src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

Thu, 05 Jun 2008 15:57:56 -0700

author
ysr
date
Thu, 05 Jun 2008 15:57:56 -0700
changeset 777
37f87013dfd8
parent 578
b5489bb705c9
child 779
6aae2f9d0294
permissions
-rw-r--r--

6711316: Open source the Garbage-First garbage collector
Summary: First mercurial integration of the code for the Garbage-First garbage collector.
Reviewed-by: apetrusenko, iveresov, jmasa, sgoldman, tonyp, ysr

     1 /*
     2  * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_concurrentMarkSweepGeneration.cpp.incl"
    28 // statics
    29 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    30 bool          CMSCollector::_full_gc_requested          = false;
    32 //////////////////////////////////////////////////////////////////
    33 // In support of CMS/VM thread synchronization
    34 //////////////////////////////////////////////////////////////////
    35 // We split use of the CGC_lock into 2 "levels".
    36 // The low-level locking is of the usual CGC_lock monitor. We introduce
    37 // a higher level "token" (hereafter "CMS token") built on top of the
    38 // low level monitor (hereafter "CGC lock").
    39 // The token-passing protocol gives priority to the VM thread. The
    40 // CMS-lock doesn't provide any fairness guarantees, but clients
    41 // should ensure that it is only held for very short, bounded
    42 // durations.
    43 //
    44 // When either of the CMS thread or the VM thread is involved in
    45 // collection operations during which it does not want the other
    46 // thread to interfere, it obtains the CMS token.
    47 //
    48 // If either thread tries to get the token while the other has
    49 // it, that thread waits. However, if the VM thread and CMS thread
    50 // both want the token, then the VM thread gets priority while the
    51 // CMS thread waits. This ensures, for instance, that the "concurrent"
    52 // phases of the CMS thread's work do not block out the VM thread
    53 // for long periods of time as the CMS thread continues to hog
    54 // the token. (See bug 4616232).
    55 //
    56 // The baton-passing functions are, however, controlled by the
    57 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
    58 // and here the low-level CMS lock, not the high level token,
    59 // ensures mutual exclusion.
    60 //
    61 // Two important conditions that we have to satisfy:
    62 // 1. if a thread does a low-level wait on the CMS lock, then it
    63 //    relinquishes the CMS token if it were holding that token
    64 //    when it acquired the low-level CMS lock.
    65 // 2. any low-level notifications on the low-level lock
    66 //    should only be sent when a thread has relinquished the token.
    67 //
    68 // In the absence of either property, we'd have potential deadlock.
    69 //
    70 // We protect each of the CMS (concurrent and sequential) phases
    71 // with the CMS _token_, not the CMS _lock_.
    72 //
    73 // The only code protected by CMS lock is the token acquisition code
    74 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
    75 // baton-passing code.
    76 //
    77 // Unfortunately, i couldn't come up with a good abstraction to factor and
    78 // hide the naked CGC_lock manipulation in the baton-passing code
    79 // further below. That's something we should try to do. Also, the proof
    80 // of correctness of this 2-level locking scheme is far from obvious,
    81 // and potentially quite slippery. We have an uneasy supsicion, for instance,
    82 // that there may be a theoretical possibility of delay/starvation in the
    83 // low-level lock/wait/notify scheme used for the baton-passing because of
    84 // potential intereference with the priority scheme embodied in the
    85 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
    86 // invocation further below and marked with "XXX 20011219YSR".
    87 // Indeed, as we note elsewhere, this may become yet more slippery
    88 // in the presence of multiple CMS and/or multiple VM threads. XXX
    90 class CMSTokenSync: public StackObj {
    91  private:
    92   bool _is_cms_thread;
    93  public:
    94   CMSTokenSync(bool is_cms_thread):
    95     _is_cms_thread(is_cms_thread) {
    96     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
    97            "Incorrect argument to constructor");
    98     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
    99   }
   101   ~CMSTokenSync() {
   102     assert(_is_cms_thread ?
   103              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   104              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   105           "Incorrect state");
   106     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   107   }
   108 };
   110 // Convenience class that does a CMSTokenSync, and then acquires
   111 // upto three locks.
   112 class CMSTokenSyncWithLocks: public CMSTokenSync {
   113  private:
   114   // Note: locks are acquired in textual declaration order
   115   // and released in the opposite order
   116   MutexLockerEx _locker1, _locker2, _locker3;
   117  public:
   118   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   119                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   120     CMSTokenSync(is_cms_thread),
   121     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   122     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   123     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   124   { }
   125 };
   128 // Wrapper class to temporarily disable icms during a foreground cms collection.
   129 class ICMSDisabler: public StackObj {
   130  public:
   131   // The ctor disables icms and wakes up the thread so it notices the change;
   132   // the dtor re-enables icms.  Note that the CMSCollector methods will check
   133   // CMSIncrementalMode.
   134   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   135   ~ICMSDisabler() { CMSCollector::enable_icms(); }
   136 };
   138 //////////////////////////////////////////////////////////////////
   139 //  Concurrent Mark-Sweep Generation /////////////////////////////
   140 //////////////////////////////////////////////////////////////////
   142 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   144 // This struct contains per-thread things necessary to support parallel
   145 // young-gen collection.
   146 class CMSParGCThreadState: public CHeapObj {
   147  public:
   148   CFLS_LAB lab;
   149   PromotionInfo promo;
   151   // Constructor.
   152   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   153     promo.setSpace(cfls);
   154   }
   155 };
   157 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   158      ReservedSpace rs, size_t initial_byte_size, int level,
   159      CardTableRS* ct, bool use_adaptive_freelists,
   160      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
   161   CardGeneration(rs, initial_byte_size, level, ct),
   162   _dilatation_factor(((double)MinChunkSize)/((double)(oopDesc::header_size()))),
   163   _debug_collection_type(Concurrent_collection_type)
   164 {
   165   HeapWord* bottom = (HeapWord*) _virtual_space.low();
   166   HeapWord* end    = (HeapWord*) _virtual_space.high();
   168   _direct_allocated_words = 0;
   169   NOT_PRODUCT(
   170     _numObjectsPromoted = 0;
   171     _numWordsPromoted = 0;
   172     _numObjectsAllocated = 0;
   173     _numWordsAllocated = 0;
   174   )
   176   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   177                                            use_adaptive_freelists,
   178                                            dictionaryChoice);
   179   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   180   if (_cmsSpace == NULL) {
   181     vm_exit_during_initialization(
   182       "CompactibleFreeListSpace allocation failure");
   183   }
   184   _cmsSpace->_gen = this;
   186   _gc_stats = new CMSGCStats();
   188   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   189   // offsets match. The ability to tell free chunks from objects
   190   // depends on this property.
   191   debug_only(
   192     FreeChunk* junk = NULL;
   193     assert(junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   194            "Offset of FreeChunk::_prev within FreeChunk must match"
   195            "  that of OopDesc::_klass within OopDesc");
   196   )
   197   if (ParallelGCThreads > 0) {
   198     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   199     _par_gc_thread_states =
   200       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
   201     if (_par_gc_thread_states == NULL) {
   202       vm_exit_during_initialization("Could not allocate par gc structs");
   203     }
   204     for (uint i = 0; i < ParallelGCThreads; i++) {
   205       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   206       if (_par_gc_thread_states[i] == NULL) {
   207         vm_exit_during_initialization("Could not allocate par gc structs");
   208       }
   209     }
   210   } else {
   211     _par_gc_thread_states = NULL;
   212   }
   213   _incremental_collection_failed = false;
   214   // The "dilatation_factor" is the expansion that can occur on
   215   // account of the fact that the minimum object size in the CMS
   216   // generation may be larger than that in, say, a contiguous young
   217   //  generation.
   218   // Ideally, in the calculation below, we'd compute the dilatation
   219   // factor as: MinChunkSize/(promoting_gen's min object size)
   220   // Since we do not have such a general query interface for the
   221   // promoting generation, we'll instead just use the mimimum
   222   // object size (which today is a header's worth of space);
   223   // note that all arithmetic is in units of HeapWords.
   224   assert(MinChunkSize >= oopDesc::header_size(), "just checking");
   225   assert(_dilatation_factor >= 1.0, "from previous assert");
   226 }
   229 // The field "_initiating_occupancy" represents the occupancy percentage
   230 // at which we trigger a new collection cycle.  Unless explicitly specified
   231 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
   232 // is calculated by:
   233 //
   234 //   Let "f" be MinHeapFreeRatio in
   235 //
   236 //    _intiating_occupancy = 100-f +
   237 //                           f * (CMSTrigger[Perm]Ratio/100)
   238 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
   239 //
   240 // That is, if we assume the heap is at its desired maximum occupancy at the
   241 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
   242 // space be allocated before initiating a new collection cycle.
   243 //
   244 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
   245   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
   246   if (io >= 0) {
   247     _initiating_occupancy = (double)io / 100.0;
   248   } else {
   249     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
   250                              (double)(tr * MinHeapFreeRatio) / 100.0)
   251                             / 100.0;
   252   }
   253 }
   256 void ConcurrentMarkSweepGeneration::ref_processor_init() {
   257   assert(collector() != NULL, "no collector");
   258   collector()->ref_processor_init();
   259 }
   261 void CMSCollector::ref_processor_init() {
   262   if (_ref_processor == NULL) {
   263     // Allocate and initialize a reference processor
   264     _ref_processor = ReferenceProcessor::create_ref_processor(
   265         _span,                               // span
   266         _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
   267         _cmsGen->refs_discovery_is_mt(),     // mt_discovery
   268         &_is_alive_closure,
   269         ParallelGCThreads,
   270         ParallelRefProcEnabled);
   271     // Initialize the _ref_processor field of CMSGen
   272     _cmsGen->set_ref_processor(_ref_processor);
   274     // Allocate a dummy ref processor for perm gen.
   275     ReferenceProcessor* rp2 = new ReferenceProcessor();
   276     if (rp2 == NULL) {
   277       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   278     }
   279     _permGen->set_ref_processor(rp2);
   280   }
   281 }
   283 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   284   GenCollectedHeap* gch = GenCollectedHeap::heap();
   285   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   286     "Wrong type of heap");
   287   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   288     gch->gen_policy()->size_policy();
   289   assert(sp->is_gc_cms_adaptive_size_policy(),
   290     "Wrong type of size policy");
   291   return sp;
   292 }
   294 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   295   CMSGCAdaptivePolicyCounters* results =
   296     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   297   assert(
   298     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   299     "Wrong gc policy counter kind");
   300   return results;
   301 }
   304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   306   const char* gen_name = "old";
   308   // Generation Counters - generation 1, 1 subspace
   309   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   311   _space_counters = new GSpaceCounters(gen_name, 0,
   312                                        _virtual_space.reserved_size(),
   313                                        this, _gen_counters);
   314 }
   316 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   317   _cms_gen(cms_gen)
   318 {
   319   assert(alpha <= 100, "bad value");
   320   _saved_alpha = alpha;
   322   // Initialize the alphas to the bootstrap value of 100.
   323   _gc0_alpha = _cms_alpha = 100;
   325   _cms_begin_time.update();
   326   _cms_end_time.update();
   328   _gc0_duration = 0.0;
   329   _gc0_period = 0.0;
   330   _gc0_promoted = 0;
   332   _cms_duration = 0.0;
   333   _cms_period = 0.0;
   334   _cms_allocated = 0;
   336   _cms_used_at_gc0_begin = 0;
   337   _cms_used_at_gc0_end = 0;
   338   _allow_duty_cycle_reduction = false;
   339   _valid_bits = 0;
   340   _icms_duty_cycle = CMSIncrementalDutyCycle;
   341 }
   343 // If promotion failure handling is on use
   344 // the padded average size of the promotion for each
   345 // young generation collection.
   346 double CMSStats::time_until_cms_gen_full() const {
   347   size_t cms_free = _cms_gen->cmsSpace()->free();
   348   GenCollectedHeap* gch = GenCollectedHeap::heap();
   349   size_t expected_promotion = gch->get_gen(0)->capacity();
   350   if (HandlePromotionFailure) {
   351     expected_promotion = MIN2(
   352         (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average(),
   353         expected_promotion);
   354   }
   355   if (cms_free > expected_promotion) {
   356     // Start a cms collection if there isn't enough space to promote
   357     // for the next minor collection.  Use the padded average as
   358     // a safety factor.
   359     cms_free -= expected_promotion;
   361     // Adjust by the safety factor.
   362     double cms_free_dbl = (double)cms_free;
   363     cms_free_dbl = cms_free_dbl * (100.0 - CMSIncrementalSafetyFactor) / 100.0;
   365     if (PrintGCDetails && Verbose) {
   366       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   367         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   368         cms_free, expected_promotion);
   369       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   370         cms_free_dbl, cms_consumption_rate() + 1.0);
   371     }
   372     // Add 1 in case the consumption rate goes to zero.
   373     return cms_free_dbl / (cms_consumption_rate() + 1.0);
   374   }
   375   return 0.0;
   376 }
   378 // Compare the duration of the cms collection to the
   379 // time remaining before the cms generation is empty.
   380 // Note that the time from the start of the cms collection
   381 // to the start of the cms sweep (less than the total
   382 // duration of the cms collection) can be used.  This
   383 // has been tried and some applications experienced
   384 // promotion failures early in execution.  This was
   385 // possibly because the averages were not accurate
   386 // enough at the beginning.
   387 double CMSStats::time_until_cms_start() const {
   388   // We add "gc0_period" to the "work" calculation
   389   // below because this query is done (mostly) at the
   390   // end of a scavenge, so we need to conservatively
   391   // account for that much possible delay
   392   // in the query so as to avoid concurrent mode failures
   393   // due to starting the collection just a wee bit too
   394   // late.
   395   double work = cms_duration() + gc0_period();
   396   double deadline = time_until_cms_gen_full();
   397   if (work > deadline) {
   398     if (Verbose && PrintGCDetails) {
   399       gclog_or_tty->print(
   400         " CMSCollector: collect because of anticipated promotion "
   401         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   402         gc0_period(), time_until_cms_gen_full());
   403     }
   404     return 0.0;
   405   }
   406   return work - deadline;
   407 }
   409 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   410 // amount of change to prevent wild oscillation.
   411 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   412                                               unsigned int new_duty_cycle) {
   413   assert(old_duty_cycle <= 100, "bad input value");
   414   assert(new_duty_cycle <= 100, "bad input value");
   416   // Note:  use subtraction with caution since it may underflow (values are
   417   // unsigned).  Addition is safe since we're in the range 0-100.
   418   unsigned int damped_duty_cycle = new_duty_cycle;
   419   if (new_duty_cycle < old_duty_cycle) {
   420     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   421     if (new_duty_cycle + largest_delta < old_duty_cycle) {
   422       damped_duty_cycle = old_duty_cycle - largest_delta;
   423     }
   424   } else if (new_duty_cycle > old_duty_cycle) {
   425     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   426     if (new_duty_cycle > old_duty_cycle + largest_delta) {
   427       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   428     }
   429   }
   430   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   432   if (CMSTraceIncrementalPacing) {
   433     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   434                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   435   }
   436   return damped_duty_cycle;
   437 }
   439 unsigned int CMSStats::icms_update_duty_cycle_impl() {
   440   assert(CMSIncrementalPacing && valid(),
   441          "should be handled in icms_update_duty_cycle()");
   443   double cms_time_so_far = cms_timer().seconds();
   444   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   445   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   447   // Avoid division by 0.
   448   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   449   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   451   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   452   if (new_duty_cycle > _icms_duty_cycle) {
   453     // Avoid very small duty cycles (1 or 2); 0 is allowed.
   454     if (new_duty_cycle > 2) {
   455       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   456                                                 new_duty_cycle);
   457     }
   458   } else if (_allow_duty_cycle_reduction) {
   459     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   460     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   461     // Respect the minimum duty cycle.
   462     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   463     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   464   }
   466   if (PrintGCDetails || CMSTraceIncrementalPacing) {
   467     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   468   }
   470   _allow_duty_cycle_reduction = false;
   471   return _icms_duty_cycle;
   472 }
   474 #ifndef PRODUCT
   475 void CMSStats::print_on(outputStream *st) const {
   476   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   477   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   478                gc0_duration(), gc0_period(), gc0_promoted());
   479   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   480             cms_duration(), cms_duration_per_mb(),
   481             cms_period(), cms_allocated());
   482   st->print(",cms_since_beg=%g,cms_since_end=%g",
   483             cms_time_since_begin(), cms_time_since_end());
   484   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   485             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   486   if (CMSIncrementalMode) {
   487     st->print(",dc=%d", icms_duty_cycle());
   488   }
   490   if (valid()) {
   491     st->print(",promo_rate=%g,cms_alloc_rate=%g",
   492               promotion_rate(), cms_allocation_rate());
   493     st->print(",cms_consumption_rate=%g,time_until_full=%g",
   494               cms_consumption_rate(), time_until_cms_gen_full());
   495   }
   496   st->print(" ");
   497 }
   498 #endif // #ifndef PRODUCT
   500 CMSCollector::CollectorState CMSCollector::_collectorState =
   501                              CMSCollector::Idling;
   502 bool CMSCollector::_foregroundGCIsActive = false;
   503 bool CMSCollector::_foregroundGCShouldWait = false;
   505 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   506                            ConcurrentMarkSweepGeneration* permGen,
   507                            CardTableRS*                   ct,
   508                            ConcurrentMarkSweepPolicy*     cp):
   509   _cmsGen(cmsGen),
   510   _permGen(permGen),
   511   _ct(ct),
   512   _ref_processor(NULL),    // will be set later
   513   _conc_workers(NULL),     // may be set later
   514   _abort_preclean(false),
   515   _start_sampling(false),
   516   _between_prologue_and_epilogue(false),
   517   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   518   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
   519   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   520                  -1 /* lock-free */, "No_lock" /* dummy */),
   521   _modUnionClosure(&_modUnionTable),
   522   _modUnionClosurePar(&_modUnionTable),
   523   // Adjust my span to cover old (cms) gen and perm gen
   524   _span(cmsGen->reserved()._union(permGen->reserved())),
   525   // Construct the is_alive_closure with _span & markBitMap
   526   _is_alive_closure(_span, &_markBitMap),
   527   _restart_addr(NULL),
   528   _overflow_list(NULL),
   529   _preserved_oop_stack(NULL),
   530   _preserved_mark_stack(NULL),
   531   _stats(cmsGen),
   532   _eden_chunk_array(NULL),     // may be set in ctor body
   533   _eden_chunk_capacity(0),     // -- ditto --
   534   _eden_chunk_index(0),        // -- ditto --
   535   _survivor_plab_array(NULL),  // -- ditto --
   536   _survivor_chunk_array(NULL), // -- ditto --
   537   _survivor_chunk_capacity(0), // -- ditto --
   538   _survivor_chunk_index(0),    // -- ditto --
   539   _ser_pmc_preclean_ovflw(0),
   540   _ser_pmc_remark_ovflw(0),
   541   _par_pmc_remark_ovflw(0),
   542   _ser_kac_ovflw(0),
   543   _par_kac_ovflw(0),
   544 #ifndef PRODUCT
   545   _num_par_pushes(0),
   546 #endif
   547   _collection_count_start(0),
   548   _verifying(false),
   549   _icms_start_limit(NULL),
   550   _icms_stop_limit(NULL),
   551   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   552   _completed_initialization(false),
   553   _collector_policy(cp),
   554   _should_unload_classes(false),
   555   _concurrent_cycles_since_last_unload(0),
   556   _sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
   557 {
   558   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   559     ExplicitGCInvokesConcurrent = true;
   560   }
   561   // Now expand the span and allocate the collection support structures
   562   // (MUT, marking bit map etc.) to cover both generations subject to
   563   // collection.
   565   // First check that _permGen is adjacent to _cmsGen and above it.
   566   assert(   _cmsGen->reserved().word_size()  > 0
   567          && _permGen->reserved().word_size() > 0,
   568          "generations should not be of zero size");
   569   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
   570          "_cmsGen and _permGen should not overlap");
   571   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
   572          "_cmsGen->end() different from _permGen->start()");
   574   // For use by dirty card to oop closures.
   575   _cmsGen->cmsSpace()->set_collector(this);
   576   _permGen->cmsSpace()->set_collector(this);
   578   // Allocate MUT and marking bit map
   579   {
   580     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   581     if (!_markBitMap.allocate(_span)) {
   582       warning("Failed to allocate CMS Bit Map");
   583       return;
   584     }
   585     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   586   }
   587   {
   588     _modUnionTable.allocate(_span);
   589     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   590   }
   592   if (!_markStack.allocate(CMSMarkStackSize)) {
   593     warning("Failed to allocate CMS Marking Stack");
   594     return;
   595   }
   596   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
   597     warning("Failed to allocate CMS Revisit Stack");
   598     return;
   599   }
   601   // Support for multi-threaded concurrent phases
   602   if (ParallelGCThreads > 0 && CMSConcurrentMTEnabled) {
   603     if (FLAG_IS_DEFAULT(ParallelCMSThreads)) {
   604       // just for now
   605       FLAG_SET_DEFAULT(ParallelCMSThreads, (ParallelGCThreads + 3)/4);
   606     }
   607     if (ParallelCMSThreads > 1) {
   608       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   609                                  ParallelCMSThreads, true);
   610       if (_conc_workers == NULL) {
   611         warning("GC/CMS: _conc_workers allocation failure: "
   612               "forcing -CMSConcurrentMTEnabled");
   613         CMSConcurrentMTEnabled = false;
   614       }
   615     } else {
   616       CMSConcurrentMTEnabled = false;
   617     }
   618   }
   619   if (!CMSConcurrentMTEnabled) {
   620     ParallelCMSThreads = 0;
   621   } else {
   622     // Turn off CMSCleanOnEnter optimization temporarily for
   623     // the MT case where it's not fixed yet; see 6178663.
   624     CMSCleanOnEnter = false;
   625   }
   626   assert((_conc_workers != NULL) == (ParallelCMSThreads > 1),
   627          "Inconsistency");
   629   // Parallel task queues; these are shared for the
   630   // concurrent and stop-world phases of CMS, but
   631   // are not shared with parallel scavenge (ParNew).
   632   {
   633     uint i;
   634     uint num_queues = (uint) MAX2(ParallelGCThreads, ParallelCMSThreads);
   636     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   637          || ParallelRefProcEnabled)
   638         && num_queues > 0) {
   639       _task_queues = new OopTaskQueueSet(num_queues);
   640       if (_task_queues == NULL) {
   641         warning("task_queues allocation failure.");
   642         return;
   643       }
   644       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
   645       if (_hash_seed == NULL) {
   646         warning("_hash_seed array allocation failure");
   647         return;
   648       }
   650       // XXX use a global constant instead of 64!
   651       typedef struct OopTaskQueuePadded {
   652         OopTaskQueue work_queue;
   653         char pad[64 - sizeof(OopTaskQueue)];  // prevent false sharing
   654       } OopTaskQueuePadded;
   656       for (i = 0; i < num_queues; i++) {
   657         OopTaskQueuePadded *q_padded = new OopTaskQueuePadded();
   658         if (q_padded == NULL) {
   659           warning("work_queue allocation failure.");
   660           return;
   661         }
   662         _task_queues->register_queue(i, &q_padded->work_queue);
   663       }
   664       for (i = 0; i < num_queues; i++) {
   665         _task_queues->queue(i)->initialize();
   666         _hash_seed[i] = 17;  // copied from ParNew
   667       }
   668     }
   669   }
   671   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
   672   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
   674   // Clip CMSBootstrapOccupancy between 0 and 100.
   675   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
   676                          /(double)100;
   678   _full_gcs_since_conc_gc = 0;
   680   // Now tell CMS generations the identity of their collector
   681   ConcurrentMarkSweepGeneration::set_collector(this);
   683   // Create & start a CMS thread for this CMS collector
   684   _cmsThread = ConcurrentMarkSweepThread::start(this);
   685   assert(cmsThread() != NULL, "CMS Thread should have been created");
   686   assert(cmsThread()->collector() == this,
   687          "CMS Thread should refer to this gen");
   688   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   690   // Support for parallelizing young gen rescan
   691   GenCollectedHeap* gch = GenCollectedHeap::heap();
   692   _young_gen = gch->prev_gen(_cmsGen);
   693   if (gch->supports_inline_contig_alloc()) {
   694     _top_addr = gch->top_addr();
   695     _end_addr = gch->end_addr();
   696     assert(_young_gen != NULL, "no _young_gen");
   697     _eden_chunk_index = 0;
   698     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   699     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
   700     if (_eden_chunk_array == NULL) {
   701       _eden_chunk_capacity = 0;
   702       warning("GC/CMS: _eden_chunk_array allocation failure");
   703     }
   704   }
   705   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   707   // Support for parallelizing survivor space rescan
   708   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
   709     size_t max_plab_samples = MaxNewSize/((SurvivorRatio+2)*MinTLABSize);
   710     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
   711     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
   712     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
   713     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   714         || _cursor == NULL) {
   715       warning("Failed to allocate survivor plab/chunk array");
   716       if (_survivor_plab_array  != NULL) {
   717         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   718         _survivor_plab_array = NULL;
   719       }
   720       if (_survivor_chunk_array != NULL) {
   721         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   722         _survivor_chunk_array = NULL;
   723       }
   724       if (_cursor != NULL) {
   725         FREE_C_HEAP_ARRAY(size_t, _cursor);
   726         _cursor = NULL;
   727       }
   728     } else {
   729       _survivor_chunk_capacity = 2*max_plab_samples;
   730       for (uint i = 0; i < ParallelGCThreads; i++) {
   731         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
   732         if (vec == NULL) {
   733           warning("Failed to allocate survivor plab array");
   734           for (int j = i; j > 0; j--) {
   735             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
   736           }
   737           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   738           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   739           _survivor_plab_array = NULL;
   740           _survivor_chunk_array = NULL;
   741           _survivor_chunk_capacity = 0;
   742           break;
   743         } else {
   744           ChunkArray* cur =
   745             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   746                                                         max_plab_samples);
   747           assert(cur->end() == 0, "Should be 0");
   748           assert(cur->array() == vec, "Should be vec");
   749           assert(cur->capacity() == max_plab_samples, "Error");
   750         }
   751       }
   752     }
   753   }
   754   assert(   (   _survivor_plab_array  != NULL
   755              && _survivor_chunk_array != NULL)
   756          || (   _survivor_chunk_capacity == 0
   757              && _survivor_chunk_index == 0),
   758          "Error");
   760   // Choose what strong roots should be scanned depending on verification options
   761   // and perm gen collection mode.
   762   if (!CMSClassUnloadingEnabled) {
   763     // If class unloading is disabled we want to include all classes into the root set.
   764     add_root_scanning_option(SharedHeap::SO_AllClasses);
   765   } else {
   766     add_root_scanning_option(SharedHeap::SO_SystemClasses);
   767   }
   769   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   770   _gc_counters = new CollectorCounters("CMS", 1);
   771   _completed_initialization = true;
   772   _sweep_timer.start();  // start of time
   773 }
   775 const char* ConcurrentMarkSweepGeneration::name() const {
   776   return "concurrent mark-sweep generation";
   777 }
   778 void ConcurrentMarkSweepGeneration::update_counters() {
   779   if (UsePerfData) {
   780     _space_counters->update_all();
   781     _gen_counters->update_all();
   782   }
   783 }
   785 // this is an optimized version of update_counters(). it takes the
   786 // used value as a parameter rather than computing it.
   787 //
   788 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   789   if (UsePerfData) {
   790     _space_counters->update_used(used);
   791     _space_counters->update_capacity();
   792     _gen_counters->update_all();
   793   }
   794 }
   796 void ConcurrentMarkSweepGeneration::print() const {
   797   Generation::print();
   798   cmsSpace()->print();
   799 }
   801 #ifndef PRODUCT
   802 void ConcurrentMarkSweepGeneration::print_statistics() {
   803   cmsSpace()->printFLCensus(0);
   804 }
   805 #endif
   807 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   808   GenCollectedHeap* gch = GenCollectedHeap::heap();
   809   if (PrintGCDetails) {
   810     if (Verbose) {
   811       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   812         level(), short_name(), s, used(), capacity());
   813     } else {
   814       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   815         level(), short_name(), s, used() / K, capacity() / K);
   816     }
   817   }
   818   if (Verbose) {
   819     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   820               gch->used(), gch->capacity());
   821   } else {
   822     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   823               gch->used() / K, gch->capacity() / K);
   824   }
   825 }
   827 size_t
   828 ConcurrentMarkSweepGeneration::contiguous_available() const {
   829   // dld proposes an improvement in precision here. If the committed
   830   // part of the space ends in a free block we should add that to
   831   // uncommitted size in the calculation below. Will make this
   832   // change later, staying with the approximation below for the
   833   // time being. -- ysr.
   834   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   835 }
   837 size_t
   838 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   839   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   840 }
   842 size_t ConcurrentMarkSweepGeneration::max_available() const {
   843   return free() + _virtual_space.uncommitted_size();
   844 }
   846 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(
   847     size_t max_promotion_in_bytes,
   848     bool younger_handles_promotion_failure) const {
   850   // This is the most conservative test.  Full promotion is
   851   // guaranteed if this is used. The multiplicative factor is to
   852   // account for the worst case "dilatation".
   853   double adjusted_max_promo_bytes = _dilatation_factor * max_promotion_in_bytes;
   854   if (adjusted_max_promo_bytes > (double)max_uintx) { // larger than size_t
   855     adjusted_max_promo_bytes = (double)max_uintx;
   856   }
   857   bool result = (max_contiguous_available() >= (size_t)adjusted_max_promo_bytes);
   859   if (younger_handles_promotion_failure && !result) {
   860     // Full promotion is not guaranteed because fragmentation
   861     // of the cms generation can prevent the full promotion.
   862     result = (max_available() >= (size_t)adjusted_max_promo_bytes);
   864     if (!result) {
   865       // With promotion failure handling the test for the ability
   866       // to support the promotion does not have to be guaranteed.
   867       // Use an average of the amount promoted.
   868       result = max_available() >= (size_t)
   869         gc_stats()->avg_promoted()->padded_average();
   870       if (PrintGC && Verbose && result) {
   871         gclog_or_tty->print_cr(
   872           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   873           " max_available: " SIZE_FORMAT
   874           " avg_promoted: " SIZE_FORMAT,
   875           max_available(), (size_t)
   876           gc_stats()->avg_promoted()->padded_average());
   877       }
   878     } else {
   879       if (PrintGC && Verbose) {
   880         gclog_or_tty->print_cr(
   881           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   882           " max_available: " SIZE_FORMAT
   883           " adj_max_promo_bytes: " SIZE_FORMAT,
   884           max_available(), (size_t)adjusted_max_promo_bytes);
   885       }
   886     }
   887   } else {
   888     if (PrintGC && Verbose) {
   889       gclog_or_tty->print_cr(
   890         "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   891         " contiguous_available: " SIZE_FORMAT
   892         " adj_max_promo_bytes: " SIZE_FORMAT,
   893         max_contiguous_available(), (size_t)adjusted_max_promo_bytes);
   894     }
   895   }
   896   return result;
   897 }
   899 CompactibleSpace*
   900 ConcurrentMarkSweepGeneration::first_compaction_space() const {
   901   return _cmsSpace;
   902 }
   904 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   905   // Clear the promotion information.  These pointers can be adjusted
   906   // along with all the other pointers into the heap but
   907   // compaction is expected to be a rare event with
   908   // a heap using cms so don't do it without seeing the need.
   909   if (ParallelGCThreads > 0) {
   910     for (uint i = 0; i < ParallelGCThreads; i++) {
   911       _par_gc_thread_states[i]->promo.reset();
   912     }
   913   }
   914 }
   916 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   917   blk->do_space(_cmsSpace);
   918 }
   920 void ConcurrentMarkSweepGeneration::compute_new_size() {
   921   assert_locked_or_safepoint(Heap_lock);
   923   // If incremental collection failed, we just want to expand
   924   // to the limit.
   925   if (incremental_collection_failed()) {
   926     clear_incremental_collection_failed();
   927     grow_to_reserved();
   928     return;
   929   }
   931   size_t expand_bytes = 0;
   932   double free_percentage = ((double) free()) / capacity();
   933   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   934   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   936   // compute expansion delta needed for reaching desired free percentage
   937   if (free_percentage < desired_free_percentage) {
   938     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   939     assert(desired_capacity >= capacity(), "invalid expansion size");
   940     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   941   }
   942   if (expand_bytes > 0) {
   943     if (PrintGCDetails && Verbose) {
   944       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   945       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   946       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   947       gclog_or_tty->print_cr("  Desired free fraction %f",
   948         desired_free_percentage);
   949       gclog_or_tty->print_cr("  Maximum free fraction %f",
   950         maximum_free_percentage);
   951       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   952       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   953         desired_capacity/1000);
   954       int prev_level = level() - 1;
   955       if (prev_level >= 0) {
   956         size_t prev_size = 0;
   957         GenCollectedHeap* gch = GenCollectedHeap::heap();
   958         Generation* prev_gen = gch->_gens[prev_level];
   959         prev_size = prev_gen->capacity();
   960           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   961                                  prev_size/1000);
   962       }
   963       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   964         unsafe_max_alloc_nogc()/1000);
   965       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
   966         contiguous_available()/1000);
   967       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
   968         expand_bytes);
   969     }
   970     // safe if expansion fails
   971     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
   972     if (PrintGCDetails && Verbose) {
   973       gclog_or_tty->print_cr("  Expanded free fraction %f",
   974         ((double) free()) / capacity());
   975     }
   976   }
   977 }
   979 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
   980   return cmsSpace()->freelistLock();
   981 }
   983 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
   984                                                   bool   tlab) {
   985   CMSSynchronousYieldRequest yr;
   986   MutexLockerEx x(freelistLock(),
   987                   Mutex::_no_safepoint_check_flag);
   988   return have_lock_and_allocate(size, tlab);
   989 }
   991 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
   992                                                   bool   tlab) {
   993   assert_lock_strong(freelistLock());
   994   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
   995   HeapWord* res = cmsSpace()->allocate(adjustedSize);
   996   // Allocate the object live (grey) if the background collector has
   997   // started marking. This is necessary because the marker may
   998   // have passed this address and consequently this object will
   999   // not otherwise be greyed and would be incorrectly swept up.
  1000   // Note that if this object contains references, the writing
  1001   // of those references will dirty the card containing this object
  1002   // allowing the object to be blackened (and its references scanned)
  1003   // either during a preclean phase or at the final checkpoint.
  1004   if (res != NULL) {
  1005     collector()->direct_allocated(res, adjustedSize);
  1006     _direct_allocated_words += adjustedSize;
  1007     // allocation counters
  1008     NOT_PRODUCT(
  1009       _numObjectsAllocated++;
  1010       _numWordsAllocated += (int)adjustedSize;
  1013   return res;
  1016 // In the case of direct allocation by mutators in a generation that
  1017 // is being concurrently collected, the object must be allocated
  1018 // live (grey) if the background collector has started marking.
  1019 // This is necessary because the marker may
  1020 // have passed this address and consequently this object will
  1021 // not otherwise be greyed and would be incorrectly swept up.
  1022 // Note that if this object contains references, the writing
  1023 // of those references will dirty the card containing this object
  1024 // allowing the object to be blackened (and its references scanned)
  1025 // either during a preclean phase or at the final checkpoint.
  1026 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1027   assert(_markBitMap.covers(start, size), "Out of bounds");
  1028   if (_collectorState >= Marking) {
  1029     MutexLockerEx y(_markBitMap.lock(),
  1030                     Mutex::_no_safepoint_check_flag);
  1031     // [see comments preceding SweepClosure::do_blk() below for details]
  1032     // 1. need to mark the object as live so it isn't collected
  1033     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1034     // 3. need to mark the end of the object so sweeper can skip over it
  1035     //    if it's uninitialized when the sweeper reaches it.
  1036     _markBitMap.mark(start);          // object is live
  1037     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1038     _markBitMap.mark(start + size - 1);
  1039                                       // mark end of object
  1041   // check that oop looks uninitialized
  1042   assert(oop(start)->klass() == NULL, "_klass should be NULL");
  1045 void CMSCollector::promoted(bool par, HeapWord* start,
  1046                             bool is_obj_array, size_t obj_size) {
  1047   assert(_markBitMap.covers(start), "Out of bounds");
  1048   // See comment in direct_allocated() about when objects should
  1049   // be allocated live.
  1050   if (_collectorState >= Marking) {
  1051     // we already hold the marking bit map lock, taken in
  1052     // the prologue
  1053     if (par) {
  1054       _markBitMap.par_mark(start);
  1055     } else {
  1056       _markBitMap.mark(start);
  1058     // We don't need to mark the object as uninitialized (as
  1059     // in direct_allocated above) because this is being done with the
  1060     // world stopped and the object will be initialized by the
  1061     // time the sweeper gets to look at it.
  1062     assert(SafepointSynchronize::is_at_safepoint(),
  1063            "expect promotion only at safepoints");
  1065     if (_collectorState < Sweeping) {
  1066       // Mark the appropriate cards in the modUnionTable, so that
  1067       // this object gets scanned before the sweep. If this is
  1068       // not done, CMS generation references in the object might
  1069       // not get marked.
  1070       // For the case of arrays, which are otherwise precisely
  1071       // marked, we need to dirty the entire array, not just its head.
  1072       if (is_obj_array) {
  1073         // The [par_]mark_range() method expects mr.end() below to
  1074         // be aligned to the granularity of a bit's representation
  1075         // in the heap. In the case of the MUT below, that's a
  1076         // card size.
  1077         MemRegion mr(start,
  1078                      (HeapWord*)round_to((intptr_t)(start + obj_size),
  1079                         CardTableModRefBS::card_size /* bytes */));
  1080         if (par) {
  1081           _modUnionTable.par_mark_range(mr);
  1082         } else {
  1083           _modUnionTable.mark_range(mr);
  1085       } else {  // not an obj array; we can just mark the head
  1086         if (par) {
  1087           _modUnionTable.par_mark(start);
  1088         } else {
  1089           _modUnionTable.mark(start);
  1096 static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1098   size_t delta = pointer_delta(addr, space->bottom());
  1099   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1102 void CMSCollector::icms_update_allocation_limits()
  1104   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1105   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1107   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1108   if (CMSTraceIncrementalPacing) {
  1109     stats().print();
  1112   assert(duty_cycle <= 100, "invalid duty cycle");
  1113   if (duty_cycle != 0) {
  1114     // The duty_cycle is a percentage between 0 and 100; convert to words and
  1115     // then compute the offset from the endpoints of the space.
  1116     size_t free_words = eden->free() / HeapWordSize;
  1117     double free_words_dbl = (double)free_words;
  1118     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1119     size_t offset_words = (free_words - duty_cycle_words) / 2;
  1121     _icms_start_limit = eden->top() + offset_words;
  1122     _icms_stop_limit = eden->end() - offset_words;
  1124     // The limits may be adjusted (shifted to the right) by
  1125     // CMSIncrementalOffset, to allow the application more mutator time after a
  1126     // young gen gc (when all mutators were stopped) and before CMS starts and
  1127     // takes away one or more cpus.
  1128     if (CMSIncrementalOffset != 0) {
  1129       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1130       size_t adjustment = (size_t)adjustment_dbl;
  1131       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1132       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1133         _icms_start_limit += adjustment;
  1134         _icms_stop_limit = tmp_stop;
  1138   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1139     _icms_start_limit = _icms_stop_limit = eden->end();
  1142   // Install the new start limit.
