src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

Thu, 12 Jun 2008 13:50:55 -0700

author
ysr
date
Thu, 12 Jun 2008 13:50:55 -0700
changeset 779
6aae2f9d0294
parent 777
37f87013dfd8
parent 622
790e66e5fbac
child 791
1ee8caae33af
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_concurrentMarkSweepGeneration.cpp.incl"
    28 // statics
    29 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    30 bool          CMSCollector::_full_gc_requested          = false;
    32 //////////////////////////////////////////////////////////////////
    33 // In support of CMS/VM thread synchronization
    34 //////////////////////////////////////////////////////////////////
    35 // We split use of the CGC_lock into 2 "levels".
    36 // The low-level locking is of the usual CGC_lock monitor. We introduce
    37 // a higher level "token" (hereafter "CMS token") built on top of the
    38 // low level monitor (hereafter "CGC lock").
    39 // The token-passing protocol gives priority to the VM thread. The
    40 // CMS-lock doesn't provide any fairness guarantees, but clients
    41 // should ensure that it is only held for very short, bounded
    42 // durations.
    43 //
    44 // When either of the CMS thread or the VM thread is involved in
    45 // collection operations during which it does not want the other
    46 // thread to interfere, it obtains the CMS token.
    47 //
    48 // If either thread tries to get the token while the other has
    49 // it, that thread waits. However, if the VM thread and CMS thread
    50 // both want the token, then the VM thread gets priority while the
    51 // CMS thread waits. This ensures, for instance, that the "concurrent"
    52 // phases of the CMS thread's work do not block out the VM thread
    53 // for long periods of time as the CMS thread continues to hog
    54 // the token. (See bug 4616232).
    55 //
    56 // The baton-passing functions are, however, controlled by the
    57 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
    58 // and here the low-level CMS lock, not the high level token,
    59 // ensures mutual exclusion.
    60 //
    61 // Two important conditions that we have to satisfy:
    62 // 1. if a thread does a low-level wait on the CMS lock, then it
    63 //    relinquishes the CMS token if it were holding that token
    64 //    when it acquired the low-level CMS lock.
    65 // 2. any low-level notifications on the low-level lock
    66 //    should only be sent when a thread has relinquished the token.
    67 //
    68 // In the absence of either property, we'd have potential deadlock.
    69 //
    70 // We protect each of the CMS (concurrent and sequential) phases
    71 // with the CMS _token_, not the CMS _lock_.
    72 //
    73 // The only code protected by CMS lock is the token acquisition code
    74 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
    75 // baton-passing code.
    76 //
    77 // Unfortunately, i couldn't come up with a good abstraction to factor and
    78 // hide the naked CGC_lock manipulation in the baton-passing code
    79 // further below. That's something we should try to do. Also, the proof
    80 // of correctness of this 2-level locking scheme is far from obvious,
    81 // and potentially quite slippery. We have an uneasy supsicion, for instance,
    82 // that there may be a theoretical possibility of delay/starvation in the
    83 // low-level lock/wait/notify scheme used for the baton-passing because of
    84 // potential intereference with the priority scheme embodied in the
    85 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
    86 // invocation further below and marked with "XXX 20011219YSR".
    87 // Indeed, as we note elsewhere, this may become yet more slippery
    88 // in the presence of multiple CMS and/or multiple VM threads. XXX
    90 class CMSTokenSync: public StackObj {
    91  private:
    92   bool _is_cms_thread;
    93  public:
    94   CMSTokenSync(bool is_cms_thread):
    95     _is_cms_thread(is_cms_thread) {
    96     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
    97            "Incorrect argument to constructor");
    98     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
    99   }
   101   ~CMSTokenSync() {
   102     assert(_is_cms_thread ?
   103              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   104              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   105           "Incorrect state");
   106     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   107   }
   108 };
   110 // Convenience class that does a CMSTokenSync, and then acquires
   111 // upto three locks.
   112 class CMSTokenSyncWithLocks: public CMSTokenSync {
   113  private:
   114   // Note: locks are acquired in textual declaration order
   115   // and released in the opposite order
   116   MutexLockerEx _locker1, _locker2, _locker3;
   117  public:
   118   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   119                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   120     CMSTokenSync(is_cms_thread),
   121     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   122     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   123     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   124   { }
   125 };
   128 // Wrapper class to temporarily disable icms during a foreground cms collection.
   129 class ICMSDisabler: public StackObj {
   130  public:
   131   // The ctor disables icms and wakes up the thread so it notices the change;
   132   // the dtor re-enables icms.  Note that the CMSCollector methods will check
   133   // CMSIncrementalMode.
   134   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   135   ~ICMSDisabler() { CMSCollector::enable_icms(); }
   136 };
   138 //////////////////////////////////////////////////////////////////
   139 //  Concurrent Mark-Sweep Generation /////////////////////////////
   140 //////////////////////////////////////////////////////////////////
   142 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   144 // This struct contains per-thread things necessary to support parallel
   145 // young-gen collection.
   146 class CMSParGCThreadState: public CHeapObj {
   147  public:
   148   CFLS_LAB lab;
   149   PromotionInfo promo;
   151   // Constructor.
   152   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   153     promo.setSpace(cfls);
   154   }
   155 };
   157 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   158      ReservedSpace rs, size_t initial_byte_size, int level,
   159      CardTableRS* ct, bool use_adaptive_freelists,
   160      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
   161   CardGeneration(rs, initial_byte_size, level, ct),
   162   _dilatation_factor(((double)MinChunkSize)/((double)(oopDesc::header_size()))),
   163   _debug_collection_type(Concurrent_collection_type)
   164 {
   165   HeapWord* bottom = (HeapWord*) _virtual_space.low();
   166   HeapWord* end    = (HeapWord*) _virtual_space.high();
   168   _direct_allocated_words = 0;
   169   NOT_PRODUCT(
   170     _numObjectsPromoted = 0;
   171     _numWordsPromoted = 0;
   172     _numObjectsAllocated = 0;
   173     _numWordsAllocated = 0;
   174   )
   176   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   177                                            use_adaptive_freelists,
   178                                            dictionaryChoice);
   179   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   180   if (_cmsSpace == NULL) {
   181     vm_exit_during_initialization(
   182       "CompactibleFreeListSpace allocation failure");
   183   }
   184   _cmsSpace->_gen = this;
   186   _gc_stats = new CMSGCStats();
   188   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   189   // offsets match. The ability to tell free chunks from objects
   190   // depends on this property.
   191   debug_only(
   192     FreeChunk* junk = NULL;
   193     assert(UseCompressedOops ||
   194            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   195            "Offset of FreeChunk::_prev within FreeChunk must match"
   196            "  that of OopDesc::_klass within OopDesc");
   197   )
   198   if (ParallelGCThreads > 0) {
   199     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   200     _par_gc_thread_states =
   201       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
   202     if (_par_gc_thread_states == NULL) {
   203       vm_exit_during_initialization("Could not allocate par gc structs");
   204     }
   205     for (uint i = 0; i < ParallelGCThreads; i++) {
   206       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   207       if (_par_gc_thread_states[i] == NULL) {
   208         vm_exit_during_initialization("Could not allocate par gc structs");
   209       }
   210     }
   211   } else {
   212     _par_gc_thread_states = NULL;
   213   }
   214   _incremental_collection_failed = false;
   215   // The "dilatation_factor" is the expansion that can occur on
   216   // account of the fact that the minimum object size in the CMS
   217   // generation may be larger than that in, say, a contiguous young
   218   //  generation.
   219   // Ideally, in the calculation below, we'd compute the dilatation
   220   // factor as: MinChunkSize/(promoting_gen's min object size)
   221   // Since we do not have such a general query interface for the
   222   // promoting generation, we'll instead just use the mimimum
   223   // object size (which today is a header's worth of space);
   224   // note that all arithmetic is in units of HeapWords.
   225   assert(MinChunkSize >= oopDesc::header_size(), "just checking");
   226   assert(_dilatation_factor >= 1.0, "from previous assert");
   227 }
   230 // The field "_initiating_occupancy" represents the occupancy percentage
   231 // at which we trigger a new collection cycle.  Unless explicitly specified
   232 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
   233 // is calculated by:
   234 //
   235 //   Let "f" be MinHeapFreeRatio in
   236 //
   237 //    _intiating_occupancy = 100-f +
   238 //                           f * (CMSTrigger[Perm]Ratio/100)
   239 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
   240 //
   241 // That is, if we assume the heap is at its desired maximum occupancy at the
   242 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
   243 // space be allocated before initiating a new collection cycle.
   244 //
   245 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
   246   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
   247   if (io >= 0) {
   248     _initiating_occupancy = (double)io / 100.0;
   249   } else {
   250     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
   251                              (double)(tr * MinHeapFreeRatio) / 100.0)
   252                             / 100.0;
   253   }
   254 }
   257 void ConcurrentMarkSweepGeneration::ref_processor_init() {
   258   assert(collector() != NULL, "no collector");
   259   collector()->ref_processor_init();
   260 }
   262 void CMSCollector::ref_processor_init() {
   263   if (_ref_processor == NULL) {
   264     // Allocate and initialize a reference processor
   265     _ref_processor = ReferenceProcessor::create_ref_processor(
   266         _span,                               // span
   267         _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
   268         _cmsGen->refs_discovery_is_mt(),     // mt_discovery
   269         &_is_alive_closure,
   270         ParallelGCThreads,
   271         ParallelRefProcEnabled);
   272     // Initialize the _ref_processor field of CMSGen
   273     _cmsGen->set_ref_processor(_ref_processor);
   275     // Allocate a dummy ref processor for perm gen.
   276     ReferenceProcessor* rp2 = new ReferenceProcessor();
   277     if (rp2 == NULL) {
   278       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   279     }
   280     _permGen->set_ref_processor(rp2);
   281   }
   282 }
   284 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   285   GenCollectedHeap* gch = GenCollectedHeap::heap();
   286   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   287     "Wrong type of heap");
   288   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   289     gch->gen_policy()->size_policy();
   290   assert(sp->is_gc_cms_adaptive_size_policy(),
   291     "Wrong type of size policy");
   292   return sp;
   293 }
   295 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   296   CMSGCAdaptivePolicyCounters* results =
   297     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   298   assert(
   299     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   300     "Wrong gc policy counter kind");
   301   return results;
   302 }
   305 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   307   const char* gen_name = "old";
   309   // Generation Counters - generation 1, 1 subspace
   310   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   312   _space_counters = new GSpaceCounters(gen_name, 0,
   313                                        _virtual_space.reserved_size(),
   314                                        this, _gen_counters);
   315 }
   317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   318   _cms_gen(cms_gen)
   319 {
   320   assert(alpha <= 100, "bad value");
   321   _saved_alpha = alpha;
   323   // Initialize the alphas to the bootstrap value of 100.
   324   _gc0_alpha = _cms_alpha = 100;
   326   _cms_begin_time.update();
   327   _cms_end_time.update();
   329   _gc0_duration = 0.0;
   330   _gc0_period = 0.0;
   331   _gc0_promoted = 0;
   333   _cms_duration = 0.0;
   334   _cms_period = 0.0;
   335   _cms_allocated = 0;
   337   _cms_used_at_gc0_begin = 0;
   338   _cms_used_at_gc0_end = 0;
   339   _allow_duty_cycle_reduction = false;
   340   _valid_bits = 0;
   341   _icms_duty_cycle = CMSIncrementalDutyCycle;
   342 }
   344 // If promotion failure handling is on use
   345 // the padded average size of the promotion for each
   346 // young generation collection.
   347 double CMSStats::time_until_cms_gen_full() const {
   348   size_t cms_free = _cms_gen->cmsSpace()->free();
   349   GenCollectedHeap* gch = GenCollectedHeap::heap();
   350   size_t expected_promotion = gch->get_gen(0)->capacity();
   351   if (HandlePromotionFailure) {
   352     expected_promotion = MIN2(
   353         (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average(),
   354         expected_promotion);
   355   }
   356   if (cms_free > expected_promotion) {
   357     // Start a cms collection if there isn't enough space to promote
   358     // for the next minor collection.  Use the padded average as
   359     // a safety factor.
   360     cms_free -= expected_promotion;
   362     // Adjust by the safety factor.
   363     double cms_free_dbl = (double)cms_free;
   364     cms_free_dbl = cms_free_dbl * (100.0 - CMSIncrementalSafetyFactor) / 100.0;
   366     if (PrintGCDetails && Verbose) {
   367       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   368         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   369         cms_free, expected_promotion);
   370       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   371         cms_free_dbl, cms_consumption_rate() + 1.0);
   372     }
   373     // Add 1 in case the consumption rate goes to zero.
   374     return cms_free_dbl / (cms_consumption_rate() + 1.0);
   375   }
   376   return 0.0;
   377 }
   379 // Compare the duration of the cms collection to the
   380 // time remaining before the cms generation is empty.
   381 // Note that the time from the start of the cms collection
   382 // to the start of the cms sweep (less than the total
   383 // duration of the cms collection) can be used.  This
   384 // has been tried and some applications experienced
   385 // promotion failures early in execution.  This was
   386 // possibly because the averages were not accurate
   387 // enough at the beginning.
   388 double CMSStats::time_until_cms_start() const {
   389   // We add "gc0_period" to the "work" calculation
   390   // below because this query is done (mostly) at the
   391   // end of a scavenge, so we need to conservatively
   392   // account for that much possible delay
   393   // in the query so as to avoid concurrent mode failures
   394   // due to starting the collection just a wee bit too
   395   // late.
   396   double work = cms_duration() + gc0_period();
   397   double deadline = time_until_cms_gen_full();
   398   if (work > deadline) {
   399     if (Verbose && PrintGCDetails) {
   400       gclog_or_tty->print(
   401         " CMSCollector: collect because of anticipated promotion "
   402         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   403         gc0_period(), time_until_cms_gen_full());
   404     }
   405     return 0.0;
   406   }
   407   return work - deadline;
   408 }
   410 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   411 // amount of change to prevent wild oscillation.
   412 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   413                                               unsigned int new_duty_cycle) {
   414   assert(old_duty_cycle <= 100, "bad input value");
   415   assert(new_duty_cycle <= 100, "bad input value");
   417   // Note:  use subtraction with caution since it may underflow (values are
   418   // unsigned).  Addition is safe since we're in the range 0-100.
   419   unsigned int damped_duty_cycle = new_duty_cycle;
   420   if (new_duty_cycle < old_duty_cycle) {
   421     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   422     if (new_duty_cycle + largest_delta < old_duty_cycle) {
   423       damped_duty_cycle = old_duty_cycle - largest_delta;
   424     }
   425   } else if (new_duty_cycle > old_duty_cycle) {
   426     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   427     if (new_duty_cycle > old_duty_cycle + largest_delta) {
   428       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   429     }
   430   }
   431   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   433   if (CMSTraceIncrementalPacing) {
   434     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   435                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   436   }
   437   return damped_duty_cycle;
   438 }
   440 unsigned int CMSStats::icms_update_duty_cycle_impl() {
   441   assert(CMSIncrementalPacing && valid(),
   442          "should be handled in icms_update_duty_cycle()");
   444   double cms_time_so_far = cms_timer().seconds();
   445   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   446   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   448   // Avoid division by 0.
   449   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   450   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   452   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   453   if (new_duty_cycle > _icms_duty_cycle) {
   454     // Avoid very small duty cycles (1 or 2); 0 is allowed.
   455     if (new_duty_cycle > 2) {
   456       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   457                                                 new_duty_cycle);
   458     }
   459   } else if (_allow_duty_cycle_reduction) {
   460     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   461     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   462     // Respect the minimum duty cycle.
   463     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   464     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   465   }
   467   if (PrintGCDetails || CMSTraceIncrementalPacing) {
   468     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   469   }
   471   _allow_duty_cycle_reduction = false;
   472   return _icms_duty_cycle;
   473 }
   475 #ifndef PRODUCT
   476 void CMSStats::print_on(outputStream *st) const {
   477   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   478   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   479                gc0_duration(), gc0_period(), gc0_promoted());
   480   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   481             cms_duration(), cms_duration_per_mb(),
   482             cms_period(), cms_allocated());
   483   st->print(",cms_since_beg=%g,cms_since_end=%g",
   484             cms_time_since_begin(), cms_time_since_end());
   485   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   486             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   487   if (CMSIncrementalMode) {
   488     st->print(",dc=%d", icms_duty_cycle());
   489   }
   491   if (valid()) {
   492     st->print(",promo_rate=%g,cms_alloc_rate=%g",
   493               promotion_rate(), cms_allocation_rate());
   494     st->print(",cms_consumption_rate=%g,time_until_full=%g",
   495               cms_consumption_rate(), time_until_cms_gen_full());
   496   }
   497   st->print(" ");
   498 }
   499 #endif // #ifndef PRODUCT
   501 CMSCollector::CollectorState CMSCollector::_collectorState =
   502                              CMSCollector::Idling;
   503 bool CMSCollector::_foregroundGCIsActive = false;
   504 bool CMSCollector::_foregroundGCShouldWait = false;
   506 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   507                            ConcurrentMarkSweepGeneration* permGen,
   508                            CardTableRS*                   ct,
   509                            ConcurrentMarkSweepPolicy*     cp):
   510   _cmsGen(cmsGen),
   511   _permGen(permGen),
   512   _ct(ct),
   513   _ref_processor(NULL),    // will be set later
   514   _conc_workers(NULL),     // may be set later
   515   _abort_preclean(false),
   516   _start_sampling(false),
   517   _between_prologue_and_epilogue(false),
   518   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   519   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
   520   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   521                  -1 /* lock-free */, "No_lock" /* dummy */),
   522   _modUnionClosure(&_modUnionTable),
   523   _modUnionClosurePar(&_modUnionTable),
   524   // Adjust my span to cover old (cms) gen and perm gen
   525   _span(cmsGen->reserved()._union(permGen->reserved())),
   526   // Construct the is_alive_closure with _span & markBitMap
   527   _is_alive_closure(_span, &_markBitMap),
   528   _restart_addr(NULL),
   529   _overflow_list(NULL),
   530   _preserved_oop_stack(NULL),
   531   _preserved_mark_stack(NULL),
   532   _stats(cmsGen),
   533   _eden_chunk_array(NULL),     // may be set in ctor body
   534   _eden_chunk_capacity(0),     // -- ditto --
   535   _eden_chunk_index(0),        // -- ditto --
   536   _survivor_plab_array(NULL),  // -- ditto --
   537   _survivor_chunk_array(NULL), // -- ditto --
   538   _survivor_chunk_capacity(0), // -- ditto --
   539   _survivor_chunk_index(0),    // -- ditto --
   540   _ser_pmc_preclean_ovflw(0),
   541   _ser_pmc_remark_ovflw(0),
   542   _par_pmc_remark_ovflw(0),
   543   _ser_kac_ovflw(0),
   544   _par_kac_ovflw(0),
   545 #ifndef PRODUCT
   546   _num_par_pushes(0),
   547 #endif
   548   _collection_count_start(0),
   549   _verifying(false),
   550   _icms_start_limit(NULL),
   551   _icms_stop_limit(NULL),
   552   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   553   _completed_initialization(false),
   554   _collector_policy(cp),
   555   _should_unload_classes(false),
   556   _concurrent_cycles_since_last_unload(0),
   557   _sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
   558 {
   559   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   560     ExplicitGCInvokesConcurrent = true;
   561   }
   562   // Now expand the span and allocate the collection support structures
   563   // (MUT, marking bit map etc.) to cover both generations subject to
   564   // collection.
   566   // First check that _permGen is adjacent to _cmsGen and above it.
   567   assert(   _cmsGen->reserved().word_size()  > 0
   568          && _permGen->reserved().word_size() > 0,
   569          "generations should not be of zero size");
   570   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
   571          "_cmsGen and _permGen should not overlap");
   572   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
   573          "_cmsGen->end() different from _permGen->start()");
   575   // For use by dirty card to oop closures.
   576   _cmsGen->cmsSpace()->set_collector(this);
   577   _permGen->cmsSpace()->set_collector(this);
   579   // Allocate MUT and marking bit map
   580   {
   581     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   582     if (!_markBitMap.allocate(_span)) {
   583       warning("Failed to allocate CMS Bit Map");
   584       return;
   585     }
   586     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   587   }
   588   {
   589     _modUnionTable.allocate(_span);
   590     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   591   }
   593   if (!_markStack.allocate(CMSMarkStackSize)) {
   594     warning("Failed to allocate CMS Marking Stack");
   595     return;
   596   }
   597   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
   598     warning("Failed to allocate CMS Revisit Stack");
   599     return;
   600   }
   602   // Support for multi-threaded concurrent phases
   603   if (ParallelGCThreads > 0 && CMSConcurrentMTEnabled) {
   604     if (FLAG_IS_DEFAULT(ParallelCMSThreads)) {
   605       // just for now
   606       FLAG_SET_DEFAULT(ParallelCMSThreads, (ParallelGCThreads + 3)/4);
   607     }
   608     if (ParallelCMSThreads > 1) {
   609       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   610                                  ParallelCMSThreads, true);
   611       if (_conc_workers == NULL) {
   612         warning("GC/CMS: _conc_workers allocation failure: "
   613               "forcing -CMSConcurrentMTEnabled");
   614         CMSConcurrentMTEnabled = false;
   615       }
   616     } else {
   617       CMSConcurrentMTEnabled = false;
   618     }
   619   }
   620   if (!CMSConcurrentMTEnabled) {
   621     ParallelCMSThreads = 0;
   622   } else {
   623     // Turn off CMSCleanOnEnter optimization temporarily for
   624     // the MT case where it's not fixed yet; see 6178663.
   625     CMSCleanOnEnter = false;
   626   }
   627   assert((_conc_workers != NULL) == (ParallelCMSThreads > 1),
   628          "Inconsistency");
   630   // Parallel task queues; these are shared for the
   631   // concurrent and stop-world phases of CMS, but
   632   // are not shared with parallel scavenge (ParNew).
   633   {
   634     uint i;
   635     uint num_queues = (uint) MAX2(ParallelGCThreads, ParallelCMSThreads);
   637     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   638          || ParallelRefProcEnabled)
   639         && num_queues > 0) {
   640       _task_queues = new OopTaskQueueSet(num_queues);
   641       if (_task_queues == NULL) {
   642         warning("task_queues allocation failure.");
   643         return;
   644       }
   645       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
   646       if (_hash_seed == NULL) {
   647         warning("_hash_seed array allocation failure");
   648         return;
   649       }
   651       // XXX use a global constant instead of 64!
   652       typedef struct OopTaskQueuePadded {
   653         OopTaskQueue work_queue;
   654         char pad[64 - sizeof(OopTaskQueue)];  // prevent false sharing
   655       } OopTaskQueuePadded;
   657       for (i = 0; i < num_queues; i++) {
   658         OopTaskQueuePadded *q_padded = new OopTaskQueuePadded();
   659         if (q_padded == NULL) {
   660           warning("work_queue allocation failure.");
   661           return;
   662         }
   663         _task_queues->register_queue(i, &q_padded->work_queue);
   664       }
   665       for (i = 0; i < num_queues; i++) {
   666         _task_queues->queue(i)->initialize();
   667         _hash_seed[i] = 17;  // copied from ParNew
   668       }
   669     }
   670   }
   672   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
   673   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
   675   // Clip CMSBootstrapOccupancy between 0 and 100.
   676   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
   677                          /(double)100;
   679   _full_gcs_since_conc_gc = 0;
   681   // Now tell CMS generations the identity of their collector
   682   ConcurrentMarkSweepGeneration::set_collector(this);
   684   // Create & start a CMS thread for this CMS collector
   685   _cmsThread = ConcurrentMarkSweepThread::start(this);
   686   assert(cmsThread() != NULL, "CMS Thread should have been created");
   687   assert(cmsThread()->collector() == this,
   688          "CMS Thread should refer to this gen");
   689   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   691   // Support for parallelizing young gen rescan
   692   GenCollectedHeap* gch = GenCollectedHeap::heap();
   693   _young_gen = gch->prev_gen(_cmsGen);
   694   if (gch->supports_inline_contig_alloc()) {
   695     _top_addr = gch->top_addr();
   696     _end_addr = gch->end_addr();
   697     assert(_young_gen != NULL, "no _young_gen");
   698     _eden_chunk_index = 0;
   699     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   700     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
   701     if (_eden_chunk_array == NULL) {
   702       _eden_chunk_capacity = 0;
   703       warning("GC/CMS: _eden_chunk_array allocation failure");
   704     }
   705   }
   706   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   708   // Support for parallelizing survivor space rescan
   709   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
   710     size_t max_plab_samples = MaxNewSize/((SurvivorRatio+2)*MinTLABSize);
   711     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
   712     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
   713     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
   714     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   715         || _cursor == NULL) {
   716       warning("Failed to allocate survivor plab/chunk array");
   717       if (_survivor_plab_array  != NULL) {
   718         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   719         _survivor_plab_array = NULL;
   720       }
   721       if (_survivor_chunk_array != NULL) {
   722         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   723         _survivor_chunk_array = NULL;
   724       }
   725       if (_cursor != NULL) {
   726         FREE_C_HEAP_ARRAY(size_t, _cursor);
   727         _cursor = NULL;
   728       }
   729     } else {
   730       _survivor_chunk_capacity = 2*max_plab_samples;
   731       for (uint i = 0; i < ParallelGCThreads; i++) {
   732         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
   733         if (vec == NULL) {
   734           warning("Failed to allocate survivor plab array");
   735           for (int j = i; j > 0; j--) {
   736             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
   737           }
   738           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   739           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   740           _survivor_plab_array = NULL;
   741           _survivor_chunk_array = NULL;
   742           _survivor_chunk_capacity = 0;
   743           break;
   744         } else {
   745           ChunkArray* cur =
   746             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   747                                                         max_plab_samples);
   748           assert(cur->end() == 0, "Should be 0");
   749           assert(cur->array() == vec, "Should be vec");
   750           assert(cur->capacity() == max_plab_samples, "Error");
   751         }
   752       }
   753     }
   754   }
   755   assert(   (   _survivor_plab_array  != NULL
   756              && _survivor_chunk_array != NULL)
   757          || (   _survivor_chunk_capacity == 0
   758              && _survivor_chunk_index == 0),
   759          "Error");
   761   // Choose what strong roots should be scanned depending on verification options
   762   // and perm gen collection mode.
   763   if (!CMSClassUnloadingEnabled) {
   764     // If class unloading is disabled we want to include all classes into the root set.
   765     add_root_scanning_option(SharedHeap::SO_AllClasses);
   766   } else {
   767     add_root_scanning_option(SharedHeap::SO_SystemClasses);
   768   }
   770   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   771   _gc_counters = new CollectorCounters("CMS", 1);
   772   _completed_initialization = true;
   773   _sweep_timer.start();  // start of time
   774 }
   776 const char* ConcurrentMarkSweepGeneration::name() const {
   777   return "concurrent mark-sweep generation";
   778 }
   779 void ConcurrentMarkSweepGeneration::update_counters() {
   780   if (UsePerfData) {
   781     _space_counters->update_all();
   782     _gen_counters->update_all();
   783   }
   784 }
   786 // this is an optimized version of update_counters(). it takes the
   787 // used value as a parameter rather than computing it.
   788 //
   789 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   790   if (UsePerfData) {
   791     _space_counters->update_used(used);
   792     _space_counters->update_capacity();
   793     _gen_counters->update_all();
   794   }
   795 }
   797 void ConcurrentMarkSweepGeneration::print() const {
   798   Generation::print();
   799   cmsSpace()->print();
   800 }
   802 #ifndef PRODUCT
   803 void ConcurrentMarkSweepGeneration::print_statistics() {
   804   cmsSpace()->printFLCensus(0);
   805 }
   806 #endif
   808 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   809   GenCollectedHeap* gch = GenCollectedHeap::heap();
   810   if (PrintGCDetails) {
   811     if (Verbose) {
   812       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   813         level(), short_name(), s, used(), capacity());
   814     } else {
   815       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   816         level(), short_name(), s, used() / K, capacity() / K);
   817     }
   818   }
   819   if (Verbose) {
   820     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   821               gch->used(), gch->capacity());
   822   } else {
   823     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   824               gch->used() / K, gch->capacity() / K);
   825   }
   826 }
   828 size_t
   829 ConcurrentMarkSweepGeneration::contiguous_available() const {
   830   // dld proposes an improvement in precision here. If the committed
   831   // part of the space ends in a free block we should add that to
   832   // uncommitted size in the calculation below. Will make this
   833   // change later, staying with the approximation below for the
   834   // time being. -- ysr.
   835   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   836 }
   838 size_t
   839 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   840   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   841 }
   843 size_t ConcurrentMarkSweepGeneration::max_available() const {
   844   return free() + _virtual_space.uncommitted_size();
   845 }
   847 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(
   848     size_t max_promotion_in_bytes,
   849     bool younger_handles_promotion_failure) const {
   851   // This is the most conservative test.  Full promotion is
   852   // guaranteed if this is used. The multiplicative factor is to
   853   // account for the worst case "dilatation".
   854   double adjusted_max_promo_bytes = _dilatation_factor * max_promotion_in_bytes;
   855   if (adjusted_max_promo_bytes > (double)max_uintx) { // larger than size_t
   856     adjusted_max_promo_bytes = (double)max_uintx;
   857   }
   858   bool result = (max_contiguous_available() >= (size_t)adjusted_max_promo_bytes);
   860   if (younger_handles_promotion_failure && !result) {
   861     // Full promotion is not guaranteed because fragmentation
   862     // of the cms generation can prevent the full promotion.
   863     result = (max_available() >= (size_t)adjusted_max_promo_bytes);
   865     if (!result) {
   866       // With promotion failure handling the test for the ability
   867       // to support the promotion does not have to be guaranteed.
   868       // Use an average of the amount promoted.
   869       result = max_available() >= (size_t)
   870         gc_stats()->avg_promoted()->padded_average();
   871       if (PrintGC && Verbose && result) {
   872         gclog_or_tty->print_cr(
   873           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   874           " max_available: " SIZE_FORMAT
   875           " avg_promoted: " SIZE_FORMAT,
   876           max_available(), (size_t)
   877           gc_stats()->avg_promoted()->padded_average());
   878       }
   879     } else {
   880       if (PrintGC && Verbose) {
   881         gclog_or_tty->print_cr(
   882           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   883           " max_available: " SIZE_FORMAT
   884           " adj_max_promo_bytes: " SIZE_FORMAT,
   885           max_available(), (size_t)adjusted_max_promo_bytes);
   886       }
   887     }
   888   } else {
   889     if (PrintGC && Verbose) {
   890       gclog_or_tty->print_cr(
   891         "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   892         " contiguous_available: " SIZE_FORMAT
   893         " adj_max_promo_bytes: " SIZE_FORMAT,
   894         max_contiguous_available(), (size_t)adjusted_max_promo_bytes);
   895     }
   896   }
   897   return result;
   898 }
   900 CompactibleSpace*
   901 ConcurrentMarkSweepGeneration::first_compaction_space() const {
   902   return _cmsSpace;
   903 }
   905 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   906   // Clear the promotion information.  These pointers can be adjusted
   907   // along with all the other pointers into the heap but
   908   // compaction is expected to be a rare event with
   909   // a heap using cms so don't do it without seeing the need.
   910   if (ParallelGCThreads > 0) {
   911     for (uint i = 0; i < ParallelGCThreads; i++) {
   912       _par_gc_thread_states[i]->promo.reset();
   913     }
   914   }
   915 }
   917 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   918   blk->do_space(_cmsSpace);
   919 }
   921 void ConcurrentMarkSweepGeneration::compute_new_size() {
   922   assert_locked_or_safepoint(Heap_lock);
   924   // If incremental collection failed, we just want to expand
   925   // to the limit.
   926   if (incremental_collection_failed()) {
   927     clear_incremental_collection_failed();
   928     grow_to_reserved();
   929     return;
   930   }
   932   size_t expand_bytes = 0;
   933   double free_percentage = ((double) free()) / capacity();
   934   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   935   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   937   // compute expansion delta needed for reaching desired free percentage
   938   if (free_percentage < desired_free_percentage) {
   939     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   940     assert(desired_capacity >= capacity(), "invalid expansion size");
   941     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   942   }
   943   if (expand_bytes > 0) {
   944     if (PrintGCDetails && Verbose) {
   945       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   946       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   947       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   948       gclog_or_tty->print_cr("  Desired free fraction %f",
   949         desired_free_percentage);
   950       gclog_or_tty->print_cr("  Maximum free fraction %f",
   951         maximum_free_percentage);
   952       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   953       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   954         desired_capacity/1000);
   955       int prev_level = level() - 1;
   956       if (prev_level >= 0) {
   957         size_t prev_size = 0;
   958         GenCollectedHeap* gch = GenCollectedHeap::heap();
   959         Generation* prev_gen = gch->_gens[prev_level];
   960         prev_size = prev_gen->capacity();
   961           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   962                                  prev_size/1000);
   963       }
   964       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   965         unsafe_max_alloc_nogc()/1000);
   966       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
   967         contiguous_available()/1000);
   968       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
   969         expand_bytes);
   970     }
   971     // safe if expansion fails
   972     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
   973     if (PrintGCDetails && Verbose) {
   974       gclog_or_tty->print_cr("  Expanded free fraction %f",
   975         ((double) free()) / capacity());
   976     }
   977   }
   978 }
   980 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
   981   return cmsSpace()->freelistLock();
   982 }
   984 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
   985                                                   bool   tlab) {
   986   CMSSynchronousYieldRequest yr;
   987   MutexLockerEx x(freelistLock(),
   988                   Mutex::_no_safepoint_check_flag);
   989   return have_lock_and_allocate(size, tlab);
   990 }
   992 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
   993                                                   bool   tlab) {
   994   assert_lock_strong(freelistLock());
   995   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
   996   HeapWord* res = cmsSpace()->allocate(adjustedSize);
   997   // Allocate the object live (grey) if the background collector has
   998   // started marking. This is necessary because the marker may
   999   // have passed this address and consequently this object will
  1000   // not otherwise be greyed and would be incorrectly swept up.
  1001   // Note that if this object contains references, the writing
  1002   // of those references will dirty the card containing this object
  1003   // allowing the object to be blackened (and its references scanned)
  1004   // either during a preclean phase or at the final checkpoint.
  1005   if (res != NULL) {
  1006     collector()->direct_allocated(res, adjustedSize);
  1007     _direct_allocated_words += adjustedSize;
  1008     // allocation counters
  1009     NOT_PRODUCT(
  1010       _numObjectsAllocated++;
  1011       _numWordsAllocated += (int)adjustedSize;
  1014   return res;
  1017 // In the case of direct allocation by mutators in a generation that
  1018 // is being concurrently collected, the object must be allocated
  1019 // live (grey) if the background collector has started marking.
  1020 // This is necessary because the marker may
  1021 // have passed this address and consequently this object will
  1022 // not otherwise be greyed and would be incorrectly swept up.
  1023 // Note that if this object contains references, the writing
  1024 // of those references will dirty the card containing this object
  1025 // allowing the object to be blackened (and its references scanned)
  1026 // either during a preclean phase or at the final checkpoint.
  1027 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1028   assert(_markBitMap.covers(start, size), "Out of bounds");
  1029   if (_collectorState >= Marking) {
  1030     MutexLockerEx y(_markBitMap.lock(),
  1031                     Mutex::_no_safepoint_check_flag);
  1032     // [see comments preceding SweepClosure::do_blk() below for details]
  1033     // 1. need to mark the object as live so it isn't collected
  1034     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1035     // 3. need to mark the end of the object so sweeper can skip over it
  1036     //    if it's uninitialized when the sweeper reaches it.
  1037     _markBitMap.mark(start);          // object is live
  1038     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1039     _markBitMap.mark(start + size - 1);
  1040                                       // mark end of object
  1042   // check that oop looks uninitialized
  1043   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
  1046 void CMSCollector::promoted(bool par, HeapWord* start,
  1047                             bool is_obj_array, size_t obj_size) {
  1048   assert(_markBitMap.covers(start), "Out of bounds");
  1049   // See comment in direct_allocated() about when objects should
  1050   // be allocated live.
  1051   if (_collectorState >= Marking) {
  1052     // we already hold the marking bit map lock, taken in
  1053     // the prologue
  1054     if (par) {
  1055       _markBitMap.par_mark(start);
  1056     } else {
  1057       _markBitMap.mark(start);
  1059     // We don't need to mark the object as uninitialized (as
  1060     // in direct_allocated above) because this is being done with the
  1061     // world stopped and the object will be initialized by the
  1062     // time the sweeper gets to look at it.
  1063     assert(SafepointSynchronize::is_at_safepoint(),
  1064            "expect promotion only at safepoints");
  1066     if (_collectorState < Sweeping) {
  1067       // Mark the appropriate cards in the modUnionTable, so that
  1068       // this object gets scanned before the sweep. If this is
  1069       // not done, CMS generation references in the object might
  1070       // not get marked.
  1071       // For the case of arrays, which are otherwise precisely
  1072       // marked, we need to dirty the entire array, not just its head.
  1073       if (is_obj_array) {
  1074         // The [par_]mark_range() method expects mr.end() below to
  1075         // be aligned to the granularity of a bit's representation
  1076         // in the heap. In the case of the MUT below, that's a
  1077         // card size.
  1078         MemRegion mr(start,
  1079                      (HeapWord*)round_to((intptr_t)(start + obj_size),
  1080                         CardTableModRefBS::card_size /* bytes */));
  1081         if (par) {
  1082           _modUnionTable.par_mark_range(mr);
  1083         } else {
  1084           _modUnionTable.mark_range(mr);
  1086       } else {  // not an obj array; we can just mark the head
  1087         if (par) {
  1088           _modUnionTable.par_mark(start);
  1089         } else {
  1090           _modUnionTable.mark(start);
  1097 static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1099   size_t delta = pointer_delta(addr, space->bottom());
  1100   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1103 void CMSCollector::icms_update_allocation_limits()
  1105   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1106   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1108   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1109   if (CMSTraceIncrementalPacing) {
  1110     stats().print();
  1113   assert(duty_cycle <= 100, "invalid duty cycle");
  1114   if (duty_cycle != 0) {
  1115     // The duty_cycle is a percentage between 0 and 100; convert to words and
  1116     // then compute the offset from the endpoints of the space.
  1117     size_t free_words = eden->free() / HeapWordSize;
  1118     double free_words_dbl = (double)free_words;
  1119     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1120     size_t offset_words = (free_words - duty_cycle_words) / 2;
  1122     _icms_start_limit = eden->top() + offset_words;
  1123     _icms_stop_limit = eden->end() - offset_words;
  1125     // The limits may be adjusted (shifted to the right) by
  1126     // CMSIncrementalOffset, to allow the application more mutator time after a
  1127     // young gen gc (when all mutators were stopped) and before CMS starts and
  1128     // takes away one or more cpus.
  1129     if (CMSIncrementalOffset != 0) {
  1130       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1131       size_t adjustment = (size_t)adjustment_dbl;
  1132       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1133       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1134         _icms_start_limit += adjustment;
  1135         _icms_stop_limit = tmp_stop;
  1139   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1140     _icms_start_limit = _icms_stop_limit = eden->end();
  1143   // Install the new start limit.
  1144   eden->set_soft_end(_icms_start_limit);
  1146   if (CMSTraceIncrementalMode) {
  1147     gclog_or_tty->print(" icms alloc limits:  "
  1148                            PTR_FORMAT "," PTR_FORMAT
  1149                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1150                            _icms_start_limit, _icms_stop_limit,
  1151                            percent_of_space(eden, _icms_start_limit),
  1152                            percent_of_space(eden, _icms_stop_limit));
  1153     if (Verbose) {
  1154       gclog_or_tty->print("eden:  ");
  1155       eden->print_on(gclog_or_tty);
  1160 // Any changes here should try to maintain the invariant
  1161 // that if this method is called with _icms_start_limit
  1162 // and _icms_stop_limit both NULL, then it should return NULL
  1163 // and not notify the icms thread.
