src/share/vm/memory/genCollectedHeap.hpp

Tue, 16 Feb 2016 21:42:29 +0000

author
poonam
date
Tue, 16 Feb 2016 21:42:29 +0000
changeset 8308
6acf14e730dd
parent 7659
38d6febe66af
child 7994
04ff2f6cd0eb
child 9661
379a59bf685d
permissions
-rw-r--r--

8072725: Provide more granular levels for GC verification
Summary: Add option VerifySubSet to selectively verify the memory sub-systems
Reviewed-by: kevinw, jmasa

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
    26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
    28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    29 #include "memory/collectorPolicy.hpp"
    30 #include "memory/generation.hpp"
    31 #include "memory/sharedHeap.hpp"
    33 class SubTasksDone;
    35 // A "GenCollectedHeap" is a SharedHeap that uses generational
    36 // collection.  It is represented with a sequence of Generation's.
    37 class GenCollectedHeap : public SharedHeap {
    38   friend class GenCollectorPolicy;
    39   friend class Generation;
    40   friend class DefNewGeneration;
    41   friend class TenuredGeneration;
    42   friend class ConcurrentMarkSweepGeneration;
    43   friend class CMSCollector;
    44   friend class GenMarkSweep;
    45   friend class VM_GenCollectForAllocation;
    46   friend class VM_GenCollectFull;
    47   friend class VM_GenCollectFullConcurrent;
    48   friend class VM_GC_HeapInspection;
    49   friend class VM_HeapDumper;
    50   friend class HeapInspection;
    51   friend class GCCauseSetter;
    52   friend class VMStructs;
    53 public:
    54   enum SomeConstants {
    55     max_gens = 10
    56   };
    58   friend class VM_PopulateDumpSharedSpace;
    60  protected:
    61   // Fields:
    62   static GenCollectedHeap* _gch;
    64  private:
    65   int _n_gens;
    66   Generation* _gens[max_gens];
    67   GenerationSpec** _gen_specs;
    69   // The generational collector policy.
    70   GenCollectorPolicy* _gen_policy;
    72   // Indicates that the most recent previous incremental collection failed.
    73   // The flag is cleared when an action is taken that might clear the
    74   // condition that caused that incremental collection to fail.
    75   bool _incremental_collection_failed;
    77   // In support of ExplicitGCInvokesConcurrent functionality
    78   unsigned int _full_collections_completed;
    80   // Data structure for claiming the (potentially) parallel tasks in
    81   // (gen-specific) roots processing.
    82   SubTasksDone* _process_strong_tasks;
    84   // In block contents verification, the number of header words to skip
    85   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
    87 protected:
    88   // Helper functions for allocation
    89   HeapWord* attempt_allocation(size_t size,
    90                                bool   is_tlab,
    91                                bool   first_only);
    93   // Helper function for two callbacks below.
    94   // Considers collection of the first max_level+1 generations.
    95   void do_collection(bool   full,
    96                      bool   clear_all_soft_refs,
    97                      size_t size,
    98                      bool   is_tlab,
    99                      int    max_level);
   101   // Callback from VM_GenCollectForAllocation operation.
   102   // This function does everything necessary/possible to satisfy an
   103   // allocation request that failed in the youngest generation that should
   104   // have handled it (including collection, expansion, etc.)
   105   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
   107   // Callback from VM_GenCollectFull operation.
   108   // Perform a full collection of the first max_level+1 generations.
   109   virtual void do_full_collection(bool clear_all_soft_refs);
   110   void do_full_collection(bool clear_all_soft_refs, int max_level);
   112   // Does the "cause" of GC indicate that
   113   // we absolutely __must__ clear soft refs?
   114   bool must_clear_all_soft_refs();
   116 public:
   117   GenCollectedHeap(GenCollectorPolicy *policy);
   119   GCStats* gc_stats(int level) const;
   121   // Returns JNI_OK on success
   122   virtual jint initialize();
   123   char* allocate(size_t alignment,
   124                  size_t* _total_reserved, int* _n_covered_regions,
   125                  ReservedSpace* heap_rs);
   127   // Does operations required after initialization has been done.
   128   void post_initialize();
   130   // Initialize ("weak") refs processing support
   131   virtual void ref_processing_init();
   133   virtual CollectedHeap::Name kind() const {
   134     return CollectedHeap::GenCollectedHeap;
   135   }
   137   // The generational collector policy.
   138   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
   139   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
   141   // Adaptive size policy
   142   virtual AdaptiveSizePolicy* size_policy() {
   143     return gen_policy()->size_policy();
   144   }
   146   // Return the (conservative) maximum heap alignment
   147   static size_t conservative_max_heap_alignment() {
   148     return Generation::GenGrain;
   149   }
   151   size_t capacity() const;
   152   size_t used() const;
   154   // Save the "used_region" for generations level and lower.