  1143   eden->set_soft_end(_icms_start_limit);
  1145   if (CMSTraceIncrementalMode) {
  1146     gclog_or_tty->print(" icms alloc limits:  "
  1147                            PTR_FORMAT "," PTR_FORMAT
  1148                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1149                            _icms_start_limit, _icms_stop_limit,
  1150                            percent_of_space(eden, _icms_start_limit),
  1151                            percent_of_space(eden, _icms_stop_limit));
  1152     if (Verbose) {
  1153       gclog_or_tty->print("eden:  ");
  1154       eden->print_on(gclog_or_tty);
  1159 // Any changes here should try to maintain the invariant
  1160 // that if this method is called with _icms_start_limit
  1161 // and _icms_stop_limit both NULL, then it should return NULL
  1162 // and not notify the icms thread.
  1163 HeapWord*
  1164 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1165                                        size_t word_size)
  1167   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1168   // nop.
  1169   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1170     if (top <= _icms_start_limit) {
  1171       if (CMSTraceIncrementalMode) {
  1172         space->print_on(gclog_or_tty);
  1173         gclog_or_tty->stamp();
  1174         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1175                                ", new limit=" PTR_FORMAT
  1176                                " (" SIZE_FORMAT "%%)",
  1177                                top, _icms_stop_limit,
  1178                                percent_of_space(space, _icms_stop_limit));
  1180       ConcurrentMarkSweepThread::start_icms();
  1181       assert(top < _icms_stop_limit, "Tautology");
  1182       if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1183         return _icms_stop_limit;
  1186       // The allocation will cross both the _start and _stop limits, so do the
  1187       // stop notification also and return end().
  1188       if (CMSTraceIncrementalMode) {
  1189         space->print_on(gclog_or_tty);
  1190         gclog_or_tty->stamp();
  1191         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1192                                ", new limit=" PTR_FORMAT
  1193                                " (" SIZE_FORMAT "%%)",
  1194                                top, space->end(),
  1195                                percent_of_space(space, space->end()));
  1197       ConcurrentMarkSweepThread::stop_icms();
  1198       return space->end();
  1201     if (top <= _icms_stop_limit) {
  1202       if (CMSTraceIncrementalMode) {
  1203         space->print_on(gclog_or_tty);
  1204         gclog_or_tty->stamp();
  1205         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1206                                ", new limit=" PTR_FORMAT
  1207                                " (" SIZE_FORMAT "%%)",
  1208                                top, space->end(),
  1209                                percent_of_space(space, space->end()));
  1211       ConcurrentMarkSweepThread::stop_icms();
  1212       return space->end();
  1215     if (CMSTraceIncrementalMode) {
  1216       space->print_on(gclog_or_tty);
  1217       gclog_or_tty->stamp();
  1218       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1219                              ", new limit=" PTR_FORMAT,
  1220                              top, NULL);
  1224   return NULL;
  1227 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
  1228   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1229   // allocate, copy and if necessary update promoinfo --
  1230   // delegate to underlying space.
  1231   assert_lock_strong(freelistLock());
  1233 #ifndef PRODUCT
  1234   if (Universe::heap()->promotion_should_fail()) {
  1235     return NULL;
  1237 #endif  // #ifndef PRODUCT
  1239   oop res = _cmsSpace->promote(obj, obj_size);
  1240   if (res == NULL) {
  1241     // expand and retry
  1242     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1243     expand(s*HeapWordSize, MinHeapDeltaBytes,
  1244       CMSExpansionCause::_satisfy_promotion);
  1245     // Since there's currently no next generation, we don't try to promote
  1246     // into a more senior generation.
  1247     assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1248                                "is made to pass on a possibly failing "
  1249                                "promotion to next generation");
  1250     res = _cmsSpace->promote(obj, obj_size);
  1252   if (res != NULL) {
  1253     // See comment in allocate() about when objects should
  1254     // be allocated live.
  1255     assert(obj->is_oop(), "Will dereference klass pointer below");
  1256     collector()->promoted(false,           // Not parallel
  1257                           (HeapWord*)res, obj->is_objArray(), obj_size);
  1258     // promotion counters
  1259     NOT_PRODUCT(
  1260       _numObjectsPromoted++;
  1261       _numWordsPromoted +=
  1262         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1265   return res;
  1269 HeapWord*
  1270 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1271                                              HeapWord* top,
  1272                                              size_t word_sz)
  1274   return collector()->allocation_limit_reached(space, top, word_sz);
  1277 // Things to support parallel young-gen collection.
  1278 oop
  1279 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1280                                            oop old, markOop m,
  1281                                            size_t word_sz) {
  1282 #ifndef PRODUCT
  1283   if (Universe::heap()->promotion_should_fail()) {
  1284     return NULL;
  1286 #endif  // #ifndef PRODUCT
  1288   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1289   PromotionInfo* promoInfo = &ps->promo;
  1290   // if we are tracking promotions, then first ensure space for
  1291   // promotion (including spooling space for saving header if necessary).
  1292   // then allocate and copy, then track promoted info if needed.
  1293   // When tracking (see PromotionInfo::track()), the mark word may
  1294   // be displaced and in this case restoration of the mark word
  1295   // occurs in the (oop_since_save_marks_)iterate phase.
  1296   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1297     // Out of space for allocating spooling buffers;
  1298     // try expanding and allocating spooling buffers.
  1299     if (!expand_and_ensure_spooling_space(promoInfo)) {
  1300       return NULL;
  1303   assert(promoInfo->has_spooling_space(), "Control point invariant");
  1304   HeapWord* obj_ptr = ps->lab.alloc(word_sz);
  1305   if (obj_ptr == NULL) {
  1306      obj_ptr = expand_and_par_lab_allocate(ps, word_sz);
  1307      if (obj_ptr == NULL) {
  1308        return NULL;
  1311   oop obj = oop(obj_ptr);
  1312   assert(obj->klass() == NULL, "Object should be uninitialized here.");
  1313   // Otherwise, copy the object.  Here we must be careful to insert the
  1314   // klass pointer last, since this marks the block as an allocated object.
  1315   HeapWord* old_ptr = (HeapWord*)old;
  1316   if (word_sz > (size_t)oopDesc::header_size()) {
  1317     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1318                                  obj_ptr + oopDesc::header_size(),
  1319                                  word_sz - oopDesc::header_size());
  1321   // Restore the mark word copied above.
  1322   obj->set_mark(m);
  1323   // Now we can track the promoted object, if necessary.  We take care
  1324   // To delay the transition from uninitialized to full object
  1325   // (i.e., insertion of klass pointer) until after, so that it
  1326   // atomically becomes a promoted object.
  1327   if (promoInfo->tracking()) {
  1328     promoInfo->track((PromotedObject*)obj, old->klass());
  1330   // Finally, install the klass pointer.
  1331   obj->set_klass(old->klass());
  1333   assert(old->is_oop(), "Will dereference klass ptr below");
  1334   collector()->promoted(true,          // parallel
  1335                         obj_ptr, old->is_objArray(), word_sz);
  1337   NOT_PRODUCT(
  1338     Atomic::inc(&_numObjectsPromoted);
  1339     Atomic::add((jint)CompactibleFreeListSpace::adjustObjectSize(obj->size()),
  1340                 &_numWordsPromoted);
  1343   return obj;
  1346 void
  1347 ConcurrentMarkSweepGeneration::
  1348 par_promote_alloc_undo(int thread_num,
  1349                        HeapWord* obj, size_t word_sz) {
  1350   // CMS does not support promotion undo.
  1351   ShouldNotReachHere();
  1354 void
  1355 ConcurrentMarkSweepGeneration::
  1356 par_promote_alloc_done(int thread_num) {
  1357   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1358   ps->lab.retire();
  1359 #if CFLS_LAB_REFILL_STATS
  1360   if (thread_num == 0) {
  1361     _cmsSpace->print_par_alloc_stats();
  1363 #endif
  1366 void
  1367 ConcurrentMarkSweepGeneration::
  1368 par_oop_since_save_marks_iterate_done(int thread_num) {
  1369   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1370   ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1371   ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1374 // XXXPERM
  1375 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1376                                                    size_t size,
  1377                                                    bool   tlab)
  1379   // We allow a STW collection only if a full
  1380   // collection was requested.
  1381   return full || should_allocate(size, tlab); // FIX ME !!!
  1382   // This and promotion failure handling are connected at the
  1383   // hip and should be fixed by untying them.
  1386 bool CMSCollector::shouldConcurrentCollect() {
  1387   if (_full_gc_requested) {
  1388     assert(ExplicitGCInvokesConcurrent, "Unexpected state");
  1389     if (Verbose && PrintGCDetails) {
  1390       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1391                              " gc request");
  1393     return true;
  1396   // For debugging purposes, change the type of collection.
  1397   // If the rotation is not on the concurrent collection
  1398   // type, don't start a concurrent collection.
  1399   NOT_PRODUCT(
  1400     if (RotateCMSCollectionTypes &&
  1401         (_cmsGen->debug_collection_type() !=
  1402           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1403       assert(_cmsGen->debug_collection_type() !=
  1404         ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1405         "Bad cms collection type");
  1406       return false;
  1410   FreelistLocker x(this);
  1411   // ------------------------------------------------------------------
  1412   // Print out lots of information which affects the initiation of
  1413   // a collection.
  1414   if (PrintCMSInitiationStatistics && stats().valid()) {
  1415     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1416     gclog_or_tty->stamp();
  1417     gclog_or_tty->print_cr("");
  1418     stats().print_on(gclog_or_tty);
  1419     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1420       stats().time_until_cms_gen_full());
  1421     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1422     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1423                            _cmsGen->contiguous_available());
  1424     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1425     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1426     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1427     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
  1428     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
  1430   // ------------------------------------------------------------------
  1432   // If the estimated time to complete a cms collection (cms_duration())
  1433   // is less than the estimated time remaining until the cms generation
  1434   // is full, start a collection.
  1435   if (!UseCMSInitiatingOccupancyOnly) {
  1436     if (stats().valid()) {
  1437       if (stats().time_until_cms_start() == 0.0) {
  1438         return true;
  1440     } else {
  1441       // We want to conservatively collect somewhat early in order
  1442       // to try and "bootstrap" our CMS/promotion statistics;
  1443       // this branch will not fire after the first successful CMS
  1444       // collection because the stats should then be valid.
  1445       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1446         if (Verbose && PrintGCDetails) {
  1447           gclog_or_tty->print_cr(
  1448             " CMSCollector: collect for bootstrapping statistics:"
  1449             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1450             _bootstrap_occupancy);
  1452         return true;
  1457   // Otherwise, we start a collection cycle if either the perm gen or
  1458   // old gen want a collection cycle started. Each may use
  1459   // an appropriate criterion for making this decision.
  1460   // XXX We need to make sure that the gen expansion
  1461   // criterion dovetails well with this. XXX NEED TO FIX THIS
  1462   if (_cmsGen->should_concurrent_collect()) {
  1463     if (Verbose && PrintGCDetails) {
  1464       gclog_or_tty->print_cr("CMS old gen initiated");
  1466     return true;
  1469   // We start a collection if we believe an incremental collection may fail;
  1470   // this is not likely to be productive in practice because it's probably too
  1471   // late anyway.
  1472   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1473   assert(gch->collector_policy()->is_two_generation_policy(),
  1474          "You may want to check the correctness of the following");
  1475   if (gch->incremental_collection_will_fail()) {
  1476     if (PrintGCDetails && Verbose) {
  1477       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
  1479     return true;
  1482   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
  1483     bool res = update_should_unload_classes();
  1484     if (res) {
  1485       if (Verbose && PrintGCDetails) {
  1486         gclog_or_tty->print_cr("CMS perm gen initiated");
  1488       return true;
  1491   return false;
  1494 // Clear _expansion_cause fields of constituent generations
  1495 void CMSCollector::clear_expansion_cause() {
  1496   _cmsGen->clear_expansion_cause();
  1497   _permGen->clear_expansion_cause();
  1500 // We should be conservative in starting a collection cycle.  To
  1501 // start too eagerly runs the risk of collecting too often in the
  1502 // extreme.  To collect too rarely falls back on full collections,
  1503 // which works, even if not optimum in terms of concurrent work.
  1504 // As a work around for too eagerly collecting, use the flag
  1505 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1506 // giving the user an easily understandable way of controlling the
  1507 // collections.
  1508 // We want to start a new collection cycle if any of the following
  1509 // conditions hold:
  1510 // . our current occupancy exceeds the configured initiating occupancy
  1511 //   for this generation, or
  1512 // . we recently needed to expand this space and have not, since that
  1513 //   expansion, done a collection of this generation, or
  1514 // . the underlying space believes that it may be a good idea to initiate
  1515 //   a concurrent collection (this may be based on criteria such as the
  1516 //   following: the space uses linear allocation and linear allocation is
  1517 //   going to fail, or there is believed to be excessive fragmentation in
  1518 //   the generation, etc... or ...
  1519 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
  1520 //   the case of the old generation, not the perm generation; see CR 6543076):
  1521 //   we may be approaching a point at which allocation requests may fail because
  1522 //   we will be out of sufficient free space given allocation rate estimates.]
  1523 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
  1525   assert_lock_strong(freelistLock());
  1526   if (occupancy() > initiating_occupancy()) {
  1527     if (PrintGCDetails && Verbose) {
  1528       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1529         short_name(), occupancy(), initiating_occupancy());
  1531     return true;
  1533   if (UseCMSInitiatingOccupancyOnly) {
  1534     return false;
  1536   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1537     if (PrintGCDetails && Verbose) {
  1538       gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1539         short_name());
  1541     return true;
  1543   if (_cmsSpace->should_concurrent_collect()) {
  1544     if (PrintGCDetails && Verbose) {
  1545       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
  1546         short_name());
  1548     return true;
  1550   return false;
  1553 void ConcurrentMarkSweepGeneration::collect(bool   full,
  1554                                             bool   clear_all_soft_refs,
  1555                                             size_t size,
  1556                                             bool   tlab)
  1558   collector()->collect(full, clear_all_soft_refs, size, tlab);
  1561 void CMSCollector::collect(bool   full,
  1562                            bool   clear_all_soft_refs,
  1563                            size_t size,
  1564                            bool   tlab)
  1566   if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1567     // For debugging purposes skip the collection if the state
  1568     // is not currently idle
  1569     if (TraceCMSState) {
  1570       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1571         Thread::current(), full, _collectorState);
  1573     return;
  1576   // The following "if" branch is present for defensive reasons.
  1577   // In the current uses of this interface, it can be replaced with:
  1578   // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1579   // But I am not placing that assert here to allow future
  1580   // generality in invoking this interface.
  1581   if (GC_locker::is_active()) {
  1582     // A consistency test for GC_locker
  1583     assert(GC_locker::needs_gc(), "Should have been set already");
  1584     // Skip this foreground collection, instead
  1585     // expanding the heap if necessary.
  1586     // Need the free list locks for the call to free() in compute_new_size()
  1587     compute_new_size();
  1588     return;
  1590   acquire_control_and_collect(full, clear_all_soft_refs);
  1591   _full_gcs_since_conc_gc++;
  1595 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
  1596   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1597   unsigned int gc_count = gch->total_full_collections();
  1598   if (gc_count == full_gc_count) {
  1599     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1600     _full_gc_requested = true;
  1601     CGC_lock->notify();   // nudge CMS thread
  1606 // The foreground and background collectors need to coordinate in order
  1607 // to make sure that they do not mutually interfere with CMS collections.
  1608 // When a background collection is active,
  1609 // the foreground collector may need to take over (preempt) and
  1610 // synchronously complete an ongoing collection. Depending on the
  1611 // frequency of the background collections and the heap usage
  1612 // of the application, this preemption can be seldom or frequent.
  1613 // There are only certain
  1614 // points in the background collection that the "collection-baton"
  1615 // can be passed to the foreground collector.
  1616 //
  1617 // The foreground collector will wait for the baton before
  1618 // starting any part of the collection.  The foreground collector
  1619 // will only wait at one location.
  1620 //
  1621 // The background collector will yield the baton before starting a new
  1622 // phase of the collection (e.g., before initial marking, marking from roots,
  1623 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1624 // of the loop which switches the phases. The background collector does some
  1625 // of the phases (initial mark, final re-mark) with the world stopped.
  1626 // Because of locking involved in stopping the world,
  1627 // the foreground collector should not block waiting for the background
  1628 // collector when it is doing a stop-the-world phase.  The background
  1629 // collector will yield the baton at an additional point just before
  1630 // it enters a stop-the-world phase.  Once the world is stopped, the
  1631 // background collector checks the phase of the collection.  If the
  1632 // phase has not changed, it proceeds with the collection.  If the
  1633 // phase has changed, it skips that phase of the collection.  See
  1634 // the comments on the use of the Heap_lock in collect_in_background().
  1635 //
  1636 // Variable used in baton passing.
  1637 //   _foregroundGCIsActive - Set to true by the foreground collector when
  1638 //      it wants the baton.  The foreground clears it when it has finished
  1639 //      the collection.
  1640 //   _foregroundGCShouldWait - Set to true by the background collector
  1641 //        when it is running.  The foreground collector waits while
  1642 //      _foregroundGCShouldWait is true.
  1643 //  CGC_lock - monitor used to protect access to the above variables
  1644 //      and to notify the foreground and background collectors.
  1645 //  _collectorState - current state of the CMS collection.
  1646 //
  1647 // The foreground collector
  1648 //   acquires the CGC_lock
  1649 //   sets _foregroundGCIsActive
  1650 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1651 //     various locks acquired in preparation for the collection
  1652 //     are released so as not to block the background collector
  1653 //     that is in the midst of a collection
  1654 //   proceeds with the collection
  1655 //   clears _foregroundGCIsActive
  1656 //   returns
  1657 //
  1658 // The background collector in a loop iterating on the phases of the
  1659 //      collection
  1660 //   acquires the CGC_lock
  1661 //   sets _foregroundGCShouldWait
  1662 //   if _foregroundGCIsActive is set
  1663 //     clears _foregroundGCShouldWait, notifies _CGC_lock
  1664 //     waits on _CGC_lock for _foregroundGCIsActive to become false
  1665 //     and exits the loop.
  1666 //   otherwise
  1667 //     proceed with that phase of the collection
  1668 //     if the phase is a stop-the-world phase,
  1669 //       yield the baton once more just before enqueueing
  1670 //       the stop-world CMS operation (executed by the VM thread).
  1671 //   returns after all phases of the collection are done
  1672 //
  1674 void CMSCollector::acquire_control_and_collect(bool full,
  1675         bool clear_all_soft_refs) {
  1676   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1677   assert(!Thread::current()->is_ConcurrentGC_thread(),
  1678          "shouldn't try to acquire control from self!");
  1680   // Start the protocol for acquiring control of the
  1681   // collection from the background collector (aka CMS thread).
  1682   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1683          "VM thread should have CMS token");
  1684   // Remember the possibly interrupted state of an ongoing
  1685   // concurrent collection
  1686   CollectorState first_state = _collectorState;
  1688   // Signal to a possibly ongoing concurrent collection that
  1689   // we want to do a foreground collection.
  1690   _foregroundGCIsActive = true;
  1692   // Disable incremental mode during a foreground collection.
  1693   ICMSDisabler icms_disabler;
  1695   // release locks and wait for a notify from the background collector
  1696   // releasing the locks in only necessary for phases which
  1697   // do yields to improve the granularity of the collection.
  1698   assert_lock_strong(bitMapLock());
  1699   // We need to lock the Free list lock for the space that we are
  1700   // currently collecting.
  1701   assert(haveFreelistLocks(), "Must be holding free list locks");
  1702   bitMapLock()->unlock();
  1703   releaseFreelistLocks();
  1705     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1706     if (_foregroundGCShouldWait) {
  1707       // We are going to be waiting for action for the CMS thread;
  1708       // it had better not be gone (for instance at shutdown)!
  1709       assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1710              "CMS thread must be running");
  1711       // Wait here until the background collector gives us the go-ahead
  1712       ConcurrentMarkSweepThread::clear_CMS_flag(
  1713         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1714       // Get a possibly blocked CMS thread going:
  1715       //   Note that we set _foregroundGCIsActive true above,
  1716       //   without protection of the CGC_lock.
  1717       CGC_lock->notify();
  1718       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1719              "Possible deadlock");
  1720       while (_foregroundGCShouldWait) {
  1721         // wait for notification
  1722         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1723         // Possibility of delay/starvation here, since CMS token does
  1724         // not know to give priority to VM thread? Actually, i think
  1725         // there wouldn't be any delay/starvation, but the proof of
  1726         // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1728       ConcurrentMarkSweepThread::set_CMS_flag(
  1729         ConcurrentMarkSweepThread::CMS_vm_has_token);
  1732   // The CMS_token is already held.  Get back the other locks.
  1733   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1734          "VM thread should have CMS token");
  1735   getFreelistLocks();
  1736   bitMapLock()->lock_without_safepoint_check();
  1737   if (TraceCMSState) {
  1738     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1739       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1740     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1743   // Check if we need to do a compaction, or if not, whether
  1744   // we need to start the mark-sweep from scratch.
  1745   bool should_compact    = false;
  1746   bool should_start_over = false;
  1747   decide_foreground_collection_type(clear_all_soft_refs,
  1748     &should_compact, &should_start_over);
  1750 NOT_PRODUCT(
  1751   if (RotateCMSCollectionTypes) {
  1752     if (_cmsGen->debug_collection_type() ==
  1753         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1754       should_compact = true;
  1755     } else if (_cmsGen->debug_collection_type() ==
  1756                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1757       should_compact = false;
  1762   if (PrintGCDetails && first_state > Idling) {
  1763     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1764     if (GCCause::is_user_requested_gc(cause) ||
  1765         GCCause::is_serviceability_requested_gc(cause)) {
  1766       gclog_or_tty->print(" (concurrent mode interrupted)");
  1767     } else {
  1768       gclog_or_tty->print(" (concurrent mode failure)");
  1772   if (should_compact) {
  1773     // If the collection is being acquired from the background
  1774     // collector, there may be references on the discovered
  1775     // references lists that have NULL referents (being those
  1776     // that were concurrently cleared by a mutator) or
  1777     // that are no longer active (having been enqueued concurrently
  1778     // by the mutator).
  1779     // Scrub the list of those references because Mark-Sweep-Compact
  1780     // code assumes referents are not NULL and that all discovered
  1781     // Reference objects are active.
  1782     ref_processor()->clean_up_discovered_references();
  1784     do_compaction_work(clear_all_soft_refs);
  1786     // Has the GC time limit been exceeded?
  1787     check_gc_time_limit();
  1789   } else {
  1790     do_mark_sweep_work(clear_all_soft_refs, first_state,
  1791       should_start_over);
  1793   // Reset the expansion cause, now that we just completed
  1794   // a collection cycle.
  1795   clear_expansion_cause();
  1796   _foregroundGCIsActive = false;
  1797   return;
  1800 void CMSCollector::check_gc_time_limit() {
  1802   // Ignore explicit GC's.  Exiting here does not set the flag and
  1803   // does not reset the count.  Updating of the averages for system
  1804   // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
  1805   GCCause::Cause gc_cause = GenCollectedHeap::heap()->gc_cause();
  1806   if (GCCause::is_user_requested_gc(gc_cause) ||
  1807       GCCause::is_serviceability_requested_gc(gc_cause)) {
  1808     return;
  1811   // Calculate the fraction of the CMS generation was freed during
  1812   // the last collection.
  1813   // Only consider the STW compacting cost for now.
  1814   //
  1815   // Note that the gc time limit test only works for the collections
  1816   // of the young gen + tenured gen and not for collections of the
  1817   // permanent gen.  That is because the calculation of the space
  1818   // freed by the collection is the free space in the young gen +
  1819   // tenured gen.
  1821   double fraction_free =
  1822     ((double)_cmsGen->free())/((double)_cmsGen->max_capacity());
  1823   if ((100.0 * size_policy()->compacting_gc_cost()) >
  1824          ((double) GCTimeLimit) &&
  1825         ((fraction_free * 100) < GCHeapFreeLimit)) {
  1826     size_policy()->inc_gc_time_limit_count();
  1827     if (UseGCOverheadLimit &&
  1828         (size_policy()->gc_time_limit_count() >
  1829          AdaptiveSizePolicyGCTimeLimitThreshold)) {
  1830       size_policy()->set_gc_time_limit_exceeded(true);
  1831       // Avoid consecutive OOM due to the gc time limit by resetting
  1832       // the counter.
  1833       size_policy()->reset_gc_time_limit_count();
  1834       if (PrintGCDetails) {
  1835         gclog_or_tty->print_cr("      GC is exceeding overhead limit "
  1836           "of %d%%", GCTimeLimit);
  1838     } else {
  1839       if (PrintGCDetails) {
  1840         gclog_or_tty->print_cr("      GC would exceed overhead limit "
  1841           "of %d%%", GCTimeLimit);
  1844   } else {
  1845     size_policy()->reset_gc_time_limit_count();
  1849 // Resize the perm generation and the tenured generation
  1850 // after obtaining the free list locks for the
  1851 // two generations.
  1852 void CMSCollector::compute_new_size() {
  1853   assert_locked_or_safepoint(Heap_lock);
  1854   FreelistLocker z(this);
  1855   _permGen->compute_new_size();
  1856   _cmsGen->compute_new_size();
  1859 // A work method used by foreground collection to determine
  1860 // what type of collection (compacting or not, continuing or fresh)
  1861 // it should do.
  1862 // NOTE: the intent is to make UseCMSCompactAtFullCollection
  1863 // and CMSCompactWhenClearAllSoftRefs the default in the future
  1864 // and do away with the flags after a suitable period.
  1865 void CMSCollector::decide_foreground_collection_type(
  1866   bool clear_all_soft_refs, bool* should_compact,
  1867   bool* should_start_over) {
  1868   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1869   // flag is set, and we have either requested a System.gc() or
  1870   // the number of full gc's since the last concurrent cycle
  1871   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1872   // or if an incremental collection has failed
  1873   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1874   assert(gch->collector_policy()->is_two_generation_policy(),
  1875          "You may want to check the correctness of the following");
  1876   // Inform cms gen if this was due to partial collection failing.
  1877   // The CMS gen may use this fact to determine its expansion policy.
  1878   if (gch->incremental_collection_will_fail()) {
  1879     assert(!_cmsGen->incremental_collection_failed(),
  1880            "Should have been noticed, reacted to and cleared");
  1881     _cmsGen->set_incremental_collection_failed();
  1883   *should_compact =
  1884     UseCMSCompactAtFullCollection &&
  1885     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1886      GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1887      gch->incremental_collection_will_fail());
  1888   *should_start_over = false;
  1889   if (clear_all_soft_refs && !*should_compact) {
  1890     // We are about to do a last ditch collection attempt
  1891     // so it would normally make sense to do a compaction
  1892     // to reclaim as much space as possible.
  1893     if (CMSCompactWhenClearAllSoftRefs) {
  1894       // Default: The rationale is that in this case either
  1895       // we are past the final marking phase, in which case
  1896       // we'd have to start over, or so little has been done
  1897       // that there's little point in saving that work. Compaction
  1898       // appears to be the sensible choice in either case.
  1899       *should_compact = true;
  1900     } else {
  1901       // We have been asked to clear all soft refs, but not to
  1902       // compact. Make sure that we aren't past the final checkpoint
  1903       // phase, for that is where we process soft refs. If we are already
  1904       // past that phase, we'll need to redo the refs discovery phase and
  1905       // if necessary clear soft refs that weren't previously
  1906       // cleared. We do so by remembering the phase in which
  1907       // we came in, and if we are past the refs processing
  1908       // phase, we'll choose to just redo the mark-sweep
  1909       // collection from scratch.
  1910       if (_collectorState > FinalMarking) {
  1911         // We are past the refs processing phase;
  1912         // start over and do a fresh synchronous CMS cycle
  1913         _collectorState = Resetting; // skip to reset to start new cycle
  1914         reset(false /* == !asynch */);
  1915         *should_start_over = true;
  1916       } // else we can continue a possibly ongoing current cycle
  1921 // A work method used by the foreground collector to do
  1922 // a mark-sweep-compact.
  1923 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  1924   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1925   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
  1926   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  1927     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  1928       "collections passed to foreground collector", _full_gcs_since_conc_gc);
  1931   // Sample collection interval time and reset for collection pause.
  1932   if (UseAdaptiveSizePolicy) {
  1933     size_policy()->msc_collection_begin();
  1936   // Temporarily widen the span of the weak reference processing to
  1937   // the entire heap.
  1938   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  1939   ReferenceProcessorSpanMutator x(ref_processor(), new_span);
  1941   // Temporarily, clear the "is_alive_non_header" field of the
  1942   // reference processor.
  1943   ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
  1945   // Temporarily make reference _processing_ single threaded (non-MT).
  1946   ReferenceProcessorMTProcMutator z(ref_processor(), false);
  1948   // Temporarily make refs discovery atomic
  1949   ReferenceProcessorAtomicMutator w(ref_processor(), true);
  1951   ref_processor()->set_enqueuing_is_done(false);
  1952   ref_processor()->enable_discovery();
  1953   // If an asynchronous collection finishes, the _modUnionTable is
  1954   // all clear.  If we are assuming the collection from an asynchronous
  1955   // collection, clear the _modUnionTable.
  1956   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  1957     "_modUnionTable should be clear if the baton was not passed");
  1958   _modUnionTable.clear_all();
  1960   // We must adjust the allocation statistics being maintained
  1961   // in the free list space. We do so by reading and clearing
  1962   // the sweep timer and updating the block flux rate estimates below.
  1963   assert(_sweep_timer.is_active(), "We should never see the timer inactive");
  1964   _sweep_timer.stop();
  1965   // Note that we do not use this sample to update the _sweep_estimate.
  1966   _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  1967                                           _sweep_estimate.padded_average());
  1969   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  1970     ref_processor(), clear_all_soft_refs);
  1971   #ifdef ASSERT
  1972     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  1973     size_t free_size = cms_space->free();
  1974     assert(free_size ==
  1975            pointer_delta(cms_space->end(), cms_space->compaction_top())
  1976            * HeapWordSize,
  1977       "All the free space should be compacted into one chunk at top");
  1978     assert(cms_space->dictionary()->totalChunkSize(
  1979                                       debug_only(cms_space->freelistLock())) == 0 ||
  1980            cms_space->totalSizeInIndexedFreeLists() == 0,
  1981       "All the free space should be in a single chunk");
  1982     size_t num = cms_space->totalCount();
  1983     assert((free_size == 0 && num == 0) ||
  1984            (free_size > 0  && (num == 1 || num == 2)),
  1985          "There should be at most 2 free chunks after compaction");
  1986   #endif // ASSERT
  1987   _collectorState = Resetting;
  1988   assert(_restart_addr == NULL,
  1989          "Should have been NULL'd before baton was passed");
  1990   reset(false /* == !asynch */);
  1991   _cmsGen->reset_after_compaction();
  1992   _concurrent_cycles_since_last_unload = 0;
  1994   if (verifying() && !should_unload_classes()) {
  1995     perm_gen_verify_bit_map()->clear_all();
  1998   // Clear any data recorded in the PLAB chunk arrays.
  1999   if (_survivor_plab_array != NULL) {
  2000     reset_survivor_plab_arrays();
  2003   // Adjust the per-size allocation stats for the next epoch.
  2004   _cmsGen->cmsSpace()->endSweepFLCensus(sweepCount() /* fake */);
  2005   // Restart the "sweep timer" for next epoch.
  2006   _sweep_timer.reset();
  2007   _sweep_timer.start();
  2009   // Sample collection pause time and reset for collection interval.
  2010   if (UseAdaptiveSizePolicy) {
  2011     size_policy()->msc_collection_end(gch->gc_cause());
  2014   // For a mark-sweep-compact, compute_new_size() will be called
  2015   // in the heap's do_collection() method.
  2018 // A work method used by the foreground collector to do
  2019 // a mark-sweep, after taking over from a possibly on-going
  2020 // concurrent mark-sweep collection.
  2021 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  2022   CollectorState first_state, bool should_start_over) {
  2023   if (PrintGC && Verbose) {
  2024     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  2025       "collector with count %d",
  2026       _full_gcs_since_conc_gc);
  2028   switch (_collectorState) {
  2029     case Idling:
  2030       if (first_state == Idling || should_start_over) {
  2031         // The background GC was not active, or should
  2032         // restarted from scratch;  start the cycle.
  2033         _collectorState = InitialMarking;
  2035       // If first_state was not Idling, then a background GC
  2036       // was in progress and has now finished.  No need to do it
  2037       // again.  Leave the state as Idling.
  2038       break;
  2039     case Precleaning:
  2040       // In the foreground case don't do the precleaning since
  2041       // it is not done concurrently and there is extra work
  2042       // required.
  2043       _collectorState = FinalMarking;
  2045   if (PrintGCDetails &&
  2046       (_collectorState > Idling ||
  2047        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
  2048     gclog_or_tty->print(" (concurrent mode failure)");
  2050   collect_in_foreground(clear_all_soft_refs);
  2052   // For a mark-sweep, compute_new_size() will be called
  2053   // in the heap's do_collection() method.
  2057 void CMSCollector::getFreelistLocks() const {
  2058   // Get locks for all free lists in all generations that this
  2059   // collector is responsible for
  2060   _cmsGen->freelistLock()->lock_without_safepoint_check();
  2061   _permGen->freelistLock()->lock_without_safepoint_check();
  2064 void CMSCollector::releaseFreelistLocks() const {
  2065   // Release locks for all free lists in all generations that this
  2066   // collector is responsible for
  2067   _cmsGen->freelistLock()->unlock();
  2068   _permGen->freelistLock()->unlock();
  2071 bool CMSCollector::haveFreelistLocks() const {
  2072   // Check locks for all free lists in all generations that this
  2073   // collector is responsible for
  2074   assert_lock_strong(_cmsGen->freelistLock());
  2075   assert_lock_strong(_permGen->freelistLock());
  2076   PRODUCT_ONLY(ShouldNotReachHere());
  2077   return true;
  2080 // A utility class that is used by the CMS collector to
  2081 // temporarily "release" the foreground collector from its
  2082 // usual obligation to wait for the background collector to
  2083 // complete an ongoing phase before proceeding.
  2084 class ReleaseForegroundGC: public StackObj {
  2085  private:
  2086   CMSCollector* _c;
  2087  public:
  2088   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  2089     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  2090     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2091     // allow a potentially blocked foreground collector to proceed
  2092     _c->_foregroundGCShouldWait = false;
  2093     if (_c->_foregroundGCIsActive) {
  2094       CGC_lock->notify();
  2096     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2097            "Possible deadlock");
  2100   ~ReleaseForegroundGC() {
  2101     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  2102     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2103     _c->_foregroundGCShouldWait = true;
  2105 };
  2107 // There are separate collect_in_background and collect_in_foreground because of
  2108 // the different locking requirements of the background collector and the
  2109 // foreground collector.  There was originally an attempt to share
  2110 // one "collect" method between the background collector and the foreground
  2111 // collector but the if-then-else required made it cleaner to have
  2112 // separate methods.
  2113 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
  2114   assert(Thread::current()->is_ConcurrentGC_thread(),
  2115     "A CMS asynchronous collection is only allowed on a CMS thread.");
  2117   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2119     bool safepoint_check = Mutex::_no_safepoint_check_flag;
  2120     MutexLockerEx hl(Heap_lock, safepoint_check);
  2121     FreelistLocker fll(this);
  2122     MutexLockerEx x(CGC_lock, safepoint_check);
  2123     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  2124       // The foreground collector is active or we're
  2125       // not using asynchronous collections.  Skip this
  2126       // background collection.
  2127       assert(!_foregroundGCShouldWait, "Should be clear");
  2128       return;
  2129     } else {
  2130       assert(_collectorState == Idling, "Should be idling before start.");
  2131       _collectorState = InitialMarking;
  2132       // Reset the expansion cause, now that we are about to begin
  2133       // a new cycle.
  2134       clear_expansion_cause();
  2136     // Decide if we want to enable class unloading as part of the
  2137     // ensuing concurrent GC cycle.
  2138     update_should_unload_classes();
  2139     _full_gc_requested = false;           // acks all outstanding full gc requests
  2140     // Signal that we are about to start a collection
  2141     gch->increment_total_full_collections();  // ... starting a collection cycle
  2142     _collection_count_start = gch->total_full_collections();
  2145   // Used for PrintGC
  2146   size_t prev_used;
  2147   if (PrintGC && Verbose) {
  2148     prev_used = _cmsGen->used(); // XXXPERM
  2151   // The change of the collection state is normally done at this level;
  2152   // the exceptions are phases that are executed while the world is
  2153   // stopped.  For those phases the change of state is done while the
  2154   // world is stopped.  For baton passing purposes this allows the
  2155   // background collector to finish the phase and change state atomically.
  2156   // The foreground collector cannot wait on a phase that is done
  2157   // while the world is stopped because the foreground collector already
  2158   // has the world stopped and would deadlock.
  2159   while (_collectorState != Idling) {
  2160     if (TraceCMSState) {
  2161       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2162         Thread::current(), _collectorState);
  2164     // The foreground collector
  2165     //   holds the Heap_lock throughout its collection.
  2166     //   holds the CMS token (but not the lock)
  2167     //     except while it is waiting for the background collector to yield.
  2168     //
  2169     // The foreground collector should be blocked (not for long)
  2170     //   if the background collector is about to start a phase
  2171     //   executed with world stopped.  If the background
  2172     //   collector has already started such a phase, the
  2173     //   foreground collector is blocked waiting for the
  2174     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  2175     //   are executed in the VM thread.
  2176     //
  2177     // The locking order is
  2178     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  2179     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  2180     //   CMS token  (claimed in
  2181     //                stop_world_and_do() -->
  2182     //                  safepoint_synchronize() -->
  2183     //                    CMSThread::synchronize())
  2186       // Check if the FG collector wants us to yield.
  2187       CMSTokenSync x(true); // is cms thread
  2188       if (waitForForegroundGC()) {
  2189         // We yielded to a foreground GC, nothing more to be
  2190         // done this round.
  2191         assert(_foregroundGCShouldWait == false, "We set it to false in "
  2192                "waitForForegroundGC()");
  2193         if (TraceCMSState) {
  2194           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2195             " exiting collection CMS state %d",
  2196             Thread::current(), _collectorState);
  2198         return;
  2199       } else {
  2200         // The background collector can run but check to see if the
  2201         // foreground collector has done a collection while the
  2202         // background collector was waiting to get the CGC_lock
  2203         // above.  If yes, break so that _foregroundGCShouldWait
  2204         // is cleared before returning.
  2205         if (_collectorState == Idling) {
  2206           break;
  2211     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  2212       "should be waiting");
  2214     switch (_collectorState) {
  2215       case InitialMarking:
  2217           ReleaseForegroundGC x(this);
  2218           stats().record_cms_begin();
  2220           VM_CMS_Initial_Mark initial_mark_op(this);
  2221           VMThread::execute(&initial_mark_op);
  2223         // The collector state may be any legal state at this point
  2224         // since the background collector may have yielded to the
  2225         // foreground collector.