  1164 HeapWord*
  1165 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1166                                        size_t word_size)
  1168   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1169   // nop.
  1170   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1171     if (top <= _icms_start_limit) {
  1172       if (CMSTraceIncrementalMode) {
  1173         space->print_on(gclog_or_tty);
  1174         gclog_or_tty->stamp();
  1175         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1176                                ", new limit=" PTR_FORMAT
  1177                                " (" SIZE_FORMAT "%%)",
  1178                                top, _icms_stop_limit,
  1179                                percent_of_space(space, _icms_stop_limit));
  1181       ConcurrentMarkSweepThread::start_icms();
  1182       assert(top < _icms_stop_limit, "Tautology");
  1183       if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1184         return _icms_stop_limit;
  1187       // The allocation will cross both the _start and _stop limits, so do the
  1188       // stop notification also and return end().
  1189       if (CMSTraceIncrementalMode) {
  1190         space->print_on(gclog_or_tty);
  1191         gclog_or_tty->stamp();
  1192         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1193                                ", new limit=" PTR_FORMAT
  1194                                " (" SIZE_FORMAT "%%)",
  1195                                top, space->end(),
  1196                                percent_of_space(space, space->end()));
  1198       ConcurrentMarkSweepThread::stop_icms();
  1199       return space->end();
  1202     if (top <= _icms_stop_limit) {
  1203       if (CMSTraceIncrementalMode) {
  1204         space->print_on(gclog_or_tty);
  1205         gclog_or_tty->stamp();
  1206         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1207                                ", new limit=" PTR_FORMAT
  1208                                " (" SIZE_FORMAT "%%)",
  1209                                top, space->end(),
  1210                                percent_of_space(space, space->end()));
  1212       ConcurrentMarkSweepThread::stop_icms();
  1213       return space->end();
  1216     if (CMSTraceIncrementalMode) {
  1217       space->print_on(gclog_or_tty);
  1218       gclog_or_tty->stamp();
  1219       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1220                              ", new limit=" PTR_FORMAT,
  1221                              top, NULL);
  1225   return NULL;
  1228 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
  1229   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1230   // allocate, copy and if necessary update promoinfo --
  1231   // delegate to underlying space.
  1232   assert_lock_strong(freelistLock());
  1234 #ifndef PRODUCT
  1235   if (Universe::heap()->promotion_should_fail()) {
  1236     return NULL;
  1238 #endif  // #ifndef PRODUCT
  1240   oop res = _cmsSpace->promote(obj, obj_size);
  1241   if (res == NULL) {
  1242     // expand and retry
  1243     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1244     expand(s*HeapWordSize, MinHeapDeltaBytes,
  1245       CMSExpansionCause::_satisfy_promotion);
  1246     // Since there's currently no next generation, we don't try to promote
  1247     // into a more senior generation.
  1248     assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1249                                "is made to pass on a possibly failing "
  1250                                "promotion to next generation");
  1251     res = _cmsSpace->promote(obj, obj_size);
  1253   if (res != NULL) {
  1254     // See comment in allocate() about when objects should
  1255     // be allocated live.
  1256     assert(obj->is_oop(), "Will dereference klass pointer below");
  1257     collector()->promoted(false,           // Not parallel
  1258                           (HeapWord*)res, obj->is_objArray(), obj_size);
  1259     // promotion counters
  1260     NOT_PRODUCT(
  1261       _numObjectsPromoted++;
  1262       _numWordsPromoted +=
  1263         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1266   return res;
  1270 HeapWord*
  1271 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1272                                              HeapWord* top,
  1273                                              size_t word_sz)
  1275   return collector()->allocation_limit_reached(space, top, word_sz);
  1278 // Things to support parallel young-gen collection.
  1279 oop
  1280 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1281                                            oop old, markOop m,
  1282                                            size_t word_sz) {
  1283 #ifndef PRODUCT
  1284   if (Universe::heap()->promotion_should_fail()) {
  1285     return NULL;
  1287 #endif  // #ifndef PRODUCT
  1289   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1290   PromotionInfo* promoInfo = &ps->promo;
  1291   // if we are tracking promotions, then first ensure space for
  1292   // promotion (including spooling space for saving header if necessary).
  1293   // then allocate and copy, then track promoted info if needed.
  1294   // When tracking (see PromotionInfo::track()), the mark word may
  1295   // be displaced and in this case restoration of the mark word
  1296   // occurs in the (oop_since_save_marks_)iterate phase.
  1297   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1298     // Out of space for allocating spooling buffers;
  1299     // try expanding and allocating spooling buffers.
  1300     if (!expand_and_ensure_spooling_space(promoInfo)) {
  1301       return NULL;
  1304   assert(promoInfo->has_spooling_space(), "Control point invariant");
  1305   HeapWord* obj_ptr = ps->lab.alloc(word_sz);
  1306   if (obj_ptr == NULL) {
  1307      obj_ptr = expand_and_par_lab_allocate(ps, word_sz);
  1308      if (obj_ptr == NULL) {
  1309        return NULL;
  1312   oop obj = oop(obj_ptr);
  1313   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1314   // Otherwise, copy the object.  Here we must be careful to insert the
  1315   // klass pointer last, since this marks the block as an allocated object.
  1316   // Except with compressed oops it's the mark word.
  1317   HeapWord* old_ptr = (HeapWord*)old;
  1318   if (word_sz > (size_t)oopDesc::header_size()) {
  1319     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1320                                  obj_ptr + oopDesc::header_size(),
  1321                                  word_sz - oopDesc::header_size());
  1324   if (UseCompressedOops) {
  1325     // Copy gap missed by (aligned) header size calculation above
  1326     obj->set_klass_gap(old->klass_gap());
  1329   // Restore the mark word copied above.
  1330   obj->set_mark(m);
  1332   // Now we can track the promoted object, if necessary.  We take care
  1333   // To delay the transition from uninitialized to full object
  1334   // (i.e., insertion of klass pointer) until after, so that it
  1335   // atomically becomes a promoted object.
  1336   if (promoInfo->tracking()) {
  1337     promoInfo->track((PromotedObject*)obj, old->klass());
  1340   // Finally, install the klass pointer (this should be volatile).
  1341   obj->set_klass(old->klass());
  1343   assert(old->is_oop(), "Will dereference klass ptr below");
  1344   collector()->promoted(true,          // parallel
  1345                         obj_ptr, old->is_objArray(), word_sz);
  1347   NOT_PRODUCT(
  1348     Atomic::inc(&_numObjectsPromoted);
  1349     Atomic::add((jint)CompactibleFreeListSpace::adjustObjectSize(obj->size()),
  1350                 &_numWordsPromoted);
  1353   return obj;
  1356 void
  1357 ConcurrentMarkSweepGeneration::
  1358 par_promote_alloc_undo(int thread_num,
  1359                        HeapWord* obj, size_t word_sz) {
  1360   // CMS does not support promotion undo.
  1361   ShouldNotReachHere();
  1364 void
  1365 ConcurrentMarkSweepGeneration::
  1366 par_promote_alloc_done(int thread_num) {
  1367   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1368   ps->lab.retire();
  1369 #if CFLS_LAB_REFILL_STATS
  1370   if (thread_num == 0) {
  1371     _cmsSpace->print_par_alloc_stats();
  1373 #endif
  1376 void
  1377 ConcurrentMarkSweepGeneration::
  1378 par_oop_since_save_marks_iterate_done(int thread_num) {
  1379   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1380   ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1381   ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1384 // XXXPERM
  1385 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1386                                                    size_t size,
  1387                                                    bool   tlab)
  1389   // We allow a STW collection only if a full
  1390   // collection was requested.
  1391   return full || should_allocate(size, tlab); // FIX ME !!!
  1392   // This and promotion failure handling are connected at the
  1393   // hip and should be fixed by untying them.
  1396 bool CMSCollector::shouldConcurrentCollect() {
  1397   if (_full_gc_requested) {
  1398     assert(ExplicitGCInvokesConcurrent, "Unexpected state");
  1399     if (Verbose && PrintGCDetails) {
  1400       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1401                              " gc request");
  1403     return true;
  1406   // For debugging purposes, change the type of collection.
  1407   // If the rotation is not on the concurrent collection
  1408   // type, don't start a concurrent collection.
  1409   NOT_PRODUCT(
  1410     if (RotateCMSCollectionTypes &&
  1411         (_cmsGen->debug_collection_type() !=
  1412           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1413       assert(_cmsGen->debug_collection_type() !=
  1414         ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1415         "Bad cms collection type");
  1416       return false;
  1420   FreelistLocker x(this);
  1421   // ------------------------------------------------------------------
  1422   // Print out lots of information which affects the initiation of
  1423   // a collection.
  1424   if (PrintCMSInitiationStatistics && stats().valid()) {
  1425     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1426     gclog_or_tty->stamp();
  1427     gclog_or_tty->print_cr("");
  1428     stats().print_on(gclog_or_tty);
  1429     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1430       stats().time_until_cms_gen_full());
  1431     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1432     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1433                            _cmsGen->contiguous_available());
  1434     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1435     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1436     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1437     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
  1438     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
  1440   // ------------------------------------------------------------------
  1442   // If the estimated time to complete a cms collection (cms_duration())
  1443   // is less than the estimated time remaining until the cms generation
  1444   // is full, start a collection.
  1445   if (!UseCMSInitiatingOccupancyOnly) {
  1446     if (stats().valid()) {
  1447       if (stats().time_until_cms_start() == 0.0) {
  1448         return true;
  1450     } else {
  1451       // We want to conservatively collect somewhat early in order
  1452       // to try and "bootstrap" our CMS/promotion statistics;
  1453       // this branch will not fire after the first successful CMS
  1454       // collection because the stats should then be valid.
  1455       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1456         if (Verbose && PrintGCDetails) {
  1457           gclog_or_tty->print_cr(
  1458             " CMSCollector: collect for bootstrapping statistics:"
  1459             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1460             _bootstrap_occupancy);
  1462         return true;
  1467   // Otherwise, we start a collection cycle if either the perm gen or
  1468   // old gen want a collection cycle started. Each may use
  1469   // an appropriate criterion for making this decision.
  1470   // XXX We need to make sure that the gen expansion
  1471   // criterion dovetails well with this. XXX NEED TO FIX THIS
  1472   if (_cmsGen->should_concurrent_collect()) {
  1473     if (Verbose && PrintGCDetails) {
  1474       gclog_or_tty->print_cr("CMS old gen initiated");
  1476     return true;
  1479   // We start a collection if we believe an incremental collection may fail;
  1480   // this is not likely to be productive in practice because it's probably too
  1481   // late anyway.
  1482   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1483   assert(gch->collector_policy()->is_two_generation_policy(),
  1484          "You may want to check the correctness of the following");
  1485   if (gch->incremental_collection_will_fail()) {
  1486     if (PrintGCDetails && Verbose) {
  1487       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
  1489     return true;
  1492   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
  1493     bool res = update_should_unload_classes();
  1494     if (res) {
  1495       if (Verbose && PrintGCDetails) {
  1496         gclog_or_tty->print_cr("CMS perm gen initiated");
  1498       return true;
  1501   return false;
  1504 // Clear _expansion_cause fields of constituent generations
  1505 void CMSCollector::clear_expansion_cause() {
  1506   _cmsGen->clear_expansion_cause();
  1507   _permGen->clear_expansion_cause();
  1510 // We should be conservative in starting a collection cycle.  To
  1511 // start too eagerly runs the risk of collecting too often in the
  1512 // extreme.  To collect too rarely falls back on full collections,
  1513 // which works, even if not optimum in terms of concurrent work.
  1514 // As a work around for too eagerly collecting, use the flag
  1515 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1516 // giving the user an easily understandable way of controlling the
  1517 // collections.
  1518 // We want to start a new collection cycle if any of the following
  1519 // conditions hold:
  1520 // . our current occupancy exceeds the configured initiating occupancy
  1521 //   for this generation, or
  1522 // . we recently needed to expand this space and have not, since that
  1523 //   expansion, done a collection of this generation, or
  1524 // . the underlying space believes that it may be a good idea to initiate
  1525 //   a concurrent collection (this may be based on criteria such as the
  1526 //   following: the space uses linear allocation and linear allocation is
  1527 //   going to fail, or there is believed to be excessive fragmentation in
  1528 //   the generation, etc... or ...
  1529 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
  1530 //   the case of the old generation, not the perm generation; see CR 6543076):
  1531 //   we may be approaching a point at which allocation requests may fail because
  1532 //   we will be out of sufficient free space given allocation rate estimates.]
  1533 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
  1535   assert_lock_strong(freelistLock());
  1536   if (occupancy() > initiating_occupancy()) {
  1537     if (PrintGCDetails && Verbose) {
  1538       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1539         short_name(), occupancy(), initiating_occupancy());
  1541     return true;
  1543   if (UseCMSInitiatingOccupancyOnly) {
  1544     return false;
  1546   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1547     if (PrintGCDetails && Verbose) {
  1548       gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1549         short_name());
  1551     return true;
  1553   if (_cmsSpace->should_concurrent_collect()) {
  1554     if (PrintGCDetails && Verbose) {
  1555       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
  1556         short_name());
  1558     return true;
  1560   return false;
  1563 void ConcurrentMarkSweepGeneration::collect(bool   full,
  1564                                             bool   clear_all_soft_refs,
  1565                                             size_t size,
  1566                                             bool   tlab)
  1568   collector()->collect(full, clear_all_soft_refs, size, tlab);
  1571 void CMSCollector::collect(bool   full,
  1572                            bool   clear_all_soft_refs,
  1573                            size_t size,
  1574                            bool   tlab)
  1576   if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1577     // For debugging purposes skip the collection if the state
  1578     // is not currently idle
  1579     if (TraceCMSState) {
  1580       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1581         Thread::current(), full, _collectorState);
  1583     return;
  1586   // The following "if" branch is present for defensive reasons.
  1587   // In the current uses of this interface, it can be replaced with:
  1588   // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1589   // But I am not placing that assert here to allow future
  1590   // generality in invoking this interface.
  1591   if (GC_locker::is_active()) {
  1592     // A consistency test for GC_locker
  1593     assert(GC_locker::needs_gc(), "Should have been set already");
  1594     // Skip this foreground collection, instead
  1595     // expanding the heap if necessary.
  1596     // Need the free list locks for the call to free() in compute_new_size()
  1597     compute_new_size();
  1598     return;
  1600   acquire_control_and_collect(full, clear_all_soft_refs);
  1601   _full_gcs_since_conc_gc++;
  1605 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
  1606   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1607   unsigned int gc_count = gch->total_full_collections();
  1608   if (gc_count == full_gc_count) {
  1609     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1610     _full_gc_requested = true;
  1611     CGC_lock->notify();   // nudge CMS thread
  1616 // The foreground and background collectors need to coordinate in order
  1617 // to make sure that they do not mutually interfere with CMS collections.
  1618 // When a background collection is active,
  1619 // the foreground collector may need to take over (preempt) and
  1620 // synchronously complete an ongoing collection. Depending on the
  1621 // frequency of the background collections and the heap usage
  1622 // of the application, this preemption can be seldom or frequent.
  1623 // There are only certain
  1624 // points in the background collection that the "collection-baton"
  1625 // can be passed to the foreground collector.
  1626 //
  1627 // The foreground collector will wait for the baton before
  1628 // starting any part of the collection.  The foreground collector
  1629 // will only wait at one location.
  1630 //
  1631 // The background collector will yield the baton before starting a new
  1632 // phase of the collection (e.g., before initial marking, marking from roots,
  1633 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1634 // of the loop which switches the phases. The background collector does some
  1635 // of the phases (initial mark, final re-mark) with the world stopped.
  1636 // Because of locking involved in stopping the world,
  1637 // the foreground collector should not block waiting for the background
  1638 // collector when it is doing a stop-the-world phase.  The background
  1639 // collector will yield the baton at an additional point just before
  1640 // it enters a stop-the-world phase.  Once the world is stopped, the
  1641 // background collector checks the phase of the collection.  If the
  1642 // phase has not changed, it proceeds with the collection.  If the
  1643 // phase has changed, it skips that phase of the collection.  See
  1644 // the comments on the use of the Heap_lock in collect_in_background().
  1645 //
  1646 // Variable used in baton passing.
  1647 //   _foregroundGCIsActive - Set to true by the foreground collector when
  1648 //      it wants the baton.  The foreground clears it when it has finished
  1649 //      the collection.
  1650 //   _foregroundGCShouldWait - Set to true by the background collector
  1651 //        when it is running.  The foreground collector waits while
  1652 //      _foregroundGCShouldWait is true.
  1653 //  CGC_lock - monitor used to protect access to the above variables
  1654 //      and to notify the foreground and background collectors.
  1655 //  _collectorState - current state of the CMS collection.
  1656 //
  1657 // The foreground collector
  1658 //   acquires the CGC_lock
  1659 //   sets _foregroundGCIsActive
  1660 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1661 //     various locks acquired in preparation for the collection
  1662 //     are released so as not to block the background collector
  1663 //     that is in the midst of a collection
  1664 //   proceeds with the collection
  1665 //   clears _foregroundGCIsActive
  1666 //   returns
  1667 //
  1668 // The background collector in a loop iterating on the phases of the
  1669 //      collection
  1670 //   acquires the CGC_lock
  1671 //   sets _foregroundGCShouldWait
  1672 //   if _foregroundGCIsActive is set
  1673 //     clears _foregroundGCShouldWait, notifies _CGC_lock
  1674 //     waits on _CGC_lock for _foregroundGCIsActive to become false
  1675 //     and exits the loop.
  1676 //   otherwise
  1677 //     proceed with that phase of the collection
  1678 //     if the phase is a stop-the-world phase,
  1679 //       yield the baton once more just before enqueueing
  1680 //       the stop-world CMS operation (executed by the VM thread).
  1681 //   returns after all phases of the collection are done
  1682 //
  1684 void CMSCollector::acquire_control_and_collect(bool full,
  1685         bool clear_all_soft_refs) {
  1686   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1687   assert(!Thread::current()->is_ConcurrentGC_thread(),
  1688          "shouldn't try to acquire control from self!");
  1690   // Start the protocol for acquiring control of the
  1691   // collection from the background collector (aka CMS thread).
  1692   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1693          "VM thread should have CMS token");
  1694   // Remember the possibly interrupted state of an ongoing
  1695   // concurrent collection
  1696   CollectorState first_state = _collectorState;
  1698   // Signal to a possibly ongoing concurrent collection that
  1699   // we want to do a foreground collection.
  1700   _foregroundGCIsActive = true;
  1702   // Disable incremental mode during a foreground collection.
  1703   ICMSDisabler icms_disabler;
  1705   // release locks and wait for a notify from the background collector
  1706   // releasing the locks in only necessary for phases which
  1707   // do yields to improve the granularity of the collection.
  1708   assert_lock_strong(bitMapLock());
  1709   // We need to lock the Free list lock for the space that we are
  1710   // currently collecting.
  1711   assert(haveFreelistLocks(), "Must be holding free list locks");
  1712   bitMapLock()->unlock();
  1713   releaseFreelistLocks();
  1715     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1716     if (_foregroundGCShouldWait) {
  1717       // We are going to be waiting for action for the CMS thread;
  1718       // it had better not be gone (for instance at shutdown)!
  1719       assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1720              "CMS thread must be running");
  1721       // Wait here until the background collector gives us the go-ahead
  1722       ConcurrentMarkSweepThread::clear_CMS_flag(
  1723         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1724       // Get a possibly blocked CMS thread going:
  1725       //   Note that we set _foregroundGCIsActive true above,
  1726       //   without protection of the CGC_lock.
  1727       CGC_lock->notify();
  1728       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1729              "Possible deadlock");
  1730       while (_foregroundGCShouldWait) {
  1731         // wait for notification
  1732         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1733         // Possibility of delay/starvation here, since CMS token does
  1734         // not know to give priority to VM thread? Actually, i think
  1735         // there wouldn't be any delay/starvation, but the proof of
  1736         // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1738       ConcurrentMarkSweepThread::set_CMS_flag(
  1739         ConcurrentMarkSweepThread::CMS_vm_has_token);
  1742   // The CMS_token is already held.  Get back the other locks.
  1743   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1744          "VM thread should have CMS token");
  1745   getFreelistLocks();
  1746   bitMapLock()->lock_without_safepoint_check();
  1747   if (TraceCMSState) {
  1748     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1749       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1750     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1753   // Check if we need to do a compaction, or if not, whether
  1754   // we need to start the mark-sweep from scratch.
  1755   bool should_compact    = false;
  1756   bool should_start_over = false;
  1757   decide_foreground_collection_type(clear_all_soft_refs,
  1758     &should_compact, &should_start_over);
  1760 NOT_PRODUCT(
  1761   if (RotateCMSCollectionTypes) {
  1762     if (_cmsGen->debug_collection_type() ==
  1763         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1764       should_compact = true;
  1765     } else if (_cmsGen->debug_collection_type() ==
  1766                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1767       should_compact = false;
  1772   if (PrintGCDetails && first_state > Idling) {
  1773     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1774     if (GCCause::is_user_requested_gc(cause) ||
  1775         GCCause::is_serviceability_requested_gc(cause)) {
  1776       gclog_or_tty->print(" (concurrent mode interrupted)");
  1777     } else {
  1778       gclog_or_tty->print(" (concurrent mode failure)");
  1782   if (should_compact) {
  1783     // If the collection is being acquired from the background
  1784     // collector, there may be references on the discovered
  1785     // references lists that have NULL referents (being those
  1786     // that were concurrently cleared by a mutator) or
  1787     // that are no longer active (having been enqueued concurrently
  1788     // by the mutator).
  1789     // Scrub the list of those references because Mark-Sweep-Compact
  1790     // code assumes referents are not NULL and that all discovered
  1791     // Reference objects are active.
  1792     ref_processor()->clean_up_discovered_references();
  1794     do_compaction_work(clear_all_soft_refs);
  1796     // Has the GC time limit been exceeded?
  1797     check_gc_time_limit();
  1799   } else {
  1800     do_mark_sweep_work(clear_all_soft_refs, first_state,
  1801       should_start_over);
  1803   // Reset the expansion cause, now that we just completed
  1804   // a collection cycle.
  1805   clear_expansion_cause();
  1806   _foregroundGCIsActive = false;
  1807   return;
  1810 void CMSCollector::check_gc_time_limit() {
  1812   // Ignore explicit GC's.  Exiting here does not set the flag and
  1813   // does not reset the count.  Updating of the averages for system
  1814   // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
  1815   GCCause::Cause gc_cause = GenCollectedHeap::heap()->gc_cause();
  1816   if (GCCause::is_user_requested_gc(gc_cause) ||
  1817       GCCause::is_serviceability_requested_gc(gc_cause)) {
  1818     return;
  1821   // Calculate the fraction of the CMS generation was freed during
  1822   // the last collection.
  1823   // Only consider the STW compacting cost for now.
  1824   //
  1825   // Note that the gc time limit test only works for the collections
  1826   // of the young gen + tenured gen and not for collections of the
  1827   // permanent gen.  That is because the calculation of the space
  1828   // freed by the collection is the free space in the young gen +
  1829   // tenured gen.
  1831   double fraction_free =
  1832     ((double)_cmsGen->free())/((double)_cmsGen->max_capacity());
  1833   if ((100.0 * size_policy()->compacting_gc_cost()) >
  1834          ((double) GCTimeLimit) &&
  1835         ((fraction_free * 100) < GCHeapFreeLimit)) {
  1836     size_policy()->inc_gc_time_limit_count();
  1837     if (UseGCOverheadLimit &&
  1838         (size_policy()->gc_time_limit_count() >
  1839          AdaptiveSizePolicyGCTimeLimitThreshold)) {
  1840       size_policy()->set_gc_time_limit_exceeded(true);
  1841       // Avoid consecutive OOM due to the gc time limit by resetting
  1842       // the counter.
  1843       size_policy()->reset_gc_time_limit_count();
  1844       if (PrintGCDetails) {
  1845         gclog_or_tty->print_cr("      GC is exceeding overhead limit "
  1846           "of %d%%", GCTimeLimit);
  1848     } else {
  1849       if (PrintGCDetails) {
  1850         gclog_or_tty->print_cr("      GC would exceed overhead limit "
  1851           "of %d%%", GCTimeLimit);
  1854   } else {
  1855     size_policy()->reset_gc_time_limit_count();
  1859 // Resize the perm generation and the tenured generation
  1860 // after obtaining the free list locks for the
  1861 // two generations.
  1862 void CMSCollector::compute_new_size() {
  1863   assert_locked_or_safepoint(Heap_lock);
  1864   FreelistLocker z(this);
  1865   _permGen->compute_new_size();
  1866   _cmsGen->compute_new_size();
  1869 // A work method used by foreground collection to determine
  1870 // what type of collection (compacting or not, continuing or fresh)
  1871 // it should do.
  1872 // NOTE: the intent is to make UseCMSCompactAtFullCollection
  1873 // and CMSCompactWhenClearAllSoftRefs the default in the future
  1874 // and do away with the flags after a suitable period.
  1875 void CMSCollector::decide_foreground_collection_type(
  1876   bool clear_all_soft_refs, bool* should_compact,
  1877   bool* should_start_over) {
  1878   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1879   // flag is set, and we have either requested a System.gc() or
  1880   // the number of full gc's since the last concurrent cycle
  1881   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1882   // or if an incremental collection has failed
  1883   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1884   assert(gch->collector_policy()->is_two_generation_policy(),
  1885          "You may want to check the correctness of the following");
  1886   // Inform cms gen if this was due to partial collection failing.
  1887   // The CMS gen may use this fact to determine its expansion policy.
  1888   if (gch->incremental_collection_will_fail()) {
  1889     assert(!_cmsGen->incremental_collection_failed(),
  1890            "Should have been noticed, reacted to and cleared");
  1891     _cmsGen->set_incremental_collection_failed();
  1893   *should_compact =
  1894     UseCMSCompactAtFullCollection &&
  1895     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1896      GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1897      gch->incremental_collection_will_fail());
  1898   *should_start_over = false;
  1899   if (clear_all_soft_refs && !*should_compact) {
  1900     // We are about to do a last ditch collection attempt
  1901     // so it would normally make sense to do a compaction
  1902     // to reclaim as much space as possible.
  1903     if (CMSCompactWhenClearAllSoftRefs) {
  1904       // Default: The rationale is that in this case either
  1905       // we are past the final marking phase, in which case
  1906       // we'd have to start over, or so little has been done
  1907       // that there's little point in saving that work. Compaction
  1908       // appears to be the sensible choice in either case.
  1909       *should_compact = true;
  1910     } else {
  1911       // We have been asked to clear all soft refs, but not to
  1912       // compact. Make sure that we aren't past the final checkpoint
  1913       // phase, for that is where we process soft refs. If we are already
  1914       // past that phase, we'll need to redo the refs discovery phase and
  1915       // if necessary clear soft refs that weren't previously
  1916       // cleared. We do so by remembering the phase in which
  1917       // we came in, and if we are past the refs processing
  1918       // phase, we'll choose to just redo the mark-sweep
  1919       // collection from scratch.
  1920       if (_collectorState > FinalMarking) {
  1921         // We are past the refs processing phase;
  1922         // start over and do a fresh synchronous CMS cycle
  1923         _collectorState = Resetting; // skip to reset to start new cycle
  1924         reset(false /* == !asynch */);
  1925         *should_start_over = true;
  1926       } // else we can continue a possibly ongoing current cycle
  1931 // A work method used by the foreground collector to do
  1932 // a mark-sweep-compact.
  1933 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  1934   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1935   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
  1936   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  1937     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  1938       "collections passed to foreground collector", _full_gcs_since_conc_gc);
  1941   // Sample collection interval time and reset for collection pause.
  1942   if (UseAdaptiveSizePolicy) {
  1943     size_policy()->msc_collection_begin();
  1946   // Temporarily widen the span of the weak reference processing to
  1947   // the entire heap.
  1948   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  1949   ReferenceProcessorSpanMutator x(ref_processor(), new_span);
  1951   // Temporarily, clear the "is_alive_non_header" field of the
  1952   // reference processor.
  1953   ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
  1955   // Temporarily make reference _processing_ single threaded (non-MT).
  1956   ReferenceProcessorMTProcMutator z(ref_processor(), false);
  1958   // Temporarily make refs discovery atomic
  1959   ReferenceProcessorAtomicMutator w(ref_processor(), true);
  1961   ref_processor()->set_enqueuing_is_done(false);
  1962   ref_processor()->enable_discovery();
  1963   // If an asynchronous collection finishes, the _modUnionTable is
  1964   // all clear.  If we are assuming the collection from an asynchronous
  1965   // collection, clear the _modUnionTable.
  1966   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  1967     "_modUnionTable should be clear if the baton was not passed");
  1968   _modUnionTable.clear_all();
  1970   // We must adjust the allocation statistics being maintained
  1971   // in the free list space. We do so by reading and clearing
  1972   // the sweep timer and updating the block flux rate estimates below.
  1973   assert(_sweep_timer.is_active(), "We should never see the timer inactive");
  1974   _sweep_timer.stop();
  1975   // Note that we do not use this sample to update the _sweep_estimate.
  1976   _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  1977                                           _sweep_estimate.padded_average());
  1979   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  1980     ref_processor(), clear_all_soft_refs);
  1981   #ifdef ASSERT
  1982     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  1983     size_t free_size = cms_space->free();
  1984     assert(free_size ==
  1985            pointer_delta(cms_space->end(), cms_space->compaction_top())
  1986            * HeapWordSize,
  1987       "All the free space should be compacted into one chunk at top");
  1988     assert(cms_space->dictionary()->totalChunkSize(
  1989                                       debug_only(cms_space->freelistLock())) == 0 ||
  1990            cms_space->totalSizeInIndexedFreeLists() == 0,
  1991       "All the free space should be in a single chunk");
  1992     size_t num = cms_space->totalCount();
  1993     assert((free_size == 0 && num == 0) ||
  1994            (free_size > 0  && (num == 1 || num == 2)),
  1995          "There should be at most 2 free chunks after compaction");
  1996   #endif // ASSERT
  1997   _collectorState = Resetting;
  1998   assert(_restart_addr == NULL,
  1999          "Should have been NULL'd before baton was passed");
  2000   reset(false /* == !asynch */);
  2001   _cmsGen->reset_after_compaction();
  2002   _concurrent_cycles_since_last_unload = 0;
  2004   if (verifying() && !should_unload_classes()) {
  2005     perm_gen_verify_bit_map()->clear_all();
  2008   // Clear any data recorded in the PLAB chunk arrays.
  2009   if (_survivor_plab_array != NULL) {
  2010     reset_survivor_plab_arrays();
  2013   // Adjust the per-size allocation stats for the next epoch.
  2014   _cmsGen->cmsSpace()->endSweepFLCensus(sweepCount() /* fake */);
  2015   // Restart the "sweep timer" for next epoch.
  2016   _sweep_timer.reset();
  2017   _sweep_timer.start();
  2019   // Sample collection pause time and reset for collection interval.
  2020   if (UseAdaptiveSizePolicy) {
  2021     size_policy()->msc_collection_end(gch->gc_cause());
  2024   // For a mark-sweep-compact, compute_new_size() will be called
  2025   // in the heap's do_collection() method.
  2028 // A work method used by the foreground collector to do
  2029 // a mark-sweep, after taking over from a possibly on-going
  2030 // concurrent mark-sweep collection.
  2031 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  2032   CollectorState first_state, bool should_start_over) {
  2033   if (PrintGC && Verbose) {
  2034     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  2035       "collector with count %d",
  2036       _full_gcs_since_conc_gc);
  2038   switch (_collectorState) {
  2039     case Idling:
  2040       if (first_state == Idling || should_start_over) {
  2041         // The background GC was not active, or should
  2042         // restarted from scratch;  start the cycle.
  2043         _collectorState = InitialMarking;
  2045       // If first_state was not Idling, then a background GC
  2046       // was in progress and has now finished.  No need to do it
  2047       // again.  Leave the state as Idling.
  2048       break;
  2049     case Precleaning:
  2050       // In the foreground case don't do the precleaning since
  2051       // it is not done concurrently and there is extra work
  2052       // required.
  2053       _collectorState = FinalMarking;
  2055   if (PrintGCDetails &&
  2056       (_collectorState > Idling ||
  2057        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
  2058     gclog_or_tty->print(" (concurrent mode failure)");
  2060   collect_in_foreground(clear_all_soft_refs);
  2062   // For a mark-sweep, compute_new_size() will be called
  2063   // in the heap's do_collection() method.
  2067 void CMSCollector::getFreelistLocks() const {
  2068   // Get locks for all free lists in all generations that this
  2069   // collector is responsible for
  2070   _cmsGen->freelistLock()->lock_without_safepoint_check();
  2071   _permGen->freelistLock()->lock_without_safepoint_check();
  2074 void CMSCollector::releaseFreelistLocks() const {
  2075   // Release locks for all free lists in all generations that this
  2076   // collector is responsible for
  2077   _cmsGen->freelistLock()->unlock();
  2078   _permGen->freelistLock()->unlock();
  2081 bool CMSCollector::haveFreelistLocks() const {
  2082   // Check locks for all free lists in all generations that this
  2083   // collector is responsible for
  2084   assert_lock_strong(_cmsGen->freelistLock());
  2085   assert_lock_strong(_permGen->freelistLock());
  2086   PRODUCT_ONLY(ShouldNotReachHere());
  2087   return true;
  2090 // A utility class that is used by the CMS collector to
  2091 // temporarily "release" the foreground collector from its
  2092 // usual obligation to wait for the background collector to
  2093 // complete an ongoing phase before proceeding.
  2094 class ReleaseForegroundGC: public StackObj {
  2095  private:
  2096   CMSCollector* _c;
  2097  public:
  2098   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  2099     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  2100     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2101     // allow a potentially blocked foreground collector to proceed
  2102     _c->_foregroundGCShouldWait = false;
  2103     if (_c->_foregroundGCIsActive) {
  2104       CGC_lock->notify();
  2106     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2107            "Possible deadlock");
  2110   ~ReleaseForegroundGC() {
  2111     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  2112     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2113     _c->_foregroundGCShouldWait = true;
  2115 };
  2117 // There are separate collect_in_background and collect_in_foreground because of
  2118 // the different locking requirements of the background collector and the
  2119 // foreground collector.  There was originally an attempt to share
  2120 // one "collect" method between the background collector and the foreground
  2121 // collector but the if-then-else required made it cleaner to have
  2122 // separate methods.
  2123 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
  2124   assert(Thread::current()->is_ConcurrentGC_thread(),
  2125     "A CMS asynchronous collection is only allowed on a CMS thread.");
  2127   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2129     bool safepoint_check = Mutex::_no_safepoint_check_flag;
  2130     MutexLockerEx hl(Heap_lock, safepoint_check);
  2131     FreelistLocker fll(this);
  2132     MutexLockerEx x(CGC_lock, safepoint_check);
  2133     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  2134       // The foreground collector is active or we're
  2135       // not using asynchronous collections.  Skip this
  2136       // background collection.
  2137       assert(!_foregroundGCShouldWait, "Should be clear");
  2138       return;
  2139     } else {
  2140       assert(_collectorState == Idling, "Should be idling before start.");
  2141       _collectorState = InitialMarking;
  2142       // Reset the expansion cause, now that we are about to begin
  2143       // a new cycle.
  2144       clear_expansion_cause();
  2146     // Decide if we want to enable class unloading as part of the
  2147     // ensuing concurrent GC cycle.
  2148     update_should_unload_classes();
  2149     _full_gc_requested = false;           // acks all outstanding full gc requests
  2150     // Signal that we are about to start a collection
  2151     gch->increment_total_full_collections();  // ... starting a collection cycle
  2152     _collection_count_start = gch->total_full_collections();
  2155   // Used for PrintGC
  2156   size_t prev_used;
  2157   if (PrintGC && Verbose) {
  2158     prev_used = _cmsGen->used(); // XXXPERM
  2161   // The change of the collection state is normally done at this level;
  2162   // the exceptions are phases that are executed while the world is
  2163   // stopped.  For those phases the change of state is done while the
  2164   // world is stopped.  For baton passing purposes this allows the
  2165   // background collector to finish the phase and change state atomically.
  2166   // The foreground collector cannot wait on a phase that is done
  2167   // while the world is stopped because the foreground collector already
  2168   // has the world stopped and would deadlock.
  2169   while (_collectorState != Idling) {
  2170     if (TraceCMSState) {
  2171       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2172         Thread::current(), _collectorState);
  2174     // The foreground collector
  2175     //   holds the Heap_lock throughout its collection.
  2176     //   holds the CMS token (but not the lock)
  2177     //     except while it is waiting for the background collector to yield.
  2178     //
  2179     // The foreground collector should be blocked (not for long)
  2180     //   if the background collector is about to start a phase
  2181     //   executed with world stopped.  If the background
  2182     //   collector has already started such a phase, the
  2183     //   foreground collector is blocked waiting for the
  2184     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  2185     //   are executed in the VM thread.
  2186     //
  2187     // The locking order is
  2188     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  2189     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  2190     //   CMS token  (claimed in
  2191     //                stop_world_and_do() -->
  2192     //                  safepoint_synchronize() -->
  2193     //                    CMSThread::synchronize())
  2196       // Check if the FG collector wants us to yield.
  2197       CMSTokenSync x(true); // is cms thread
  2198       if (waitForForegroundGC()) {
  2199         // We yielded to a foreground GC, nothing more to be
  2200         // done this round.
  2201         assert(_foregroundGCShouldWait == false, "We set it to false in "
  2202                "waitForForegroundGC()");
  2203         if (TraceCMSState) {
  2204           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2205             " exiting collection CMS state %d",
  2206             Thread::current(), _collectorState);
  2208         return;
  2209       } else {
  2210         // The background collector can run but check to see if the
  2211         // foreground collector has done a collection while the
  2212         // background collector was waiting to get the CGC_lock
  2213         // above.  If yes, break so that _foregroundGCShouldWait
  2214         // is cleared before returning.
  2215         if (_collectorState == Idling) {
  2216           break;
  2221     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  2222       "should be waiting");
  2224     switch (_collectorState) {
  2225       case InitialMarking:
  2227           ReleaseForegroundGC x(this);
  2228           stats().record_cms_begin();
  2230           VM_CMS_Initial_Mark initial_mark_op(this);
  2231           VMThread::execute(&initial_mark_op);
  2233         // The collector state may be any legal state at this point
  2234         // since the background collector may have yielded to the
  2235         // foreground collector.
