src/share/vm/memory/genCollectedHeap.hpp

Tue, 16 Feb 2016 21:42:29 +0000

author
poonam
date
Tue, 16 Feb 2016 21:42:29 +0000
changeset 8308
6acf14e730dd
parent 7659
38d6febe66af
child 7994
04ff2f6cd0eb
child 9661
379a59bf685d
permissions
-rw-r--r--

8072725: Provide more granular levels for GC verification
Summary: Add option VerifySubSet to selectively verify the memory sub-systems
Reviewed-by: kevinw, jmasa

duke@435 1 /*
tschatzl@5701 2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 29 #include "memory/collectorPolicy.hpp"
stefank@2314 30 #include "memory/generation.hpp"
stefank@2314 31 #include "memory/sharedHeap.hpp"
stefank@2314 32
duke@435 33 class SubTasksDone;
duke@435 34
duke@435 35 // A "GenCollectedHeap" is a SharedHeap that uses generational
duke@435 36 // collection. It is represented with a sequence of Generation's.
duke@435 37 class GenCollectedHeap : public SharedHeap {
duke@435 38 friend class GenCollectorPolicy;
duke@435 39 friend class Generation;
duke@435 40 friend class DefNewGeneration;
duke@435 41 friend class TenuredGeneration;
duke@435 42 friend class ConcurrentMarkSweepGeneration;
duke@435 43 friend class CMSCollector;
duke@435 44 friend class GenMarkSweep;
duke@435 45 friend class VM_GenCollectForAllocation;
duke@435 46 friend class VM_GenCollectFull;
duke@435 47 friend class VM_GenCollectFullConcurrent;
duke@435 48 friend class VM_GC_HeapInspection;
duke@435 49 friend class VM_HeapDumper;
duke@435 50 friend class HeapInspection;
duke@435 51 friend class GCCauseSetter;
duke@435 52 friend class VMStructs;
duke@435 53 public:
duke@435 54 enum SomeConstants {
duke@435 55 max_gens = 10
duke@435 56 };
duke@435 57
duke@435 58 friend class VM_PopulateDumpSharedSpace;
duke@435 59
duke@435 60 protected:
duke@435 61 // Fields:
duke@435 62 static GenCollectedHeap* _gch;
duke@435 63
duke@435 64 private:
duke@435 65 int _n_gens;
duke@435 66 Generation* _gens[max_gens];
duke@435 67 GenerationSpec** _gen_specs;
duke@435 68
duke@435 69 // The generational collector policy.
duke@435 70 GenCollectorPolicy* _gen_policy;
duke@435 71
ysr@2243 72 // Indicates that the most recent previous incremental collection failed.
ysr@2243 73 // The flag is cleared when an action is taken that might clear the
ysr@2243 74 // condition that caused that incremental collection to fail.
ysr@2243 75 bool _incremental_collection_failed;
duke@435 76
duke@435 77 // In support of ExplicitGCInvokesConcurrent functionality
duke@435 78 unsigned int _full_collections_completed;
duke@435 79
duke@435 80 // Data structure for claiming the (potentially) parallel tasks in
stefank@6992 81 // (gen-specific) roots processing.
mgerdin@7659 82 SubTasksDone* _process_strong_tasks;
duke@435 83
duke@435 84 // In block contents verification, the number of header words to skip
duke@435 85 NOT_PRODUCT(static size_t _skip_header_HeapWords;)
duke@435 86
duke@435 87 protected:
duke@435 88 // Helper functions for allocation
duke@435 89 HeapWord* attempt_allocation(size_t size,
duke@435 90 bool is_tlab,
duke@435 91 bool first_only);
duke@435 92
duke@435 93 // Helper function for two callbacks below.
duke@435 94 // Considers collection of the first max_level+1 generations.
duke@435 95 void do_collection(bool full,
duke@435 96 bool clear_all_soft_refs,
duke@435 97 size_t size,
duke@435 98 bool is_tlab,
duke@435 99 int max_level);
duke@435 100
duke@435 101 // Callback from VM_GenCollectForAllocation operation.
duke@435 102 // This function does everything necessary/possible to satisfy an
duke@435 103 // allocation request that failed in the youngest generation that should
duke@435 104 // have handled it (including collection, expansion, etc.)
duke@435 105 HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
duke@435 106
duke@435 107 // Callback from VM_GenCollectFull operation.
duke@435 108 // Perform a full collection of the first max_level+1 generations.
