src/share/vm/opto/memnode.hpp

Fri, 22 Feb 2008 17:55:13 -0800

author
kvn
date
Fri, 22 Feb 2008 17:55:13 -0800
changeset 463
67914967a4b5
parent 452
ff5961f4c095
child 464
d5fc211aea19
permissions
-rw-r--r--

6650373: Assert in methodOopDesc::make_adapters()
Summary: AdapterHandlerLibrary::get_create_adapter_index() returns incorrect value (-2) when CodeCache is full.
Reviewed-by: sgoldman

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 class MultiNode;
    28 class PhaseCCP;
    29 class PhaseTransform;
    31 //------------------------------MemNode----------------------------------------
    32 // Load or Store, possibly throwing a NULL pointer exception
    33 class MemNode : public Node {
    34 protected:
    35 #ifdef ASSERT
    36   const TypePtr* _adr_type;     // What kind of memory is being addressed?
    37 #endif
    38   virtual uint size_of() const; // Size is bigger (ASSERT only)
    39 public:
    40   enum { Control,               // When is it safe to do this load?
    41          Memory,                // Chunk of memory is being loaded from
    42          Address,               // Actually address, derived from base
    43          ValueIn,               // Value to store
    44          OopStore               // Preceeding oop store, only in StoreCM
    45   };
    46 protected:
    47   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
    48     : Node(c0,c1,c2   ) {
    49     init_class_id(Class_Mem);
    50     debug_only(_adr_type=at; adr_type();)
    51   }
    52   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
    53     : Node(c0,c1,c2,c3) {
    54     init_class_id(Class_Mem);
    55     debug_only(_adr_type=at; adr_type();)
    56   }
    57   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
    58     : Node(c0,c1,c2,c3,c4) {
    59     init_class_id(Class_Mem);
    60     debug_only(_adr_type=at; adr_type();)
    61   }
    63   // Helpers for the optimizer.  Documented in memnode.cpp.
    64   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
    65                                       Node* p2, AllocateNode* a2,
    66                                       PhaseTransform* phase);
    67   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
    69 public:
    70   // This one should probably be a phase-specific function:
    71   static bool detect_dominating_control(Node* dom, Node* sub);
    73   // Is this Node a MemNode or some descendent?  Default is YES.
    74   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
    76   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
    78   // Shared code for Ideal methods:
    79   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
    81   // Helper function for adr_type() implementations.
    82   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
    84   // Raw access function, to allow copying of adr_type efficiently in
    85   // product builds and retain the debug info for debug builds.
    86   const TypePtr *raw_adr_type() const {
    87 #ifdef ASSERT
    88     return _adr_type;
    89 #else
    90     return 0;
    91 #endif
    92   }
    94   // Map a load or store opcode to its corresponding store opcode.
    95   // (Return -1 if unknown.)
    96   virtual int store_Opcode() const { return -1; }
    98   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
    99   virtual BasicType memory_type() const = 0;
   100   virtual int memory_size() const { return type2aelembytes[memory_type()]; }
   102   // Search through memory states which precede this node (load or store).
   103   // Look for an exact match for the address, with no intervening
   104   // aliased stores.
   105   Node* find_previous_store(PhaseTransform* phase);
   107   // Can this node (load or store) accurately see a stored value in
   108   // the given memory state?  (The state may or may not be in(Memory).)
   109   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
   111 #ifndef PRODUCT
   112   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
   113   virtual void dump_spec(outputStream *st) const;
   114 #endif
   115 };
   117 //------------------------------LoadNode---------------------------------------
   118 // Load value; requires Memory and Address
   119 class LoadNode : public MemNode {
   120 protected:
   121   virtual uint cmp( const Node &n ) const;
   122   virtual uint size_of() const; // Size is bigger
   123   const Type* const _type;      // What kind of value is loaded?
   124 public:
   126   LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
   127     : MemNode(c,mem,adr,at), _type(rt) {
   128     init_class_id(Class_Load);
   129   }
   131   // Polymorphic factory method:
   132   static LoadNode* make( Compile *C, Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, BasicType bt );
   134   virtual uint hash()   const;  // Check the type
   136   // Handle algebraic identities here.  If we have an identity, return the Node
   137   // we are equivalent to.  We look for Load of a Store.
   138   virtual Node *Identity( PhaseTransform *phase );
   140   // If the load is from Field memory and the pointer is non-null, we can
   141   // zero out the control input.
   142   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   144   // Recover original value from boxed values
   145   Node *eliminate_autobox(PhaseGVN *phase);
   147   // Compute a new Type for this node.  Basically we just do the pre-check,
   148   // then call the virtual add() to set the type.
   149   virtual const Type *Value( PhaseTransform *phase ) const;
   151   virtual uint ideal_reg() const;
   152   virtual const Type *bottom_type() const;
   153   // Following method is copied from TypeNode:
   154   void set_type(const Type* t) {
   155     assert(t != NULL, "sanity");
   156     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   157     *(const Type**)&_type = t;   // cast away const-ness
   158     // If this node is in the hash table, make sure it doesn't need a rehash.
   159     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
   160   }
   161   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