  2226         break;
  2227       case Marking:
  2228         // initial marking in checkpointRootsInitialWork has been completed
  2229         if (markFromRoots(true)) { // we were successful
  2230           assert(_collectorState == Precleaning, "Collector state should "
  2231             "have changed");
  2232         } else {
  2233           assert(_foregroundGCIsActive, "Internal state inconsistency");
  2235         break;
  2236       case Precleaning:
  2237         if (UseAdaptiveSizePolicy) {
  2238           size_policy()->concurrent_precleaning_begin();
  2240         // marking from roots in markFromRoots has been completed
  2241         preclean();
  2242         if (UseAdaptiveSizePolicy) {
  2243           size_policy()->concurrent_precleaning_end();
  2245         assert(_collectorState == AbortablePreclean ||
  2246                _collectorState == FinalMarking,
  2247                "Collector state should have changed");
  2248         break;
  2249       case AbortablePreclean:
  2250         if (UseAdaptiveSizePolicy) {
  2251         size_policy()->concurrent_phases_resume();
  2253         abortable_preclean();
  2254         if (UseAdaptiveSizePolicy) {
  2255           size_policy()->concurrent_precleaning_end();
  2257         assert(_collectorState == FinalMarking, "Collector state should "
  2258           "have changed");
  2259         break;
  2260       case FinalMarking:
  2262           ReleaseForegroundGC x(this);
  2264           VM_CMS_Final_Remark final_remark_op(this);
  2265           VMThread::execute(&final_remark_op);
  2267         assert(_foregroundGCShouldWait, "block post-condition");
  2268         break;
  2269       case Sweeping:
  2270         if (UseAdaptiveSizePolicy) {
  2271           size_policy()->concurrent_sweeping_begin();
  2273         // final marking in checkpointRootsFinal has been completed
  2274         sweep(true);
  2275         assert(_collectorState == Resizing, "Collector state change "
  2276           "to Resizing must be done under the free_list_lock");
  2277         _full_gcs_since_conc_gc = 0;
  2279         // Stop the timers for adaptive size policy for the concurrent phases
  2280         if (UseAdaptiveSizePolicy) {
  2281           size_policy()->concurrent_sweeping_end();
  2282           size_policy()->concurrent_phases_end(gch->gc_cause(),
  2283                                              gch->prev_gen(_cmsGen)->capacity(),
  2284                                              _cmsGen->free());
  2287       case Resizing: {
  2288         // Sweeping has been completed...
  2289         // At this point the background collection has completed.
  2290         // Don't move the call to compute_new_size() down
  2291         // into code that might be executed if the background
  2292         // collection was preempted.
  2294           ReleaseForegroundGC x(this);   // unblock FG collection
  2295           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  2296           CMSTokenSync        z(true);   // not strictly needed.
  2297           if (_collectorState == Resizing) {
  2298             compute_new_size();
  2299             _collectorState = Resetting;
  2300           } else {
  2301             assert(_collectorState == Idling, "The state should only change"
  2302                    " because the foreground collector has finished the collection");
  2305         break;
  2307       case Resetting:
  2308         // CMS heap resizing has been completed
  2309         reset(true);
  2310         assert(_collectorState == Idling, "Collector state should "
  2311           "have changed");
  2312         stats().record_cms_end();
  2313         // Don't move the concurrent_phases_end() and compute_new_size()
  2314         // calls to here because a preempted background collection
  2315         // has it's state set to "Resetting".
  2316         break;
  2317       case Idling:
  2318       default:
  2319         ShouldNotReachHere();
  2320         break;
  2322     if (TraceCMSState) {
  2323       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2324         Thread::current(), _collectorState);
  2326     assert(_foregroundGCShouldWait, "block post-condition");
  2329   // Should this be in gc_epilogue?
  2330   collector_policy()->counters()->update_counters();
  2333     // Clear _foregroundGCShouldWait and, in the event that the
  2334     // foreground collector is waiting, notify it, before
  2335     // returning.
  2336     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2337     _foregroundGCShouldWait = false;
  2338     if (_foregroundGCIsActive) {
  2339       CGC_lock->notify();
  2341     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2342            "Possible deadlock");
  2344   if (TraceCMSState) {
  2345     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2346       " exiting collection CMS state %d",
  2347       Thread::current(), _collectorState);
  2349   if (PrintGC && Verbose) {
  2350     _cmsGen->print_heap_change(prev_used);
  2354 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
  2355   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  2356          "Foreground collector should be waiting, not executing");
  2357   assert(Thread::current()->is_VM_thread(), "A foreground collection"
  2358     "may only be done by the VM Thread with the world stopped");
  2359   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  2360          "VM thread should have CMS token");
  2362   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  2363     true, gclog_or_tty);)
  2364   if (UseAdaptiveSizePolicy) {
  2365     size_policy()->ms_collection_begin();
  2367   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  2369   HandleMark hm;  // Discard invalid handles created during verification
  2371   if (VerifyBeforeGC &&
  2372       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2373     Universe::verify(true);
  2376   bool init_mark_was_synchronous = false; // until proven otherwise
  2377   while (_collectorState != Idling) {
  2378     if (TraceCMSState) {
  2379       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2380         Thread::current(), _collectorState);
  2382     switch (_collectorState) {
  2383       case InitialMarking:
  2384         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  2385         checkpointRootsInitial(false);
  2386         assert(_collectorState == Marking, "Collector state should have changed"
  2387           " within checkpointRootsInitial()");
  2388         break;
  2389       case Marking:
  2390         // initial marking in checkpointRootsInitialWork has been completed
  2391         if (VerifyDuringGC &&
  2392             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2393           gclog_or_tty->print("Verify before initial mark: ");
  2394           Universe::verify(true);
  2397           bool res = markFromRoots(false);
  2398           assert(res && _collectorState == FinalMarking, "Collector state should "
  2399             "have changed");
  2400           break;
  2402       case FinalMarking:
  2403         if (VerifyDuringGC &&
  2404             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2405           gclog_or_tty->print("Verify before re-mark: ");
  2406           Universe::verify(true);
  2408         checkpointRootsFinal(false, clear_all_soft_refs,
  2409                              init_mark_was_synchronous);
  2410         assert(_collectorState == Sweeping, "Collector state should not "
  2411           "have changed within checkpointRootsFinal()");
  2412         break;
  2413       case Sweeping:
  2414         // final marking in checkpointRootsFinal has been completed
  2415         if (VerifyDuringGC &&
  2416             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2417           gclog_or_tty->print("Verify before sweep: ");
  2418           Universe::verify(true);
  2420         sweep(false);
  2421         assert(_collectorState == Resizing, "Incorrect state");
  2422         break;
  2423       case Resizing: {
  2424         // Sweeping has been completed; the actual resize in this case
  2425         // is done separately; nothing to be done in this state.
  2426         _collectorState = Resetting;
  2427         break;
  2429       case Resetting:
  2430         // The heap has been resized.
  2431         if (VerifyDuringGC &&
  2432             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2433           gclog_or_tty->print("Verify before reset: ");
  2434           Universe::verify(true);
  2436         reset(false);
  2437         assert(_collectorState == Idling, "Collector state should "
  2438           "have changed");
  2439         break;
  2440       case Precleaning:
  2441       case AbortablePreclean:
  2442         // Elide the preclean phase
  2443         _collectorState = FinalMarking;
  2444         break;
  2445       default:
  2446         ShouldNotReachHere();
  2448     if (TraceCMSState) {
  2449       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2450         Thread::current(), _collectorState);
  2454   if (UseAdaptiveSizePolicy) {
  2455     GenCollectedHeap* gch = GenCollectedHeap::heap();
  2456     size_policy()->ms_collection_end(gch->gc_cause());
  2459   if (VerifyAfterGC &&
  2460       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2461     Universe::verify(true);
  2463   if (TraceCMSState) {
  2464     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2465       " exiting collection CMS state %d",
  2466       Thread::current(), _collectorState);
  2470 bool CMSCollector::waitForForegroundGC() {
  2471   bool res = false;
  2472   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2473          "CMS thread should have CMS token");
  2474   // Block the foreground collector until the
  2475   // background collectors decides whether to
  2476   // yield.
  2477   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2478   _foregroundGCShouldWait = true;
  2479   if (_foregroundGCIsActive) {
  2480     // The background collector yields to the
  2481     // foreground collector and returns a value
  2482     // indicating that it has yielded.  The foreground
  2483     // collector can proceed.
  2484     res = true;
  2485     _foregroundGCShouldWait = false;
  2486     ConcurrentMarkSweepThread::clear_CMS_flag(
  2487       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2488     ConcurrentMarkSweepThread::set_CMS_flag(
  2489       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2490     // Get a possibly blocked foreground thread going
  2491     CGC_lock->notify();
  2492     if (TraceCMSState) {
  2493       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  2494         Thread::current(), _collectorState);
  2496     while (_foregroundGCIsActive) {
  2497       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  2499     ConcurrentMarkSweepThread::set_CMS_flag(
  2500       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2501     ConcurrentMarkSweepThread::clear_CMS_flag(
  2502       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2504   if (TraceCMSState) {
  2505     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  2506       Thread::current(), _collectorState);
  2508   return res;
  2511 // Because of the need to lock the free lists and other structures in
  2512 // the collector, common to all the generations that the collector is
  2513 // collecting, we need the gc_prologues of individual CMS generations
  2514 // delegate to their collector. It may have been simpler had the
  2515 // current infrastructure allowed one to call a prologue on a
  2516 // collector. In the absence of that we have the generation's
  2517 // prologue delegate to the collector, which delegates back
  2518 // some "local" work to a worker method in the individual generations
  2519 // that it's responsible for collecting, while itself doing any
  2520 // work common to all generations it's responsible for. A similar
  2521 // comment applies to the  gc_epilogue()'s.
  2522 // The role of the varaible _between_prologue_and_epilogue is to
  2523 // enforce the invocation protocol.
  2524 void CMSCollector::gc_prologue(bool full) {
  2525   // Call gc_prologue_work() for each CMSGen and PermGen that
  2526   // we are responsible for.
  2528   // The following locking discipline assumes that we are only called
  2529   // when the world is stopped.
  2530   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  2532   // The CMSCollector prologue must call the gc_prologues for the
  2533   // "generations" (including PermGen if any) that it's responsible
  2534   // for.
  2536   assert(   Thread::current()->is_VM_thread()
  2537          || (   CMSScavengeBeforeRemark
  2538              && Thread::current()->is_ConcurrentGC_thread()),
  2539          "Incorrect thread type for prologue execution");
  2541   if (_between_prologue_and_epilogue) {
  2542     // We have already been invoked; this is a gc_prologue delegation
  2543     // from yet another CMS generation that we are responsible for, just
  2544     // ignore it since all relevant work has already been done.
  2545     return;
  2548   // set a bit saying prologue has been called; cleared in epilogue
  2549   _between_prologue_and_epilogue = true;
  2550   // Claim locks for common data structures, then call gc_prologue_work()
  2551   // for each CMSGen and PermGen that we are responsible for.
  2553   getFreelistLocks();   // gets free list locks on constituent spaces
  2554   bitMapLock()->lock_without_safepoint_check();
  2556   // Should call gc_prologue_work() for all cms gens we are responsible for
  2557   bool registerClosure =    _collectorState >= Marking
  2558                          && _collectorState < Sweeping;
  2559   ModUnionClosure* muc = ParallelGCThreads > 0 ? &_modUnionClosurePar
  2560                                                : &_modUnionClosure;
  2561   _cmsGen->gc_prologue_work(full, registerClosure, muc);
  2562   _permGen->gc_prologue_work(full, registerClosure, muc);
  2564   if (!full) {
  2565     stats().record_gc0_begin();
  2569 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  2570   // Delegate to CMScollector which knows how to coordinate between
  2571   // this and any other CMS generations that it is responsible for
  2572   // collecting.
  2573   collector()->gc_prologue(full);
  2576 // This is a "private" interface for use by this generation's CMSCollector.
  2577 // Not to be called directly by any other entity (for instance,
  2578 // GenCollectedHeap, which calls the "public" gc_prologue method above).
  2579 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  2580   bool registerClosure, ModUnionClosure* modUnionClosure) {
  2581   assert(!incremental_collection_failed(), "Shouldn't be set yet");
  2582   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  2583     "Should be NULL");
  2584   if (registerClosure) {
  2585     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  2587   cmsSpace()->gc_prologue();
  2588   // Clear stat counters
  2589   NOT_PRODUCT(
  2590     assert(_numObjectsPromoted == 0, "check");
  2591     assert(_numWordsPromoted   == 0, "check");
  2592     if (Verbose && PrintGC) {
  2593       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  2594                           SIZE_FORMAT" bytes concurrently",
  2595       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  2597     _numObjectsAllocated = 0;
  2598     _numWordsAllocated   = 0;
  2602 void CMSCollector::gc_epilogue(bool full) {
  2603   // The following locking discipline assumes that we are only called
  2604   // when the world is stopped.
  2605   assert(SafepointSynchronize::is_at_safepoint(),
  2606          "world is stopped assumption");
  2608   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  2609   // if linear allocation blocks need to be appropriately marked to allow the
  2610   // the blocks to be parsable. We also check here whether we need to nudge the
  2611   // CMS collector thread to start a new cycle (if it's not already active).
  2612   assert(   Thread::current()->is_VM_thread()
  2613          || (   CMSScavengeBeforeRemark
  2614              && Thread::current()->is_ConcurrentGC_thread()),
  2615          "Incorrect thread type for epilogue execution");
  2617   if (!_between_prologue_and_epilogue) {
  2618     // We have already been invoked; this is a gc_epilogue delegation
  2619     // from yet another CMS generation that we are responsible for, just
  2620     // ignore it since all relevant work has already been done.
  2621     return;
  2623   assert(haveFreelistLocks(), "must have freelist locks");
  2624   assert_lock_strong(bitMapLock());
  2626   _cmsGen->gc_epilogue_work(full);
  2627   _permGen->gc_epilogue_work(full);
  2629   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  2630     // in case sampling was not already enabled, enable it
  2631     _start_sampling = true;
  2633   // reset _eden_chunk_array so sampling starts afresh
  2634   _eden_chunk_index = 0;
  2636   size_t cms_used   = _cmsGen->cmsSpace()->used();
  2637   size_t perm_used  = _permGen->cmsSpace()->used();
  2639   // update performance counters - this uses a special version of
  2640   // update_counters() that allows the utilization to be passed as a
  2641   // parameter, avoiding multiple calls to used().
  2642   //
  2643   _cmsGen->update_counters(cms_used);
  2644   _permGen->update_counters(perm_used);
  2646   if (CMSIncrementalMode) {
  2647     icms_update_allocation_limits();
  2650   bitMapLock()->unlock();
  2651   releaseFreelistLocks();
  2653   _between_prologue_and_epilogue = false;  // ready for next cycle
  2656 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  2657   collector()->gc_epilogue(full);
  2659   // Also reset promotion tracking in par gc thread states.
  2660   if (ParallelGCThreads > 0) {
  2661     for (uint i = 0; i < ParallelGCThreads; i++) {
  2662       _par_gc_thread_states[i]->promo.stopTrackingPromotions();
  2667 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  2668   assert(!incremental_collection_failed(), "Should have been cleared");
  2669   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  2670   cmsSpace()->gc_epilogue();
  2671     // Print stat counters
  2672   NOT_PRODUCT(
  2673     assert(_numObjectsAllocated == 0, "check");
  2674     assert(_numWordsAllocated == 0, "check");
  2675     if (Verbose && PrintGC) {
  2676       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  2677                           SIZE_FORMAT" bytes",
  2678                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  2680     _numObjectsPromoted = 0;
  2681     _numWordsPromoted   = 0;
  2684   if (PrintGC && Verbose) {
  2685     // Call down the chain in contiguous_available needs the freelistLock
  2686     // so print this out before releasing the freeListLock.
  2687     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  2688                         contiguous_available());
  2692 #ifndef PRODUCT
  2693 bool CMSCollector::have_cms_token() {
  2694   Thread* thr = Thread::current();
  2695   if (thr->is_VM_thread()) {
  2696     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  2697   } else if (thr->is_ConcurrentGC_thread()) {
  2698     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  2699   } else if (thr->is_GC_task_thread()) {
  2700     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  2701            ParGCRareEvent_lock->owned_by_self();
  2703   return false;
  2705 #endif
  2707 // Check reachability of the given heap address in CMS generation,
  2708 // treating all other generations as roots.
  2709 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  2710   // We could "guarantee" below, rather than assert, but i'll
  2711   // leave these as "asserts" so that an adventurous debugger
  2712   // could try this in the product build provided some subset of
  2713   // the conditions were met, provided they were intersted in the
  2714   // results and knew that the computation below wouldn't interfere
  2715   // with other concurrent computations mutating the structures
  2716   // being read or written.
  2717   assert(SafepointSynchronize::is_at_safepoint(),
  2718          "Else mutations in object graph will make answer suspect");
  2719   assert(have_cms_token(), "Should hold cms token");
  2720   assert(haveFreelistLocks(), "must hold free list locks");
  2721   assert_lock_strong(bitMapLock());
  2723   // Clear the marking bit map array before starting, but, just
  2724   // for kicks, first report if the given address is already marked
  2725   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  2726                 _markBitMap.isMarked(addr) ? "" : " not");
  2728   if (verify_after_remark()) {
  2729     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2730     bool result = verification_mark_bm()->isMarked(addr);
  2731     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  2732                            result ? "IS" : "is NOT");
  2733     return result;
  2734   } else {
  2735     gclog_or_tty->print_cr("Could not compute result");
  2736     return false;
  2740 ////////////////////////////////////////////////////////
  2741 // CMS Verification Support
  2742 ////////////////////////////////////////////////////////
  2743 // Following the remark phase, the following invariant
  2744 // should hold -- each object in the CMS heap which is
  2745 // marked in markBitMap() should be marked in the verification_mark_bm().
  2747 class VerifyMarkedClosure: public BitMapClosure {
  2748   CMSBitMap* _marks;
  2749   bool       _failed;
  2751  public:
  2752   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  2754   bool do_bit(size_t offset) {
  2755     HeapWord* addr = _marks->offsetToHeapWord(offset);
  2756     if (!_marks->isMarked(addr)) {
  2757       oop(addr)->print();
  2758       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  2759       _failed = true;
  2761     return true;
  2764   bool failed() { return _failed; }
  2765 };
  2767 bool CMSCollector::verify_after_remark() {
  2768   gclog_or_tty->print(" [Verifying CMS Marking... ");
  2769   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2770   static bool init = false;
  2772   assert(SafepointSynchronize::is_at_safepoint(),
  2773          "Else mutations in object graph will make answer suspect");
  2774   assert(have_cms_token(),
  2775          "Else there may be mutual interference in use of "
  2776          " verification data structures");
  2777   assert(_collectorState > Marking && _collectorState <= Sweeping,
  2778          "Else marking info checked here may be obsolete");
  2779   assert(haveFreelistLocks(), "must hold free list locks");
  2780   assert_lock_strong(bitMapLock());
  2783   // Allocate marking bit map if not already allocated
  2784   if (!init) { // first time
  2785     if (!verification_mark_bm()->allocate(_span)) {
  2786       return false;
  2788     init = true;
  2791   assert(verification_mark_stack()->isEmpty(), "Should be empty");
  2793   // Turn off refs discovery -- so we will be tracing through refs.
  2794   // This is as intended, because by this time
  2795   // GC must already have cleared any refs that need to be cleared,
  2796   // and traced those that need to be marked; moreover,
  2797   // the marking done here is not going to intefere in any
  2798   // way with the marking information used by GC.
  2799   NoRefDiscovery no_discovery(ref_processor());
  2801   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  2803   // Clear any marks from a previous round
  2804   verification_mark_bm()->clear_all();
  2805   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  2806   assert(overflow_list_is_empty(), "overflow list should be empty");
  2808   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2809   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  2810   // Update the saved marks which may affect the root scans.
  2811   gch->save_marks();
  2813   if (CMSRemarkVerifyVariant == 1) {
  2814     // In this first variant of verification, we complete
  2815     // all marking, then check if the new marks-verctor is
  2816     // a subset of the CMS marks-vector.
  2817     verify_after_remark_work_1();
  2818   } else if (CMSRemarkVerifyVariant == 2) {
  2819     // In this second variant of verification, we flag an error
  2820     // (i.e. an object reachable in the new marks-vector not reachable
  2821     // in the CMS marks-vector) immediately, also indicating the
  2822     // identify of an object (A) that references the unmarked object (B) --
  2823     // presumably, a mutation to A failed to be picked up by preclean/remark?
  2824     verify_after_remark_work_2();
  2825   } else {
  2826     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  2827             CMSRemarkVerifyVariant);
  2829   gclog_or_tty->print(" done] ");
  2830   return true;
  2833 void CMSCollector::verify_after_remark_work_1() {
  2834   ResourceMark rm;
  2835   HandleMark  hm;
  2836   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2838   // Mark from roots one level into CMS
  2839   MarkRefsIntoClosure notOlder(_span, verification_mark_bm(), true /* nmethods */);
  2840   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2842   gch->gen_process_strong_roots(_cmsGen->level(),
  2843                                 true,   // younger gens are roots
  2844                                 true,   // collecting perm gen
  2845                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2846                                 NULL, &notOlder);
  2848   // Now mark from the roots
  2849   assert(_revisitStack.isEmpty(), "Should be empty");
  2850   MarkFromRootsClosure markFromRootsClosure(this, _span,
  2851     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
  2852     false /* don't yield */, true /* verifying */);
  2853   assert(_restart_addr == NULL, "Expected pre-condition");
  2854   verification_mark_bm()->iterate(&markFromRootsClosure);
  2855   while (_restart_addr != NULL) {
  2856     // Deal with stack overflow: by restarting at the indicated
  2857     // address.
  2858     HeapWord* ra = _restart_addr;
  2859     markFromRootsClosure.reset(ra);
  2860     _restart_addr = NULL;
  2861     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2863   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2864   verify_work_stacks_empty();
  2865   // Should reset the revisit stack above, since no class tree
  2866   // surgery is forthcoming.
  2867   _revisitStack.reset(); // throwing away all contents
  2869   // Marking completed -- now verify that each bit marked in
  2870   // verification_mark_bm() is also marked in markBitMap(); flag all
  2871   // errors by printing corresponding objects.
  2872   VerifyMarkedClosure vcl(markBitMap());
  2873   verification_mark_bm()->iterate(&vcl);
  2874   if (vcl.failed()) {
  2875     gclog_or_tty->print("Verification failed");
  2876     Universe::heap()->print();
  2877     fatal(" ... aborting");
  2881 void CMSCollector::verify_after_remark_work_2() {
  2882   ResourceMark rm;
  2883   HandleMark  hm;
  2884   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2886   // Mark from roots one level into CMS
  2887   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  2888                                      markBitMap(), true /* nmethods */);
  2889   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2890   gch->gen_process_strong_roots(_cmsGen->level(),
  2891                                 true,   // younger gens are roots
  2892                                 true,   // collecting perm gen
  2893                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2894                                 NULL, &notOlder);
  2896   // Now mark from the roots
  2897   assert(_revisitStack.isEmpty(), "Should be empty");
  2898   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  2899     verification_mark_bm(), markBitMap(), verification_mark_stack());
  2900   assert(_restart_addr == NULL, "Expected pre-condition");
  2901   verification_mark_bm()->iterate(&markFromRootsClosure);
  2902   while (_restart_addr != NULL) {
  2903     // Deal with stack overflow: by restarting at the indicated
  2904     // address.
  2905     HeapWord* ra = _restart_addr;
  2906     markFromRootsClosure.reset(ra);
  2907     _restart_addr = NULL;
  2908     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2910   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2911   verify_work_stacks_empty();
  2912   // Should reset the revisit stack above, since no class tree
  2913   // surgery is forthcoming.
  2914   _revisitStack.reset(); // throwing away all contents
  2916   // Marking completed -- now verify that each bit marked in
  2917   // verification_mark_bm() is also marked in markBitMap(); flag all
  2918   // errors by printing corresponding objects.
  2919   VerifyMarkedClosure vcl(markBitMap());
  2920   verification_mark_bm()->iterate(&vcl);
  2921   assert(!vcl.failed(), "Else verification above should not have succeeded");
  2924 void ConcurrentMarkSweepGeneration::save_marks() {
  2925   // delegate to CMS space
  2926   cmsSpace()->save_marks();
  2927   for (uint i = 0; i < ParallelGCThreads; i++) {
  2928     _par_gc_thread_states[i]->promo.startTrackingPromotions();
  2932 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  2933   return cmsSpace()->no_allocs_since_save_marks();
  2936 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  2938 void ConcurrentMarkSweepGeneration::                            \
  2939 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  2940   cl->set_generation(this);                                     \
  2941   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  2942   cl->reset_generation();                                       \
  2943   save_marks();                                                 \
  2946 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  2948 void
  2949 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
  2951   // Not currently implemented; need to do the following. -- ysr.
  2952   // dld -- I think that is used for some sort of allocation profiler.  So it
  2953   // really means the objects allocated by the mutator since the last
  2954   // GC.  We could potentially implement this cheaply by recording only
  2955   // the direct allocations in a side data structure.
  2956   //
  2957   // I think we probably ought not to be required to support these
  2958   // iterations at any arbitrary point; I think there ought to be some
  2959   // call to enable/disable allocation profiling in a generation/space,
  2960   // and the iterator ought to return the objects allocated in the
  2961   // gen/space since the enable call, or the last iterator call (which
  2962   // will probably be at a GC.)  That way, for gens like CM&S that would
  2963   // require some extra data structure to support this, we only pay the
  2964   // cost when it's in use...
  2965   cmsSpace()->object_iterate_since_last_GC(blk);
  2968 void
  2969 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  2970   cl->set_generation(this);
  2971   younger_refs_in_space_iterate(_cmsSpace, cl);
  2972   cl->reset_generation();
  2975 void
  2976 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
  2977   if (freelistLock()->owned_by_self()) {
  2978     Generation::oop_iterate(mr, cl);
  2979   } else {
  2980     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  2981     Generation::oop_iterate(mr, cl);
  2985 void
  2986 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
  2987   if (freelistLock()->owned_by_self()) {
  2988     Generation::oop_iterate(cl);
  2989   } else {
  2990     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  2991     Generation::oop_iterate(cl);
  2995 void
  2996 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  2997   if (freelistLock()->owned_by_self()) {
  2998     Generation::object_iterate(cl);
  2999   } else {
  3000     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3001     Generation::object_iterate(cl);
  3005 void
  3006 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
  3009 void
  3010 ConcurrentMarkSweepGeneration::post_compact() {
  3013 void
  3014 ConcurrentMarkSweepGeneration::prepare_for_verify() {
  3015   // Fix the linear allocation blocks to look like free blocks.
  3017   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3018   // are not called when the heap is verified during universe initialization and
  3019   // at vm shutdown.
  3020   if (freelistLock()->owned_by_self()) {
  3021     cmsSpace()->prepare_for_verify();
  3022   } else {
  3023     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3024     cmsSpace()->prepare_for_verify();
  3028 void
  3029 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
  3030   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3031   // are not called when the heap is verified during universe initialization and
  3032   // at vm shutdown.
  3033   if (freelistLock()->owned_by_self()) {
  3034     cmsSpace()->verify(false /* ignored */);
  3035   } else {
  3036     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3037     cmsSpace()->verify(false /* ignored */);
  3041 void CMSCollector::verify(bool allow_dirty /* ignored */) {
  3042   _cmsGen->verify(allow_dirty);
  3043   _permGen->verify(allow_dirty);
  3046 #ifndef PRODUCT
  3047 bool CMSCollector::overflow_list_is_empty() const {
  3048   assert(_num_par_pushes >= 0, "Inconsistency");
  3049   if (_overflow_list == NULL) {
  3050     assert(_num_par_pushes == 0, "Inconsistency");
  3052   return _overflow_list == NULL;
  3055 // The methods verify_work_stacks_empty() and verify_overflow_empty()
  3056 // merely consolidate assertion checks that appear to occur together frequently.
  3057 void CMSCollector::verify_work_stacks_empty() const {
  3058   assert(_markStack.isEmpty(), "Marking stack should be empty");
  3059   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3062 void CMSCollector::verify_overflow_empty() const {
  3063   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3064   assert(no_preserved_marks(), "No preserved marks");
  3066 #endif // PRODUCT
  3068 // Decide if we want to enable class unloading as part of the
  3069 // ensuing concurrent GC cycle. We will collect the perm gen and
  3070 // unload classes if it's the case that:
  3071 // (1) an explicit gc request has been made and the flag
  3072 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
  3073 // (2) (a) class unloading is enabled at the command line, and
  3074 //     (b) (i)   perm gen threshold has been crossed, or
  3075 //         (ii)  old gen is getting really full, or
  3076 //         (iii) the previous N CMS collections did not collect the
  3077 //               perm gen
  3078 // NOTE: Provided there is no change in the state of the heap between
  3079 // calls to this method, it should have idempotent results. Moreover,
  3080 // its results should be monotonically increasing (i.e. going from 0 to 1,
  3081 // but not 1 to 0) between successive calls between which the heap was
  3082 // not collected. For the implementation below, it must thus rely on
  3083 // the property that concurrent_cycles_since_last_unload()
  3084 // will not decrease unless a collection cycle happened and that
  3085 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
  3086 // themselves also monotonic in that sense. See check_monotonicity()
  3087 // below.
  3088 bool CMSCollector::update_should_unload_classes() {
  3089   _should_unload_classes = false;
  3090   // Condition 1 above
  3091   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
  3092     _should_unload_classes = true;
  3093   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
  3094     // Disjuncts 2.b.(i,ii,iii) above
  3095     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
  3096                               CMSClassUnloadingMaxInterval)
  3097                            || _permGen->should_concurrent_collect()
  3098                            || _cmsGen->is_too_full();
  3100   return _should_unload_classes;
  3103 bool ConcurrentMarkSweepGeneration::is_too_full() const {
  3104   bool res = should_concurrent_collect();
  3105   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
  3106   return res;
  3109 void CMSCollector::setup_cms_unloading_and_verification_state() {
  3110   const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  3111                              || VerifyBeforeExit;
  3112   const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
  3113                              |   SharedHeap::SO_CodeCache;
  3115   if (should_unload_classes()) {   // Should unload classes this cycle
  3116     remove_root_scanning_option(rso);  // Shrink the root set appropriately
  3117     set_verifying(should_verify);    // Set verification state for this cycle
  3118     return;                            // Nothing else needs to be done at this time
  3121   // Not unloading classes this cycle
  3122   assert(!should_unload_classes(), "Inconsitency!");
  3123   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
  3124     // We were not verifying, or we _were_ unloading classes in the last cycle,
  3125     // AND some verification options are enabled this cycle; in this case,
  3126     // we must make sure that the deadness map is allocated if not already so,
  3127     // and cleared (if already allocated previously --
  3128     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
  3129     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
  3130       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
  3131         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
  3132                 "permanent generation verification disabled");
  3133         return;  // Note that we leave verification disabled, so we'll retry this
  3134                  // allocation next cycle. We _could_ remember this failure
  3135                  // and skip further attempts and permanently disable verification
  3136                  // attempts if that is considered more desirable.
  3138       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
  3139               "_perm_gen_ver_bit_map inconsistency?");
  3140     } else {
  3141       perm_gen_verify_bit_map()->clear_all();
  3143     // Include symbols, strings and code cache elements to prevent their resurrection.
  3144     add_root_scanning_option(rso);
  3145     set_verifying(true);
  3146   } else if (verifying() && !should_verify) {
  3147     // We were verifying, but some verification flags got disabled.
  3148     set_verifying(false);
  3149     // Exclude symbols, strings and code cache elements from root scanning to
  3150     // reduce IM and RM pauses.
  3151     remove_root_scanning_option(rso);
  3156 #ifndef PRODUCT
  3157 HeapWord* CMSCollector::block_start(const void* p) const {
  3158   const HeapWord* addr = (HeapWord*)p;
  3159   if (_span.contains(p)) {
  3160     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  3161       return _cmsGen->cmsSpace()->block_start(p);
  3162     } else {
  3163       assert(_permGen->cmsSpace()->is_in_reserved(addr),
  3164              "Inconsistent _span?");
  3165       return _permGen->cmsSpace()->block_start(p);
  3168   return NULL;
  3170 #endif
  3172 HeapWord*
  3173 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  3174                                                    bool   tlab,
  3175                                                    bool   parallel) {
  3176   assert(!tlab, "Can't deal with TLAB allocation");
  3177   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3178   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  3179     CMSExpansionCause::_satisfy_allocation);
  3180   if (GCExpandToAllocateDelayMillis > 0) {
  3181     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3183   return have_lock_and_allocate(word_size, tlab);
  3186 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
  3187 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
  3188 // to CardGeneration and share it...
  3189 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  3190   CMSExpansionCause::Cause cause)
  3192   assert_locked_or_safepoint(Heap_lock);
  3194   size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
  3195   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  3196   bool success = false;
  3197   if (aligned_expand_bytes > aligned_bytes) {
  3198     success = grow_by(aligned_expand_bytes);
  3200   if (!success) {
  3201     success = grow_by(aligned_bytes);
  3203   if (!success) {
  3204     size_t remaining_bytes = _virtual_space.uncommitted_size();
  3205     if (remaining_bytes > 0) {
  3206       success = grow_by(remaining_bytes);
  3209   if (GC_locker::is_active()) {
  3210     if (PrintGC && Verbose) {
  3211       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
  3214   // remember why we expanded; this information is used
  3215   // by shouldConcurrentCollect() when making decisions on whether to start
  3216   // a new CMS cycle.
  3217   if (success) {
  3218     set_expansion_cause(cause);
  3219     if (PrintGCDetails && Verbose) {
  3220       gclog_or_tty->print_cr("Expanded CMS gen for %s",
  3221         CMSExpansionCause::to_string(cause));
  3226 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  3227   HeapWord* res = NULL;
  3228   MutexLocker x(ParGCRareEvent_lock);
  3229   while (true) {
  3230     // Expansion by some other thread might make alloc OK now:
  3231     res = ps->lab.alloc(word_sz);
  3232     if (res != NULL) return res;
  3233     // If there's not enough expansion space available, give up.
  3234     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  3235       return NULL;
  3237     // Otherwise, we try expansion.
  3238     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  3239       CMSExpansionCause::_allocate_par_lab);
  3240     // Now go around the loop and try alloc again;
  3241     // A competing par_promote might beat us to the expansion space,
  3242     // so we may go around the loop again if promotion fails agaion.
  3243     if (GCExpandToAllocateDelayMillis > 0) {
  3244       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3250 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  3251   PromotionInfo* promo) {
  3252   MutexLocker x(ParGCRareEvent_lock);
  3253   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  3254   while (true) {
  3255     // Expansion by some other thread might make alloc OK now:
  3256     if (promo->ensure_spooling_space()) {
  3257       assert(promo->has_spooling_space(),
  3258              "Post-condition of successful ensure_spooling_space()");
  3259       return true;
  3261     // If there's not enough expansion space available, give up.
  3262     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  3263       return false;
  3265     // Otherwise, we try expansion.
  3266     expand(refill_size_bytes, MinHeapDeltaBytes,
  3267       CMSExpansionCause::_allocate_par_spooling_space);
  3268     // Now go around the loop and try alloc again;
  3269     // A competing allocation might beat us to the expansion space,
  3270     // so we may go around the loop again if allocation fails again.
  3271     if (GCExpandToAllocateDelayMillis > 0) {
  3272       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3279 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  3280   assert_locked_or_safepoint(Heap_lock);
  3281   size_t size = ReservedSpace::page_align_size_down(bytes);
  3282   if (size > 0) {
  3283     shrink_by(size);
  3287 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  3288   assert_locked_or_safepoint(Heap_lock);
  3289   bool result = _virtual_space.expand_by(bytes);
  3290   if (result) {
  3291     HeapWord* old_end = _cmsSpace->end();
  3292     size_t new_word_size =
  3293       heap_word_size(_virtual_space.committed_size());
  3294     MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3295     _bts->resize(new_word_size);  // resize the block offset shared array
  3296     Universe::heap()->barrier_set()->resize_covered_region(mr);
  3297     // Hmmmm... why doesn't CFLS::set_end verify locking?
  3298     // This is quite ugly; FIX ME XXX
  3299     _cmsSpace->assert_locked();
  3300     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  3302     // update the space and generation capacity counters
  3303     if (UsePerfData) {
  3304       _space_counters->update_capacity();
  3305       _gen_counters->update_all();
  3308     if (Verbose && PrintGC) {
  3309       size_t new_mem_size = _virtual_space.committed_size();
  3310       size_t old_mem_size = new_mem_size - bytes;
  3311       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
  3312                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
  3315   return result;
  3318 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  3319   assert_locked_or_safepoint(Heap_lock);
  3320   bool success = true;
  3321   const size_t remaining_bytes = _virtual_space.uncommitted_size();
  3322   if (remaining_bytes > 0) {
  3323     success = grow_by(remaining_bytes);
  3324     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  3326   return success;
  3329 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  3330   assert_locked_or_safepoint(Heap_lock);
  3331   assert_lock_strong(freelistLock());
  3332   // XXX Fix when compaction is implemented.
  3333   warning("Shrinking of CMS not yet implemented");
  3334   return;
  3338 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  3339 // phases.
  3340 class CMSPhaseAccounting: public StackObj {
  3341  public:
  3342   CMSPhaseAccounting(CMSCollector *collector,
  3343                      const char *phase,
  3344                      bool print_cr = true);
  3345   ~CMSPhaseAccounting();
  3347  private:
  3348   CMSCollector *_collector;
  3349   const char *_phase;
  3350   elapsedTimer _wallclock;
  3351   bool _print_cr;
  3353  public:
  3354   // Not MT-safe; so do not pass around these StackObj's
  3355   // where they may be accessed by other threads.
  3356   jlong wallclock_millis() {
  3357     assert(_wallclock.is_active(), "Wall clock should not stop");
  3358     _wallclock.stop();  // to record time
  3359     jlong ret = _wallclock.milliseconds();
  3360     _wallclock.start(); // restart
  3361     return ret;
  3363 };
  3365 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  3366                                        const char *phase,
  3367                                        bool print_cr) :
  3368   _collector(collector), _phase(phase), _print_cr(print_cr) {
  3370   if (PrintCMSStatistics != 0) {
  3371     _collector->resetYields();
  3373   if (PrintGCDetails && PrintGCTimeStamps) {
  3374     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3375     gclog_or_tty->stamp();
  3376     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
  3377       _collector->cmsGen()->short_name(), _phase);
  3379   _collector->resetTimer();
  3380   _wallclock.start();
  3381   _collector->startTimer();
  3384 CMSPhaseAccounting::~CMSPhaseAccounting() {
  3385   assert(_wallclock.is_active(), "Wall clock should not have stopped");
  3386   _collector->stopTimer();
  3387   _wallclock.stop();
  3388   if (PrintGCDetails) {
  3389     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3390     if (PrintGCTimeStamps) {
  3391       gclog_or_tty->stamp();
  3392       gclog_or_tty->print(": ");
  3394     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  3395                  _collector->cmsGen()->short_name(),
  3396                  _phase, _collector->timerValue(), _wallclock.seconds());
  3397     if (_print_cr) {
  3398       gclog_or_tty->print_cr("");
  3400     if (PrintCMSStatistics != 0) {
  3401       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  3402                     _collector->yields());
  3407 // CMS work
  3409 // Checkpoint the roots into this generation from outside
  3410 // this generation. [Note this initial checkpoint need only
  3411 // be approximate -- we'll do a catch up phase subsequently.]
  3412 void CMSCollector::checkpointRootsInitial(bool asynch) {
  3413   assert(_collectorState == InitialMarking, "Wrong collector state");
  3414   check_correct_thread_executing();
  3415   ReferenceProcessor* rp = ref_processor();
  3416   SpecializationStats::clear();
  3417   assert(_restart_addr == NULL, "Control point invariant");
  3418   if (asynch) {
  3419     // acquire locks for subsequent manipulations
  3420     MutexLockerEx x(bitMapLock(),
  3421                     Mutex::_no_safepoint_check_flag);
  3422     checkpointRootsInitialWork(asynch);
  3423     rp->verify_no_references_recorded();
  3424     rp->enable_discovery(); // enable ("weak") refs discovery
  3425     _collectorState = Marking;
  3426   } else {
  3427     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  3428     // which recognizes if we are a CMS generation, and doesn't try to turn on
  3429     // discovery; verify that they aren't meddling.