coleenp@4037 109 virtual void do_full_collection(bool clear_all_soft_refs);
duke@435 110 void do_full_collection(bool clear_all_soft_refs, int max_level);
duke@435 111
duke@435 112 // Does the "cause" of GC indicate that
duke@435 113 // we absolutely __must__ clear soft refs?
duke@435 114 bool must_clear_all_soft_refs();
duke@435 115
duke@435 116 public:
duke@435 117 GenCollectedHeap(GenCollectorPolicy *policy);
duke@435 118
duke@435 119 GCStats* gc_stats(int level) const;
duke@435 120
duke@435 121 // Returns JNI_OK on success
duke@435 122 virtual jint initialize();
coleenp@4037 123 char* allocate(size_t alignment,
duke@435 124 size_t* _total_reserved, int* _n_covered_regions,
duke@435 125 ReservedSpace* heap_rs);
duke@435 126
duke@435 127 // Does operations required after initialization has been done.
duke@435 128 void post_initialize();
duke@435 129
duke@435 130 // Initialize ("weak") refs processing support
duke@435 131 virtual void ref_processing_init();
duke@435 132
duke@435 133 virtual CollectedHeap::Name kind() const {
duke@435 134 return CollectedHeap::GenCollectedHeap;
duke@435 135 }
duke@435 136
duke@435 137 // The generational collector policy.
duke@435 138 GenCollectorPolicy* gen_policy() const { return _gen_policy; }
coleenp@4037 139 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
duke@435 140
duke@435 141 // Adaptive size policy
duke@435 142 virtual AdaptiveSizePolicy* size_policy() {
duke@435 143 return gen_policy()->size_policy();
duke@435 144 }
duke@435 145
tschatzl@5701 146 // Return the (conservative) maximum heap alignment
tschatzl@5701 147 static size_t conservative_max_heap_alignment() {
tschatzl@5701 148 return Generation::GenGrain;
tschatzl@5701 149 }
tschatzl@5701 150
duke@435 151 size_t capacity() const;
duke@435 152 size_t used() const;
duke@435 153
coleenp@4037 154 // Save the "used_region" for generations level and lower.
coleenp@4037 155 void save_used_regions(int level);
duke@435 156
duke@435 157 size_t max_capacity() const;
duke@435 158
duke@435 159 HeapWord* mem_allocate(size_t size,
duke@435 160 bool* gc_overhead_limit_was_exceeded);
duke@435 161
duke@435 162 // We may support a shared contiguous allocation area, if the youngest
duke@435 163 // generation does.
duke@435 164 bool supports_inline_contig_alloc() const;
duke@435 165 HeapWord** top_addr() const;
duke@435 166 HeapWord** end_addr() const;
duke@435 167
duke@435 168 // Does this heap support heap inspection? (+PrintClassHistogram)
duke@435 169 virtual bool supports_heap_inspection() const { return true; }
duke@435 170
duke@435 171 // Perform a full collection of the heap; intended for use in implementing
duke@435 172 // "System.gc". This implies as full a collection as the CollectedHeap
duke@435 173 // supports. Caller does not hold the Heap_lock on entry.
duke@435 174 void collect(GCCause::Cause cause);
duke@435 175
duke@435 176 // The same as above but assume that the caller holds the Heap_lock.
duke@435 177 void collect_locked(GCCause::Cause cause);
duke@435 178
duke@435 179 // Perform a full collection of the first max_level+1 generations.
duke@435 180 // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
duke@435 181 void collect(GCCause::Cause cause, int max_level);
duke@435 182
stefank@3335 183 // Returns "TRUE" iff "p" points into the committed areas of the heap.
duke@435 184 // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
duke@435 185 // be expensive to compute in general, so, to prevent
duke@435 186 // their inadvertent use in product jvm's, we restrict their use to
duke@435 187 // assertion checking or verification only.
duke@435 188 bool is_in(const void* p) const;
duke@435 189
duke@435 190 // override
duke@435 191 bool is_in_closed_subset(const void* p) const {
duke@435 192 if (UseConcMarkSweepGC) {
duke@435 193 return is_in_reserved(p);
duke@435 194 } else {
duke@435 195 return is_in(p);
duke@435 196 }
duke@435 197 }
duke@435 198
jmasa@2909 199 // Returns true if the reference is to an object in the reserved space
jmasa@2909 200 // for the young generation.