   155   void save_used_regions(int level);
   157   size_t max_capacity() const;
   159   HeapWord* mem_allocate(size_t size,
   160                          bool*  gc_overhead_limit_was_exceeded);
   162   // We may support a shared contiguous allocation area, if the youngest
   163   // generation does.
   164   bool supports_inline_contig_alloc() const;
   165   HeapWord** top_addr() const;
   166   HeapWord** end_addr() const;
   168   // Does this heap support heap inspection? (+PrintClassHistogram)
   169   virtual bool supports_heap_inspection() const { return true; }
   171   // Perform a full collection of the heap; intended for use in implementing
   172   // "System.gc". This implies as full a collection as the CollectedHeap
   173   // supports. Caller does not hold the Heap_lock on entry.
   174   void collect(GCCause::Cause cause);
   176   // The same as above but assume that the caller holds the Heap_lock.
   177   void collect_locked(GCCause::Cause cause);
   179   // Perform a full collection of the first max_level+1 generations.
   180   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
   181   void collect(GCCause::Cause cause, int max_level);
   183   // Returns "TRUE" iff "p" points into the committed areas of the heap.
   184   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
   185   // be expensive to compute in general, so, to prevent
   186   // their inadvertent use in product jvm's, we restrict their use to
   187   // assertion checking or verification only.
   188   bool is_in(const void* p) const;
   190   // override
   191   bool is_in_closed_subset(const void* p) const {
   192     if (UseConcMarkSweepGC) {
   193       return is_in_reserved(p);
   194     } else {
   195       return is_in(p);
   196     }
   197   }
   199   // Returns true if the reference is to an object in the reserved space
   200   // for the young generation.
   201   // Assumes the the young gen address range is less than that of the old gen.
   202   bool is_in_young(oop p);
   204 #ifdef ASSERT
   205   virtual bool is_in_partial_collection(const void* p);
   206 #endif
   208   virtual bool is_scavengable(const void* addr) {
   209     return is_in_young((oop)addr);
   210   }
   212   // Iteration functions.
   213   void oop_iterate(ExtendedOopClosure* cl);
   214   void object_iterate(ObjectClosure* cl);
   215   void safe_object_iterate(ObjectClosure* cl);
   216   Space* space_containing(const void* addr) const;
   218   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   219   // each address in the (reserved) heap is a member of exactly
   220   // one block.  The defining characteristic of a block is that it is
   221   // possible to find its size, and thus to progress forward to the next
   222   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   223   // represent Java objects, or they might be free blocks in a
   224   // free-list-based heap (or subheap), as long as the two kinds are
   225   // distinguishable and the size of each is determinable.
   227   // Returns the address of the start of the "block" that contains the
   228   // address "addr".  We say "blocks" instead of "object" since some heaps
   229   // may not pack objects densely; a chunk may either be an object or a
   230   // non-object.
   231   virtual HeapWord* block_start(const void* addr) const;
   233   // Requires "addr" to be the start of a chunk, and returns its size.
   234   // "addr + size" is required to be the start of a new chunk, or the end
   235   // of the active area of the heap. Assumes (and verifies in non-product
   236   // builds) that addr is in the allocated part of the heap and is
   237   // the start of a chunk.
   238   virtual size_t block_size(const HeapWord* addr) const;
   240   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   241   // the block is an object. Assumes (and verifies in non-product
   242   // builds) that addr is in the allocated part of the heap and is
   243   // the start of a chunk.
   244   virtual bool block_is_obj(const HeapWord* addr) const;
   246   // Section on TLAB's.
   247   virtual bool supports_tlab_allocation() const;
   248   virtual size_t tlab_capacity(Thread* thr) const;
   249   virtual size_t tlab_used(Thread* thr) const;
   250   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
   251   virtual HeapWord* allocate_new_tlab(size_t size);
   253   // Can a compiler initialize a new object without store barriers?
   254   // This permission only extends from the creation of a new object
   255   // via a TLAB up to the first subsequent safepoint.
   256   virtual bool can_elide_tlab_store_barriers() const {
   257     return true;
   258   }
   260   virtual bool card_mark_must_follow_store() const {
   261     return UseConcMarkSweepGC;
   262   }
   264   // We don't need barriers for stores to objects in the
   265   // young gen and, a fortiori, for initializing stores to
   266   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
   267   // only and may need to be re-examined in case other
   268   // kinds of collectors are implemented in the future.
   269   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
   270     // We wanted to assert that:-
   271     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
   272     //       "Check can_elide_initializing_store_barrier() for this collector");
   273     // but unfortunately the flag UseSerialGC need not necessarily always
   274     // be set when DefNew+Tenured are being used.