  2236         break;
  2237       case Marking:
  2238         // initial marking in checkpointRootsInitialWork has been completed
  2239         if (markFromRoots(true)) { // we were successful
  2240           assert(_collectorState == Precleaning, "Collector state should "
  2241             "have changed");
  2242         } else {
  2243           assert(_foregroundGCIsActive, "Internal state inconsistency");
  2245         break;
  2246       case Precleaning:
  2247         if (UseAdaptiveSizePolicy) {
  2248           size_policy()->concurrent_precleaning_begin();
  2250         // marking from roots in markFromRoots has been completed
  2251         preclean();
  2252         if (UseAdaptiveSizePolicy) {
  2253           size_policy()->concurrent_precleaning_end();
  2255         assert(_collectorState == AbortablePreclean ||
  2256                _collectorState == FinalMarking,
  2257                "Collector state should have changed");
  2258         break;
  2259       case AbortablePreclean:
  2260         if (UseAdaptiveSizePolicy) {
  2261         size_policy()->concurrent_phases_resume();
  2263         abortable_preclean();
  2264         if (UseAdaptiveSizePolicy) {
  2265           size_policy()->concurrent_precleaning_end();
  2267         assert(_collectorState == FinalMarking, "Collector state should "
  2268           "have changed");
  2269         break;
  2270       case FinalMarking:
  2272           ReleaseForegroundGC x(this);
  2274           VM_CMS_Final_Remark final_remark_op(this);
  2275           VMThread::execute(&final_remark_op);
  2277         assert(_foregroundGCShouldWait, "block post-condition");
  2278         break;
  2279       case Sweeping:
  2280         if (UseAdaptiveSizePolicy) {
  2281           size_policy()->concurrent_sweeping_begin();
  2283         // final marking in checkpointRootsFinal has been completed
  2284         sweep(true);
  2285         assert(_collectorState == Resizing, "Collector state change "
  2286           "to Resizing must be done under the free_list_lock");
  2287         _full_gcs_since_conc_gc = 0;
  2289         // Stop the timers for adaptive size policy for the concurrent phases
  2290         if (UseAdaptiveSizePolicy) {
  2291           size_policy()->concurrent_sweeping_end();
  2292           size_policy()->concurrent_phases_end(gch->gc_cause(),
  2293                                              gch->prev_gen(_cmsGen)->capacity(),
  2294                                              _cmsGen->free());
  2297       case Resizing: {
  2298         // Sweeping has been completed...
  2299         // At this point the background collection has completed.
  2300         // Don't move the call to compute_new_size() down
  2301         // into code that might be executed if the background
  2302         // collection was preempted.
  2304           ReleaseForegroundGC x(this);   // unblock FG collection
  2305           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  2306           CMSTokenSync        z(true);   // not strictly needed.
  2307           if (_collectorState == Resizing) {
  2308             compute_new_size();
  2309             _collectorState = Resetting;
  2310           } else {
  2311             assert(_collectorState == Idling, "The state should only change"
  2312                    " because the foreground collector has finished the collection");
  2315         break;
  2317       case Resetting:
  2318         // CMS heap resizing has been completed
  2319         reset(true);
  2320         assert(_collectorState == Idling, "Collector state should "
  2321           "have changed");
  2322         stats().record_cms_end();
  2323         // Don't move the concurrent_phases_end() and compute_new_size()
  2324         // calls to here because a preempted background collection
  2325         // has it's state set to "Resetting".
  2326         break;
  2327       case Idling:
  2328       default:
  2329         ShouldNotReachHere();
  2330         break;
  2332     if (TraceCMSState) {
  2333       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2334         Thread::current(), _collectorState);
  2336     assert(_foregroundGCShouldWait, "block post-condition");
  2339   // Should this be in gc_epilogue?
  2340   collector_policy()->counters()->update_counters();
  2343     // Clear _foregroundGCShouldWait and, in the event that the
  2344     // foreground collector is waiting, notify it, before
  2345     // returning.
  2346     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2347     _foregroundGCShouldWait = false;
  2348     if (_foregroundGCIsActive) {
  2349       CGC_lock->notify();
  2351     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2352            "Possible deadlock");
  2354   if (TraceCMSState) {
  2355     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2356       " exiting collection CMS state %d",
  2357       Thread::current(), _collectorState);
  2359   if (PrintGC && Verbose) {
  2360     _cmsGen->print_heap_change(prev_used);
  2364 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
  2365   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  2366          "Foreground collector should be waiting, not executing");
  2367   assert(Thread::current()->is_VM_thread(), "A foreground collection"
  2368     "may only be done by the VM Thread with the world stopped");
  2369   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  2370          "VM thread should have CMS token");
  2372   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  2373     true, gclog_or_tty);)
  2374   if (UseAdaptiveSizePolicy) {
  2375     size_policy()->ms_collection_begin();
  2377   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  2379   HandleMark hm;  // Discard invalid handles created during verification
  2381   if (VerifyBeforeGC &&
  2382       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2383     Universe::verify(true);
  2386   bool init_mark_was_synchronous = false; // until proven otherwise
  2387   while (_collectorState != Idling) {
  2388     if (TraceCMSState) {
  2389       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2390         Thread::current(), _collectorState);
  2392     switch (_collectorState) {
  2393       case InitialMarking:
  2394         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  2395         checkpointRootsInitial(false);
  2396         assert(_collectorState == Marking, "Collector state should have changed"
  2397           " within checkpointRootsInitial()");
  2398         break;
  2399       case Marking:
  2400         // initial marking in checkpointRootsInitialWork has been completed
  2401         if (VerifyDuringGC &&
  2402             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2403           gclog_or_tty->print("Verify before initial mark: ");
  2404           Universe::verify(true);
  2407           bool res = markFromRoots(false);
  2408           assert(res && _collectorState == FinalMarking, "Collector state should "
  2409             "have changed");
  2410           break;
  2412       case FinalMarking:
  2413         if (VerifyDuringGC &&
  2414             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2415           gclog_or_tty->print("Verify before re-mark: ");
  2416           Universe::verify(true);
  2418         checkpointRootsFinal(false, clear_all_soft_refs,
  2419                              init_mark_was_synchronous);
  2420         assert(_collectorState == Sweeping, "Collector state should not "
  2421           "have changed within checkpointRootsFinal()");
  2422         break;
  2423       case Sweeping:
  2424         // final marking in checkpointRootsFinal has been completed
  2425         if (VerifyDuringGC &&
  2426             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2427           gclog_or_tty->print("Verify before sweep: ");
  2428           Universe::verify(true);
  2430         sweep(false);
  2431         assert(_collectorState == Resizing, "Incorrect state");
  2432         break;
  2433       case Resizing: {
  2434         // Sweeping has been completed; the actual resize in this case
  2435         // is done separately; nothing to be done in this state.
  2436         _collectorState = Resetting;
  2437         break;
  2439       case Resetting:
  2440         // The heap has been resized.
  2441         if (VerifyDuringGC &&
  2442             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2443           gclog_or_tty->print("Verify before reset: ");
  2444           Universe::verify(true);
  2446         reset(false);
  2447         assert(_collectorState == Idling, "Collector state should "
  2448           "have changed");
  2449         break;
  2450       case Precleaning:
  2451       case AbortablePreclean:
  2452         // Elide the preclean phase
  2453         _collectorState = FinalMarking;
  2454         break;
  2455       default:
  2456         ShouldNotReachHere();
  2458     if (TraceCMSState) {
  2459       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2460         Thread::current(), _collectorState);
  2464   if (UseAdaptiveSizePolicy) {
  2465     GenCollectedHeap* gch = GenCollectedHeap::heap();
  2466     size_policy()->ms_collection_end(gch->gc_cause());
  2469   if (VerifyAfterGC &&
  2470       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2471     Universe::verify(true);
  2473   if (TraceCMSState) {
  2474     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2475       " exiting collection CMS state %d",
  2476       Thread::current(), _collectorState);
  2480 bool CMSCollector::waitForForegroundGC() {
  2481   bool res = false;
  2482   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2483          "CMS thread should have CMS token");
  2484   // Block the foreground collector until the
  2485   // background collectors decides whether to
  2486   // yield.
  2487   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2488   _foregroundGCShouldWait = true;
  2489   if (_foregroundGCIsActive) {
  2490     // The background collector yields to the
  2491     // foreground collector and returns a value
  2492     // indicating that it has yielded.  The foreground
  2493     // collector can proceed.
  2494     res = true;
  2495     _foregroundGCShouldWait = false;
  2496     ConcurrentMarkSweepThread::clear_CMS_flag(
  2497       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2498     ConcurrentMarkSweepThread::set_CMS_flag(
  2499       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2500     // Get a possibly blocked foreground thread going
  2501     CGC_lock->notify();
  2502     if (TraceCMSState) {
  2503       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  2504         Thread::current(), _collectorState);
  2506     while (_foregroundGCIsActive) {
  2507       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  2509     ConcurrentMarkSweepThread::set_CMS_flag(
  2510       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2511     ConcurrentMarkSweepThread::clear_CMS_flag(
  2512       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2514   if (TraceCMSState) {
  2515     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  2516       Thread::current(), _collectorState);
  2518   return res;
  2521 // Because of the need to lock the free lists and other structures in
  2522 // the collector, common to all the generations that the collector is
  2523 // collecting, we need the gc_prologues of individual CMS generations
  2524 // delegate to their collector. It may have been simpler had the
  2525 // current infrastructure allowed one to call a prologue on a
  2526 // collector. In the absence of that we have the generation's
  2527 // prologue delegate to the collector, which delegates back
  2528 // some "local" work to a worker method in the individual generations
  2529 // that it's responsible for collecting, while itself doing any
  2530 // work common to all generations it's responsible for. A similar
  2531 // comment applies to the  gc_epilogue()'s.
  2532 // The role of the varaible _between_prologue_and_epilogue is to
  2533 // enforce the invocation protocol.
  2534 void CMSCollector::gc_prologue(bool full) {
  2535   // Call gc_prologue_work() for each CMSGen and PermGen that
  2536   // we are responsible for.
  2538   // The following locking discipline assumes that we are only called
  2539   // when the world is stopped.
  2540   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  2542   // The CMSCollector prologue must call the gc_prologues for the
  2543   // "generations" (including PermGen if any) that it's responsible
  2544   // for.
  2546   assert(   Thread::current()->is_VM_thread()
  2547          || (   CMSScavengeBeforeRemark
  2548              && Thread::current()->is_ConcurrentGC_thread()),
  2549          "Incorrect thread type for prologue execution");
  2551   if (_between_prologue_and_epilogue) {
  2552     // We have already been invoked; this is a gc_prologue delegation
  2553     // from yet another CMS generation that we are responsible for, just
  2554     // ignore it since all relevant work has already been done.
  2555     return;
  2558   // set a bit saying prologue has been called; cleared in epilogue
  2559   _between_prologue_and_epilogue = true;
  2560   // Claim locks for common data structures, then call gc_prologue_work()
  2561   // for each CMSGen and PermGen that we are responsible for.
  2563   getFreelistLocks();   // gets free list locks on constituent spaces
  2564   bitMapLock()->lock_without_safepoint_check();
  2566   // Should call gc_prologue_work() for all cms gens we are responsible for
  2567   bool registerClosure =    _collectorState >= Marking
  2568                          && _collectorState < Sweeping;
  2569   ModUnionClosure* muc = ParallelGCThreads > 0 ? &_modUnionClosurePar
  2570                                                : &_modUnionClosure;
  2571   _cmsGen->gc_prologue_work(full, registerClosure, muc);
  2572   _permGen->gc_prologue_work(full, registerClosure, muc);
  2574   if (!full) {
  2575     stats().record_gc0_begin();
  2579 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  2580   // Delegate to CMScollector which knows how to coordinate between
  2581   // this and any other CMS generations that it is responsible for
  2582   // collecting.
  2583   collector()->gc_prologue(full);
  2586 // This is a "private" interface for use by this generation's CMSCollector.
  2587 // Not to be called directly by any other entity (for instance,
  2588 // GenCollectedHeap, which calls the "public" gc_prologue method above).
  2589 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  2590   bool registerClosure, ModUnionClosure* modUnionClosure) {
  2591   assert(!incremental_collection_failed(), "Shouldn't be set yet");
  2592   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  2593     "Should be NULL");
  2594   if (registerClosure) {
  2595     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  2597   cmsSpace()->gc_prologue();
  2598   // Clear stat counters
  2599   NOT_PRODUCT(
  2600     assert(_numObjectsPromoted == 0, "check");
  2601     assert(_numWordsPromoted   == 0, "check");
  2602     if (Verbose && PrintGC) {
  2603       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  2604                           SIZE_FORMAT" bytes concurrently",
  2605       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  2607     _numObjectsAllocated = 0;
  2608     _numWordsAllocated   = 0;
  2612 void CMSCollector::gc_epilogue(bool full) {
  2613   // The following locking discipline assumes that we are only called
  2614   // when the world is stopped.
  2615   assert(SafepointSynchronize::is_at_safepoint(),
  2616          "world is stopped assumption");
  2618   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  2619   // if linear allocation blocks need to be appropriately marked to allow the
  2620   // the blocks to be parsable. We also check here whether we need to nudge the
  2621   // CMS collector thread to start a new cycle (if it's not already active).
  2622   assert(   Thread::current()->is_VM_thread()
  2623          || (   CMSScavengeBeforeRemark
  2624              && Thread::current()->is_ConcurrentGC_thread()),
  2625          "Incorrect thread type for epilogue execution");
  2627   if (!_between_prologue_and_epilogue) {
  2628     // We have already been invoked; this is a gc_epilogue delegation
  2629     // from yet another CMS generation that we are responsible for, just
  2630     // ignore it since all relevant work has already been done.
  2631     return;
  2633   assert(haveFreelistLocks(), "must have freelist locks");
  2634   assert_lock_strong(bitMapLock());
  2636   _cmsGen->gc_epilogue_work(full);
  2637   _permGen->gc_epilogue_work(full);
  2639   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  2640     // in case sampling was not already enabled, enable it
  2641     _start_sampling = true;
  2643   // reset _eden_chunk_array so sampling starts afresh
  2644   _eden_chunk_index = 0;
  2646   size_t cms_used   = _cmsGen->cmsSpace()->used();
  2647   size_t perm_used  = _permGen->cmsSpace()->used();
  2649   // update performance counters - this uses a special version of
  2650   // update_counters() that allows the utilization to be passed as a
  2651   // parameter, avoiding multiple calls to used().
  2652   //
  2653   _cmsGen->update_counters(cms_used);
  2654   _permGen->update_counters(perm_used);
  2656   if (CMSIncrementalMode) {
  2657     icms_update_allocation_limits();
  2660   bitMapLock()->unlock();
  2661   releaseFreelistLocks();
  2663   _between_prologue_and_epilogue = false;  // ready for next cycle
  2666 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  2667   collector()->gc_epilogue(full);
  2669   // Also reset promotion tracking in par gc thread states.
  2670   if (ParallelGCThreads > 0) {
  2671     for (uint i = 0; i < ParallelGCThreads; i++) {
  2672       _par_gc_thread_states[i]->promo.stopTrackingPromotions();
  2677 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  2678   assert(!incremental_collection_failed(), "Should have been cleared");
  2679   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  2680   cmsSpace()->gc_epilogue();
  2681     // Print stat counters
  2682   NOT_PRODUCT(
  2683     assert(_numObjectsAllocated == 0, "check");
  2684     assert(_numWordsAllocated == 0, "check");
  2685     if (Verbose && PrintGC) {
  2686       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  2687                           SIZE_FORMAT" bytes",
  2688                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  2690     _numObjectsPromoted = 0;
  2691     _numWordsPromoted   = 0;
  2694   if (PrintGC && Verbose) {
  2695     // Call down the chain in contiguous_available needs the freelistLock
  2696     // so print this out before releasing the freeListLock.
  2697     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  2698                         contiguous_available());
  2702 #ifndef PRODUCT
  2703 bool CMSCollector::have_cms_token() {
  2704   Thread* thr = Thread::current();
  2705   if (thr->is_VM_thread()) {
  2706     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  2707   } else if (thr->is_ConcurrentGC_thread()) {
  2708     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  2709   } else if (thr->is_GC_task_thread()) {
  2710     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  2711            ParGCRareEvent_lock->owned_by_self();
  2713   return false;
  2715 #endif
  2717 // Check reachability of the given heap address in CMS generation,
  2718 // treating all other generations as roots.
  2719 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  2720   // We could "guarantee" below, rather than assert, but i'll
  2721   // leave these as "asserts" so that an adventurous debugger
  2722   // could try this in the product build provided some subset of
  2723   // the conditions were met, provided they were intersted in the
  2724   // results and knew that the computation below wouldn't interfere
  2725   // with other concurrent computations mutating the structures
  2726   // being read or written.
  2727   assert(SafepointSynchronize::is_at_safepoint(),
  2728          "Else mutations in object graph will make answer suspect");
  2729   assert(have_cms_token(), "Should hold cms token");
  2730   assert(haveFreelistLocks(), "must hold free list locks");
  2731   assert_lock_strong(bitMapLock());
  2733   // Clear the marking bit map array before starting, but, just
  2734   // for kicks, first report if the given address is already marked
  2735   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  2736                 _markBitMap.isMarked(addr) ? "" : " not");
  2738   if (verify_after_remark()) {
  2739     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2740     bool result = verification_mark_bm()->isMarked(addr);
  2741     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  2742                            result ? "IS" : "is NOT");
  2743     return result;
  2744   } else {
  2745     gclog_or_tty->print_cr("Could not compute result");
  2746     return false;
  2750 ////////////////////////////////////////////////////////
  2751 // CMS Verification Support
  2752 ////////////////////////////////////////////////////////
  2753 // Following the remark phase, the following invariant
  2754 // should hold -- each object in the CMS heap which is
  2755 // marked in markBitMap() should be marked in the verification_mark_bm().
  2757 class VerifyMarkedClosure: public BitMapClosure {
  2758   CMSBitMap* _marks;
  2759   bool       _failed;
  2761  public:
  2762   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  2764   bool do_bit(size_t offset) {
  2765     HeapWord* addr = _marks->offsetToHeapWord(offset);
  2766     if (!_marks->isMarked(addr)) {
  2767       oop(addr)->print();
  2768       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  2769       _failed = true;
  2771     return true;
  2774   bool failed() { return _failed; }
  2775 };
  2777 bool CMSCollector::verify_after_remark() {
  2778   gclog_or_tty->print(" [Verifying CMS Marking... ");
  2779   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2780   static bool init = false;
  2782   assert(SafepointSynchronize::is_at_safepoint(),
  2783          "Else mutations in object graph will make answer suspect");
  2784   assert(have_cms_token(),
  2785          "Else there may be mutual interference in use of "
  2786          " verification data structures");
  2787   assert(_collectorState > Marking && _collectorState <= Sweeping,
  2788          "Else marking info checked here may be obsolete");
  2789   assert(haveFreelistLocks(), "must hold free list locks");
  2790   assert_lock_strong(bitMapLock());
  2793   // Allocate marking bit map if not already allocated
  2794   if (!init) { // first time
  2795     if (!verification_mark_bm()->allocate(_span)) {
  2796       return false;
  2798     init = true;
  2801   assert(verification_mark_stack()->isEmpty(), "Should be empty");
  2803   // Turn off refs discovery -- so we will be tracing through refs.
  2804   // This is as intended, because by this time
  2805   // GC must already have cleared any refs that need to be cleared,
  2806   // and traced those that need to be marked; moreover,
  2807   // the marking done here is not going to intefere in any
  2808   // way with the marking information used by GC.
  2809   NoRefDiscovery no_discovery(ref_processor());
  2811   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  2813   // Clear any marks from a previous round
  2814   verification_mark_bm()->clear_all();
  2815   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  2816   assert(overflow_list_is_empty(), "overflow list should be empty");
  2818   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2819   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  2820   // Update the saved marks which may affect the root scans.
  2821   gch->save_marks();
  2823   if (CMSRemarkVerifyVariant == 1) {
  2824     // In this first variant of verification, we complete
  2825     // all marking, then check if the new marks-verctor is
  2826     // a subset of the CMS marks-vector.
  2827     verify_after_remark_work_1();
  2828   } else if (CMSRemarkVerifyVariant == 2) {
  2829     // In this second variant of verification, we flag an error
  2830     // (i.e. an object reachable in the new marks-vector not reachable
  2831     // in the CMS marks-vector) immediately, also indicating the
  2832     // identify of an object (A) that references the unmarked object (B) --
  2833     // presumably, a mutation to A failed to be picked up by preclean/remark?
  2834     verify_after_remark_work_2();
  2835   } else {
  2836     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  2837             CMSRemarkVerifyVariant);
  2839   gclog_or_tty->print(" done] ");
  2840   return true;
  2843 void CMSCollector::verify_after_remark_work_1() {
  2844   ResourceMark rm;
  2845   HandleMark  hm;
  2846   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2848   // Mark from roots one level into CMS
  2849   MarkRefsIntoClosure notOlder(_span, verification_mark_bm(), true /* nmethods */);
  2850   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2852   gch->gen_process_strong_roots(_cmsGen->level(),
  2853                                 true,   // younger gens are roots
  2854                                 true,   // collecting perm gen
  2855                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2856                                 NULL, &notOlder);
  2858   // Now mark from the roots
  2859   assert(_revisitStack.isEmpty(), "Should be empty");
  2860   MarkFromRootsClosure markFromRootsClosure(this, _span,
  2861     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
  2862     false /* don't yield */, true /* verifying */);
  2863   assert(_restart_addr == NULL, "Expected pre-condition");
  2864   verification_mark_bm()->iterate(&markFromRootsClosure);
  2865   while (_restart_addr != NULL) {
  2866     // Deal with stack overflow: by restarting at the indicated
  2867     // address.
  2868     HeapWord* ra = _restart_addr;
  2869     markFromRootsClosure.reset(ra);
  2870     _restart_addr = NULL;
  2871     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2873   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2874   verify_work_stacks_empty();
  2875   // Should reset the revisit stack above, since no class tree
  2876   // surgery is forthcoming.
  2877   _revisitStack.reset(); // throwing away all contents
  2879   // Marking completed -- now verify that each bit marked in
  2880   // verification_mark_bm() is also marked in markBitMap(); flag all
  2881   // errors by printing corresponding objects.
  2882   VerifyMarkedClosure vcl(markBitMap());
  2883   verification_mark_bm()->iterate(&vcl);
  2884   if (vcl.failed()) {
  2885     gclog_or_tty->print("Verification failed");
  2886     Universe::heap()->print();
  2887     fatal(" ... aborting");
  2891 void CMSCollector::verify_after_remark_work_2() {
  2892   ResourceMark rm;
  2893   HandleMark  hm;
  2894   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2896   // Mark from roots one level into CMS
  2897   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  2898                                      markBitMap(), true /* nmethods */);
  2899   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2900   gch->gen_process_strong_roots(_cmsGen->level(),
  2901                                 true,   // younger gens are roots
  2902                                 true,   // collecting perm gen
  2903                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2904                                 NULL, &notOlder);
  2906   // Now mark from the roots
  2907   assert(_revisitStack.isEmpty(), "Should be empty");
  2908   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  2909     verification_mark_bm(), markBitMap(), verification_mark_stack());
  2910   assert(_restart_addr == NULL, "Expected pre-condition");
  2911   verification_mark_bm()->iterate(&markFromRootsClosure);
  2912   while (_restart_addr != NULL) {
  2913     // Deal with stack overflow: by restarting at the indicated
  2914     // address.
  2915     HeapWord* ra = _restart_addr;
  2916     markFromRootsClosure.reset(ra);
  2917     _restart_addr = NULL;
  2918     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2920   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2921   verify_work_stacks_empty();
  2922   // Should reset the revisit stack above, since no class tree
  2923   // surgery is forthcoming.
  2924   _revisitStack.reset(); // throwing away all contents
  2926   // Marking completed -- now verify that each bit marked in
  2927   // verification_mark_bm() is also marked in markBitMap(); flag all
  2928   // errors by printing corresponding objects.
  2929   VerifyMarkedClosure vcl(markBitMap());
  2930   verification_mark_bm()->iterate(&vcl);
  2931   assert(!vcl.failed(), "Else verification above should not have succeeded");
  2934 void ConcurrentMarkSweepGeneration::save_marks() {
  2935   // delegate to CMS space
  2936   cmsSpace()->save_marks();
  2937   for (uint i = 0; i < ParallelGCThreads; i++) {
  2938     _par_gc_thread_states[i]->promo.startTrackingPromotions();
  2942 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  2943   return cmsSpace()->no_allocs_since_save_marks();
  2946 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  2948 void ConcurrentMarkSweepGeneration::                            \
  2949 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  2950   cl->set_generation(this);                                     \
  2951   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  2952   cl->reset_generation();                                       \
  2953   save_marks();                                                 \
  2956 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  2958 void
  2959 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
  2961   // Not currently implemented; need to do the following. -- ysr.
  2962   // dld -- I think that is used for some sort of allocation profiler.  So it
  2963   // really means the objects allocated by the mutator since the last
  2964   // GC.  We could potentially implement this cheaply by recording only
  2965   // the direct allocations in a side data structure.
  2966   //
  2967   // I think we probably ought not to be required to support these
  2968   // iterations at any arbitrary point; I think there ought to be some
  2969   // call to enable/disable allocation profiling in a generation/space,
  2970   // and the iterator ought to return the objects allocated in the
  2971   // gen/space since the enable call, or the last iterator call (which
  2972   // will probably be at a GC.)  That way, for gens like CM&S that would
  2973   // require some extra data structure to support this, we only pay the
  2974   // cost when it's in use...
  2975   cmsSpace()->object_iterate_since_last_GC(blk);
  2978 void
  2979 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  2980   cl->set_generation(this);
  2981   younger_refs_in_space_iterate(_cmsSpace, cl);
  2982   cl->reset_generation();
  2985 void
  2986 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
  2987   if (freelistLock()->owned_by_self()) {
  2988     Generation::oop_iterate(mr, cl);
  2989   } else {
  2990     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  2991     Generation::oop_iterate(mr, cl);
  2995 void
  2996 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
  2997   if (freelistLock()->owned_by_self()) {
  2998     Generation::oop_iterate(cl);
  2999   } else {
  3000     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3001     Generation::oop_iterate(cl);
  3005 void
  3006 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  3007   if (freelistLock()->owned_by_self()) {
  3008     Generation::object_iterate(cl);
  3009   } else {
  3010     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3011     Generation::object_iterate(cl);
  3015 void
  3016 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
  3019 void
  3020 ConcurrentMarkSweepGeneration::post_compact() {
  3023 void
  3024 ConcurrentMarkSweepGeneration::prepare_for_verify() {
  3025   // Fix the linear allocation blocks to look like free blocks.
  3027   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3028   // are not called when the heap is verified during universe initialization and
  3029   // at vm shutdown.
  3030   if (freelistLock()->owned_by_self()) {
  3031     cmsSpace()->prepare_for_verify();
  3032   } else {
  3033     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3034     cmsSpace()->prepare_for_verify();
  3038 void
  3039 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
  3040   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3041   // are not called when the heap is verified during universe initialization and
  3042   // at vm shutdown.
  3043   if (freelistLock()->owned_by_self()) {
  3044     cmsSpace()->verify(false /* ignored */);
  3045   } else {
  3046     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3047     cmsSpace()->verify(false /* ignored */);
  3051 void CMSCollector::verify(bool allow_dirty /* ignored */) {
  3052   _cmsGen->verify(allow_dirty);
  3053   _permGen->verify(allow_dirty);
  3056 #ifndef PRODUCT
  3057 bool CMSCollector::overflow_list_is_empty() const {
  3058   assert(_num_par_pushes >= 0, "Inconsistency");
  3059   if (_overflow_list == NULL) {
  3060     assert(_num_par_pushes == 0, "Inconsistency");
  3062   return _overflow_list == NULL;
  3065 // The methods verify_work_stacks_empty() and verify_overflow_empty()
  3066 // merely consolidate assertion checks that appear to occur together frequently.
  3067 void CMSCollector::verify_work_stacks_empty() const {
  3068   assert(_markStack.isEmpty(), "Marking stack should be empty");
  3069   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3072 void CMSCollector::verify_overflow_empty() const {
  3073   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3074   assert(no_preserved_marks(), "No preserved marks");
  3076 #endif // PRODUCT
  3078 // Decide if we want to enable class unloading as part of the
  3079 // ensuing concurrent GC cycle. We will collect the perm gen and
  3080 // unload classes if it's the case that:
  3081 // (1) an explicit gc request has been made and the flag
  3082 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
  3083 // (2) (a) class unloading is enabled at the command line, and
  3084 //     (b) (i)   perm gen threshold has been crossed, or
  3085 //         (ii)  old gen is getting really full, or
  3086 //         (iii) the previous N CMS collections did not collect the
  3087 //               perm gen
  3088 // NOTE: Provided there is no change in the state of the heap between
  3089 // calls to this method, it should have idempotent results. Moreover,
  3090 // its results should be monotonically increasing (i.e. going from 0 to 1,
  3091 // but not 1 to 0) between successive calls between which the heap was
  3092 // not collected. For the implementation below, it must thus rely on
  3093 // the property that concurrent_cycles_since_last_unload()
  3094 // will not decrease unless a collection cycle happened and that
  3095 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
  3096 // themselves also monotonic in that sense. See check_monotonicity()
  3097 // below.
  3098 bool CMSCollector::update_should_unload_classes() {
  3099   _should_unload_classes = false;
  3100   // Condition 1 above
  3101   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
  3102     _should_unload_classes = true;
  3103   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
  3104     // Disjuncts 2.b.(i,ii,iii) above
  3105     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
  3106                               CMSClassUnloadingMaxInterval)
  3107                            || _permGen->should_concurrent_collect()
  3108                            || _cmsGen->is_too_full();
  3110   return _should_unload_classes;
  3113 bool ConcurrentMarkSweepGeneration::is_too_full() const {
  3114   bool res = should_concurrent_collect();
  3115   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
  3116   return res;
  3119 void CMSCollector::setup_cms_unloading_and_verification_state() {
  3120   const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  3121                              || VerifyBeforeExit;
  3122   const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
  3123                              |   SharedHeap::SO_CodeCache;
  3125   if (should_unload_classes()) {   // Should unload classes this cycle
  3126     remove_root_scanning_option(rso);  // Shrink the root set appropriately
  3127     set_verifying(should_verify);    // Set verification state for this cycle
  3128     return;                            // Nothing else needs to be done at this time
  3131   // Not unloading classes this cycle
  3132   assert(!should_unload_classes(), "Inconsitency!");
  3133   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
  3134     // We were not verifying, or we _were_ unloading classes in the last cycle,
  3135     // AND some verification options are enabled this cycle; in this case,
  3136     // we must make sure that the deadness map is allocated if not already so,
  3137     // and cleared (if already allocated previously --
  3138     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
  3139     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
  3140       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
  3141         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
  3142                 "permanent generation verification disabled");
  3143         return;  // Note that we leave verification disabled, so we'll retry this
  3144                  // allocation next cycle. We _could_ remember this failure
  3145                  // and skip further attempts and permanently disable verification
  3146                  // attempts if that is considered more desirable.
  3148       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
  3149               "_perm_gen_ver_bit_map inconsistency?");
  3150     } else {
  3151       perm_gen_verify_bit_map()->clear_all();
  3153     // Include symbols, strings and code cache elements to prevent their resurrection.
  3154     add_root_scanning_option(rso);
  3155     set_verifying(true);
  3156   } else if (verifying() && !should_verify) {
  3157     // We were verifying, but some verification flags got disabled.
  3158     set_verifying(false);
  3159     // Exclude symbols, strings and code cache elements from root scanning to
  3160     // reduce IM and RM pauses.
  3161     remove_root_scanning_option(rso);
  3166 #ifndef PRODUCT
  3167 HeapWord* CMSCollector::block_start(const void* p) const {
  3168   const HeapWord* addr = (HeapWord*)p;
  3169   if (_span.contains(p)) {
  3170     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  3171       return _cmsGen->cmsSpace()->block_start(p);
  3172     } else {
  3173       assert(_permGen->cmsSpace()->is_in_reserved(addr),
  3174              "Inconsistent _span?");
  3175       return _permGen->cmsSpace()->block_start(p);
  3178   return NULL;
  3180 #endif
  3182 HeapWord*
  3183 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  3184                                                    bool   tlab,
  3185                                                    bool   parallel) {
  3186   assert(!tlab, "Can't deal with TLAB allocation");
  3187   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3188   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  3189     CMSExpansionCause::_satisfy_allocation);
  3190   if (GCExpandToAllocateDelayMillis > 0) {
  3191     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3193   return have_lock_and_allocate(word_size, tlab);
  3196 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
  3197 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
  3198 // to CardGeneration and share it...
  3199 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  3200   CMSExpansionCause::Cause cause)
  3202   assert_locked_or_safepoint(Heap_lock);
  3204   size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
  3205   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  3206   bool success = false;
  3207   if (aligned_expand_bytes > aligned_bytes) {
  3208     success = grow_by(aligned_expand_bytes);
  3210   if (!success) {
  3211     success = grow_by(aligned_bytes);
  3213   if (!success) {
  3214     size_t remaining_bytes = _virtual_space.uncommitted_size();
  3215     if (remaining_bytes > 0) {
  3216       success = grow_by(remaining_bytes);
  3219   if (GC_locker::is_active()) {
  3220     if (PrintGC && Verbose) {
  3221       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
  3224   // remember why we expanded; this information is used
  3225   // by shouldConcurrentCollect() when making decisions on whether to start
  3226   // a new CMS cycle.
  3227   if (success) {
  3228     set_expansion_cause(cause);
  3229     if (PrintGCDetails && Verbose) {
  3230       gclog_or_tty->print_cr("Expanded CMS gen for %s",
  3231         CMSExpansionCause::to_string(cause));
  3236 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  3237   HeapWord* res = NULL;
  3238   MutexLocker x(ParGCRareEvent_lock);
  3239   while (true) {
  3240     // Expansion by some other thread might make alloc OK now:
  3241     res = ps->lab.alloc(word_sz);
  3242     if (res != NULL) return res;
  3243     // If there's not enough expansion space available, give up.
  3244     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  3245       return NULL;
  3247     // Otherwise, we try expansion.
  3248     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  3249       CMSExpansionCause::_allocate_par_lab);
  3250     // Now go around the loop and try alloc again;
  3251     // A competing par_promote might beat us to the expansion space,
  3252     // so we may go around the loop again if promotion fails agaion.
  3253     if (GCExpandToAllocateDelayMillis > 0) {
  3254       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3260 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  3261   PromotionInfo* promo) {
  3262   MutexLocker x(ParGCRareEvent_lock);
  3263   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  3264   while (true) {
  3265     // Expansion by some other thread might make alloc OK now:
  3266     if (promo->ensure_spooling_space()) {
  3267       assert(promo->has_spooling_space(),
  3268              "Post-condition of successful ensure_spooling_space()");
  3269       return true;
  3271     // If there's not enough expansion space available, give up.
  3272     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  3273       return false;
  3275     // Otherwise, we try expansion.
  3276     expand(refill_size_bytes, MinHeapDeltaBytes,
  3277       CMSExpansionCause::_allocate_par_spooling_space);
  3278     // Now go around the loop and try alloc again;
  3279     // A competing allocation might beat us to the expansion space,
  3280     // so we may go around the loop again if allocation fails again.
  3281     if (GCExpandToAllocateDelayMillis > 0) {
  3282       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3289 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  3290   assert_locked_or_safepoint(Heap_lock);
  3291   size_t size = ReservedSpace::page_align_size_down(bytes);
  3292   if (size > 0) {
  3293     shrink_by(size);
  3297 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  3298   assert_locked_or_safepoint(Heap_lock);
  3299   bool result = _virtual_space.expand_by(bytes);
  3300   if (result) {
  3301     HeapWord* old_end = _cmsSpace->end();
  3302     size_t new_word_size =
  3303       heap_word_size(_virtual_space.committed_size());
  3304     MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3305     _bts->resize(new_word_size);  // resize the block offset shared array
  3306     Universe::heap()->barrier_set()->resize_covered_region(mr);
  3307     // Hmmmm... why doesn't CFLS::set_end verify locking?
  3308     // This is quite ugly; FIX ME XXX
  3309     _cmsSpace->assert_locked();
  3310     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  3312     // update the space and generation capacity counters
  3313     if (UsePerfData) {
  3314       _space_counters->update_capacity();
  3315       _gen_counters->update_all();
  3318     if (Verbose && PrintGC) {
  3319       size_t new_mem_size = _virtual_space.committed_size();
  3320       size_t old_mem_size = new_mem_size - bytes;
  3321       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
  3322                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
  3325   return result;
  3328 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  3329   assert_locked_or_safepoint(Heap_lock);
  3330   bool success = true;
  3331   const size_t remaining_bytes = _virtual_space.uncommitted_size();
  3332   if (remaining_bytes > 0) {
  3333     success = grow_by(remaining_bytes);
  3334     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  3336   return success;
  3339 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  3340   assert_locked_or_safepoint(Heap_lock);
  3341   assert_lock_strong(freelistLock());
  3342   // XXX Fix when compaction is implemented.
  3343   warning("Shrinking of CMS not yet implemented");
  3344   return;
  3348 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  3349 // phases.
  3350 class CMSPhaseAccounting: public StackObj {
  3351  public:
  3352   CMSPhaseAccounting(CMSCollector *collector,
  3353                      const char *phase,
  3354                      bool print_cr = true);
  3355   ~CMSPhaseAccounting();
  3357  private:
  3358   CMSCollector *_collector;
  3359   const char *_phase;
  3360   elapsedTimer _wallclock;
  3361   bool _print_cr;
  3363  public:
  3364   // Not MT-safe; so do not pass around these StackObj's
  3365   // where they may be accessed by other threads.
  3366   jlong wallclock_millis() {
  3367     assert(_wallclock.is_active(), "Wall clock should not stop");
  3368     _wallclock.stop();  // to record time
  3369     jlong ret = _wallclock.milliseconds();
  3370     _wallclock.start(); // restart
  3371     return ret;
  3373 };
  3375 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  3376                                        const char *phase,
  3377                                        bool print_cr) :
  3378   _collector(collector), _phase(phase), _print_cr(print_cr) {
  3380   if (PrintCMSStatistics != 0) {
  3381     _collector->resetYields();
  3383   if (PrintGCDetails && PrintGCTimeStamps) {
  3384     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3385     gclog_or_tty->stamp();
  3386     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
  3387       _collector->cmsGen()->short_name(), _phase);
  3389   _collector->resetTimer();
  3390   _wallclock.start();
  3391   _collector->startTimer();
  3394 CMSPhaseAccounting::~CMSPhaseAccounting() {
  3395   assert(_wallclock.is_active(), "Wall clock should not have stopped");
  3396   _collector->stopTimer();
  3397   _wallclock.stop();
  3398   if (PrintGCDetails) {
  3399     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3400     if (PrintGCTimeStamps) {
  3401       gclog_or_tty->stamp();
  3402       gclog_or_tty->print(": ");
  3404     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  3405                  _collector->cmsGen()->short_name(),
  3406                  _phase, _collector->timerValue(), _wallclock.seconds());
  3407     if (_print_cr) {
  3408       gclog_or_tty->print_cr("");
  3410     if (PrintCMSStatistics != 0) {
  3411       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  3412                     _collector->yields());
  3417 // CMS work
  3419 // Checkpoint the roots into this generation from outside
  3420 // this generation. [Note this initial checkpoint need only
  3421 // be approximate -- we'll do a catch up phase subsequently.]
  3422 void CMSCollector::checkpointRootsInitial(bool asynch) {
  3423   assert(_collectorState == InitialMarking, "Wrong collector state");
  3424   check_correct_thread_executing();
  3425   ReferenceProcessor* rp = ref_processor();
  3426   SpecializationStats::clear();
  3427   assert(_restart_addr == NULL, "Control point invariant");
  3428   if (asynch) {
  3429     // acquire locks for subsequent manipulations
  3430     MutexLockerEx x(bitMapLock(),
  3431                     Mutex::_no_safepoint_check_flag);
  3432     checkpointRootsInitialWork(asynch);
  3433     rp->verify_no_references_recorded();
  3434     rp->enable_discovery(); // enable ("weak") refs discovery
  3435     _collectorState = Marking;
  3436   } else {
  3437     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  3438     // which recognizes if we are a CMS generation, and doesn't try to turn on
  3439     // discovery; verify that they aren't meddling.