jmasa@2909 201 // Assumes the the young gen address range is less than that of the old gen.
jmasa@2909 202 bool is_in_young(oop p);
jmasa@2909 203
jmasa@2909 204 #ifdef ASSERT
jmasa@2909 205 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 206 #endif
jmasa@2909 207
jmasa@2909 208 virtual bool is_scavengable(const void* addr) {
jmasa@2909 209 return is_in_young((oop)addr);
jmasa@2909 210 }
duke@435 211
duke@435 212 // Iteration functions.
coleenp@4037 213 void oop_iterate(ExtendedOopClosure* cl);
duke@435 214 void object_iterate(ObjectClosure* cl);
jmasa@952 215 void safe_object_iterate(ObjectClosure* cl);
duke@435 216 Space* space_containing(const void* addr) const;
duke@435 217
duke@435 218 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
duke@435 219 // each address in the (reserved) heap is a member of exactly
duke@435 220 // one block. The defining characteristic of a block is that it is
duke@435 221 // possible to find its size, and thus to progress forward to the next
duke@435 222 // block. (Blocks may be of different sizes.) Thus, blocks may
duke@435 223 // represent Java objects, or they might be free blocks in a
duke@435 224 // free-list-based heap (or subheap), as long as the two kinds are
duke@435 225 // distinguishable and the size of each is determinable.
duke@435 226
duke@435 227 // Returns the address of the start of the "block" that contains the
duke@435 228 // address "addr". We say "blocks" instead of "object" since some heaps
duke@435 229 // may not pack objects densely; a chunk may either be an object or a
duke@435 230 // non-object.
duke@435 231 virtual HeapWord* block_start(const void* addr) const;
duke@435 232
duke@435 233 // Requires "addr" to be the start of a chunk, and returns its size.
duke@435 234 // "addr + size" is required to be the start of a new chunk, or the end
duke@435 235 // of the active area of the heap. Assumes (and verifies in non-product
duke@435 236 // builds) that addr is in the allocated part of the heap and is
duke@435 237 // the start of a chunk.
duke@435 238 virtual size_t block_size(const HeapWord* addr) const;
duke@435 239
duke@435 240 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 241 // the block is an object. Assumes (and verifies in non-product
duke@435 242 // builds) that addr is in the allocated part of the heap and is
duke@435 243 // the start of a chunk.
duke@435 244 virtual bool block_is_obj(const HeapWord* addr) const;
duke@435 245
duke@435 246 // Section on TLAB's.
duke@435 247 virtual bool supports_tlab_allocation() const;
duke@435 248 virtual size_t tlab_capacity(Thread* thr) const;
brutisso@6376 249 virtual size_t tlab_used(Thread* thr) const;
duke@435 250 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
duke@435 251 virtual HeapWord* allocate_new_tlab(size_t size);
duke@435 252
ysr@777 253 // Can a compiler initialize a new object without store barriers?
ysr@777 254 // This permission only extends from the creation of a new object
ysr@777 255 // via a TLAB up to the first subsequent safepoint.
ysr@777 256 virtual bool can_elide_tlab_store_barriers() const {
ysr@777 257 return true;
ysr@777 258 }
ysr@777 259
ysr@1601 260 virtual bool card_mark_must_follow_store() const {
ysr@1601 261 return UseConcMarkSweepGC;
ysr@1601 262 }
ysr@1601 263
ysr@1462 264 // We don't need barriers for stores to objects in the
ysr@1462 265 // young gen and, a fortiori, for initializing stores to
ysr@1462 266 // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
ysr@1462 267 // only and may need to be re-examined in case other
ysr@1462 268 // kinds of collectors are implemented in the future.
ysr@1462 269 virtual bool can_elide_initializing_store_barrier(oop new_obj) {
ysr@1463 270 // We wanted to assert that:-
ysr@1463 271 // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
ysr@1463 272 // "Check can_elide_initializing_store_barrier() for this collector");
ysr@1463 273 // but unfortunately the flag UseSerialGC need not necessarily always
ysr@1463 274 // be set when DefNew+Tenured are being used.
jmasa@2909 275 return is_in_young(new_obj);
ysr@1462 276 }
ysr@1462 277
duke@435 278 // The "requestor" generation is performing some garbage collection
duke@435 279 // action for which it would be useful to have scratch space. The
duke@435 280 // requestor promises to allocate no more than "max_alloc_words" in any
duke@435 281 // older generation (via promotion say.) Any blocks of space that can
duke@435 282 // be provided are returned as a list of ScratchBlocks, sorted by
duke@435 283 // decreasing size.