   275     return is_in_young(new_obj);
   276   }
   278   // The "requestor" generation is performing some garbage collection
   279   // action for which it would be useful to have scratch space.  The
   280   // requestor promises to allocate no more than "max_alloc_words" in any
   281   // older generation (via promotion say.)   Any blocks of space that can
   282   // be provided are returned as a list of ScratchBlocks, sorted by
   283   // decreasing size.
   284   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
   285   // Allow each generation to reset any scratch space that it has
   286   // contributed as it needs.
   287   void release_scratch();
   289   // Ensure parsability: override
   290   virtual void ensure_parsability(bool retire_tlabs);
   292   // Time in ms since the longest time a collector ran in
   293   // in any generation.
   294   virtual jlong millis_since_last_gc();
   296   // Total number of full collections completed.
   297   unsigned int total_full_collections_completed() {
   298     assert(_full_collections_completed <= _total_full_collections,
   299            "Can't complete more collections than were started");
   300     return _full_collections_completed;
   301   }
   303   // Update above counter, as appropriate, at the end of a stop-world GC cycle
   304   unsigned int update_full_collections_completed();
   305   // Update above counter, as appropriate, at the end of a concurrent GC cycle
   306   unsigned int update_full_collections_completed(unsigned int count);
   308   // Update "time of last gc" for all constituent generations
   309   // to "now".
   310   void update_time_of_last_gc(jlong now) {
   311     for (int i = 0; i < _n_gens; i++) {
   312       _gens[i]->update_time_of_last_gc(now);
   313     }
   314   }
   316   // Update the gc statistics for each generation.
   317   // "level" is the level of the lastest collection
   318   void update_gc_stats(int current_level, bool full) {
   319     for (int i = 0; i < _n_gens; i++) {
   320       _gens[i]->update_gc_stats(current_level, full);
   321     }
   322   }
   324   // Override.
   325   bool no_gc_in_progress() { return !is_gc_active(); }
   327   // Override.
   328   void prepare_for_verify();
   330   // Override.
   331   void verify(bool silent, VerifyOption option);
   333   // Override.
   334   virtual void print_on(outputStream* st) const;
   335   virtual void print_gc_threads_on(outputStream* st) const;
   336   virtual void gc_threads_do(ThreadClosure* tc) const;
   337   virtual void print_tracing_info() const;
   338   virtual void print_on_error(outputStream* st) const;
   340   // PrintGC, PrintGCDetails support
   341   void print_heap_change(size_t prev_used) const;
   343   // The functions below are helper functions that a subclass of
   344   // "CollectedHeap" can use in the implementation of its virtual
   345   // functions.
   347   class GenClosure : public StackObj {
   348    public:
   349     virtual void do_generation(Generation* gen) = 0;
   350   };
   352   // Apply "cl.do_generation" to all generations in the heap
   353   // If "old_to_young" determines the order.
   354   void generation_iterate(GenClosure* cl, bool old_to_young);
   356   void space_iterate(SpaceClosure* cl);
   358   // Return "true" if all generations have reached the
   359   // maximal committed limit that they can reach, without a garbage
   360   // collection.
   361   virtual bool is_maximal_no_gc() const;
   363   // Return the generation before "gen".
   364   Generation* prev_gen(Generation* gen) const {
   365     int l = gen->level();
   366     guarantee(l > 0, "Out of bounds");
   367     return _gens[l-1];
   368   }
   370   // Return the generation after "gen".
   371   Generation* next_gen(Generation* gen) const {
   372     int l = gen->level() + 1;
   373     guarantee(l < _n_gens, "Out of bounds");
   374     return _gens[l];
   375   }
   377   Generation* get_gen(int i) const {
   378     guarantee(i >= 0 && i < _n_gens, "Out of bounds");
   379     return _gens[i];
   380   }
   382   int n_gens() const {
   383     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
   384     return _n_gens;
   385   }
   387   // Convenience function to be used in situations where the heap type can be
   388   // asserted to be this type.
   389   static GenCollectedHeap* heap();
   391   void set_par_threads(uint t);
   392   void set_n_termination(uint t);
   394   // Invoke the "do_oop" method of one of the closures "not_older_gens"
   395   // or "older_gens" on root locations for the generation at
   396   // "level".  (The "older_gens" closure is used for scanning references
   397   // from older generations; "not_older_gens" is used everywhere else.)
   398   // If "younger_gens_as_roots" is false, younger generations are
   399   // not scanned as roots; in this case, the caller must be arranging to
   400   // scan the younger generations itself.  (For example, a generation might
   401   // explicitly mark reachable objects in younger generations, to avoid
   402   // excess storage retention.)