  3430     assert(!rp->discovery_is_atomic(),
  3431            "incorrect setting of discovery predicate");
  3432     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  3433            "ref discovery for this generation kind");
  3434     // already have locks
  3435     checkpointRootsInitialWork(asynch);
  3436     rp->enable_discovery(); // now enable ("weak") refs discovery
  3437     _collectorState = Marking;
  3439   SpecializationStats::print();
  3442 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  3443   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  3444   assert(_collectorState == InitialMarking, "just checking");
  3446   // If there has not been a GC[n-1] since last GC[n] cycle completed,
  3447   // precede our marking with a collection of all
  3448   // younger generations to keep floating garbage to a minimum.
  3449   // XXX: we won't do this for now -- it's an optimization to be done later.
  3451   // already have locks
  3452   assert_lock_strong(bitMapLock());
  3453   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  3455   // Setup the verification and class unloading state for this
  3456   // CMS collection cycle.
  3457   setup_cms_unloading_and_verification_state();
  3459   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
  3460     PrintGCDetails && Verbose, true, gclog_or_tty);)
  3461   if (UseAdaptiveSizePolicy) {
  3462     size_policy()->checkpoint_roots_initial_begin();
  3465   // Reset all the PLAB chunk arrays if necessary.
  3466   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  3467     reset_survivor_plab_arrays();
  3470   ResourceMark rm;
  3471   HandleMark  hm;
  3473   FalseClosure falseClosure;
  3474   // In the case of a synchronous collection, we will elide the
  3475   // remark step, so it's important to catch all the nmethod oops
  3476   // in this step; hence the last argument to the constrcutor below.
  3477   MarkRefsIntoClosure notOlder(_span, &_markBitMap, !asynch /* nmethods */);
  3478   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3480   verify_work_stacks_empty();
  3481   verify_overflow_empty();
  3483   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3484   // Update the saved marks which may affect the root scans.
  3485   gch->save_marks();
  3487   // weak reference processing has not started yet.
  3488   ref_processor()->set_enqueuing_is_done(false);
  3491     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3492     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3493     gch->gen_process_strong_roots(_cmsGen->level(),
  3494                                   true,   // younger gens are roots
  3495                                   true,   // collecting perm gen
  3496                                   SharedHeap::ScanningOption(roots_scanning_options()),
  3497                                   NULL, &notOlder);
  3500   // Clear mod-union table; it will be dirtied in the prologue of
  3501   // CMS generation per each younger generation collection.
  3503   assert(_modUnionTable.isAllClear(),
  3504        "Was cleared in most recent final checkpoint phase"
  3505        " or no bits are set in the gc_prologue before the start of the next "
  3506        "subsequent marking phase.");
  3508   // Temporarily disabled, since pre/post-consumption closures don't
  3509   // care about precleaned cards
  3510   #if 0
  3512     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
  3513                              (HeapWord*)_virtual_space.high());
  3514     _ct->ct_bs()->preclean_dirty_cards(mr);
  3516   #endif
  3518   // Save the end of the used_region of the constituent generations
  3519   // to be used to limit the extent of sweep in each generation.
  3520   save_sweep_limits();
  3521   if (UseAdaptiveSizePolicy) {
  3522     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  3524   verify_overflow_empty();
  3527 bool CMSCollector::markFromRoots(bool asynch) {
  3528   // we might be tempted to assert that:
  3529   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  3530   //        "inconsistent argument?");
  3531   // However that wouldn't be right, because it's possible that
  3532   // a safepoint is indeed in progress as a younger generation
  3533   // stop-the-world GC happens even as we mark in this generation.
  3534   assert(_collectorState == Marking, "inconsistent state?");
  3535   check_correct_thread_executing();
  3536   verify_overflow_empty();
  3538   bool res;
  3539   if (asynch) {
  3541     // Start the timers for adaptive size policy for the concurrent phases
  3542     // Do it here so that the foreground MS can use the concurrent
  3543     // timer since a foreground MS might has the sweep done concurrently
  3544     // or STW.
  3545     if (UseAdaptiveSizePolicy) {
  3546       size_policy()->concurrent_marking_begin();
  3549     // Weak ref discovery note: We may be discovering weak
  3550     // refs in this generation concurrent (but interleaved) with
  3551     // weak ref discovery by a younger generation collector.
  3553     CMSTokenSyncWithLocks ts(true, bitMapLock());
  3554     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3555     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
  3556     res = markFromRootsWork(asynch);
  3557     if (res) {
  3558       _collectorState = Precleaning;
  3559     } else { // We failed and a foreground collection wants to take over
  3560       assert(_foregroundGCIsActive, "internal state inconsistency");
  3561       assert(_restart_addr == NULL,  "foreground will restart from scratch");
  3562       if (PrintGCDetails) {
  3563         gclog_or_tty->print_cr("bailing out to foreground collection");
  3566     if (UseAdaptiveSizePolicy) {
  3567       size_policy()->concurrent_marking_end();
  3569   } else {
  3570     assert(SafepointSynchronize::is_at_safepoint(),
  3571            "inconsistent with asynch == false");
  3572     if (UseAdaptiveSizePolicy) {
  3573       size_policy()->ms_collection_marking_begin();
  3575     // already have locks
  3576     res = markFromRootsWork(asynch);
  3577     _collectorState = FinalMarking;
  3578     if (UseAdaptiveSizePolicy) {
  3579       GenCollectedHeap* gch = GenCollectedHeap::heap();
  3580       size_policy()->ms_collection_marking_end(gch->gc_cause());
  3583   verify_overflow_empty();
  3584   return res;
  3587 bool CMSCollector::markFromRootsWork(bool asynch) {
  3588   // iterate over marked bits in bit map, doing a full scan and mark
  3589   // from these roots using the following algorithm:
  3590   // . if oop is to the right of the current scan pointer,
  3591   //   mark corresponding bit (we'll process it later)
  3592   // . else (oop is to left of current scan pointer)
  3593   //   push oop on marking stack
  3594   // . drain the marking stack
  3596   // Note that when we do a marking step we need to hold the
  3597   // bit map lock -- recall that direct allocation (by mutators)
  3598   // and promotion (by younger generation collectors) is also
  3599   // marking the bit map. [the so-called allocate live policy.]
  3600   // Because the implementation of bit map marking is not
  3601   // robust wrt simultaneous marking of bits in the same word,
  3602   // we need to make sure that there is no such interference
  3603   // between concurrent such updates.
  3605   // already have locks
  3606   assert_lock_strong(bitMapLock());
  3608   // Clear the revisit stack, just in case there are any
  3609   // obsolete contents from a short-circuited previous CMS cycle.
  3610   _revisitStack.reset();
  3611   verify_work_stacks_empty();
  3612   verify_overflow_empty();
  3613   assert(_revisitStack.isEmpty(), "tabula rasa");
  3615   bool result = false;
  3616   if (CMSConcurrentMTEnabled && ParallelCMSThreads > 0) {
  3617     result = do_marking_mt(asynch);
  3618   } else {
  3619     result = do_marking_st(asynch);
  3621   return result;
  3624 // Forward decl
  3625 class CMSConcMarkingTask;
  3627 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  3628   CMSCollector*       _collector;
  3629   CMSConcMarkingTask* _task;
  3630   bool _yield;
  3631  protected:
  3632   virtual void yield();
  3633  public:
  3634   // "n_threads" is the number of threads to be terminated.
  3635   // "queue_set" is a set of work queues of other threads.
  3636   // "collector" is the CMS collector associated with this task terminator.
  3637   // "yield" indicates whether we need the gang as a whole to yield.
  3638   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set,
  3639                            CMSCollector* collector, bool yield) :
  3640     ParallelTaskTerminator(n_threads, queue_set),
  3641     _collector(collector),
  3642     _yield(yield) { }
  3644   void set_task(CMSConcMarkingTask* task) {
  3645     _task = task;
  3647 };
  3649 // MT Concurrent Marking Task
  3650 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  3651   CMSCollector* _collector;
  3652   YieldingFlexibleWorkGang* _workers;        // the whole gang
  3653   int           _n_workers;                  // requested/desired # workers
  3654   bool          _asynch;
  3655   bool          _result;
  3656   CompactibleFreeListSpace*  _cms_space;
  3657   CompactibleFreeListSpace* _perm_space;
  3658   HeapWord*     _global_finger;
  3660   //  Exposed here for yielding support
  3661   Mutex* const _bit_map_lock;
  3663   // The per thread work queues, available here for stealing
  3664   OopTaskQueueSet*  _task_queues;
  3665   CMSConcMarkingTerminator _term;
  3667  public:
  3668   CMSConcMarkingTask(CMSCollector* collector,
  3669                  CompactibleFreeListSpace* cms_space,
  3670                  CompactibleFreeListSpace* perm_space,
  3671                  bool asynch, int n_workers,
  3672                  YieldingFlexibleWorkGang* workers,
  3673                  OopTaskQueueSet* task_queues):
  3674     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  3675     _collector(collector),
  3676     _cms_space(cms_space),
  3677     _perm_space(perm_space),
  3678     _asynch(asynch), _n_workers(n_workers), _result(true),
  3679     _workers(workers), _task_queues(task_queues),
  3680     _term(n_workers, task_queues, _collector, asynch),
  3681     _bit_map_lock(collector->bitMapLock())
  3683     assert(n_workers <= workers->total_workers(),
  3684            "Else termination won't work correctly today"); // XXX FIX ME!
  3685     _requested_size = n_workers;
  3686     _term.set_task(this);
  3687     assert(_cms_space->bottom() < _perm_space->bottom(),
  3688            "Finger incorrectly initialized below");
  3689     _global_finger = _cms_space->bottom();
  3693   OopTaskQueueSet* task_queues()  { return _task_queues; }
  3695   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  3697   HeapWord** global_finger_addr() { return &_global_finger; }
  3699   CMSConcMarkingTerminator* terminator() { return &_term; }
  3701   void work(int i);
  3703   virtual void coordinator_yield();  // stuff done by coordinator
  3704   bool result() { return _result; }
  3706   void reset(HeapWord* ra) {
  3707     _term.reset_for_reuse();
  3710   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3711                                            OopTaskQueue* work_q);
  3713  private:
  3714   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  3715   void do_work_steal(int i);
  3716   void bump_global_finger(HeapWord* f);
  3717 };
  3719 void CMSConcMarkingTerminator::yield() {
  3720   if (ConcurrentMarkSweepThread::should_yield() &&
  3721       !_collector->foregroundGCIsActive() &&
  3722       _yield) {
  3723     _task->yield();
  3724   } else {
  3725     ParallelTaskTerminator::yield();
  3729 ////////////////////////////////////////////////////////////////
  3730 // Concurrent Marking Algorithm Sketch
  3731 ////////////////////////////////////////////////////////////////
  3732 // Until all tasks exhausted (both spaces):
  3733 // -- claim next available chunk
  3734 // -- bump global finger via CAS
  3735 // -- find first object that starts in this chunk
  3736 //    and start scanning bitmap from that position
  3737 // -- scan marked objects for oops
  3738 // -- CAS-mark target, and if successful:
  3739 //    . if target oop is above global finger (volatile read)
  3740 //      nothing to do
  3741 //    . if target oop is in chunk and above local finger
  3742 //        then nothing to do
  3743 //    . else push on work-queue
  3744 // -- Deal with possible overflow issues:
  3745 //    . local work-queue overflow causes stuff to be pushed on
  3746 //      global (common) overflow queue
  3747 //    . always first empty local work queue
  3748 //    . then get a batch of oops from global work queue if any
  3749 //    . then do work stealing
  3750 // -- When all tasks claimed (both spaces)
  3751 //    and local work queue empty,
  3752 //    then in a loop do:
  3753 //    . check global overflow stack; steal a batch of oops and trace
  3754 //    . try to steal from other threads oif GOS is empty
  3755 //    . if neither is available, offer termination
  3756 // -- Terminate and return result
  3757 //
  3758 void CMSConcMarkingTask::work(int i) {
  3759   elapsedTimer _timer;
  3760   ResourceMark rm;
  3761   HandleMark hm;
  3763   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3765   // Before we begin work, our work queue should be empty
  3766   assert(work_queue(i)->size() == 0, "Expected to be empty");
  3767   // Scan the bitmap covering _cms_space, tracing through grey objects.
  3768   _timer.start();
  3769   do_scan_and_mark(i, _cms_space);
  3770   _timer.stop();
  3771   if (PrintCMSStatistics != 0) {
  3772     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  3773       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3776   // ... do the same for the _perm_space
  3777   _timer.reset();
  3778   _timer.start();
  3779   do_scan_and_mark(i, _perm_space);
  3780   _timer.stop();
  3781   if (PrintCMSStatistics != 0) {
  3782     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
  3783       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3786   // ... do work stealing
  3787   _timer.reset();
  3788   _timer.start();
  3789   do_work_steal(i);
  3790   _timer.stop();
  3791   if (PrintCMSStatistics != 0) {
  3792     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  3793       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3795   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  3796   assert(work_queue(i)->size() == 0, "Should have been emptied");
  3797   // Note that under the current task protocol, the
  3798   // following assertion is true even of the spaces
  3799   // expanded since the completion of the concurrent
  3800   // marking. XXX This will likely change under a strict
  3801   // ABORT semantics.
  3802   assert(_global_finger >  _cms_space->end() &&
  3803          _global_finger >= _perm_space->end(),
  3804          "All tasks have been completed");
  3805   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3808 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  3809   HeapWord* read = _global_finger;
  3810   HeapWord* cur  = read;
  3811   while (f > read) {
  3812     cur = read;
  3813     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  3814     if (cur == read) {
  3815       // our cas succeeded
  3816       assert(_global_finger >= f, "protocol consistency");
  3817       break;
  3822 // This is really inefficient, and should be redone by
  3823 // using (not yet available) block-read and -write interfaces to the
  3824 // stack and the work_queue. XXX FIX ME !!!
  3825 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3826                                                       OopTaskQueue* work_q) {
  3827   // Fast lock-free check
  3828   if (ovflw_stk->length() == 0) {
  3829     return false;
  3831   assert(work_q->size() == 0, "Shouldn't steal");
  3832   MutexLockerEx ml(ovflw_stk->par_lock(),
  3833                    Mutex::_no_safepoint_check_flag);
  3834   // Grab up to 1/4 the size of the work queue
  3835   size_t num = MIN2((size_t)work_q->max_elems()/4,
  3836                     (size_t)ParGCDesiredObjsFromOverflowList);
  3837   num = MIN2(num, ovflw_stk->length());
  3838   for (int i = (int) num; i > 0; i--) {
  3839     oop cur = ovflw_stk->pop();
  3840     assert(cur != NULL, "Counted wrong?");
  3841     work_q->push(cur);
  3843   return num > 0;
  3846 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  3847   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  3848   int n_tasks = pst->n_tasks();
  3849   // We allow that there may be no tasks to do here because
  3850   // we are restarting after a stack overflow.
  3851   assert(pst->valid() || n_tasks == 0, "Uninitializd use?");
  3852   int nth_task = 0;
  3854   HeapWord* start = sp->bottom();
  3855   size_t chunk_size = sp->marking_task_size();
  3856   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  3857     // Having claimed the nth task in this space,
  3858     // compute the chunk that it corresponds to:
  3859     MemRegion span = MemRegion(start + nth_task*chunk_size,
  3860                                start + (nth_task+1)*chunk_size);
  3861     // Try and bump the global finger via a CAS;
  3862     // note that we need to do the global finger bump
  3863     // _before_ taking the intersection below, because
  3864     // the task corresponding to that region will be
  3865     // deemed done even if the used_region() expands
  3866     // because of allocation -- as it almost certainly will
  3867     // during start-up while the threads yield in the
  3868     // closure below.
  3869     HeapWord* finger = span.end();
  3870     bump_global_finger(finger);   // atomically
  3871     // There are null tasks here corresponding to chunks
  3872     // beyond the "top" address of the space.
  3873     span = span.intersection(sp->used_region());
  3874     if (!span.is_empty()) {  // Non-null task
  3875       // We want to skip the first object because
  3876       // the protocol is to scan any object in its entirety
  3877       // that _starts_ in this span; a fortiori, any
  3878       // object starting in an earlier span is scanned
  3879       // as part of an earlier claimed task.
  3880       // Below we use the "careful" version of block_start
  3881       // so we do not try to navigate uninitialized objects.
  3882       HeapWord* prev_obj = sp->block_start_careful(span.start());
  3883       // Below we use a variant of block_size that uses the
  3884       // Printezis bits to avoid waiting for allocated
  3885       // objects to become initialized/parsable.
  3886       while (prev_obj < span.start()) {
  3887         size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  3888         if (sz > 0) {
  3889           prev_obj += sz;
  3890         } else {
  3891           // In this case we may end up doing a bit of redundant
  3892           // scanning, but that appears unavoidable, short of
  3893           // locking the free list locks; see bug 6324141.
  3894           break;
  3897       if (prev_obj < span.end()) {
  3898         MemRegion my_span = MemRegion(prev_obj, span.end());
  3899         // Do the marking work within a non-empty span --
  3900         // the last argument to the constructor indicates whether the
  3901         // iteration should be incremental with periodic yields.
  3902         Par_MarkFromRootsClosure cl(this, _collector, my_span,
  3903                                     &_collector->_markBitMap,
  3904                                     work_queue(i),
  3905                                     &_collector->_markStack,
  3906                                     &_collector->_revisitStack,
  3907                                     _asynch);
  3908         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  3909       } // else nothing to do for this task
  3910     }   // else nothing to do for this task
  3912   // We'd be tempted to assert here that since there are no
  3913   // more tasks left to claim in this space, the global_finger
  3914   // must exceed space->top() and a fortiori space->end(). However,
  3915   // that would not quite be correct because the bumping of
  3916   // global_finger occurs strictly after the claiming of a task,
  3917   // so by the time we reach here the global finger may not yet
  3918   // have been bumped up by the thread that claimed the last
  3919   // task.
  3920   pst->all_tasks_completed();
  3923 class Par_ConcMarkingClosure: public OopClosure {
  3924  private:
  3925   CMSCollector* _collector;
  3926   MemRegion     _span;
  3927   CMSBitMap*    _bit_map;
  3928   CMSMarkStack* _overflow_stack;
  3929   CMSMarkStack* _revisit_stack;     // XXXXXX Check proper use
  3930   OopTaskQueue* _work_queue;
  3931  protected:
  3932   DO_OOP_WORK_DEFN
  3933  public:
  3934   Par_ConcMarkingClosure(CMSCollector* collector, OopTaskQueue* work_queue,
  3935                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
  3936     _collector(collector),
  3937     _span(_collector->_span),
  3938     _work_queue(work_queue),
  3939     _bit_map(bit_map),
  3940     _overflow_stack(overflow_stack) { }   // need to initialize revisit stack etc.
  3941   virtual void do_oop(oop* p);
  3942   virtual void do_oop(narrowOop* p);
  3943   void trim_queue(size_t max);
  3944   void handle_stack_overflow(HeapWord* lost);
  3945 };
  3947 // Grey object rescan during work stealing phase --
  3948 // the salient assumption here is that stolen oops must
  3949 // always be initialized, so we do not need to check for
  3950 // uninitialized objects before scanning here.
  3951 void Par_ConcMarkingClosure::do_oop(oop obj) {
  3952   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  3953   HeapWord* addr = (HeapWord*)obj;
  3954   // Check if oop points into the CMS generation
  3955   // and is not marked
  3956   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  3957     // a white object ...
  3958     // If we manage to "claim" the object, by being the
  3959     // first thread to mark it, then we push it on our
  3960     // marking stack
  3961     if (_bit_map->par_mark(addr)) {     // ... now grey
  3962       // push on work queue (grey set)
  3963       bool simulate_overflow = false;
  3964       NOT_PRODUCT(
  3965         if (CMSMarkStackOverflowALot &&
  3966             _collector->simulate_overflow()) {
  3967           // simulate a stack overflow
  3968           simulate_overflow = true;
  3971       if (simulate_overflow ||
  3972           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  3973         // stack overflow
  3974         if (PrintCMSStatistics != 0) {
  3975           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  3976                                  SIZE_FORMAT, _overflow_stack->capacity());
  3978         // We cannot assert that the overflow stack is full because
  3979         // it may have been emptied since.
  3980         assert(simulate_overflow ||
  3981                _work_queue->size() == _work_queue->max_elems(),
  3982               "Else push should have succeeded");
  3983         handle_stack_overflow(addr);
  3985     } // Else, some other thread got there first
  3989 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
  3990 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
  3992 void Par_ConcMarkingClosure::trim_queue(size_t max) {
  3993   while (_work_queue->size() > max) {
  3994     oop new_oop;
  3995     if (_work_queue->pop_local(new_oop)) {
  3996       assert(new_oop->is_oop(), "Should be an oop");
  3997       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  3998       assert(_span.contains((HeapWord*)new_oop), "Not in span");
  3999       assert(new_oop->is_parsable(), "Should be parsable");
  4000       new_oop->oop_iterate(this);  // do_oop() above
  4005 // Upon stack overflow, we discard (part of) the stack,
  4006 // remembering the least address amongst those discarded
  4007 // in CMSCollector's _restart_address.
  4008 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  4009   // We need to do this under a mutex to prevent other
  4010   // workers from interfering with the expansion below.
  4011   MutexLockerEx ml(_overflow_stack->par_lock(),
  4012                    Mutex::_no_safepoint_check_flag);
  4013   // Remember the least grey address discarded
  4014   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  4015   _collector->lower_restart_addr(ra);
  4016   _overflow_stack->reset();  // discard stack contents
  4017   _overflow_stack->expand(); // expand the stack if possible
  4021 void CMSConcMarkingTask::do_work_steal(int i) {
  4022   OopTaskQueue* work_q = work_queue(i);
  4023   oop obj_to_scan;
  4024   CMSBitMap* bm = &(_collector->_markBitMap);
  4025   CMSMarkStack* ovflw = &(_collector->_markStack);
  4026   int* seed = _collector->hash_seed(i);
  4027   Par_ConcMarkingClosure cl(_collector, work_q, bm, ovflw);
  4028   while (true) {
  4029     cl.trim_queue(0);
  4030     assert(work_q->size() == 0, "Should have been emptied above");
  4031     if (get_work_from_overflow_stack(ovflw, work_q)) {
  4032       // Can't assert below because the work obtained from the
  4033       // overflow stack may already have been stolen from us.
  4034       // assert(work_q->size() > 0, "Work from overflow stack");
  4035       continue;
  4036     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  4037       assert(obj_to_scan->is_oop(), "Should be an oop");
  4038       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  4039       obj_to_scan->oop_iterate(&cl);
  4040     } else if (terminator()->offer_termination()) {
  4041       assert(work_q->size() == 0, "Impossible!");
  4042       break;
  4047 // This is run by the CMS (coordinator) thread.
  4048 void CMSConcMarkingTask::coordinator_yield() {
  4049   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4050          "CMS thread should hold CMS token");
  4052   // First give up the locks, then yield, then re-lock
  4053   // We should probably use a constructor/destructor idiom to
  4054   // do this unlock/lock or modify the MutexUnlocker class to
  4055   // serve our purpose. XXX
  4056   assert_lock_strong(_bit_map_lock);
  4057   _bit_map_lock->unlock();
  4058   ConcurrentMarkSweepThread::desynchronize(true);
  4059   ConcurrentMarkSweepThread::acknowledge_yield_request();
  4060   _collector->stopTimer();
  4061   if (PrintCMSStatistics != 0) {
  4062     _collector->incrementYields();
  4064   _collector->icms_wait();
  4066   // It is possible for whichever thread initiated the yield request
  4067   // not to get a chance to wake up and take the bitmap lock between
  4068   // this thread releasing it and reacquiring it. So, while the
  4069   // should_yield() flag is on, let's sleep for a bit to give the
  4070   // other thread a chance to wake up. The limit imposed on the number
  4071   // of iterations is defensive, to avoid any unforseen circumstances
  4072   // putting us into an infinite loop. Since it's always been this
  4073   // (coordinator_yield()) method that was observed to cause the
  4074   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  4075   // which is by default non-zero. For the other seven methods that
  4076   // also perform the yield operation, as are using a different
  4077   // parameter (CMSYieldSleepCount) which is by default zero. This way we
  4078   // can enable the sleeping for those methods too, if necessary.
  4079   // See 6442774.
  4080   //
  4081   // We really need to reconsider the synchronization between the GC
  4082   // thread and the yield-requesting threads in the future and we
  4083   // should really use wait/notify, which is the recommended
  4084   // way of doing this type of interaction. Additionally, we should
  4085   // consolidate the eight methods that do the yield operation and they
  4086   // are almost identical into one for better maintenability and
  4087   // readability. See 6445193.
  4088   //
  4089   // Tony 2006.06.29
  4090   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  4091                    ConcurrentMarkSweepThread::should_yield() &&
  4092                    !CMSCollector::foregroundGCIsActive(); ++i) {
  4093     os::sleep(Thread::current(), 1, false);
  4094     ConcurrentMarkSweepThread::acknowledge_yield_request();
  4097   ConcurrentMarkSweepThread::synchronize(true);
  4098   _bit_map_lock->lock_without_safepoint_check();
  4099   _collector->startTimer();
  4102 bool CMSCollector::do_marking_mt(bool asynch) {
  4103   assert(ParallelCMSThreads > 0 && conc_workers() != NULL, "precondition");
  4104   // In the future this would be determined ergonomically, based
  4105   // on #cpu's, # active mutator threads (and load), and mutation rate.
  4106   int num_workers = ParallelCMSThreads;
  4108   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  4109   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  4111   CMSConcMarkingTask tsk(this, cms_space, perm_space,
  4112                          asynch, num_workers /* number requested XXX */,
  4113                          conc_workers(), task_queues());
  4115   // Since the actual number of workers we get may be different
  4116   // from the number we requested above, do we need to do anything different
  4117   // below? In particular, may be we need to subclass the SequantialSubTasksDone
  4118   // class?? XXX
  4119   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  4120   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
  4122   // Refs discovery is already non-atomic.
  4123   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  4124   // Mutate the Refs discovery so it is MT during the
  4125   // multi-threaded marking phase.
  4126   ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
  4128   conc_workers()->start_task(&tsk);
  4129   while (tsk.yielded()) {
  4130     tsk.coordinator_yield();
  4131     conc_workers()->continue_task(&tsk);
  4133   // If the task was aborted, _restart_addr will be non-NULL
  4134   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  4135   while (_restart_addr != NULL) {
  4136     // XXX For now we do not make use of ABORTED state and have not
  4137     // yet implemented the right abort semantics (even in the original
  4138     // single-threaded CMS case). That needs some more investigation
  4139     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  4140     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  4141     // If _restart_addr is non-NULL, a marking stack overflow
  4142     // occured; we need to do a fresh marking iteration from the
  4143     // indicated restart address.
  4144     if (_foregroundGCIsActive && asynch) {
  4145       // We may be running into repeated stack overflows, having
  4146       // reached the limit of the stack size, while making very
  4147       // slow forward progress. It may be best to bail out and
  4148       // let the foreground collector do its job.
  4149       // Clear _restart_addr, so that foreground GC
  4150       // works from scratch. This avoids the headache of
  4151       // a "rescan" which would otherwise be needed because
  4152       // of the dirty mod union table & card table.
  4153       _restart_addr = NULL;
  4154       return false;
  4156     // Adjust the task to restart from _restart_addr
  4157     tsk.reset(_restart_addr);
  4158     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  4159                   _restart_addr);
  4160     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
  4161                   _restart_addr);
  4162     _restart_addr = NULL;
  4163     // Get the workers going again
  4164     conc_workers()->start_task(&tsk);
  4165     while (tsk.yielded()) {
  4166       tsk.coordinator_yield();
  4167       conc_workers()->continue_task(&tsk);
  4170   assert(tsk.completed(), "Inconsistency");
  4171   assert(tsk.result() == true, "Inconsistency");
  4172   return true;
  4175 bool CMSCollector::do_marking_st(bool asynch) {
  4176   ResourceMark rm;
  4177   HandleMark   hm;
  4179   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  4180     &_markStack, &_revisitStack, CMSYield && asynch);
  4181   // the last argument to iterate indicates whether the iteration
  4182   // should be incremental with periodic yields.
  4183   _markBitMap.iterate(&markFromRootsClosure);
  4184   // If _restart_addr is non-NULL, a marking stack overflow
  4185   // occured; we need to do a fresh iteration from the
  4186   // indicated restart address.
  4187   while (_restart_addr != NULL) {
  4188     if (_foregroundGCIsActive && asynch) {
  4189       // We may be running into repeated stack overflows, having
  4190       // reached the limit of the stack size, while making very
  4191       // slow forward progress. It may be best to bail out and
  4192       // let the foreground collector do its job.
  4193       // Clear _restart_addr, so that foreground GC
  4194       // works from scratch. This avoids the headache of
  4195       // a "rescan" which would otherwise be needed because
  4196       // of the dirty mod union table & card table.
  4197       _restart_addr = NULL;
  4198       return false;  // indicating failure to complete marking
  4200     // Deal with stack overflow:
  4201     // we restart marking from _restart_addr
  4202     HeapWord* ra = _restart_addr;
  4203     markFromRootsClosure.reset(ra);
  4204     _restart_addr = NULL;
  4205     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  4207   return true;
  4210 void CMSCollector::preclean() {
  4211   check_correct_thread_executing();
  4212   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  4213   verify_work_stacks_empty();
  4214   verify_overflow_empty();
  4215   _abort_preclean = false;
  4216   if (CMSPrecleaningEnabled) {
  4217     _eden_chunk_index = 0;
  4218     size_t used = get_eden_used();
  4219     size_t capacity = get_eden_capacity();
  4220     // Don't start sampling unless we will get sufficiently
  4221     // many samples.
  4222     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  4223                 * CMSScheduleRemarkEdenPenetration)) {
  4224       _start_sampling = true;
  4225     } else {
  4226       _start_sampling = false;
  4228     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4229     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
  4230     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  4232   CMSTokenSync x(true); // is cms thread
  4233   if (CMSPrecleaningEnabled) {
  4234     sample_eden();
  4235     _collectorState = AbortablePreclean;
  4236   } else {
  4237     _collectorState = FinalMarking;
  4239   verify_work_stacks_empty();
  4240   verify_overflow_empty();
  4243 // Try and schedule the remark such that young gen
  4244 // occupancy is CMSScheduleRemarkEdenPenetration %.
  4245 void CMSCollector::abortable_preclean() {
  4246   check_correct_thread_executing();
  4247   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  4248   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  4250   // If Eden's current occupancy is below this threshold,
  4251   // immediately schedule the remark; else preclean
  4252   // past the next scavenge in an effort to
  4253   // schedule the pause as described avove. By choosing
  4254   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  4255   // we will never do an actual abortable preclean cycle.
  4256   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  4257     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4258     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
  4259     // We need more smarts in the abortable preclean
  4260     // loop below to deal with cases where allocation
  4261     // in young gen is very very slow, and our precleaning
  4262     // is running a losing race against a horde of
  4263     // mutators intent on flooding us with CMS updates
  4264     // (dirty cards).
  4265     // One, admittedly dumb, strategy is to give up
  4266     // after a certain number of abortable precleaning loops
  4267     // or after a certain maximum time. We want to make
  4268     // this smarter in the next iteration.
  4269     // XXX FIX ME!!! YSR
  4270     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  4271     while (!(should_abort_preclean() ||
  4272              ConcurrentMarkSweepThread::should_terminate())) {
  4273       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  4274       cumworkdone += workdone;
  4275       loops++;
  4276       // Voluntarily terminate abortable preclean phase if we have
  4277       // been at it for too long.
  4278       if ((CMSMaxAbortablePrecleanLoops != 0) &&
  4279           loops >= CMSMaxAbortablePrecleanLoops) {
  4280         if (PrintGCDetails) {
  4281           gclog_or_tty->print(" CMS: abort preclean due to loops ");
  4283         break;
  4285       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  4286         if (PrintGCDetails) {
  4287           gclog_or_tty->print(" CMS: abort preclean due to time ");
  4289         break;
  4291       // If we are doing little work each iteration, we should
  4292       // take a short break.
  4293       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  4294         // Sleep for some time, waiting for work to accumulate
  4295         stopTimer();
  4296         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  4297         startTimer();
  4298         waited++;
  4301     if (PrintCMSStatistics > 0) {
  4302       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  4303                           loops, waited, cumworkdone);
  4306   CMSTokenSync x(true); // is cms thread
  4307   if (_collectorState != Idling) {
  4308     assert(_collectorState == AbortablePreclean,
  4309            "Spontaneous state transition?");
  4310     _collectorState = FinalMarking;
  4311   } // Else, a foreground collection completed this CMS cycle.
  4312   return;
  4315 // Respond to an Eden sampling opportunity
  4316 void CMSCollector::sample_eden() {
  4317   // Make sure a young gc cannot sneak in between our
  4318   // reading and recording of a sample.
  4319   assert(Thread::current()->is_ConcurrentGC_thread(),
  4320          "Only the cms thread may collect Eden samples");
  4321   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4322          "Should collect samples while holding CMS token");
  4323   if (!_start_sampling) {
  4324     return;
  4326   if (_eden_chunk_array) {
  4327     if (_eden_chunk_index < _eden_chunk_capacity) {
  4328       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  4329       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  4330              "Unexpected state of Eden");
  4331       // We'd like to check that what we just sampled is an oop-start address;
  4332       // however, we cannot do that here since the object may not yet have been
  4333       // initialized. So we'll instead do the check when we _use_ this sample
  4334       // later.
  4335       if (_eden_chunk_index == 0 ||
  4336           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  4337                          _eden_chunk_array[_eden_chunk_index-1])
  4338            >= CMSSamplingGrain)) {
  4339         _eden_chunk_index++;  // commit sample
  4343   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  4344     size_t used = get_eden_used();
  4345     size_t capacity = get_eden_capacity();
  4346     assert(used <= capacity, "Unexpected state of Eden");
  4347     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  4348       _abort_preclean = true;
  4354 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  4355   assert(_collectorState == Precleaning ||
  4356          _collectorState == AbortablePreclean, "incorrect state");
  4357   ResourceMark rm;
  4358   HandleMark   hm;
  4359   // Do one pass of scrubbing the discovered reference lists
  4360   // to remove any reference objects with strongly-reachable
  4361   // referents.
  4362   if (clean_refs) {
  4363     ReferenceProcessor* rp = ref_processor();
  4364     CMSPrecleanRefsYieldClosure yield_cl(this);
  4365     assert(rp->span().equals(_span), "Spans should be equal");
  4366     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  4367                                    &_markStack);
  4368     CMSDrainMarkingStackClosure complete_trace(this,
  4369                                   _span, &_markBitMap, &_markStack,
  4370                                   &keep_alive);
  4372     // We don't want this step to interfere with a young
  4373     // collection because we don't want to take CPU
  4374     // or memory bandwidth away from the young GC threads
  4375     // (which may be as many as there are CPUs).
  4376     // Note that we don't need to protect ourselves from
  4377     // interference with mutators because they can't
  4378     // manipulate the discovered reference lists nor affect
  4379     // the computed reachability of the referents, the
  4380     // only properties manipulated by the precleaning
  4381     // of these reference lists.
  4382     stopTimer();
  4383     CMSTokenSyncWithLocks x(true /* is cms thread */,
  4384                             bitMapLock());
  4385     startTimer();
  4386     sample_eden();
  4387     // The following will yield to allow foreground
  4388     // collection to proceed promptly. XXX YSR:
  4389     // The code in this method may need further
  4390     // tweaking for better performance and some restructuring
  4391     // for cleaner interfaces.
  4392     rp->preclean_discovered_references(
  4393           rp->is_alive_non_header(), &keep_alive, &complete_trace,
  4394           &yield_cl);
  4397   if (clean_survivor) {  // preclean the active survivor space(s)
  4398     assert(_young_gen->kind() == Generation::DefNew ||
  4399            _young_gen->kind() == Generation::ParNew ||
  4400            _young_gen->kind() == Generation::ASParNew,
  4401          "incorrect type for cast");
  4402     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  4403     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  4404                              &_markBitMap, &_modUnionTable,
  4405                              &_markStack, &_revisitStack,
  4406                              true /* precleaning phase */);
  4407     stopTimer();
  4408     CMSTokenSyncWithLocks ts(true /* is cms thread */,
  4409                              bitMapLock());
  4410     startTimer();
  4411     unsigned int before_count =
  4412       GenCollectedHeap::heap()->total_collections();
  4413     SurvivorSpacePrecleanClosure
  4414       sss_cl(this, _span, &_markBitMap, &_markStack,
  4415              &pam_cl, before_count, CMSYield);
  4416     dng->from()->object_iterate_careful(&sss_cl);
  4417     dng->to()->object_iterate_careful(&sss_cl);
  4419   MarkRefsIntoAndScanClosure
  4420     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  4421              &_markStack, &_revisitStack, this, CMSYield,
  4422              true /* precleaning phase */);
  4423   // CAUTION: The following closure has persistent state that may need to
  4424   // be reset upon a decrease in the sequence of addresses it
  4425   // processes.
  4426   ScanMarkedObjectsAgainCarefullyClosure
  4427     smoac_cl(this, _span,
  4428       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
  4430   // Preclean dirty cards in ModUnionTable and CardTable using
  4431   // appropriate convergence criterion;
  4432   // repeat CMSPrecleanIter times unless we find that
  4433   // we are losing.
  4434   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  4435   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  4436          "Bad convergence multiplier");
  4437   assert(CMSPrecleanThreshold >= 100,
  4438          "Unreasonably low CMSPrecleanThreshold");
  4440   size_t numIter, cumNumCards, lastNumCards, curNumCards;
  4441   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  4442        numIter < CMSPrecleanIter;
  4443        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  4444     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  4445     if (CMSPermGenPrecleaningEnabled) {
  4446       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
  4448     if (Verbose && PrintGCDetails) {
  4449       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  4451     // Either there are very few dirty cards, so re-mark
  4452     // pause will be small anyway, or our pre-cleaning isn't
  4453     // that much faster than the rate at which cards are being
  4454     // dirtied, so we might as well stop and re-mark since
  4455     // precleaning won't improve our re-mark time by much.
  4456     if (curNumCards <= CMSPrecleanThreshold ||
  4457         (numIter > 0 &&
  4458          (curNumCards * CMSPrecleanDenominator >
  4459          lastNumCards * CMSPrecleanNumerator))) {
  4460       numIter++;
  4461       cumNumCards += curNumCards;
  4462       break;
  4465   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  4466   if (CMSPermGenPrecleaningEnabled) {
  4467     curNumCards += preclean_card_table(_permGen, &smoac_cl);
  4469   cumNumCards += curNumCards;
  4470   if (PrintGCDetails && PrintCMSStatistics != 0) {
  4471     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  4472                   curNumCards, cumNumCards, numIter);
  4474   return cumNumCards;   // as a measure of useful work done
  4477 // PRECLEANING NOTES:
  4478 // Precleaning involves:
  4479 // . reading the bits of the modUnionTable and clearing the set bits.
  4480 // . For the cards corresponding to the set bits, we scan the
  4481 //   objects on those cards. This means we need the free_list_lock
  4482 //   so that we can safely iterate over the CMS space when scanning
  4483 //   for oops.
  4484 // . When we scan the objects, we'll be both reading and setting
  4485 //   marks in the marking bit map, so we'll need the marking bit map.
  4486 // . For protecting _collector_state transitions, we take the CGC_lock.
  4487 //   Note that any races in the reading of of card table entries by the
  4488 //   CMS thread on the one hand and the clearing of those entries by the
  4489 //   VM thread or the setting of those entries by the mutator threads on the
  4490 //   other are quite benign. However, for efficiency it makes sense to keep
  4491 //   the VM thread from racing with the CMS thread while the latter is
  4492 //   dirty card info to the modUnionTable. We therefore also use the
  4493 //   CGC_lock to protect the reading of the card table and the mod union
  4494 //   table by the CM thread.