duke@435 284 ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
jmasa@698 285 // Allow each generation to reset any scratch space that it has
jmasa@698 286 // contributed as it needs.
jmasa@698 287 void release_scratch();
duke@435 288
duke@435 289 // Ensure parsability: override
duke@435 290 virtual void ensure_parsability(bool retire_tlabs);
duke@435 291
duke@435 292 // Time in ms since the longest time a collector ran in
duke@435 293 // in any generation.
duke@435 294 virtual jlong millis_since_last_gc();
duke@435 295
duke@435 296 // Total number of full collections completed.
duke@435 297 unsigned int total_full_collections_completed() {
duke@435 298 assert(_full_collections_completed <= _total_full_collections,
duke@435 299 "Can't complete more collections than were started");
duke@435 300 return _full_collections_completed;
duke@435 301 }
duke@435 302
duke@435 303 // Update above counter, as appropriate, at the end of a stop-world GC cycle
duke@435 304 unsigned int update_full_collections_completed();
duke@435 305 // Update above counter, as appropriate, at the end of a concurrent GC cycle
duke@435 306 unsigned int update_full_collections_completed(unsigned int count);
duke@435 307
duke@435 308 // Update "time of last gc" for all constituent generations
duke@435 309 // to "now".
duke@435 310 void update_time_of_last_gc(jlong now) {
duke@435 311 for (int i = 0; i < _n_gens; i++) {
duke@435 312 _gens[i]->update_time_of_last_gc(now);
duke@435 313 }
duke@435 314 }
duke@435 315
duke@435 316 // Update the gc statistics for each generation.
duke@435 317 // "level" is the level of the lastest collection
duke@435 318 void update_gc_stats(int current_level, bool full) {
duke@435 319 for (int i = 0; i < _n_gens; i++) {
duke@435 320 _gens[i]->update_gc_stats(current_level, full);
duke@435 321 }
duke@435 322 }
duke@435 323
duke@435 324 // Override.
duke@435 325 bool no_gc_in_progress() { return !is_gc_active(); }
duke@435 326
duke@435 327 // Override.
duke@435 328 void prepare_for_verify();
duke@435 329
duke@435 330 // Override.
brutisso@3711 331 void verify(bool silent, VerifyOption option);
duke@435 332
duke@435 333 // Override.
tonyp@3269 334 virtual void print_on(outputStream* st) const;
duke@435 335 virtual void print_gc_threads_on(outputStream* st) const;
duke@435 336 virtual void gc_threads_do(ThreadClosure* tc) const;
duke@435 337 virtual void print_tracing_info() const;
stefank@4904 338 virtual void print_on_error(outputStream* st) const;
duke@435 339
duke@435 340 // PrintGC, PrintGCDetails support
duke@435 341 void print_heap_change(size_t prev_used) const;
duke@435 342
duke@435 343 // The functions below are helper functions that a subclass of
duke@435 344 // "CollectedHeap" can use in the implementation of its virtual
duke@435 345 // functions.
duke@435 346
duke@435 347 class GenClosure : public StackObj {
duke@435 348 public:
duke@435 349 virtual void do_generation(Generation* gen) = 0;
duke@435 350 };
duke@435 351
coleenp@4037 352 // Apply "cl.do_generation" to all generations in the heap
coleenp@4037 353 // If "old_to_young" determines the order.
duke@435 354 void generation_iterate(GenClosure* cl, bool old_to_young);
duke@435 355
duke@435 356 void space_iterate(SpaceClosure* cl);
duke@435 357
coleenp@4037 358 // Return "true" if all generations have reached the
duke@435 359 // maximal committed limit that they can reach, without a garbage
duke@435 360 // collection.
duke@435 361 virtual bool is_maximal_no_gc() const;
duke@435 362
brutisso@5516 363 // Return the generation before "gen".
duke@435 364 Generation* prev_gen(Generation* gen) const {
duke@435 365 int l = gen->level();
brutisso@5516 366 guarantee(l > 0, "Out of bounds");
brutisso@5516 367 return _gens[l-1];
duke@435 368 }
duke@435 369
brutisso@5516 370 // Return the generation after "gen".
