));
  8859   effect( DEF icc, USE op1, USE op2 );
  8861   size(4);
  8862   format %{ "CMP    $op1,$op2" %}
  8863   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8864   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8865   ins_pipe(ialu_cconly_reg_reg);
  8866 %}
  8868 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8869   match(Set icc (CmpU op1 op2));
  8871   size(4);
  8872   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8873   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8874   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8875   ins_pipe(ialu_cconly_reg_reg);
  8876 %}
  8878 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8879   match(Set icc (CmpI op1 op2));
  8880   effect( DEF icc, USE op1 );
  8882   size(4);
  8883   format %{ "CMP    $op1,$op2" %}
  8884   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8885   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8886   ins_pipe(ialu_cconly_reg_imm);
  8887 %}
  8889 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8890   match(Set icc (CmpI (AndI op1 op2) zero));
  8892   size(4);
  8893   format %{ "BTST   $op2,$op1" %}
  8894   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8895   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8896   ins_pipe(ialu_cconly_reg_reg_zero);
  8897 %}
  8899 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8900   match(Set icc (CmpI (AndI op1 op2) zero));
  8902   size(4);
  8903   format %{ "BTST   $op2,$op1" %}
  8904   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8905   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8906   ins_pipe(ialu_cconly_reg_imm_zero);
  8907 %}
  8909 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8910   match(Set xcc (CmpL op1 op2));
  8911   effect( DEF xcc, USE op1, USE op2 );
  8913   size(4);
  8914   format %{ "CMP    $op1,$op2\t\t! long" %}
  8915   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8916   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8917   ins_pipe(ialu_cconly_reg_reg);
  8918 %}
  8920 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8921   match(Set xcc (CmpL op1 con));
  8922   effect( DEF xcc, USE op1, USE con );
  8924   size(4);
  8925   format %{ "CMP    $op1,$con\t\t! long" %}
  8926   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8927   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8928   ins_pipe(ialu_cconly_reg_reg);
  8929 %}
  8931 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8932   match(Set xcc (CmpL (AndL op1 op2) zero));
  8933   effect( DEF xcc, USE op1, USE op2 );
  8935   size(4);
  8936   format %{ "BTST   $op1,$op2\t\t! long" %}
  8937   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8938   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8939   ins_pipe(ialu_cconly_reg_reg);
  8940 %}
  8942 // useful for checking the alignment of a pointer:
  8943 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8944   match(Set xcc (CmpL (AndL op1 con) zero));
  8945   effect( DEF xcc, USE op1, USE con );
  8947   size(4);
  8948   format %{ "BTST   $op1,$con\t\t! long" %}
  8949   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8950   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8951   ins_pipe(ialu_cconly_reg_reg);
  8952 %}
  8954 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8955   match(Set icc (CmpU op1 op2));
  8957   size(4);
  8958   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8959   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8960   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8961   ins_pipe(ialu_cconly_reg_imm);
  8962 %}
  8964 // Compare Pointers
  8965 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8966   match(Set pcc (CmpP op1 op2));
  8968   size(4);
  8969   format %{ "CMP    $op1,$op2\t! ptr" %}
  8970   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8971   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8972   ins_pipe(ialu_cconly_reg_reg);
  8973 %}
  8975 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8976   match(Set pcc (CmpP op1 op2));
  8978   size(4);
  8979   format %{ "CMP    $op1,$op2\t! ptr" %}
  8980   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8981   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8982   ins_pipe(ialu_cconly_reg_imm);
  8983 %}
  8985 // Compare Narrow oops
  8986 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8987   match(Set icc (CmpN op1 op2));
  8989   size(4);
  8990   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8991   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8992   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8993   ins_pipe(ialu_cconly_reg_reg);
  8994 %}
  8996 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8997   match(Set icc (CmpN op1 op2));
  8999   size(4);
  9000   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9001   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9002   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9003   ins_pipe(ialu_cconly_reg_imm);
  9004 %}
  9006 //----------Max and Min--------------------------------------------------------
  9007 // Min Instructions
  9008 // Conditional move for min
  9009 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9010   effect( USE_DEF op2, USE op1, USE icc );
  9012   size(4);
  9013   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9014   opcode(Assembler::less);
  9015   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9016   ins_pipe(ialu_reg_flags);
  9017 %}
  9019 // Min Register with Register.
  9020 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9021   match(Set op2 (MinI op1 op2));
  9022   ins_cost(DEFAULT_COST*2);
  9023   expand %{
  9024     flagsReg icc;
  9025     compI_iReg(icc,op1,op2);
  9026     cmovI_reg_lt(op2,op1,icc);
  9027   %}
  9028 %}
  9030 // Max Instructions
  9031 // Conditional move for max
  9032 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9033   effect( USE_DEF op2, USE op1, USE icc );
  9034   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9035   opcode(Assembler::greater);
  9036   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9037   ins_pipe(ialu_reg_flags);
  9038 %}
  9040 // Max Register with Register
  9041 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9042   match(Set op2 (MaxI op1 op2));
  9043   ins_cost(DEFAULT_COST*2);
  9044   expand %{
  9045     flagsReg icc;
  9046     compI_iReg(icc,op1,op2);
  9047     cmovI_reg_gt(op2,op1,icc);
  9048   %}
  9049 %}
  9052 //----------Float Compares----------------------------------------------------
  9053 // Compare floating, generate condition code
  9054 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9055   match(Set fcc (CmpF src1 src2));
  9057   size(4);
  9058   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9059   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9060   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9061   ins_pipe(faddF_fcc_reg_reg_zero);
  9062 %}
  9064 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9065   match(Set fcc (CmpD src1 src2));
  9067   size(4);
  9068   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9069   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9070   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9071   ins_pipe(faddD_fcc_reg_reg_zero);
  9072 %}
  9075 // Compare floating, generate -1,0,1
  9076 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9077   match(Set dst (CmpF3 src1 src2));
  9078   effect(KILL fcc0);
  9079   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9080   format %{ "fcmpl  $dst,$src1,$src2" %}
  9081   // Primary = float
  9082   opcode( true );
  9083   ins_encode( floating_cmp( dst, src1, src2 ) );
  9084   ins_pipe( floating_cmp );
  9085 %}
  9087 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9088   match(Set dst (CmpD3 src1 src2));
  9089   effect(KILL fcc0);
  9090   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9091   format %{ "dcmpl  $dst,$src1,$src2" %}
  9092   // Primary = double (not float)
  9093   opcode( false );
  9094   ins_encode( floating_cmp( dst, src1, src2 ) );
  9095   ins_pipe( floating_cmp );
  9096 %}
  9098 //----------Branches---------------------------------------------------------
  9099 // Jump
  9100 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9101 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9102   match(Jump switch_val);
  9103   effect(TEMP table);
  9105   ins_cost(350);
  9107   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9108              "LD     [O7 + $switch_val], O7\n\t"
  9109              "JUMP   O7" %}
  9110   ins_encode %{
  9111     // Calculate table address into a register.
  9112     Register table_reg;
  9113     Register label_reg = O7;
  9114     // If we are calculating the size of this instruction don't trust
  9115     // zero offsets because they might change when
  9116     // MachConstantBaseNode decides to optimize the constant table
  9117     // base.
  9118     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
  9119       table_reg = $constanttablebase;
  9120     } else {
  9121       table_reg = O7;
  9122       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9123       __ add($constanttablebase, con_offset, table_reg);
  9126     // Jump to base address + switch value
  9127     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9128     __ jmp(label_reg, G0);
  9129     __ delayed()->nop();
  9130   %}
  9131   ins_pipe(ialu_reg_reg);
  9132 %}
  9134 // Direct Branch.  Use V8 version with longer range.