  3440     assert(!rp->discovery_is_atomic(),
  3441            "incorrect setting of discovery predicate");
  3442     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  3443            "ref discovery for this generation kind");
  3444     // already have locks
  3445     checkpointRootsInitialWork(asynch);
  3446     rp->enable_discovery(); // now enable ("weak") refs discovery
  3447     _collectorState = Marking;
  3449   SpecializationStats::print();
  3452 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  3453   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  3454   assert(_collectorState == InitialMarking, "just checking");
  3456   // If there has not been a GC[n-1] since last GC[n] cycle completed,
  3457   // precede our marking with a collection of all
  3458   // younger generations to keep floating garbage to a minimum.
  3459   // XXX: we won't do this for now -- it's an optimization to be done later.
  3461   // already have locks
  3462   assert_lock_strong(bitMapLock());
  3463   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  3465   // Setup the verification and class unloading state for this
  3466   // CMS collection cycle.
  3467   setup_cms_unloading_and_verification_state();
  3469   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
  3470     PrintGCDetails && Verbose, true, gclog_or_tty);)
  3471   if (UseAdaptiveSizePolicy) {
  3472     size_policy()->checkpoint_roots_initial_begin();
  3475   // Reset all the PLAB chunk arrays if necessary.
  3476   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  3477     reset_survivor_plab_arrays();
  3480   ResourceMark rm;
  3481   HandleMark  hm;
  3483   FalseClosure falseClosure;
  3484   // In the case of a synchronous collection, we will elide the
  3485   // remark step, so it's important to catch all the nmethod oops
  3486   // in this step; hence the last argument to the constrcutor below.
  3487   MarkRefsIntoClosure notOlder(_span, &_markBitMap, !asynch /* nmethods */);
  3488   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3490   verify_work_stacks_empty();
  3491   verify_overflow_empty();
  3493   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3494   // Update the saved marks which may affect the root scans.
  3495   gch->save_marks();
  3497   // weak reference processing has not started yet.
  3498   ref_processor()->set_enqueuing_is_done(false);
  3501     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3502     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3503     gch->gen_process_strong_roots(_cmsGen->level(),
  3504                                   true,   // younger gens are roots
  3505                                   true,   // collecting perm gen
  3506                                   SharedHeap::ScanningOption(roots_scanning_options()),
  3507                                   NULL, &notOlder);
  3510   // Clear mod-union table; it will be dirtied in the prologue of
  3511   // CMS generation per each younger generation collection.
  3513   assert(_modUnionTable.isAllClear(),
  3514        "Was cleared in most recent final checkpoint phase"
  3515        " or no bits are set in the gc_prologue before the start of the next "
  3516        "subsequent marking phase.");
  3518   // Temporarily disabled, since pre/post-consumption closures don't
  3519   // care about precleaned cards
  3520   #if 0
  3522     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
  3523                              (HeapWord*)_virtual_space.high());
  3524     _ct->ct_bs()->preclean_dirty_cards(mr);
  3526   #endif
  3528   // Save the end of the used_region of the constituent generations
  3529   // to be used to limit the extent of sweep in each generation.
  3530   save_sweep_limits();
  3531   if (UseAdaptiveSizePolicy) {
  3532     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  3534   verify_overflow_empty();
  3537 bool CMSCollector::markFromRoots(bool asynch) {
  3538   // we might be tempted to assert that:
  3539   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  3540   //        "inconsistent argument?");
  3541   // However that wouldn't be right, because it's possible that
  3542   // a safepoint is indeed in progress as a younger generation
  3543   // stop-the-world GC happens even as we mark in this generation.
  3544   assert(_collectorState == Marking, "inconsistent state?");
  3545   check_correct_thread_executing();
  3546   verify_overflow_empty();
  3548   bool res;
  3549   if (asynch) {
  3551     // Start the timers for adaptive size policy for the concurrent phases
  3552     // Do it here so that the foreground MS can use the concurrent
  3553     // timer since a foreground MS might has the sweep done concurrently
  3554     // or STW.
  3555     if (UseAdaptiveSizePolicy) {
  3556       size_policy()->concurrent_marking_begin();
  3559     // Weak ref discovery note: We may be discovering weak
  3560     // refs in this generation concurrent (but interleaved) with
  3561     // weak ref discovery by a younger generation collector.
  3563     CMSTokenSyncWithLocks ts(true, bitMapLock());
  3564     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3565     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
  3566     res = markFromRootsWork(asynch);
  3567     if (res) {
  3568       _collectorState = Precleaning;
  3569     } else { // We failed and a foreground collection wants to take over
  3570       assert(_foregroundGCIsActive, "internal state inconsistency");
  3571       assert(_restart_addr == NULL,  "foreground will restart from scratch");
  3572       if (PrintGCDetails) {
  3573         gclog_or_tty->print_cr("bailing out to foreground collection");
  3576     if (UseAdaptiveSizePolicy) {
  3577       size_policy()->concurrent_marking_end();
  3579   } else {
  3580     assert(SafepointSynchronize::is_at_safepoint(),
  3581            "inconsistent with asynch == false");
  3582     if (UseAdaptiveSizePolicy) {
  3583       size_policy()->ms_collection_marking_begin();
  3585     // already have locks
  3586     res = markFromRootsWork(asynch);
  3587     _collectorState = FinalMarking;
  3588     if (UseAdaptiveSizePolicy) {
  3589       GenCollectedHeap* gch = GenCollectedHeap::heap();
  3590       size_policy()->ms_collection_marking_end(gch->gc_cause());
  3593   verify_overflow_empty();
  3594   return res;
  3597 bool CMSCollector::markFromRootsWork(bool asynch) {
  3598   // iterate over marked bits in bit map, doing a full scan and mark
  3599   // from these roots using the following algorithm:
  3600   // . if oop is to the right of the current scan pointer,
  3601   //   mark corresponding bit (we'll process it later)
  3602   // . else (oop is to left of current scan pointer)
  3603   //   push oop on marking stack
  3604   // . drain the marking stack
  3606   // Note that when we do a marking step we need to hold the
  3607   // bit map lock -- recall that direct allocation (by mutators)
  3608   // and promotion (by younger generation collectors) is also
  3609   // marking the bit map. [the so-called allocate live policy.]
  3610   // Because the implementation of bit map marking is not
  3611   // robust wrt simultaneous marking of bits in the same word,
  3612   // we need to make sure that there is no such interference
  3613   // between concurrent such updates.
  3615   // already have locks
  3616   assert_lock_strong(bitMapLock());
  3618   // Clear the revisit stack, just in case there are any
  3619   // obsolete contents from a short-circuited previous CMS cycle.
  3620   _revisitStack.reset();
  3621   verify_work_stacks_empty();
  3622   verify_overflow_empty();
  3623   assert(_revisitStack.isEmpty(), "tabula rasa");
  3625   bool result = false;
  3626   if (CMSConcurrentMTEnabled && ParallelCMSThreads > 0) {
  3627     result = do_marking_mt(asynch);
  3628   } else {
  3629     result = do_marking_st(asynch);
  3631   return result;
  3634 // Forward decl
  3635 class CMSConcMarkingTask;
  3637 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  3638   CMSCollector*       _collector;
  3639   CMSConcMarkingTask* _task;
  3640   bool _yield;
  3641  protected:
  3642   virtual void yield();
  3643  public:
  3644   // "n_threads" is the number of threads to be terminated.
  3645   // "queue_set" is a set of work queues of other threads.
  3646   // "collector" is the CMS collector associated with this task terminator.
  3647   // "yield" indicates whether we need the gang as a whole to yield.
  3648   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set,
  3649                            CMSCollector* collector, bool yield) :
  3650     ParallelTaskTerminator(n_threads, queue_set),
  3651     _collector(collector),
  3652     _yield(yield) { }
  3654   void set_task(CMSConcMarkingTask* task) {
  3655     _task = task;
  3657 };
  3659 // MT Concurrent Marking Task
  3660 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  3661   CMSCollector* _collector;
  3662   YieldingFlexibleWorkGang* _workers;        // the whole gang
  3663   int           _n_workers;                  // requested/desired # workers
  3664   bool          _asynch;
  3665   bool          _result;
  3666   CompactibleFreeListSpace*  _cms_space;
  3667   CompactibleFreeListSpace* _perm_space;
  3668   HeapWord*     _global_finger;
  3670   //  Exposed here for yielding support
  3671   Mutex* const _bit_map_lock;
  3673   // The per thread work queues, available here for stealing
  3674   OopTaskQueueSet*  _task_queues;
  3675   CMSConcMarkingTerminator _term;
  3677  public:
  3678   CMSConcMarkingTask(CMSCollector* collector,
  3679                  CompactibleFreeListSpace* cms_space,
  3680                  CompactibleFreeListSpace* perm_space,
  3681                  bool asynch, int n_workers,
  3682                  YieldingFlexibleWorkGang* workers,
  3683                  OopTaskQueueSet* task_queues):
  3684     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  3685     _collector(collector),
  3686     _cms_space(cms_space),
  3687     _perm_space(perm_space),
  3688     _asynch(asynch), _n_workers(n_workers), _result(true),
  3689     _workers(workers), _task_queues(task_queues),
  3690     _term(n_workers, task_queues, _collector, asynch),
  3691     _bit_map_lock(collector->bitMapLock())
  3693     assert(n_workers <= workers->total_workers(),
  3694            "Else termination won't work correctly today"); // XXX FIX ME!
  3695     _requested_size = n_workers;
  3696     _term.set_task(this);
  3697     assert(_cms_space->bottom() < _perm_space->bottom(),
  3698            "Finger incorrectly initialized below");
  3699     _global_finger = _cms_space->bottom();
  3703   OopTaskQueueSet* task_queues()  { return _task_queues; }
  3705   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  3707   HeapWord** global_finger_addr() { return &_global_finger; }
  3709   CMSConcMarkingTerminator* terminator() { return &_term; }
  3711   void work(int i);
  3713   virtual void coordinator_yield();  // stuff done by coordinator
  3714   bool result() { return _result; }
  3716   void reset(HeapWord* ra) {
  3717     _term.reset_for_reuse();
  3720   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3721                                            OopTaskQueue* work_q);
  3723  private:
  3724   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  3725   void do_work_steal(int i);
  3726   void bump_global_finger(HeapWord* f);
  3727 };
  3729 void CMSConcMarkingTerminator::yield() {
  3730   if (ConcurrentMarkSweepThread::should_yield() &&
  3731       !_collector->foregroundGCIsActive() &&
  3732       _yield) {
  3733     _task->yield();
  3734   } else {
  3735     ParallelTaskTerminator::yield();
  3739 ////////////////////////////////////////////////////////////////
  3740 // Concurrent Marking Algorithm Sketch
  3741 ////////////////////////////////////////////////////////////////
  3742 // Until all tasks exhausted (both spaces):
  3743 // -- claim next available chunk
  3744 // -- bump global finger via CAS
  3745 // -- find first object that starts in this chunk
  3746 //    and start scanning bitmap from that position
  3747 // -- scan marked objects for oops
  3748 // -- CAS-mark target, and if successful:
  3749 //    . if target oop is above global finger (volatile read)
  3750 //      nothing to do
  3751 //    . if target oop is in chunk and above local finger
  3752 //        then nothing to do
  3753 //    . else push on work-queue
  3754 // -- Deal with possible overflow issues:
  3755 //    . local work-queue overflow causes stuff to be pushed on
  3756 //      global (common) overflow queue
  3757 //    . always first empty local work queue
  3758 //    . then get a batch of oops from global work queue if any
  3759 //    . then do work stealing
  3760 // -- When all tasks claimed (both spaces)
  3761 //    and local work queue empty,
  3762 //    then in a loop do:
  3763 //    . check global overflow stack; steal a batch of oops and trace
  3764 //    . try to steal from other threads oif GOS is empty
  3765 //    . if neither is available, offer termination
  3766 // -- Terminate and return result
  3767 //
  3768 void CMSConcMarkingTask::work(int i) {
  3769   elapsedTimer _timer;
  3770   ResourceMark rm;
  3771   HandleMark hm;
  3773   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3775   // Before we begin work, our work queue should be empty
  3776   assert(work_queue(i)->size() == 0, "Expected to be empty");
  3777   // Scan the bitmap covering _cms_space, tracing through grey objects.
  3778   _timer.start();
  3779   do_scan_and_mark(i, _cms_space);
  3780   _timer.stop();
  3781   if (PrintCMSStatistics != 0) {
  3782     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  3783       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3786   // ... do the same for the _perm_space
  3787   _timer.reset();
  3788   _timer.start();
  3789   do_scan_and_mark(i, _perm_space);
  3790   _timer.stop();
  3791   if (PrintCMSStatistics != 0) {
  3792     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
  3793       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3796   // ... do work stealing
  3797   _timer.reset();
  3798   _timer.start();
  3799   do_work_steal(i);
  3800   _timer.stop();
  3801   if (PrintCMSStatistics != 0) {
  3802     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  3803       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3805   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  3806   assert(work_queue(i)->size() == 0, "Should have been emptied");
  3807   // Note that under the current task protocol, the
  3808   // following assertion is true even of the spaces
  3809   // expanded since the completion of the concurrent
  3810   // marking. XXX This will likely change under a strict
  3811   // ABORT semantics.
  3812   assert(_global_finger >  _cms_space->end() &&
  3813          _global_finger >= _perm_space->end(),
  3814          "All tasks have been completed");
  3815   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3818 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  3819   HeapWord* read = _global_finger;
  3820   HeapWord* cur  = read;
  3821   while (f > read) {
  3822     cur = read;
  3823     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  3824     if (cur == read) {
  3825       // our cas succeeded
  3826       assert(_global_finger >= f, "protocol consistency");
  3827       break;
  3832 // This is really inefficient, and should be redone by
  3833 // using (not yet available) block-read and -write interfaces to the
  3834 // stack and the work_queue. XXX FIX ME !!!
  3835 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3836                                                       OopTaskQueue* work_q) {
  3837   // Fast lock-free check
  3838   if (ovflw_stk->length() == 0) {
  3839     return false;
  3841   assert(work_q->size() == 0, "Shouldn't steal");
  3842   MutexLockerEx ml(ovflw_stk->par_lock(),
  3843                    Mutex::_no_safepoint_check_flag);
  3844   // Grab up to 1/4 the size of the work queue
  3845   size_t num = MIN2((size_t)work_q->max_elems()/4,
  3846                     (size_t)ParGCDesiredObjsFromOverflowList);
  3847   num = MIN2(num, ovflw_stk->length());
  3848   for (int i = (int) num; i > 0; i--) {
  3849     oop cur = ovflw_stk->pop();
  3850     assert(cur != NULL, "Counted wrong?");
  3851     work_q->push(cur);
  3853   return num > 0;
  3856 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  3857   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  3858   int n_tasks = pst->n_tasks();
  3859   // We allow that there may be no tasks to do here because
  3860   // we are restarting after a stack overflow.
  3861   assert(pst->valid() || n_tasks == 0, "Uninitializd use?");
  3862   int nth_task = 0;
  3864   HeapWord* start = sp->bottom();
  3865   size_t chunk_size = sp->marking_task_size();
  3866   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  3867     // Having claimed the nth task in this space,
  3868     // compute the chunk that it corresponds to:
  3869     MemRegion span = MemRegion(start + nth_task*chunk_size,
  3870                                start + (nth_task+1)*chunk_size);
  3871     // Try and bump the global finger via a CAS;
  3872     // note that we need to do the global finger bump
  3873     // _before_ taking the intersection below, because
  3874     // the task corresponding to that region will be
  3875     // deemed done even if the used_region() expands
  3876     // because of allocation -- as it almost certainly will
  3877     // during start-up while the threads yield in the
  3878     // closure below.
  3879     HeapWord* finger = span.end();
  3880     bump_global_finger(finger);   // atomically
  3881     // There are null tasks here corresponding to chunks
  3882     // beyond the "top" address of the space.
  3883     span = span.intersection(sp->used_region());
  3884     if (!span.is_empty()) {  // Non-null task
  3885       // We want to skip the first object because
  3886       // the protocol is to scan any object in its entirety
  3887       // that _starts_ in this span; a fortiori, any
  3888       // object starting in an earlier span is scanned
  3889       // as part of an earlier claimed task.
  3890       // Below we use the "careful" version of block_start
  3891       // so we do not try to navigate uninitialized objects.
  3892       HeapWord* prev_obj = sp->block_start_careful(span.start());
  3893       // Below we use a variant of block_size that uses the
  3894       // Printezis bits to avoid waiting for allocated
  3895       // objects to become initialized/parsable.
  3896       while (prev_obj < span.start()) {
  3897         size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  3898         if (sz > 0) {
  3899           prev_obj += sz;
  3900         } else {
  3901           // In this case we may end up doing a bit of redundant
  3902           // scanning, but that appears unavoidable, short of
  3903           // locking the free list locks; see bug 6324141.
  3904           break;
  3907       if (prev_obj < span.end()) {
  3908         MemRegion my_span = MemRegion(prev_obj, span.end());
  3909         // Do the marking work within a non-empty span --
  3910         // the last argument to the constructor indicates whether the
  3911         // iteration should be incremental with periodic yields.
  3912         Par_MarkFromRootsClosure cl(this, _collector, my_span,
  3913                                     &_collector->_markBitMap,
  3914                                     work_queue(i),
  3915                                     &_collector->_markStack,
  3916                                     &_collector->_revisitStack,
  3917                                     _asynch);
  3918         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  3919       } // else nothing to do for this task
  3920     }   // else nothing to do for this task
  3922   // We'd be tempted to assert here that since there are no
  3923   // more tasks left to claim in this space, the global_finger
  3924   // must exceed space->top() and a fortiori space->end(). However,
  3925   // that would not quite be correct because the bumping of
  3926   // global_finger occurs strictly after the claiming of a task,
  3927   // so by the time we reach here the global finger may not yet
  3928   // have been bumped up by the thread that claimed the last
  3929   // task.
  3930   pst->all_tasks_completed();
  3933 class Par_ConcMarkingClosure: public OopClosure {
  3934  private:
  3935   CMSCollector* _collector;
  3936   MemRegion     _span;
  3937   CMSBitMap*    _bit_map;
  3938   CMSMarkStack* _overflow_stack;
  3939   CMSMarkStack* _revisit_stack;     // XXXXXX Check proper use
  3940   OopTaskQueue* _work_queue;
  3941  protected:
  3942   DO_OOP_WORK_DEFN
  3943  public:
  3944   Par_ConcMarkingClosure(CMSCollector* collector, OopTaskQueue* work_queue,
  3945                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
  3946     _collector(collector),
  3947     _span(_collector->_span),
  3948     _work_queue(work_queue),
  3949     _bit_map(bit_map),
  3950     _overflow_stack(overflow_stack) { }   // need to initialize revisit stack etc.
  3951   virtual void do_oop(oop* p);
  3952   virtual void do_oop(narrowOop* p);
  3953   void trim_queue(size_t max);
  3954   void handle_stack_overflow(HeapWord* lost);
  3955 };
  3957 // Grey object rescan during work stealing phase --
  3958 // the salient assumption here is that stolen oops must
  3959 // always be initialized, so we do not need to check for
  3960 // uninitialized objects before scanning here.
  3961 void Par_ConcMarkingClosure::do_oop(oop obj) {
  3962   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  3963   HeapWord* addr = (HeapWord*)obj;
  3964   // Check if oop points into the CMS generation
  3965   // and is not marked
  3966   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  3967     // a white object ...
  3968     // If we manage to "claim" the object, by being the
  3969     // first thread to mark it, then we push it on our
  3970     // marking stack
  3971     if (_bit_map->par_mark(addr)) {     // ... now grey
  3972       // push on work queue (grey set)
  3973       bool simulate_overflow = false;
  3974       NOT_PRODUCT(
  3975         if (CMSMarkStackOverflowALot &&
  3976             _collector->simulate_overflow()) {
  3977           // simulate a stack overflow
  3978           simulate_overflow = true;
  3981       if (simulate_overflow ||
  3982           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  3983         // stack overflow
  3984         if (PrintCMSStatistics != 0) {
  3985           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  3986                                  SIZE_FORMAT, _overflow_stack->capacity());
  3988         // We cannot assert that the overflow stack is full because
  3989         // it may have been emptied since.
  3990         assert(simulate_overflow ||
  3991                _work_queue->size() == _work_queue->max_elems(),
  3992               "Else push should have succeeded");
  3993         handle_stack_overflow(addr);
  3995     } // Else, some other thread got there first
  3999 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
  4000 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
  4002 void Par_ConcMarkingClosure::trim_queue(size_t max) {
  4003   while (_work_queue->size() > max) {
  4004     oop new_oop;
  4005     if (_work_queue->pop_local(new_oop)) {
  4006       assert(new_oop->is_oop(), "Should be an oop");
  4007       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  4008       assert(_span.contains((HeapWord*)new_oop), "Not in span");
  4009       assert(new_oop->is_parsable(), "Should be parsable");
  4010       new_oop->oop_iterate(this);  // do_oop() above
  4015 // Upon stack overflow, we discard (part of) the stack,
  4016 // remembering the least address amongst those discarded
  4017 // in CMSCollector's _restart_address.
  4018 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  4019   // We need to do this under a mutex to prevent other
  4020   // workers from interfering with the expansion below.
  4021   MutexLockerEx ml(_overflow_stack->par_lock(),
  4022                    Mutex::_no_safepoint_check_flag);
  4023   // Remember the least grey address discarded
  4024   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  4025   _collector->lower_restart_addr(ra);
  4026   _overflow_stack->reset();  // discard stack contents
  4027   _overflow_stack->expand(); // expand the stack if possible
  4031 void CMSConcMarkingTask::do_work_steal(int i) {
  4032   OopTaskQueue* work_q = work_queue(i);
  4033   oop obj_to_scan;
  4034   CMSBitMap* bm = &(_collector->_markBitMap);
  4035   CMSMarkStack* ovflw = &(_collector->_markStack);
  4036   int* seed = _collector->hash_seed(i);
  4037   Par_ConcMarkingClosure cl(_collector, work_q, bm, ovflw);
  4038   while (true) {
  4039     cl.trim_queue(0);
  4040     assert(work_q->size() == 0, "Should have been emptied above");
  4041     if (get_work_from_overflow_stack(ovflw, work_q)) {
  4042       // Can't assert below because the work obtained from the
  4043       // overflow stack may already have been stolen from us.
  4044       // assert(work_q->size() > 0, "Work from overflow stack");
  4045       continue;
  4046     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  4047       assert(obj_to_scan->is_oop(), "Should be an oop");
  4048       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  4049       obj_to_scan->oop_iterate(&cl);
  4050     } else if (terminator()->offer_termination()) {
  4051       assert(work_q->size() == 0, "Impossible!");
  4052       break;
  4057 // This is run by the CMS (coordinator) thread.
  4058 void CMSConcMarkingTask::coordinator_yield() {
  4059   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4060          "CMS thread should hold CMS token");
  4062   // First give up the locks, then yield, then re-lock
  4063   // We should probably use a constructor/destructor idiom to
  4064   // do this unlock/lock or modify the MutexUnlocker class to
  4065   // serve our purpose. XXX
  4066   assert_lock_strong(_bit_map_lock);
  4067   _bit_map_lock->unlock();
  4068   ConcurrentMarkSweepThread::desynchronize(true);
  4069   ConcurrentMarkSweepThread::acknowledge_yield_request();
  4070   _collector->stopTimer();
  4071   if (PrintCMSStatistics != 0) {
  4072     _collector->incrementYields();
  4074   _collector->icms_wait();
  4076   // It is possible for whichever thread initiated the yield request
  4077   // not to get a chance to wake up and take the bitmap lock between
  4078   // this thread releasing it and reacquiring it. So, while the
  4079   // should_yield() flag is on, let's sleep for a bit to give the
  4080   // other thread a chance to wake up. The limit imposed on the number
  4081   // of iterations is defensive, to avoid any unforseen circumstances
  4082   // putting us into an infinite loop. Since it's always been this
  4083   // (coordinator_yield()) method that was observed to cause the
  4084   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  4085   // which is by default non-zero. For the other seven methods that
  4086   // also perform the yield operation, as are using a different
  4087   // parameter (CMSYieldSleepCount) which is by default zero. This way we
  4088   // can enable the sleeping for those methods too, if necessary.
  4089   // See 6442774.
  4090   //
  4091   // We really need to reconsider the synchronization between the GC
  4092   // thread and the yield-requesting threads in the future and we
  4093   // should really use wait/notify, which is the recommended
  4094   // way of doing this type of interaction. Additionally, we should
  4095   // consolidate the eight methods that do the yield operation and they
  4096   // are almost identical into one for better maintenability and
  4097   // readability. See 6445193.
  4098   //
  4099   // Tony 2006.06.29
  4100   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  4101                    ConcurrentMarkSweepThread::should_yield() &&
  4102                    !CMSCollector::foregroundGCIsActive(); ++i) {
  4103     os::sleep(Thread::current(), 1, false);
  4104     ConcurrentMarkSweepThread::acknowledge_yield_request();
  4107   ConcurrentMarkSweepThread::synchronize(true);
  4108   _bit_map_lock->lock_without_safepoint_check();
  4109   _collector->startTimer();
  4112 bool CMSCollector::do_marking_mt(bool asynch) {
  4113   assert(ParallelCMSThreads > 0 && conc_workers() != NULL, "precondition");
  4114   // In the future this would be determined ergonomically, based
  4115   // on #cpu's, # active mutator threads (and load), and mutation rate.
  4116   int num_workers = ParallelCMSThreads;
  4118   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  4119   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  4121   CMSConcMarkingTask tsk(this, cms_space, perm_space,
  4122                          asynch, num_workers /* number requested XXX */,
  4123                          conc_workers(), task_queues());
  4125   // Since the actual number of workers we get may be different
  4126   // from the number we requested above, do we need to do anything different
  4127   // below? In particular, may be we need to subclass the SequantialSubTasksDone
  4128   // class?? XXX
  4129   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  4130   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
  4132   // Refs discovery is already non-atomic.
  4133   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  4134   // Mutate the Refs discovery so it is MT during the
  4135   // multi-threaded marking phase.
  4136   ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
  4138   conc_workers()->start_task(&tsk);
  4139   while (tsk.yielded()) {
  4140     tsk.coordinator_yield();
  4141     conc_workers()->continue_task(&tsk);
  4143   // If the task was aborted, _restart_addr will be non-NULL
  4144   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  4145   while (_restart_addr != NULL) {
  4146     // XXX For now we do not make use of ABORTED state and have not
  4147     // yet implemented the right abort semantics (even in the original
  4148     // single-threaded CMS case). That needs some more investigation
  4149     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  4150     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  4151     // If _restart_addr is non-NULL, a marking stack overflow
  4152     // occured; we need to do a fresh marking iteration from the
  4153     // indicated restart address.
  4154     if (_foregroundGCIsActive && asynch) {
  4155       // We may be running into repeated stack overflows, having
  4156       // reached the limit of the stack size, while making very
  4157       // slow forward progress. It may be best to bail out and
  4158       // let the foreground collector do its job.
  4159       // Clear _restart_addr, so that foreground GC
  4160       // works from scratch. This avoids the headache of
  4161       // a "rescan" which would otherwise be needed because
  4162       // of the dirty mod union table & card table.
  4163       _restart_addr = NULL;
  4164       return false;
  4166     // Adjust the task to restart from _restart_addr
  4167     tsk.reset(_restart_addr);
  4168     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  4169                   _restart_addr);
  4170     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
  4171                   _restart_addr);
  4172     _restart_addr = NULL;
  4173     // Get the workers going again
  4174     conc_workers()->start_task(&tsk);
  4175     while (tsk.yielded()) {
  4176       tsk.coordinator_yield();
  4177       conc_workers()->continue_task(&tsk);
  4180   assert(tsk.completed(), "Inconsistency");
  4181   assert(tsk.result() == true, "Inconsistency");
  4182   return true;
  4185 bool CMSCollector::do_marking_st(bool asynch) {
  4186   ResourceMark rm;
  4187   HandleMark   hm;
  4189   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  4190     &_markStack, &_revisitStack, CMSYield && asynch);
  4191   // the last argument to iterate indicates whether the iteration
  4192   // should be incremental with periodic yields.
  4193   _markBitMap.iterate(&markFromRootsClosure);
  4194   // If _restart_addr is non-NULL, a marking stack overflow
  4195   // occured; we need to do a fresh iteration from the
  4196   // indicated restart address.
  4197   while (_restart_addr != NULL) {
  4198     if (_foregroundGCIsActive && asynch) {
  4199       // We may be running into repeated stack overflows, having
  4200       // reached the limit of the stack size, while making very
  4201       // slow forward progress. It may be best to bail out and
  4202       // let the foreground collector do its job.
  4203       // Clear _restart_addr, so that foreground GC
  4204       // works from scratch. This avoids the headache of
  4205       // a "rescan" which would otherwise be needed because
  4206       // of the dirty mod union table & card table.
  4207       _restart_addr = NULL;
  4208       return false;  // indicating failure to complete marking
  4210     // Deal with stack overflow:
  4211     // we restart marking from _restart_addr
  4212     HeapWord* ra = _restart_addr;
  4213     markFromRootsClosure.reset(ra);
  4214     _restart_addr = NULL;
  4215     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  4217   return true;
  4220 void CMSCollector::preclean() {
  4221   check_correct_thread_executing();
  4222   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  4223   verify_work_stacks_empty();
  4224   verify_overflow_empty();
  4225   _abort_preclean = false;
  4226   if (CMSPrecleaningEnabled) {
  4227     _eden_chunk_index = 0;
  4228     size_t used = get_eden_used();
  4229     size_t capacity = get_eden_capacity();
  4230     // Don't start sampling unless we will get sufficiently
  4231     // many samples.
  4232     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  4233                 * CMSScheduleRemarkEdenPenetration)) {
  4234       _start_sampling = true;
  4235     } else {
  4236       _start_sampling = false;
  4238     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4239     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
  4240     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  4242   CMSTokenSync x(true); // is cms thread
  4243   if (CMSPrecleaningEnabled) {
  4244     sample_eden();
  4245     _collectorState = AbortablePreclean;
  4246   } else {
  4247     _collectorState = FinalMarking;
  4249   verify_work_stacks_empty();
  4250   verify_overflow_empty();
  4253 // Try and schedule the remark such that young gen
  4254 // occupancy is CMSScheduleRemarkEdenPenetration %.
  4255 void CMSCollector::abortable_preclean() {
  4256   check_correct_thread_executing();
  4257   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  4258   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  4260   // If Eden's current occupancy is below this threshold,
  4261   // immediately schedule the remark; else preclean
  4262   // past the next scavenge in an effort to
  4263   // schedule the pause as described avove. By choosing
  4264   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  4265   // we will never do an actual abortable preclean cycle.
  4266   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  4267     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4268     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
  4269     // We need more smarts in the abortable preclean
  4270     // loop below to deal with cases where allocation
  4271     // in young gen is very very slow, and our precleaning
  4272     // is running a losing race against a horde of
  4273     // mutators intent on flooding us with CMS updates
  4274     // (dirty cards).
  4275     // One, admittedly dumb, strategy is to give up
  4276     // after a certain number of abortable precleaning loops
  4277     // or after a certain maximum time. We want to make
  4278     // this smarter in the next iteration.
  4279     // XXX FIX ME!!! YSR
  4280     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  4281     while (!(should_abort_preclean() ||
  4282              ConcurrentMarkSweepThread::should_terminate())) {
  4283       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  4284       cumworkdone += workdone;
  4285       loops++;
  4286       // Voluntarily terminate abortable preclean phase if we have
  4287       // been at it for too long.
  4288       if ((CMSMaxAbortablePrecleanLoops != 0) &&
  4289           loops >= CMSMaxAbortablePrecleanLoops) {
  4290         if (PrintGCDetails) {
  4291           gclog_or_tty->print(" CMS: abort preclean due to loops ");
  4293         break;
  4295       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  4296         if (PrintGCDetails) {
  4297           gclog_or_tty->print(" CMS: abort preclean due to time ");
  4299         break;
  4301       // If we are doing little work each iteration, we should
  4302       // take a short break.
  4303       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  4304         // Sleep for some time, waiting for work to accumulate
  4305         stopTimer();
  4306         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  4307         startTimer();
  4308         waited++;
  4311     if (PrintCMSStatistics > 0) {
  4312       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  4313                           loops, waited, cumworkdone);
  4316   CMSTokenSync x(true); // is cms thread
  4317   if (_collectorState != Idling) {
  4318     assert(_collectorState == AbortablePreclean,
  4319            "Spontaneous state transition?");
  4320     _collectorState = FinalMarking;
  4321   } // Else, a foreground collection completed this CMS cycle.
  4322   return;
  4325 // Respond to an Eden sampling opportunity
  4326 void CMSCollector::sample_eden() {
  4327   // Make sure a young gc cannot sneak in between our
  4328   // reading and recording of a sample.
  4329   assert(Thread::current()->is_ConcurrentGC_thread(),
  4330          "Only the cms thread may collect Eden samples");
  4331   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4332          "Should collect samples while holding CMS token");
  4333   if (!_start_sampling) {
  4334     return;
  4336   if (_eden_chunk_array) {
  4337     if (_eden_chunk_index < _eden_chunk_capacity) {
  4338       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  4339       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  4340              "Unexpected state of Eden");
  4341       // We'd like to check that what we just sampled is an oop-start address;
  4342       // however, we cannot do that here since the object may not yet have been
  4343       // initialized. So we'll instead do the check when we _use_ this sample
  4344       // later.
  4345       if (_eden_chunk_index == 0 ||
  4346           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  4347                          _eden_chunk_array[_eden_chunk_index-1])
  4348            >= CMSSamplingGrain)) {
  4349         _eden_chunk_index++;  // commit sample
  4353   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  4354     size_t used = get_eden_used();
  4355     size_t capacity = get_eden_capacity();
  4356     assert(used <= capacity, "Unexpected state of Eden");
  4357     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  4358       _abort_preclean = true;
  4364 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  4365   assert(_collectorState == Precleaning ||
  4366          _collectorState == AbortablePreclean, "incorrect state");
  4367   ResourceMark rm;
  4368   HandleMark   hm;
  4369   // Do one pass of scrubbing the discovered reference lists
  4370   // to remove any reference objects with strongly-reachable
  4371   // referents.
  4372   if (clean_refs) {
  4373     ReferenceProcessor* rp = ref_processor();
  4374     CMSPrecleanRefsYieldClosure yield_cl(this);
  4375     assert(rp->span().equals(_span), "Spans should be equal");
  4376     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  4377                                    &_markStack);
  4378     CMSDrainMarkingStackClosure complete_trace(this,
  4379                                   _span, &_markBitMap, &_markStack,
  4380                                   &keep_alive);
  4382     // We don't want this step to interfere with a young
  4383     // collection because we don't want to take CPU
  4384     // or memory bandwidth away from the young GC threads
  4385     // (which may be as many as there are CPUs).
  4386     // Note that we don't need to protect ourselves from
  4387     // interference with mutators because they can't
  4388     // manipulate the discovered reference lists nor affect
  4389     // the computed reachability of the referents, the
  4390     // only properties manipulated by the precleaning
  4391     // of these reference lists.
  4392     stopTimer();
  4393     CMSTokenSyncWithLocks x(true /* is cms thread */,
  4394                             bitMapLock());
  4395     startTimer();
  4396     sample_eden();
  4397     // The following will yield to allow foreground
  4398     // collection to proceed promptly. XXX YSR:
  4399     // The code in this method may need further
  4400     // tweaking for better performance and some restructuring
  4401     // for cleaner interfaces.
  4402     rp->preclean_discovered_references(
  4403           rp->is_alive_non_header(), &keep_alive, &complete_trace,
  4404           &yield_cl);
  4407   if (clean_survivor) {  // preclean the active survivor space(s)
  4408     assert(_young_gen->kind() == Generation::DefNew ||
  4409            _young_gen->kind() == Generation::ParNew ||
  4410            _young_gen->kind() == Generation::ASParNew,
  4411          "incorrect type for cast");
  4412     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  4413     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  4414                              &_markBitMap, &_modUnionTable,
  4415                              &_markStack, &_revisitStack,
  4416                              true /* precleaning phase */);
  4417     stopTimer();
  4418     CMSTokenSyncWithLocks ts(true /* is cms thread */,
  4419                              bitMapLock());
  4420     startTimer();
  4421     unsigned int before_count =
  4422       GenCollectedHeap::heap()->total_collections();
  4423     SurvivorSpacePrecleanClosure
  4424       sss_cl(this, _span, &_markBitMap, &_markStack,
  4425              &pam_cl, before_count, CMSYield);
  4426     dng->from()->object_iterate_careful(&sss_cl);
  4427     dng->to()->object_iterate_careful(&sss_cl);
  4429   MarkRefsIntoAndScanClosure
  4430     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  4431              &_markStack, &_revisitStack, this, CMSYield,
  4432              true /* precleaning phase */);
  4433   // CAUTION: The following closure has persistent state that may need to
  4434   // be reset upon a decrease in the sequence of addresses it
  4435   // processes.
  4436   ScanMarkedObjectsAgainCarefullyClosure
  4437     smoac_cl(this, _span,
  4438       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
  4440   // Preclean dirty cards in ModUnionTable and CardTable using
  4441   // appropriate convergence criterion;
  4442   // repeat CMSPrecleanIter times unless we find that
  4443   // we are losing.
  4444   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  4445   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  4446          "Bad convergence multiplier");
  4447   assert(CMSPrecleanThreshold >= 100,
  4448          "Unreasonably low CMSPrecleanThreshold");
  4450   size_t numIter, cumNumCards, lastNumCards, curNumCards;
  4451   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  4452        numIter < CMSPrecleanIter;
  4453        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  4454     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  4455     if (CMSPermGenPrecleaningEnabled) {
  4456       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
  4458     if (Verbose && PrintGCDetails) {
  4459       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  4461     // Either there are very few dirty cards, so re-mark
  4462     // pause will be small anyway, or our pre-cleaning isn't
  4463     // that much faster than the rate at which cards are being
  4464     // dirtied, so we might as well stop and re-mark since
  4465     // precleaning won't improve our re-mark time by much.
  4466     if (curNumCards <= CMSPrecleanThreshold ||
  4467         (numIter > 0 &&
  4468          (curNumCards * CMSPrecleanDenominator >
  4469          lastNumCards * CMSPrecleanNumerator))) {
  4470       numIter++;
  4471       cumNumCards += curNumCards;
  4472       break;
  4475   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  4476   if (CMSPermGenPrecleaningEnabled) {
  4477     curNumCards += preclean_card_table(_permGen, &smoac_cl);
  4479   cumNumCards += curNumCards;
  4480   if (PrintGCDetails && PrintCMSStatistics != 0) {
  4481     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  4482                   curNumCards, cumNumCards, numIter);
  4484   return cumNumCards;   // as a measure of useful work done
  4487 // PRECLEANING NOTES:
  4488 // Precleaning involves:
  4489 // . reading the bits of the modUnionTable and clearing the set bits.
  4490 // . For the cards corresponding to the set bits, we scan the
  4491 //   objects on those cards. This means we need the free_list_lock
  4492 //   so that we can safely iterate over the CMS space when scanning
  4493 //   for oops.
  4494 // . When we scan the objects, we'll be both reading and setting
  4495 //   marks in the marking bit map, so we'll need the marking bit map.
  4496 // . For protecting _collector_state transitions, we take the CGC_lock.
  4497 //   Note that any races in the reading of of card table entries by the
  4498 //   CMS thread on the one hand and the clearing of those entries by the
  4499 //   VM thread or the setting of those entries by the mutator threads on the
  4500 //   other are quite benign. However, for efficiency it makes sense to keep
  4501 //   the VM thread from racing with the CMS thread while the latter is
  4502 //   dirty card info to the modUnionTable. We therefore also use the
  4503 //   CGC_lock to protect the reading of the card table and the mod union
  4504 //   table by the CM thread.