duke@435 371 Generation* next_gen(Generation* gen) const {
duke@435 372 int l = gen->level() + 1;
brutisso@5516 373 guarantee(l < _n_gens, "Out of bounds");
brutisso@5516 374 return _gens[l];
duke@435 375 }
duke@435 376
duke@435 377 Generation* get_gen(int i) const {
brutisso@5516 378 guarantee(i >= 0 && i < _n_gens, "Out of bounds");
brutisso@5516 379 return _gens[i];
duke@435 380 }
duke@435 381
duke@435 382 int n_gens() const {
duke@435 383 assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
duke@435 384 return _n_gens;
duke@435 385 }
duke@435 386
duke@435 387 // Convenience function to be used in situations where the heap type can be
duke@435 388 // asserted to be this type.
duke@435 389 static GenCollectedHeap* heap();
duke@435 390
jmasa@3357 391 void set_par_threads(uint t);
mgerdin@7659 392 void set_n_termination(uint t);
duke@435 393
duke@435 394 // Invoke the "do_oop" method of one of the closures "not_older_gens"
duke@435 395 // or "older_gens" on root locations for the generation at
duke@435 396 // "level". (The "older_gens" closure is used for scanning references
duke@435 397 // from older generations; "not_older_gens" is used everywhere else.)
duke@435 398 // If "younger_gens_as_roots" is false, younger generations are
duke@435 399 // not scanned as roots; in this case, the caller must be arranging to
duke@435 400 // scan the younger generations itself. (For example, a generation might
duke@435 401 // explicitly mark reachable objects in younger generations, to avoid
coleenp@4037 402 // excess storage retention.)
coleenp@4037 403 // The "so" argument determines which of the roots
duke@435 404 // the closure is applied to:
duke@435 405 // "SO_None" does none;
mgerdin@7659 406 enum ScanningOption {
mgerdin@7659 407 SO_None = 0x0,
mgerdin@7659 408 SO_AllCodeCache = 0x8,
mgerdin@7659 409 SO_ScavengeCodeCache = 0x10
mgerdin@7659 410 };
mgerdin@7659 411
stefank@6992 412 private:
mgerdin@7659 413 void process_roots(bool activate_scope,
mgerdin@7659 414 ScanningOption so,
mgerdin@7659 415 OopClosure* strong_roots,
mgerdin@7659 416 OopClosure* weak_roots,
mgerdin@7659 417 CLDClosure* strong_cld_closure,
mgerdin@7659 418 CLDClosure* weak_cld_closure,
mgerdin@7659 419 CodeBlobClosure* code_roots);
mgerdin@7659 420
stefank@6992 421 void gen_process_roots(int level,
stefank@6992 422 bool younger_gens_as_roots,
stefank@6992 423 bool activate_scope,
mgerdin@7659 424 ScanningOption so,
stefank@6992 425 OopsInGenClosure* not_older_gens,
stefank@6992 426 OopsInGenClosure* weak_roots,
stefank@6992 427 OopsInGenClosure* older_gens,
stefank@6992 428 CLDClosure* cld_closure,
stefank@6992 429 CLDClosure* weak_cld_closure,
stefank@6992 430 CodeBlobClosure* code_closure);
stefank@6992 431
stefank@6992 432 public:
stefank@6992 433 static const bool StrongAndWeakRoots = false;
stefank@6992 434 static const bool StrongRootsOnly = true;
stefank@6992 435
stefank@6992 436 void gen_process_roots(int level,
stefank@6992 437 bool younger_gens_as_roots,
stefank@6992 438 bool activate_scope,
mgerdin@7659 439 ScanningOption so,
stefank@6992 440 bool only_strong_roots,
stefank@6992 441 OopsInGenClosure* not_older_gens,
stefank@6992 442 OopsInGenClosure* older_gens,
stefank@6992 443 CLDClosure* cld_closure);
duke@435 444
stefank@6971 445 // Apply "root_closure" to all the weak roots of the system.
stefank@6971 446 // These include JNI weak roots, string table,
stefank@6971 447 // and referents of reachable weak refs.
stefank@6971 448 void gen_process_weak_roots(OopClosure* root_closure);
duke@435 449
duke@435 450 // Set the saved marks of generations, if that makes sense.
duke@435 451 // In particular, if any generation might iterate over the oops
duke@435 452 // in other generations, it should call this method.
duke@435 453 void save_marks();
duke@435 454
duke@435 455 // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
duke@435 456 // allocated since the last call to save_marks in generations at or above
coleenp@4037 457 // "level". The "cur" closure is
duke@435 458 // applied to references in the generation at "level", and the "older"
coleenp@4037 459 // closure to older generations.