  9135 instruct branch(label labl) %{
  9136   match(Goto);
  9137   effect(USE labl);
  9139   size(8);
  9140   ins_cost(BRANCH_COST);
  9141   format %{ "BA     $labl" %}
  9142   ins_encode %{
  9143     Label* L = $labl$$label;
  9144     __ ba(*L);
  9145     __ delayed()->nop();
  9146   %}
  9147   ins_pipe(br);
  9148 %}
  9150 // Direct Branch, short with no delay slot
  9151 instruct branch_short(label labl) %{
  9152   match(Goto);
  9153   predicate(UseCBCond);
  9154   effect(USE labl);
  9156   size(4);
  9157   ins_cost(BRANCH_COST);
  9158   format %{ "BA     $labl\t! short branch" %}
  9159   ins_encode %{ 
  9160     Label* L = $labl$$label;
  9161     assert(__ use_cbcond(*L), "back to back cbcond");
  9162     __ ba_short(*L);
  9163   %}
  9164   ins_short_branch(1);
  9165   ins_avoid_back_to_back(1);
  9166   ins_pipe(cbcond_reg_imm);
  9167 %}
  9169 // Conditional Direct Branch
  9170 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9171   match(If cmp icc);
  9172   effect(USE labl);
  9174   size(8);
  9175   ins_cost(BRANCH_COST);
  9176   format %{ "BP$cmp   $icc,$labl" %}
  9177   // Prim = bits 24-22, Secnd = bits 31-30
  9178   ins_encode( enc_bp( labl, cmp, icc ) );
  9179   ins_pipe(br_cc);
  9180 %}
  9182 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9183   match(If cmp icc);
  9184   effect(USE labl);
  9186   ins_cost(BRANCH_COST);
  9187   format %{ "BP$cmp  $icc,$labl" %}
  9188   // Prim = bits 24-22, Secnd = bits 31-30
  9189   ins_encode( enc_bp( labl, cmp, icc ) );
  9190   ins_pipe(br_cc);
  9191 %}
  9193 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9194   match(If cmp pcc);
  9195   effect(USE labl);
  9197   size(8);
  9198   ins_cost(BRANCH_COST);
  9199   format %{ "BP$cmp  $pcc,$labl" %}
  9200   ins_encode %{
  9201     Label* L = $labl$$label;
  9202     Assembler::Predict predict_taken =
  9203       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9205     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9206     __ delayed()->nop();
  9207   %}
  9208   ins_pipe(br_cc);
  9209 %}
  9211 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9212   match(If cmp fcc);
  9213   effect(USE labl);
  9215   size(8);
  9216   ins_cost(BRANCH_COST);
  9217   format %{ "FBP$cmp $fcc,$labl" %}
  9218   ins_encode %{
  9219     Label* L = $labl$$label;
  9220     Assembler::Predict predict_taken =
  9221       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9223     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9224     __ delayed()->nop();
  9225   %}
  9226   ins_pipe(br_fcc);
  9227 %}
  9229 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9230   match(CountedLoopEnd cmp icc);
  9231   effect(USE labl);
  9233   size(8);
  9234   ins_cost(BRANCH_COST);
  9235   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9236   // Prim = bits 24-22, Secnd = bits 31-30
  9237   ins_encode( enc_bp( labl, cmp, icc ) );
  9238   ins_pipe(br_cc);
  9239 %}
  9241 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9242   match(CountedLoopEnd cmp icc);
  9243   effect(USE labl);
  9245   size(8);
  9246   ins_cost(BRANCH_COST);
  9247   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9248   // Prim = bits 24-22, Secnd = bits 31-30
  9249   ins_encode( enc_bp( labl, cmp, icc ) );
  9250   ins_pipe(br_cc);
  9251 %}
  9253 // Compare and branch instructions
  9254 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9255   match(If cmp (CmpI op1 op2));
  9256   effect(USE labl, KILL icc);
  9258   size(12);
  9259   ins_cost(BRANCH_COST);
  9260   format %{ "CMP    $op1,$op2\t! int\n\t"
  9261             "BP$cmp   $labl" %}
  9262   ins_encode %{
  9263     Label* L = $labl$$label;
  9264     Assembler::Predict predict_taken =
  9265       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9266     __ cmp($op1$$Register, $op2$$Register);
  9267     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9268     __ delayed()->nop();
  9269   %}
  9270   ins_pipe(cmp_br_reg_reg);
  9271 %}
  9273 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9274   match(If cmp (CmpI op1 op2));
  9275   effect(USE labl, KILL icc);
  9277   size(12);
  9278   ins_cost(BRANCH_COST);
  9279   format %{ "CMP    $op1,$op2\t! int\n\t"
  9280             "BP$cmp   $labl" %}
  9281   ins_encode %{
  9282     Label* L = $labl$$label;
  9283     Assembler::Predict predict_taken =
  9284       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9285     __ cmp($op1$$Register, $op2$$constant);
  9286     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9287     __ delayed()->nop();
  9288   %}
  9289   ins_pipe(cmp_br_reg_imm);
  9290 %}
  9292 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9293   match(If cmp (CmpU op1 op2));
  9294   effect(USE labl, KILL icc);
  9296   size(12);
  9297   ins_cost(BRANCH_COST);
  9298   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9299             "BP$cmp  $labl" %}
  9300   ins_encode %{
  9301     Label* L = $labl$$label;
  9302     Assembler::Predict predict_taken =
  9303       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9304     __ cmp($op1$$Register, $op2$$Register);
  9305     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9306     __ delayed()->nop();
  9307   %}
  9308   ins_pipe(cmp_br_reg_reg);
  9309 %}
  9311 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9312   match(If cmp (CmpU op1 op2));
  9313   effect(USE labl, KILL icc);
  9315   size(12);
  9316   ins_cost(BRANCH_COST);
  9317   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
  9318             "BP$cmp  $labl" %}
  9319   ins_encode %{
  9320     Label* L = $labl$$label;
  9321     Assembler::Predict predict_taken =
  9322       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9323     __ cmp($op1$$Register, $op2$$constant);
  9324     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9325     __ delayed()->nop();
  9326   %}
  9327   ins_pipe(cmp_br_reg_imm);
  9328 %}
  9330 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9331   match(If cmp (CmpL op1 op2));
  9332   effect(USE labl, KILL xcc);
  9334   size(12);
  9335   ins_cost(BRANCH_COST);
  9336   format %{ "CMP    $op1,$op2\t! long\n\t"
  9337             "BP$cmp   $labl" %}
  9338   ins_encode %{
  9339     Label* L = $labl$$label;
  9340     Assembler::Predict predict_taken =
  9341       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9342     __ cmp($op1$$Register, $op2$$Register);
  9343     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9344     __ delayed()->nop();
  9345   %}
  9346   ins_pipe(cmp_br_reg_reg);
  9347 %}
  9349 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9350   match(If cmp (CmpL op1 op2));
  9351   effect(USE labl, KILL xcc);
  9353   size(12);
  9354   ins_cost(BRANCH_COST);
  9355   format %{ "CMP    $op1,$op2\t! long\n\t"
  9356             "BP$cmp   $labl" %}
  9357   ins_encode %{
  9358     Label* L = $labl$$label;
  9359     Assembler::Predict predict_taken =
  9360       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9361     __ cmp($op1$$Register, $op2$$constant);
  9362     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9363     __ delayed()->nop();
  9364   %}
  9365   ins_pipe(cmp_br_reg_imm);
  9366 %}
  9368 // Compare Pointers and branch
  9369 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9370   match(If cmp (CmpP op1 op2));
  9371   effect(USE labl, KILL pcc);
  9373   size(12);
  9374   ins_cost(BRANCH_COST);
  9375   format %{ "CMP    $op1,$op2\t! ptr\n\t"
  9376             "B$cmp   $labl" %}
  9377   ins_encode %{
  9378     Label* L = $labl$$label;
  9379     Assembler::Predict predict_taken =
  9380       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9381     __ cmp($op1$$Register, $op2$$Register);
  9382     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9383     __ delayed()->nop();
  9384   %}
  9385   ins_pipe(cmp_br_reg_reg);
  9386 %}
  9388 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9389   match(If cmp (CmpP op1 null));
  9390   effect(USE labl, KILL pcc);
  9392   size(12);
  9393   ins_cost(BRANCH_COST);
  9394   format %{ "CMP    $op1,0\t! ptr\n\t"
  9395             "B$cmp   $labl" %}
  9396   ins_encode %{
  9397     Label* L = $labl$$label;
  9398     Assembler::Predict predict_taken =
  9399       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9400     __ cmp($op1$$Register, G0);
  9401     // bpr() is not used here since it has shorter distance.