  4495 // . We run concurrently with mutator updates, so scanning
  4496 //   needs to be done carefully  -- we should not try to scan
  4497 //   potentially uninitialized objects.
  4498 //
  4499 // Locking strategy: While holding the CGC_lock, we scan over and
  4500 // reset a maximal dirty range of the mod union / card tables, then lock
  4501 // the free_list_lock and bitmap lock to do a full marking, then
  4502 // release these locks; and repeat the cycle. This allows for a
  4503 // certain amount of fairness in the sharing of these locks between
  4504 // the CMS collector on the one hand, and the VM thread and the
  4505 // mutators on the other.
  4507 // NOTE: preclean_mod_union_table() and preclean_card_table()
  4508 // further below are largely identical; if you need to modify
  4509 // one of these methods, please check the other method too.
  4511 size_t CMSCollector::preclean_mod_union_table(
  4512   ConcurrentMarkSweepGeneration* gen,
  4513   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4514   verify_work_stacks_empty();
  4515   verify_overflow_empty();
  4517   // strategy: starting with the first card, accumulate contiguous
  4518   // ranges of dirty cards; clear these cards, then scan the region
  4519   // covered by these cards.
  4521   // Since all of the MUT is committed ahead, we can just use
  4522   // that, in case the generations expand while we are precleaning.
  4523   // It might also be fine to just use the committed part of the
  4524   // generation, but we might potentially miss cards when the
  4525   // generation is rapidly expanding while we are in the midst
  4526   // of precleaning.
  4527   HeapWord* startAddr = gen->reserved().start();
  4528   HeapWord* endAddr   = gen->reserved().end();
  4530   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4532   size_t numDirtyCards, cumNumDirtyCards;
  4533   HeapWord *nextAddr, *lastAddr;
  4534   for (cumNumDirtyCards = numDirtyCards = 0,
  4535        nextAddr = lastAddr = startAddr;
  4536        nextAddr < endAddr;
  4537        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4539     ResourceMark rm;
  4540     HandleMark   hm;
  4542     MemRegion dirtyRegion;
  4544       stopTimer();
  4545       CMSTokenSync ts(true);
  4546       startTimer();
  4547       sample_eden();
  4548       // Get dirty region starting at nextOffset (inclusive),
  4549       // simultaneously clearing it.
  4550       dirtyRegion =
  4551         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  4552       assert(dirtyRegion.start() >= nextAddr,
  4553              "returned region inconsistent?");
  4555     // Remember where the next search should begin.
  4556     // The returned region (if non-empty) is a right open interval,
  4557     // so lastOffset is obtained from the right end of that
  4558     // interval.
  4559     lastAddr = dirtyRegion.end();
  4560     // Should do something more transparent and less hacky XXX
  4561     numDirtyCards =
  4562       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  4564     // We'll scan the cards in the dirty region (with periodic
  4565     // yields for foreground GC as needed).
  4566     if (!dirtyRegion.is_empty()) {
  4567       assert(numDirtyCards > 0, "consistency check");
  4568       HeapWord* stop_point = NULL;
  4570         stopTimer();
  4571         CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  4572                                  bitMapLock());
  4573         startTimer();
  4574         verify_work_stacks_empty();
  4575         verify_overflow_empty();
  4576         sample_eden();
  4577         stop_point =
  4578           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4580       if (stop_point != NULL) {
  4581         // The careful iteration stopped early either because it found an
  4582         // uninitialized object, or because we were in the midst of an
  4583         // "abortable preclean", which should now be aborted. Redirty
  4584         // the bits corresponding to the partially-scanned or unscanned
  4585         // cards. We'll either restart at the next block boundary or
  4586         // abort the preclean.
  4587         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
  4588                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4589                "Unparsable objects should only be in perm gen.");
  4591         stopTimer();
  4592         CMSTokenSyncWithLocks ts(true, bitMapLock());
  4593         startTimer();
  4594         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  4595         if (should_abort_preclean()) {
  4596           break; // out of preclean loop
  4597         } else {
  4598           // Compute the next address at which preclean should pick up;
  4599           // might need bitMapLock in order to read P-bits.
  4600           lastAddr = next_card_start_after_block(stop_point);
  4603     } else {
  4604       assert(lastAddr == endAddr, "consistency check");
  4605       assert(numDirtyCards == 0, "consistency check");
  4606       break;
  4609   verify_work_stacks_empty();
  4610   verify_overflow_empty();
  4611   return cumNumDirtyCards;
  4614 // NOTE: preclean_mod_union_table() above and preclean_card_table()
  4615 // below are largely identical; if you need to modify
  4616 // one of these methods, please check the other method too.
  4618 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  4619   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4620   // strategy: it's similar to precleamModUnionTable above, in that
  4621   // we accumulate contiguous ranges of dirty cards, mark these cards
  4622   // precleaned, then scan the region covered by these cards.
  4623   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  4624   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  4626   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4628   size_t numDirtyCards, cumNumDirtyCards;
  4629   HeapWord *lastAddr, *nextAddr;
  4631   for (cumNumDirtyCards = numDirtyCards = 0,
  4632        nextAddr = lastAddr = startAddr;
  4633        nextAddr < endAddr;
  4634        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4636     ResourceMark rm;
  4637     HandleMark   hm;
  4639     MemRegion dirtyRegion;
  4641       // See comments in "Precleaning notes" above on why we
  4642       // do this locking. XXX Could the locking overheads be
  4643       // too high when dirty cards are sparse? [I don't think so.]
  4644       stopTimer();
  4645       CMSTokenSync x(true); // is cms thread
  4646       startTimer();
  4647       sample_eden();
  4648       // Get and clear dirty region from card table
  4649       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
  4650                                     MemRegion(nextAddr, endAddr),
  4651                                     true,
  4652                                     CardTableModRefBS::precleaned_card_val());
  4654       assert(dirtyRegion.start() >= nextAddr,
  4655              "returned region inconsistent?");
  4657     lastAddr = dirtyRegion.end();
  4658     numDirtyCards =
  4659       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  4661     if (!dirtyRegion.is_empty()) {
  4662       stopTimer();
  4663       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  4664       startTimer();
  4665       sample_eden();
  4666       verify_work_stacks_empty();
  4667       verify_overflow_empty();
  4668       HeapWord* stop_point =
  4669         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4670       if (stop_point != NULL) {
  4671         // The careful iteration stopped early because it found an
  4672         // uninitialized object.  Redirty the bits corresponding to the
  4673         // partially-scanned or unscanned cards, and start again at the
  4674         // next block boundary.
  4675         assert(CMSPermGenPrecleaningEnabled ||
  4676                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4677                "Unparsable objects should only be in perm gen.");
  4678         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  4679         if (should_abort_preclean()) {
  4680           break; // out of preclean loop
  4681         } else {
  4682           // Compute the next address at which preclean should pick up.
  4683           lastAddr = next_card_start_after_block(stop_point);
  4686     } else {
  4687       break;
  4690   verify_work_stacks_empty();
  4691   verify_overflow_empty();
  4692   return cumNumDirtyCards;
  4695 void CMSCollector::checkpointRootsFinal(bool asynch,
  4696   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4697   assert(_collectorState == FinalMarking, "incorrect state transition?");
  4698   check_correct_thread_executing();
  4699   // world is stopped at this checkpoint
  4700   assert(SafepointSynchronize::is_at_safepoint(),
  4701          "world should be stopped");
  4702   verify_work_stacks_empty();
  4703   verify_overflow_empty();
  4705   SpecializationStats::clear();
  4706   if (PrintGCDetails) {
  4707     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  4708                         _young_gen->used() / K,
  4709                         _young_gen->capacity() / K);
  4711   if (asynch) {
  4712     if (CMSScavengeBeforeRemark) {
  4713       GenCollectedHeap* gch = GenCollectedHeap::heap();
  4714       // Temporarily set flag to false, GCH->do_collection will
  4715       // expect it to be false and set to true
  4716       FlagSetting fl(gch->_is_gc_active, false);
  4717       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
  4718         PrintGCDetails && Verbose, true, gclog_or_tty);)
  4719       int level = _cmsGen->level() - 1;
  4720       if (level >= 0) {
  4721         gch->do_collection(true,        // full (i.e. force, see below)
  4722                            false,       // !clear_all_soft_refs
  4723                            0,           // size
  4724                            false,       // is_tlab
  4725                            level        // max_level
  4726                           );
  4729     FreelistLocker x(this);
  4730     MutexLockerEx y(bitMapLock(),
  4731                     Mutex::_no_safepoint_check_flag);
  4732     assert(!init_mark_was_synchronous, "but that's impossible!");
  4733     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  4734   } else {
  4735     // already have all the locks
  4736     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  4737                              init_mark_was_synchronous);
  4739   verify_work_stacks_empty();
  4740   verify_overflow_empty();
  4741   SpecializationStats::print();
  4744 void CMSCollector::checkpointRootsFinalWork(bool asynch,
  4745   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4747   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
  4749   assert(haveFreelistLocks(), "must have free list locks");
  4750   assert_lock_strong(bitMapLock());
  4752   if (UseAdaptiveSizePolicy) {
  4753     size_policy()->checkpoint_roots_final_begin();
  4756   ResourceMark rm;
  4757   HandleMark   hm;
  4759   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4761   if (should_unload_classes()) {
  4762     CodeCache::gc_prologue();
  4764   assert(haveFreelistLocks(), "must have free list locks");
  4765   assert_lock_strong(bitMapLock());
  4767   if (!init_mark_was_synchronous) {
  4768     // We might assume that we need not fill TLAB's when
  4769     // CMSScavengeBeforeRemark is set, because we may have just done
  4770     // a scavenge which would have filled all TLAB's -- and besides
  4771     // Eden would be empty. This however may not always be the case --
  4772     // for instance although we asked for a scavenge, it may not have
  4773     // happened because of a JNI critical section. We probably need
  4774     // a policy for deciding whether we can in that case wait until
  4775     // the critical section releases and then do the remark following
  4776     // the scavenge, and skip it here. In the absence of that policy,
  4777     // or of an indication of whether the scavenge did indeed occur,
  4778     // we cannot rely on TLAB's having been filled and must do
  4779     // so here just in case a scavenge did not happen.
  4780     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  4781     // Update the saved marks which may affect the root scans.
  4782     gch->save_marks();
  4785       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  4787       // Note on the role of the mod union table:
  4788       // Since the marker in "markFromRoots" marks concurrently with
  4789       // mutators, it is possible for some reachable objects not to have been
  4790       // scanned. For instance, an only reference to an object A was
  4791       // placed in object B after the marker scanned B. Unless B is rescanned,
  4792       // A would be collected. Such updates to references in marked objects
  4793       // are detected via the mod union table which is the set of all cards
  4794       // dirtied since the first checkpoint in this GC cycle and prior to
  4795       // the most recent young generation GC, minus those cleaned up by the
  4796       // concurrent precleaning.
  4797       if (CMSParallelRemarkEnabled && ParallelGCThreads > 0) {
  4798         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
  4799         do_remark_parallel();
  4800       } else {
  4801         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  4802                     gclog_or_tty);
  4803         do_remark_non_parallel();
  4806   } else {
  4807     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  4808     // The initial mark was stop-world, so there's no rescanning to
  4809     // do; go straight on to the next step below.
  4811   verify_work_stacks_empty();
  4812   verify_overflow_empty();
  4815     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
  4816     refProcessingWork(asynch, clear_all_soft_refs);
  4818   verify_work_stacks_empty();
  4819   verify_overflow_empty();
  4821   if (should_unload_classes()) {
  4822     CodeCache::gc_epilogue();
  4825   // If we encountered any (marking stack / work queue) overflow
  4826   // events during the current CMS cycle, take appropriate
  4827   // remedial measures, where possible, so as to try and avoid
  4828   // recurrence of that condition.
  4829   assert(_markStack.isEmpty(), "No grey objects");
  4830   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  4831                      _ser_kac_ovflw;
  4832   if (ser_ovflw > 0) {
  4833     if (PrintCMSStatistics != 0) {
  4834       gclog_or_tty->print_cr("Marking stack overflow (benign) "
  4835         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4836         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  4837         _ser_kac_ovflw);
  4839     _markStack.expand();
  4840     _ser_pmc_remark_ovflw = 0;
  4841     _ser_pmc_preclean_ovflw = 0;
  4842     _ser_kac_ovflw = 0;
  4844   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  4845     if (PrintCMSStatistics != 0) {
  4846       gclog_or_tty->print_cr("Work queue overflow (benign) "
  4847         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4848         _par_pmc_remark_ovflw, _par_kac_ovflw);
  4850     _par_pmc_remark_ovflw = 0;
  4851     _par_kac_ovflw = 0;
  4853   if (PrintCMSStatistics != 0) {
  4854      if (_markStack._hit_limit > 0) {
  4855        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  4856                               _markStack._hit_limit);
  4858      if (_markStack._failed_double > 0) {
  4859        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  4860                               " current capacity "SIZE_FORMAT,
  4861                               _markStack._failed_double,
  4862                               _markStack.capacity());
  4865   _markStack._hit_limit = 0;
  4866   _markStack._failed_double = 0;
  4868   if ((VerifyAfterGC || VerifyDuringGC) &&
  4869       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  4870     verify_after_remark();
  4873   // Change under the freelistLocks.
  4874   _collectorState = Sweeping;
  4875   // Call isAllClear() under bitMapLock
  4876   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
  4877     " final marking");
  4878   if (UseAdaptiveSizePolicy) {
  4879     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  4883 // Parallel remark task
  4884 class CMSParRemarkTask: public AbstractGangTask {
  4885   CMSCollector* _collector;
  4886   WorkGang*     _workers;
  4887   int           _n_workers;
  4888   CompactibleFreeListSpace* _cms_space;
  4889   CompactibleFreeListSpace* _perm_space;
  4891   // The per-thread work queues, available here for stealing.
  4892   OopTaskQueueSet*       _task_queues;
  4893   ParallelTaskTerminator _term;
  4895  public:
  4896   CMSParRemarkTask(CMSCollector* collector,
  4897                    CompactibleFreeListSpace* cms_space,
  4898                    CompactibleFreeListSpace* perm_space,
  4899                    int n_workers, WorkGang* workers,
  4900                    OopTaskQueueSet* task_queues):
  4901     AbstractGangTask("Rescan roots and grey objects in parallel"),
  4902     _collector(collector),
  4903     _cms_space(cms_space), _perm_space(perm_space),
  4904     _n_workers(n_workers),
  4905     _workers(workers),
  4906     _task_queues(task_queues),
  4907     _term(workers->total_workers(), task_queues) { }
  4909   OopTaskQueueSet* task_queues() { return _task_queues; }
  4911   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  4913   ParallelTaskTerminator* terminator() { return &_term; }
  4915   void work(int i);
  4917  private:
  4918   // Work method in support of parallel rescan ... of young gen spaces
  4919   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
  4920                              ContiguousSpace* space,
  4921                              HeapWord** chunk_array, size_t chunk_top);
  4923   // ... of  dirty cards in old space
  4924   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  4925                                   Par_MarkRefsIntoAndScanClosure* cl);
  4927   // ... work stealing for the above
  4928   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  4929 };
  4931 void CMSParRemarkTask::work(int i) {
  4932   elapsedTimer _timer;
  4933   ResourceMark rm;
  4934   HandleMark   hm;
  4936   // ---------- rescan from roots --------------
  4937   _timer.start();
  4938   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4939   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  4940     _collector->_span, _collector->ref_processor(),
  4941     &(_collector->_markBitMap),
  4942     work_queue(i), &(_collector->_revisitStack));
  4944   // Rescan young gen roots first since these are likely
  4945   // coarsely partitioned and may, on that account, constitute
  4946   // the critical path; thus, it's best to start off that
  4947   // work first.
  4948   // ---------- young gen roots --------------
  4950     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  4951     EdenSpace* eden_space = dng->eden();
  4952     ContiguousSpace* from_space = dng->from();
  4953     ContiguousSpace* to_space   = dng->to();
  4955     HeapWord** eca = _collector->_eden_chunk_array;
  4956     size_t     ect = _collector->_eden_chunk_index;
  4957     HeapWord** sca = _collector->_survivor_chunk_array;
  4958     size_t     sct = _collector->_survivor_chunk_index;
  4960     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  4961     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  4963     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
  4964     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
  4965     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
  4967     _timer.stop();
  4968     if (PrintCMSStatistics != 0) {
  4969       gclog_or_tty->print_cr(
  4970         "Finished young gen rescan work in %dth thread: %3.3f sec",
  4971         i, _timer.seconds());
  4975   // ---------- remaining roots --------------
  4976   _timer.reset();
  4977   _timer.start();
  4978   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  4979                                 false,     // yg was scanned above
  4980                                 true,      // collecting perm gen
  4981                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  4982                                 NULL, &par_mrias_cl);
  4983   _timer.stop();
  4984   if (PrintCMSStatistics != 0) {
  4985     gclog_or_tty->print_cr(
  4986       "Finished remaining root rescan work in %dth thread: %3.3f sec",
  4987       i, _timer.seconds());
  4990   // ---------- rescan dirty cards ------------
  4991   _timer.reset();
  4992   _timer.start();
  4994   // Do the rescan tasks for each of the two spaces
  4995   // (cms_space and perm_space) in turn.
  4996   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
  4997   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
  4998   _timer.stop();
  4999   if (PrintCMSStatistics != 0) {
  5000     gclog_or_tty->print_cr(
  5001       "Finished dirty card rescan work in %dth thread: %3.3f sec",
  5002       i, _timer.seconds());
  5005   // ---------- steal work from other threads ...
  5006   // ---------- ... and drain overflow list.
  5007   _timer.reset();
  5008   _timer.start();
  5009   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
  5010   _timer.stop();
  5011   if (PrintCMSStatistics != 0) {
  5012     gclog_or_tty->print_cr(
  5013       "Finished work stealing in %dth thread: %3.3f sec",
  5014       i, _timer.seconds());
  5018 void
  5019 CMSParRemarkTask::do_young_space_rescan(int i,
  5020   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
  5021   HeapWord** chunk_array, size_t chunk_top) {
  5022   // Until all tasks completed:
  5023   // . claim an unclaimed task
  5024   // . compute region boundaries corresponding to task claimed
  5025   //   using chunk_array
  5026   // . par_oop_iterate(cl) over that region
  5028   ResourceMark rm;
  5029   HandleMark   hm;
  5031   SequentialSubTasksDone* pst = space->par_seq_tasks();
  5032   assert(pst->valid(), "Uninitialized use?");
  5034   int nth_task = 0;
  5035   int n_tasks  = pst->n_tasks();
  5037   HeapWord *start, *end;
  5038   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5039     // We claimed task # nth_task; compute its boundaries.
  5040     if (chunk_top == 0) {  // no samples were taken
  5041       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  5042       start = space->bottom();
  5043       end   = space->top();
  5044     } else if (nth_task == 0) {
  5045       start = space->bottom();
  5046       end   = chunk_array[nth_task];
  5047     } else if (nth_task < (jint)chunk_top) {
  5048       assert(nth_task >= 1, "Control point invariant");
  5049       start = chunk_array[nth_task - 1];
  5050       end   = chunk_array[nth_task];
  5051     } else {
  5052       assert(nth_task == (jint)chunk_top, "Control point invariant");
  5053       start = chunk_array[chunk_top - 1];
  5054       end   = space->top();
  5056     MemRegion mr(start, end);
  5057     // Verify that mr is in space
  5058     assert(mr.is_empty() || space->used_region().contains(mr),
  5059            "Should be in space");
  5060     // Verify that "start" is an object boundary
  5061     assert(mr.is_empty() || oop(mr.start())->is_oop(),
  5062            "Should be an oop");
  5063     space->par_oop_iterate(mr, cl);
  5065   pst->all_tasks_completed();
  5068 void
  5069 CMSParRemarkTask::do_dirty_card_rescan_tasks(
  5070   CompactibleFreeListSpace* sp, int i,
  5071   Par_MarkRefsIntoAndScanClosure* cl) {
  5072   // Until all tasks completed:
  5073   // . claim an unclaimed task
  5074   // . compute region boundaries corresponding to task claimed
  5075   // . transfer dirty bits ct->mut for that region
  5076   // . apply rescanclosure to dirty mut bits for that region
  5078   ResourceMark rm;
  5079   HandleMark   hm;
  5081   OopTaskQueue* work_q = work_queue(i);
  5082   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  5083   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  5084   // CAUTION: This closure has state that persists across calls to
  5085   // the work method dirty_range_iterate_clear() in that it has
  5086   // imbedded in it a (subtype of) UpwardsObjectClosure. The
  5087   // use of that state in the imbedded UpwardsObjectClosure instance
  5088   // assumes that the cards are always iterated (even if in parallel
  5089   // by several threads) in monotonically increasing order per each
  5090   // thread. This is true of the implementation below which picks
  5091   // card ranges (chunks) in monotonically increasing order globally
  5092   // and, a-fortiori, in monotonically increasing order per thread
  5093   // (the latter order being a subsequence of the former).
  5094   // If the work code below is ever reorganized into a more chaotic
  5095   // work-partitioning form than the current "sequential tasks"
  5096   // paradigm, the use of that persistent state will have to be
  5097   // revisited and modified appropriately. See also related
  5098   // bug 4756801 work on which should examine this code to make
  5099   // sure that the changes there do not run counter to the
  5100   // assumptions made here and necessary for correctness and
  5101   // efficiency. Note also that this code might yield inefficient
  5102   // behaviour in the case of very large objects that span one or
  5103   // more work chunks. Such objects would potentially be scanned
  5104   // several times redundantly. Work on 4756801 should try and
  5105   // address that performance anomaly if at all possible. XXX
  5106   MemRegion  full_span  = _collector->_span;
  5107   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  5108   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
  5109   MarkFromDirtyCardsClosure
  5110     greyRescanClosure(_collector, full_span, // entire span of interest
  5111                       sp, bm, work_q, rs, cl);
  5113   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  5114   assert(pst->valid(), "Uninitialized use?");
  5115   int nth_task = 0;
  5116   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  5117   MemRegion span = sp->used_region();
  5118   HeapWord* start_addr = span.start();
  5119   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  5120                                            alignment);
  5121   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  5122   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  5123          start_addr, "Check alignment");
  5124   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  5125          chunk_size, "Check alignment");
  5127   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5128     // Having claimed the nth_task, compute corresponding mem-region,
  5129     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  5130     // The alignment restriction ensures that we do not need any
  5131     // synchronization with other gang-workers while setting or
  5132     // clearing bits in thus chunk of the MUT.
  5133     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  5134                                     start_addr + (nth_task+1)*chunk_size);
  5135     // The last chunk's end might be way beyond end of the
  5136     // used region. In that case pull back appropriately.
  5137     if (this_span.end() > end_addr) {
  5138       this_span.set_end(end_addr);
  5139       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  5141     // Iterate over the dirty cards covering this chunk, marking them
  5142     // precleaned, and setting the corresponding bits in the mod union
  5143     // table. Since we have been careful to partition at Card and MUT-word
  5144     // boundaries no synchronization is needed between parallel threads.
  5145     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  5146                                                  &modUnionClosure);
  5148     // Having transferred these marks into the modUnionTable,
  5149     // rescan the marked objects on the dirty cards in the modUnionTable.
  5150     // Even if this is at a synchronous collection, the initial marking
  5151     // may have been done during an asynchronous collection so there
  5152     // may be dirty bits in the mod-union table.
  5153     _collector->_modUnionTable.dirty_range_iterate_clear(
  5154                   this_span, &greyRescanClosure);
  5155     _collector->_modUnionTable.verifyNoOneBitsInRange(
  5156                                  this_span.start(),
  5157                                  this_span.end());
  5159   pst->all_tasks_completed();  // declare that i am done
  5162 // . see if we can share work_queues with ParNew? XXX
  5163 void
  5164 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5165                                 int* seed) {
  5166   OopTaskQueue* work_q = work_queue(i);
  5167   NOT_PRODUCT(int num_steals = 0;)
  5168   oop obj_to_scan;
  5169   CMSBitMap* bm = &(_collector->_markBitMap);
  5170   size_t num_from_overflow_list =
  5171            MIN2((size_t)work_q->max_elems()/4,
  5172                 (size_t)ParGCDesiredObjsFromOverflowList);
  5174   while (true) {
  5175     // Completely finish any left over work from (an) earlier round(s)
  5176     cl->trim_queue(0);
  5177     // Now check if there's any work in the overflow list
  5178     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5179                                                 work_q)) {
  5180       // found something in global overflow list;
  5181       // not yet ready to go stealing work from others.
  5182       // We'd like to assert(work_q->size() != 0, ...)
  5183       // because we just took work from the overflow list,
  5184       // but of course we can't since all of that could have
  5185       // been already stolen from us.
  5186       // "He giveth and He taketh away."
  5187       continue;
  5189     // Verify that we have no work before we resort to stealing
  5190     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5191     // Try to steal from other queues that have work
  5192     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5193       NOT_PRODUCT(num_steals++;)
  5194       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5195       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5196       // Do scanning work
  5197       obj_to_scan->oop_iterate(cl);
  5198       // Loop around, finish this work, and try to steal some more
  5199     } else if (terminator()->offer_termination()) {
  5200         break;  // nirvana from the infinite cycle
  5203   NOT_PRODUCT(
  5204     if (PrintCMSStatistics != 0) {
  5205       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5208   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  5209          "Else our work is not yet done");
  5212 // Return a thread-local PLAB recording array, as appropriate.
  5213 void* CMSCollector::get_data_recorder(int thr_num) {
  5214   if (_survivor_plab_array != NULL &&
  5215       (CMSPLABRecordAlways ||
  5216        (_collectorState > Marking && _collectorState < FinalMarking))) {
  5217     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  5218     ChunkArray* ca = &_survivor_plab_array[thr_num];
  5219     ca->reset();   // clear it so that fresh data is recorded
  5220     return (void*) ca;
  5221   } else {
  5222     return NULL;
  5226 // Reset all the thread-local PLAB recording arrays
  5227 void CMSCollector::reset_survivor_plab_arrays() {
  5228   for (uint i = 0; i < ParallelGCThreads; i++) {
  5229     _survivor_plab_array[i].reset();
  5233 // Merge the per-thread plab arrays into the global survivor chunk
  5234 // array which will provide the partitioning of the survivor space
  5235 // for CMS rescan.
  5236 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv) {
  5237   assert(_survivor_plab_array  != NULL, "Error");
  5238   assert(_survivor_chunk_array != NULL, "Error");
  5239   assert(_collectorState == FinalMarking, "Error");
  5240   for (uint j = 0; j < ParallelGCThreads; j++) {
  5241     _cursor[j] = 0;
  5243   HeapWord* top = surv->top();
  5244   size_t i;
  5245   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  5246     HeapWord* min_val = top;          // Higher than any PLAB address
  5247     uint      min_tid = 0;            // position of min_val this round
  5248     for (uint j = 0; j < ParallelGCThreads; j++) {
  5249       ChunkArray* cur_sca = &_survivor_plab_array[j];
  5250       if (_cursor[j] == cur_sca->end()) {
  5251         continue;
  5253       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  5254       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  5255       assert(surv->used_region().contains(cur_val), "Out of bounds value");
  5256       if (cur_val < min_val) {
  5257         min_tid = j;
  5258         min_val = cur_val;
  5259       } else {
  5260         assert(cur_val < top, "All recorded addresses should be less");
  5263     // At this point min_val and min_tid are respectively
  5264     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  5265     // and the thread (j) that witnesses that address.
  5266     // We record this address in the _survivor_chunk_array[i]
  5267     // and increment _cursor[min_tid] prior to the next round i.
  5268     if (min_val == top) {
  5269       break;
  5271     _survivor_chunk_array[i] = min_val;
  5272     _cursor[min_tid]++;
  5274   // We are all done; record the size of the _survivor_chunk_array
  5275   _survivor_chunk_index = i; // exclusive: [0, i)
  5276   if (PrintCMSStatistics > 0) {
  5277     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  5279   // Verify that we used up all the recorded entries
  5280   #ifdef ASSERT
  5281     size_t total = 0;
  5282     for (uint j = 0; j < ParallelGCThreads; j++) {
  5283       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  5284       total += _cursor[j];
  5286     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  5287     // Check that the merged array is in sorted order
  5288     if (total > 0) {
  5289       for (size_t i = 0; i < total - 1; i++) {
  5290         if (PrintCMSStatistics > 0) {
  5291           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  5292                               i, _survivor_chunk_array[i]);
  5294         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  5295                "Not sorted");
  5298   #endif // ASSERT
  5301 // Set up the space's par_seq_tasks structure for work claiming
  5302 // for parallel rescan of young gen.
  5303 // See ParRescanTask where this is currently used.
  5304 void
  5305 CMSCollector::
  5306 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  5307   assert(n_threads > 0, "Unexpected n_threads argument");
  5308   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  5310   // Eden space
  5312     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  5313     assert(!pst->valid(), "Clobbering existing data?");
  5314     // Each valid entry in [0, _eden_chunk_index) represents a task.
  5315     size_t n_tasks = _eden_chunk_index + 1;
  5316     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  5317     pst->set_par_threads(n_threads);
  5318     pst->set_n_tasks((int)n_tasks);
  5321   // Merge the survivor plab arrays into _survivor_chunk_array
  5322   if (_survivor_plab_array != NULL) {
  5323     merge_survivor_plab_arrays(dng->from());
  5324   } else {
  5325     assert(_survivor_chunk_index == 0, "Error");
  5328   // To space
  5330     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  5331     assert(!pst->valid(), "Clobbering existing data?");
  5332     pst->set_par_threads(n_threads);
  5333     pst->set_n_tasks(1);
  5334     assert(pst->valid(), "Error");
  5337   // From space
  5339     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  5340     assert(!pst->valid(), "Clobbering existing data?");
  5341     size_t n_tasks = _survivor_chunk_index + 1;
  5342     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  5343     pst->set_par_threads(n_threads);
  5344     pst->set_n_tasks((int)n_tasks);
  5345     assert(pst->valid(), "Error");
  5349 // Parallel version of remark
  5350 void CMSCollector::do_remark_parallel() {
  5351   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5352   WorkGang* workers = gch->workers();
  5353   assert(workers != NULL, "Need parallel worker threads.");
  5354   int n_workers = workers->total_workers();
  5355   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  5356   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  5358   CMSParRemarkTask tsk(this,
  5359     cms_space, perm_space,
  5360     n_workers, workers, task_queues());
  5362   // Set up for parallel process_strong_roots work.
  5363   gch->set_par_threads(n_workers);
  5364   gch->change_strong_roots_parity();
  5365   // We won't be iterating over the cards in the card table updating
  5366   // the younger_gen cards, so we shouldn't call the following else
  5367   // the verification code as well as subsequent younger_refs_iterate
  5368   // code would get confused. XXX
  5369   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  5371   // The young gen rescan work will not be done as part of
  5372   // process_strong_roots (which currently doesn't knw how to
  5373   // parallelize such a scan), but rather will be broken up into
  5374   // a set of parallel tasks (via the sampling that the [abortable]
  5375   // preclean phase did of EdenSpace, plus the [two] tasks of
  5376   // scanning the [two] survivor spaces. Further fine-grain
  5377   // parallelization of the scanning of the survivor spaces
  5378   // themselves, and of precleaning of the younger gen itself
  5379   // is deferred to the future.
  5380   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  5382   // The dirty card rescan work is broken up into a "sequence"
  5383   // of parallel tasks (per constituent space) that are dynamically
  5384   // claimed by the parallel threads.
  5385   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5386   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5388   // It turns out that even when we're using 1 thread, doing the work in a
  5389   // separate thread causes wide variance in run times.  We can't help this
  5390   // in the multi-threaded case, but we special-case n=1 here to get
  5391   // repeatable measurements of the 1-thread overhead of the parallel code.
  5392   if (n_workers > 1) {
  5393     // Make refs discovery MT-safe
  5394     ReferenceProcessorMTMutator mt(ref_processor(), true);
  5395     workers->run_task(&tsk);
  5396   } else {
  5397     tsk.work(0);
  5399   gch->set_par_threads(0);  // 0 ==> non-parallel.
  5400   // restore, single-threaded for now, any preserved marks
  5401   // as a result of work_q overflow
  5402   restore_preserved_marks_if_any();
  5405 // Non-parallel version of remark
  5406 void CMSCollector::do_remark_non_parallel() {
  5407   ResourceMark rm;
  5408   HandleMark   hm;
  5409   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5410   MarkRefsIntoAndScanClosure
  5411     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  5412              &_markStack, &_revisitStack, this,
  5413              false /* should_yield */, false /* not precleaning */);
  5414   MarkFromDirtyCardsClosure
  5415     markFromDirtyCardsClosure(this, _span,
  5416                               NULL,  // space is set further below
  5417                               &_markBitMap, &_markStack, &_revisitStack,
  5418                               &mrias_cl);
  5420     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
  5421     // Iterate over the dirty cards, setting the corresponding bits in the
  5422     // mod union table.
  5424       ModUnionClosure modUnionClosure(&_modUnionTable);
  5425       _ct->ct_bs()->dirty_card_iterate(
  5426                       _cmsGen->used_region(),
  5427                       &modUnionClosure);
  5428       _ct->ct_bs()->dirty_card_iterate(
  5429                       _permGen->used_region(),
  5430                       &modUnionClosure);
  5432     // Having transferred these marks into the modUnionTable, we just need
  5433     // to rescan the marked objects on the dirty cards in the modUnionTable.
  5434     // The initial marking may have been done during an asynchronous
  5435     // collection so there may be dirty bits in the mod-union table.
  5436     const int alignment =
  5437       CardTableModRefBS::card_size * BitsPerWord;
  5439       // ... First handle dirty cards in CMS gen
  5440       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  5441       MemRegion ur = _cmsGen->used_region();
  5442       HeapWord* lb = ur.start();
  5443       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5444       MemRegion cms_span(lb, ub);
  5445       _modUnionTable.dirty_range_iterate_clear(cms_span,
  5446                                                &markFromDirtyCardsClosure);
  5447       verify_work_stacks_empty();
  5448       if (PrintCMSStatistics != 0) {
  5449         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  5450           markFromDirtyCardsClosure.num_dirty_cards());
  5454       // .. and then repeat for dirty cards in perm gen
  5455       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
  5456       MemRegion ur = _permGen->used_region();
  5457       HeapWord* lb = ur.start();
  5458       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5459       MemRegion perm_span(lb, ub);
  5460       _modUnionTable.dirty_range_iterate_clear(perm_span,
  5461                                                &markFromDirtyCardsClosure);
  5462       verify_work_stacks_empty();
  5463       if (PrintCMSStatistics != 0) {
  5464         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
  5465           markFromDirtyCardsClosure.num_dirty_cards());
  5469   if (VerifyDuringGC &&
  5470       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5471     HandleMark hm;  // Discard invalid handles created during verification
  5472     Universe::verify(true);
  5475     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
  5477     verify_work_stacks_empty();
  5479     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  5480     gch->gen_process_strong_roots(_cmsGen->level(),
  5481                                   true,  // younger gens as roots
  5482                                   true,  // collecting perm gen
  5483                                   SharedHeap::ScanningOption(roots_scanning_options()),
  5484                                   NULL, &mrias_cl);
  5486   verify_work_stacks_empty();
  5487   // Restore evacuated mark words, if any, used for overflow list links
  5488   if (!CMSOverflowEarlyRestoration) {
  5489     restore_preserved_marks_if_any();
  5491   verify_overflow_empty();
  5494 ////////////////////////////////////////////////////////
  5495 // Parallel Reference Processing Task Proxy Class
  5496 ////////////////////////////////////////////////////////
  5497 class CMSRefProcTaskProxy: public AbstractGangTask {
  5498   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5499   CMSCollector*          _collector;
  5500   CMSBitMap*             _mark_bit_map;
  5501   const MemRegion        _span;
  5502   OopTaskQueueSet*       _task_queues;
  5503   ParallelTaskTerminator _term;
  5504   ProcessTask&           _task;
  5506 public:
  5507   CMSRefProcTaskProxy(ProcessTask&     task,
  5508                       CMSCollector*    collector,
  5509                       const MemRegion& span,
  5510                       CMSBitMap*       mark_bit_map,
  5511                       int              total_workers,
  5512                       OopTaskQueueSet* task_queues):
  5513     AbstractGangTask("Process referents by policy in parallel"),
  5514     _task(task),
  5515     _collector(collector), _span(span), _mark_bit_map(mark_bit_map),
  5516     _task_queues(task_queues),
  5517     _term(total_workers, task_queues)
  5519       assert(_collector->_span.equals(_span) && !_span.is_empty(),
  5520              "Inconsistency in _span");
  5523   OopTaskQueueSet* task_queues() { return _task_queues; }
  5525   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5527   ParallelTaskTerminator* terminator() { return &_term; }
  5529   void do_work_steal(int i,
  5530                      CMSParDrainMarkingStackClosure* drain,
  5531                      CMSParKeepAliveClosure* keep_alive,
  5532                      int* seed);
  5534   virtual void work(int i);
  5535 };
  5537 void CMSRefProcTaskProxy::work(int i) {
  5538   assert(_collector->_span.equals(_span), "Inconsistency in _span");
  5539   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  5540                                         _mark_bit_map, work_queue(i));
  5541   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  5542                                                  _mark_bit_map, work_queue(i));
  5543   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
  5544   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
  5545   if (_task.marks_oops_alive()) {
  5546     do_work_steal(i, &par_drain_stack, &par_keep_alive,
  5547                   _collector->hash_seed(i));
  5549   assert(work_queue(i)->size() == 0, "work_queue should be empty");
  5550   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  5553 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  5554   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5555   EnqueueTask& _task;
  5557 public:
  5558   CMSRefEnqueueTaskProxy(EnqueueTask& task)
  5559     : AbstractGangTask("Enqueue reference objects in parallel"),
  5560       _task(task)
  5561   { }
  5563   virtual void work(int i)
  5565     _task.work(i);
  5567 };
  5569 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  5570   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
  5571    _collector(collector),
  5572    _span(span),
  5573    _bit_map(bit_map),
  5574    _work_queue(work_queue),
  5575    _mark_and_push(collector, span, bit_map, work_queue),
  5576    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  5577                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  5578 { }
  5580 // . see if we can share work_queues with ParNew? XXX
  5581 void CMSRefProcTaskProxy::do_work_steal(int i,
  5582   CMSParDrainMarkingStackClosure* drain,
  5583   CMSParKeepAliveClosure* keep_alive,
  5584   int* seed) {
  5585   OopTaskQueue* work_q = work_queue(i);
  5586   NOT_PRODUCT(int num_steals = 0;)
  5587   oop obj_to_scan;
  5588   size_t num_from_overflow_list =
  5589            MIN2((size_t)work_q->max_elems()/4,
  5590                 (size_t)ParGCDesiredObjsFromOverflowList);
  5592   while (true) {
  5593     // Completely finish any left over work from (an) earlier round(s)
  5594     drain->trim_queue(0);
  5595     // Now check if there's any work in the overflow list
  5596     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5597                                                 work_q)) {
  5598       // Found something in global overflow list;
  5599       // not yet ready to go stealing work from others.
  5600       // We'd like to assert(work_q->size() != 0, ...)
  5601       // because we just took work from the overflow list,
  5602       // but of course we can't, since all of that might have
  5603       // been already stolen from us.