   403   // The "so" argument determines which of the roots
   404   // the closure is applied to:
   405   // "SO_None" does none;
   406   enum ScanningOption {
   407     SO_None                =  0x0,
   408     SO_AllCodeCache        =  0x8,
   409     SO_ScavengeCodeCache   = 0x10
   410   };
   412  private:
   413   void process_roots(bool activate_scope,
   414                      ScanningOption so,
   415                      OopClosure* strong_roots,
   416                      OopClosure* weak_roots,
   417                      CLDClosure* strong_cld_closure,
   418                      CLDClosure* weak_cld_closure,
   419                      CodeBlobClosure* code_roots);
   421   void gen_process_roots(int level,
   422                          bool younger_gens_as_roots,
   423                          bool activate_scope,
   424                          ScanningOption so,
   425                          OopsInGenClosure* not_older_gens,
   426                          OopsInGenClosure* weak_roots,
   427                          OopsInGenClosure* older_gens,
   428                          CLDClosure* cld_closure,
   429                          CLDClosure* weak_cld_closure,
   430                          CodeBlobClosure* code_closure);
   432  public:
   433   static const bool StrongAndWeakRoots = false;
   434   static const bool StrongRootsOnly    = true;
   436   void gen_process_roots(int level,
   437                          bool younger_gens_as_roots,
   438                          bool activate_scope,
   439                          ScanningOption so,
   440                          bool only_strong_roots,
   441                          OopsInGenClosure* not_older_gens,
   442                          OopsInGenClosure* older_gens,
   443                          CLDClosure* cld_closure);
   445   // Apply "root_closure" to all the weak roots of the system.
   446   // These include JNI weak roots, string table,
   447   // and referents of reachable weak refs.
   448   void gen_process_weak_roots(OopClosure* root_closure);
   450   // Set the saved marks of generations, if that makes sense.
   451   // In particular, if any generation might iterate over the oops
   452   // in other generations, it should call this method.
   453   void save_marks();
   455   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
   456   // allocated since the last call to save_marks in generations at or above
   457   // "level".  The "cur" closure is
   458   // applied to references in the generation at "level", and the "older"
   459   // closure to older generations.
   460 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
   461   void oop_since_save_marks_iterate(int level,                          \
   462                                     OopClosureType* cur,                \
   463                                     OopClosureType* older);
   465   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
   467 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
   469   // Returns "true" iff no allocations have occurred in any generation at
   470   // "level" or above since the last
   471   // call to "save_marks".
   472   bool no_allocs_since_save_marks(int level);
   474   // Returns true if an incremental collection is likely to fail.
   475   // We optionally consult the young gen, if asked to do so;
   476   // otherwise we base our answer on whether the previous incremental
   477   // collection attempt failed with no corrective action as of yet.
   478   bool incremental_collection_will_fail(bool consult_young) {
   479     // Assumes a 2-generation system; the first disjunct remembers if an
   480     // incremental collection failed, even when we thought (second disjunct)
   481     // that it would not.
   482     assert(heap()->collector_policy()->is_two_generation_policy(),
   483            "the following definition may not be suitable for an n(>2)-generation system");
   484     return incremental_collection_failed() ||
   485            (consult_young && !get_gen(0)->collection_attempt_is_safe());
   486   }
   488   // If a generation bails out of an incremental collection,
   489   // it sets this flag.
   490   bool incremental_collection_failed() const {
   491     return _incremental_collection_failed;
   492   }
   493   void set_incremental_collection_failed() {
   494     _incremental_collection_failed = true;
   495   }
   496   void clear_incremental_collection_failed() {
   497     _incremental_collection_failed = false;
   498   }
   500   // Promotion of obj into gen failed.  Try to promote obj to higher
   501   // gens in ascending order; return the new location of obj if successful.
   502   // Otherwise, try expand-and-allocate for obj in both the young and old
   503   // generation; return the new location of obj if successful.  Otherwise, return NULL.
   504   oop handle_failed_promotion(Generation* old_gen,
   505                               oop obj,
   506                               size_t obj_size);
   508 private:
   509   // Accessor for memory state verification support
   510   NOT_PRODUCT(
   511     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
   512   )
   514   // Override
   515   void check_for_non_bad_heap_word_value(HeapWord* addr,
   516     size_t size) PRODUCT_RETURN;
   518   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
   519   // in an essential way: compaction is performed across generations, by
   520   // iterating over spaces.
   521   void prepare_for_compaction();
   523   // Perform a full collection of the first max_level+1 generations.
   524   // This is the low level interface used by the public versions of
   525   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
   526   void collect_locked(GCCause::Cause cause, int max_level);
   528   // Returns success or failure.
   529   bool create_cms_collector();
   531   // In support of ExplicitGCInvokesConcurrent functionality
   532   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   533   void collect_mostly_concurrent(GCCause::Cause cause);
   535   // Save the tops of the spaces in all generations
   536   void record_gen_tops_before_GC() PRODUCT_RETURN;
   538 protected:
   539   virtual void gc_prologue(bool full);
   540   virtual void gc_epilogue(bool full);
   541 };
   543 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP

mercurial