  9402     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9403     __ delayed()->nop();
  9404   %}
  9405   ins_pipe(cmp_br_reg_reg);
  9406 %}
  9408 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9409   match(If cmp (CmpN op1 op2));
  9410   effect(USE labl, KILL icc);
  9412   size(12);
  9413   ins_cost(BRANCH_COST);
  9414   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  9415             "BP$cmp   $labl" %}
  9416   ins_encode %{
  9417     Label* L = $labl$$label;
  9418     Assembler::Predict predict_taken =
  9419       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9420     __ cmp($op1$$Register, $op2$$Register);
  9421     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9422     __ delayed()->nop();
  9423   %}
  9424   ins_pipe(cmp_br_reg_reg);
  9425 %}
  9427 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9428   match(If cmp (CmpN op1 null));
  9429   effect(USE labl, KILL icc);
  9431   size(12);
  9432   ins_cost(BRANCH_COST);
  9433   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  9434             "BP$cmp   $labl" %}
  9435   ins_encode %{
  9436     Label* L = $labl$$label;
  9437     Assembler::Predict predict_taken =
  9438       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9439     __ cmp($op1$$Register, G0);
  9440     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9441     __ delayed()->nop();
  9442   %}
  9443   ins_pipe(cmp_br_reg_reg);
  9444 %}
  9446 // Loop back branch
  9447 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9448   match(CountedLoopEnd cmp (CmpI op1 op2));
  9449   effect(USE labl, KILL icc);
  9451   size(12);
  9452   ins_cost(BRANCH_COST);
  9453   format %{ "CMP    $op1,$op2\t! int\n\t"
  9454             "BP$cmp   $labl\t! Loop end" %}
  9455   ins_encode %{
  9456     Label* L = $labl$$label;
  9457     Assembler::Predict predict_taken =
  9458       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9459     __ cmp($op1$$Register, $op2$$Register);
  9460     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9461     __ delayed()->nop();
  9462   %}
  9463   ins_pipe(cmp_br_reg_reg);
  9464 %}
  9466 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9467   match(CountedLoopEnd cmp (CmpI op1 op2));
  9468   effect(USE labl, KILL icc);
  9470   size(12);
  9471   ins_cost(BRANCH_COST);
  9472   format %{ "CMP    $op1,$op2\t! int\n\t"
  9473             "BP$cmp   $labl\t! Loop end" %}
  9474   ins_encode %{
  9475     Label* L = $labl$$label;
  9476     Assembler::Predict predict_taken =
  9477       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9478     __ cmp($op1$$Register, $op2$$constant);
  9479     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  9480     __ delayed()->nop();
  9481   %}
  9482   ins_pipe(cmp_br_reg_imm);
  9483 %}
  9485 // Short compare and branch instructions
  9486 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9487   match(If cmp (CmpI op1 op2));
  9488   predicate(UseCBCond);
  9489   effect(USE labl, KILL icc);
  9491   size(4);
  9492   ins_cost(BRANCH_COST);
  9493   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9494   ins_encode %{
  9495     Label* L = $labl$$label;
  9496     assert(__ use_cbcond(*L), "back to back cbcond");
  9497     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9498   %}
  9499   ins_short_branch(1);
  9500   ins_avoid_back_to_back(1);
  9501   ins_pipe(cbcond_reg_reg);
  9502 %}
  9504 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9505   match(If cmp (CmpI op1 op2));
  9506   predicate(UseCBCond);
  9507   effect(USE labl, KILL icc);
  9509   size(4);
  9510   ins_cost(BRANCH_COST);
  9511   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
  9512   ins_encode %{
  9513     Label* L = $labl$$label;
  9514     assert(__ use_cbcond(*L), "back to back cbcond");
  9515     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9516   %}
  9517   ins_short_branch(1);
  9518   ins_avoid_back_to_back(1);
  9519   ins_pipe(cbcond_reg_imm);
  9520 %}
  9522 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
  9523   match(If cmp (CmpU op1 op2));
  9524   predicate(UseCBCond);
  9525   effect(USE labl, KILL icc);
  9527   size(4);
  9528   ins_cost(BRANCH_COST);
  9529   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9530   ins_encode %{
  9531     Label* L = $labl$$label;
  9532     assert(__ use_cbcond(*L), "back to back cbcond");
  9533     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9534   %}
  9535   ins_short_branch(1);
  9536   ins_avoid_back_to_back(1);
  9537   ins_pipe(cbcond_reg_reg);
  9538 %}
  9540 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
  9541   match(If cmp (CmpU op1 op2));
  9542   predicate(UseCBCond);
  9543   effect(USE labl, KILL icc);
  9545   size(4);
  9546   ins_cost(BRANCH_COST);
  9547   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
  9548   ins_encode %{
  9549     Label* L = $labl$$label;
  9550     assert(__ use_cbcond(*L), "back to back cbcond");
  9551     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9552   %}
  9553   ins_short_branch(1);
  9554   ins_avoid_back_to_back(1);
  9555   ins_pipe(cbcond_reg_imm);
  9556 %}
  9558 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
  9559   match(If cmp (CmpL op1 op2));
  9560   predicate(UseCBCond);
  9561   effect(USE labl, KILL xcc);
  9563   size(4);
  9564   ins_cost(BRANCH_COST);
  9565   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9566   ins_encode %{
  9567     Label* L = $labl$$label;
  9568     assert(__ use_cbcond(*L), "back to back cbcond");
  9569     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
  9570   %}
  9571   ins_short_branch(1);
  9572   ins_avoid_back_to_back(1);
  9573   ins_pipe(cbcond_reg_reg);
  9574 %}
  9576 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
  9577   match(If cmp (CmpL op1 op2));
  9578   predicate(UseCBCond);
  9579   effect(USE labl, KILL xcc);
  9581   size(4);
  9582   ins_cost(BRANCH_COST);
  9583   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
  9584   ins_encode %{
  9585     Label* L = $labl$$label;
  9586     assert(__ use_cbcond(*L), "back to back cbcond");
  9587     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
  9588   %}
  9589   ins_short_branch(1);
  9590   ins_avoid_back_to_back(1);
  9591   ins_pipe(cbcond_reg_imm);
  9592 %}
  9594 // Compare Pointers and branch
  9595 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
  9596   match(If cmp (CmpP op1 op2));
  9597   predicate(UseCBCond);
  9598   effect(USE labl, KILL pcc);
  9600   size(4);
  9601   ins_cost(BRANCH_COST);
  9602 #ifdef _LP64
  9603   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
  9604 #else
  9605   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
  9606 #endif
  9607   ins_encode %{
  9608     Label* L = $labl$$label;
  9609     assert(__ use_cbcond(*L), "back to back cbcond");
  9610     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
  9611   %}
  9612   ins_short_branch(1);
  9613   ins_avoid_back_to_back(1);
  9614   ins_pipe(cbcond_reg_reg);
  9615 %}
  9617 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
  9618   match(If cmp (CmpP op1 null));
  9619   predicate(UseCBCond);
  9620   effect(USE labl, KILL pcc);
  9622   size(4);
  9623   ins_cost(BRANCH_COST);
  9624 #ifdef _LP64
  9625   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
  9626 #else
  9627   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
  9628 #endif
  9629   ins_encode %{
  9630     Label* L = $labl$$label;
  9631     assert(__ use_cbcond(*L), "back to back cbcond");
  9632     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
  9633   %}
  9634   ins_short_branch(1);
  9635   ins_avoid_back_to_back(1);
  9636   ins_pipe(cbcond_reg_reg);
  9637 %}
  9639 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
  9640   match(If cmp (CmpN op1 op2));
  9641   predicate(UseCBCond);
  9642   effect(USE labl, KILL icc);
  9644   size(4);
  9645   ins_cost(BRANCH_COST);
  9646   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
  9647   ins_encode %{
  9648     Label* L = $labl$$label;
  9649     assert(__ use_cbcond(*L), "back to back cbcond");
  9650     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9651   %}
  9652   ins_short_branch(1);
  9653   ins_avoid_back_to_back(1);
  9654   ins_pipe(cbcond_reg_reg);
  9655 %}
  9657 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
  9658   match(If cmp (CmpN op1 null));
  9659   predicate(UseCBCond);
  9660   effect(USE labl, KILL icc);
  9662   size(4);
  9663   ins_cost(BRANCH_COST);
  9664   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
  9665   ins_encode %{
  9666     Label* L = $labl$$label;
  9667     assert(__ use_cbcond(*L), "back to back cbcond");
  9668     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
  9669   %}
  9670   ins_short_branch(1);
  9671   ins_avoid_back_to_back(1);
  9672   ins_pipe(cbcond_reg_reg);
  9673 %}
  9675 // Loop back branch
  9676 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
  9677   match(CountedLoopEnd cmp (CmpI op1 op2));
  9678   predicate(UseCBCond);
  9679   effect(USE labl, KILL icc);
  9681   size(4);
  9682   ins_cost(BRANCH_COST);
  9683   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9684   ins_encode %{
  9685     Label* L = $labl$$label;
  9686     assert(__ use_cbcond(*L), "back to back cbcond");
  9687     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
  9688   %}
  9689   ins_short_branch(1);
  9690   ins_avoid_back_to_back(1);
  9691   ins_pipe(cbcond_reg_reg);
  9692 %}
  9694 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
  9695   match(CountedLoopEnd cmp (CmpI op1 op2));
  9696   predicate(UseCBCond);
  9697   effect(USE labl, KILL icc);
  9699   size(4);
  9700   ins_cost(BRANCH_COST);
  9701   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
  9702   ins_encode %{
  9703     Label* L = $labl$$label;
  9704     assert(__ use_cbcond(*L), "back to back cbcond");
  9705     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
  9706   %}
  9707   ins_short_branch(1);
  9708   ins_avoid_back_to_back(1);
  9709   ins_pipe(cbcond_reg_imm);
  9710 %}
  9712 // Branch-on-register tests all 64 bits.  We assume that values
  9713 // in 64-bit registers always remains zero or sign extended
  9714 // unless our code munges the high bits.  Interrupts can chop
  9715 // the high order bits to zero or sign at any time.