duke@435 460 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix) \
duke@435 461 void oop_since_save_marks_iterate(int level, \
duke@435 462 OopClosureType* cur, \
duke@435 463 OopClosureType* older);
duke@435 464
duke@435 465 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
duke@435 466
duke@435 467 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
duke@435 468
duke@435 469 // Returns "true" iff no allocations have occurred in any generation at
coleenp@4037 470 // "level" or above since the last
duke@435 471 // call to "save_marks".
duke@435 472 bool no_allocs_since_save_marks(int level);
duke@435 473
ysr@2243 474 // Returns true if an incremental collection is likely to fail.
ysr@2336 475 // We optionally consult the young gen, if asked to do so;
ysr@2336 476 // otherwise we base our answer on whether the previous incremental
ysr@2336 477 // collection attempt failed with no corrective action as of yet.
ysr@2336 478 bool incremental_collection_will_fail(bool consult_young) {
ysr@2243 479 // Assumes a 2-generation system; the first disjunct remembers if an
ysr@2243 480 // incremental collection failed, even when we thought (second disjunct)
ysr@2243 481 // that it would not.
ysr@2243 482 assert(heap()->collector_policy()->is_two_generation_policy(),
ysr@2243 483 "the following definition may not be suitable for an n(>2)-generation system");
ysr@2336 484 return incremental_collection_failed() ||
ysr@2336 485 (consult_young && !get_gen(0)->collection_attempt_is_safe());
ysr@2243 486 }
ysr@2243 487
duke@435 488 // If a generation bails out of an incremental collection,
duke@435 489 // it sets this flag.
ysr@2243 490 bool incremental_collection_failed() const {
ysr@2243 491 return _incremental_collection_failed;
duke@435 492 }
ysr@2243 493 void set_incremental_collection_failed() {
ysr@2243 494 _incremental_collection_failed = true;
duke@435 495 }
ysr@2243 496 void clear_incremental_collection_failed() {
ysr@2243 497 _incremental_collection_failed = false;
duke@435 498 }
duke@435 499
coleenp@4037 500 // Promotion of obj into gen failed. Try to promote obj to higher
duke@435 501 // gens in ascending order; return the new location of obj if successful.
brutisso@5516 502 // Otherwise, try expand-and-allocate for obj in both the young and old
brutisso@5516 503 // generation; return the new location of obj if successful. Otherwise, return NULL.
brutisso@5516 504 oop handle_failed_promotion(Generation* old_gen,
duke@435 505 oop obj,
coleenp@548 506 size_t obj_size);
duke@435 507
duke@435 508 private:
duke@435 509 // Accessor for memory state verification support
duke@435 510 NOT_PRODUCT(
duke@435 511 static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
duke@435 512 )
duke@435 513
duke@435 514 // Override
duke@435 515 void check_for_non_bad_heap_word_value(HeapWord* addr,
duke@435 516 size_t size) PRODUCT_RETURN;
duke@435 517
duke@435 518 // For use by mark-sweep. As implemented, mark-sweep-compact is global
duke@435 519 // in an essential way: compaction is performed across generations, by
duke@435 520 // iterating over spaces.
duke@435 521 void prepare_for_compaction();
duke@435 522
duke@435 523 // Perform a full collection of the first max_level+1 generations.
duke@435 524 // This is the low level interface used by the public versions of
duke@435 525 // collect() and collect_locked(). Caller holds the Heap_lock on entry.
duke@435 526 void collect_locked(GCCause::Cause cause, int max_level);
duke@435 527
duke@435 528 // Returns success or failure.
duke@435 529 bool create_cms_collector();
duke@435 530
duke@435 531 // In support of ExplicitGCInvokesConcurrent functionality
duke@435 532 bool should_do_concurrent_full_gc(GCCause::Cause cause);
duke@435 533 void collect_mostly_concurrent(GCCause::Cause cause);
duke@435 534
jmasa@698 535 // Save the tops of the spaces in all generations
jmasa@698 536 void record_gen_tops_before_GC() PRODUCT_RETURN;
jmasa@698 537
duke@435 538 protected:
duke@435 539 virtual void gc_prologue(bool full);
duke@435 540 virtual void gc_epilogue(bool full);
duke@435 541 };
stefank@2314 542
stefank@2314 543 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP

mercurial