  5604       continue;
  5606     // Verify that we have no work before we resort to stealing
  5607     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5608     // Try to steal from other queues that have work
  5609     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5610       NOT_PRODUCT(num_steals++;)
  5611       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5612       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5613       // Do scanning work
  5614       obj_to_scan->oop_iterate(keep_alive);
  5615       // Loop around, finish this work, and try to steal some more
  5616     } else if (terminator()->offer_termination()) {
  5617       break;  // nirvana from the infinite cycle
  5620   NOT_PRODUCT(
  5621     if (PrintCMSStatistics != 0) {
  5622       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5627 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  5629   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5630   WorkGang* workers = gch->workers();
  5631   assert(workers != NULL, "Need parallel worker threads.");
  5632   int n_workers = workers->total_workers();
  5633   CMSRefProcTaskProxy rp_task(task, &_collector,
  5634                               _collector.ref_processor()->span(),
  5635                               _collector.markBitMap(),
  5636                               n_workers, _collector.task_queues());
  5637   workers->run_task(&rp_task);
  5640 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  5643   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5644   WorkGang* workers = gch->workers();
  5645   assert(workers != NULL, "Need parallel worker threads.");
  5646   CMSRefEnqueueTaskProxy enq_task(task);
  5647   workers->run_task(&enq_task);
  5650 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  5652   ResourceMark rm;
  5653   HandleMark   hm;
  5654   ReferencePolicy* soft_ref_policy;
  5656   assert(!ref_processor()->enqueuing_is_done(), "Enqueuing should not be complete");
  5657   // Process weak references.
  5658   if (clear_all_soft_refs) {
  5659     soft_ref_policy = new AlwaysClearPolicy();
  5660   } else {
  5661 #ifdef COMPILER2
  5662     soft_ref_policy = new LRUMaxHeapPolicy();
  5663 #else
  5664     soft_ref_policy = new LRUCurrentHeapPolicy();
  5665 #endif // COMPILER2
  5667   verify_work_stacks_empty();
  5669   ReferenceProcessor* rp = ref_processor();
  5670   assert(rp->span().equals(_span), "Spans should be equal");
  5671   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  5672                                           &_markStack);
  5673   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  5674                                 _span, &_markBitMap, &_markStack,
  5675                                 &cmsKeepAliveClosure);
  5677     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
  5678     if (rp->processing_is_mt()) {
  5679       CMSRefProcTaskExecutor task_executor(*this);
  5680       rp->process_discovered_references(soft_ref_policy,
  5681                                         &_is_alive_closure,
  5682                                         &cmsKeepAliveClosure,
  5683                                         &cmsDrainMarkingStackClosure,
  5684                                         &task_executor);
  5685     } else {
  5686       rp->process_discovered_references(soft_ref_policy,
  5687                                         &_is_alive_closure,
  5688                                         &cmsKeepAliveClosure,
  5689                                         &cmsDrainMarkingStackClosure,
  5690                                         NULL);
  5692     verify_work_stacks_empty();
  5695   if (should_unload_classes()) {
  5697       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
  5699       // Follow SystemDictionary roots and unload classes
  5700       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  5702       // Follow CodeCache roots and unload any methods marked for unloading
  5703       CodeCache::do_unloading(&_is_alive_closure,
  5704                               &cmsKeepAliveClosure,
  5705                               purged_class);
  5707       cmsDrainMarkingStackClosure.do_void();
  5708       verify_work_stacks_empty();
  5710       // Update subklass/sibling/implementor links in KlassKlass descendants
  5711       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
  5712       oop k;
  5713       while ((k = _revisitStack.pop()) != NULL) {
  5714         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
  5715                        &_is_alive_closure,
  5716                        &cmsKeepAliveClosure);
  5718       assert(!ClassUnloading ||
  5719              (_markStack.isEmpty() && overflow_list_is_empty()),
  5720              "Should not have found new reachable objects");
  5721       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
  5722       cmsDrainMarkingStackClosure.do_void();
  5723       verify_work_stacks_empty();
  5727       TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
  5728       // Now clean up stale oops in SymbolTable and StringTable
  5729       SymbolTable::unlink(&_is_alive_closure);
  5730       StringTable::unlink(&_is_alive_closure);
  5734   verify_work_stacks_empty();
  5735   // Restore any preserved marks as a result of mark stack or
  5736   // work queue overflow
  5737   restore_preserved_marks_if_any();  // done single-threaded for now
  5739   rp->set_enqueuing_is_done(true);
  5740   if (rp->processing_is_mt()) {
  5741     CMSRefProcTaskExecutor task_executor(*this);
  5742     rp->enqueue_discovered_references(&task_executor);
  5743   } else {
  5744     rp->enqueue_discovered_references(NULL);
  5746   rp->verify_no_references_recorded();
  5747   assert(!rp->discovery_enabled(), "should have been disabled");
  5749   // JVMTI object tagging is based on JNI weak refs. If any of these
  5750   // refs were cleared then JVMTI needs to update its maps and
  5751   // maybe post ObjectFrees to agents.
  5752   JvmtiExport::cms_ref_processing_epilogue();
  5755 #ifndef PRODUCT
  5756 void CMSCollector::check_correct_thread_executing() {
  5757   Thread* t = Thread::current();
  5758   // Only the VM thread or the CMS thread should be here.
  5759   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  5760          "Unexpected thread type");
  5761   // If this is the vm thread, the foreground process
  5762   // should not be waiting.  Note that _foregroundGCIsActive is
  5763   // true while the foreground collector is waiting.
  5764   if (_foregroundGCShouldWait) {
  5765     // We cannot be the VM thread
  5766     assert(t->is_ConcurrentGC_thread(),
  5767            "Should be CMS thread");
  5768   } else {
  5769     // We can be the CMS thread only if we are in a stop-world
  5770     // phase of CMS collection.
  5771     if (t->is_ConcurrentGC_thread()) {
  5772       assert(_collectorState == InitialMarking ||
  5773              _collectorState == FinalMarking,
  5774              "Should be a stop-world phase");
  5775       // The CMS thread should be holding the CMS_token.
  5776       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  5777              "Potential interference with concurrently "
  5778              "executing VM thread");
  5782 #endif
  5784 void CMSCollector::sweep(bool asynch) {
  5785   assert(_collectorState == Sweeping, "just checking");
  5786   check_correct_thread_executing();
  5787   verify_work_stacks_empty();
  5788   verify_overflow_empty();
  5789   incrementSweepCount();
  5790   _sweep_timer.stop();
  5791   _sweep_estimate.sample(_sweep_timer.seconds());
  5792   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  5794   // PermGen verification support: If perm gen sweeping is disabled in
  5795   // this cycle, we preserve the perm gen object "deadness" information
  5796   // in the perm_gen_verify_bit_map. In order to do that we traverse
  5797   // all blocks in perm gen and mark all dead objects.
  5798   if (verifying() && !should_unload_classes()) {
  5799     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
  5800            "Should have already been allocated");
  5801     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
  5802                                markBitMap(), perm_gen_verify_bit_map());
  5803     if (asynch) {
  5804       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5805                                bitMapLock());
  5806       _permGen->cmsSpace()->blk_iterate(&mdo);
  5807     } else {
  5808       // In the case of synchronous sweep, we already have
  5809       // the requisite locks/tokens.
  5810       _permGen->cmsSpace()->blk_iterate(&mdo);
  5814   if (asynch) {
  5815     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  5816     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
  5817     // First sweep the old gen then the perm gen
  5819       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5820                                bitMapLock());
  5821       sweepWork(_cmsGen, asynch);
  5824     // Now repeat for perm gen
  5825     if (should_unload_classes()) {
  5826       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5827                              bitMapLock());
  5828       sweepWork(_permGen, asynch);
  5831     // Update Universe::_heap_*_at_gc figures.
  5832     // We need all the free list locks to make the abstract state
  5833     // transition from Sweeping to Resetting. See detailed note
  5834     // further below.
  5836       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5837                                _permGen->freelistLock());
  5838       // Update heap occupancy information which is used as
  5839       // input to soft ref clearing policy at the next gc.
  5840       Universe::update_heap_info_at_gc();
  5841       _collectorState = Resizing;
  5843   } else {
  5844     // already have needed locks
  5845     sweepWork(_cmsGen,  asynch);
  5847     if (should_unload_classes()) {
  5848       sweepWork(_permGen, asynch);
  5850     // Update heap occupancy information which is used as
  5851     // input to soft ref clearing policy at the next gc.
  5852     Universe::update_heap_info_at_gc();
  5853     _collectorState = Resizing;
  5855   verify_work_stacks_empty();
  5856   verify_overflow_empty();
  5858   _sweep_timer.reset();
  5859   _sweep_timer.start();
  5861   update_time_of_last_gc(os::javaTimeMillis());
  5863   // NOTE on abstract state transitions:
  5864   // Mutators allocate-live and/or mark the mod-union table dirty
  5865   // based on the state of the collection.  The former is done in
  5866   // the interval [Marking, Sweeping] and the latter in the interval
  5867   // [Marking, Sweeping).  Thus the transitions into the Marking state
  5868   // and out of the Sweeping state must be synchronously visible
  5869   // globally to the mutators.
  5870   // The transition into the Marking state happens with the world
  5871   // stopped so the mutators will globally see it.  Sweeping is
  5872   // done asynchronously by the background collector so the transition
  5873   // from the Sweeping state to the Resizing state must be done
  5874   // under the freelistLock (as is the check for whether to
  5875   // allocate-live and whether to dirty the mod-union table).
  5876   assert(_collectorState == Resizing, "Change of collector state to"
  5877     " Resizing must be done under the freelistLocks (plural)");
  5879   // Now that sweeping has been completed, if the GCH's
  5880   // incremental_collection_will_fail flag is set, clear it,
  5881   // thus inviting a younger gen collection to promote into
  5882   // this generation. If such a promotion may still fail,
  5883   // the flag will be set again when a young collection is
  5884   // attempted.
  5885   // I think the incremental_collection_will_fail flag's use
  5886   // is specific to a 2 generation collection policy, so i'll
  5887   // assert that that's the configuration we are operating within.
  5888   // The use of the flag can and should be generalized appropriately
  5889   // in the future to deal with a general n-generation system.
  5891   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5892   assert(gch->collector_policy()->is_two_generation_policy(),
  5893          "Resetting of incremental_collection_will_fail flag"
  5894          " may be incorrect otherwise");
  5895   gch->clear_incremental_collection_will_fail();
  5896   gch->update_full_collections_completed(_collection_count_start);
  5899 // FIX ME!!! Looks like this belongs in CFLSpace, with
  5900 // CMSGen merely delegating to it.
  5901 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  5902   double nearLargestPercent = 0.999;
  5903   HeapWord*  minAddr        = _cmsSpace->bottom();
  5904   HeapWord*  largestAddr    =
  5905     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
  5906   if (largestAddr == 0) {
  5907     // The dictionary appears to be empty.  In this case
  5908     // try to coalesce at the end of the heap.
  5909     largestAddr = _cmsSpace->end();
  5911   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  5912   size_t nearLargestOffset =
  5913     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  5914   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  5917 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  5918   return addr >= _cmsSpace->nearLargestChunk();
  5921 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  5922   return _cmsSpace->find_chunk_at_end();
  5925 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  5926                                                     bool full) {
  5927   // The next lower level has been collected.  Gather any statistics
  5928   // that are of interest at this point.
  5929   if (!full && (current_level + 1) == level()) {
  5930     // Gather statistics on the young generation collection.
  5931     collector()->stats().record_gc0_end(used());
  5935 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  5936   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5937   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  5938     "Wrong type of heap");
  5939   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  5940     gch->gen_policy()->size_policy();
  5941   assert(sp->is_gc_cms_adaptive_size_policy(),
  5942     "Wrong type of size policy");
  5943   return sp;
  5946 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  5947   if (PrintGCDetails && Verbose) {
  5948     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  5950   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  5951   _debug_collection_type =
  5952     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  5953   if (PrintGCDetails && Verbose) {
  5954     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  5958 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  5959   bool asynch) {
  5960   // We iterate over the space(s) underlying this generation,
  5961   // checking the mark bit map to see if the bits corresponding
  5962   // to specific blocks are marked or not. Blocks that are
  5963   // marked are live and are not swept up. All remaining blocks
  5964   // are swept up, with coalescing on-the-fly as we sweep up
  5965   // contiguous free and/or garbage blocks:
  5966   // We need to ensure that the sweeper synchronizes with allocators
  5967   // and stop-the-world collectors. In particular, the following
  5968   // locks are used:
  5969   // . CMS token: if this is held, a stop the world collection cannot occur
  5970   // . freelistLock: if this is held no allocation can occur from this
  5971   //                 generation by another thread
  5972   // . bitMapLock: if this is held, no other thread can access or update
  5973   //
  5975   // Note that we need to hold the freelistLock if we use
  5976   // block iterate below; else the iterator might go awry if
  5977   // a mutator (or promotion) causes block contents to change
  5978   // (for instance if the allocator divvies up a block).
  5979   // If we hold the free list lock, for all practical purposes
  5980   // young generation GC's can't occur (they'll usually need to
  5981   // promote), so we might as well prevent all young generation
  5982   // GC's while we do a sweeping step. For the same reason, we might
  5983   // as well take the bit map lock for the entire duration
  5985   // check that we hold the requisite locks
  5986   assert(have_cms_token(), "Should hold cms token");
  5987   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  5988          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  5989         "Should possess CMS token to sweep");
  5990   assert_lock_strong(gen->freelistLock());
  5991   assert_lock_strong(bitMapLock());
  5993   assert(!_sweep_timer.is_active(), "Was switched off in an outer context");
  5994   gen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  5995                                       _sweep_estimate.padded_average());
  5996   gen->setNearLargestChunk();
  5999     SweepClosure sweepClosure(this, gen, &_markBitMap,
  6000                             CMSYield && asynch);
  6001     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  6002     // We need to free-up/coalesce garbage/blocks from a
  6003     // co-terminal free run. This is done in the SweepClosure
  6004     // destructor; so, do not remove this scope, else the
  6005     // end-of-sweep-census below will be off by a little bit.
  6007   gen->cmsSpace()->sweep_completed();
  6008   gen->cmsSpace()->endSweepFLCensus(sweepCount());
  6009   if (should_unload_classes()) {                // unloaded classes this cycle,
  6010     _concurrent_cycles_since_last_unload = 0;   // ... reset count
  6011   } else {                                      // did not unload classes,
  6012     _concurrent_cycles_since_last_unload++;     // ... increment count
  6016 // Reset CMS data structures (for now just the marking bit map)
  6017 // preparatory for the next cycle.
  6018 void CMSCollector::reset(bool asynch) {
  6019   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6020   CMSAdaptiveSizePolicy* sp = size_policy();
  6021   AdaptiveSizePolicyOutput(sp, gch->total_collections());
  6022   if (asynch) {
  6023     CMSTokenSyncWithLocks ts(true, bitMapLock());
  6025     // If the state is not "Resetting", the foreground  thread
  6026     // has done a collection and the resetting.
  6027     if (_collectorState != Resetting) {
  6028       assert(_collectorState == Idling, "The state should only change"
  6029         " because the foreground collector has finished the collection");
  6030       return;
  6033     // Clear the mark bitmap (no grey objects to start with)
  6034     // for the next cycle.
  6035     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6036     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
  6038     HeapWord* curAddr = _markBitMap.startWord();
  6039     while (curAddr < _markBitMap.endWord()) {
  6040       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  6041       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  6042       _markBitMap.clear_large_range(chunk);
  6043       if (ConcurrentMarkSweepThread::should_yield() &&
  6044           !foregroundGCIsActive() &&
  6045           CMSYield) {
  6046         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6047                "CMS thread should hold CMS token");
  6048         assert_lock_strong(bitMapLock());
  6049         bitMapLock()->unlock();
  6050         ConcurrentMarkSweepThread::desynchronize(true);
  6051         ConcurrentMarkSweepThread::acknowledge_yield_request();
  6052         stopTimer();
  6053         if (PrintCMSStatistics != 0) {
  6054           incrementYields();
  6056         icms_wait();
  6058         // See the comment in coordinator_yield()
  6059         for (unsigned i = 0; i < CMSYieldSleepCount &&
  6060                          ConcurrentMarkSweepThread::should_yield() &&
  6061                          !CMSCollector::foregroundGCIsActive(); ++i) {
  6062           os::sleep(Thread::current(), 1, false);
  6063           ConcurrentMarkSweepThread::acknowledge_yield_request();
  6066         ConcurrentMarkSweepThread::synchronize(true);
  6067         bitMapLock()->lock_without_safepoint_check();
  6068         startTimer();
  6070       curAddr = chunk.end();
  6072     _collectorState = Idling;
  6073   } else {
  6074     // already have the lock
  6075     assert(_collectorState == Resetting, "just checking");
  6076     assert_lock_strong(bitMapLock());
  6077     _markBitMap.clear_all();
  6078     _collectorState = Idling;
  6081   // Stop incremental mode after a cycle completes, so that any future cycles
  6082   // are triggered by allocation.
  6083   stop_icms();
  6085   NOT_PRODUCT(
  6086     if (RotateCMSCollectionTypes) {
  6087       _cmsGen->rotate_debug_collection_type();
  6092 void CMSCollector::do_CMS_operation(CMS_op_type op) {
  6093   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  6094   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6095   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
  6096   TraceCollectorStats tcs(counters());
  6098   switch (op) {
  6099     case CMS_op_checkpointRootsInitial: {
  6100       checkpointRootsInitial(true);       // asynch
  6101       if (PrintGC) {
  6102         _cmsGen->printOccupancy("initial-mark");
  6104       break;
  6106     case CMS_op_checkpointRootsFinal: {
  6107       checkpointRootsFinal(true,    // asynch
  6108                            false,   // !clear_all_soft_refs
  6109                            false);  // !init_mark_was_synchronous
  6110       if (PrintGC) {
  6111         _cmsGen->printOccupancy("remark");
  6113       break;
  6115     default:
  6116       fatal("No such CMS_op");
  6120 #ifndef PRODUCT
  6121 size_t const CMSCollector::skip_header_HeapWords() {
  6122   return FreeChunk::header_size();
  6125 // Try and collect here conditions that should hold when
  6126 // CMS thread is exiting. The idea is that the foreground GC
  6127 // thread should not be blocked if it wants to terminate
  6128 // the CMS thread and yet continue to run the VM for a while
  6129 // after that.
  6130 void CMSCollector::verify_ok_to_terminate() const {
  6131   assert(Thread::current()->is_ConcurrentGC_thread(),
  6132          "should be called by CMS thread");
  6133   assert(!_foregroundGCShouldWait, "should be false");
  6134   // We could check here that all the various low-level locks
  6135   // are not held by the CMS thread, but that is overkill; see
  6136   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  6137   // is checked.
  6139 #endif
  6141 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  6142   assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  6143          "missing Printezis mark?");
  6144   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6145   size_t size = pointer_delta(nextOneAddr + 1, addr);
  6146   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6147          "alignment problem");
  6148   assert(size >= 3, "Necessary for Printezis marks to work");
  6149   return size;
  6152 // A variant of the above (block_size_using_printezis_bits()) except
  6153 // that we return 0 if the P-bits are not yet set.
  6154 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  6155   if (_markBitMap.isMarked(addr)) {
  6156     assert(_markBitMap.isMarked(addr + 1), "Missing Printezis bit?");
  6157     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6158     size_t size = pointer_delta(nextOneAddr + 1, addr);
  6159     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6160            "alignment problem");
  6161     assert(size >= 3, "Necessary for Printezis marks to work");
  6162     return size;
  6163   } else {
  6164     assert(!_markBitMap.isMarked(addr + 1), "Bit map inconsistency?");
  6165     return 0;
  6169 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  6170   size_t sz = 0;
  6171   oop p = (oop)addr;
  6172   if (p->klass() != NULL && p->is_parsable()) {
  6173     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6174   } else {
  6175     sz = block_size_using_printezis_bits(addr);
  6177   assert(sz > 0, "size must be nonzero");
  6178   HeapWord* next_block = addr + sz;
  6179   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  6180                                              CardTableModRefBS::card_size);
  6181   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  6182          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  6183          "must be different cards");
  6184   return next_card;
  6188 // CMS Bit Map Wrapper /////////////////////////////////////////
  6190 // Construct a CMS bit map infrastructure, but don't create the
  6191 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
  6192 // further below.
  6193 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  6194   _bm(),
  6195   _shifter(shifter),
  6196   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  6198   _bmStartWord = 0;
  6199   _bmWordSize  = 0;
  6202 bool CMSBitMap::allocate(MemRegion mr) {
  6203   _bmStartWord = mr.start();
  6204   _bmWordSize  = mr.word_size();
  6205   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  6206                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  6207   if (!brs.is_reserved()) {
  6208     warning("CMS bit map allocation failure");
  6209     return false;
  6211   // For now we'll just commit all of the bit map up fromt.
  6212   // Later on we'll try to be more parsimonious with swap.
  6213   if (!_virtual_space.initialize(brs, brs.size())) {
  6214     warning("CMS bit map backing store failure");
  6215     return false;
  6217   assert(_virtual_space.committed_size() == brs.size(),
  6218          "didn't reserve backing store for all of CMS bit map?");
  6219   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
  6220   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  6221          _bmWordSize, "inconsistency in bit map sizing");
  6222   _bm.set_size(_bmWordSize >> _shifter);
  6224   // bm.clear(); // can we rely on getting zero'd memory? verify below
  6225   assert(isAllClear(),
  6226          "Expected zero'd memory from ReservedSpace constructor");
  6227   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  6228          "consistency check");
  6229   return true;
  6232 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  6233   HeapWord *next_addr, *end_addr, *last_addr;
  6234   assert_locked();
  6235   assert(covers(mr), "out-of-range error");
  6236   // XXX assert that start and end are appropriately aligned
  6237   for (next_addr = mr.start(), end_addr = mr.end();
  6238        next_addr < end_addr; next_addr = last_addr) {
  6239     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  6240     last_addr = dirty_region.end();
  6241     if (!dirty_region.is_empty()) {
  6242       cl->do_MemRegion(dirty_region);
  6243     } else {
  6244       assert(last_addr == end_addr, "program logic");
  6245       return;
  6250 #ifndef PRODUCT
  6251 void CMSBitMap::assert_locked() const {
  6252   CMSLockVerifier::assert_locked(lock());
  6255 bool CMSBitMap::covers(MemRegion mr) const {
  6256   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  6257   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  6258          "size inconsistency");
  6259   return (mr.start() >= _bmStartWord) &&
  6260          (mr.end()   <= endWord());
  6263 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  6264     return (start >= _bmStartWord && (start + size) <= endWord());
  6267 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  6268   // verify that there are no 1 bits in the interval [left, right)
  6269   FalseBitMapClosure falseBitMapClosure;
  6270   iterate(&falseBitMapClosure, left, right);
  6273 void CMSBitMap::region_invariant(MemRegion mr)
  6275   assert_locked();
  6276   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  6277   assert(!mr.is_empty(), "unexpected empty region");
  6278   assert(covers(mr), "mr should be covered by bit map");
  6279   // convert address range into offset range
  6280   size_t start_ofs = heapWordToOffset(mr.start());
  6281   // Make sure that end() is appropriately aligned
  6282   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  6283                         (1 << (_shifter+LogHeapWordSize))),
  6284          "Misaligned mr.end()");
  6285   size_t end_ofs   = heapWordToOffset(mr.end());
  6286   assert(end_ofs > start_ofs, "Should mark at least one bit");
  6289 #endif
  6291 bool CMSMarkStack::allocate(size_t size) {
  6292   // allocate a stack of the requisite depth
  6293   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6294                    size * sizeof(oop)));
  6295   if (!rs.is_reserved()) {
  6296     warning("CMSMarkStack allocation failure");
  6297     return false;
  6299   if (!_virtual_space.initialize(rs, rs.size())) {
  6300     warning("CMSMarkStack backing store failure");
  6301     return false;
  6303   assert(_virtual_space.committed_size() == rs.size(),
  6304          "didn't reserve backing store for all of CMS stack?");
  6305   _base = (oop*)(_virtual_space.low());
  6306   _index = 0;
  6307   _capacity = size;
  6308   NOT_PRODUCT(_max_depth = 0);
  6309   return true;
  6312 // XXX FIX ME !!! In the MT case we come in here holding a
  6313 // leaf lock. For printing we need to take a further lock
  6314 // which has lower rank. We need to recallibrate the two
  6315 // lock-ranks involved in order to be able to rpint the
  6316 // messages below. (Or defer the printing to the caller.
  6317 // For now we take the expedient path of just disabling the
  6318 // messages for the problematic case.)
  6319 void CMSMarkStack::expand() {
  6320   assert(_capacity <= CMSMarkStackSizeMax, "stack bigger than permitted");
  6321   if (_capacity == CMSMarkStackSizeMax) {
  6322     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6323       // We print a warning message only once per CMS cycle.
  6324       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  6326     return;
  6328   // Double capacity if possible
  6329   size_t new_capacity = MIN2(_capacity*2, CMSMarkStackSizeMax);
  6330   // Do not give up existing stack until we have managed to
  6331   // get the double capacity that we desired.
  6332   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6333                    new_capacity * sizeof(oop)));
  6334   if (rs.is_reserved()) {
  6335     // Release the backing store associated with old stack
  6336     _virtual_space.release();
  6337     // Reinitialize virtual space for new stack
  6338     if (!_virtual_space.initialize(rs, rs.size())) {
  6339       fatal("Not enough swap for expanded marking stack");
  6341     _base = (oop*)(_virtual_space.low());
  6342     _index = 0;
  6343     _capacity = new_capacity;
  6344   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6345     // Failed to double capacity, continue;
  6346     // we print a detail message only once per CMS cycle.
  6347     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  6348             SIZE_FORMAT"K",
  6349             _capacity / K, new_capacity / K);
  6354 // Closures
  6355 // XXX: there seems to be a lot of code  duplication here;
  6356 // should refactor and consolidate common code.
  6358 // This closure is used to mark refs into the CMS generation in
  6359 // the CMS bit map. Called at the first checkpoint. This closure
  6360 // assumes that we do not need to re-mark dirty cards; if the CMS
  6361 // generation on which this is used is not an oldest (modulo perm gen)
  6362 // generation then this will lose younger_gen cards!
  6364 MarkRefsIntoClosure::MarkRefsIntoClosure(
  6365   MemRegion span, CMSBitMap* bitMap, bool should_do_nmethods):
  6366     _span(span),
  6367     _bitMap(bitMap),
  6368     _should_do_nmethods(should_do_nmethods)
  6370     assert(_ref_processor == NULL, "deliberately left NULL");
  6371     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6374 void MarkRefsIntoClosure::do_oop(oop obj) {
  6375   // if p points into _span, then mark corresponding bit in _markBitMap
  6376   assert(obj->is_oop(), "expected an oop");
  6377   HeapWord* addr = (HeapWord*)obj;
  6378   if (_span.contains(addr)) {
  6379     // this should be made more efficient
  6380     _bitMap->mark(addr);
  6384 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
  6385 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
  6387 // A variant of the above, used for CMS marking verification.
  6388 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  6389   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  6390   bool should_do_nmethods):
  6391     _span(span),
  6392     _verification_bm(verification_bm),
  6393     _cms_bm(cms_bm),
  6394     _should_do_nmethods(should_do_nmethods) {
  6395     assert(_ref_processor == NULL, "deliberately left NULL");
  6396     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  6399 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
  6400   // if p points into _span, then mark corresponding bit in _markBitMap
  6401   assert(obj->is_oop(), "expected an oop");
  6402   HeapWord* addr = (HeapWord*)obj;
  6403   if (_span.contains(addr)) {
  6404     _verification_bm->mark(addr);
  6405     if (!_cms_bm->isMarked(addr)) {
  6406       oop(addr)->print();
  6407       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
  6408       fatal("... aborting");
  6413 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6414 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6416 //////////////////////////////////////////////////
  6417 // MarkRefsIntoAndScanClosure
  6418 //////////////////////////////////////////////////
  6420 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  6421                                                        ReferenceProcessor* rp,
  6422                                                        CMSBitMap* bit_map,
  6423                                                        CMSBitMap* mod_union_table,
  6424                                                        CMSMarkStack*  mark_stack,
  6425                                                        CMSMarkStack*  revisit_stack,
  6426                                                        CMSCollector* collector,
  6427                                                        bool should_yield,
  6428                                                        bool concurrent_precleaning):
  6429   _collector(collector),
  6430   _span(span),
  6431   _bit_map(bit_map),
  6432   _mark_stack(mark_stack),
  6433   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  6434                       mark_stack, revisit_stack, concurrent_precleaning),
  6435   _yield(should_yield),
  6436   _concurrent_precleaning(concurrent_precleaning),
  6437   _freelistLock(NULL)
  6439   _ref_processor = rp;
  6440   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6443 // This closure is used to mark refs into the CMS generation at the
  6444 // second (final) checkpoint, and to scan and transitively follow
  6445 // the unmarked oops. It is also used during the concurrent precleaning
  6446 // phase while scanning objects on dirty cards in the CMS generation.
  6447 // The marks are made in the marking bit map and the marking stack is
  6448 // used for keeping the (newly) grey objects during the scan.
  6449 // The parallel version (Par_...) appears further below.
  6450 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6451   if (obj != NULL) {
  6452     assert(obj->is_oop(), "expected an oop");
  6453     HeapWord* addr = (HeapWord*)obj;
  6454     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6455     assert(_collector->overflow_list_is_empty(),
  6456            "overflow list should be empty");
  6457     if (_span.contains(addr) &&
  6458         !_bit_map->isMarked(addr)) {
  6459       // mark bit map (object is now grey)
  6460       _bit_map->mark(addr);
  6461       // push on marking stack (stack should be empty), and drain the
  6462       // stack by applying this closure to the oops in the oops popped
  6463       // from the stack (i.e. blacken the grey objects)
  6464       bool res = _mark_stack->push(obj);
  6465       assert(res, "Should have space to push on empty stack");
  6466       do {
  6467         oop new_oop = _mark_stack->pop();
  6468         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6469         assert(new_oop->is_parsable(), "Found unparsable oop");
  6470         assert(_bit_map->isMarked((HeapWord*)new_oop),
  6471                "only grey objects on this stack");
  6472         // iterate over the oops in this oop, marking and pushing
  6473         // the ones in CMS heap (i.e. in _span).
  6474         new_oop->oop_iterate(&_pushAndMarkClosure);
  6475         // check if it's time to yield
  6476         do_yield_check();
  6477       } while (!_mark_stack->isEmpty() ||
  6478                (!_concurrent_precleaning && take_from_overflow_list()));
  6479         // if marking stack is empty, and we are not doing this
  6480         // during precleaning, then check the overflow list
  6482     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6483     assert(_collector->overflow_list_is_empty(),
  6484            "overflow list was drained above");
  6485     // We could restore evacuated mark words, if any, used for
  6486     // overflow list links here because the overflow list is
  6487     // provably empty here. That would reduce the maximum
  6488     // size requirements for preserved_{oop,mark}_stack.
  6489     // But we'll just postpone it until we are all done
  6490     // so we can just stream through.
  6491     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  6492       _collector->restore_preserved_marks_if_any();
  6493       assert(_collector->no_preserved_marks(), "No preserved marks");
  6495     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  6496            "All preserved marks should have been restored above");
  6500 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6501 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6503 void MarkRefsIntoAndScanClosure::do_yield_work() {
  6504   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6505          "CMS thread should hold CMS token");
  6506   assert_lock_strong(_freelistLock);
  6507   assert_lock_strong(_bit_map->lock());
  6508   // relinquish the free_list_lock and bitMaplock()
  6509   _bit_map->lock()->unlock();
  6510   _freelistLock->unlock();
  6511   ConcurrentMarkSweepThread::desynchronize(true);
  6512   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6513   _collector->stopTimer();
  6514   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6515   if (PrintCMSStatistics != 0) {
  6516     _collector->incrementYields();
  6518   _collector->icms_wait();
  6520   // See the comment in coordinator_yield()
  6521   for (unsigned i = 0;
  6522        i < CMSYieldSleepCount &&
  6523        ConcurrentMarkSweepThread::should_yield() &&
  6524        !CMSCollector::foregroundGCIsActive();
  6525        ++i) {
  6526     os::sleep(Thread::current(), 1, false);
  6527     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6530   ConcurrentMarkSweepThread::synchronize(true);
  6531   _freelistLock->lock_without_safepoint_check();
  6532   _bit_map->lock()->lock_without_safepoint_check();
  6533   _collector->startTimer();
  6536 ///////////////////////////////////////////////////////////
  6537 // Par_MarkRefsIntoAndScanClosure: a parallel version of
  6538 //                                 MarkRefsIntoAndScanClosure
  6539 ///////////////////////////////////////////////////////////
  6540 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  6541   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  6542   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
  6543   _span(span),
  6544   _bit_map(bit_map),
  6545   _work_queue(work_queue),
  6546   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  6547                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  6548   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
  6549                           revisit_stack)
  6551   _ref_processor = rp;
  6552   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6555 // This closure is used to mark refs into the CMS generation at the
  6556 // second (final) checkpoint, and to scan and transitively follow
  6557 // the unmarked oops. The marks are made in the marking bit map and
  6558 // the work_queue is used for keeping the (newly) grey objects during
  6559 // the scan phase whence they are also available for stealing by parallel
  6560 // threads. Since the marking bit map is shared, updates are
  6561 // synchronized (via CAS).
  6562 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6563   if (obj != NULL) {
  6564     // Ignore mark word because this could be an already marked oop
  6565     // that may be chained at the end of the overflow list.
  6566     assert(obj->is_oop(), "expected an oop");
  6567     HeapWord* addr = (HeapWord*)obj;
  6568     if (_span.contains(addr) &&
  6569         !_bit_map->isMarked(addr)) {
  6570       // mark bit map (object will become grey):
  6571       // It is possible for several threads to be
  6572       // trying to "claim" this object concurrently;
  6573       // the unique thread that succeeds in marking the
  6574       // object first will do the subsequent push on
  6575       // to the work queue (or overflow list).
  6576       if (_bit_map->par_mark(addr)) {
  6577         // push on work_queue (which may not be empty), and trim the
  6578         // queue to an appropriate length by applying this closure to
  6579         // the oops in the oops popped from the stack (i.e. blacken the
  6580         // grey objects)
  6581         bool res = _work_queue->push(obj);
  6582         assert(res, "Low water mark should be less than capacity?");
  6583         trim_queue(_low_water_mark);
  6584       } // Else, another thread claimed the object
  6589 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6590 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6592 // This closure is used to rescan the marked objects on the dirty cards
  6593 // in the mod union table and the card table proper.
  6594 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  6595   oop p, MemRegion mr) {
  6597   size_t size = 0;
  6598   HeapWord* addr = (HeapWord*)p;
  6599   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6600   assert(_span.contains(addr), "we are scanning the CMS generation");
  6601   // check if it's time to yield
  6602   if (do_yield_check()) {
  6603     // We yielded for some foreground stop-world work,
  6604     // and we have been asked to abort this ongoing preclean cycle.
  6605     return 0;
  6607   if (_bitMap->isMarked(addr)) {
  6608     // it's marked; is it potentially uninitialized?
  6609     if (p->klass() != NULL) {
  6610       if (CMSPermGenPrecleaningEnabled && !p->is_parsable()) {
  6611         // Signal precleaning to redirty the card since
  6612         // the klass pointer is already installed.
  6613         assert(size == 0, "Initial value");
  6614       } else {
  6615         assert(p->is_parsable(), "must be parsable.");
  6616         // an initialized object; ignore mark word in verification below
  6617         // since we are running concurrent with mutators
  6618         assert(p->is_oop(true), "should be an oop");
  6619         if (p->is_objArray()) {
  6620           // objArrays are precisely marked; restrict scanning
  6621           // to dirty cards only.
  6622           size = p->oop_iterate(_scanningClosure, mr);
  6623           assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6624                  "adjustObjectSize should be the identity for array sizes, "
  6625                  "which are necessarily larger than minimum object size of "
  6626                  "two heap words");
  6627         } else {
  6628           // A non-array may have been imprecisely marked; we need
  6629           // to scan object in its entirety.
  6630           size = CompactibleFreeListSpace::adjustObjectSize(
  6631                    p->oop_iterate(_scanningClosure));
  6633         #ifdef DEBUG
  6634           size_t direct_size =
  6635             CompactibleFreeListSpace::adjustObjectSize(p->size());
  6636           assert(size == direct_size, "Inconsistency in size");
  6637           assert(size >= 3, "Necessary for Printezis marks to work");
  6638           if (!_bitMap->isMarked(addr+1)) {
  6639             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  6640           } else {
  6641             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  6642             assert(_bitMap->isMarked(addr+size-1),
  6643                    "inconsistent Printezis mark");
  6645         #endif // DEBUG
  6647     } else {
  6648       // an unitialized object
  6649       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  6650       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  6651       size = pointer_delta(nextOneAddr + 1, addr);
  6652       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6653              "alignment problem");
  6654       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  6655       // will dirty the card when the klass pointer is installed in the
  6656       // object (signalling the completion of initialization).
  6658   } else {
  6659     // Either a not yet marked object or an uninitialized object
  6660     if (p->klass() == NULL || !p->is_parsable()) {
  6661       // An uninitialized object, skip to the next card, since
  6662       // we may not be able to read its P-bits yet.
  6663       assert(size == 0, "Initial value");
  6664     } else {
  6665       // An object not (yet) reached by marking: we merely need to
  6666       // compute its size so as to go look at the next block.
  6667       assert(p->is_oop(true), "should be an oop");
  6668       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6671   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6672   return size;
  6675 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  6676   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6677          "CMS thread should hold CMS token");
  6678   assert_lock_strong(_freelistLock);
  6679   assert_lock_strong(_bitMap->lock());
  6680   // relinquish the free_list_lock and bitMaplock()
  6681   _bitMap->lock()->unlock();
  6682   _freelistLock->unlock();
  6683   ConcurrentMarkSweepThread::desynchronize(true);
  6684   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6685   _collector->stopTimer();
  6686   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6687   if (PrintCMSStatistics != 0) {
  6688     _collector->incrementYields();
  6690   _collector->icms_wait();
  6692   // See the comment in coordinator_yield()
  6693   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6694                    ConcurrentMarkSweepThread::should_yield() &&
  6695                    !CMSCollector::foregroundGCIsActive(); ++i) {
  6696     os::sleep(Thread::current(), 1, false);
  6697     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6700   ConcurrentMarkSweepThread::synchronize(true);
  6701   _freelistLock->lock_without_safepoint_check();
  6702   _bitMap->lock()->lock_without_safepoint_check();
  6703   _collector->startTimer();
  6707 //////////////////////////////////////////////////////////////////
  6708 // SurvivorSpacePrecleanClosure
  6709 //////////////////////////////////////////////////////////////////
  6710 // This (single-threaded) closure is used to preclean the oops in
  6711 // the survivor spaces.
  6712 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  6714   HeapWord* addr = (HeapWord*)p;
  6715   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6716   assert(!_span.contains(addr), "we are scanning the survivor spaces");
  6717   assert(p->klass() != NULL, "object should be initializd");
  6718   assert(p->is_parsable(), "must be parsable.");
  6719   // an initialized object; ignore mark word in verification below
  6720   // since we are running concurrent with mutators
  6721   assert(p->is_oop(true), "should be an oop");
  6722   // Note that we do not yield while we iterate over
  6723   // the interior oops of p, pushing the relevant ones
  6724   // on our marking stack.
  6725   size_t size = p->oop_iterate(_scanning_closure);
  6726   do_yield_check();
  6727   // Observe that below, we do not abandon the preclean
  6728   // phase as soon as we should; rather we empty the
  6729   // marking stack before returning. This is to satisfy
  6730   // some existing assertions. In general, it may be a
  6731   // good idea to abort immediately and complete the marking
  6732   // from the grey objects at a later time.
  6733   while (!_mark_stack->isEmpty()) {
  6734     oop new_oop = _mark_stack->pop();
  6735     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6736     assert(new_oop->is_parsable(), "Found unparsable oop");
  6737     assert(_bit_map->isMarked((HeapWord*)new_oop),
  6738            "only grey objects on this stack");
  6739     // iterate over the oops in this oop, marking and pushing
  6740     // the ones in CMS heap (i.e. in _span).