  9716 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9717   match(If cmp (CmpI op1 zero));
  9718   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9719   effect(USE labl);
  9721   size(8);
  9722   ins_cost(BRANCH_COST);
  9723   format %{ "BR$cmp   $op1,$labl" %}
  9724   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9725   ins_pipe(br_reg);
  9726 %}
  9728 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9729   match(If cmp (CmpP op1 null));
  9730   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9731   effect(USE labl);
  9733   size(8);
  9734   ins_cost(BRANCH_COST);
  9735   format %{ "BR$cmp   $op1,$labl" %}
  9736   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9737   ins_pipe(br_reg);
  9738 %}
  9740 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9741   match(If cmp (CmpL op1 zero));
  9742   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9743   effect(USE labl);
  9745   size(8);
  9746   ins_cost(BRANCH_COST);
  9747   format %{ "BR$cmp   $op1,$labl" %}
  9748   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9749   ins_pipe(br_reg);
  9750 %}
  9753 // ============================================================================
  9754 // Long Compare
  9755 //
  9756 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9757 // is tricky.  The flavor of compare used depends on whether we are testing
  9758 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9759 // The GE test is the negated LT test.  The LE test can be had by commuting
  9760 // the operands (yielding a GE test) and then negating; negate again for the
  9761 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9762 // NE test is negated from that.
  9764 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9765 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9766 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9767 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9768 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9769 // foo match ends up with the wrong leaf.  One fix is to not match both
  9770 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9771 // both forms beat the trinary form of long-compare and both are very useful
  9772 // on Intel which has so few registers.
  9774 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9775   match(If cmp xcc);
  9776   effect(USE labl);
  9778   size(8);
  9779   ins_cost(BRANCH_COST);
  9780   format %{ "BP$cmp   $xcc,$labl" %}
  9781   ins_encode %{
  9782     Label* L = $labl$$label;
  9783     Assembler::Predict predict_taken =
  9784       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9786     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9787     __ delayed()->nop();
  9788   %}
  9789   ins_pipe(br_cc);
  9790 %}
  9792 // Manifest a CmpL3 result in an integer register.  Very painful.
  9793 // This is the test to avoid.
  9794 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9795   match(Set dst (CmpL3 src1 src2) );
  9796   effect( KILL ccr );
  9797   ins_cost(6*DEFAULT_COST);
  9798   size(24);
  9799   format %{ "CMP    $src1,$src2\t\t! long\n"
  9800           "\tBLT,a,pn done\n"
  9801           "\tMOV    -1,$dst\t! delay slot\n"
  9802           "\tBGT,a,pn done\n"
  9803           "\tMOV    1,$dst\t! delay slot\n"
  9804           "\tCLR    $dst\n"
  9805     "done:"     %}
  9806   ins_encode( cmpl_flag(src1,src2,dst) );
  9807   ins_pipe(cmpL_reg);
  9808 %}
  9810 // Conditional move
  9811 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9812   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9813   ins_cost(150);
  9814   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9815   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9816   ins_pipe(ialu_reg);
  9817 %}
  9819 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9820   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9821   ins_cost(140);
  9822   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9823   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9824   ins_pipe(ialu_imm);
  9825 %}
  9827 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9828   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9829   ins_cost(150);
  9830   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9831   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9832   ins_pipe(ialu_reg);
  9833 %}
  9835 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9836   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9837   ins_cost(140);
  9838   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9839   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9840   ins_pipe(ialu_imm);
  9841 %}
  9843 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9844   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9845   ins_cost(150);
  9846   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9847   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9848   ins_pipe(ialu_reg);
  9849 %}
  9851 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9852   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9853   ins_cost(150);
  9854   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9855   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9856   ins_pipe(ialu_reg);
  9857 %}
  9859 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9860   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9861   ins_cost(140);
  9862   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9863   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9864   ins_pipe(ialu_imm);
  9865 %}
  9867 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9868   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9869   ins_cost(150);
  9870   opcode(0x101);
  9871   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9872   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9873   ins_pipe(int_conditional_float_move);
  9874 %}
  9876 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9877   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9878   ins_cost(150);
  9879   opcode(0x102);
  9880   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9881   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9882   ins_pipe(int_conditional_float_move);
  9883 %}
  9885 // ============================================================================
  9886 // Safepoint Instruction
  9887 instruct safePoint_poll(iRegP poll) %{
  9888   match(SafePoint poll);
  9889   effect(USE poll);
  9891   size(4);
  9892 #ifdef _LP64
  9893   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9894 #else
  9895   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9896 #endif
  9897   ins_encode %{
  9898     __ relocate(relocInfo::poll_type);
  9899     __ ld_ptr($poll$$Register, 0, G0);
  9900   %}
  9901   ins_pipe(loadPollP);
  9902 %}
  9904 // ============================================================================
  9905 // Call Instructions
  9906 // Call Java Static Instruction
  9907 instruct CallStaticJavaDirect( method meth ) %{
  9908   match(CallStaticJava);
  9909   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9910   effect(USE meth);
  9912   size(8);
  9913   ins_cost(CALL_COST);
  9914   format %{ "CALL,static  ; NOP ==> " %}
  9915   ins_encode( Java_Static_Call( meth ), call_epilog );
  9916   ins_pipe(simple_call);
  9917 %}
  9919 // Call Java Static Instruction (method handle version)
  9920 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9921   match(CallStaticJava);
  9922   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9923   effect(USE meth, KILL l7_mh_SP_save);
  9925   size(16);
  9926   ins_cost(CALL_COST);
  9927   format %{ "CALL,static/MethodHandle" %}
  9928   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9929   ins_pipe(simple_call);
  9930 %}
  9932 // Call Java Dynamic Instruction
  9933 instruct CallDynamicJavaDirect( method meth ) %{
  9934   match(CallDynamicJava);
  9935   effect(USE meth);
  9937   ins_cost(CALL_COST);
  9938   format %{ "SET    (empty),R_G5\n\t"
  9939             "CALL,dynamic  ; NOP ==> " %}
  9940   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9941   ins_pipe(call);
  9942 %}
  9944 // Call Runtime Instruction
  9945 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9946   match(CallRuntime);
  9947   effect(USE meth, KILL l7);
  9948   ins_cost(CALL_COST);
  9949   format %{ "CALL,runtime" %}
  9950   ins_encode( Java_To_Runtime( meth ),
  9951               call_epilog, adjust_long_from_native_call );
  9952   ins_pipe(simple_call);
  9953 %}
  9955 // Call runtime without safepoint - same as CallRuntime
  9956 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9957   match(CallLeaf);
  9958   effect(USE meth, KILL l7);
  9959   ins_cost(CALL_COST);
  9960   format %{ "CALL,runtime leaf" %}
  9961   ins_encode( Java_To_Runtime( meth ),
  9962               call_epilog,
  9963               adjust_long_from_native_call );
  9964   ins_pipe(simple_call);
  9965 %}
  9967 // Call runtime without safepoint - same as CallLeaf
  9968 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9969   match(CallLeafNoFP);
  9970   effect(USE meth, KILL l7);
  9971   ins_cost(CALL_COST);
  9972   format %{ "CALL,runtime leaf nofp" %}
  9973   ins_encode( Java_To_Runtime( meth ),
  9974               call_epilog,
  9975               adjust_long_from_native_call );
  9976   ins_pipe(simple_call);
  9977 %}
  9979 // Tail Call; Jump from runtime stub to Java code.
  9980 // Also known as an 'interprocedural jump'.
  9981 // Target of jump will eventually return to caller.