  4505 // . We run concurrently with mutator updates, so scanning
  4506 //   needs to be done carefully  -- we should not try to scan
  4507 //   potentially uninitialized objects.
  4508 //
  4509 // Locking strategy: While holding the CGC_lock, we scan over and
  4510 // reset a maximal dirty range of the mod union / card tables, then lock
  4511 // the free_list_lock and bitmap lock to do a full marking, then
  4512 // release these locks; and repeat the cycle. This allows for a
  4513 // certain amount of fairness in the sharing of these locks between
  4514 // the CMS collector on the one hand, and the VM thread and the
  4515 // mutators on the other.
  4517 // NOTE: preclean_mod_union_table() and preclean_card_table()
  4518 // further below are largely identical; if you need to modify
  4519 // one of these methods, please check the other method too.
  4521 size_t CMSCollector::preclean_mod_union_table(
  4522   ConcurrentMarkSweepGeneration* gen,
  4523   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4524   verify_work_stacks_empty();
  4525   verify_overflow_empty();
  4527   // strategy: starting with the first card, accumulate contiguous
  4528   // ranges of dirty cards; clear these cards, then scan the region
  4529   // covered by these cards.
  4531   // Since all of the MUT is committed ahead, we can just use
  4532   // that, in case the generations expand while we are precleaning.
  4533   // It might also be fine to just use the committed part of the
  4534   // generation, but we might potentially miss cards when the
  4535   // generation is rapidly expanding while we are in the midst
  4536   // of precleaning.
  4537   HeapWord* startAddr = gen->reserved().start();
  4538   HeapWord* endAddr   = gen->reserved().end();
  4540   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4542   size_t numDirtyCards, cumNumDirtyCards;
  4543   HeapWord *nextAddr, *lastAddr;
  4544   for (cumNumDirtyCards = numDirtyCards = 0,
  4545        nextAddr = lastAddr = startAddr;
  4546        nextAddr < endAddr;
  4547        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4549     ResourceMark rm;
  4550     HandleMark   hm;
  4552     MemRegion dirtyRegion;
  4554       stopTimer();
  4555       CMSTokenSync ts(true);
  4556       startTimer();
  4557       sample_eden();
  4558       // Get dirty region starting at nextOffset (inclusive),
  4559       // simultaneously clearing it.
  4560       dirtyRegion =
  4561         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  4562       assert(dirtyRegion.start() >= nextAddr,
  4563              "returned region inconsistent?");
  4565     // Remember where the next search should begin.
  4566     // The returned region (if non-empty) is a right open interval,
  4567     // so lastOffset is obtained from the right end of that
  4568     // interval.
  4569     lastAddr = dirtyRegion.end();
  4570     // Should do something more transparent and less hacky XXX
  4571     numDirtyCards =
  4572       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  4574     // We'll scan the cards in the dirty region (with periodic
  4575     // yields for foreground GC as needed).
  4576     if (!dirtyRegion.is_empty()) {
  4577       assert(numDirtyCards > 0, "consistency check");
  4578       HeapWord* stop_point = NULL;
  4580         stopTimer();
  4581         CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  4582                                  bitMapLock());
  4583         startTimer();
  4584         verify_work_stacks_empty();
  4585         verify_overflow_empty();
  4586         sample_eden();
  4587         stop_point =
  4588           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4590       if (stop_point != NULL) {
  4591         // The careful iteration stopped early either because it found an
  4592         // uninitialized object, or because we were in the midst of an
  4593         // "abortable preclean", which should now be aborted. Redirty
  4594         // the bits corresponding to the partially-scanned or unscanned
  4595         // cards. We'll either restart at the next block boundary or
  4596         // abort the preclean.
  4597         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
  4598                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4599                "Unparsable objects should only be in perm gen.");
  4601         stopTimer();
  4602         CMSTokenSyncWithLocks ts(true, bitMapLock());
  4603         startTimer();
  4604         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  4605         if (should_abort_preclean()) {
  4606           break; // out of preclean loop
  4607         } else {
  4608           // Compute the next address at which preclean should pick up;
  4609           // might need bitMapLock in order to read P-bits.
  4610           lastAddr = next_card_start_after_block(stop_point);
  4613     } else {
  4614       assert(lastAddr == endAddr, "consistency check");
  4615       assert(numDirtyCards == 0, "consistency check");
  4616       break;
  4619   verify_work_stacks_empty();
  4620   verify_overflow_empty();
  4621   return cumNumDirtyCards;
  4624 // NOTE: preclean_mod_union_table() above and preclean_card_table()
  4625 // below are largely identical; if you need to modify
  4626 // one of these methods, please check the other method too.
  4628 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  4629   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4630   // strategy: it's similar to precleamModUnionTable above, in that
  4631   // we accumulate contiguous ranges of dirty cards, mark these cards
  4632   // precleaned, then scan the region covered by these cards.
  4633   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  4634   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  4636   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4638   size_t numDirtyCards, cumNumDirtyCards;
  4639   HeapWord *lastAddr, *nextAddr;
  4641   for (cumNumDirtyCards = numDirtyCards = 0,
  4642        nextAddr = lastAddr = startAddr;
  4643        nextAddr < endAddr;
  4644        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4646     ResourceMark rm;
  4647     HandleMark   hm;
  4649     MemRegion dirtyRegion;
  4651       // See comments in "Precleaning notes" above on why we
  4652       // do this locking. XXX Could the locking overheads be
  4653       // too high when dirty cards are sparse? [I don't think so.]
  4654       stopTimer();
  4655       CMSTokenSync x(true); // is cms thread
  4656       startTimer();
  4657       sample_eden();
  4658       // Get and clear dirty region from card table
  4659       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
  4660                                     MemRegion(nextAddr, endAddr),
  4661                                     true,
  4662                                     CardTableModRefBS::precleaned_card_val());
  4664       assert(dirtyRegion.start() >= nextAddr,
  4665              "returned region inconsistent?");
  4667     lastAddr = dirtyRegion.end();
  4668     numDirtyCards =
  4669       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  4671     if (!dirtyRegion.is_empty()) {
  4672       stopTimer();
  4673       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  4674       startTimer();
  4675       sample_eden();
  4676       verify_work_stacks_empty();
  4677       verify_overflow_empty();
  4678       HeapWord* stop_point =
  4679         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4680       if (stop_point != NULL) {
  4681         // The careful iteration stopped early because it found an
  4682         // uninitialized object.  Redirty the bits corresponding to the
  4683         // partially-scanned or unscanned cards, and start again at the
  4684         // next block boundary.
  4685         assert(CMSPermGenPrecleaningEnabled ||
  4686                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4687                "Unparsable objects should only be in perm gen.");
  4688         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  4689         if (should_abort_preclean()) {
  4690           break; // out of preclean loop
  4691         } else {
  4692           // Compute the next address at which preclean should pick up.
  4693           lastAddr = next_card_start_after_block(stop_point);
  4696     } else {
  4697       break;
  4700   verify_work_stacks_empty();
  4701   verify_overflow_empty();
  4702   return cumNumDirtyCards;
  4705 void CMSCollector::checkpointRootsFinal(bool asynch,
  4706   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4707   assert(_collectorState == FinalMarking, "incorrect state transition?");
  4708   check_correct_thread_executing();
  4709   // world is stopped at this checkpoint
  4710   assert(SafepointSynchronize::is_at_safepoint(),
  4711          "world should be stopped");
  4712   verify_work_stacks_empty();
  4713   verify_overflow_empty();
  4715   SpecializationStats::clear();
  4716   if (PrintGCDetails) {
  4717     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  4718                         _young_gen->used() / K,
  4719                         _young_gen->capacity() / K);
  4721   if (asynch) {
  4722     if (CMSScavengeBeforeRemark) {
  4723       GenCollectedHeap* gch = GenCollectedHeap::heap();
  4724       // Temporarily set flag to false, GCH->do_collection will
  4725       // expect it to be false and set to true
  4726       FlagSetting fl(gch->_is_gc_active, false);
  4727       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
  4728         PrintGCDetails && Verbose, true, gclog_or_tty);)
  4729       int level = _cmsGen->level() - 1;
  4730       if (level >= 0) {
  4731         gch->do_collection(true,        // full (i.e. force, see below)
  4732                            false,       // !clear_all_soft_refs
  4733                            0,           // size
  4734                            false,       // is_tlab
  4735                            level        // max_level
  4736                           );
  4739     FreelistLocker x(this);
  4740     MutexLockerEx y(bitMapLock(),
  4741                     Mutex::_no_safepoint_check_flag);
  4742     assert(!init_mark_was_synchronous, "but that's impossible!");
  4743     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  4744   } else {
  4745     // already have all the locks
  4746     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  4747                              init_mark_was_synchronous);
  4749   verify_work_stacks_empty();
  4750   verify_overflow_empty();
  4751   SpecializationStats::print();
  4754 void CMSCollector::checkpointRootsFinalWork(bool asynch,
  4755   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4757   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
  4759   assert(haveFreelistLocks(), "must have free list locks");
  4760   assert_lock_strong(bitMapLock());
  4762   if (UseAdaptiveSizePolicy) {
  4763     size_policy()->checkpoint_roots_final_begin();
  4766   ResourceMark rm;
  4767   HandleMark   hm;
  4769   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4771   if (should_unload_classes()) {
  4772     CodeCache::gc_prologue();
  4774   assert(haveFreelistLocks(), "must have free list locks");
  4775   assert_lock_strong(bitMapLock());
  4777   if (!init_mark_was_synchronous) {
  4778     // We might assume that we need not fill TLAB's when
  4779     // CMSScavengeBeforeRemark is set, because we may have just done
  4780     // a scavenge which would have filled all TLAB's -- and besides
  4781     // Eden would be empty. This however may not always be the case --
  4782     // for instance although we asked for a scavenge, it may not have
  4783     // happened because of a JNI critical section. We probably need
  4784     // a policy for deciding whether we can in that case wait until
  4785     // the critical section releases and then do the remark following
  4786     // the scavenge, and skip it here. In the absence of that policy,
  4787     // or of an indication of whether the scavenge did indeed occur,
  4788     // we cannot rely on TLAB's having been filled and must do
  4789     // so here just in case a scavenge did not happen.
  4790     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  4791     // Update the saved marks which may affect the root scans.
  4792     gch->save_marks();
  4795       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  4797       // Note on the role of the mod union table:
  4798       // Since the marker in "markFromRoots" marks concurrently with
  4799       // mutators, it is possible for some reachable objects not to have been
  4800       // scanned. For instance, an only reference to an object A was
  4801       // placed in object B after the marker scanned B. Unless B is rescanned,
  4802       // A would be collected. Such updates to references in marked objects
  4803       // are detected via the mod union table which is the set of all cards
  4804       // dirtied since the first checkpoint in this GC cycle and prior to
  4805       // the most recent young generation GC, minus those cleaned up by the
  4806       // concurrent precleaning.
  4807       if (CMSParallelRemarkEnabled && ParallelGCThreads > 0) {
  4808         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
  4809         do_remark_parallel();
  4810       } else {
  4811         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  4812                     gclog_or_tty);
  4813         do_remark_non_parallel();
  4816   } else {
  4817     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  4818     // The initial mark was stop-world, so there's no rescanning to
  4819     // do; go straight on to the next step below.
  4821   verify_work_stacks_empty();
  4822   verify_overflow_empty();
  4825     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
  4826     refProcessingWork(asynch, clear_all_soft_refs);
  4828   verify_work_stacks_empty();
  4829   verify_overflow_empty();
  4831   if (should_unload_classes()) {
  4832     CodeCache::gc_epilogue();
  4835   // If we encountered any (marking stack / work queue) overflow
  4836   // events during the current CMS cycle, take appropriate
  4837   // remedial measures, where possible, so as to try and avoid
  4838   // recurrence of that condition.
  4839   assert(_markStack.isEmpty(), "No grey objects");
  4840   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  4841                      _ser_kac_ovflw;
  4842   if (ser_ovflw > 0) {
  4843     if (PrintCMSStatistics != 0) {
  4844       gclog_or_tty->print_cr("Marking stack overflow (benign) "
  4845         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4846         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  4847         _ser_kac_ovflw);
  4849     _markStack.expand();
  4850     _ser_pmc_remark_ovflw = 0;
  4851     _ser_pmc_preclean_ovflw = 0;
  4852     _ser_kac_ovflw = 0;
  4854   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  4855     if (PrintCMSStatistics != 0) {
  4856       gclog_or_tty->print_cr("Work queue overflow (benign) "
  4857         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4858         _par_pmc_remark_ovflw, _par_kac_ovflw);
  4860     _par_pmc_remark_ovflw = 0;
  4861     _par_kac_ovflw = 0;
  4863   if (PrintCMSStatistics != 0) {
  4864      if (_markStack._hit_limit > 0) {
  4865        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  4866                               _markStack._hit_limit);
  4868      if (_markStack._failed_double > 0) {
  4869        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  4870                               " current capacity "SIZE_FORMAT,
  4871                               _markStack._failed_double,
  4872                               _markStack.capacity());
  4875   _markStack._hit_limit = 0;
  4876   _markStack._failed_double = 0;
  4878   if ((VerifyAfterGC || VerifyDuringGC) &&
  4879       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  4880     verify_after_remark();
  4883   // Change under the freelistLocks.
  4884   _collectorState = Sweeping;
  4885   // Call isAllClear() under bitMapLock
  4886   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
  4887     " final marking");
  4888   if (UseAdaptiveSizePolicy) {
  4889     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  4893 // Parallel remark task
  4894 class CMSParRemarkTask: public AbstractGangTask {
  4895   CMSCollector* _collector;
  4896   WorkGang*     _workers;
  4897   int           _n_workers;
  4898   CompactibleFreeListSpace* _cms_space;
  4899   CompactibleFreeListSpace* _perm_space;
  4901   // The per-thread work queues, available here for stealing.
  4902   OopTaskQueueSet*       _task_queues;
  4903   ParallelTaskTerminator _term;
  4905  public:
  4906   CMSParRemarkTask(CMSCollector* collector,
  4907                    CompactibleFreeListSpace* cms_space,
  4908                    CompactibleFreeListSpace* perm_space,
  4909                    int n_workers, WorkGang* workers,
  4910                    OopTaskQueueSet* task_queues):
  4911     AbstractGangTask("Rescan roots and grey objects in parallel"),
  4912     _collector(collector),
  4913     _cms_space(cms_space), _perm_space(perm_space),
  4914     _n_workers(n_workers),
  4915     _workers(workers),
  4916     _task_queues(task_queues),
  4917     _term(workers->total_workers(), task_queues) { }
  4919   OopTaskQueueSet* task_queues() { return _task_queues; }
  4921   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  4923   ParallelTaskTerminator* terminator() { return &_term; }
  4925   void work(int i);
  4927  private:
  4928   // Work method in support of parallel rescan ... of young gen spaces
  4929   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
  4930                              ContiguousSpace* space,
  4931                              HeapWord** chunk_array, size_t chunk_top);
  4933   // ... of  dirty cards in old space
  4934   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  4935                                   Par_MarkRefsIntoAndScanClosure* cl);
  4937   // ... work stealing for the above
  4938   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  4939 };
  4941 void CMSParRemarkTask::work(int i) {
  4942   elapsedTimer _timer;
  4943   ResourceMark rm;
  4944   HandleMark   hm;
  4946   // ---------- rescan from roots --------------
  4947   _timer.start();
  4948   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4949   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  4950     _collector->_span, _collector->ref_processor(),
  4951     &(_collector->_markBitMap),
  4952     work_queue(i), &(_collector->_revisitStack));
  4954   // Rescan young gen roots first since these are likely
  4955   // coarsely partitioned and may, on that account, constitute
  4956   // the critical path; thus, it's best to start off that
  4957   // work first.
  4958   // ---------- young gen roots --------------
  4960     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  4961     EdenSpace* eden_space = dng->eden();
  4962     ContiguousSpace* from_space = dng->from();
  4963     ContiguousSpace* to_space   = dng->to();
  4965     HeapWord** eca = _collector->_eden_chunk_array;
  4966     size_t     ect = _collector->_eden_chunk_index;
  4967     HeapWord** sca = _collector->_survivor_chunk_array;
  4968     size_t     sct = _collector->_survivor_chunk_index;
  4970     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  4971     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  4973     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
  4974     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
  4975     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
  4977     _timer.stop();
  4978     if (PrintCMSStatistics != 0) {
  4979       gclog_or_tty->print_cr(
  4980         "Finished young gen rescan work in %dth thread: %3.3f sec",
  4981         i, _timer.seconds());
  4985   // ---------- remaining roots --------------
  4986   _timer.reset();
  4987   _timer.start();
  4988   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  4989                                 false,     // yg was scanned above
  4990                                 true,      // collecting perm gen
  4991                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  4992                                 NULL, &par_mrias_cl);
  4993   _timer.stop();
  4994   if (PrintCMSStatistics != 0) {
  4995     gclog_or_tty->print_cr(
  4996       "Finished remaining root rescan work in %dth thread: %3.3f sec",
  4997       i, _timer.seconds());
  5000   // ---------- rescan dirty cards ------------
  5001   _timer.reset();
  5002   _timer.start();
  5004   // Do the rescan tasks for each of the two spaces
  5005   // (cms_space and perm_space) in turn.
  5006   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
  5007   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
  5008   _timer.stop();
  5009   if (PrintCMSStatistics != 0) {
  5010     gclog_or_tty->print_cr(
  5011       "Finished dirty card rescan work in %dth thread: %3.3f sec",
  5012       i, _timer.seconds());
  5015   // ---------- steal work from other threads ...
  5016   // ---------- ... and drain overflow list.
  5017   _timer.reset();
  5018   _timer.start();
  5019   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
  5020   _timer.stop();
  5021   if (PrintCMSStatistics != 0) {
  5022     gclog_or_tty->print_cr(
  5023       "Finished work stealing in %dth thread: %3.3f sec",
  5024       i, _timer.seconds());
  5028 void
  5029 CMSParRemarkTask::do_young_space_rescan(int i,
  5030   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
  5031   HeapWord** chunk_array, size_t chunk_top) {
  5032   // Until all tasks completed:
  5033   // . claim an unclaimed task
  5034   // . compute region boundaries corresponding to task claimed
  5035   //   using chunk_array
  5036   // . par_oop_iterate(cl) over that region
  5038   ResourceMark rm;
  5039   HandleMark   hm;
  5041   SequentialSubTasksDone* pst = space->par_seq_tasks();
  5042   assert(pst->valid(), "Uninitialized use?");
  5044   int nth_task = 0;
  5045   int n_tasks  = pst->n_tasks();
  5047   HeapWord *start, *end;
  5048   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5049     // We claimed task # nth_task; compute its boundaries.
  5050     if (chunk_top == 0) {  // no samples were taken
  5051       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  5052       start = space->bottom();
  5053       end   = space->top();
  5054     } else if (nth_task == 0) {
  5055       start = space->bottom();
  5056       end   = chunk_array[nth_task];
  5057     } else if (nth_task < (jint)chunk_top) {
  5058       assert(nth_task >= 1, "Control point invariant");
  5059       start = chunk_array[nth_task - 1];
  5060       end   = chunk_array[nth_task];
  5061     } else {
  5062       assert(nth_task == (jint)chunk_top, "Control point invariant");
  5063       start = chunk_array[chunk_top - 1];
  5064       end   = space->top();
  5066     MemRegion mr(start, end);
  5067     // Verify that mr is in space
  5068     assert(mr.is_empty() || space->used_region().contains(mr),
  5069            "Should be in space");
  5070     // Verify that "start" is an object boundary
  5071     assert(mr.is_empty() || oop(mr.start())->is_oop(),
  5072            "Should be an oop");
  5073     space->par_oop_iterate(mr, cl);
  5075   pst->all_tasks_completed();
  5078 void
  5079 CMSParRemarkTask::do_dirty_card_rescan_tasks(
  5080   CompactibleFreeListSpace* sp, int i,
  5081   Par_MarkRefsIntoAndScanClosure* cl) {
  5082   // Until all tasks completed:
  5083   // . claim an unclaimed task
  5084   // . compute region boundaries corresponding to task claimed
  5085   // . transfer dirty bits ct->mut for that region
  5086   // . apply rescanclosure to dirty mut bits for that region
  5088   ResourceMark rm;
  5089   HandleMark   hm;
  5091   OopTaskQueue* work_q = work_queue(i);
  5092   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  5093   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  5094   // CAUTION: This closure has state that persists across calls to
  5095   // the work method dirty_range_iterate_clear() in that it has
  5096   // imbedded in it a (subtype of) UpwardsObjectClosure. The
  5097   // use of that state in the imbedded UpwardsObjectClosure instance
  5098   // assumes that the cards are always iterated (even if in parallel
  5099   // by several threads) in monotonically increasing order per each
  5100   // thread. This is true of the implementation below which picks
  5101   // card ranges (chunks) in monotonically increasing order globally
  5102   // and, a-fortiori, in monotonically increasing order per thread
  5103   // (the latter order being a subsequence of the former).
  5104   // If the work code below is ever reorganized into a more chaotic
  5105   // work-partitioning form than the current "sequential tasks"
  5106   // paradigm, the use of that persistent state will have to be
  5107   // revisited and modified appropriately. See also related
  5108   // bug 4756801 work on which should examine this code to make
  5109   // sure that the changes there do not run counter to the
  5110   // assumptions made here and necessary for correctness and
  5111   // efficiency. Note also that this code might yield inefficient
  5112   // behaviour in the case of very large objects that span one or
  5113   // more work chunks. Such objects would potentially be scanned
  5114   // several times redundantly. Work on 4756801 should try and
  5115   // address that performance anomaly if at all possible. XXX
  5116   MemRegion  full_span  = _collector->_span;
  5117   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  5118   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
  5119   MarkFromDirtyCardsClosure
  5120     greyRescanClosure(_collector, full_span, // entire span of interest
  5121                       sp, bm, work_q, rs, cl);
  5123   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  5124   assert(pst->valid(), "Uninitialized use?");
  5125   int nth_task = 0;
  5126   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  5127   MemRegion span = sp->used_region();
  5128   HeapWord* start_addr = span.start();
  5129   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  5130                                            alignment);
  5131   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  5132   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  5133          start_addr, "Check alignment");
  5134   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  5135          chunk_size, "Check alignment");
  5137   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5138     // Having claimed the nth_task, compute corresponding mem-region,
  5139     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  5140     // The alignment restriction ensures that we do not need any
  5141     // synchronization with other gang-workers while setting or
  5142     // clearing bits in thus chunk of the MUT.
  5143     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  5144                                     start_addr + (nth_task+1)*chunk_size);
  5145     // The last chunk's end might be way beyond end of the
  5146     // used region. In that case pull back appropriately.
  5147     if (this_span.end() > end_addr) {
  5148       this_span.set_end(end_addr);
  5149       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  5151     // Iterate over the dirty cards covering this chunk, marking them
  5152     // precleaned, and setting the corresponding bits in the mod union
  5153     // table. Since we have been careful to partition at Card and MUT-word
  5154     // boundaries no synchronization is needed between parallel threads.
  5155     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  5156                                                  &modUnionClosure);
  5158     // Having transferred these marks into the modUnionTable,
  5159     // rescan the marked objects on the dirty cards in the modUnionTable.
  5160     // Even if this is at a synchronous collection, the initial marking
  5161     // may have been done during an asynchronous collection so there
  5162     // may be dirty bits in the mod-union table.
  5163     _collector->_modUnionTable.dirty_range_iterate_clear(
  5164                   this_span, &greyRescanClosure);
  5165     _collector->_modUnionTable.verifyNoOneBitsInRange(
  5166                                  this_span.start(),
  5167                                  this_span.end());
  5169   pst->all_tasks_completed();  // declare that i am done
  5172 // . see if we can share work_queues with ParNew? XXX
  5173 void
  5174 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5175                                 int* seed) {
  5176   OopTaskQueue* work_q = work_queue(i);
  5177   NOT_PRODUCT(int num_steals = 0;)
  5178   oop obj_to_scan;
  5179   CMSBitMap* bm = &(_collector->_markBitMap);
  5180   size_t num_from_overflow_list =
  5181            MIN2((size_t)work_q->max_elems()/4,
  5182                 (size_t)ParGCDesiredObjsFromOverflowList);
  5184   while (true) {
  5185     // Completely finish any left over work from (an) earlier round(s)
  5186     cl->trim_queue(0);
  5187     // Now check if there's any work in the overflow list
  5188     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5189                                                 work_q)) {
  5190       // found something in global overflow list;
  5191       // not yet ready to go stealing work from others.
  5192       // We'd like to assert(work_q->size() != 0, ...)
  5193       // because we just took work from the overflow list,
  5194       // but of course we can't since all of that could have
  5195       // been already stolen from us.
  5196       // "He giveth and He taketh away."
  5197       continue;
  5199     // Verify that we have no work before we resort to stealing
  5200     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5201     // Try to steal from other queues that have work
  5202     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5203       NOT_PRODUCT(num_steals++;)
  5204       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5205       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5206       // Do scanning work
  5207       obj_to_scan->oop_iterate(cl);
  5208       // Loop around, finish this work, and try to steal some more
  5209     } else if (terminator()->offer_termination()) {
  5210         break;  // nirvana from the infinite cycle
  5213   NOT_PRODUCT(
  5214     if (PrintCMSStatistics != 0) {
  5215       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5218   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  5219          "Else our work is not yet done");
  5222 // Return a thread-local PLAB recording array, as appropriate.
  5223 void* CMSCollector::get_data_recorder(int thr_num) {
  5224   if (_survivor_plab_array != NULL &&
  5225       (CMSPLABRecordAlways ||
  5226        (_collectorState > Marking && _collectorState < FinalMarking))) {
  5227     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  5228     ChunkArray* ca = &_survivor_plab_array[thr_num];
  5229     ca->reset();   // clear it so that fresh data is recorded
  5230     return (void*) ca;
  5231   } else {
  5232     return NULL;
  5236 // Reset all the thread-local PLAB recording arrays
  5237 void CMSCollector::reset_survivor_plab_arrays() {
  5238   for (uint i = 0; i < ParallelGCThreads; i++) {
  5239     _survivor_plab_array[i].reset();
  5243 // Merge the per-thread plab arrays into the global survivor chunk
  5244 // array which will provide the partitioning of the survivor space
  5245 // for CMS rescan.
  5246 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv) {
  5247   assert(_survivor_plab_array  != NULL, "Error");
  5248   assert(_survivor_chunk_array != NULL, "Error");
  5249   assert(_collectorState == FinalMarking, "Error");
  5250   for (uint j = 0; j < ParallelGCThreads; j++) {
  5251     _cursor[j] = 0;
  5253   HeapWord* top = surv->top();
  5254   size_t i;
  5255   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  5256     HeapWord* min_val = top;          // Higher than any PLAB address
  5257     uint      min_tid = 0;            // position of min_val this round
  5258     for (uint j = 0; j < ParallelGCThreads; j++) {
  5259       ChunkArray* cur_sca = &_survivor_plab_array[j];
  5260       if (_cursor[j] == cur_sca->end()) {
  5261         continue;
  5263       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  5264       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  5265       assert(surv->used_region().contains(cur_val), "Out of bounds value");
  5266       if (cur_val < min_val) {
  5267         min_tid = j;
  5268         min_val = cur_val;
  5269       } else {
  5270         assert(cur_val < top, "All recorded addresses should be less");
  5273     // At this point min_val and min_tid are respectively
  5274     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  5275     // and the thread (j) that witnesses that address.
  5276     // We record this address in the _survivor_chunk_array[i]
  5277     // and increment _cursor[min_tid] prior to the next round i.
  5278     if (min_val == top) {
  5279       break;
  5281     _survivor_chunk_array[i] = min_val;
  5282     _cursor[min_tid]++;
  5284   // We are all done; record the size of the _survivor_chunk_array
  5285   _survivor_chunk_index = i; // exclusive: [0, i)
  5286   if (PrintCMSStatistics > 0) {
  5287     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  5289   // Verify that we used up all the recorded entries
  5290   #ifdef ASSERT
  5291     size_t total = 0;
  5292     for (uint j = 0; j < ParallelGCThreads; j++) {
  5293       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  5294       total += _cursor[j];
  5296     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  5297     // Check that the merged array is in sorted order
  5298     if (total > 0) {
  5299       for (size_t i = 0; i < total - 1; i++) {
  5300         if (PrintCMSStatistics > 0) {
  5301           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  5302                               i, _survivor_chunk_array[i]);
  5304         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  5305                "Not sorted");
  5308   #endif // ASSERT
  5311 // Set up the space's par_seq_tasks structure for work claiming
  5312 // for parallel rescan of young gen.
  5313 // See ParRescanTask where this is currently used.
  5314 void
  5315 CMSCollector::
  5316 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  5317   assert(n_threads > 0, "Unexpected n_threads argument");
  5318   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  5320   // Eden space
  5322     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  5323     assert(!pst->valid(), "Clobbering existing data?");
  5324     // Each valid entry in [0, _eden_chunk_index) represents a task.
  5325     size_t n_tasks = _eden_chunk_index + 1;
  5326     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  5327     pst->set_par_threads(n_threads);
  5328     pst->set_n_tasks((int)n_tasks);
  5331   // Merge the survivor plab arrays into _survivor_chunk_array
  5332   if (_survivor_plab_array != NULL) {
  5333     merge_survivor_plab_arrays(dng->from());
  5334   } else {
  5335     assert(_survivor_chunk_index == 0, "Error");
  5338   // To space
  5340     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  5341     assert(!pst->valid(), "Clobbering existing data?");
  5342     pst->set_par_threads(n_threads);
  5343     pst->set_n_tasks(1);
  5344     assert(pst->valid(), "Error");
  5347   // From space
  5349     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  5350     assert(!pst->valid(), "Clobbering existing data?");
  5351     size_t n_tasks = _survivor_chunk_index + 1;
  5352     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  5353     pst->set_par_threads(n_threads);
  5354     pst->set_n_tasks((int)n_tasks);
  5355     assert(pst->valid(), "Error");
  5359 // Parallel version of remark
  5360 void CMSCollector::do_remark_parallel() {
  5361   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5362   WorkGang* workers = gch->workers();
  5363   assert(workers != NULL, "Need parallel worker threads.");
  5364   int n_workers = workers->total_workers();
  5365   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  5366   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  5368   CMSParRemarkTask tsk(this,
  5369     cms_space, perm_space,
  5370     n_workers, workers, task_queues());
  5372   // Set up for parallel process_strong_roots work.
  5373   gch->set_par_threads(n_workers);
  5374   gch->change_strong_roots_parity();
  5375   // We won't be iterating over the cards in the card table updating
  5376   // the younger_gen cards, so we shouldn't call the following else
  5377   // the verification code as well as subsequent younger_refs_iterate
  5378   // code would get confused. XXX
  5379   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  5381   // The young gen rescan work will not be done as part of
  5382   // process_strong_roots (which currently doesn't knw how to
  5383   // parallelize such a scan), but rather will be broken up into
  5384   // a set of parallel tasks (via the sampling that the [abortable]
  5385   // preclean phase did of EdenSpace, plus the [two] tasks of
  5386   // scanning the [two] survivor spaces. Further fine-grain
  5387   // parallelization of the scanning of the survivor spaces
  5388   // themselves, and of precleaning of the younger gen itself
  5389   // is deferred to the future.
  5390   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  5392   // The dirty card rescan work is broken up into a "sequence"
  5393   // of parallel tasks (per constituent space) that are dynamically
  5394   // claimed by the parallel threads.
  5395   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5396   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5398   // It turns out that even when we're using 1 thread, doing the work in a
  5399   // separate thread causes wide variance in run times.  We can't help this
  5400   // in the multi-threaded case, but we special-case n=1 here to get
  5401   // repeatable measurements of the 1-thread overhead of the parallel code.
  5402   if (n_workers > 1) {
  5403     // Make refs discovery MT-safe
  5404     ReferenceProcessorMTMutator mt(ref_processor(), true);
  5405     workers->run_task(&tsk);
  5406   } else {
  5407     tsk.work(0);
  5409   gch->set_par_threads(0);  // 0 ==> non-parallel.
  5410   // restore, single-threaded for now, any preserved marks
  5411   // as a result of work_q overflow
  5412   restore_preserved_marks_if_any();
  5415 // Non-parallel version of remark
  5416 void CMSCollector::do_remark_non_parallel() {
  5417   ResourceMark rm;
  5418   HandleMark   hm;
  5419   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5420   MarkRefsIntoAndScanClosure
  5421     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  5422              &_markStack, &_revisitStack, this,
  5423              false /* should_yield */, false /* not precleaning */);
  5424   MarkFromDirtyCardsClosure
  5425     markFromDirtyCardsClosure(this, _span,
  5426                               NULL,  // space is set further below
  5427                               &_markBitMap, &_markStack, &_revisitStack,
  5428                               &mrias_cl);
  5430     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
  5431     // Iterate over the dirty cards, setting the corresponding bits in the
  5432     // mod union table.
  5434       ModUnionClosure modUnionClosure(&_modUnionTable);
  5435       _ct->ct_bs()->dirty_card_iterate(
  5436                       _cmsGen->used_region(),
  5437                       &modUnionClosure);
  5438       _ct->ct_bs()->dirty_card_iterate(
  5439                       _permGen->used_region(),
  5440                       &modUnionClosure);
  5442     // Having transferred these marks into the modUnionTable, we just need
  5443     // to rescan the marked objects on the dirty cards in the modUnionTable.
  5444     // The initial marking may have been done during an asynchronous
  5445     // collection so there may be dirty bits in the mod-union table.
  5446     const int alignment =
  5447       CardTableModRefBS::card_size * BitsPerWord;
  5449       // ... First handle dirty cards in CMS gen
  5450       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  5451       MemRegion ur = _cmsGen->used_region();
  5452       HeapWord* lb = ur.start();
  5453       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5454       MemRegion cms_span(lb, ub);
  5455       _modUnionTable.dirty_range_iterate_clear(cms_span,
  5456                                                &markFromDirtyCardsClosure);
  5457       verify_work_stacks_empty();
  5458       if (PrintCMSStatistics != 0) {
  5459         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  5460           markFromDirtyCardsClosure.num_dirty_cards());
  5464       // .. and then repeat for dirty cards in perm gen
  5465       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
  5466       MemRegion ur = _permGen->used_region();
  5467       HeapWord* lb = ur.start();
  5468       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5469       MemRegion perm_span(lb, ub);
  5470       _modUnionTable.dirty_range_iterate_clear(perm_span,
  5471                                                &markFromDirtyCardsClosure);
  5472       verify_work_stacks_empty();
  5473       if (PrintCMSStatistics != 0) {
  5474         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
  5475           markFromDirtyCardsClosure.num_dirty_cards());
  5479   if (VerifyDuringGC &&
  5480       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5481     HandleMark hm;  // Discard invalid handles created during verification
  5482     Universe::verify(true);
  5485     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
  5487     verify_work_stacks_empty();
  5489     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  5490     gch->gen_process_strong_roots(_cmsGen->level(),
  5491                                   true,  // younger gens as roots
  5492                                   true,  // collecting perm gen
  5493                                   SharedHeap::ScanningOption(roots_scanning_options()),
  5494                                   NULL, &mrias_cl);
  5496   verify_work_stacks_empty();
  5497   // Restore evacuated mark words, if any, used for overflow list links
  5498   if (!CMSOverflowEarlyRestoration) {
  5499     restore_preserved_marks_if_any();
  5501   verify_overflow_empty();
  5504 ////////////////////////////////////////////////////////
  5505 // Parallel Reference Processing Task Proxy Class
  5506 ////////////////////////////////////////////////////////
  5507 class CMSRefProcTaskProxy: public AbstractGangTask {
  5508   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5509   CMSCollector*          _collector;
  5510   CMSBitMap*             _mark_bit_map;
  5511   const MemRegion        _span;
  5512   OopTaskQueueSet*       _task_queues;
  5513   ParallelTaskTerminator _term;
  5514   ProcessTask&           _task;
  5516 public:
  5517   CMSRefProcTaskProxy(ProcessTask&     task,
  5518                       CMSCollector*    collector,
  5519                       const MemRegion& span,
  5520                       CMSBitMap*       mark_bit_map,
  5521                       int              total_workers,
  5522                       OopTaskQueueSet* task_queues):
  5523     AbstractGangTask("Process referents by policy in parallel"),
  5524     _task(task),
  5525     _collector(collector), _span(span), _mark_bit_map(mark_bit_map),
  5526     _task_queues(task_queues),
  5527     _term(total_workers, task_queues)
  5529       assert(_collector->_span.equals(_span) && !_span.is_empty(),
  5530              "Inconsistency in _span");
  5533   OopTaskQueueSet* task_queues() { return _task_queues; }
  5535   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5537   ParallelTaskTerminator* terminator() { return &_term; }
  5539   void do_work_steal(int i,
  5540                      CMSParDrainMarkingStackClosure* drain,
  5541                      CMSParKeepAliveClosure* keep_alive,
  5542                      int* seed);
  5544   virtual void work(int i);
  5545 };
  5547 void CMSRefProcTaskProxy::work(int i) {
  5548   assert(_collector->_span.equals(_span), "Inconsistency in _span");
  5549   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  5550                                         _mark_bit_map, work_queue(i));
  5551   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  5552                                                  _mark_bit_map, work_queue(i));
  5553   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
  5554   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
  5555   if (_task.marks_oops_alive()) {
  5556     do_work_steal(i, &par_drain_stack, &par_keep_alive,
  5557                   _collector->hash_seed(i));
  5559   assert(work_queue(i)->size() == 0, "work_queue should be empty");
  5560   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  5563 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  5564   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5565   EnqueueTask& _task;
  5567 public:
  5568   CMSRefEnqueueTaskProxy(EnqueueTask& task)
  5569     : AbstractGangTask("Enqueue reference objects in parallel"),
  5570       _task(task)
  5571   { }
  5573   virtual void work(int i)
  5575     _task.work(i);
  5577 };
  5579 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  5580   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
  5581    _collector(collector),
  5582    _span(span),
  5583    _bit_map(bit_map),
  5584    _work_queue(work_queue),
  5585    _mark_and_push(collector, span, bit_map, work_queue),
  5586    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  5587                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  5588 { }
  5590 // . see if we can share work_queues with ParNew? XXX
  5591 void CMSRefProcTaskProxy::do_work_steal(int i,
  5592   CMSParDrainMarkingStackClosure* drain,
  5593   CMSParKeepAliveClosure* keep_alive,
  5594   int* seed) {
  5595   OopTaskQueue* work_q = work_queue(i);
  5596   NOT_PRODUCT(int num_steals = 0;)
  5597   oop obj_to_scan;
  5598   size_t num_from_overflow_list =
  5599            MIN2((size_t)work_q->max_elems()/4,
  5600                 (size_t)ParGCDesiredObjsFromOverflowList);
  5602   while (true) {
  5603     // Completely finish any left over work from (an) earlier round(s)
  5604     drain->trim_queue(0);
  5605     // Now check if there's any work in the overflow list
  5606     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5607                                                 work_q)) {
  5608       // Found something in global overflow list;
  5609       // not yet ready to go stealing work from others.
  5610       // We'd like to assert(work_q->size() != 0, ...)
  5611       // because we just took work from the overflow list,
  5612       // but of course we can't, since all of that might have
  5613       // been already stolen from us.