  6741     new_oop->oop_iterate(_scanning_closure);
  6742     // check if it's time to yield
  6743     do_yield_check();
  6745   unsigned int after_count =
  6746     GenCollectedHeap::heap()->total_collections();
  6747   bool abort = (_before_count != after_count) ||
  6748                _collector->should_abort_preclean();
  6749   return abort ? 0 : size;
  6752 void SurvivorSpacePrecleanClosure::do_yield_work() {
  6753   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6754          "CMS thread should hold CMS token");
  6755   assert_lock_strong(_bit_map->lock());
  6756   // Relinquish the bit map lock
  6757   _bit_map->lock()->unlock();
  6758   ConcurrentMarkSweepThread::desynchronize(true);
  6759   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6760   _collector->stopTimer();
  6761   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6762   if (PrintCMSStatistics != 0) {
  6763     _collector->incrementYields();
  6765   _collector->icms_wait();
  6767   // See the comment in coordinator_yield()
  6768   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6769                        ConcurrentMarkSweepThread::should_yield() &&
  6770                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6771     os::sleep(Thread::current(), 1, false);
  6772     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6775   ConcurrentMarkSweepThread::synchronize(true);
  6776   _bit_map->lock()->lock_without_safepoint_check();
  6777   _collector->startTimer();
  6780 // This closure is used to rescan the marked objects on the dirty cards
  6781 // in the mod union table and the card table proper. In the parallel
  6782 // case, although the bitMap is shared, we do a single read so the
  6783 // isMarked() query is "safe".
  6784 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  6785   // Ignore mark word because we are running concurrent with mutators
  6786   assert(p->is_oop_or_null(true), "expected an oop or null");
  6787   HeapWord* addr = (HeapWord*)p;
  6788   assert(_span.contains(addr), "we are scanning the CMS generation");
  6789   bool is_obj_array = false;
  6790   #ifdef DEBUG
  6791     if (!_parallel) {
  6792       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6793       assert(_collector->overflow_list_is_empty(),
  6794              "overflow list should be empty");
  6797   #endif // DEBUG
  6798   if (_bit_map->isMarked(addr)) {
  6799     // Obj arrays are precisely marked, non-arrays are not;
  6800     // so we scan objArrays precisely and non-arrays in their
  6801     // entirety.
  6802     if (p->is_objArray()) {
  6803       is_obj_array = true;
  6804       if (_parallel) {
  6805         p->oop_iterate(_par_scan_closure, mr);
  6806       } else {
  6807         p->oop_iterate(_scan_closure, mr);
  6809     } else {
  6810       if (_parallel) {
  6811         p->oop_iterate(_par_scan_closure);
  6812       } else {
  6813         p->oop_iterate(_scan_closure);
  6817   #ifdef DEBUG
  6818     if (!_parallel) {
  6819       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6820       assert(_collector->overflow_list_is_empty(),
  6821              "overflow list should be empty");
  6824   #endif // DEBUG
  6825   return is_obj_array;
  6828 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  6829                         MemRegion span,
  6830                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
  6831                         CMSMarkStack*  revisitStack,
  6832                         bool should_yield, bool verifying):
  6833   _collector(collector),
  6834   _span(span),
  6835   _bitMap(bitMap),
  6836   _mut(&collector->_modUnionTable),
  6837   _markStack(markStack),
  6838   _revisitStack(revisitStack),
  6839   _yield(should_yield),
  6840   _skipBits(0)
  6842   assert(_markStack->isEmpty(), "stack should be empty");
  6843   _finger = _bitMap->startWord();
  6844   _threshold = _finger;
  6845   assert(_collector->_restart_addr == NULL, "Sanity check");
  6846   assert(_span.contains(_finger), "Out of bounds _finger?");
  6847   DEBUG_ONLY(_verifying = verifying;)
  6850 void MarkFromRootsClosure::reset(HeapWord* addr) {
  6851   assert(_markStack->isEmpty(), "would cause duplicates on stack");
  6852   assert(_span.contains(addr), "Out of bounds _finger?");
  6853   _finger = addr;
  6854   _threshold = (HeapWord*)round_to(
  6855                  (intptr_t)_finger, CardTableModRefBS::card_size);
  6858 // Should revisit to see if this should be restructured for
  6859 // greater efficiency.
  6860 bool MarkFromRootsClosure::do_bit(size_t offset) {
  6861   if (_skipBits > 0) {
  6862     _skipBits--;
  6863     return true;
  6865   // convert offset into a HeapWord*
  6866   HeapWord* addr = _bitMap->startWord() + offset;
  6867   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  6868          "address out of range");
  6869   assert(_bitMap->isMarked(addr), "tautology");
  6870   if (_bitMap->isMarked(addr+1)) {
  6871     // this is an allocated but not yet initialized object
  6872     assert(_skipBits == 0, "tautology");
  6873     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  6874     oop p = oop(addr);
  6875     if (p->klass() == NULL || !p->is_parsable()) {
  6876       DEBUG_ONLY(if (!_verifying) {)
  6877         // We re-dirty the cards on which this object lies and increase
  6878         // the _threshold so that we'll come back to scan this object
  6879         // during the preclean or remark phase. (CMSCleanOnEnter)
  6880         if (CMSCleanOnEnter) {
  6881           size_t sz = _collector->block_size_using_printezis_bits(addr);
  6882           HeapWord* start_card_addr = (HeapWord*)round_down(
  6883                                          (intptr_t)addr, CardTableModRefBS::card_size);
  6884           HeapWord* end_card_addr   = (HeapWord*)round_to(
  6885                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  6886           MemRegion redirty_range = MemRegion(start_card_addr, end_card_addr);
  6887           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  6888           // Bump _threshold to end_card_addr; note that
  6889           // _threshold cannot possibly exceed end_card_addr, anyhow.
  6890           // This prevents future clearing of the card as the scan proceeds
  6891           // to the right.
  6892           assert(_threshold <= end_card_addr,
  6893                  "Because we are just scanning into this object");
  6894           if (_threshold < end_card_addr) {
  6895             _threshold = end_card_addr;
  6897           if (p->klass() != NULL) {
  6898             // Redirty the range of cards...
  6899             _mut->mark_range(redirty_range);
  6900           } // ...else the setting of klass will dirty the card anyway.
  6902       DEBUG_ONLY(})
  6903       return true;
  6906   scanOopsInOop(addr);
  6907   return true;
  6910 // We take a break if we've been at this for a while,
  6911 // so as to avoid monopolizing the locks involved.
  6912 void MarkFromRootsClosure::do_yield_work() {
  6913   // First give up the locks, then yield, then re-lock
  6914   // We should probably use a constructor/destructor idiom to
  6915   // do this unlock/lock or modify the MutexUnlocker class to
  6916   // serve our purpose. XXX
  6917   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6918          "CMS thread should hold CMS token");
  6919   assert_lock_strong(_bitMap->lock());
  6920   _bitMap->lock()->unlock();
  6921   ConcurrentMarkSweepThread::desynchronize(true);
  6922   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6923   _collector->stopTimer();
  6924   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6925   if (PrintCMSStatistics != 0) {
  6926     _collector->incrementYields();
  6928   _collector->icms_wait();
  6930   // See the comment in coordinator_yield()
  6931   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6932                        ConcurrentMarkSweepThread::should_yield() &&
  6933                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6934     os::sleep(Thread::current(), 1, false);
  6935     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6938   ConcurrentMarkSweepThread::synchronize(true);
  6939   _bitMap->lock()->lock_without_safepoint_check();
  6940   _collector->startTimer();
  6943 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  6944   assert(_bitMap->isMarked(ptr), "expected bit to be set");
  6945   assert(_markStack->isEmpty(),
  6946          "should drain stack to limit stack usage");
  6947   // convert ptr to an oop preparatory to scanning
  6948   oop obj = oop(ptr);
  6949   // Ignore mark word in verification below, since we
  6950   // may be running concurrent with mutators.
  6951   assert(obj->is_oop(true), "should be an oop");
  6952   assert(_finger <= ptr, "_finger runneth ahead");
  6953   // advance the finger to right end of this object
  6954   _finger = ptr + obj->size();
  6955   assert(_finger > ptr, "we just incremented it above");
  6956   // On large heaps, it may take us some time to get through
  6957   // the marking phase (especially if running iCMS). During
  6958   // this time it's possible that a lot of mutations have
  6959   // accumulated in the card table and the mod union table --
  6960   // these mutation records are redundant until we have
  6961   // actually traced into the corresponding card.
  6962   // Here, we check whether advancing the finger would make
  6963   // us cross into a new card, and if so clear corresponding
  6964   // cards in the MUT (preclean them in the card-table in the
  6965   // future).
  6967   DEBUG_ONLY(if (!_verifying) {)
  6968     // The clean-on-enter optimization is disabled by default,
  6969     // until we fix 6178663.
  6970     if (CMSCleanOnEnter && (_finger > _threshold)) {
  6971       // [_threshold, _finger) represents the interval
  6972       // of cards to be cleared  in MUT (or precleaned in card table).
  6973       // The set of cards to be cleared is all those that overlap
  6974       // with the interval [_threshold, _finger); note that
  6975       // _threshold is always kept card-aligned but _finger isn't
  6976       // always card-aligned.
  6977       HeapWord* old_threshold = _threshold;
  6978       assert(old_threshold == (HeapWord*)round_to(
  6979               (intptr_t)old_threshold, CardTableModRefBS::card_size),
  6980              "_threshold should always be card-aligned");
  6981       _threshold = (HeapWord*)round_to(
  6982                      (intptr_t)_finger, CardTableModRefBS::card_size);
  6983       MemRegion mr(old_threshold, _threshold);
  6984       assert(!mr.is_empty(), "Control point invariant");
  6985       assert(_span.contains(mr), "Should clear within span");
  6986       // XXX When _finger crosses from old gen into perm gen
  6987       // we may be doing unnecessary cleaning; do better in the
  6988       // future by detecting that condition and clearing fewer
  6989       // MUT/CT entries.
  6990       _mut->clear_range(mr);
  6992   DEBUG_ONLY(})
  6994   // Note: the finger doesn't advance while we drain
  6995   // the stack below.
  6996   PushOrMarkClosure pushOrMarkClosure(_collector,
  6997                                       _span, _bitMap, _markStack,
  6998                                       _revisitStack,
  6999                                       _finger, this);
  7000   bool res = _markStack->push(obj);
  7001   assert(res, "Empty non-zero size stack should have space for single push");
  7002   while (!_markStack->isEmpty()) {
  7003     oop new_oop = _markStack->pop();
  7004     // Skip verifying header mark word below because we are
  7005     // running concurrent with mutators.
  7006     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7007     // now scan this oop's oops
  7008     new_oop->oop_iterate(&pushOrMarkClosure);
  7009     do_yield_check();
  7011   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  7014 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  7015                        CMSCollector* collector, MemRegion span,
  7016                        CMSBitMap* bit_map,
  7017                        OopTaskQueue* work_queue,
  7018                        CMSMarkStack*  overflow_stack,
  7019                        CMSMarkStack*  revisit_stack,
  7020                        bool should_yield):
  7021   _collector(collector),
  7022   _whole_span(collector->_span),
  7023   _span(span),
  7024   _bit_map(bit_map),
  7025   _mut(&collector->_modUnionTable),
  7026   _work_queue(work_queue),
  7027   _overflow_stack(overflow_stack),
  7028   _revisit_stack(revisit_stack),
  7029   _yield(should_yield),
  7030   _skip_bits(0),
  7031   _task(task)
  7033   assert(_work_queue->size() == 0, "work_queue should be empty");
  7034   _finger = span.start();
  7035   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  7036   assert(_span.contains(_finger), "Out of bounds _finger?");
  7039 // Should revisit to see if this should be restructured for
  7040 // greater efficiency.
  7041 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
  7042   if (_skip_bits > 0) {
  7043     _skip_bits--;
  7044     return true;
  7046   // convert offset into a HeapWord*
  7047   HeapWord* addr = _bit_map->startWord() + offset;
  7048   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  7049          "address out of range");
  7050   assert(_bit_map->isMarked(addr), "tautology");
  7051   if (_bit_map->isMarked(addr+1)) {
  7052     // this is an allocated object that might not yet be initialized
  7053     assert(_skip_bits == 0, "tautology");
  7054     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  7055     oop p = oop(addr);
  7056     if (p->klass() == NULL || !p->is_parsable()) {
  7057       // in the case of Clean-on-Enter optimization, redirty card
  7058       // and avoid clearing card by increasing  the threshold.
  7059       return true;
  7062   scan_oops_in_oop(addr);
  7063   return true;
  7066 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  7067   assert(_bit_map->isMarked(ptr), "expected bit to be set");
  7068   // Should we assert that our work queue is empty or
  7069   // below some drain limit?
  7070   assert(_work_queue->size() == 0,
  7071          "should drain stack to limit stack usage");
  7072   // convert ptr to an oop preparatory to scanning
  7073   oop obj = oop(ptr);
  7074   // Ignore mark word in verification below, since we
  7075   // may be running concurrent with mutators.
  7076   assert(obj->is_oop(true), "should be an oop");
  7077   assert(_finger <= ptr, "_finger runneth ahead");
  7078   // advance the finger to right end of this object
  7079   _finger = ptr + obj->size();
  7080   assert(_finger > ptr, "we just incremented it above");
  7081   // On large heaps, it may take us some time to get through
  7082   // the marking phase (especially if running iCMS). During
  7083   // this time it's possible that a lot of mutations have
  7084   // accumulated in the card table and the mod union table --
  7085   // these mutation records are redundant until we have
  7086   // actually traced into the corresponding card.
  7087   // Here, we check whether advancing the finger would make
  7088   // us cross into a new card, and if so clear corresponding
  7089   // cards in the MUT (preclean them in the card-table in the
  7090   // future).
  7092   // The clean-on-enter optimization is disabled by default,
  7093   // until we fix 6178663.
  7094   if (CMSCleanOnEnter && (_finger > _threshold)) {
  7095     // [_threshold, _finger) represents the interval
  7096     // of cards to be cleared  in MUT (or precleaned in card table).
  7097     // The set of cards to be cleared is all those that overlap
  7098     // with the interval [_threshold, _finger); note that
  7099     // _threshold is always kept card-aligned but _finger isn't
  7100     // always card-aligned.
  7101     HeapWord* old_threshold = _threshold;
  7102     assert(old_threshold == (HeapWord*)round_to(
  7103             (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7104            "_threshold should always be card-aligned");
  7105     _threshold = (HeapWord*)round_to(
  7106                    (intptr_t)_finger, CardTableModRefBS::card_size);
  7107     MemRegion mr(old_threshold, _threshold);
  7108     assert(!mr.is_empty(), "Control point invariant");
  7109     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  7110     // XXX When _finger crosses from old gen into perm gen
  7111     // we may be doing unnecessary cleaning; do better in the
  7112     // future by detecting that condition and clearing fewer
  7113     // MUT/CT entries.
  7114     _mut->clear_range(mr);
  7117   // Note: the local finger doesn't advance while we drain
  7118   // the stack below, but the global finger sure can and will.
  7119   HeapWord** gfa = _task->global_finger_addr();
  7120   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  7121                                       _span, _bit_map,
  7122                                       _work_queue,
  7123                                       _overflow_stack,
  7124                                       _revisit_stack,
  7125                                       _finger,
  7126                                       gfa, this);
  7127   bool res = _work_queue->push(obj);   // overflow could occur here
  7128   assert(res, "Will hold once we use workqueues");
  7129   while (true) {
  7130     oop new_oop;
  7131     if (!_work_queue->pop_local(new_oop)) {
  7132       // We emptied our work_queue; check if there's stuff that can
  7133       // be gotten from the overflow stack.
  7134       if (CMSConcMarkingTask::get_work_from_overflow_stack(
  7135             _overflow_stack, _work_queue)) {
  7136         do_yield_check();
  7137         continue;
  7138       } else {  // done
  7139         break;
  7142     // Skip verifying header mark word below because we are
  7143     // running concurrent with mutators.
  7144     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7145     // now scan this oop's oops
  7146     new_oop->oop_iterate(&pushOrMarkClosure);
  7147     do_yield_check();
  7149   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  7152 // Yield in response to a request from VM Thread or
  7153 // from mutators.
  7154 void Par_MarkFromRootsClosure::do_yield_work() {
  7155   assert(_task != NULL, "sanity");
  7156   _task->yield();
  7159 // A variant of the above used for verifying CMS marking work.
  7160 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  7161                         MemRegion span,
  7162                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7163                         CMSMarkStack*  mark_stack):
  7164   _collector(collector),
  7165   _span(span),
  7166   _verification_bm(verification_bm),
  7167   _cms_bm(cms_bm),
  7168   _mark_stack(mark_stack),
  7169   _pam_verify_closure(collector, span, verification_bm, cms_bm,
  7170                       mark_stack)
  7172   assert(_mark_stack->isEmpty(), "stack should be empty");
  7173   _finger = _verification_bm->startWord();
  7174   assert(_collector->_restart_addr == NULL, "Sanity check");
  7175   assert(_span.contains(_finger), "Out of bounds _finger?");
  7178 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  7179   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  7180   assert(_span.contains(addr), "Out of bounds _finger?");
  7181   _finger = addr;
  7184 // Should revisit to see if this should be restructured for
  7185 // greater efficiency.
  7186 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  7187   // convert offset into a HeapWord*
  7188   HeapWord* addr = _verification_bm->startWord() + offset;
  7189   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  7190          "address out of range");
  7191   assert(_verification_bm->isMarked(addr), "tautology");
  7192   assert(_cms_bm->isMarked(addr), "tautology");
  7194   assert(_mark_stack->isEmpty(),
  7195          "should drain stack to limit stack usage");
  7196   // convert addr to an oop preparatory to scanning
  7197   oop obj = oop(addr);
  7198   assert(obj->is_oop(), "should be an oop");
  7199   assert(_finger <= addr, "_finger runneth ahead");
  7200   // advance the finger to right end of this object
  7201   _finger = addr + obj->size();
  7202   assert(_finger > addr, "we just incremented it above");
  7203   // Note: the finger doesn't advance while we drain
  7204   // the stack below.
  7205   bool res = _mark_stack->push(obj);
  7206   assert(res, "Empty non-zero size stack should have space for single push");
  7207   while (!_mark_stack->isEmpty()) {
  7208     oop new_oop = _mark_stack->pop();
  7209     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  7210     // now scan this oop's oops
  7211     new_oop->oop_iterate(&_pam_verify_closure);
  7213   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  7214   return true;
  7217 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  7218   CMSCollector* collector, MemRegion span,
  7219   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7220   CMSMarkStack*  mark_stack):
  7221   OopClosure(collector->ref_processor()),
  7222   _collector(collector),
  7223   _span(span),
  7224   _verification_bm(verification_bm),
  7225   _cms_bm(cms_bm),
  7226   _mark_stack(mark_stack)
  7227 { }
  7229 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
  7230 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
  7232 // Upon stack overflow, we discard (part of) the stack,
  7233 // remembering the least address amongst those discarded
  7234 // in CMSCollector's _restart_address.
  7235 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  7236   // Remember the least grey address discarded
  7237   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  7238   _collector->lower_restart_addr(ra);
  7239   _mark_stack->reset();  // discard stack contents
  7240   _mark_stack->expand(); // expand the stack if possible
  7243 void PushAndMarkVerifyClosure::do_oop(oop obj) {
  7244   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  7245   HeapWord* addr = (HeapWord*)obj;
  7246   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  7247     // Oop lies in _span and isn't yet grey or black
  7248     _verification_bm->mark(addr);            // now grey
  7249     if (!_cms_bm->isMarked(addr)) {
  7250       oop(addr)->print();
  7251       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
  7252                              addr);
  7253       fatal("... aborting");
  7256     if (!_mark_stack->push(obj)) { // stack overflow
  7257       if (PrintCMSStatistics != 0) {
  7258         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7259                                SIZE_FORMAT, _mark_stack->capacity());
  7261       assert(_mark_stack->isFull(), "Else push should have succeeded");
  7262       handle_stack_overflow(addr);
  7264     // anything including and to the right of _finger
  7265     // will be scanned as we iterate over the remainder of the
  7266     // bit map
  7270 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  7271                      MemRegion span,
  7272                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7273                      CMSMarkStack*  revisitStack,
  7274                      HeapWord* finger, MarkFromRootsClosure* parent) :
  7275   OopClosure(collector->ref_processor()),
  7276   _collector(collector),
  7277   _span(span),
  7278   _bitMap(bitMap),
  7279   _markStack(markStack),
  7280   _revisitStack(revisitStack),
  7281   _finger(finger),
  7282   _parent(parent),
  7283   _should_remember_klasses(collector->should_unload_classes())
  7284 { }
  7286 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  7287                      MemRegion span,
  7288                      CMSBitMap* bit_map,
  7289                      OopTaskQueue* work_queue,
  7290                      CMSMarkStack*  overflow_stack,
  7291                      CMSMarkStack*  revisit_stack,
  7292                      HeapWord* finger,
  7293                      HeapWord** global_finger_addr,
  7294                      Par_MarkFromRootsClosure* parent) :
  7295   OopClosure(collector->ref_processor()),
  7296   _collector(collector),
  7297   _whole_span(collector->_span),
  7298   _span(span),
  7299   _bit_map(bit_map),
  7300   _work_queue(work_queue),
  7301   _overflow_stack(overflow_stack),
  7302   _revisit_stack(revisit_stack),
  7303   _finger(finger),
  7304   _global_finger_addr(global_finger_addr),
  7305   _parent(parent),
  7306   _should_remember_klasses(collector->should_unload_classes())
  7307 { }
  7309 void CMSCollector::lower_restart_addr(HeapWord* low) {
  7310   assert(_span.contains(low), "Out of bounds addr");
  7311   if (_restart_addr == NULL) {
  7312     _restart_addr = low;
  7313   } else {
  7314     _restart_addr = MIN2(_restart_addr, low);
  7318 // Upon stack overflow, we discard (part of) the stack,
  7319 // remembering the least address amongst those discarded
  7320 // in CMSCollector's _restart_address.
  7321 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7322   // Remember the least grey address discarded
  7323   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  7324   _collector->lower_restart_addr(ra);
  7325   _markStack->reset();  // discard stack contents
  7326   _markStack->expand(); // expand the stack if possible
  7329 // Upon stack overflow, we discard (part of) the stack,
  7330 // remembering the least address amongst those discarded
  7331 // in CMSCollector's _restart_address.
  7332 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7333   // We need to do this under a mutex to prevent other
  7334   // workers from interfering with the expansion below.
  7335   MutexLockerEx ml(_overflow_stack->par_lock(),
  7336                    Mutex::_no_safepoint_check_flag);
  7337   // Remember the least grey address discarded
  7338   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  7339   _collector->lower_restart_addr(ra);
  7340   _overflow_stack->reset();  // discard stack contents
  7341   _overflow_stack->expand(); // expand the stack if possible
  7344 void PushOrMarkClosure::do_oop(oop obj) {
  7345   // Ignore mark word because we are running concurrent with mutators.
  7346   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7347   HeapWord* addr = (HeapWord*)obj;
  7348   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  7349     // Oop lies in _span and isn't yet grey or black
  7350     _bitMap->mark(addr);            // now grey
  7351     if (addr < _finger) {
  7352       // the bit map iteration has already either passed, or
  7353       // sampled, this bit in the bit map; we'll need to
  7354       // use the marking stack to scan this oop's oops.
  7355       bool simulate_overflow = false;
  7356       NOT_PRODUCT(
  7357         if (CMSMarkStackOverflowALot &&
  7358             _collector->simulate_overflow()) {
  7359           // simulate a stack overflow
  7360           simulate_overflow = true;
  7363       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
  7364         if (PrintCMSStatistics != 0) {
  7365           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7366                                  SIZE_FORMAT, _markStack->capacity());
  7368         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  7369         handle_stack_overflow(addr);
  7372     // anything including and to the right of _finger
  7373     // will be scanned as we iterate over the remainder of the
  7374     // bit map
  7375     do_yield_check();
  7379 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
  7380 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
  7382 void Par_PushOrMarkClosure::do_oop(oop obj) {
  7383   // Ignore mark word because we are running concurrent with mutators.
  7384   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7385   HeapWord* addr = (HeapWord*)obj;
  7386   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7387     // Oop lies in _span and isn't yet grey or black
  7388     // We read the global_finger (volatile read) strictly after marking oop
  7389     bool res = _bit_map->par_mark(addr);    // now grey
  7390     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  7391     // Should we push this marked oop on our stack?
  7392     // -- if someone else marked it, nothing to do
  7393     // -- if target oop is above global finger nothing to do
  7394     // -- if target oop is in chunk and above local finger
  7395     //      then nothing to do
  7396     // -- else push on work queue
  7397     if (   !res       // someone else marked it, they will deal with it
  7398         || (addr >= *gfa)  // will be scanned in a later task
  7399         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  7400       return;
  7402     // the bit map iteration has already either passed, or
  7403     // sampled, this bit in the bit map; we'll need to
  7404     // use the marking stack to scan this oop's oops.
  7405     bool simulate_overflow = false;
  7406     NOT_PRODUCT(
  7407       if (CMSMarkStackOverflowALot &&
  7408           _collector->simulate_overflow()) {
  7409         // simulate a stack overflow
  7410         simulate_overflow = true;
  7413     if (simulate_overflow ||
  7414         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  7415       // stack overflow
  7416       if (PrintCMSStatistics != 0) {
  7417         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7418                                SIZE_FORMAT, _overflow_stack->capacity());
  7420       // We cannot assert that the overflow stack is full because
  7421       // it may have been emptied since.
  7422       assert(simulate_overflow ||
  7423              _work_queue->size() == _work_queue->max_elems(),
  7424             "Else push should have succeeded");
  7425       handle_stack_overflow(addr);
  7427     do_yield_check();
  7431 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
  7432 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
  7434 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  7435                                        MemRegion span,
  7436                                        ReferenceProcessor* rp,
  7437                                        CMSBitMap* bit_map,
  7438                                        CMSBitMap* mod_union_table,
  7439                                        CMSMarkStack*  mark_stack,
  7440                                        CMSMarkStack*  revisit_stack,
  7441                                        bool           concurrent_precleaning):
  7442   OopClosure(rp),
  7443   _collector(collector),
  7444   _span(span),
  7445   _bit_map(bit_map),
  7446   _mod_union_table(mod_union_table),
  7447   _mark_stack(mark_stack),
  7448   _revisit_stack(revisit_stack),
  7449   _concurrent_precleaning(concurrent_precleaning),
  7450   _should_remember_klasses(collector->should_unload_classes())
  7452   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7455 // Grey object rescan during pre-cleaning and second checkpoint phases --
  7456 // the non-parallel version (the parallel version appears further below.)
  7457 void PushAndMarkClosure::do_oop(oop obj) {
  7458   // Ignore mark word verification. If during concurrent precleaning,
  7459   // the object monitor may be locked. If during the checkpoint
  7460   // phases, the object may already have been reached by a  different
  7461   // path and may be at the end of the global overflow list (so
  7462   // the mark word may be NULL).
  7463   assert(obj->is_oop_or_null(true /* ignore mark word */),
  7464          "expected an oop or NULL");
  7465   HeapWord* addr = (HeapWord*)obj;
  7466   // Check if oop points into the CMS generation
  7467   // and is not marked
  7468   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7469     // a white object ...
  7470     _bit_map->mark(addr);         // ... now grey
  7471     // push on the marking stack (grey set)
  7472     bool simulate_overflow = false;
  7473     NOT_PRODUCT(
  7474       if (CMSMarkStackOverflowALot &&
  7475           _collector->simulate_overflow()) {
  7476         // simulate a stack overflow
  7477         simulate_overflow = true;
  7480     if (simulate_overflow || !_mark_stack->push(obj)) {
  7481       if (_concurrent_precleaning) {
  7482          // During precleaning we can just dirty the appropriate card
  7483          // in the mod union table, thus ensuring that the object remains
  7484          // in the grey set  and continue. Note that no one can be intefering
  7485          // with us in this action of dirtying the mod union table, so
  7486          // no locking is required.
  7487          _mod_union_table->mark(addr);
  7488          _collector->_ser_pmc_preclean_ovflw++;
  7489       } else {
  7490          // During the remark phase, we need to remember this oop
  7491          // in the overflow list.
  7492          _collector->push_on_overflow_list(obj);
  7493          _collector->_ser_pmc_remark_ovflw++;
  7499 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  7500                                                MemRegion span,
  7501                                                ReferenceProcessor* rp,
  7502                                                CMSBitMap* bit_map,
  7503                                                OopTaskQueue* work_queue,
  7504                                                CMSMarkStack* revisit_stack):
  7505   OopClosure(rp),
  7506   _collector(collector),
  7507   _span(span),
  7508   _bit_map(bit_map),
  7509   _work_queue(work_queue),
  7510   _revisit_stack(revisit_stack),
  7511   _should_remember_klasses(collector->should_unload_classes())
  7513   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7516 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
  7517 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
  7519 // Grey object rescan during second checkpoint phase --
  7520 // the parallel version.
  7521 void Par_PushAndMarkClosure::do_oop(oop obj) {
  7522   // In the assert below, we ignore the mark word because
  7523   // this oop may point to an already visited object that is
  7524   // on the overflow stack (in which case the mark word has
  7525   // been hijacked for chaining into the overflow stack --
  7526   // if this is the last object in the overflow stack then
  7527   // its mark word will be NULL). Because this object may
  7528   // have been subsequently popped off the global overflow
  7529   // stack, and the mark word possibly restored to the prototypical
  7530   // value, by the time we get to examined this failing assert in
  7531   // the debugger, is_oop_or_null(false) may subsequently start
  7532   // to hold.
  7533   assert(obj->is_oop_or_null(true),
  7534          "expected an oop or NULL");
  7535   HeapWord* addr = (HeapWord*)obj;
  7536   // Check if oop points into the CMS generation
  7537   // and is not marked
  7538   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7539     // a white object ...
  7540     // If we manage to "claim" the object, by being the
  7541     // first thread to mark it, then we push it on our
  7542     // marking stack
  7543     if (_bit_map->par_mark(addr)) {     // ... now grey
  7544       // push on work queue (grey set)
  7545       bool simulate_overflow = false;
  7546       NOT_PRODUCT(
  7547         if (CMSMarkStackOverflowALot &&
  7548             _collector->par_simulate_overflow()) {
  7549           // simulate a stack overflow
  7550           simulate_overflow = true;
  7553       if (simulate_overflow || !_work_queue->push(obj)) {
  7554         _collector->par_push_on_overflow_list(obj);
  7555         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  7557     } // Else, some other thread got there first
  7561 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
  7562 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
  7564 void PushAndMarkClosure::remember_klass(Klass* k) {
  7565   if (!_revisit_stack->push(oop(k))) {
  7566     fatal("Revisit stack overflowed in PushAndMarkClosure");
  7570 void Par_PushAndMarkClosure::remember_klass(Klass* k) {
  7571   if (!_revisit_stack->par_push(oop(k))) {
  7572     fatal("Revist stack overflowed in Par_PushAndMarkClosure");
  7576 void CMSPrecleanRefsYieldClosure::do_yield_work() {
  7577   Mutex* bml = _collector->bitMapLock();
  7578   assert_lock_strong(bml);
  7579   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7580          "CMS thread should hold CMS token");
  7582   bml->unlock();
  7583   ConcurrentMarkSweepThread::desynchronize(true);
  7585   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7587   _collector->stopTimer();
  7588   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7589   if (PrintCMSStatistics != 0) {
  7590     _collector->incrementYields();
  7592   _collector->icms_wait();
  7594   // See the comment in coordinator_yield()
  7595   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7596                        ConcurrentMarkSweepThread::should_yield() &&
  7597                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7598     os::sleep(Thread::current(), 1, false);
  7599     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7602   ConcurrentMarkSweepThread::synchronize(true);
  7603   bml->lock();
  7605   _collector->startTimer();
  7608 bool CMSPrecleanRefsYieldClosure::should_return() {
  7609   if (ConcurrentMarkSweepThread::should_yield()) {
  7610     do_yield_work();
  7612   return _collector->foregroundGCIsActive();
  7615 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  7616   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  7617          "mr should be aligned to start at a card boundary");
  7618   // We'd like to assert:
  7619   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  7620   //        "mr should be a range of cards");
  7621   // However, that would be too strong in one case -- the last
  7622   // partition ends at _unallocated_block which, in general, can be
  7623   // an arbitrary boundary, not necessarily card aligned.
  7624   if (PrintCMSStatistics != 0) {
  7625     _num_dirty_cards +=
  7626          mr.word_size()/CardTableModRefBS::card_size_in_words;
  7628   _space->object_iterate_mem(mr, &_scan_cl);
  7631 SweepClosure::SweepClosure(CMSCollector* collector,
  7632                            ConcurrentMarkSweepGeneration* g,
  7633                            CMSBitMap* bitMap, bool should_yield) :
  7634   _collector(collector),
  7635   _g(g),
  7636   _sp(g->cmsSpace()),
  7637   _limit(_sp->sweep_limit()),
  7638   _freelistLock(_sp->freelistLock()),
  7639   _bitMap(bitMap),
  7640   _yield(should_yield),
  7641   _inFreeRange(false),           // No free range at beginning of sweep
  7642   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  7643   _lastFreeRangeCoalesced(false),
  7644   _freeFinger(g->used_region().start())
  7646   NOT_PRODUCT(
  7647     _numObjectsFreed = 0;
  7648     _numWordsFreed   = 0;
  7649     _numObjectsLive = 0;
  7650     _numWordsLive = 0;
  7651     _numObjectsAlreadyFree = 0;
  7652     _numWordsAlreadyFree = 0;
  7653     _last_fc = NULL;
  7655     _sp->initializeIndexedFreeListArrayReturnedBytes();
  7656     _sp->dictionary()->initializeDictReturnedBytes();
  7658   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7659          "sweep _limit out of bounds");
  7660   if (CMSTraceSweeper) {
  7661     gclog_or_tty->print("\n====================\nStarting new sweep\n");
  7665 // We need this destructor to reclaim any space at the end
  7666 // of the space, which do_blk below may not have added back to
  7667 // the free lists. [basically dealing with the "fringe effect"]
  7668 SweepClosure::~SweepClosure() {
  7669   assert_lock_strong(_freelistLock);
  7670   // this should be treated as the end of a free run if any
  7671   // The current free range should be returned to the free lists
  7672   // as one coalesced chunk.
  7673   if (inFreeRange()) {
  7674     flushCurFreeChunk(freeFinger(),
  7675       pointer_delta(_limit, freeFinger()));
  7676     assert(freeFinger() < _limit, "the finger pointeth off base");
  7677     if (CMSTraceSweeper) {
  7678       gclog_or_tty->print("destructor:");
  7679       gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
  7680                  "[coalesced:"SIZE_FORMAT"]\n",
  7681                  freeFinger(), pointer_delta(_limit, freeFinger()),
  7682                  lastFreeRangeCoalesced());
  7685   NOT_PRODUCT(
  7686     if (Verbose && PrintGC) {
  7687       gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
  7688                           SIZE_FORMAT " bytes",
  7689                  _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  7690       gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  7691                              SIZE_FORMAT" bytes  "
  7692         "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  7693         _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  7694         _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  7695       size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
  7696         sizeof(HeapWord);
  7697       gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  7699       if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  7700         size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  7701         size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
  7702         size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
  7703         gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
  7704         gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  7705           indexListReturnedBytes);
  7706         gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  7707           dictReturnedBytes);
  7711   // Now, in debug mode, just null out the sweep_limit
  7712   NOT_PRODUCT(_sp->clear_sweep_limit();)
  7713   if (CMSTraceSweeper) {
  7714     gclog_or_tty->print("end of sweep\n================\n");
  7718 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  7719     bool freeRangeInFreeLists) {
  7720   if (CMSTraceSweeper) {
  7721     gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
  7722                freeFinger, _sp->block_size(freeFinger),
  7723                freeRangeInFreeLists);
  7725   assert(!inFreeRange(), "Trampling existing free range");
  7726   set_inFreeRange(true);
  7727   set_lastFreeRangeCoalesced(false);
  7729   set_freeFinger(freeFinger);
  7730   set_freeRangeInFreeLists(freeRangeInFreeLists);
  7731   if (CMSTestInFreeList) {
  7732     if (freeRangeInFreeLists) {
  7733       FreeChunk* fc = (FreeChunk*) freeFinger;
  7734       assert(fc->isFree(), "A chunk on the free list should be free.");
  7735       assert(fc->size() > 0, "Free range should have a size");
  7736       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
  7741 // Note that the sweeper runs concurrently with mutators. Thus,
  7742 // it is possible for direct allocation in this generation to happen
  7743 // in the middle of the sweep. Note that the sweeper also coalesces
  7744 // contiguous free blocks. Thus, unless the sweeper and the allocator
  7745 // synchronize appropriately freshly allocated blocks may get swept up.
  7746 // This is accomplished by the sweeper locking the free lists while
  7747 // it is sweeping. Thus blocks that are determined to be free are
  7748 // indeed free. There is however one additional complication:
  7749 // blocks that have been allocated since the final checkpoint and
  7750 // mark, will not have been marked and so would be treated as
  7751 // unreachable and swept up. To prevent this, the allocator marks
  7752 // the bit map when allocating during the sweep phase. This leads,
  7753 // however, to a further complication -- objects may have been allocated
  7754 // but not yet initialized -- in the sense that the header isn't yet
  7755 // installed. The sweeper can not then determine the size of the block
  7756 // in order to skip over it. To deal with this case, we use a technique
  7757 // (due to Printezis) to encode such uninitialized block sizes in the
  7758 // bit map. Since the bit map uses a bit per every HeapWord, but the
  7759 // CMS generation has a minimum object size of 3 HeapWords, it follows
  7760 // that "normal marks" won't be adjacent in the bit map (there will
  7761 // always be at least two 0 bits between successive 1 bits). We make use
  7762 // of these "unused" bits to represent uninitialized blocks -- the bit
  7763 // corresponding to the start of the uninitialized object and the next
  7764 // bit are both set. Finally, a 1 bit marks the end of the object that
  7765 // started with the two consecutive 1 bits to indicate its potentially
  7766 // uninitialized state.
  7768 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  7769   FreeChunk* fc = (FreeChunk*)addr;
  7770   size_t res;
  7772   // check if we are done sweepinrg
  7773   if (addr == _limit) { // we have swept up to the limit, do nothing more
  7774     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7775            "sweep _limit out of bounds");
  7776     // help the closure application finish
  7777     return pointer_delta(_sp->end(), _limit);
  7779   assert(addr <= _limit, "sweep invariant");
  7781   // check if we should yield
  7782   do_yield_check(addr);
  7783   if (fc->isFree()) {
  7784     // Chunk that is already free
  7785     res = fc->size();
  7786     doAlreadyFreeChunk(fc);
  7787     debug_only(_sp->verifyFreeLists());
  7788     assert(res == fc->size(), "Don't expect the size to change");
  7789     NOT_PRODUCT(
  7790       _numObjectsAlreadyFree++;
  7791       _numWordsAlreadyFree += res;
  7793     NOT_PRODUCT(_last_fc = fc;)
  7794   } else if (!_bitMap->isMarked(addr)) {
  7795     // Chunk is fresh garbage
  7796     res = doGarbageChunk(fc);
  7797     debug_only(_sp->verifyFreeLists());
  7798     NOT_PRODUCT(
  7799       _numObjectsFreed++;
  7800       _numWordsFreed += res;
  7802   } else {
  7803     // Chunk that is alive.