  9982 // TailJump below removes the return address.
  9983 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9984   match(TailCall jump_target method_oop );
  9986   ins_cost(CALL_COST);
  9987   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9988   ins_encode(form_jmpl(jump_target));
  9989   ins_pipe(tail_call);
  9990 %}
  9993 // Return Instruction
  9994 instruct Ret() %{
  9995   match(Return);
  9997   // The epilogue node did the ret already.
  9998   size(0);
  9999   format %{ "! return" %}
 10000   ins_encode();
 10001   ins_pipe(empty);
 10002 %}
 10005 // Tail Jump; remove the return address; jump to target.
 10006 // TailCall above leaves the return address around.
 10007 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 10008 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 10009 // "restore" before this instruction (in Epilogue), we need to materialize it
 10010 // in %i0.
 10011 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
 10012   match( TailJump jump_target ex_oop );
 10013   ins_cost(CALL_COST);
 10014   format %{ "! discard R_O7\n\t"
 10015             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
 10016   ins_encode(form_jmpl_set_exception_pc(jump_target));
 10017   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
 10018   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
 10019   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
 10020   ins_pipe(tail_call);
 10021 %}
 10023 // Create exception oop: created by stack-crawling runtime code.
 10024 // Created exception is now available to this handler, and is setup
 10025 // just prior to jumping to this handler.  No code emitted.
 10026 instruct CreateException( o0RegP ex_oop )
 10027 %{
 10028   match(Set ex_oop (CreateEx));
 10029   ins_cost(0);
 10031   size(0);
 10032   // use the following format syntax
 10033   format %{ "! exception oop is in R_O0; no code emitted" %}
 10034   ins_encode();
 10035   ins_pipe(empty);
 10036 %}
 10039 // Rethrow exception:
 10040 // The exception oop will come in the first argument position.
 10041 // Then JUMP (not call) to the rethrow stub code.
 10042 instruct RethrowException()
 10043 %{
 10044   match(Rethrow);
 10045   ins_cost(CALL_COST);
 10047   // use the following format syntax
 10048   format %{ "Jmp    rethrow_stub" %}
 10049   ins_encode(enc_rethrow);
 10050   ins_pipe(tail_call);
 10051 %}
 10054 // Die now
 10055 instruct ShouldNotReachHere( )
 10056 %{
 10057   match(Halt);
 10058   ins_cost(CALL_COST);
 10060   size(4);
 10061   // Use the following format syntax
 10062   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
 10063   ins_encode( form2_illtrap() );
 10064   ins_pipe(tail_call);
 10065 %}
 10067 // ============================================================================
 10068 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 10069 // array for an instance of the superklass.  Set a hidden internal cache on a
 10070 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 10071 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
 10072 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
 10073   match(Set index (PartialSubtypeCheck sub super));
 10074   effect( KILL pcc, KILL o7 );
 10075   ins_cost(DEFAULT_COST*10);
 10076   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
 10077   ins_encode( enc_PartialSubtypeCheck() );
 10078   ins_pipe(partial_subtype_check_pipe);
 10079 %}
 10081 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
 10082   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
 10083   effect( KILL idx, KILL o7 );
 10084   ins_cost(DEFAULT_COST*10);
 10085   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
 10086   ins_encode( enc_PartialSubtypeCheck() );
 10087   ins_pipe(partial_subtype_check_pipe);
 10088 %}
 10091 // ============================================================================
 10092 // inlined locking and unlocking
 10094 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10095   match(Set pcc (FastLock object box));
 10097   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10098   ins_cost(100);
 10100   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10101   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
 10102   ins_pipe(long_memory_op);
 10103 %}
 10106 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
 10107   match(Set pcc (FastUnlock object box));
 10108   effect(TEMP scratch2, USE_KILL box, KILL scratch);
 10109   ins_cost(100);
 10111   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
 10112   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
 10113   ins_pipe(long_memory_op);
 10114 %}
 10116 // The encodings are generic.
 10117 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
 10118   predicate(!use_block_zeroing(n->in(2)) );
 10119   match(Set dummy (ClearArray cnt base));
 10120   effect(TEMP temp, KILL ccr);
 10121   ins_cost(300);
 10122   format %{ "MOV    $cnt,$temp\n"
 10123     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
 10124     "        BRge   loop\t\t! Clearing loop\n"
 10125     "        STX    G0,[$base+$temp]\t! delay slot" %}
 10127   ins_encode %{
 10128     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
 10129     Register nof_bytes_arg    = $cnt$$Register;
 10130     Register nof_bytes_tmp    = $temp$$Register;
 10131     Register base_pointer_arg = $base$$Register;
 10133     Label loop;
 10134     __ mov(nof_bytes_arg, nof_bytes_tmp);
 10136     // Loop and clear, walking backwards through the array.
 10137     // nof_bytes_tmp (if >0) is always the number of bytes to zero
 10138     __ bind(loop);
 10139     __ deccc(nof_bytes_tmp, 8);
 10140     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
 10141     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
 10142     // %%%% this mini-loop must not cross a cache boundary!
 10143   %}
 10144   ins_pipe(long_memory_op);
 10145 %}
 10147 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
 10148   predicate(use_block_zeroing(n->in(2)));
 10149   match(Set dummy (ClearArray cnt base));
 10150   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
 10151   ins_cost(300);
 10152   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10154   ins_encode %{
 10156     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10157     Register to    = $base$$Register;
 10158     Register count = $cnt$$Register;
 10160     Label Ldone;
 10161     __ nop(); // Separate short branches
 10162     // Use BIS for zeroing (temp is not used).
 10163     __ bis_zeroing(to, count, G0, Ldone);
 10164     __ bind(Ldone);
 10166   %}
 10167   ins_pipe(long_memory_op);
 10168 %}
 10170 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
 10171   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
 10172   match(Set dummy (ClearArray cnt base));
 10173   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
 10174   ins_cost(300);
 10175   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
 10177   ins_encode %{
 10179     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
 10180     Register to    = $base$$Register;
 10181     Register count = $cnt$$Register;
 10182     Register temp  = $tmp$$Register;
 10184     Label Ldone;
 10185     __ nop(); // Separate short branches
 10186     // Use BIS for zeroing
 10187     __ bis_zeroing(to, count, temp, Ldone);
 10188     __ bind(Ldone);
 10190   %}
 10191   ins_pipe(long_memory_op);
 10192 %}
 10194 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
 10195                         o7RegI tmp, flagsReg ccr) %{
 10196   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 10197   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
 10198   ins_cost(300);
 10199   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
 10200   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
 10201   ins_pipe(long_memory_op);
 10202 %}
 10204 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
 10205                        o7RegI tmp, flagsReg ccr) %{
 10206   match(Set result (StrEquals (Binary str1 str2) cnt));
 10207   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
 10208   ins_cost(300);
 10209   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
 10210   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
 10211   ins_pipe(long_memory_op);
 10212 %}
 10214 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
 10215                       o7RegI tmp2, flagsReg ccr) %{
 10216   match(Set result (AryEq ary1 ary2));