  5614       continue;
  5616     // Verify that we have no work before we resort to stealing
  5617     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5618     // Try to steal from other queues that have work
  5619     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5620       NOT_PRODUCT(num_steals++;)
  5621       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5622       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5623       // Do scanning work
  5624       obj_to_scan->oop_iterate(keep_alive);
  5625       // Loop around, finish this work, and try to steal some more
  5626     } else if (terminator()->offer_termination()) {
  5627       break;  // nirvana from the infinite cycle
  5630   NOT_PRODUCT(
  5631     if (PrintCMSStatistics != 0) {
  5632       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5637 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  5639   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5640   WorkGang* workers = gch->workers();
  5641   assert(workers != NULL, "Need parallel worker threads.");
  5642   int n_workers = workers->total_workers();
  5643   CMSRefProcTaskProxy rp_task(task, &_collector,
  5644                               _collector.ref_processor()->span(),
  5645                               _collector.markBitMap(),
  5646                               n_workers, _collector.task_queues());
  5647   workers->run_task(&rp_task);
  5650 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  5653   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5654   WorkGang* workers = gch->workers();
  5655   assert(workers != NULL, "Need parallel worker threads.");
  5656   CMSRefEnqueueTaskProxy enq_task(task);
  5657   workers->run_task(&enq_task);
  5660 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  5662   ResourceMark rm;
  5663   HandleMark   hm;
  5664   ReferencePolicy* soft_ref_policy;
  5666   assert(!ref_processor()->enqueuing_is_done(), "Enqueuing should not be complete");
  5667   // Process weak references.
  5668   if (clear_all_soft_refs) {
  5669     soft_ref_policy = new AlwaysClearPolicy();
  5670   } else {
  5671 #ifdef COMPILER2
  5672     soft_ref_policy = new LRUMaxHeapPolicy();
  5673 #else
  5674     soft_ref_policy = new LRUCurrentHeapPolicy();
  5675 #endif // COMPILER2
  5677   verify_work_stacks_empty();
  5679   ReferenceProcessor* rp = ref_processor();
  5680   assert(rp->span().equals(_span), "Spans should be equal");
  5681   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  5682                                           &_markStack);
  5683   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  5684                                 _span, &_markBitMap, &_markStack,
  5685                                 &cmsKeepAliveClosure);
  5687     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
  5688     if (rp->processing_is_mt()) {
  5689       CMSRefProcTaskExecutor task_executor(*this);
  5690       rp->process_discovered_references(soft_ref_policy,
  5691                                         &_is_alive_closure,
  5692                                         &cmsKeepAliveClosure,
  5693                                         &cmsDrainMarkingStackClosure,
  5694                                         &task_executor);
  5695     } else {
  5696       rp->process_discovered_references(soft_ref_policy,
  5697                                         &_is_alive_closure,
  5698                                         &cmsKeepAliveClosure,
  5699                                         &cmsDrainMarkingStackClosure,
  5700                                         NULL);
  5702     verify_work_stacks_empty();
  5705   if (should_unload_classes()) {
  5707       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
  5709       // Follow SystemDictionary roots and unload classes
  5710       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  5712       // Follow CodeCache roots and unload any methods marked for unloading
  5713       CodeCache::do_unloading(&_is_alive_closure,
  5714                               &cmsKeepAliveClosure,
  5715                               purged_class);
  5717       cmsDrainMarkingStackClosure.do_void();
  5718       verify_work_stacks_empty();
  5720       // Update subklass/sibling/implementor links in KlassKlass descendants
  5721       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
  5722       oop k;
  5723       while ((k = _revisitStack.pop()) != NULL) {
  5724         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
  5725                        &_is_alive_closure,
  5726                        &cmsKeepAliveClosure);
  5728       assert(!ClassUnloading ||
  5729              (_markStack.isEmpty() && overflow_list_is_empty()),
  5730              "Should not have found new reachable objects");
  5731       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
  5732       cmsDrainMarkingStackClosure.do_void();
  5733       verify_work_stacks_empty();
  5737       TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
  5738       // Now clean up stale oops in SymbolTable and StringTable
  5739       SymbolTable::unlink(&_is_alive_closure);
  5740       StringTable::unlink(&_is_alive_closure);
  5744   verify_work_stacks_empty();
  5745   // Restore any preserved marks as a result of mark stack or
  5746   // work queue overflow
  5747   restore_preserved_marks_if_any();  // done single-threaded for now
  5749   rp->set_enqueuing_is_done(true);
  5750   if (rp->processing_is_mt()) {
  5751     CMSRefProcTaskExecutor task_executor(*this);
  5752     rp->enqueue_discovered_references(&task_executor);
  5753   } else {
  5754     rp->enqueue_discovered_references(NULL);
  5756   rp->verify_no_references_recorded();
  5757   assert(!rp->discovery_enabled(), "should have been disabled");
  5759   // JVMTI object tagging is based on JNI weak refs. If any of these
  5760   // refs were cleared then JVMTI needs to update its maps and
  5761   // maybe post ObjectFrees to agents.
  5762   JvmtiExport::cms_ref_processing_epilogue();
  5765 #ifndef PRODUCT
  5766 void CMSCollector::check_correct_thread_executing() {
  5767   Thread* t = Thread::current();
  5768   // Only the VM thread or the CMS thread should be here.
  5769   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  5770          "Unexpected thread type");
  5771   // If this is the vm thread, the foreground process
  5772   // should not be waiting.  Note that _foregroundGCIsActive is
  5773   // true while the foreground collector is waiting.
  5774   if (_foregroundGCShouldWait) {
  5775     // We cannot be the VM thread
  5776     assert(t->is_ConcurrentGC_thread(),
  5777            "Should be CMS thread");
  5778   } else {
  5779     // We can be the CMS thread only if we are in a stop-world
  5780     // phase of CMS collection.
  5781     if (t->is_ConcurrentGC_thread()) {
  5782       assert(_collectorState == InitialMarking ||
  5783              _collectorState == FinalMarking,
  5784              "Should be a stop-world phase");
  5785       // The CMS thread should be holding the CMS_token.
  5786       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  5787              "Potential interference with concurrently "
  5788              "executing VM thread");
  5792 #endif
  5794 void CMSCollector::sweep(bool asynch) {
  5795   assert(_collectorState == Sweeping, "just checking");
  5796   check_correct_thread_executing();
  5797   verify_work_stacks_empty();
  5798   verify_overflow_empty();
  5799   incrementSweepCount();
  5800   _sweep_timer.stop();
  5801   _sweep_estimate.sample(_sweep_timer.seconds());
  5802   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  5804   // PermGen verification support: If perm gen sweeping is disabled in
  5805   // this cycle, we preserve the perm gen object "deadness" information
  5806   // in the perm_gen_verify_bit_map. In order to do that we traverse
  5807   // all blocks in perm gen and mark all dead objects.
  5808   if (verifying() && !should_unload_classes()) {
  5809     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
  5810            "Should have already been allocated");
  5811     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
  5812                                markBitMap(), perm_gen_verify_bit_map());
  5813     if (asynch) {
  5814       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5815                                bitMapLock());
  5816       _permGen->cmsSpace()->blk_iterate(&mdo);
  5817     } else {
  5818       // In the case of synchronous sweep, we already have
  5819       // the requisite locks/tokens.
  5820       _permGen->cmsSpace()->blk_iterate(&mdo);
  5824   if (asynch) {
  5825     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  5826     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
  5827     // First sweep the old gen then the perm gen
  5829       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5830                                bitMapLock());
  5831       sweepWork(_cmsGen, asynch);
  5834     // Now repeat for perm gen
  5835     if (should_unload_classes()) {
  5836       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5837                              bitMapLock());
  5838       sweepWork(_permGen, asynch);
  5841     // Update Universe::_heap_*_at_gc figures.
  5842     // We need all the free list locks to make the abstract state
  5843     // transition from Sweeping to Resetting. See detailed note
  5844     // further below.
  5846       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5847                                _permGen->freelistLock());
  5848       // Update heap occupancy information which is used as
  5849       // input to soft ref clearing policy at the next gc.
  5850       Universe::update_heap_info_at_gc();
  5851       _collectorState = Resizing;
  5853   } else {
  5854     // already have needed locks
  5855     sweepWork(_cmsGen,  asynch);
  5857     if (should_unload_classes()) {
  5858       sweepWork(_permGen, asynch);
  5860     // Update heap occupancy information which is used as
  5861     // input to soft ref clearing policy at the next gc.
  5862     Universe::update_heap_info_at_gc();
  5863     _collectorState = Resizing;
  5865   verify_work_stacks_empty();
  5866   verify_overflow_empty();
  5868   _sweep_timer.reset();
  5869   _sweep_timer.start();
  5871   update_time_of_last_gc(os::javaTimeMillis());
  5873   // NOTE on abstract state transitions:
  5874   // Mutators allocate-live and/or mark the mod-union table dirty
  5875   // based on the state of the collection.  The former is done in
  5876   // the interval [Marking, Sweeping] and the latter in the interval
  5877   // [Marking, Sweeping).  Thus the transitions into the Marking state
  5878   // and out of the Sweeping state must be synchronously visible
  5879   // globally to the mutators.
  5880   // The transition into the Marking state happens with the world
  5881   // stopped so the mutators will globally see it.  Sweeping is
  5882   // done asynchronously by the background collector so the transition
  5883   // from the Sweeping state to the Resizing state must be done
  5884   // under the freelistLock (as is the check for whether to
  5885   // allocate-live and whether to dirty the mod-union table).
  5886   assert(_collectorState == Resizing, "Change of collector state to"
  5887     " Resizing must be done under the freelistLocks (plural)");
  5889   // Now that sweeping has been completed, if the GCH's
  5890   // incremental_collection_will_fail flag is set, clear it,
  5891   // thus inviting a younger gen collection to promote into
  5892   // this generation. If such a promotion may still fail,
  5893   // the flag will be set again when a young collection is
  5894   // attempted.
  5895   // I think the incremental_collection_will_fail flag's use
  5896   // is specific to a 2 generation collection policy, so i'll
  5897   // assert that that's the configuration we are operating within.
  5898   // The use of the flag can and should be generalized appropriately
  5899   // in the future to deal with a general n-generation system.
  5901   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5902   assert(gch->collector_policy()->is_two_generation_policy(),
  5903          "Resetting of incremental_collection_will_fail flag"
  5904          " may be incorrect otherwise");
  5905   gch->clear_incremental_collection_will_fail();
  5906   gch->update_full_collections_completed(_collection_count_start);
  5909 // FIX ME!!! Looks like this belongs in CFLSpace, with
  5910 // CMSGen merely delegating to it.
  5911 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  5912   double nearLargestPercent = 0.999;
  5913   HeapWord*  minAddr        = _cmsSpace->bottom();
  5914   HeapWord*  largestAddr    =
  5915     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
  5916   if (largestAddr == 0) {
  5917     // The dictionary appears to be empty.  In this case
  5918     // try to coalesce at the end of the heap.
  5919     largestAddr = _cmsSpace->end();
  5921   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  5922   size_t nearLargestOffset =
  5923     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  5924   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  5927 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  5928   return addr >= _cmsSpace->nearLargestChunk();
  5931 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  5932   return _cmsSpace->find_chunk_at_end();
  5935 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  5936                                                     bool full) {
  5937   // The next lower level has been collected.  Gather any statistics
  5938   // that are of interest at this point.
  5939   if (!full && (current_level + 1) == level()) {
  5940     // Gather statistics on the young generation collection.
  5941     collector()->stats().record_gc0_end(used());
  5945 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  5946   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5947   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  5948     "Wrong type of heap");
  5949   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  5950     gch->gen_policy()->size_policy();
  5951   assert(sp->is_gc_cms_adaptive_size_policy(),
  5952     "Wrong type of size policy");
  5953   return sp;
  5956 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  5957   if (PrintGCDetails && Verbose) {
  5958     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  5960   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  5961   _debug_collection_type =
  5962     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  5963   if (PrintGCDetails && Verbose) {
  5964     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  5968 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  5969   bool asynch) {
  5970   // We iterate over the space(s) underlying this generation,
  5971   // checking the mark bit map to see if the bits corresponding
  5972   // to specific blocks are marked or not. Blocks that are
  5973   // marked are live and are not swept up. All remaining blocks
  5974   // are swept up, with coalescing on-the-fly as we sweep up
  5975   // contiguous free and/or garbage blocks:
  5976   // We need to ensure that the sweeper synchronizes with allocators
  5977   // and stop-the-world collectors. In particular, the following
  5978   // locks are used:
  5979   // . CMS token: if this is held, a stop the world collection cannot occur
  5980   // . freelistLock: if this is held no allocation can occur from this
  5981   //                 generation by another thread
  5982   // . bitMapLock: if this is held, no other thread can access or update
  5983   //
  5985   // Note that we need to hold the freelistLock if we use
  5986   // block iterate below; else the iterator might go awry if
  5987   // a mutator (or promotion) causes block contents to change
  5988   // (for instance if the allocator divvies up a block).
  5989   // If we hold the free list lock, for all practical purposes
  5990   // young generation GC's can't occur (they'll usually need to
  5991   // promote), so we might as well prevent all young generation
  5992   // GC's while we do a sweeping step. For the same reason, we might
  5993   // as well take the bit map lock for the entire duration
  5995   // check that we hold the requisite locks
  5996   assert(have_cms_token(), "Should hold cms token");
  5997   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  5998          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  5999         "Should possess CMS token to sweep");
  6000   assert_lock_strong(gen->freelistLock());
  6001   assert_lock_strong(bitMapLock());
  6003   assert(!_sweep_timer.is_active(), "Was switched off in an outer context");
  6004   gen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  6005                                       _sweep_estimate.padded_average());
  6006   gen->setNearLargestChunk();
  6009     SweepClosure sweepClosure(this, gen, &_markBitMap,
  6010                             CMSYield && asynch);
  6011     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  6012     // We need to free-up/coalesce garbage/blocks from a
  6013     // co-terminal free run. This is done in the SweepClosure
  6014     // destructor; so, do not remove this scope, else the
  6015     // end-of-sweep-census below will be off by a little bit.
  6017   gen->cmsSpace()->sweep_completed();
  6018   gen->cmsSpace()->endSweepFLCensus(sweepCount());
  6019   if (should_unload_classes()) {                // unloaded classes this cycle,
  6020     _concurrent_cycles_since_last_unload = 0;   // ... reset count
  6021   } else {                                      // did not unload classes,
  6022     _concurrent_cycles_since_last_unload++;     // ... increment count
  6026 // Reset CMS data structures (for now just the marking bit map)
  6027 // preparatory for the next cycle.
  6028 void CMSCollector::reset(bool asynch) {
  6029   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6030   CMSAdaptiveSizePolicy* sp = size_policy();
  6031   AdaptiveSizePolicyOutput(sp, gch->total_collections());
  6032   if (asynch) {
  6033     CMSTokenSyncWithLocks ts(true, bitMapLock());
  6035     // If the state is not "Resetting", the foreground  thread
  6036     // has done a collection and the resetting.
  6037     if (_collectorState != Resetting) {
  6038       assert(_collectorState == Idling, "The state should only change"
  6039         " because the foreground collector has finished the collection");
  6040       return;
  6043     // Clear the mark bitmap (no grey objects to start with)
  6044     // for the next cycle.
  6045     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6046     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
  6048     HeapWord* curAddr = _markBitMap.startWord();
  6049     while (curAddr < _markBitMap.endWord()) {
  6050       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  6051       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  6052       _markBitMap.clear_large_range(chunk);
  6053       if (ConcurrentMarkSweepThread::should_yield() &&
  6054           !foregroundGCIsActive() &&
  6055           CMSYield) {
  6056         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6057                "CMS thread should hold CMS token");
  6058         assert_lock_strong(bitMapLock());
  6059         bitMapLock()->unlock();
  6060         ConcurrentMarkSweepThread::desynchronize(true);
  6061         ConcurrentMarkSweepThread::acknowledge_yield_request();
  6062         stopTimer();
  6063         if (PrintCMSStatistics != 0) {
  6064           incrementYields();
  6066         icms_wait();
  6068         // See the comment in coordinator_yield()
  6069         for (unsigned i = 0; i < CMSYieldSleepCount &&
  6070                          ConcurrentMarkSweepThread::should_yield() &&
  6071                          !CMSCollector::foregroundGCIsActive(); ++i) {
  6072           os::sleep(Thread::current(), 1, false);
  6073           ConcurrentMarkSweepThread::acknowledge_yield_request();
  6076         ConcurrentMarkSweepThread::synchronize(true);
  6077         bitMapLock()->lock_without_safepoint_check();
  6078         startTimer();
  6080       curAddr = chunk.end();
  6082     _collectorState = Idling;
  6083   } else {
  6084     // already have the lock
  6085     assert(_collectorState == Resetting, "just checking");
  6086     assert_lock_strong(bitMapLock());
  6087     _markBitMap.clear_all();
  6088     _collectorState = Idling;
  6091   // Stop incremental mode after a cycle completes, so that any future cycles
  6092   // are triggered by allocation.
  6093   stop_icms();
  6095   NOT_PRODUCT(
  6096     if (RotateCMSCollectionTypes) {
  6097       _cmsGen->rotate_debug_collection_type();
  6102 void CMSCollector::do_CMS_operation(CMS_op_type op) {
  6103   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  6104   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6105   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
  6106   TraceCollectorStats tcs(counters());
  6108   switch (op) {
  6109     case CMS_op_checkpointRootsInitial: {
  6110       checkpointRootsInitial(true);       // asynch
  6111       if (PrintGC) {
  6112         _cmsGen->printOccupancy("initial-mark");
  6114       break;
  6116     case CMS_op_checkpointRootsFinal: {
  6117       checkpointRootsFinal(true,    // asynch
  6118                            false,   // !clear_all_soft_refs
  6119                            false);  // !init_mark_was_synchronous
  6120       if (PrintGC) {
  6121         _cmsGen->printOccupancy("remark");
  6123       break;
  6125     default:
  6126       fatal("No such CMS_op");
  6130 #ifndef PRODUCT
  6131 size_t const CMSCollector::skip_header_HeapWords() {
  6132   return FreeChunk::header_size();
  6135 // Try and collect here conditions that should hold when
  6136 // CMS thread is exiting. The idea is that the foreground GC
  6137 // thread should not be blocked if it wants to terminate
  6138 // the CMS thread and yet continue to run the VM for a while
  6139 // after that.
  6140 void CMSCollector::verify_ok_to_terminate() const {
  6141   assert(Thread::current()->is_ConcurrentGC_thread(),
  6142          "should be called by CMS thread");
  6143   assert(!_foregroundGCShouldWait, "should be false");
  6144   // We could check here that all the various low-level locks
  6145   // are not held by the CMS thread, but that is overkill; see
  6146   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  6147   // is checked.
  6149 #endif
  6151 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  6152   assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  6153          "missing Printezis mark?");
  6154   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6155   size_t size = pointer_delta(nextOneAddr + 1, addr);
  6156   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6157          "alignment problem");
  6158   assert(size >= 3, "Necessary for Printezis marks to work");
  6159   return size;
  6162 // A variant of the above (block_size_using_printezis_bits()) except
  6163 // that we return 0 if the P-bits are not yet set.
  6164 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  6165   if (_markBitMap.isMarked(addr)) {
  6166     assert(_markBitMap.isMarked(addr + 1), "Missing Printezis bit?");
  6167     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6168     size_t size = pointer_delta(nextOneAddr + 1, addr);
  6169     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6170            "alignment problem");
  6171     assert(size >= 3, "Necessary for Printezis marks to work");
  6172     return size;
  6173   } else {
  6174     assert(!_markBitMap.isMarked(addr + 1), "Bit map inconsistency?");
  6175     return 0;
  6179 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  6180   size_t sz = 0;
  6181   oop p = (oop)addr;
  6182   if (p->klass_or_null() != NULL && p->is_parsable()) {
  6183     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6184   } else {
  6185     sz = block_size_using_printezis_bits(addr);
  6187   assert(sz > 0, "size must be nonzero");
  6188   HeapWord* next_block = addr + sz;
  6189   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  6190                                              CardTableModRefBS::card_size);
  6191   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  6192          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  6193          "must be different cards");
  6194   return next_card;
  6198 // CMS Bit Map Wrapper /////////////////////////////////////////
  6200 // Construct a CMS bit map infrastructure, but don't create the
  6201 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
  6202 // further below.
  6203 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  6204   _bm(),
  6205   _shifter(shifter),
  6206   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  6208   _bmStartWord = 0;
  6209   _bmWordSize  = 0;
  6212 bool CMSBitMap::allocate(MemRegion mr) {
  6213   _bmStartWord = mr.start();
  6214   _bmWordSize  = mr.word_size();
  6215   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  6216                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  6217   if (!brs.is_reserved()) {
  6218     warning("CMS bit map allocation failure");
  6219     return false;
  6221   // For now we'll just commit all of the bit map up fromt.
  6222   // Later on we'll try to be more parsimonious with swap.
  6223   if (!_virtual_space.initialize(brs, brs.size())) {
  6224     warning("CMS bit map backing store failure");
  6225     return false;
  6227   assert(_virtual_space.committed_size() == brs.size(),
  6228          "didn't reserve backing store for all of CMS bit map?");
  6229   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
  6230   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  6231          _bmWordSize, "inconsistency in bit map sizing");
  6232   _bm.set_size(_bmWordSize >> _shifter);
  6234   // bm.clear(); // can we rely on getting zero'd memory? verify below
  6235   assert(isAllClear(),
  6236          "Expected zero'd memory from ReservedSpace constructor");
  6237   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  6238          "consistency check");
  6239   return true;
  6242 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  6243   HeapWord *next_addr, *end_addr, *last_addr;
  6244   assert_locked();
  6245   assert(covers(mr), "out-of-range error");
  6246   // XXX assert that start and end are appropriately aligned
  6247   for (next_addr = mr.start(), end_addr = mr.end();
  6248        next_addr < end_addr; next_addr = last_addr) {
  6249     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  6250     last_addr = dirty_region.end();
  6251     if (!dirty_region.is_empty()) {
  6252       cl->do_MemRegion(dirty_region);
  6253     } else {
  6254       assert(last_addr == end_addr, "program logic");
  6255       return;
  6260 #ifndef PRODUCT
  6261 void CMSBitMap::assert_locked() const {
  6262   CMSLockVerifier::assert_locked(lock());
  6265 bool CMSBitMap::covers(MemRegion mr) const {
  6266   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  6267   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  6268          "size inconsistency");
  6269   return (mr.start() >= _bmStartWord) &&
  6270          (mr.end()   <= endWord());
  6273 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  6274     return (start >= _bmStartWord && (start + size) <= endWord());
  6277 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  6278   // verify that there are no 1 bits in the interval [left, right)
  6279   FalseBitMapClosure falseBitMapClosure;
  6280   iterate(&falseBitMapClosure, left, right);
  6283 void CMSBitMap::region_invariant(MemRegion mr)
  6285   assert_locked();
  6286   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  6287   assert(!mr.is_empty(), "unexpected empty region");
  6288   assert(covers(mr), "mr should be covered by bit map");
  6289   // convert address range into offset range
  6290   size_t start_ofs = heapWordToOffset(mr.start());
  6291   // Make sure that end() is appropriately aligned
  6292   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  6293                         (1 << (_shifter+LogHeapWordSize))),
  6294          "Misaligned mr.end()");
  6295   size_t end_ofs   = heapWordToOffset(mr.end());
  6296   assert(end_ofs > start_ofs, "Should mark at least one bit");
  6299 #endif
  6301 bool CMSMarkStack::allocate(size_t size) {
  6302   // allocate a stack of the requisite depth
  6303   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6304                    size * sizeof(oop)));
  6305   if (!rs.is_reserved()) {
  6306     warning("CMSMarkStack allocation failure");
  6307     return false;
  6309   if (!_virtual_space.initialize(rs, rs.size())) {
  6310     warning("CMSMarkStack backing store failure");
  6311     return false;
  6313   assert(_virtual_space.committed_size() == rs.size(),
  6314          "didn't reserve backing store for all of CMS stack?");
  6315   _base = (oop*)(_virtual_space.low());
  6316   _index = 0;
  6317   _capacity = size;
  6318   NOT_PRODUCT(_max_depth = 0);
  6319   return true;
  6322 // XXX FIX ME !!! In the MT case we come in here holding a
  6323 // leaf lock. For printing we need to take a further lock
  6324 // which has lower rank. We need to recallibrate the two
  6325 // lock-ranks involved in order to be able to rpint the
  6326 // messages below. (Or defer the printing to the caller.
  6327 // For now we take the expedient path of just disabling the
  6328 // messages for the problematic case.)
  6329 void CMSMarkStack::expand() {
  6330   assert(_capacity <= CMSMarkStackSizeMax, "stack bigger than permitted");
  6331   if (_capacity == CMSMarkStackSizeMax) {
  6332     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6333       // We print a warning message only once per CMS cycle.
  6334       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  6336     return;
  6338   // Double capacity if possible
  6339   size_t new_capacity = MIN2(_capacity*2, CMSMarkStackSizeMax);
  6340   // Do not give up existing stack until we have managed to
  6341   // get the double capacity that we desired.
  6342   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6343                    new_capacity * sizeof(oop)));
  6344   if (rs.is_reserved()) {
  6345     // Release the backing store associated with old stack
  6346     _virtual_space.release();
  6347     // Reinitialize virtual space for new stack
  6348     if (!_virtual_space.initialize(rs, rs.size())) {
  6349       fatal("Not enough swap for expanded marking stack");
  6351     _base = (oop*)(_virtual_space.low());
  6352     _index = 0;
  6353     _capacity = new_capacity;
  6354   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6355     // Failed to double capacity, continue;
  6356     // we print a detail message only once per CMS cycle.
  6357     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  6358             SIZE_FORMAT"K",
  6359             _capacity / K, new_capacity / K);
  6364 // Closures
  6365 // XXX: there seems to be a lot of code  duplication here;
  6366 // should refactor and consolidate common code.
  6368 // This closure is used to mark refs into the CMS generation in
  6369 // the CMS bit map. Called at the first checkpoint. This closure
  6370 // assumes that we do not need to re-mark dirty cards; if the CMS
  6371 // generation on which this is used is not an oldest (modulo perm gen)
  6372 // generation then this will lose younger_gen cards!
  6374 MarkRefsIntoClosure::MarkRefsIntoClosure(
  6375   MemRegion span, CMSBitMap* bitMap, bool should_do_nmethods):
  6376     _span(span),
  6377     _bitMap(bitMap),
  6378     _should_do_nmethods(should_do_nmethods)
  6380     assert(_ref_processor == NULL, "deliberately left NULL");
  6381     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6384 void MarkRefsIntoClosure::do_oop(oop obj) {
  6385   // if p points into _span, then mark corresponding bit in _markBitMap
  6386   assert(obj->is_oop(), "expected an oop");
  6387   HeapWord* addr = (HeapWord*)obj;
  6388   if (_span.contains(addr)) {
  6389     // this should be made more efficient
  6390     _bitMap->mark(addr);
  6394 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
  6395 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
  6397 // A variant of the above, used for CMS marking verification.
  6398 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  6399   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  6400   bool should_do_nmethods):
  6401     _span(span),
  6402     _verification_bm(verification_bm),
  6403     _cms_bm(cms_bm),
  6404     _should_do_nmethods(should_do_nmethods) {
  6405     assert(_ref_processor == NULL, "deliberately left NULL");
  6406     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  6409 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
  6410   // if p points into _span, then mark corresponding bit in _markBitMap
  6411   assert(obj->is_oop(), "expected an oop");
  6412   HeapWord* addr = (HeapWord*)obj;
  6413   if (_span.contains(addr)) {
  6414     _verification_bm->mark(addr);
  6415     if (!_cms_bm->isMarked(addr)) {
  6416       oop(addr)->print();
  6417       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
  6418       fatal("... aborting");
  6423 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6424 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6426 //////////////////////////////////////////////////
  6427 // MarkRefsIntoAndScanClosure
  6428 //////////////////////////////////////////////////
  6430 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  6431                                                        ReferenceProcessor* rp,
  6432                                                        CMSBitMap* bit_map,
  6433                                                        CMSBitMap* mod_union_table,
  6434                                                        CMSMarkStack*  mark_stack,
  6435                                                        CMSMarkStack*  revisit_stack,
  6436                                                        CMSCollector* collector,
  6437                                                        bool should_yield,
  6438                                                        bool concurrent_precleaning):
  6439   _collector(collector),
  6440   _span(span),
  6441   _bit_map(bit_map),
  6442   _mark_stack(mark_stack),
  6443   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  6444                       mark_stack, revisit_stack, concurrent_precleaning),
  6445   _yield(should_yield),
  6446   _concurrent_precleaning(concurrent_precleaning),
  6447   _freelistLock(NULL)
  6449   _ref_processor = rp;
  6450   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6453 // This closure is used to mark refs into the CMS generation at the
  6454 // second (final) checkpoint, and to scan and transitively follow
  6455 // the unmarked oops. It is also used during the concurrent precleaning
  6456 // phase while scanning objects on dirty cards in the CMS generation.
  6457 // The marks are made in the marking bit map and the marking stack is
  6458 // used for keeping the (newly) grey objects during the scan.
  6459 // The parallel version (Par_...) appears further below.
  6460 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6461   if (obj != NULL) {
  6462     assert(obj->is_oop(), "expected an oop");
  6463     HeapWord* addr = (HeapWord*)obj;
  6464     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6465     assert(_collector->overflow_list_is_empty(),
  6466            "overflow list should be empty");
  6467     if (_span.contains(addr) &&
  6468         !_bit_map->isMarked(addr)) {
  6469       // mark bit map (object is now grey)
  6470       _bit_map->mark(addr);
  6471       // push on marking stack (stack should be empty), and drain the
  6472       // stack by applying this closure to the oops in the oops popped
  6473       // from the stack (i.e. blacken the grey objects)
  6474       bool res = _mark_stack->push(obj);
  6475       assert(res, "Should have space to push on empty stack");
  6476       do {
  6477         oop new_oop = _mark_stack->pop();
  6478         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6479         assert(new_oop->is_parsable(), "Found unparsable oop");
  6480         assert(_bit_map->isMarked((HeapWord*)new_oop),
  6481                "only grey objects on this stack");
  6482         // iterate over the oops in this oop, marking and pushing
  6483         // the ones in CMS heap (i.e. in _span).
  6484         new_oop->oop_iterate(&_pushAndMarkClosure);
  6485         // check if it's time to yield
  6486         do_yield_check();
  6487       } while (!_mark_stack->isEmpty() ||
  6488                (!_concurrent_precleaning && take_from_overflow_list()));
  6489         // if marking stack is empty, and we are not doing this
  6490         // during precleaning, then check the overflow list
  6492     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6493     assert(_collector->overflow_list_is_empty(),
  6494            "overflow list was drained above");
  6495     // We could restore evacuated mark words, if any, used for
  6496     // overflow list links here because the overflow list is
  6497     // provably empty here. That would reduce the maximum
  6498     // size requirements for preserved_{oop,mark}_stack.
  6499     // But we'll just postpone it until we are all done
  6500     // so we can just stream through.
  6501     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  6502       _collector->restore_preserved_marks_if_any();
  6503       assert(_collector->no_preserved_marks(), "No preserved marks");
  6505     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  6506            "All preserved marks should have been restored above");
  6510 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6511 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6513 void MarkRefsIntoAndScanClosure::do_yield_work() {
  6514   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6515          "CMS thread should hold CMS token");
  6516   assert_lock_strong(_freelistLock);
  6517   assert_lock_strong(_bit_map->lock());
  6518   // relinquish the free_list_lock and bitMaplock()
  6519   _bit_map->lock()->unlock();
  6520   _freelistLock->unlock();
  6521   ConcurrentMarkSweepThread::desynchronize(true);
  6522   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6523   _collector->stopTimer();
  6524   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6525   if (PrintCMSStatistics != 0) {
  6526     _collector->incrementYields();
  6528   _collector->icms_wait();
  6530   // See the comment in coordinator_yield()
  6531   for (unsigned i = 0;
  6532        i < CMSYieldSleepCount &&
  6533        ConcurrentMarkSweepThread::should_yield() &&
  6534        !CMSCollector::foregroundGCIsActive();
  6535        ++i) {
  6536     os::sleep(Thread::current(), 1, false);
  6537     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6540   ConcurrentMarkSweepThread::synchronize(true);
  6541   _freelistLock->lock_without_safepoint_check();
  6542   _bit_map->lock()->lock_without_safepoint_check();
  6543   _collector->startTimer();
  6546 ///////////////////////////////////////////////////////////
  6547 // Par_MarkRefsIntoAndScanClosure: a parallel version of
  6548 //                                 MarkRefsIntoAndScanClosure
  6549 ///////////////////////////////////////////////////////////
  6550 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  6551   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  6552   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
  6553   _span(span),
  6554   _bit_map(bit_map),
  6555   _work_queue(work_queue),
  6556   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  6557                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  6558   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
  6559                           revisit_stack)
  6561   _ref_processor = rp;
  6562   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6565 // This closure is used to mark refs into the CMS generation at the
  6566 // second (final) checkpoint, and to scan and transitively follow
  6567 // the unmarked oops. The marks are made in the marking bit map and
  6568 // the work_queue is used for keeping the (newly) grey objects during
  6569 // the scan phase whence they are also available for stealing by parallel
  6570 // threads. Since the marking bit map is shared, updates are
  6571 // synchronized (via CAS).
  6572 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6573   if (obj != NULL) {
  6574     // Ignore mark word because this could be an already marked oop
  6575     // that may be chained at the end of the overflow list.
  6576     assert(obj->is_oop(), "expected an oop");
  6577     HeapWord* addr = (HeapWord*)obj;
  6578     if (_span.contains(addr) &&
  6579         !_bit_map->isMarked(addr)) {
  6580       // mark bit map (object will become grey):
  6581       // It is possible for several threads to be
  6582       // trying to "claim" this object concurrently;
  6583       // the unique thread that succeeds in marking the
  6584       // object first will do the subsequent push on
  6585       // to the work queue (or overflow list).
  6586       if (_bit_map->par_mark(addr)) {
  6587         // push on work_queue (which may not be empty), and trim the
  6588         // queue to an appropriate length by applying this closure to
  6589         // the oops in the oops popped from the stack (i.e. blacken the
  6590         // grey objects)
  6591         bool res = _work_queue->push(obj);
  6592         assert(res, "Low water mark should be less than capacity?");
  6593         trim_queue(_low_water_mark);
  6594       } // Else, another thread claimed the object
  6599 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6600 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6602 // This closure is used to rescan the marked objects on the dirty cards
  6603 // in the mod union table and the card table proper.
  6604 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  6605   oop p, MemRegion mr) {
  6607   size_t size = 0;
  6608   HeapWord* addr = (HeapWord*)p;
  6609   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6610   assert(_span.contains(addr), "we are scanning the CMS generation");
  6611   // check if it's time to yield
  6612   if (do_yield_check()) {
  6613     // We yielded for some foreground stop-world work,
  6614     // and we have been asked to abort this ongoing preclean cycle.
  6615     return 0;
  6617   if (_bitMap->isMarked(addr)) {
  6618     // it's marked; is it potentially uninitialized?
  6619     if (p->klass_or_null() != NULL) {
  6620       if (CMSPermGenPrecleaningEnabled && !p->is_parsable()) {
  6621         // Signal precleaning to redirty the card since
  6622         // the klass pointer is already installed.
  6623         assert(size == 0, "Initial value");
  6624       } else {
  6625         assert(p->is_parsable(), "must be parsable.");
  6626         // an initialized object; ignore mark word in verification below
  6627         // since we are running concurrent with mutators
  6628         assert(p->is_oop(true), "should be an oop");
  6629         if (p->is_objArray()) {
  6630           // objArrays are precisely marked; restrict scanning
  6631           // to dirty cards only.
  6632           size = CompactibleFreeListSpace::adjustObjectSize(
  6633                    p->oop_iterate(_scanningClosure, mr));
  6634         } else {
  6635           // A non-array may have been imprecisely marked; we need
  6636           // to scan object in its entirety.
  6637           size = CompactibleFreeListSpace::adjustObjectSize(
  6638                    p->oop_iterate(_scanningClosure));
  6640         #ifdef DEBUG
  6641           size_t direct_size =
  6642             CompactibleFreeListSpace::adjustObjectSize(p->size());
  6643           assert(size == direct_size, "Inconsistency in size");
  6644           assert(size >= 3, "Necessary for Printezis marks to work");
  6645           if (!_bitMap->isMarked(addr+1)) {
  6646             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  6647           } else {
  6648             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  6649             assert(_bitMap->isMarked(addr+size-1),
  6650                    "inconsistent Printezis mark");
  6652         #endif // DEBUG
  6654     } else {
  6655       // an unitialized object
  6656       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  6657       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  6658       size = pointer_delta(nextOneAddr + 1, addr);
  6659       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6660              "alignment problem");
  6661       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  6662       // will dirty the card when the klass pointer is installed in the
  6663       // object (signalling the completion of initialization).
  6665   } else {
  6666     // Either a not yet marked object or an uninitialized object
  6667     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6668       // An uninitialized object, skip to the next card, since
  6669       // we may not be able to read its P-bits yet.
  6670       assert(size == 0, "Initial value");
  6671     } else {
  6672       // An object not (yet) reached by marking: we merely need to
  6673       // compute its size so as to go look at the next block.
  6674       assert(p->is_oop(true), "should be an oop");
  6675       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6678   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6679   return size;
  6682 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  6683   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6684          "CMS thread should hold CMS token");
  6685   assert_lock_strong(_freelistLock);
  6686   assert_lock_strong(_bitMap->lock());
  6687   // relinquish the free_list_lock and bitMaplock()
  6688   _bitMap->lock()->unlock();
  6689   _freelistLock->unlock();
  6690   ConcurrentMarkSweepThread::desynchronize(true);
  6691   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6692   _collector->stopTimer();
  6693   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6694   if (PrintCMSStatistics != 0) {
  6695     _collector->incrementYields();
  6697   _collector->icms_wait();
  6699   // See the comment in coordinator_yield()
  6700   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6701                    ConcurrentMarkSweepThread::should_yield() &&
  6702                    !CMSCollector::foregroundGCIsActive(); ++i) {
  6703     os::sleep(Thread::current(), 1, false);
  6704     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6707   ConcurrentMarkSweepThread::synchronize(true);
  6708   _freelistLock->lock_without_safepoint_check();
  6709   _bitMap->lock()->lock_without_safepoint_check();
  6710   _collector->startTimer();
  6714 //////////////////////////////////////////////////////////////////
  6715 // SurvivorSpacePrecleanClosure
  6716 //////////////////////////////////////////////////////////////////
  6717 // This (single-threaded) closure is used to preclean the oops in
  6718 // the survivor spaces.
  6719 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  6721   HeapWord* addr = (HeapWord*)p;
  6722   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6723   assert(!_span.contains(addr), "we are scanning the survivor spaces");
  6724   assert(p->klass_or_null() != NULL, "object should be initializd");
  6725   assert(p->is_parsable(), "must be parsable.");
  6726   // an initialized object; ignore mark word in verification below
  6727   // since we are running concurrent with mutators
  6728   assert(p->is_oop(true), "should be an oop");
  6729   // Note that we do not yield while we iterate over
  6730   // the interior oops of p, pushing the relevant ones
  6731   // on our marking stack.
  6732   size_t size = p->oop_iterate(_scanning_closure);
  6733   do_yield_check();
  6734   // Observe that below, we do not abandon the preclean
  6735   // phase as soon as we should; rather we empty the
  6736   // marking stack before returning. This is to satisfy
  6737   // some existing assertions. In general, it may be a
  6738   // good idea to abort immediately and complete the marking
  6739   // from the grey objects at a later time.
  6740   while (!_mark_stack->isEmpty()) {
  6741     oop new_oop = _mark_stack->pop();
  6742     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6743     assert(new_oop->is_parsable(), "Found unparsable oop");
  6744     assert(_bit_map->isMarked((HeapWord*)new_oop),
  6745            "only grey objects on this stack");
  6746     // iterate over the oops in this oop, marking and pushing
  6747     // the ones in CMS heap (i.e. in _span).