  7804     res = doLiveChunk(fc);
  7805     debug_only(_sp->verifyFreeLists());
  7806     NOT_PRODUCT(
  7807         _numObjectsLive++;
  7808         _numWordsLive += res;
  7811   return res;
  7814 // For the smart allocation, record following
  7815 //  split deaths - a free chunk is removed from its free list because
  7816 //      it is being split into two or more chunks.
  7817 //  split birth - a free chunk is being added to its free list because
  7818 //      a larger free chunk has been split and resulted in this free chunk.
  7819 //  coal death - a free chunk is being removed from its free list because
  7820 //      it is being coalesced into a large free chunk.
  7821 //  coal birth - a free chunk is being added to its free list because
  7822 //      it was created when two or more free chunks where coalesced into
  7823 //      this free chunk.
  7824 //
  7825 // These statistics are used to determine the desired number of free
  7826 // chunks of a given size.  The desired number is chosen to be relative
  7827 // to the end of a CMS sweep.  The desired number at the end of a sweep
  7828 // is the
  7829 //      count-at-end-of-previous-sweep (an amount that was enough)
  7830 //              - count-at-beginning-of-current-sweep  (the excess)
  7831 //              + split-births  (gains in this size during interval)
  7832 //              - split-deaths  (demands on this size during interval)
  7833 // where the interval is from the end of one sweep to the end of the
  7834 // next.
  7835 //
  7836 // When sweeping the sweeper maintains an accumulated chunk which is
  7837 // the chunk that is made up of chunks that have been coalesced.  That
  7838 // will be termed the left-hand chunk.  A new chunk of garbage that
  7839 // is being considered for coalescing will be referred to as the
  7840 // right-hand chunk.
  7841 //
  7842 // When making a decision on whether to coalesce a right-hand chunk with
  7843 // the current left-hand chunk, the current count vs. the desired count
  7844 // of the left-hand chunk is considered.  Also if the right-hand chunk
  7845 // is near the large chunk at the end of the heap (see
  7846 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  7847 // left-hand chunk is coalesced.
  7848 //
  7849 // When making a decision about whether to split a chunk, the desired count
  7850 // vs. the current count of the candidate to be split is also considered.
  7851 // If the candidate is underpopulated (currently fewer chunks than desired)
  7852 // a chunk of an overpopulated (currently more chunks than desired) size may
  7853 // be chosen.  The "hint" associated with a free list, if non-null, points
  7854 // to a free list which may be overpopulated.
  7855 //
  7857 void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
  7858   size_t size = fc->size();
  7859   // Chunks that cannot be coalesced are not in the
  7860   // free lists.
  7861   if (CMSTestInFreeList && !fc->cantCoalesce()) {
  7862     assert(_sp->verifyChunkInFreeLists(fc),
  7863       "free chunk should be in free lists");
  7865   // a chunk that is already free, should not have been
  7866   // marked in the bit map
  7867   HeapWord* addr = (HeapWord*) fc;
  7868   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  7869   // Verify that the bit map has no bits marked between
  7870   // addr and purported end of this block.
  7871   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7873   // Some chunks cannot be coalesced in under any circumstances.
  7874   // See the definition of cantCoalesce().
  7875   if (!fc->cantCoalesce()) {
  7876     // This chunk can potentially be coalesced.
  7877     if (_sp->adaptive_freelists()) {
  7878       // All the work is done in
  7879       doPostIsFreeOrGarbageChunk(fc, size);
  7880     } else {  // Not adaptive free lists
  7881       // this is a free chunk that can potentially be coalesced by the sweeper;
  7882       if (!inFreeRange()) {
  7883         // if the next chunk is a free block that can't be coalesced
  7884         // it doesn't make sense to remove this chunk from the free lists
  7885         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  7886         assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
  7887         if ((HeapWord*)nextChunk < _limit  &&    // there's a next chunk...
  7888             nextChunk->isFree()    &&            // which is free...
  7889             nextChunk->cantCoalesce()) {         // ... but cant be coalesced
  7890           // nothing to do
  7891         } else {
  7892           // Potentially the start of a new free range:
  7893           // Don't eagerly remove it from the free lists.
  7894           // No need to remove it if it will just be put
  7895           // back again.  (Also from a pragmatic point of view
  7896           // if it is a free block in a region that is beyond
  7897           // any allocated blocks, an assertion will fail)
  7898           // Remember the start of a free run.
  7899           initialize_free_range(addr, true);
  7900           // end - can coalesce with next chunk
  7902       } else {
  7903         // the midst of a free range, we are coalescing
  7904         debug_only(record_free_block_coalesced(fc);)
  7905         if (CMSTraceSweeper) {
  7906           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  7908         // remove it from the free lists
  7909         _sp->removeFreeChunkFromFreeLists(fc);
  7910         set_lastFreeRangeCoalesced(true);
  7911         // If the chunk is being coalesced and the current free range is
  7912         // in the free lists, remove the current free range so that it
  7913         // will be returned to the free lists in its entirety - all
  7914         // the coalesced pieces included.
  7915         if (freeRangeInFreeLists()) {
  7916           FreeChunk* ffc = (FreeChunk*) freeFinger();
  7917           assert(ffc->size() == pointer_delta(addr, freeFinger()),
  7918             "Size of free range is inconsistent with chunk size.");
  7919           if (CMSTestInFreeList) {
  7920             assert(_sp->verifyChunkInFreeLists(ffc),
  7921               "free range is not in free lists");
  7923           _sp->removeFreeChunkFromFreeLists(ffc);
  7924           set_freeRangeInFreeLists(false);
  7928   } else {
  7929     // Code path common to both original and adaptive free lists.
  7931     // cant coalesce with previous block; this should be treated
  7932     // as the end of a free run if any
  7933     if (inFreeRange()) {
  7934       // we kicked some butt; time to pick up the garbage
  7935       assert(freeFinger() < addr, "the finger pointeth off base");
  7936       flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  7938     // else, nothing to do, just continue
  7942 size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
  7943   // This is a chunk of garbage.  It is not in any free list.
  7944   // Add it to a free list or let it possibly be coalesced into
  7945   // a larger chunk.
  7946   HeapWord* addr = (HeapWord*) fc;
  7947   size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  7949   if (_sp->adaptive_freelists()) {
  7950     // Verify that the bit map has no bits marked between
  7951     // addr and purported end of just dead object.
  7952     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7954     doPostIsFreeOrGarbageChunk(fc, size);
  7955   } else {
  7956     if (!inFreeRange()) {
  7957       // start of a new free range
  7958       assert(size > 0, "A free range should have a size");
  7959       initialize_free_range(addr, false);
  7961     } else {
  7962       // this will be swept up when we hit the end of the
  7963       // free range
  7964       if (CMSTraceSweeper) {
  7965         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  7967       // If the chunk is being coalesced and the current free range is
  7968       // in the free lists, remove the current free range so that it
  7969       // will be returned to the free lists in its entirety - all
  7970       // the coalesced pieces included.
  7971       if (freeRangeInFreeLists()) {
  7972         FreeChunk* ffc = (FreeChunk*)freeFinger();
  7973         assert(ffc->size() == pointer_delta(addr, freeFinger()),
  7974           "Size of free range is inconsistent with chunk size.");
  7975         if (CMSTestInFreeList) {
  7976           assert(_sp->verifyChunkInFreeLists(ffc),
  7977             "free range is not in free lists");
  7979         _sp->removeFreeChunkFromFreeLists(ffc);
  7980         set_freeRangeInFreeLists(false);
  7982       set_lastFreeRangeCoalesced(true);
  7984     // this will be swept up when we hit the end of the free range
  7986     // Verify that the bit map has no bits marked between
  7987     // addr and purported end of just dead object.
  7988     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7990   return size;
  7993 size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
  7994   HeapWord* addr = (HeapWord*) fc;
  7995   // The sweeper has just found a live object. Return any accumulated
  7996   // left hand chunk to the free lists.
  7997   if (inFreeRange()) {
  7998     if (_sp->adaptive_freelists()) {
  7999       flushCurFreeChunk(freeFinger(),
  8000                         pointer_delta(addr, freeFinger()));
  8001     } else { // not adaptive freelists
  8002       set_inFreeRange(false);
  8003       // Add the free range back to the free list if it is not already
  8004       // there.
  8005       if (!freeRangeInFreeLists()) {
  8006         assert(freeFinger() < addr, "the finger pointeth off base");
  8007         if (CMSTraceSweeper) {
  8008           gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
  8009             "[coalesced:%d]\n",
  8010             freeFinger(), pointer_delta(addr, freeFinger()),
  8011             lastFreeRangeCoalesced());
  8013         _sp->addChunkAndRepairOffsetTable(freeFinger(),
  8014           pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
  8019   // Common code path for original and adaptive free lists.
  8021   // this object is live: we'd normally expect this to be
  8022   // an oop, and like to assert the following:
  8023   // assert(oop(addr)->is_oop(), "live block should be an oop");
  8024   // However, as we commented above, this may be an object whose
  8025   // header hasn't yet been initialized.
  8026   size_t size;
  8027   assert(_bitMap->isMarked(addr), "Tautology for this control point");
  8028   if (_bitMap->isMarked(addr + 1)) {
  8029     // Determine the size from the bit map, rather than trying to
  8030     // compute it from the object header.
  8031     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  8032     size = pointer_delta(nextOneAddr + 1, addr);
  8033     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  8034            "alignment problem");
  8036     #ifdef DEBUG
  8037       if (oop(addr)->klass() != NULL &&
  8038           (   !_collector->should_unload_classes()
  8039            || oop(addr)->is_parsable())) {
  8040         // Ignore mark word because we are running concurrent with mutators
  8041         assert(oop(addr)->is_oop(true), "live block should be an oop");
  8042         assert(size ==
  8043                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  8044                "P-mark and computed size do not agree");
  8046     #endif
  8048   } else {
  8049     // This should be an initialized object that's alive.
  8050     assert(oop(addr)->klass() != NULL &&
  8051            (!_collector->should_unload_classes()
  8052             || oop(addr)->is_parsable()),
  8053            "Should be an initialized object");
  8054     // Ignore mark word because we are running concurrent with mutators
  8055     assert(oop(addr)->is_oop(true), "live block should be an oop");
  8056     // Verify that the bit map has no bits marked between
  8057     // addr and purported end of this block.
  8058     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8059     assert(size >= 3, "Necessary for Printezis marks to work");
  8060     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  8061     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  8063   return size;
  8066 void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
  8067                                             size_t chunkSize) {
  8068   // doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
  8069   // scheme.
  8070   bool fcInFreeLists = fc->isFree();
  8071   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  8072   assert((HeapWord*)fc <= _limit, "sweep invariant");
  8073   if (CMSTestInFreeList && fcInFreeLists) {
  8074     assert(_sp->verifyChunkInFreeLists(fc),
  8075       "free chunk is not in free lists");
  8079   if (CMSTraceSweeper) {
  8080     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  8083   HeapWord* addr = (HeapWord*) fc;
  8085   bool coalesce;
  8086   size_t left  = pointer_delta(addr, freeFinger());
  8087   size_t right = chunkSize;
  8088   switch (FLSCoalescePolicy) {
  8089     // numeric value forms a coalition aggressiveness metric
  8090     case 0:  { // never coalesce
  8091       coalesce = false;
  8092       break;
  8094     case 1: { // coalesce if left & right chunks on overpopulated lists
  8095       coalesce = _sp->coalOverPopulated(left) &&
  8096                  _sp->coalOverPopulated(right);
  8097       break;
  8099     case 2: { // coalesce if left chunk on overpopulated list (default)
  8100       coalesce = _sp->coalOverPopulated(left);
  8101       break;
  8103     case 3: { // coalesce if left OR right chunk on overpopulated list
  8104       coalesce = _sp->coalOverPopulated(left) ||
  8105                  _sp->coalOverPopulated(right);
  8106       break;
  8108     case 4: { // always coalesce
  8109       coalesce = true;
  8110       break;
  8112     default:
  8113      ShouldNotReachHere();
  8116   // Should the current free range be coalesced?
  8117   // If the chunk is in a free range and either we decided to coalesce above
  8118   // or the chunk is near the large block at the end of the heap
  8119   // (isNearLargestChunk() returns true), then coalesce this chunk.
  8120   bool doCoalesce = inFreeRange() &&
  8121     (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
  8122   if (doCoalesce) {
  8123     // Coalesce the current free range on the left with the new
  8124     // chunk on the right.  If either is on a free list,
  8125     // it must be removed from the list and stashed in the closure.
  8126     if (freeRangeInFreeLists()) {
  8127       FreeChunk* ffc = (FreeChunk*)freeFinger();
  8128       assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8129         "Size of free range is inconsistent with chunk size.");
  8130       if (CMSTestInFreeList) {
  8131         assert(_sp->verifyChunkInFreeLists(ffc),
  8132           "Chunk is not in free lists");
  8134       _sp->coalDeath(ffc->size());
  8135       _sp->removeFreeChunkFromFreeLists(ffc);
  8136       set_freeRangeInFreeLists(false);
  8138     if (fcInFreeLists) {
  8139       _sp->coalDeath(chunkSize);
  8140       assert(fc->size() == chunkSize,
  8141         "The chunk has the wrong size or is not in the free lists");
  8142       _sp->removeFreeChunkFromFreeLists(fc);
  8144     set_lastFreeRangeCoalesced(true);
  8145   } else {  // not in a free range and/or should not coalesce
  8146     // Return the current free range and start a new one.
  8147     if (inFreeRange()) {
  8148       // In a free range but cannot coalesce with the right hand chunk.
  8149       // Put the current free range into the free lists.
  8150       flushCurFreeChunk(freeFinger(),
  8151         pointer_delta(addr, freeFinger()));
  8153     // Set up for new free range.  Pass along whether the right hand
  8154     // chunk is in the free lists.
  8155     initialize_free_range((HeapWord*)fc, fcInFreeLists);
  8158 void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
  8159   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8160   assert(size > 0,
  8161     "A zero sized chunk cannot be added to the free lists.");
  8162   if (!freeRangeInFreeLists()) {
  8163     if(CMSTestInFreeList) {
  8164       FreeChunk* fc = (FreeChunk*) chunk;
  8165       fc->setSize(size);
  8166       assert(!_sp->verifyChunkInFreeLists(fc),
  8167         "chunk should not be in free lists yet");
  8169     if (CMSTraceSweeper) {
  8170       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  8171                     chunk, size);
  8173     // A new free range is going to be starting.  The current
  8174     // free range has not been added to the free lists yet or
  8175     // was removed so add it back.
  8176     // If the current free range was coalesced, then the death
  8177     // of the free range was recorded.  Record a birth now.
  8178     if (lastFreeRangeCoalesced()) {
  8179       _sp->coalBirth(size);
  8181     _sp->addChunkAndRepairOffsetTable(chunk, size,
  8182             lastFreeRangeCoalesced());
  8184   set_inFreeRange(false);
  8185   set_freeRangeInFreeLists(false);
  8188 // We take a break if we've been at this for a while,
  8189 // so as to avoid monopolizing the locks involved.
  8190 void SweepClosure::do_yield_work(HeapWord* addr) {
  8191   // Return current free chunk being used for coalescing (if any)
  8192   // to the appropriate freelist.  After yielding, the next
  8193   // free block encountered will start a coalescing range of
  8194   // free blocks.  If the next free block is adjacent to the
  8195   // chunk just flushed, they will need to wait for the next
  8196   // sweep to be coalesced.
  8197   if (inFreeRange()) {
  8198     flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8201   // First give up the locks, then yield, then re-lock.
  8202   // We should probably use a constructor/destructor idiom to
  8203   // do this unlock/lock or modify the MutexUnlocker class to
  8204   // serve our purpose. XXX
  8205   assert_lock_strong(_bitMap->lock());
  8206   assert_lock_strong(_freelistLock);
  8207   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8208          "CMS thread should hold CMS token");
  8209   _bitMap->lock()->unlock();
  8210   _freelistLock->unlock();
  8211   ConcurrentMarkSweepThread::desynchronize(true);
  8212   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8213   _collector->stopTimer();
  8214   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8215   if (PrintCMSStatistics != 0) {
  8216     _collector->incrementYields();
  8218   _collector->icms_wait();
  8220   // See the comment in coordinator_yield()
  8221   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8222                        ConcurrentMarkSweepThread::should_yield() &&
  8223                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8224     os::sleep(Thread::current(), 1, false);
  8225     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8228   ConcurrentMarkSweepThread::synchronize(true);
  8229   _freelistLock->lock();
  8230   _bitMap->lock()->lock_without_safepoint_check();
  8231   _collector->startTimer();
  8234 #ifndef PRODUCT
  8235 // This is actually very useful in a product build if it can
  8236 // be called from the debugger.  Compile it into the product
  8237 // as needed.
  8238 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
  8239   return debug_cms_space->verifyChunkInFreeLists(fc);
  8242 void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
  8243   if (CMSTraceSweeper) {
  8244     gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
  8247 #endif
  8249 // CMSIsAliveClosure
  8250 bool CMSIsAliveClosure::do_object_b(oop obj) {
  8251   HeapWord* addr = (HeapWord*)obj;
  8252   return addr != NULL &&
  8253          (!_span.contains(addr) || _bit_map->isMarked(addr));
  8256 // CMSKeepAliveClosure: the serial version
  8257 void CMSKeepAliveClosure::do_oop(oop obj) {
  8258   HeapWord* addr = (HeapWord*)obj;
  8259   if (_span.contains(addr) &&
  8260       !_bit_map->isMarked(addr)) {
  8261     _bit_map->mark(addr);
  8262     bool simulate_overflow = false;
  8263     NOT_PRODUCT(
  8264       if (CMSMarkStackOverflowALot &&
  8265           _collector->simulate_overflow()) {
  8266         // simulate a stack overflow
  8267         simulate_overflow = true;
  8270     if (simulate_overflow || !_mark_stack->push(obj)) {
  8271       _collector->push_on_overflow_list(obj);
  8272       _collector->_ser_kac_ovflw++;
  8277 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
  8278 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
  8280 // CMSParKeepAliveClosure: a parallel version of the above.
  8281 // The work queues are private to each closure (thread),
  8282 // but (may be) available for stealing by other threads.
  8283 void CMSParKeepAliveClosure::do_oop(oop obj) {
  8284   HeapWord* addr = (HeapWord*)obj;
  8285   if (_span.contains(addr) &&
  8286       !_bit_map->isMarked(addr)) {
  8287     // In general, during recursive tracing, several threads
  8288     // may be concurrently getting here; the first one to
  8289     // "tag" it, claims it.
  8290     if (_bit_map->par_mark(addr)) {
  8291       bool res = _work_queue->push(obj);
  8292       assert(res, "Low water mark should be much less than capacity");
  8293       // Do a recursive trim in the hope that this will keep
  8294       // stack usage lower, but leave some oops for potential stealers
  8295       trim_queue(_low_water_mark);
  8296     } // Else, another thread got there first
  8300 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
  8301 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
  8303 void CMSParKeepAliveClosure::trim_queue(uint max) {
  8304   while (_work_queue->size() > max) {
  8305     oop new_oop;
  8306     if (_work_queue->pop_local(new_oop)) {
  8307       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  8308       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8309              "no white objects on this stack!");
  8310       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8311       // iterate over the oops in this oop, marking and pushing
  8312       // the ones in CMS heap (i.e. in _span).
  8313       new_oop->oop_iterate(&_mark_and_push);
  8318 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
  8319   HeapWord* addr = (HeapWord*)obj;
  8320   if (_span.contains(addr) &&
  8321       !_bit_map->isMarked(addr)) {
  8322     if (_bit_map->par_mark(addr)) {
  8323       bool simulate_overflow = false;
  8324       NOT_PRODUCT(
  8325         if (CMSMarkStackOverflowALot &&
  8326             _collector->par_simulate_overflow()) {
  8327           // simulate a stack overflow
  8328           simulate_overflow = true;
  8331       if (simulate_overflow || !_work_queue->push(obj)) {
  8332         _collector->par_push_on_overflow_list(obj);
  8333         _collector->_par_kac_ovflw++;
  8335     } // Else another thread got there already
  8339 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8340 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8342 //////////////////////////////////////////////////////////////////
  8343 //  CMSExpansionCause                /////////////////////////////
  8344 //////////////////////////////////////////////////////////////////
  8345 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  8346   switch (cause) {
  8347     case _no_expansion:
  8348       return "No expansion";
  8349     case _satisfy_free_ratio:
  8350       return "Free ratio";
  8351     case _satisfy_promotion:
  8352       return "Satisfy promotion";
  8353     case _satisfy_allocation:
  8354       return "allocation";
  8355     case _allocate_par_lab:
  8356       return "Par LAB";
  8357     case _allocate_par_spooling_space:
  8358       return "Par Spooling Space";
  8359     case _adaptive_size_policy:
  8360       return "Ergonomics";
  8361     default:
  8362       return "unknown";
  8366 void CMSDrainMarkingStackClosure::do_void() {
  8367   // the max number to take from overflow list at a time
  8368   const size_t num = _mark_stack->capacity()/4;
  8369   while (!_mark_stack->isEmpty() ||
  8370          // if stack is empty, check the overflow list
  8371          _collector->take_from_overflow_list(num, _mark_stack)) {
  8372     oop obj = _mark_stack->pop();
  8373     HeapWord* addr = (HeapWord*)obj;
  8374     assert(_span.contains(addr), "Should be within span");
  8375     assert(_bit_map->isMarked(addr), "Should be marked");
  8376     assert(obj->is_oop(), "Should be an oop");
  8377     obj->oop_iterate(_keep_alive);
  8381 void CMSParDrainMarkingStackClosure::do_void() {
  8382   // drain queue
  8383   trim_queue(0);
  8386 // Trim our work_queue so its length is below max at return
  8387 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  8388   while (_work_queue->size() > max) {
  8389     oop new_oop;
  8390     if (_work_queue->pop_local(new_oop)) {
  8391       assert(new_oop->is_oop(), "Expected an oop");
  8392       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8393              "no white objects on this stack!");
  8394       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8395       // iterate over the oops in this oop, marking and pushing
  8396       // the ones in CMS heap (i.e. in _span).
  8397       new_oop->oop_iterate(&_mark_and_push);
  8402 ////////////////////////////////////////////////////////////////////
  8403 // Support for Marking Stack Overflow list handling and related code
  8404 ////////////////////////////////////////////////////////////////////
  8405 // Much of the following code is similar in shape and spirit to the
  8406 // code used in ParNewGC. We should try and share that code
  8407 // as much as possible in the future.
  8409 #ifndef PRODUCT
  8410 // Debugging support for CMSStackOverflowALot
  8412 // It's OK to call this multi-threaded;  the worst thing
  8413 // that can happen is that we'll get a bunch of closely
  8414 // spaced simulated oveflows, but that's OK, in fact
  8415 // probably good as it would exercise the overflow code
  8416 // under contention.
  8417 bool CMSCollector::simulate_overflow() {
  8418   if (_overflow_counter-- <= 0) { // just being defensive
  8419     _overflow_counter = CMSMarkStackOverflowInterval;
  8420     return true;
  8421   } else {
  8422     return false;
  8426 bool CMSCollector::par_simulate_overflow() {
  8427   return simulate_overflow();
  8429 #endif
  8431 // Single-threaded
  8432 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  8433   assert(stack->isEmpty(), "Expected precondition");
  8434   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  8435   size_t i = num;
  8436   oop  cur = _overflow_list;
  8437   const markOop proto = markOopDesc::prototype();
  8438   NOT_PRODUCT(size_t n = 0;)
  8439   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  8440     next = oop(cur->mark());
  8441     cur->set_mark(proto);   // until proven otherwise
  8442     assert(cur->is_oop(), "Should be an oop");
  8443     bool res = stack->push(cur);
  8444     assert(res, "Bit off more than can chew?");
  8445     NOT_PRODUCT(n++;)
  8447   _overflow_list = cur;
  8448 #ifndef PRODUCT
  8449   assert(_num_par_pushes >= n, "Too many pops?");
  8450   _num_par_pushes -=n;
  8451 #endif
  8452   return !stack->isEmpty();
  8455 // Multi-threaded; use CAS to break off a prefix
  8456 bool CMSCollector::par_take_from_overflow_list(size_t num,
  8457                                                OopTaskQueue* work_q) {
  8458   assert(work_q->size() == 0, "That's the current policy");
  8459   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  8460   if (_overflow_list == NULL) {
  8461     return false;
  8463   // Grab the entire list; we'll put back a suffix
  8464   oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);
  8465   if (prefix == NULL) {  // someone grabbed it before we did ...
  8466     // ... we could spin for a short while, but for now we don't
  8467     return false;
  8469   size_t i = num;
  8470   oop cur = prefix;
  8471   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  8472   if (cur->mark() != NULL) {
  8473     oop suffix_head = cur->mark(); // suffix will be put back on global list
  8474     cur->set_mark(NULL);           // break off suffix
  8475     // Find tail of suffix so we can prepend suffix to global list
  8476     for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  8477     oop suffix_tail = cur;
  8478     assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  8479            "Tautology");
  8480     oop observed_overflow_list = _overflow_list;
  8481     do {
  8482       cur = observed_overflow_list;
  8483       suffix_tail->set_mark(markOop(cur));
  8484       observed_overflow_list =
  8485         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur);
  8486     } while (cur != observed_overflow_list);
  8489   // Push the prefix elements on work_q
  8490   assert(prefix != NULL, "control point invariant");
  8491   const markOop proto = markOopDesc::prototype();
  8492   oop next;
  8493   NOT_PRODUCT(size_t n = 0;)
  8494   for (cur = prefix; cur != NULL; cur = next) {
  8495     next = oop(cur->mark());
  8496     cur->set_mark(proto);   // until proven otherwise
  8497     assert(cur->is_oop(), "Should be an oop");
  8498     bool res = work_q->push(cur);
  8499     assert(res, "Bit off more than we can chew?");
  8500     NOT_PRODUCT(n++;)
  8502 #ifndef PRODUCT
  8503   assert(_num_par_pushes >= n, "Too many pops?");
  8504   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  8505 #endif
  8506   return true;
  8509 // Single-threaded
  8510 void CMSCollector::push_on_overflow_list(oop p) {
  8511   NOT_PRODUCT(_num_par_pushes++;)
  8512   assert(p->is_oop(), "Not an oop");
  8513   preserve_mark_if_necessary(p);
  8514   p->set_mark((markOop)_overflow_list);
  8515   _overflow_list = p;
  8518 // Multi-threaded; use CAS to prepend to overflow list
  8519 void CMSCollector::par_push_on_overflow_list(oop p) {
  8520   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  8521   assert(p->is_oop(), "Not an oop");
  8522   par_preserve_mark_if_necessary(p);
  8523   oop observed_overflow_list = _overflow_list;
  8524   oop cur_overflow_list;
  8525   do {
  8526     cur_overflow_list = observed_overflow_list;
  8527     p->set_mark(markOop(cur_overflow_list));
  8528     observed_overflow_list =
  8529       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  8530   } while (cur_overflow_list != observed_overflow_list);
  8533 // Single threaded
  8534 // General Note on GrowableArray: pushes may silently fail
  8535 // because we are (temporarily) out of C-heap for expanding
  8536 // the stack. The problem is quite ubiquitous and affects
  8537 // a lot of code in the JVM. The prudent thing for GrowableArray
  8538 // to do (for now) is to exit with an error. However, that may
  8539 // be too draconian in some cases because the caller may be
  8540 // able to recover without much harm. For suych cases, we
  8541 // should probably introduce a "soft_push" method which returns
  8542 // an indication of success or failure with the assumption that
  8543 // the caller may be able to recover from a failure; code in
  8544 // the VM can then be changed, incrementally, to deal with such
  8545 // failures where possible, thus, incrementally hardening the VM
  8546 // in such low resource situations.
  8547 void CMSCollector::preserve_mark_work(oop p, markOop m) {
  8548   int PreserveMarkStackSize = 128;
  8550   if (_preserved_oop_stack == NULL) {
  8551     assert(_preserved_mark_stack == NULL,
  8552            "bijection with preserved_oop_stack");
  8553     // Allocate the stacks
  8554     _preserved_oop_stack  = new (ResourceObj::C_HEAP)
  8555       GrowableArray<oop>(PreserveMarkStackSize, true);
  8556     _preserved_mark_stack = new (ResourceObj::C_HEAP)
  8557       GrowableArray<markOop>(PreserveMarkStackSize, true);
  8558     if (_preserved_oop_stack == NULL || _preserved_mark_stack == NULL) {
  8559       vm_exit_out_of_memory(2* PreserveMarkStackSize * sizeof(oop) /* punt */,
  8560                             "Preserved Mark/Oop Stack for CMS (C-heap)");
  8563   _preserved_oop_stack->push(p);
  8564   _preserved_mark_stack->push(m);
  8565   assert(m == p->mark(), "Mark word changed");
  8566   assert(_preserved_oop_stack->length() == _preserved_mark_stack->length(),
  8567          "bijection");
  8570 // Single threaded
  8571 void CMSCollector::preserve_mark_if_necessary(oop p) {
  8572   markOop m = p->mark();
  8573   if (m->must_be_preserved(p)) {
  8574     preserve_mark_work(p, m);
  8578 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  8579   markOop m = p->mark();
  8580   if (m->must_be_preserved(p)) {
  8581     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  8582     // Even though we read the mark word without holding
  8583     // the lock, we are assured that it will not change
  8584     // because we "own" this oop, so no other thread can
  8585     // be trying to push it on the overflow list; see
  8586     // the assertion in preserve_mark_work() that checks
  8587     // that m == p->mark().
  8588     preserve_mark_work(p, m);
  8592 // We should be able to do this multi-threaded,
  8593 // a chunk of stack being a task (this is
  8594 // correct because each oop only ever appears
  8595 // once in the overflow list. However, it's
  8596 // not very easy to completely overlap this with
  8597 // other operations, so will generally not be done
  8598 // until all work's been completed. Because we
  8599 // expect the preserved oop stack (set) to be small,
  8600 // it's probably fine to do this single-threaded.
  8601 // We can explore cleverer concurrent/overlapped/parallel
  8602 // processing of preserved marks if we feel the
  8603 // need for this in the future. Stack overflow should
  8604 // be so rare in practice and, when it happens, its
  8605 // effect on performance so great that this will
  8606 // likely just be in the noise anyway.
  8607 void CMSCollector::restore_preserved_marks_if_any() {
  8608   if (_preserved_oop_stack == NULL) {
  8609     assert(_preserved_mark_stack == NULL,
  8610            "bijection with preserved_oop_stack");
  8611     return;
  8614   assert(SafepointSynchronize::is_at_safepoint(),
  8615          "world should be stopped");
  8616   assert(Thread::current()->is_ConcurrentGC_thread() ||
  8617          Thread::current()->is_VM_thread(),
  8618          "should be single-threaded");
  8620   int length = _preserved_oop_stack->length();
  8621   assert(_preserved_mark_stack->length() == length, "bijection");
  8622   for (int i = 0; i < length; i++) {
  8623     oop p = _preserved_oop_stack->at(i);
  8624     assert(p->is_oop(), "Should be an oop");
  8625     assert(_span.contains(p), "oop should be in _span");
  8626     assert(p->mark() == markOopDesc::prototype(),
  8627            "Set when taken from overflow list");
  8628     markOop m = _preserved_mark_stack->at(i);
  8629     p->set_mark(m);
  8631   _preserved_mark_stack->clear();
  8632   _preserved_oop_stack->clear();
  8633   assert(_preserved_mark_stack->is_empty() &&
  8634          _preserved_oop_stack->is_empty(),
  8635          "stacks were cleared above");
  8638 #ifndef PRODUCT
  8639 bool CMSCollector::no_preserved_marks() const {
  8640   return (   (   _preserved_mark_stack == NULL
  8641               && _preserved_oop_stack == NULL)
  8642           || (   _preserved_mark_stack->is_empty()
  8643               && _preserved_oop_stack->is_empty()));
  8645 #endif
  8647 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  8649   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8650   CMSAdaptiveSizePolicy* size_policy =
  8651     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  8652   assert(size_policy->is_gc_cms_adaptive_size_policy(),
  8653     "Wrong type for size policy");
  8654   return size_policy;
  8657 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  8658                                            size_t desired_promo_size) {
  8659   if (cur_promo_size < desired_promo_size) {
  8660     size_t expand_bytes = desired_promo_size - cur_promo_size;
  8661     if (PrintAdaptiveSizePolicy && Verbose) {
  8662       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8663         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  8664         expand_bytes);
  8666     expand(expand_bytes,
  8667            MinHeapDeltaBytes,
  8668            CMSExpansionCause::_adaptive_size_policy);
  8669   } else if (desired_promo_size < cur_promo_size) {
  8670     size_t shrink_bytes = cur_promo_size - desired_promo_size;
  8671     if (PrintAdaptiveSizePolicy && Verbose) {
  8672       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8673         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  8674         shrink_bytes);
  8676     shrink(shrink_bytes);
  8680 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  8681   GenCollectedHeap* gch = GenCollectedHeap::heap();
  8682   CMSGCAdaptivePolicyCounters* counters =
  8683     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  8684   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  8685     "Wrong kind of counters");
  8686   return counters;
  8690 void ASConcurrentMarkSweepGeneration::update_counters() {
  8691   if (UsePerfData) {
  8692     _space_counters->update_all();
  8693     _gen_counters->update_all();
  8694     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8695     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8696     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8697     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8698       "Wrong gc statistics type");
  8699     counters->update_counters(gc_stats_l);
  8703 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  8704   if (UsePerfData) {
  8705     _space_counters->update_used(used);
  8706     _space_counters->update_capacity();
  8707     _gen_counters->update_all();
  8709     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8710     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8711     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8712     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8713       "Wrong gc statistics type");
  8714     counters->update_counters(gc_stats_l);
  8718 // The desired expansion delta is computed so that:
  8719 // . desired free percentage or greater is used
  8720 void ASConcurrentMarkSweepGeneration::compute_new_size() {
  8721   assert_locked_or_safepoint(Heap_lock);
  8723   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8725   // If incremental collection failed, we just want to expand
  8726   // to the limit.
  8727   if (incremental_collection_failed()) {
  8728     clear_incremental_collection_failed();
  8729     grow_to_reserved();
  8730     return;
  8733   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
  8735   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  8736     "Wrong type of heap");
  8737   int prev_level = level() - 1;
  8738   assert(prev_level >= 0, "The cms generation is the lowest generation");
  8739   Generation* prev_gen = gch->get_gen(prev_level);
  8740   assert(prev_gen->kind() == Generation::ASParNew,
  8741     "Wrong type of young generation");
  8742   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
  8743   size_t cur_eden = younger_gen->eden()->capacity();
  8744   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
  8745   size_t cur_promo = free();
  8746   size_policy->compute_tenured_generation_free_space(cur_promo,
  8747                                                        max_available(),
  8748                                                        cur_eden);
  8749   resize(cur_promo, size_policy->promo_size());
  8751   // Record the new size of the space in the cms generation
  8752   // that is available for promotions.  This is temporary.
  8753   // It should be the desired promo size.
  8754   size_policy->avg_cms_promo()->sample(free());
  8755   size_policy->avg_old_live()->sample(used());
  8757   if (UsePerfData) {
  8758     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8759     counters->update_cms_capacity_counter(capacity());
  8763 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  8764   assert_locked_or_safepoint(Heap_lock);
  8765   assert_lock_strong(freelistLock());
  8766   HeapWord* old_end = _cmsSpace->end();
  8767   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  8768   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  8769   FreeChunk* chunk_at_end = find_chunk_at_end();
  8770   if (chunk_at_end == NULL) {
  8771     // No room to shrink
  8772     if (PrintGCDetails && Verbose) {
  8773       gclog_or_tty->print_cr("No room to shrink: old_end  "
  8774         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  8775         " chunk_at_end  " PTR_FORMAT,
  8776         old_end, unallocated_start, chunk_at_end);
  8778     return;
  8779   } else {
  8781     // Find the chunk at the end of the space and determine
  8782     // how much it can be shrunk.
  8783     size_t shrinkable_size_in_bytes = chunk_at_end->size();
  8784     size_t aligned_shrinkable_size_in_bytes =
  8785       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  8786     assert(unallocated_start <= chunk_at_end->end(),
  8787       "Inconsistent chunk at end of space");
  8788     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  8789     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  8791     // Shrink the underlying space
  8792     _virtual_space.shrink_by(bytes);
  8793     if (PrintGCDetails && Verbose) {
  8794       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  8795         " desired_bytes " SIZE_FORMAT
  8796         " shrinkable_size_in_bytes " SIZE_FORMAT
  8797         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  8798         "  bytes  " SIZE_FORMAT,
  8799         desired_bytes, shrinkable_size_in_bytes,
  8800         aligned_shrinkable_size_in_bytes, bytes);
  8801       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  8802         "  unallocated_start  " SIZE_FORMAT,
  8803         old_end, unallocated_start);
  8806     // If the space did shrink (shrinking is not guaranteed),
  8807     // shrink the chunk at the end by the appropriate amount.
  8808     if (((HeapWord*)_virtual_space.high()) < old_end) {
  8809       size_t new_word_size =
  8810         heap_word_size(_virtual_space.committed_size());
  8812       // Have to remove the chunk from the dictionary because it is changing
  8813       // size and might be someplace elsewhere in the dictionary.
  8815       // Get the chunk at end, shrink it, and put it
  8816       // back.
  8817       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  8818       size_t word_size_change = word_size_before - new_word_size;
  8819       size_t chunk_at_end_old_size = chunk_at_end->size();
  8820       assert(chunk_at_end_old_size >= word_size_change,
  8821         "Shrink is too large");
  8822       chunk_at_end->setSize(chunk_at_end_old_size -
  8823                           word_size_change);
  8824       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  8825         word_size_change);
  8827       _cmsSpace->returnChunkToDictionary(chunk_at_end);
  8829       MemRegion mr(_cmsSpace->bottom(), new_word_size);
  8830       _bts->resize(new_word_size);  // resize the block offset shared array
  8831       Universe::heap()->barrier_set()->resize_covered_region(mr);
  8832       _cmsSpace->assert_locked();
  8833       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  8835       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  8837       // update the space and generation capacity counters
  8838       if (UsePerfData) {
  8839         _space_counters->update_capacity();
  8840         _gen_counters->update_all();
  8843       if (Verbose && PrintGCDetails) {
  8844         size_t new_mem_size = _virtual_space.committed_size();
  8845         size_t old_mem_size = new_mem_size + bytes;
  8846         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
  8847                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
  8851     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  8852       "Inconsistency at end of space");
  8853     assert(chunk_at_end->end() == _cmsSpace->end(),
  8854       "Shrinking is inconsistent");
  8855     return;
  8859 // Transfer some number of overflown objects to usual marking
  8860 // stack. Return true if some objects were transferred.
  8861 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  8862   size_t num = MIN2((size_t)_mark_stack->capacity()/4,
  8863                     (size_t)ParGCDesiredObjsFromOverflowList);
  8865   bool res = _collector->take_from_overflow_list(num, _mark_stack);
  8866   assert(_collector->overflow_list_is_empty() || res,
  8867          "If list is not empty, we should have taken something");
  8868   assert(!res || !_mark_stack->isEmpty(),
  8869          "If we took something, it should now be on our stack");
  8870   return res;
  8873 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  8874   size_t res = _sp->block_size_no_stall(addr, _collector);
  8875   assert(res != 0, "Should always be able to compute a size");
  8876   if (_sp->block_is_obj(addr)) {
  8877     if (_live_bit_map->isMarked(addr)) {
  8878       // It can't have been dead in a previous cycle
  8879       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  8880     } else {
  8881       _dead_bit_map->mark(addr);      // mark the dead object
  8884   return res;

mercurial