 10217   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
 10218   ins_cost(300);
 10219   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
 10220   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
 10221   ins_pipe(long_memory_op);
 10222 %}
 10225 //---------- Zeros Count Instructions ------------------------------------------
 10227 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
 10228   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10229   match(Set dst (CountLeadingZerosI src));
 10230   effect(TEMP dst, TEMP tmp, KILL cr);
 10232   // x |= (x >> 1);
 10233   // x |= (x >> 2);
 10234   // x |= (x >> 4);
 10235   // x |= (x >> 8);
 10236   // x |= (x >> 16);
 10237   // return (WORDBITS - popc(x));
 10238   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
 10239             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
 10240             "OR      $dst,$tmp,$dst\n\t"
 10241             "SRL     $dst,2,$tmp\n\t"
 10242             "OR      $dst,$tmp,$dst\n\t"
 10243             "SRL     $dst,4,$tmp\n\t"
 10244             "OR      $dst,$tmp,$dst\n\t"
 10245             "SRL     $dst,8,$tmp\n\t"
 10246             "OR      $dst,$tmp,$dst\n\t"
 10247             "SRL     $dst,16,$tmp\n\t"
 10248             "OR      $dst,$tmp,$dst\n\t"
 10249             "POPC    $dst,$dst\n\t"
 10250             "MOV     32,$tmp\n\t"
 10251             "SUB     $tmp,$dst,$dst" %}
 10252   ins_encode %{
 10253     Register Rdst = $dst$$Register;
 10254     Register Rsrc = $src$$Register;
 10255     Register Rtmp = $tmp$$Register;
 10256     __ srl(Rsrc, 1,    Rtmp);
 10257     __ srl(Rsrc, 0,    Rdst);
 10258     __ or3(Rdst, Rtmp, Rdst);
 10259     __ srl(Rdst, 2,    Rtmp);
 10260     __ or3(Rdst, Rtmp, Rdst);
 10261     __ srl(Rdst, 4,    Rtmp);
 10262     __ or3(Rdst, Rtmp, Rdst);
 10263     __ srl(Rdst, 8,    Rtmp);
 10264     __ or3(Rdst, Rtmp, Rdst);
 10265     __ srl(Rdst, 16,   Rtmp);
 10266     __ or3(Rdst, Rtmp, Rdst);
 10267     __ popc(Rdst, Rdst);
 10268     __ mov(BitsPerInt, Rtmp);
 10269     __ sub(Rtmp, Rdst, Rdst);
 10270   %}
 10271   ins_pipe(ialu_reg);
 10272 %}
 10274 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
 10275   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10276   match(Set dst (CountLeadingZerosL src));
 10277   effect(TEMP dst, TEMP tmp, KILL cr);
 10279   // x |= (x >> 1);
 10280   // x |= (x >> 2);
 10281   // x |= (x >> 4);
 10282   // x |= (x >> 8);
 10283   // x |= (x >> 16);
 10284   // x |= (x >> 32);
 10285   // return (WORDBITS - popc(x));
 10286   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
 10287             "OR      $src,$tmp,$dst\n\t"
 10288             "SRLX    $dst,2,$tmp\n\t"
 10289             "OR      $dst,$tmp,$dst\n\t"
 10290             "SRLX    $dst,4,$tmp\n\t"
 10291             "OR      $dst,$tmp,$dst\n\t"
 10292             "SRLX    $dst,8,$tmp\n\t"
 10293             "OR      $dst,$tmp,$dst\n\t"
 10294             "SRLX    $dst,16,$tmp\n\t"
 10295             "OR      $dst,$tmp,$dst\n\t"
 10296             "SRLX    $dst,32,$tmp\n\t"
 10297             "OR      $dst,$tmp,$dst\n\t"
 10298             "POPC    $dst,$dst\n\t"
 10299             "MOV     64,$tmp\n\t"
 10300             "SUB     $tmp,$dst,$dst" %}
 10301   ins_encode %{
 10302     Register Rdst = $dst$$Register;
 10303     Register Rsrc = $src$$Register;
 10304     Register Rtmp = $tmp$$Register;
 10305     __ srlx(Rsrc, 1,    Rtmp);
 10306     __ or3( Rsrc, Rtmp, Rdst);
 10307     __ srlx(Rdst, 2,    Rtmp);
 10308     __ or3( Rdst, Rtmp, Rdst);
 10309     __ srlx(Rdst, 4,    Rtmp);
 10310     __ or3( Rdst, Rtmp, Rdst);
 10311     __ srlx(Rdst, 8,    Rtmp);
 10312     __ or3( Rdst, Rtmp, Rdst);
 10313     __ srlx(Rdst, 16,   Rtmp);
 10314     __ or3( Rdst, Rtmp, Rdst);
 10315     __ srlx(Rdst, 32,   Rtmp);
 10316     __ or3( Rdst, Rtmp, Rdst);
 10317     __ popc(Rdst, Rdst);
 10318     __ mov(BitsPerLong, Rtmp);
 10319     __ sub(Rtmp, Rdst, Rdst);
 10320   %}
 10321   ins_pipe(ialu_reg);
 10322 %}
 10324 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
 10325   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10326   match(Set dst (CountTrailingZerosI src));
 10327   effect(TEMP dst, KILL cr);
 10329   // return popc(~x & (x - 1));
 10330   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
 10331             "ANDN    $dst,$src,$dst\n\t"
 10332             "SRL     $dst,R_G0,$dst\n\t"
 10333             "POPC    $dst,$dst" %}
 10334   ins_encode %{
 10335     Register Rdst = $dst$$Register;
 10336     Register Rsrc = $src$$Register;
 10337     __ sub(Rsrc, 1, Rdst);
 10338     __ andn(Rdst, Rsrc, Rdst);
 10339     __ srl(Rdst, G0, Rdst);
 10340     __ popc(Rdst, Rdst);
 10341   %}
 10342   ins_pipe(ialu_reg);
 10343 %}
 10345 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
 10346   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
 10347   match(Set dst (CountTrailingZerosL src));
 10348   effect(TEMP dst, KILL cr);
 10350   // return popc(~x & (x - 1));
 10351   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
 10352             "ANDN    $dst,$src,$dst\n\t"
 10353             "POPC    $dst,$dst" %}
 10354   ins_encode %{
 10355     Register Rdst = $dst$$Register;
 10356     Register Rsrc = $src$$Register;
 10357     __ sub(Rsrc, 1, Rdst);
 10358     __ andn(Rdst, Rsrc, Rdst);
 10359     __ popc(Rdst, Rdst);
 10360   %}
 10361   ins_pipe(ialu_reg);
 10362 %}
 10365 //---------- Population Count Instructions -------------------------------------
 10367 instruct popCountI(iRegI dst, iRegI src) %{
 10368   predicate(UsePopCountInstruction);
 10369   match(Set dst (PopCountI src));
 10371   format %{ "POPC   $src, $dst" %}
 10372   ins_encode %{
 10373     __ popc($src$$Register, $dst$$Register);
 10374   %}
 10375   ins_pipe(ialu_reg);
 10376 %}
 10378 // Note: Long.bitCount(long) returns an int.
 10379 instruct popCountL(iRegI dst, iRegL src) %{
 10380   predicate(UsePopCountInstruction);
 10381   match(Set dst (PopCountL src));
 10383   format %{ "POPC   $src, $dst" %}
 10384   ins_encode %{
 10385     __ popc($src$$Register, $dst$$Register);
 10386   %}
 10387   ins_pipe(ialu_reg);
 10388 %}
 10391 // ============================================================================
 10392 //------------Bytes reverse--------------------------------------------------
 10394 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
 10395   match(Set dst (ReverseBytesI src));
 10397   // Op cost is artificially doubled to make sure that load or store
 10398   // instructions are preferred over this one which requires a spill
 10399   // onto a stack slot.
 10400   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10401   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10403   ins_encode %{
 10404     __ set($src$$disp + STACK_BIAS, O7);
 10405     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10406   %}
 10407   ins_pipe( iload_mem );
 10408 %}
 10410 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
 10411   match(Set dst (ReverseBytesL src));
 10413   // Op cost is artificially doubled to make sure that load or store
 10414   // instructions are preferred over this one which requires a spill
 10415   // onto a stack slot.
 10416   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10417   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10419   ins_encode %{
 10420     __ set($src$$disp + STACK_BIAS, O7);
 10421     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10422   %}
 10423   ins_pipe( iload_mem );
 10424 %}
 10426 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
 10427   match(Set dst (ReverseBytesUS src));
 10429   // Op cost is artificially doubled to make sure that load or store
 10430   // instructions are preferred over this one which requires a spill
 10431   // onto a stack slot.
 10432   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10433   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
 10435   ins_encode %{
 10436     // the value was spilled as an int so bias the load
 10437     __ set($src$$disp + STACK_BIAS + 2, O7);
 10438     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10439   %}
 10440   ins_pipe( iload_mem );
 10441 %}
 10443 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
 10444   match(Set dst (ReverseBytesS src));
 10446   // Op cost is artificially doubled to make sure that load or store
 10447   // instructions are preferred over this one which requires a spill
 10448   // onto a stack slot.