  6748     new_oop->oop_iterate(_scanning_closure);
  6749     // check if it's time to yield
  6750     do_yield_check();
  6752   unsigned int after_count =
  6753     GenCollectedHeap::heap()->total_collections();
  6754   bool abort = (_before_count != after_count) ||
  6755                _collector->should_abort_preclean();
  6756   return abort ? 0 : size;
  6759 void SurvivorSpacePrecleanClosure::do_yield_work() {
  6760   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6761          "CMS thread should hold CMS token");
  6762   assert_lock_strong(_bit_map->lock());
  6763   // Relinquish the bit map lock
  6764   _bit_map->lock()->unlock();
  6765   ConcurrentMarkSweepThread::desynchronize(true);
  6766   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6767   _collector->stopTimer();
  6768   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6769   if (PrintCMSStatistics != 0) {
  6770     _collector->incrementYields();
  6772   _collector->icms_wait();
  6774   // See the comment in coordinator_yield()
  6775   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6776                        ConcurrentMarkSweepThread::should_yield() &&
  6777                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6778     os::sleep(Thread::current(), 1, false);
  6779     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6782   ConcurrentMarkSweepThread::synchronize(true);
  6783   _bit_map->lock()->lock_without_safepoint_check();
  6784   _collector->startTimer();
  6787 // This closure is used to rescan the marked objects on the dirty cards
  6788 // in the mod union table and the card table proper. In the parallel
  6789 // case, although the bitMap is shared, we do a single read so the
  6790 // isMarked() query is "safe".
  6791 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  6792   // Ignore mark word because we are running concurrent with mutators
  6793   assert(p->is_oop_or_null(true), "expected an oop or null");
  6794   HeapWord* addr = (HeapWord*)p;
  6795   assert(_span.contains(addr), "we are scanning the CMS generation");
  6796   bool is_obj_array = false;
  6797   #ifdef DEBUG
  6798     if (!_parallel) {
  6799       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6800       assert(_collector->overflow_list_is_empty(),
  6801              "overflow list should be empty");
  6804   #endif // DEBUG
  6805   if (_bit_map->isMarked(addr)) {
  6806     // Obj arrays are precisely marked, non-arrays are not;
  6807     // so we scan objArrays precisely and non-arrays in their
  6808     // entirety.
  6809     if (p->is_objArray()) {
  6810       is_obj_array = true;
  6811       if (_parallel) {
  6812         p->oop_iterate(_par_scan_closure, mr);
  6813       } else {
  6814         p->oop_iterate(_scan_closure, mr);
  6816     } else {
  6817       if (_parallel) {
  6818         p->oop_iterate(_par_scan_closure);
  6819       } else {
  6820         p->oop_iterate(_scan_closure);
  6824   #ifdef DEBUG
  6825     if (!_parallel) {
  6826       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6827       assert(_collector->overflow_list_is_empty(),
  6828              "overflow list should be empty");
  6831   #endif // DEBUG
  6832   return is_obj_array;
  6835 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  6836                         MemRegion span,
  6837                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
  6838                         CMSMarkStack*  revisitStack,
  6839                         bool should_yield, bool verifying):
  6840   _collector(collector),
  6841   _span(span),
  6842   _bitMap(bitMap),
  6843   _mut(&collector->_modUnionTable),
  6844   _markStack(markStack),
  6845   _revisitStack(revisitStack),
  6846   _yield(should_yield),
  6847   _skipBits(0)
  6849   assert(_markStack->isEmpty(), "stack should be empty");
  6850   _finger = _bitMap->startWord();
  6851   _threshold = _finger;
  6852   assert(_collector->_restart_addr == NULL, "Sanity check");
  6853   assert(_span.contains(_finger), "Out of bounds _finger?");
  6854   DEBUG_ONLY(_verifying = verifying;)
  6857 void MarkFromRootsClosure::reset(HeapWord* addr) {
  6858   assert(_markStack->isEmpty(), "would cause duplicates on stack");
  6859   assert(_span.contains(addr), "Out of bounds _finger?");
  6860   _finger = addr;
  6861   _threshold = (HeapWord*)round_to(
  6862                  (intptr_t)_finger, CardTableModRefBS::card_size);
  6865 // Should revisit to see if this should be restructured for
  6866 // greater efficiency.
  6867 bool MarkFromRootsClosure::do_bit(size_t offset) {
  6868   if (_skipBits > 0) {
  6869     _skipBits--;
  6870     return true;
  6872   // convert offset into a HeapWord*
  6873   HeapWord* addr = _bitMap->startWord() + offset;
  6874   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  6875          "address out of range");
  6876   assert(_bitMap->isMarked(addr), "tautology");
  6877   if (_bitMap->isMarked(addr+1)) {
  6878     // this is an allocated but not yet initialized object
  6879     assert(_skipBits == 0, "tautology");
  6880     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  6881     oop p = oop(addr);
  6882     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6883       DEBUG_ONLY(if (!_verifying) {)
  6884         // We re-dirty the cards on which this object lies and increase
  6885         // the _threshold so that we'll come back to scan this object
  6886         // during the preclean or remark phase. (CMSCleanOnEnter)
  6887         if (CMSCleanOnEnter) {
  6888           size_t sz = _collector->block_size_using_printezis_bits(addr);
  6889           HeapWord* start_card_addr = (HeapWord*)round_down(
  6890                                          (intptr_t)addr, CardTableModRefBS::card_size);
  6891           HeapWord* end_card_addr   = (HeapWord*)round_to(
  6892                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  6893           MemRegion redirty_range = MemRegion(start_card_addr, end_card_addr);
  6894           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  6895           // Bump _threshold to end_card_addr; note that
  6896           // _threshold cannot possibly exceed end_card_addr, anyhow.
  6897           // This prevents future clearing of the card as the scan proceeds
  6898           // to the right.
  6899           assert(_threshold <= end_card_addr,
  6900                  "Because we are just scanning into this object");
  6901           if (_threshold < end_card_addr) {
  6902             _threshold = end_card_addr;
  6904           if (p->klass_or_null() != NULL) {
  6905             // Redirty the range of cards...
  6906             _mut->mark_range(redirty_range);
  6907           } // ...else the setting of klass will dirty the card anyway.
  6909       DEBUG_ONLY(})
  6910       return true;
  6913   scanOopsInOop(addr);
  6914   return true;
  6917 // We take a break if we've been at this for a while,
  6918 // so as to avoid monopolizing the locks involved.
  6919 void MarkFromRootsClosure::do_yield_work() {
  6920   // First give up the locks, then yield, then re-lock
  6921   // We should probably use a constructor/destructor idiom to
  6922   // do this unlock/lock or modify the MutexUnlocker class to
  6923   // serve our purpose. XXX
  6924   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6925          "CMS thread should hold CMS token");
  6926   assert_lock_strong(_bitMap->lock());
  6927   _bitMap->lock()->unlock();
  6928   ConcurrentMarkSweepThread::desynchronize(true);
  6929   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6930   _collector->stopTimer();
  6931   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6932   if (PrintCMSStatistics != 0) {
  6933     _collector->incrementYields();
  6935   _collector->icms_wait();
  6937   // See the comment in coordinator_yield()
  6938   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6939                        ConcurrentMarkSweepThread::should_yield() &&
  6940                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6941     os::sleep(Thread::current(), 1, false);
  6942     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6945   ConcurrentMarkSweepThread::synchronize(true);
  6946   _bitMap->lock()->lock_without_safepoint_check();
  6947   _collector->startTimer();
  6950 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  6951   assert(_bitMap->isMarked(ptr), "expected bit to be set");
  6952   assert(_markStack->isEmpty(),
  6953          "should drain stack to limit stack usage");
  6954   // convert ptr to an oop preparatory to scanning
  6955   oop obj = oop(ptr);
  6956   // Ignore mark word in verification below, since we
  6957   // may be running concurrent with mutators.
  6958   assert(obj->is_oop(true), "should be an oop");
  6959   assert(_finger <= ptr, "_finger runneth ahead");
  6960   // advance the finger to right end of this object
  6961   _finger = ptr + obj->size();
  6962   assert(_finger > ptr, "we just incremented it above");
  6963   // On large heaps, it may take us some time to get through
  6964   // the marking phase (especially if running iCMS). During
  6965   // this time it's possible that a lot of mutations have
  6966   // accumulated in the card table and the mod union table --
  6967   // these mutation records are redundant until we have
  6968   // actually traced into the corresponding card.
  6969   // Here, we check whether advancing the finger would make
  6970   // us cross into a new card, and if so clear corresponding
  6971   // cards in the MUT (preclean them in the card-table in the
  6972   // future).
  6974   DEBUG_ONLY(if (!_verifying) {)
  6975     // The clean-on-enter optimization is disabled by default,
  6976     // until we fix 6178663.
  6977     if (CMSCleanOnEnter && (_finger > _threshold)) {
  6978       // [_threshold, _finger) represents the interval
  6979       // of cards to be cleared  in MUT (or precleaned in card table).
  6980       // The set of cards to be cleared is all those that overlap
  6981       // with the interval [_threshold, _finger); note that
  6982       // _threshold is always kept card-aligned but _finger isn't
  6983       // always card-aligned.
  6984       HeapWord* old_threshold = _threshold;
  6985       assert(old_threshold == (HeapWord*)round_to(
  6986               (intptr_t)old_threshold, CardTableModRefBS::card_size),
  6987              "_threshold should always be card-aligned");
  6988       _threshold = (HeapWord*)round_to(
  6989                      (intptr_t)_finger, CardTableModRefBS::card_size);
  6990       MemRegion mr(old_threshold, _threshold);
  6991       assert(!mr.is_empty(), "Control point invariant");
  6992       assert(_span.contains(mr), "Should clear within span");
  6993       // XXX When _finger crosses from old gen into perm gen
  6994       // we may be doing unnecessary cleaning; do better in the
  6995       // future by detecting that condition and clearing fewer
  6996       // MUT/CT entries.
  6997       _mut->clear_range(mr);
  6999   DEBUG_ONLY(})
  7001   // Note: the finger doesn't advance while we drain
  7002   // the stack below.
  7003   PushOrMarkClosure pushOrMarkClosure(_collector,
  7004                                       _span, _bitMap, _markStack,
  7005                                       _revisitStack,
  7006                                       _finger, this);
  7007   bool res = _markStack->push(obj);
  7008   assert(res, "Empty non-zero size stack should have space for single push");
  7009   while (!_markStack->isEmpty()) {
  7010     oop new_oop = _markStack->pop();
  7011     // Skip verifying header mark word below because we are
  7012     // running concurrent with mutators.
  7013     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7014     // now scan this oop's oops
  7015     new_oop->oop_iterate(&pushOrMarkClosure);
  7016     do_yield_check();
  7018   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  7021 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  7022                        CMSCollector* collector, MemRegion span,
  7023                        CMSBitMap* bit_map,
  7024                        OopTaskQueue* work_queue,
  7025                        CMSMarkStack*  overflow_stack,
  7026                        CMSMarkStack*  revisit_stack,
  7027                        bool should_yield):
  7028   _collector(collector),
  7029   _whole_span(collector->_span),
  7030   _span(span),
  7031   _bit_map(bit_map),
  7032   _mut(&collector->_modUnionTable),
  7033   _work_queue(work_queue),
  7034   _overflow_stack(overflow_stack),
  7035   _revisit_stack(revisit_stack),
  7036   _yield(should_yield),
  7037   _skip_bits(0),
  7038   _task(task)
  7040   assert(_work_queue->size() == 0, "work_queue should be empty");
  7041   _finger = span.start();
  7042   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  7043   assert(_span.contains(_finger), "Out of bounds _finger?");
  7046 // Should revisit to see if this should be restructured for
  7047 // greater efficiency.
  7048 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
  7049   if (_skip_bits > 0) {
  7050     _skip_bits--;
  7051     return true;
  7053   // convert offset into a HeapWord*
  7054   HeapWord* addr = _bit_map->startWord() + offset;
  7055   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  7056          "address out of range");
  7057   assert(_bit_map->isMarked(addr), "tautology");
  7058   if (_bit_map->isMarked(addr+1)) {
  7059     // this is an allocated object that might not yet be initialized
  7060     assert(_skip_bits == 0, "tautology");
  7061     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  7062     oop p = oop(addr);
  7063     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  7064       // in the case of Clean-on-Enter optimization, redirty card
  7065       // and avoid clearing card by increasing  the threshold.
  7066       return true;
  7069   scan_oops_in_oop(addr);
  7070   return true;
  7073 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  7074   assert(_bit_map->isMarked(ptr), "expected bit to be set");
  7075   // Should we assert that our work queue is empty or
  7076   // below some drain limit?
  7077   assert(_work_queue->size() == 0,
  7078          "should drain stack to limit stack usage");
  7079   // convert ptr to an oop preparatory to scanning
  7080   oop obj = oop(ptr);
  7081   // Ignore mark word in verification below, since we
  7082   // may be running concurrent with mutators.
  7083   assert(obj->is_oop(true), "should be an oop");
  7084   assert(_finger <= ptr, "_finger runneth ahead");
  7085   // advance the finger to right end of this object
  7086   _finger = ptr + obj->size();
  7087   assert(_finger > ptr, "we just incremented it above");
  7088   // On large heaps, it may take us some time to get through
  7089   // the marking phase (especially if running iCMS). During
  7090   // this time it's possible that a lot of mutations have
  7091   // accumulated in the card table and the mod union table --
  7092   // these mutation records are redundant until we have
  7093   // actually traced into the corresponding card.
  7094   // Here, we check whether advancing the finger would make
  7095   // us cross into a new card, and if so clear corresponding
  7096   // cards in the MUT (preclean them in the card-table in the
  7097   // future).
  7099   // The clean-on-enter optimization is disabled by default,
  7100   // until we fix 6178663.
  7101   if (CMSCleanOnEnter && (_finger > _threshold)) {
  7102     // [_threshold, _finger) represents the interval
  7103     // of cards to be cleared  in MUT (or precleaned in card table).
  7104     // The set of cards to be cleared is all those that overlap
  7105     // with the interval [_threshold, _finger); note that
  7106     // _threshold is always kept card-aligned but _finger isn't
  7107     // always card-aligned.
  7108     HeapWord* old_threshold = _threshold;
  7109     assert(old_threshold == (HeapWord*)round_to(
  7110             (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7111            "_threshold should always be card-aligned");
  7112     _threshold = (HeapWord*)round_to(
  7113                    (intptr_t)_finger, CardTableModRefBS::card_size);
  7114     MemRegion mr(old_threshold, _threshold);
  7115     assert(!mr.is_empty(), "Control point invariant");
  7116     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  7117     // XXX When _finger crosses from old gen into perm gen
  7118     // we may be doing unnecessary cleaning; do better in the
  7119     // future by detecting that condition and clearing fewer
  7120     // MUT/CT entries.
  7121     _mut->clear_range(mr);
  7124   // Note: the local finger doesn't advance while we drain
  7125   // the stack below, but the global finger sure can and will.
  7126   HeapWord** gfa = _task->global_finger_addr();
  7127   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  7128                                       _span, _bit_map,
  7129                                       _work_queue,
  7130                                       _overflow_stack,
  7131                                       _revisit_stack,
  7132                                       _finger,
  7133                                       gfa, this);
  7134   bool res = _work_queue->push(obj);   // overflow could occur here
  7135   assert(res, "Will hold once we use workqueues");
  7136   while (true) {
  7137     oop new_oop;
  7138     if (!_work_queue->pop_local(new_oop)) {
  7139       // We emptied our work_queue; check if there's stuff that can
  7140       // be gotten from the overflow stack.
  7141       if (CMSConcMarkingTask::get_work_from_overflow_stack(
  7142             _overflow_stack, _work_queue)) {
  7143         do_yield_check();
  7144         continue;
  7145       } else {  // done
  7146         break;
  7149     // Skip verifying header mark word below because we are
  7150     // running concurrent with mutators.
  7151     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7152     // now scan this oop's oops
  7153     new_oop->oop_iterate(&pushOrMarkClosure);
  7154     do_yield_check();
  7156   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  7159 // Yield in response to a request from VM Thread or
  7160 // from mutators.
  7161 void Par_MarkFromRootsClosure::do_yield_work() {
  7162   assert(_task != NULL, "sanity");
  7163   _task->yield();
  7166 // A variant of the above used for verifying CMS marking work.
  7167 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  7168                         MemRegion span,
  7169                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7170                         CMSMarkStack*  mark_stack):
  7171   _collector(collector),
  7172   _span(span),
  7173   _verification_bm(verification_bm),
  7174   _cms_bm(cms_bm),
  7175   _mark_stack(mark_stack),
  7176   _pam_verify_closure(collector, span, verification_bm, cms_bm,
  7177                       mark_stack)
  7179   assert(_mark_stack->isEmpty(), "stack should be empty");
  7180   _finger = _verification_bm->startWord();
  7181   assert(_collector->_restart_addr == NULL, "Sanity check");
  7182   assert(_span.contains(_finger), "Out of bounds _finger?");
  7185 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  7186   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  7187   assert(_span.contains(addr), "Out of bounds _finger?");
  7188   _finger = addr;
  7191 // Should revisit to see if this should be restructured for
  7192 // greater efficiency.
  7193 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  7194   // convert offset into a HeapWord*
  7195   HeapWord* addr = _verification_bm->startWord() + offset;
  7196   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  7197          "address out of range");
  7198   assert(_verification_bm->isMarked(addr), "tautology");
  7199   assert(_cms_bm->isMarked(addr), "tautology");
  7201   assert(_mark_stack->isEmpty(),
  7202          "should drain stack to limit stack usage");
  7203   // convert addr to an oop preparatory to scanning
  7204   oop obj = oop(addr);
  7205   assert(obj->is_oop(), "should be an oop");
  7206   assert(_finger <= addr, "_finger runneth ahead");
  7207   // advance the finger to right end of this object
  7208   _finger = addr + obj->size();
  7209   assert(_finger > addr, "we just incremented it above");
  7210   // Note: the finger doesn't advance while we drain
  7211   // the stack below.
  7212   bool res = _mark_stack->push(obj);
  7213   assert(res, "Empty non-zero size stack should have space for single push");
  7214   while (!_mark_stack->isEmpty()) {
  7215     oop new_oop = _mark_stack->pop();
  7216     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  7217     // now scan this oop's oops
  7218     new_oop->oop_iterate(&_pam_verify_closure);
  7220   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  7221   return true;
  7224 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  7225   CMSCollector* collector, MemRegion span,
  7226   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7227   CMSMarkStack*  mark_stack):
  7228   OopClosure(collector->ref_processor()),
  7229   _collector(collector),
  7230   _span(span),
  7231   _verification_bm(verification_bm),
  7232   _cms_bm(cms_bm),
  7233   _mark_stack(mark_stack)
  7234 { }
  7236 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
  7237 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
  7239 // Upon stack overflow, we discard (part of) the stack,
  7240 // remembering the least address amongst those discarded
  7241 // in CMSCollector's _restart_address.
  7242 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  7243   // Remember the least grey address discarded
  7244   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  7245   _collector->lower_restart_addr(ra);
  7246   _mark_stack->reset();  // discard stack contents
  7247   _mark_stack->expand(); // expand the stack if possible
  7250 void PushAndMarkVerifyClosure::do_oop(oop obj) {
  7251   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  7252   HeapWord* addr = (HeapWord*)obj;
  7253   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  7254     // Oop lies in _span and isn't yet grey or black
  7255     _verification_bm->mark(addr);            // now grey
  7256     if (!_cms_bm->isMarked(addr)) {
  7257       oop(addr)->print();
  7258       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
  7259                              addr);
  7260       fatal("... aborting");
  7263     if (!_mark_stack->push(obj)) { // stack overflow
  7264       if (PrintCMSStatistics != 0) {
  7265         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7266                                SIZE_FORMAT, _mark_stack->capacity());
  7268       assert(_mark_stack->isFull(), "Else push should have succeeded");
  7269       handle_stack_overflow(addr);
  7271     // anything including and to the right of _finger
  7272     // will be scanned as we iterate over the remainder of the
  7273     // bit map
  7277 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  7278                      MemRegion span,
  7279                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7280                      CMSMarkStack*  revisitStack,
  7281                      HeapWord* finger, MarkFromRootsClosure* parent) :
  7282   OopClosure(collector->ref_processor()),
  7283   _collector(collector),
  7284   _span(span),
  7285   _bitMap(bitMap),
  7286   _markStack(markStack),
  7287   _revisitStack(revisitStack),
  7288   _finger(finger),
  7289   _parent(parent),
  7290   _should_remember_klasses(collector->should_unload_classes())
  7291 { }
  7293 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  7294                      MemRegion span,
  7295                      CMSBitMap* bit_map,
  7296                      OopTaskQueue* work_queue,
  7297                      CMSMarkStack*  overflow_stack,
  7298                      CMSMarkStack*  revisit_stack,
  7299                      HeapWord* finger,
  7300                      HeapWord** global_finger_addr,
  7301                      Par_MarkFromRootsClosure* parent) :
  7302   OopClosure(collector->ref_processor()),
  7303   _collector(collector),
  7304   _whole_span(collector->_span),
  7305   _span(span),
  7306   _bit_map(bit_map),
  7307   _work_queue(work_queue),
  7308   _overflow_stack(overflow_stack),
  7309   _revisit_stack(revisit_stack),
  7310   _finger(finger),
  7311   _global_finger_addr(global_finger_addr),
  7312   _parent(parent),
  7313   _should_remember_klasses(collector->should_unload_classes())
  7314 { }
  7316 void CMSCollector::lower_restart_addr(HeapWord* low) {
  7317   assert(_span.contains(low), "Out of bounds addr");
  7318   if (_restart_addr == NULL) {
  7319     _restart_addr = low;
  7320   } else {
  7321     _restart_addr = MIN2(_restart_addr, low);
  7325 // Upon stack overflow, we discard (part of) the stack,
  7326 // remembering the least address amongst those discarded
  7327 // in CMSCollector's _restart_address.
  7328 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7329   // Remember the least grey address discarded
  7330   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  7331   _collector->lower_restart_addr(ra);
  7332   _markStack->reset();  // discard stack contents
  7333   _markStack->expand(); // expand the stack if possible
  7336 // Upon stack overflow, we discard (part of) the stack,
  7337 // remembering the least address amongst those discarded
  7338 // in CMSCollector's _restart_address.
  7339 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7340   // We need to do this under a mutex to prevent other
  7341   // workers from interfering with the expansion below.
  7342   MutexLockerEx ml(_overflow_stack->par_lock(),
  7343                    Mutex::_no_safepoint_check_flag);
  7344   // Remember the least grey address discarded
  7345   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  7346   _collector->lower_restart_addr(ra);
  7347   _overflow_stack->reset();  // discard stack contents
  7348   _overflow_stack->expand(); // expand the stack if possible
  7351 void PushOrMarkClosure::do_oop(oop obj) {
  7352   // Ignore mark word because we are running concurrent with mutators.
  7353   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7354   HeapWord* addr = (HeapWord*)obj;
  7355   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  7356     // Oop lies in _span and isn't yet grey or black
  7357     _bitMap->mark(addr);            // now grey
  7358     if (addr < _finger) {
  7359       // the bit map iteration has already either passed, or
  7360       // sampled, this bit in the bit map; we'll need to
  7361       // use the marking stack to scan this oop's oops.
  7362       bool simulate_overflow = false;
  7363       NOT_PRODUCT(
  7364         if (CMSMarkStackOverflowALot &&
  7365             _collector->simulate_overflow()) {
  7366           // simulate a stack overflow
  7367           simulate_overflow = true;
  7370       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
  7371         if (PrintCMSStatistics != 0) {
  7372           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7373                                  SIZE_FORMAT, _markStack->capacity());
  7375         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  7376         handle_stack_overflow(addr);
  7379     // anything including and to the right of _finger
  7380     // will be scanned as we iterate over the remainder of the
  7381     // bit map
  7382     do_yield_check();
  7386 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
  7387 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
  7389 void Par_PushOrMarkClosure::do_oop(oop obj) {
  7390   // Ignore mark word because we are running concurrent with mutators.
  7391   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7392   HeapWord* addr = (HeapWord*)obj;
  7393   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7394     // Oop lies in _span and isn't yet grey or black
  7395     // We read the global_finger (volatile read) strictly after marking oop
  7396     bool res = _bit_map->par_mark(addr);    // now grey
  7397     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  7398     // Should we push this marked oop on our stack?
  7399     // -- if someone else marked it, nothing to do
  7400     // -- if target oop is above global finger nothing to do
  7401     // -- if target oop is in chunk and above local finger
  7402     //      then nothing to do
  7403     // -- else push on work queue
  7404     if (   !res       // someone else marked it, they will deal with it
  7405         || (addr >= *gfa)  // will be scanned in a later task
  7406         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  7407       return;
  7409     // the bit map iteration has already either passed, or
  7410     // sampled, this bit in the bit map; we'll need to
  7411     // use the marking stack to scan this oop's oops.
  7412     bool simulate_overflow = false;
  7413     NOT_PRODUCT(
  7414       if (CMSMarkStackOverflowALot &&
  7415           _collector->simulate_overflow()) {
  7416         // simulate a stack overflow
  7417         simulate_overflow = true;
  7420     if (simulate_overflow ||
  7421         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  7422       // stack overflow
  7423       if (PrintCMSStatistics != 0) {
  7424         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7425                                SIZE_FORMAT, _overflow_stack->capacity());
  7427       // We cannot assert that the overflow stack is full because
  7428       // it may have been emptied since.
  7429       assert(simulate_overflow ||
  7430              _work_queue->size() == _work_queue->max_elems(),
  7431             "Else push should have succeeded");
  7432       handle_stack_overflow(addr);
  7434     do_yield_check();
  7438 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
  7439 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
  7441 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  7442                                        MemRegion span,
  7443                                        ReferenceProcessor* rp,
  7444                                        CMSBitMap* bit_map,
  7445                                        CMSBitMap* mod_union_table,
  7446                                        CMSMarkStack*  mark_stack,
  7447                                        CMSMarkStack*  revisit_stack,
  7448                                        bool           concurrent_precleaning):
  7449   OopClosure(rp),
  7450   _collector(collector),
  7451   _span(span),
  7452   _bit_map(bit_map),
  7453   _mod_union_table(mod_union_table),
  7454   _mark_stack(mark_stack),
  7455   _revisit_stack(revisit_stack),
  7456   _concurrent_precleaning(concurrent_precleaning),
  7457   _should_remember_klasses(collector->should_unload_classes())
  7459   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7462 // Grey object rescan during pre-cleaning and second checkpoint phases --
  7463 // the non-parallel version (the parallel version appears further below.)
  7464 void PushAndMarkClosure::do_oop(oop obj) {
  7465   // Ignore mark word verification. If during concurrent precleaning,
  7466   // the object monitor may be locked. If during the checkpoint
  7467   // phases, the object may already have been reached by a  different
  7468   // path and may be at the end of the global overflow list (so
  7469   // the mark word may be NULL).
  7470   assert(obj->is_oop_or_null(true /* ignore mark word */),
  7471          "expected an oop or NULL");
  7472   HeapWord* addr = (HeapWord*)obj;
  7473   // Check if oop points into the CMS generation
  7474   // and is not marked
  7475   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7476     // a white object ...
  7477     _bit_map->mark(addr);         // ... now grey
  7478     // push on the marking stack (grey set)
  7479     bool simulate_overflow = false;
  7480     NOT_PRODUCT(
  7481       if (CMSMarkStackOverflowALot &&
  7482           _collector->simulate_overflow()) {
  7483         // simulate a stack overflow
  7484         simulate_overflow = true;
  7487     if (simulate_overflow || !_mark_stack->push(obj)) {
  7488       if (_concurrent_precleaning) {
  7489          // During precleaning we can just dirty the appropriate card
  7490          // in the mod union table, thus ensuring that the object remains
  7491          // in the grey set  and continue. Note that no one can be intefering
  7492          // with us in this action of dirtying the mod union table, so
  7493          // no locking is required.
  7494          _mod_union_table->mark(addr);
  7495          _collector->_ser_pmc_preclean_ovflw++;
  7496       } else {
  7497          // During the remark phase, we need to remember this oop
  7498          // in the overflow list.
  7499          _collector->push_on_overflow_list(obj);
  7500          _collector->_ser_pmc_remark_ovflw++;
  7506 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  7507                                                MemRegion span,
  7508                                                ReferenceProcessor* rp,
  7509                                                CMSBitMap* bit_map,
  7510                                                OopTaskQueue* work_queue,
  7511                                                CMSMarkStack* revisit_stack):
  7512   OopClosure(rp),
  7513   _collector(collector),
  7514   _span(span),
  7515   _bit_map(bit_map),
  7516   _work_queue(work_queue),
  7517   _revisit_stack(revisit_stack),
  7518   _should_remember_klasses(collector->should_unload_classes())
  7520   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7523 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
  7524 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
  7526 // Grey object rescan during second checkpoint phase --
  7527 // the parallel version.
  7528 void Par_PushAndMarkClosure::do_oop(oop obj) {
  7529   // In the assert below, we ignore the mark word because
  7530   // this oop may point to an already visited object that is
  7531   // on the overflow stack (in which case the mark word has
  7532   // been hijacked for chaining into the overflow stack --
  7533   // if this is the last object in the overflow stack then
  7534   // its mark word will be NULL). Because this object may
  7535   // have been subsequently popped off the global overflow
  7536   // stack, and the mark word possibly restored to the prototypical
  7537   // value, by the time we get to examined this failing assert in
  7538   // the debugger, is_oop_or_null(false) may subsequently start
  7539   // to hold.
  7540   assert(obj->is_oop_or_null(true),
  7541          "expected an oop or NULL");
  7542   HeapWord* addr = (HeapWord*)obj;
  7543   // Check if oop points into the CMS generation
  7544   // and is not marked
  7545   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7546     // a white object ...
  7547     // If we manage to "claim" the object, by being the
  7548     // first thread to mark it, then we push it on our
  7549     // marking stack
  7550     if (_bit_map->par_mark(addr)) {     // ... now grey
  7551       // push on work queue (grey set)
  7552       bool simulate_overflow = false;
  7553       NOT_PRODUCT(
  7554         if (CMSMarkStackOverflowALot &&
  7555             _collector->par_simulate_overflow()) {
  7556           // simulate a stack overflow
  7557           simulate_overflow = true;
  7560       if (simulate_overflow || !_work_queue->push(obj)) {
  7561         _collector->par_push_on_overflow_list(obj);
  7562         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  7564     } // Else, some other thread got there first
  7568 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
  7569 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
  7571 void PushAndMarkClosure::remember_klass(Klass* k) {
  7572   if (!_revisit_stack->push(oop(k))) {
  7573     fatal("Revisit stack overflowed in PushAndMarkClosure");
  7577 void Par_PushAndMarkClosure::remember_klass(Klass* k) {
  7578   if (!_revisit_stack->par_push(oop(k))) {
  7579     fatal("Revist stack overflowed in Par_PushAndMarkClosure");
  7583 void CMSPrecleanRefsYieldClosure::do_yield_work() {
  7584   Mutex* bml = _collector->bitMapLock();
  7585   assert_lock_strong(bml);
  7586   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7587          "CMS thread should hold CMS token");
  7589   bml->unlock();
  7590   ConcurrentMarkSweepThread::desynchronize(true);
  7592   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7594   _collector->stopTimer();
  7595   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7596   if (PrintCMSStatistics != 0) {
  7597     _collector->incrementYields();
  7599   _collector->icms_wait();
  7601   // See the comment in coordinator_yield()
  7602   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7603                        ConcurrentMarkSweepThread::should_yield() &&
  7604                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7605     os::sleep(Thread::current(), 1, false);
  7606     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7609   ConcurrentMarkSweepThread::synchronize(true);
  7610   bml->lock();
  7612   _collector->startTimer();
  7615 bool CMSPrecleanRefsYieldClosure::should_return() {
  7616   if (ConcurrentMarkSweepThread::should_yield()) {
  7617     do_yield_work();
  7619   return _collector->foregroundGCIsActive();
  7622 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  7623   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  7624          "mr should be aligned to start at a card boundary");
  7625   // We'd like to assert:
  7626   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  7627   //        "mr should be a range of cards");
  7628   // However, that would be too strong in one case -- the last
  7629   // partition ends at _unallocated_block which, in general, can be
  7630   // an arbitrary boundary, not necessarily card aligned.
  7631   if (PrintCMSStatistics != 0) {
  7632     _num_dirty_cards +=
  7633          mr.word_size()/CardTableModRefBS::card_size_in_words;
  7635   _space->object_iterate_mem(mr, &_scan_cl);
  7638 SweepClosure::SweepClosure(CMSCollector* collector,
  7639                            ConcurrentMarkSweepGeneration* g,
  7640                            CMSBitMap* bitMap, bool should_yield) :
  7641   _collector(collector),
  7642   _g(g),
  7643   _sp(g->cmsSpace()),
  7644   _limit(_sp->sweep_limit()),
  7645   _freelistLock(_sp->freelistLock()),
  7646   _bitMap(bitMap),
  7647   _yield(should_yield),
  7648   _inFreeRange(false),           // No free range at beginning of sweep
  7649   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  7650   _lastFreeRangeCoalesced(false),
  7651   _freeFinger(g->used_region().start())
  7653   NOT_PRODUCT(
  7654     _numObjectsFreed = 0;
  7655     _numWordsFreed   = 0;
  7656     _numObjectsLive = 0;
  7657     _numWordsLive = 0;
  7658     _numObjectsAlreadyFree = 0;
  7659     _numWordsAlreadyFree = 0;
  7660     _last_fc = NULL;
  7662     _sp->initializeIndexedFreeListArrayReturnedBytes();
  7663     _sp->dictionary()->initializeDictReturnedBytes();
  7665   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7666          "sweep _limit out of bounds");
  7667   if (CMSTraceSweeper) {
  7668     gclog_or_tty->print("\n====================\nStarting new sweep\n");
  7672 // We need this destructor to reclaim any space at the end
  7673 // of the space, which do_blk below may not have added back to
  7674 // the free lists. [basically dealing with the "fringe effect"]
  7675 SweepClosure::~SweepClosure() {
  7676   assert_lock_strong(_freelistLock);
  7677   // this should be treated as the end of a free run if any
  7678   // The current free range should be returned to the free lists
  7679   // as one coalesced chunk.
  7680   if (inFreeRange()) {
  7681     flushCurFreeChunk(freeFinger(),
  7682       pointer_delta(_limit, freeFinger()));
  7683     assert(freeFinger() < _limit, "the finger pointeth off base");
  7684     if (CMSTraceSweeper) {
  7685       gclog_or_tty->print("destructor:");
  7686       gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
  7687                  "[coalesced:"SIZE_FORMAT"]\n",
  7688                  freeFinger(), pointer_delta(_limit, freeFinger()),
  7689                  lastFreeRangeCoalesced());
  7692   NOT_PRODUCT(
  7693     if (Verbose && PrintGC) {
  7694       gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
  7695                           SIZE_FORMAT " bytes",
  7696                  _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  7697       gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  7698                              SIZE_FORMAT" bytes  "
  7699         "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  7700         _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  7701         _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  7702       size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
  7703         sizeof(HeapWord);
  7704       gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  7706       if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  7707         size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  7708         size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
  7709         size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
  7710         gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
  7711         gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  7712           indexListReturnedBytes);
  7713         gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  7714           dictReturnedBytes);
  7718   // Now, in debug mode, just null out the sweep_limit
  7719   NOT_PRODUCT(_sp->clear_sweep_limit();)
  7720   if (CMSTraceSweeper) {
  7721     gclog_or_tty->print("end of sweep\n================\n");
  7725 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  7726     bool freeRangeInFreeLists) {
  7727   if (CMSTraceSweeper) {
  7728     gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
  7729                freeFinger, _sp->block_size(freeFinger),
  7730                freeRangeInFreeLists);
  7732   assert(!inFreeRange(), "Trampling existing free range");
  7733   set_inFreeRange(true);
  7734   set_lastFreeRangeCoalesced(false);
  7736   set_freeFinger(freeFinger);
  7737   set_freeRangeInFreeLists(freeRangeInFreeLists);
  7738   if (CMSTestInFreeList) {
  7739     if (freeRangeInFreeLists) {
  7740       FreeChunk* fc = (FreeChunk*) freeFinger;
  7741       assert(fc->isFree(), "A chunk on the free list should be free.");
  7742       assert(fc->size() > 0, "Free range should have a size");
  7743       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
  7748 // Note that the sweeper runs concurrently with mutators. Thus,
  7749 // it is possible for direct allocation in this generation to happen
  7750 // in the middle of the sweep. Note that the sweeper also coalesces
  7751 // contiguous free blocks. Thus, unless the sweeper and the allocator
  7752 // synchronize appropriately freshly allocated blocks may get swept up.
  7753 // This is accomplished by the sweeper locking the free lists while
  7754 // it is sweeping. Thus blocks that are determined to be free are
  7755 // indeed free. There is however one additional complication:
  7756 // blocks that have been allocated since the final checkpoint and
  7757 // mark, will not have been marked and so would be treated as
  7758 // unreachable and swept up. To prevent this, the allocator marks
  7759 // the bit map when allocating during the sweep phase. This leads,
  7760 // however, to a further complication -- objects may have been allocated
  7761 // but not yet initialized -- in the sense that the header isn't yet
  7762 // installed. The sweeper can not then determine the size of the block
  7763 // in order to skip over it. To deal with this case, we use a technique
  7764 // (due to Printezis) to encode such uninitialized block sizes in the
  7765 // bit map. Since the bit map uses a bit per every HeapWord, but the
  7766 // CMS generation has a minimum object size of 3 HeapWords, it follows
  7767 // that "normal marks" won't be adjacent in the bit map (there will
  7768 // always be at least two 0 bits between successive 1 bits). We make use
  7769 // of these "unused" bits to represent uninitialized blocks -- the bit
  7770 // corresponding to the start of the uninitialized object and the next
  7771 // bit are both set. Finally, a 1 bit marks the end of the object that
  7772 // started with the two consecutive 1 bits to indicate its potentially
  7773 // uninitialized state.
  7775 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  7776   FreeChunk* fc = (FreeChunk*)addr;
  7777   size_t res;
  7779   // check if we are done sweepinrg
  7780   if (addr == _limit) { // we have swept up to the limit, do nothing more
  7781     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7782            "sweep _limit out of bounds");
  7783     // help the closure application finish
  7784     return pointer_delta(_sp->end(), _limit);
  7786   assert(addr <= _limit, "sweep invariant");
  7788   // check if we should yield
  7789   do_yield_check(addr);
  7790   if (fc->isFree()) {
  7791     // Chunk that is already free
  7792     res = fc->size();
  7793     doAlreadyFreeChunk(fc);
  7794     debug_only(_sp->verifyFreeLists());
  7795     assert(res == fc->size(), "Don't expect the size to change");
  7796     NOT_PRODUCT(
  7797       _numObjectsAlreadyFree++;
  7798       _numWordsAlreadyFree += res;
  7800     NOT_PRODUCT(_last_fc = fc;)
  7801   } else if (!_bitMap->isMarked(addr)) {
  7802     // Chunk is fresh garbage
  7803     res = doGarbageChunk(fc);
  7804     debug_only(_sp->verifyFreeLists());
  7805     NOT_PRODUCT(
  7806       _numObjectsFreed++;
  7807       _numWordsFreed += res;
  7809   } else {
  7810     // Chunk that is alive.