 10449   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
 10450   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
 10452   ins_encode %{
 10453     // the value was spilled as an int so bias the load
 10454     __ set($src$$disp + STACK_BIAS + 2, O7);
 10455     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10456   %}
 10457   ins_pipe( iload_mem );
 10458 %}
 10460 // Load Integer reversed byte order
 10461 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
 10462   match(Set dst (ReverseBytesI (LoadI src)));
 10464   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10465   size(4);
 10466   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
 10468   ins_encode %{
 10469     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10470   %}
 10471   ins_pipe(iload_mem);
 10472 %}
 10474 // Load Long - aligned and reversed
 10475 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10476   match(Set dst (ReverseBytesL (LoadL src)));
 10478   ins_cost(MEMORY_REF_COST);
 10479   size(4);
 10480   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10482   ins_encode %{
 10483     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10484   %}
 10485   ins_pipe(iload_mem);
 10486 %}
 10488 // Load unsigned short / char reversed byte order
 10489 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10490   match(Set dst (ReverseBytesUS (LoadUS src)));
 10492   ins_cost(MEMORY_REF_COST);
 10493   size(4);
 10494   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10496   ins_encode %{
 10497     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10498   %}
 10499   ins_pipe(iload_mem);
 10500 %}
 10502 // Load short reversed byte order
 10503 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10504   match(Set dst (ReverseBytesS (LoadS src)));
 10506   ins_cost(MEMORY_REF_COST);
 10507   size(4);
 10508   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10510   ins_encode %{
 10511     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10512   %}
 10513   ins_pipe(iload_mem);
 10514 %}
 10516 // Store Integer reversed byte order
 10517 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10518   match(Set dst (StoreI dst (ReverseBytesI src)));
 10520   ins_cost(MEMORY_REF_COST);
 10521   size(4);
 10522   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10524   ins_encode %{
 10525     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10526   %}
 10527   ins_pipe(istore_mem_reg);
 10528 %}
 10530 // Store Long reversed byte order
 10531 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10532   match(Set dst (StoreL dst (ReverseBytesL src)));
 10534   ins_cost(MEMORY_REF_COST);
 10535   size(4);
 10536   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10538   ins_encode %{
 10539     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10540   %}
 10541   ins_pipe(istore_mem_reg);
 10542 %}
 10544 // Store unsighed short/char reversed byte order
 10545 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10546   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10548   ins_cost(MEMORY_REF_COST);
 10549   size(4);
 10550   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10552   ins_encode %{
 10553     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10554   %}
 10555   ins_pipe(istore_mem_reg);
 10556 %}
 10558 // Store short reversed byte order
 10559 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10560   match(Set dst (StoreC dst (ReverseBytesS src)));
 10562   ins_cost(MEMORY_REF_COST);
 10563   size(4);
 10564   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10566   ins_encode %{
 10567     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10568   %}
 10569   ins_pipe(istore_mem_reg);
 10570 %}
 10572 // ====================VECTOR INSTRUCTIONS=====================================
 10574 // Load Aligned Packed values into a Double Register
 10575 instruct loadV8(regD dst, memory mem) %{
 10576   predicate(n->as_LoadVector()->memory_size() == 8);
 10577   match(Set dst (LoadVector mem));
 10578   ins_cost(MEMORY_REF_COST);
 10579   size(4);
 10580   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
 10581   ins_encode %{
 10582     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
 10583   %}
 10584   ins_pipe(floadD_mem);
 10585 %}
 10587 // Store Vector in Double register to memory
 10588 instruct storeV8(memory mem, regD src) %{
 10589   predicate(n->as_StoreVector()->memory_size() == 8);
 10590   match(Set mem (StoreVector mem src));
 10591   ins_cost(MEMORY_REF_COST);
 10592   size(4);
 10593   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
 10594   ins_encode %{
 10595     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
 10596   %}
 10597   ins_pipe(fstoreD_mem_reg);
 10598 %}
 10600 // Store Zero into vector in memory
 10601 instruct storeV8B_zero(memory mem, immI0 zero) %{
 10602   predicate(n->as_StoreVector()->memory_size() == 8);
 10603   match(Set mem (StoreVector mem (ReplicateB zero)));
 10604   ins_cost(MEMORY_REF_COST);
 10605   size(4);
 10606   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
 10607   ins_encode %{
 10608     __ stx(G0, $mem$$Address);
 10609   %}
 10610   ins_pipe(fstoreD_mem_zero);
 10611 %}
 10613 instruct storeV4S_zero(memory mem, immI0 zero) %{
 10614   predicate(n->as_StoreVector()->memory_size() == 8);
 10615   match(Set mem (StoreVector mem (ReplicateS zero)));
 10616   ins_cost(MEMORY_REF_COST);
 10617   size(4);
 10618   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
 10619   ins_encode %{
 10620     __ stx(G0, $mem$$Address);
 10621   %}
 10622   ins_pipe(fstoreD_mem_zero);
 10623 %}
 10625 instruct storeV2I_zero(memory mem, immI0 zero) %{
 10626   predicate(n->as_StoreVector()->memory_size() == 8);
 10627   match(Set mem (StoreVector mem (ReplicateI zero)));
 10628   ins_cost(MEMORY_REF_COST);
 10629   size(4);
 10630   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
 10631   ins_encode %{
 10632     __ stx(G0, $mem$$Address);
 10633   %}
 10634   ins_pipe(fstoreD_mem_zero);
 10635 %}
 10637 instruct storeV2F_zero(memory mem, immF0 zero) %{
 10638   predicate(n->as_StoreVector()->memory_size() == 8);
 10639   match(Set mem (StoreVector mem (ReplicateF zero)));
 10640   ins_cost(MEMORY_REF_COST);
 10641   size(4);
 10642   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
 10643   ins_encode %{
 10644     __ stx(G0, $mem$$Address);
 10645   %}
 10646   ins_pipe(fstoreD_mem_zero);
 10647 %}
 10649 // Replicate scalar to packed byte values into Double register
 10650 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10651   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
 10652   match(Set dst (ReplicateB src));
 10653   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10654   format %{ "SLLX  $src,56,$tmp\n\t"
 10655             "SRLX  $tmp, 8,$tmp2\n\t"
 10656             "OR    $tmp,$tmp2,$tmp\n\t"
 10657             "SRLX  $tmp,16,$tmp2\n\t"
 10658             "OR    $tmp,$tmp2,$tmp\n\t"
 10659             "SRLX  $tmp,32,$tmp2\n\t"
 10660             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10661             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10662   ins_encode %{
 10663     Register Rsrc = $src$$Register;
 10664     Register Rtmp = $tmp$$Register;
 10665     Register Rtmp2 = $tmp2$$Register;
 10666     __ sllx(Rsrc,    56, Rtmp);
 10667     __ srlx(Rtmp,     8, Rtmp2);
 10668     __ or3 (Rtmp, Rtmp2, Rtmp);
 10669     __ srlx(Rtmp,    16, Rtmp2);
 10670     __ or3 (Rtmp, Rtmp2, Rtmp);
 10671     __ srlx(Rtmp,    32, Rtmp2);
 10672     __ or3 (Rtmp, Rtmp2, Rtmp);
 10673     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10674   %}
 10675   ins_pipe(ialu_reg);
 10676 %}
 10678 // Replicate scalar to packed byte values into Double stack
 10679 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10680   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
 10681   match(Set dst (ReplicateB src));
 10682   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10683   format %{ "SLLX  $src,56,$tmp\n\t"
 10684             "SRLX  $tmp, 8,$tmp2\n\t"
 10685             "OR    $tmp,$tmp2,$tmp\n\t"
 10686             "SRLX  $tmp,16,$tmp2\n\t"
 10687             "OR    $tmp,$tmp2,$tmp\n\t"
 10688             "SRLX  $tmp,32,$tmp2\n\t"
 10689             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
 10690             "STX   $tmp,$dst\t! regL to stkD" %}
 10691   ins_encode %{
 10692     Register Rsrc = $src$$Register;
 10693     Register Rtmp = $tmp$$Register;
 10694     Register Rtmp2 = $tmp2$$Register;
 10695     __ sllx(Rsrc,    56, Rtmp);
 10696     __ srlx(Rtmp,     8, Rtmp2);
 10697     __ or3 (Rtmp, Rtmp2, Rtmp);
 10698     __ srlx(Rtmp,    16, Rtmp2);
 10699     __ or3 (Rtmp, Rtmp2, Rtmp);
 10700     __ srlx(Rtmp,    32, Rtmp2);
 10701     __ or3 (Rtmp, Rtmp2, Rtmp);
 10702     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10703     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10704   %}
 10705   ins_pipe(ialu_reg);
 10706 %}
 10708 // Replicate scalar constant to packed byte values in Double register
 10709 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
 10710   predicate(n->as_Vector()->length() == 8);
 10711   match(Set dst (ReplicateB con));
 10712   effect(KILL tmp);
 10713   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
 10714   ins_encode %{
 10715     // XXX This is a quick fix for 6833573.