  7811     res = doLiveChunk(fc);
  7812     debug_only(_sp->verifyFreeLists());
  7813     NOT_PRODUCT(
  7814         _numObjectsLive++;
  7815         _numWordsLive += res;
  7818   return res;
  7821 // For the smart allocation, record following
  7822 //  split deaths - a free chunk is removed from its free list because
  7823 //      it is being split into two or more chunks.
  7824 //  split birth - a free chunk is being added to its free list because
  7825 //      a larger free chunk has been split and resulted in this free chunk.
  7826 //  coal death - a free chunk is being removed from its free list because
  7827 //      it is being coalesced into a large free chunk.
  7828 //  coal birth - a free chunk is being added to its free list because
  7829 //      it was created when two or more free chunks where coalesced into
  7830 //      this free chunk.
  7831 //
  7832 // These statistics are used to determine the desired number of free
  7833 // chunks of a given size.  The desired number is chosen to be relative
  7834 // to the end of a CMS sweep.  The desired number at the end of a sweep
  7835 // is the
  7836 //      count-at-end-of-previous-sweep (an amount that was enough)
  7837 //              - count-at-beginning-of-current-sweep  (the excess)
  7838 //              + split-births  (gains in this size during interval)
  7839 //              - split-deaths  (demands on this size during interval)
  7840 // where the interval is from the end of one sweep to the end of the
  7841 // next.
  7842 //
  7843 // When sweeping the sweeper maintains an accumulated chunk which is
  7844 // the chunk that is made up of chunks that have been coalesced.  That
  7845 // will be termed the left-hand chunk.  A new chunk of garbage that
  7846 // is being considered for coalescing will be referred to as the
  7847 // right-hand chunk.
  7848 //
  7849 // When making a decision on whether to coalesce a right-hand chunk with
  7850 // the current left-hand chunk, the current count vs. the desired count
  7851 // of the left-hand chunk is considered.  Also if the right-hand chunk
  7852 // is near the large chunk at the end of the heap (see
  7853 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  7854 // left-hand chunk is coalesced.
  7855 //
  7856 // When making a decision about whether to split a chunk, the desired count
  7857 // vs. the current count of the candidate to be split is also considered.
  7858 // If the candidate is underpopulated (currently fewer chunks than desired)
  7859 // a chunk of an overpopulated (currently more chunks than desired) size may
  7860 // be chosen.  The "hint" associated with a free list, if non-null, points
  7861 // to a free list which may be overpopulated.
  7862 //
  7864 void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
  7865   size_t size = fc->size();
  7866   // Chunks that cannot be coalesced are not in the
  7867   // free lists.
  7868   if (CMSTestInFreeList && !fc->cantCoalesce()) {
  7869     assert(_sp->verifyChunkInFreeLists(fc),
  7870       "free chunk should be in free lists");
  7872   // a chunk that is already free, should not have been
  7873   // marked in the bit map
  7874   HeapWord* addr = (HeapWord*) fc;
  7875   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  7876   // Verify that the bit map has no bits marked between
  7877   // addr and purported end of this block.
  7878   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7880   // Some chunks cannot be coalesced in under any circumstances.
  7881   // See the definition of cantCoalesce().
  7882   if (!fc->cantCoalesce()) {
  7883     // This chunk can potentially be coalesced.
  7884     if (_sp->adaptive_freelists()) {
  7885       // All the work is done in
  7886       doPostIsFreeOrGarbageChunk(fc, size);
  7887     } else {  // Not adaptive free lists
  7888       // this is a free chunk that can potentially be coalesced by the sweeper;
  7889       if (!inFreeRange()) {
  7890         // if the next chunk is a free block that can't be coalesced
  7891         // it doesn't make sense to remove this chunk from the free lists
  7892         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  7893         assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
  7894         if ((HeapWord*)nextChunk < _limit  &&    // there's a next chunk...
  7895             nextChunk->isFree()    &&            // which is free...
  7896             nextChunk->cantCoalesce()) {         // ... but cant be coalesced
  7897           // nothing to do
  7898         } else {
  7899           // Potentially the start of a new free range:
  7900           // Don't eagerly remove it from the free lists.
  7901           // No need to remove it if it will just be put
  7902           // back again.  (Also from a pragmatic point of view
  7903           // if it is a free block in a region that is beyond
  7904           // any allocated blocks, an assertion will fail)
  7905           // Remember the start of a free run.
  7906           initialize_free_range(addr, true);
  7907           // end - can coalesce with next chunk
  7909       } else {
  7910         // the midst of a free range, we are coalescing
  7911         debug_only(record_free_block_coalesced(fc);)
  7912         if (CMSTraceSweeper) {
  7913           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  7915         // remove it from the free lists
  7916         _sp->removeFreeChunkFromFreeLists(fc);
  7917         set_lastFreeRangeCoalesced(true);
  7918         // If the chunk is being coalesced and the current free range is
  7919         // in the free lists, remove the current free range so that it
  7920         // will be returned to the free lists in its entirety - all
  7921         // the coalesced pieces included.
  7922         if (freeRangeInFreeLists()) {
  7923           FreeChunk* ffc = (FreeChunk*) freeFinger();
  7924           assert(ffc->size() == pointer_delta(addr, freeFinger()),
  7925             "Size of free range is inconsistent with chunk size.");
  7926           if (CMSTestInFreeList) {
  7927             assert(_sp->verifyChunkInFreeLists(ffc),
  7928               "free range is not in free lists");
  7930           _sp->removeFreeChunkFromFreeLists(ffc);
  7931           set_freeRangeInFreeLists(false);
  7935   } else {
  7936     // Code path common to both original and adaptive free lists.
  7938     // cant coalesce with previous block; this should be treated
  7939     // as the end of a free run if any
  7940     if (inFreeRange()) {
  7941       // we kicked some butt; time to pick up the garbage
  7942       assert(freeFinger() < addr, "the finger pointeth off base");
  7943       flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  7945     // else, nothing to do, just continue
  7949 size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
  7950   // This is a chunk of garbage.  It is not in any free list.
  7951   // Add it to a free list or let it possibly be coalesced into
  7952   // a larger chunk.
  7953   HeapWord* addr = (HeapWord*) fc;
  7954   size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  7956   if (_sp->adaptive_freelists()) {
  7957     // Verify that the bit map has no bits marked between
  7958     // addr and purported end of just dead object.
  7959     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7961     doPostIsFreeOrGarbageChunk(fc, size);
  7962   } else {
  7963     if (!inFreeRange()) {
  7964       // start of a new free range
  7965       assert(size > 0, "A free range should have a size");
  7966       initialize_free_range(addr, false);
  7968     } else {
  7969       // this will be swept up when we hit the end of the
  7970       // free range
  7971       if (CMSTraceSweeper) {
  7972         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  7974       // If the chunk is being coalesced and the current free range is
  7975       // in the free lists, remove the current free range so that it
  7976       // will be returned to the free lists in its entirety - all
  7977       // the coalesced pieces included.
  7978       if (freeRangeInFreeLists()) {
  7979         FreeChunk* ffc = (FreeChunk*)freeFinger();
  7980         assert(ffc->size() == pointer_delta(addr, freeFinger()),
  7981           "Size of free range is inconsistent with chunk size.");
  7982         if (CMSTestInFreeList) {
  7983           assert(_sp->verifyChunkInFreeLists(ffc),
  7984             "free range is not in free lists");
  7986         _sp->removeFreeChunkFromFreeLists(ffc);
  7987         set_freeRangeInFreeLists(false);
  7989       set_lastFreeRangeCoalesced(true);
  7991     // this will be swept up when we hit the end of the free range
  7993     // Verify that the bit map has no bits marked between
  7994     // addr and purported end of just dead object.
  7995     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7997   return size;
  8000 size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
  8001   HeapWord* addr = (HeapWord*) fc;
  8002   // The sweeper has just found a live object. Return any accumulated
  8003   // left hand chunk to the free lists.
  8004   if (inFreeRange()) {
  8005     if (_sp->adaptive_freelists()) {
  8006       flushCurFreeChunk(freeFinger(),
  8007                         pointer_delta(addr, freeFinger()));
  8008     } else { // not adaptive freelists
  8009       set_inFreeRange(false);
  8010       // Add the free range back to the free list if it is not already
  8011       // there.
  8012       if (!freeRangeInFreeLists()) {
  8013         assert(freeFinger() < addr, "the finger pointeth off base");
  8014         if (CMSTraceSweeper) {
  8015           gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
  8016             "[coalesced:%d]\n",
  8017             freeFinger(), pointer_delta(addr, freeFinger()),
  8018             lastFreeRangeCoalesced());
  8020         _sp->addChunkAndRepairOffsetTable(freeFinger(),
  8021           pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
  8026   // Common code path for original and adaptive free lists.
  8028   // this object is live: we'd normally expect this to be
  8029   // an oop, and like to assert the following:
  8030   // assert(oop(addr)->is_oop(), "live block should be an oop");
  8031   // However, as we commented above, this may be an object whose
  8032   // header hasn't yet been initialized.
  8033   size_t size;
  8034   assert(_bitMap->isMarked(addr), "Tautology for this control point");
  8035   if (_bitMap->isMarked(addr + 1)) {
  8036     // Determine the size from the bit map, rather than trying to
  8037     // compute it from the object header.
  8038     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  8039     size = pointer_delta(nextOneAddr + 1, addr);
  8040     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  8041            "alignment problem");
  8043     #ifdef DEBUG
  8044       if (oop(addr)->klass_or_null() != NULL &&
  8045           (   !_collector->should_unload_classes()
  8046            || oop(addr)->is_parsable())) {
  8047         // Ignore mark word because we are running concurrent with mutators
  8048         assert(oop(addr)->is_oop(true), "live block should be an oop");
  8049         assert(size ==
  8050                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  8051                "P-mark and computed size do not agree");
  8053     #endif
  8055   } else {
  8056     // This should be an initialized object that's alive.
  8057     assert(oop(addr)->klass_or_null() != NULL &&
  8058            (!_collector->should_unload_classes()
  8059             || oop(addr)->is_parsable()),
  8060            "Should be an initialized object");
  8061     // Ignore mark word because we are running concurrent with mutators
  8062     assert(oop(addr)->is_oop(true), "live block should be an oop");
  8063     // Verify that the bit map has no bits marked between
  8064     // addr and purported end of this block.
  8065     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8066     assert(size >= 3, "Necessary for Printezis marks to work");
  8067     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  8068     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  8070   return size;
  8073 void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
  8074                                             size_t chunkSize) {
  8075   // doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
  8076   // scheme.
  8077   bool fcInFreeLists = fc->isFree();
  8078   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  8079   assert((HeapWord*)fc <= _limit, "sweep invariant");
  8080   if (CMSTestInFreeList && fcInFreeLists) {
  8081     assert(_sp->verifyChunkInFreeLists(fc),
  8082       "free chunk is not in free lists");
  8086   if (CMSTraceSweeper) {
  8087     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  8090   HeapWord* addr = (HeapWord*) fc;
  8092   bool coalesce;
  8093   size_t left  = pointer_delta(addr, freeFinger());
  8094   size_t right = chunkSize;
  8095   switch (FLSCoalescePolicy) {
  8096     // numeric value forms a coalition aggressiveness metric
  8097     case 0:  { // never coalesce
  8098       coalesce = false;
  8099       break;
  8101     case 1: { // coalesce if left & right chunks on overpopulated lists
  8102       coalesce = _sp->coalOverPopulated(left) &&
  8103                  _sp->coalOverPopulated(right);
  8104       break;
  8106     case 2: { // coalesce if left chunk on overpopulated list (default)
  8107       coalesce = _sp->coalOverPopulated(left);
  8108       break;
  8110     case 3: { // coalesce if left OR right chunk on overpopulated list
  8111       coalesce = _sp->coalOverPopulated(left) ||
  8112                  _sp->coalOverPopulated(right);
  8113       break;
  8115     case 4: { // always coalesce
  8116       coalesce = true;
  8117       break;
  8119     default:
  8120      ShouldNotReachHere();
  8123   // Should the current free range be coalesced?
  8124   // If the chunk is in a free range and either we decided to coalesce above
  8125   // or the chunk is near the large block at the end of the heap
  8126   // (isNearLargestChunk() returns true), then coalesce this chunk.
  8127   bool doCoalesce = inFreeRange() &&
  8128     (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
  8129   if (doCoalesce) {
  8130     // Coalesce the current free range on the left with the new
  8131     // chunk on the right.  If either is on a free list,
  8132     // it must be removed from the list and stashed in the closure.
  8133     if (freeRangeInFreeLists()) {
  8134       FreeChunk* ffc = (FreeChunk*)freeFinger();
  8135       assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8136         "Size of free range is inconsistent with chunk size.");
  8137       if (CMSTestInFreeList) {
  8138         assert(_sp->verifyChunkInFreeLists(ffc),
  8139           "Chunk is not in free lists");
  8141       _sp->coalDeath(ffc->size());
  8142       _sp->removeFreeChunkFromFreeLists(ffc);
  8143       set_freeRangeInFreeLists(false);
  8145     if (fcInFreeLists) {
  8146       _sp->coalDeath(chunkSize);
  8147       assert(fc->size() == chunkSize,
  8148         "The chunk has the wrong size or is not in the free lists");
  8149       _sp->removeFreeChunkFromFreeLists(fc);
  8151     set_lastFreeRangeCoalesced(true);
  8152   } else {  // not in a free range and/or should not coalesce
  8153     // Return the current free range and start a new one.
  8154     if (inFreeRange()) {
  8155       // In a free range but cannot coalesce with the right hand chunk.
  8156       // Put the current free range into the free lists.
  8157       flushCurFreeChunk(freeFinger(),
  8158         pointer_delta(addr, freeFinger()));
  8160     // Set up for new free range.  Pass along whether the right hand
  8161     // chunk is in the free lists.
  8162     initialize_free_range((HeapWord*)fc, fcInFreeLists);
  8165 void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
  8166   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8167   assert(size > 0,
  8168     "A zero sized chunk cannot be added to the free lists.");
  8169   if (!freeRangeInFreeLists()) {
  8170     if(CMSTestInFreeList) {
  8171       FreeChunk* fc = (FreeChunk*) chunk;
  8172       fc->setSize(size);
  8173       assert(!_sp->verifyChunkInFreeLists(fc),
  8174         "chunk should not be in free lists yet");
  8176     if (CMSTraceSweeper) {
  8177       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  8178                     chunk, size);
  8180     // A new free range is going to be starting.  The current
  8181     // free range has not been added to the free lists yet or
  8182     // was removed so add it back.
  8183     // If the current free range was coalesced, then the death
  8184     // of the free range was recorded.  Record a birth now.
  8185     if (lastFreeRangeCoalesced()) {
  8186       _sp->coalBirth(size);
  8188     _sp->addChunkAndRepairOffsetTable(chunk, size,
  8189             lastFreeRangeCoalesced());
  8191   set_inFreeRange(false);
  8192   set_freeRangeInFreeLists(false);
  8195 // We take a break if we've been at this for a while,
  8196 // so as to avoid monopolizing the locks involved.
  8197 void SweepClosure::do_yield_work(HeapWord* addr) {
  8198   // Return current free chunk being used for coalescing (if any)
  8199   // to the appropriate freelist.  After yielding, the next
  8200   // free block encountered will start a coalescing range of
  8201   // free blocks.  If the next free block is adjacent to the
  8202   // chunk just flushed, they will need to wait for the next
  8203   // sweep to be coalesced.
  8204   if (inFreeRange()) {
  8205     flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8208   // First give up the locks, then yield, then re-lock.
  8209   // We should probably use a constructor/destructor idiom to
  8210   // do this unlock/lock or modify the MutexUnlocker class to
  8211   // serve our purpose. XXX
  8212   assert_lock_strong(_bitMap->lock());
  8213   assert_lock_strong(_freelistLock);
  8214   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8215          "CMS thread should hold CMS token");
  8216   _bitMap->lock()->unlock();
  8217   _freelistLock->unlock();
  8218   ConcurrentMarkSweepThread::desynchronize(true);
  8219   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8220   _collector->stopTimer();
  8221   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8222   if (PrintCMSStatistics != 0) {
  8223     _collector->incrementYields();
  8225   _collector->icms_wait();
  8227   // See the comment in coordinator_yield()
  8228   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8229                        ConcurrentMarkSweepThread::should_yield() &&
  8230                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8231     os::sleep(Thread::current(), 1, false);
  8232     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8235   ConcurrentMarkSweepThread::synchronize(true);
  8236   _freelistLock->lock();
  8237   _bitMap->lock()->lock_without_safepoint_check();
  8238   _collector->startTimer();
  8241 #ifndef PRODUCT
  8242 // This is actually very useful in a product build if it can
  8243 // be called from the debugger.  Compile it into the product
  8244 // as needed.
  8245 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
  8246   return debug_cms_space->verifyChunkInFreeLists(fc);
  8249 void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
  8250   if (CMSTraceSweeper) {
  8251     gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
  8254 #endif
  8256 // CMSIsAliveClosure
  8257 bool CMSIsAliveClosure::do_object_b(oop obj) {
  8258   HeapWord* addr = (HeapWord*)obj;
  8259   return addr != NULL &&
  8260          (!_span.contains(addr) || _bit_map->isMarked(addr));
  8263 // CMSKeepAliveClosure: the serial version
  8264 void CMSKeepAliveClosure::do_oop(oop obj) {
  8265   HeapWord* addr = (HeapWord*)obj;
  8266   if (_span.contains(addr) &&
  8267       !_bit_map->isMarked(addr)) {
  8268     _bit_map->mark(addr);
  8269     bool simulate_overflow = false;
  8270     NOT_PRODUCT(
  8271       if (CMSMarkStackOverflowALot &&
  8272           _collector->simulate_overflow()) {
  8273         // simulate a stack overflow
  8274         simulate_overflow = true;
  8277     if (simulate_overflow || !_mark_stack->push(obj)) {
  8278       _collector->push_on_overflow_list(obj);
  8279       _collector->_ser_kac_ovflw++;
  8284 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
  8285 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
  8287 // CMSParKeepAliveClosure: a parallel version of the above.
  8288 // The work queues are private to each closure (thread),
  8289 // but (may be) available for stealing by other threads.
  8290 void CMSParKeepAliveClosure::do_oop(oop obj) {
  8291   HeapWord* addr = (HeapWord*)obj;
  8292   if (_span.contains(addr) &&
  8293       !_bit_map->isMarked(addr)) {
  8294     // In general, during recursive tracing, several threads
  8295     // may be concurrently getting here; the first one to
  8296     // "tag" it, claims it.
  8297     if (_bit_map->par_mark(addr)) {
  8298       bool res = _work_queue->push(obj);
  8299       assert(res, "Low water mark should be much less than capacity");
  8300       // Do a recursive trim in the hope that this will keep
  8301       // stack usage lower, but leave some oops for potential stealers
  8302       trim_queue(_low_water_mark);
  8303     } // Else, another thread got there first
  8307 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
  8308 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
  8310 void CMSParKeepAliveClosure::trim_queue(uint max) {
  8311   while (_work_queue->size() > max) {
  8312     oop new_oop;
  8313     if (_work_queue->pop_local(new_oop)) {
  8314       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  8315       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8316              "no white objects on this stack!");
  8317       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8318       // iterate over the oops in this oop, marking and pushing
  8319       // the ones in CMS heap (i.e. in _span).
  8320       new_oop->oop_iterate(&_mark_and_push);
  8325 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
  8326   HeapWord* addr = (HeapWord*)obj;
  8327   if (_span.contains(addr) &&
  8328       !_bit_map->isMarked(addr)) {
  8329     if (_bit_map->par_mark(addr)) {
  8330       bool simulate_overflow = false;
  8331       NOT_PRODUCT(
  8332         if (CMSMarkStackOverflowALot &&
  8333             _collector->par_simulate_overflow()) {
  8334           // simulate a stack overflow
  8335           simulate_overflow = true;
  8338       if (simulate_overflow || !_work_queue->push(obj)) {
  8339         _collector->par_push_on_overflow_list(obj);
  8340         _collector->_par_kac_ovflw++;
  8342     } // Else another thread got there already
  8346 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8347 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8349 //////////////////////////////////////////////////////////////////
  8350 //  CMSExpansionCause                /////////////////////////////
  8351 //////////////////////////////////////////////////////////////////
  8352 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  8353   switch (cause) {
  8354     case _no_expansion:
  8355       return "No expansion";
  8356     case _satisfy_free_ratio:
  8357       return "Free ratio";
  8358     case _satisfy_promotion:
  8359       return "Satisfy promotion";
  8360     case _satisfy_allocation:
  8361       return "allocation";
  8362     case _allocate_par_lab:
  8363       return "Par LAB";
  8364     case _allocate_par_spooling_space:
  8365       return "Par Spooling Space";
  8366     case _adaptive_size_policy:
  8367       return "Ergonomics";
  8368     default:
  8369       return "unknown";
  8373 void CMSDrainMarkingStackClosure::do_void() {
  8374   // the max number to take from overflow list at a time
  8375   const size_t num = _mark_stack->capacity()/4;
  8376   while (!_mark_stack->isEmpty() ||
  8377          // if stack is empty, check the overflow list
  8378          _collector->take_from_overflow_list(num, _mark_stack)) {
  8379     oop obj = _mark_stack->pop();
  8380     HeapWord* addr = (HeapWord*)obj;
  8381     assert(_span.contains(addr), "Should be within span");
  8382     assert(_bit_map->isMarked(addr), "Should be marked");
  8383     assert(obj->is_oop(), "Should be an oop");
  8384     obj->oop_iterate(_keep_alive);
  8388 void CMSParDrainMarkingStackClosure::do_void() {
  8389   // drain queue
  8390   trim_queue(0);
  8393 // Trim our work_queue so its length is below max at return
  8394 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  8395   while (_work_queue->size() > max) {
  8396     oop new_oop;
  8397     if (_work_queue->pop_local(new_oop)) {
  8398       assert(new_oop->is_oop(), "Expected an oop");
  8399       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8400              "no white objects on this stack!");
  8401       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8402       // iterate over the oops in this oop, marking and pushing
  8403       // the ones in CMS heap (i.e. in _span).
  8404       new_oop->oop_iterate(&_mark_and_push);
  8409 ////////////////////////////////////////////////////////////////////
  8410 // Support for Marking Stack Overflow list handling and related code
  8411 ////////////////////////////////////////////////////////////////////
  8412 // Much of the following code is similar in shape and spirit to the
  8413 // code used in ParNewGC. We should try and share that code
  8414 // as much as possible in the future.
  8416 #ifndef PRODUCT
  8417 // Debugging support for CMSStackOverflowALot
  8419 // It's OK to call this multi-threaded;  the worst thing
  8420 // that can happen is that we'll get a bunch of closely
  8421 // spaced simulated oveflows, but that's OK, in fact
  8422 // probably good as it would exercise the overflow code
  8423 // under contention.
  8424 bool CMSCollector::simulate_overflow() {
  8425   if (_overflow_counter-- <= 0) { // just being defensive
  8426     _overflow_counter = CMSMarkStackOverflowInterval;
  8427     return true;
  8428   } else {
  8429     return false;
  8433 bool CMSCollector::par_simulate_overflow() {
  8434   return simulate_overflow();
  8436 #endif
  8438 // Single-threaded
  8439 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  8440   assert(stack->isEmpty(), "Expected precondition");
  8441   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  8442   size_t i = num;
  8443   oop  cur = _overflow_list;
  8444   const markOop proto = markOopDesc::prototype();
  8445   NOT_PRODUCT(size_t n = 0;)
  8446   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  8447     next = oop(cur->mark());
  8448     cur->set_mark(proto);   // until proven otherwise
  8449     assert(cur->is_oop(), "Should be an oop");
  8450     bool res = stack->push(cur);
  8451     assert(res, "Bit off more than can chew?");
  8452     NOT_PRODUCT(n++;)
  8454   _overflow_list = cur;
  8455 #ifndef PRODUCT
  8456   assert(_num_par_pushes >= n, "Too many pops?");
  8457   _num_par_pushes -=n;
  8458 #endif
  8459   return !stack->isEmpty();
  8462 // Multi-threaded; use CAS to break off a prefix
  8463 bool CMSCollector::par_take_from_overflow_list(size_t num,
  8464                                                OopTaskQueue* work_q) {
  8465   assert(work_q->size() == 0, "That's the current policy");
  8466   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  8467   if (_overflow_list == NULL) {
  8468     return false;
  8470   // Grab the entire list; we'll put back a suffix
  8471   oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);
  8472   if (prefix == NULL) {  // someone grabbed it before we did ...
  8473     // ... we could spin for a short while, but for now we don't
  8474     return false;
  8476   size_t i = num;
  8477   oop cur = prefix;
  8478   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  8479   if (cur->mark() != NULL) {
  8480     oop suffix_head = cur->mark(); // suffix will be put back on global list
  8481     cur->set_mark(NULL);           // break off suffix
  8482     // Find tail of suffix so we can prepend suffix to global list
  8483     for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  8484     oop suffix_tail = cur;
  8485     assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  8486            "Tautology");
  8487     oop observed_overflow_list = _overflow_list;
  8488     do {
  8489       cur = observed_overflow_list;
  8490       suffix_tail->set_mark(markOop(cur));
  8491       observed_overflow_list =
  8492         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur);
  8493     } while (cur != observed_overflow_list);
  8496   // Push the prefix elements on work_q
  8497   assert(prefix != NULL, "control point invariant");
  8498   const markOop proto = markOopDesc::prototype();
  8499   oop next;
  8500   NOT_PRODUCT(size_t n = 0;)
  8501   for (cur = prefix; cur != NULL; cur = next) {
  8502     next = oop(cur->mark());
  8503     cur->set_mark(proto);   // until proven otherwise
  8504     assert(cur->is_oop(), "Should be an oop");
  8505     bool res = work_q->push(cur);
  8506     assert(res, "Bit off more than we can chew?");
  8507     NOT_PRODUCT(n++;)
  8509 #ifndef PRODUCT
  8510   assert(_num_par_pushes >= n, "Too many pops?");
  8511   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  8512 #endif
  8513   return true;
  8516 // Single-threaded
  8517 void CMSCollector::push_on_overflow_list(oop p) {
  8518   NOT_PRODUCT(_num_par_pushes++;)
  8519   assert(p->is_oop(), "Not an oop");
  8520   preserve_mark_if_necessary(p);
  8521   p->set_mark((markOop)_overflow_list);
  8522   _overflow_list = p;
  8525 // Multi-threaded; use CAS to prepend to overflow list
  8526 void CMSCollector::par_push_on_overflow_list(oop p) {
  8527   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  8528   assert(p->is_oop(), "Not an oop");
  8529   par_preserve_mark_if_necessary(p);
  8530   oop observed_overflow_list = _overflow_list;
  8531   oop cur_overflow_list;
  8532   do {
  8533     cur_overflow_list = observed_overflow_list;
  8534     p->set_mark(markOop(cur_overflow_list));
  8535     observed_overflow_list =
  8536       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  8537   } while (cur_overflow_list != observed_overflow_list);
  8540 // Single threaded
  8541 // General Note on GrowableArray: pushes may silently fail
  8542 // because we are (temporarily) out of C-heap for expanding
  8543 // the stack. The problem is quite ubiquitous and affects
  8544 // a lot of code in the JVM. The prudent thing for GrowableArray
  8545 // to do (for now) is to exit with an error. However, that may
  8546 // be too draconian in some cases because the caller may be
  8547 // able to recover without much harm. For suych cases, we
  8548 // should probably introduce a "soft_push" method which returns
  8549 // an indication of success or failure with the assumption that
  8550 // the caller may be able to recover from a failure; code in
  8551 // the VM can then be changed, incrementally, to deal with such
  8552 // failures where possible, thus, incrementally hardening the VM
  8553 // in such low resource situations.
  8554 void CMSCollector::preserve_mark_work(oop p, markOop m) {
  8555   int PreserveMarkStackSize = 128;
  8557   if (_preserved_oop_stack == NULL) {
  8558     assert(_preserved_mark_stack == NULL,
  8559            "bijection with preserved_oop_stack");
  8560     // Allocate the stacks
  8561     _preserved_oop_stack  = new (ResourceObj::C_HEAP)
  8562       GrowableArray<oop>(PreserveMarkStackSize, true);
  8563     _preserved_mark_stack = new (ResourceObj::C_HEAP)
  8564       GrowableArray<markOop>(PreserveMarkStackSize, true);
  8565     if (_preserved_oop_stack == NULL || _preserved_mark_stack == NULL) {
  8566       vm_exit_out_of_memory(2* PreserveMarkStackSize * sizeof(oop) /* punt */,
  8567                             "Preserved Mark/Oop Stack for CMS (C-heap)");
  8570   _preserved_oop_stack->push(p);
  8571   _preserved_mark_stack->push(m);
  8572   assert(m == p->mark(), "Mark word changed");
  8573   assert(_preserved_oop_stack->length() == _preserved_mark_stack->length(),
  8574          "bijection");
  8577 // Single threaded
  8578 void CMSCollector::preserve_mark_if_necessary(oop p) {
  8579   markOop m = p->mark();
  8580   if (m->must_be_preserved(p)) {
  8581     preserve_mark_work(p, m);
  8585 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  8586   markOop m = p->mark();
  8587   if (m->must_be_preserved(p)) {
  8588     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  8589     // Even though we read the mark word without holding
  8590     // the lock, we are assured that it will not change
  8591     // because we "own" this oop, so no other thread can
  8592     // be trying to push it on the overflow list; see
  8593     // the assertion in preserve_mark_work() that checks
  8594     // that m == p->mark().
  8595     preserve_mark_work(p, m);
  8599 // We should be able to do this multi-threaded,
  8600 // a chunk of stack being a task (this is
  8601 // correct because each oop only ever appears
  8602 // once in the overflow list. However, it's
  8603 // not very easy to completely overlap this with
  8604 // other operations, so will generally not be done
  8605 // until all work's been completed. Because we
  8606 // expect the preserved oop stack (set) to be small,
  8607 // it's probably fine to do this single-threaded.
  8608 // We can explore cleverer concurrent/overlapped/parallel
  8609 // processing of preserved marks if we feel the
  8610 // need for this in the future. Stack overflow should
  8611 // be so rare in practice and, when it happens, its
  8612 // effect on performance so great that this will
  8613 // likely just be in the noise anyway.
  8614 void CMSCollector::restore_preserved_marks_if_any() {
  8615   if (_preserved_oop_stack == NULL) {
  8616     assert(_preserved_mark_stack == NULL,
  8617            "bijection with preserved_oop_stack");
  8618     return;
  8621   assert(SafepointSynchronize::is_at_safepoint(),
  8622          "world should be stopped");
  8623   assert(Thread::current()->is_ConcurrentGC_thread() ||
  8624          Thread::current()->is_VM_thread(),
  8625          "should be single-threaded");
  8627   int length = _preserved_oop_stack->length();
  8628   assert(_preserved_mark_stack->length() == length, "bijection");
  8629   for (int i = 0; i < length; i++) {
  8630     oop p = _preserved_oop_stack->at(i);
  8631     assert(p->is_oop(), "Should be an oop");
  8632     assert(_span.contains(p), "oop should be in _span");
  8633     assert(p->mark() == markOopDesc::prototype(),
  8634            "Set when taken from overflow list");
  8635     markOop m = _preserved_mark_stack->at(i);
  8636     p->set_mark(m);
  8638   _preserved_mark_stack->clear();
  8639   _preserved_oop_stack->clear();
  8640   assert(_preserved_mark_stack->is_empty() &&
  8641          _preserved_oop_stack->is_empty(),
  8642          "stacks were cleared above");
  8645 #ifndef PRODUCT
  8646 bool CMSCollector::no_preserved_marks() const {
  8647   return (   (   _preserved_mark_stack == NULL
  8648               && _preserved_oop_stack == NULL)
  8649           || (   _preserved_mark_stack->is_empty()
  8650               && _preserved_oop_stack->is_empty()));
  8652 #endif
  8654 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  8656   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8657   CMSAdaptiveSizePolicy* size_policy =
  8658     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  8659   assert(size_policy->is_gc_cms_adaptive_size_policy(),
  8660     "Wrong type for size policy");
  8661   return size_policy;
  8664 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  8665                                            size_t desired_promo_size) {
  8666   if (cur_promo_size < desired_promo_size) {
  8667     size_t expand_bytes = desired_promo_size - cur_promo_size;
  8668     if (PrintAdaptiveSizePolicy && Verbose) {
  8669       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8670         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  8671         expand_bytes);
  8673     expand(expand_bytes,
  8674            MinHeapDeltaBytes,
  8675            CMSExpansionCause::_adaptive_size_policy);
  8676   } else if (desired_promo_size < cur_promo_size) {
  8677     size_t shrink_bytes = cur_promo_size - desired_promo_size;
  8678     if (PrintAdaptiveSizePolicy && Verbose) {
  8679       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8680         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  8681         shrink_bytes);
  8683     shrink(shrink_bytes);
  8687 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  8688   GenCollectedHeap* gch = GenCollectedHeap::heap();
  8689   CMSGCAdaptivePolicyCounters* counters =
  8690     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  8691   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  8692     "Wrong kind of counters");
  8693   return counters;
  8697 void ASConcurrentMarkSweepGeneration::update_counters() {
  8698   if (UsePerfData) {
  8699     _space_counters->update_all();
  8700     _gen_counters->update_all();
  8701     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8702     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8703     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8704     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8705       "Wrong gc statistics type");
  8706     counters->update_counters(gc_stats_l);
  8710 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  8711   if (UsePerfData) {
  8712     _space_counters->update_used(used);
  8713     _space_counters->update_capacity();
  8714     _gen_counters->update_all();
  8716     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8717     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8718     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8719     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8720       "Wrong gc statistics type");
  8721     counters->update_counters(gc_stats_l);
  8725 // The desired expansion delta is computed so that:
  8726 // . desired free percentage or greater is used
  8727 void ASConcurrentMarkSweepGeneration::compute_new_size() {
  8728   assert_locked_or_safepoint(Heap_lock);
  8730   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8732   // If incremental collection failed, we just want to expand
  8733   // to the limit.
  8734   if (incremental_collection_failed()) {
  8735     clear_incremental_collection_failed();
  8736     grow_to_reserved();
  8737     return;
  8740   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
  8742   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  8743     "Wrong type of heap");
  8744   int prev_level = level() - 1;
  8745   assert(prev_level >= 0, "The cms generation is the lowest generation");
  8746   Generation* prev_gen = gch->get_gen(prev_level);
  8747   assert(prev_gen->kind() == Generation::ASParNew,
  8748     "Wrong type of young generation");
  8749   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
  8750   size_t cur_eden = younger_gen->eden()->capacity();
  8751   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
  8752   size_t cur_promo = free();
  8753   size_policy->compute_tenured_generation_free_space(cur_promo,
  8754                                                        max_available(),
  8755                                                        cur_eden);
  8756   resize(cur_promo, size_policy->promo_size());
  8758   // Record the new size of the space in the cms generation
  8759   // that is available for promotions.  This is temporary.
  8760   // It should be the desired promo size.
  8761   size_policy->avg_cms_promo()->sample(free());
  8762   size_policy->avg_old_live()->sample(used());
  8764   if (UsePerfData) {
  8765     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8766     counters->update_cms_capacity_counter(capacity());
  8770 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  8771   assert_locked_or_safepoint(Heap_lock);
  8772   assert_lock_strong(freelistLock());
  8773   HeapWord* old_end = _cmsSpace->end();
  8774   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  8775   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  8776   FreeChunk* chunk_at_end = find_chunk_at_end();
  8777   if (chunk_at_end == NULL) {
  8778     // No room to shrink
  8779     if (PrintGCDetails && Verbose) {
  8780       gclog_or_tty->print_cr("No room to shrink: old_end  "
  8781         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  8782         " chunk_at_end  " PTR_FORMAT,
  8783         old_end, unallocated_start, chunk_at_end);
  8785     return;
  8786   } else {
  8788     // Find the chunk at the end of the space and determine
  8789     // how much it can be shrunk.
  8790     size_t shrinkable_size_in_bytes = chunk_at_end->size();
  8791     size_t aligned_shrinkable_size_in_bytes =
  8792       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  8793     assert(unallocated_start <= chunk_at_end->end(),
  8794       "Inconsistent chunk at end of space");
  8795     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  8796     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  8798     // Shrink the underlying space
  8799     _virtual_space.shrink_by(bytes);
  8800     if (PrintGCDetails && Verbose) {
  8801       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  8802         " desired_bytes " SIZE_FORMAT
  8803         " shrinkable_size_in_bytes " SIZE_FORMAT
  8804         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  8805         "  bytes  " SIZE_FORMAT,
  8806         desired_bytes, shrinkable_size_in_bytes,
  8807         aligned_shrinkable_size_in_bytes, bytes);
  8808       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  8809         "  unallocated_start  " SIZE_FORMAT,
  8810         old_end, unallocated_start);
  8813     // If the space did shrink (shrinking is not guaranteed),
  8814     // shrink the chunk at the end by the appropriate amount.
  8815     if (((HeapWord*)_virtual_space.high()) < old_end) {
  8816       size_t new_word_size =
  8817         heap_word_size(_virtual_space.committed_size());
  8819       // Have to remove the chunk from the dictionary because it is changing
  8820       // size and might be someplace elsewhere in the dictionary.
  8822       // Get the chunk at end, shrink it, and put it
  8823       // back.
  8824       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  8825       size_t word_size_change = word_size_before - new_word_size;
  8826       size_t chunk_at_end_old_size = chunk_at_end->size();
  8827       assert(chunk_at_end_old_size >= word_size_change,
  8828         "Shrink is too large");
  8829       chunk_at_end->setSize(chunk_at_end_old_size -
  8830                           word_size_change);
  8831       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  8832         word_size_change);
  8834       _cmsSpace->returnChunkToDictionary(chunk_at_end);
  8836       MemRegion mr(_cmsSpace->bottom(), new_word_size);
  8837       _bts->resize(new_word_size);  // resize the block offset shared array
  8838       Universe::heap()->barrier_set()->resize_covered_region(mr);
  8839       _cmsSpace->assert_locked();
  8840       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  8842       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  8844       // update the space and generation capacity counters
  8845       if (UsePerfData) {
  8846         _space_counters->update_capacity();
  8847         _gen_counters->update_all();
  8850       if (Verbose && PrintGCDetails) {
  8851         size_t new_mem_size = _virtual_space.committed_size();
  8852         size_t old_mem_size = new_mem_size + bytes;
  8853         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
  8854                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
  8858     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  8859       "Inconsistency at end of space");
  8860     assert(chunk_at_end->end() == _cmsSpace->end(),
  8861       "Shrinking is inconsistent");
  8862     return;
  8866 // Transfer some number of overflown objects to usual marking
  8867 // stack. Return true if some objects were transferred.
  8868 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  8869   size_t num = MIN2((size_t)_mark_stack->capacity()/4,
  8870                     (size_t)ParGCDesiredObjsFromOverflowList);
  8872   bool res = _collector->take_from_overflow_list(num, _mark_stack);
  8873   assert(_collector->overflow_list_is_empty() || res,
  8874          "If list is not empty, we should have taken something");
  8875   assert(!res || !_mark_stack->isEmpty(),
  8876          "If we took something, it should now be on our stack");
  8877   return res;
  8880 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  8881   size_t res = _sp->block_size_no_stall(addr, _collector);
  8882   assert(res != 0, "Should always be able to compute a size");
  8883   if (_sp->block_is_obj(addr)) {
  8884     if (_live_bit_map->isMarked(addr)) {
  8885       // It can't have been dead in a previous cycle
  8886       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  8887     } else {
  8888       _dead_bit_map->mark(addr);      // mark the dead object
  8891   return res;

mercurial