 10716     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
 10717     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
 10718     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10719   %}
 10720   ins_pipe(loadConFD);
 10721 %}
 10723 // Replicate scalar to packed char/short values into Double register
 10724 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10725   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
 10726   match(Set dst (ReplicateS src));
 10727   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10728   format %{ "SLLX  $src,48,$tmp\n\t"
 10729             "SRLX  $tmp,16,$tmp2\n\t"
 10730             "OR    $tmp,$tmp2,$tmp\n\t"
 10731             "SRLX  $tmp,32,$tmp2\n\t"
 10732             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10733             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10734   ins_encode %{
 10735     Register Rsrc = $src$$Register;
 10736     Register Rtmp = $tmp$$Register;
 10737     Register Rtmp2 = $tmp2$$Register;
 10738     __ sllx(Rsrc,    48, Rtmp);
 10739     __ srlx(Rtmp,    16, Rtmp2);
 10740     __ or3 (Rtmp, Rtmp2, Rtmp);
 10741     __ srlx(Rtmp,    32, Rtmp2);
 10742     __ or3 (Rtmp, Rtmp2, Rtmp);
 10743     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10744   %}
 10745   ins_pipe(ialu_reg);
 10746 %}
 10748 // Replicate scalar to packed char/short values into Double stack
 10749 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10750   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
 10751   match(Set dst (ReplicateS src));
 10752   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10753   format %{ "SLLX  $src,48,$tmp\n\t"
 10754             "SRLX  $tmp,16,$tmp2\n\t"
 10755             "OR    $tmp,$tmp2,$tmp\n\t"
 10756             "SRLX  $tmp,32,$tmp2\n\t"
 10757             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
 10758             "STX   $tmp,$dst\t! regL to stkD" %}
 10759   ins_encode %{
 10760     Register Rsrc = $src$$Register;
 10761     Register Rtmp = $tmp$$Register;
 10762     Register Rtmp2 = $tmp2$$Register;
 10763     __ sllx(Rsrc,    48, Rtmp);
 10764     __ srlx(Rtmp,    16, Rtmp2);
 10765     __ or3 (Rtmp, Rtmp2, Rtmp);
 10766     __ srlx(Rtmp,    32, Rtmp2);
 10767     __ or3 (Rtmp, Rtmp2, Rtmp);
 10768     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10769     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10770   %}
 10771   ins_pipe(ialu_reg);
 10772 %}
 10774 // Replicate scalar constant to packed char/short values in Double register
 10775 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
 10776   predicate(n->as_Vector()->length() == 4);
 10777   match(Set dst (ReplicateS con));
 10778   effect(KILL tmp);
 10779   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
 10780   ins_encode %{
 10781     // XXX This is a quick fix for 6833573.
 10782     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
 10783     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
 10784     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10785   %}
 10786   ins_pipe(loadConFD);
 10787 %}
 10789 // Replicate scalar to packed int values into Double register
 10790 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10791   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
 10792   match(Set dst (ReplicateI src));
 10793   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10794   format %{ "SLLX  $src,32,$tmp\n\t"
 10795             "SRLX  $tmp,32,$tmp2\n\t"
 10796             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10797             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
 10798   ins_encode %{
 10799     Register Rsrc = $src$$Register;
 10800     Register Rtmp = $tmp$$Register;
 10801     Register Rtmp2 = $tmp2$$Register;
 10802     __ sllx(Rsrc,    32, Rtmp);
 10803     __ srlx(Rtmp,    32, Rtmp2);
 10804     __ or3 (Rtmp, Rtmp2, Rtmp);
 10805     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
 10806   %}
 10807   ins_pipe(ialu_reg);
 10808 %}
 10810 // Replicate scalar to packed int values into Double stack
 10811 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
 10812   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
 10813   match(Set dst (ReplicateI src));
 10814   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
 10815   format %{ "SLLX  $src,32,$tmp\n\t"
 10816             "SRLX  $tmp,32,$tmp2\n\t"
 10817             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
 10818             "STX   $tmp,$dst\t! regL to stkD" %}
 10819   ins_encode %{
 10820     Register Rsrc = $src$$Register;
 10821     Register Rtmp = $tmp$$Register;
 10822     Register Rtmp2 = $tmp2$$Register;
 10823     __ sllx(Rsrc,    32, Rtmp);
 10824     __ srlx(Rtmp,    32, Rtmp2);
 10825     __ or3 (Rtmp, Rtmp2, Rtmp);
 10826     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
 10827     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
 10828   %}
 10829   ins_pipe(ialu_reg);
 10830 %}
 10832 // Replicate scalar zero constant to packed int values in Double register
 10833 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
 10834   predicate(n->as_Vector()->length() == 2);
 10835   match(Set dst (ReplicateI con));
 10836   effect(KILL tmp);
 10837   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
 10838   ins_encode %{
 10839     // XXX This is a quick fix for 6833573.
 10840     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
 10841     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
 10842     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10843   %}
 10844   ins_pipe(loadConFD);
 10845 %}
 10847 // Replicate scalar to packed float values into Double stack
 10848 instruct Repl2F_stk(stackSlotD dst, regF src) %{
 10849   predicate(n->as_Vector()->length() == 2);
 10850   match(Set dst (ReplicateF src));
 10851   ins_cost(MEMORY_REF_COST*2);
 10852   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
 10853             "STF    $src,$dst.lo" %}
 10854   opcode(Assembler::stf_op3);
 10855   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
 10856   ins_pipe(fstoreF_stk_reg);
 10857 %}
 10859 // Replicate scalar zero constant to packed float values in Double register
 10860 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
 10861   predicate(n->as_Vector()->length() == 2);
 10862   match(Set dst (ReplicateF con));
 10863   effect(KILL tmp);
 10864   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
 10865   ins_encode %{
 10866     // XXX This is a quick fix for 6833573.
 10867     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
 10868     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
 10869     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
 10870   %}
 10871   ins_pipe(loadConFD);
 10872 %}
 10874 //----------PEEPHOLE RULES-----------------------------------------------------
 10875 // These must follow all instruction definitions as they use the names
 10876 // defined in the instructions definitions.
 10877 //
 10878 // peepmatch ( root_instr_name [preceding_instruction]* );
 10879 //
 10880 // peepconstraint %{
 10881 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10882 //  [, ...] );
 10883 // // instruction numbers are zero-based using left to right order in peepmatch
 10884 //
 10885 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10886 // // provide an instruction_number.operand_name for each operand that appears
 10887 // // in the replacement instruction's match rule
 10888 //
 10889 // ---------VM FLAGS---------------------------------------------------------
 10890 //
 10891 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10892 //
 10893 // Each peephole rule is given an identifying number starting with zero and
 10894 // increasing by one in the order seen by the parser.  An individual peephole
 10895 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10896 // on the command-line.
 10897 //
 10898 // ---------CURRENT LIMITATIONS----------------------------------------------
 10899 //
 10900 // Only match adjacent instructions in same basic block
 10901 // Only equality constraints
 10902 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10903 // Only one replacement instruction
 10904 //
 10905 // ---------EXAMPLE----------------------------------------------------------
 10906 //
 10907 // // pertinent parts of existing instructions in architecture description
 10908 // instruct movI(eRegI dst, eRegI src) %{
 10909 //   match(Set dst (CopyI src));
 10910 // %}
 10911 //
 10912 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10913 //   match(Set dst (AddI dst src));
 10914 //   effect(KILL cr);
 10915 // %}
 10916 //
 10917 // // Change (inc mov) to lea
 10918 // peephole %{
 10919 //   // increment preceeded by register-register move
 10920 //   peepmatch ( incI_eReg movI );
 10921 //   // require that the destination register of the increment
 10922 //   // match the destination register of the move
 10923 //   peepconstraint ( 0.dst == 1.dst );
 10924 //   // construct a replacement instruction that sets
 10925 //   // the destination to ( move's source register + one )
 10926 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10927 // %}
 10928 //
 10930 // // Change load of spilled value to only a spill
 10931 // instruct storeI(memory mem, eRegI src) %{
 10932 //   match(Set mem (StoreI mem src));
 10933 // %}
 10934 //
 10935 // instruct loadI(eRegI dst, memory mem) %{
 10936 //   match(Set dst (LoadI mem));
 10937 // %}
 10938 //
 10939 // peephole %{
 10940 //   peepmatch ( loadI storeI );
 10941 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10942 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10943 // %}
 10945 //----------SMARTSPILL RULES---------------------------------------------------
 10946 // These must follow all instruction definitions as they use the names
 10947 // defined in the instructions definitions.
 10948 //
 10949 // SPARC will probably not have any of these rules due to RISC instruction set.
 10951 //----------PIPELINE-----------------------------------------------------------
 10952 // Rules which define the behavior of the target architectures pipeline.

mercurial