   163   // Do not match memory edge
   164   virtual uint match_edge(uint idx) const;
   166   // Map a load opcode to its corresponding store opcode.
   167   virtual int store_Opcode() const = 0;
   169 #ifndef PRODUCT
   170   virtual void dump_spec(outputStream *st) const;
   171 #endif
   172 protected:
   173   const Type* load_array_final_field(const TypeKlassPtr *tkls,
   174                                      ciKlass* klass) const;
   175 };
   177 //------------------------------LoadBNode--------------------------------------
   178 // Load a byte (8bits signed) from memory
   179 class LoadBNode : public LoadNode {
   180 public:
   181   LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
   182     : LoadNode(c,mem,adr,at,ti) {}
   183   virtual int Opcode() const;
   184   virtual uint ideal_reg() const { return Op_RegI; }
   185   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   186   virtual int store_Opcode() const { return Op_StoreB; }
   187   virtual BasicType memory_type() const { return T_BYTE; }
   188 };
   190 //------------------------------LoadCNode--------------------------------------
   191 // Load a char (16bits unsigned) from memory
   192 class LoadCNode : public LoadNode {
   193 public:
   194   LoadCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
   195     : LoadNode(c,mem,adr,at,ti) {}
   196   virtual int Opcode() const;
   197   virtual uint ideal_reg() const { return Op_RegI; }
   198   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   199   virtual int store_Opcode() const { return Op_StoreC; }
   200   virtual BasicType memory_type() const { return T_CHAR; }
   201 };
   203 //------------------------------LoadINode--------------------------------------
   204 // Load an integer from memory
   205 class LoadINode : public LoadNode {
   206 public:
   207   LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
   208     : LoadNode(c,mem,adr,at,ti) {}
   209   virtual int Opcode() const;
   210   virtual uint ideal_reg() const { return Op_RegI; }
   211   virtual int store_Opcode() const { return Op_StoreI; }
   212   virtual BasicType memory_type() const { return T_INT; }
   213 };
   215 //------------------------------LoadRangeNode----------------------------------
   216 // Load an array length from the array
   217 class LoadRangeNode : public LoadINode {
   218 public:
   219   LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
   220     : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
   221   virtual int Opcode() const;
   222   virtual const Type *Value( PhaseTransform *phase ) const;
   223   virtual Node *Identity( PhaseTransform *phase );
   224 };
   226 //------------------------------LoadLNode--------------------------------------
   227 // Load a long from memory
   228 class LoadLNode : public LoadNode {
   229   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
   230   virtual uint cmp( const Node &n ) const {
   231     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
   232       && LoadNode::cmp(n);
   233   }
   234   virtual uint size_of() const { return sizeof(*this); }
   235   const bool _require_atomic_access;  // is piecewise load forbidden?
   237 public:
   238   LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
   239              const TypeLong *tl = TypeLong::LONG,
   240              bool require_atomic_access = false )
   241     : LoadNode(c,mem,adr,at,tl)
   242     , _require_atomic_access(require_atomic_access)
   243   {}
   244   virtual int Opcode() const;
   245   virtual uint ideal_reg() const { return Op_RegL; }
   246   virtual int store_Opcode() const { return Op_StoreL; }
   247   virtual BasicType memory_type() const { return T_LONG; }
   248   bool require_atomic_access() { return _require_atomic_access; }
   249   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
   250 #ifndef PRODUCT
   251   virtual void dump_spec(outputStream *st) const {
   252     LoadNode::dump_spec(st);
   253     if (_require_atomic_access)  st->print(" Atomic!");
   254   }
   255 #endif
   256 };
   258 //------------------------------LoadL_unalignedNode----------------------------
   259 // Load a long from unaligned memory
   260 class LoadL_unalignedNode : public LoadLNode {
   261 public:
   262   LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   263     : LoadLNode(c,mem,adr,at) {}
   264   virtual int Opcode() const;
   265 };
   267 //------------------------------LoadFNode--------------------------------------
   268 // Load a float (64 bits) from memory
   269 class LoadFNode : public LoadNode {
   270 public:
   271   LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
   272     : LoadNode(c,mem,adr,at,t) {}
   273   virtual int Opcode() const;
   274   virtual uint ideal_reg() const { return Op_RegF; }
   275   virtual int store_Opcode() const { return Op_StoreF; }
   276   virtual BasicType memory_type() const { return T_FLOAT; }
   277 };
   279 //------------------------------LoadDNode--------------------------------------
   280 // Load a double (64 bits) from memory
   281 class LoadDNode : public LoadNode {
   282 public:
   283   LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
   284     : LoadNode(c,mem,adr,at,t) {}
   285   virtual int Opcode() const;
   286   virtual uint ideal_reg() const { return Op_RegD; }
   287   virtual int store_Opcode() const { return Op_StoreD; }
   288   virtual BasicType memory_type() const { return T_DOUBLE; }
   289 };
   291 //------------------------------LoadD_unalignedNode----------------------------
   292 // Load a double from unaligned memory
   293 class LoadD_unalignedNode : public LoadDNode {
   294 public:
   295   LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   296     : LoadDNode(c,mem,adr,at) {}
   297   virtual int Opcode() const;
   298 };
   300 //------------------------------LoadPNode--------------------------------------
   301 // Load a pointer from memory (either object or array)
   302 class LoadPNode : public LoadNode {
   303 public:
   304   LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
   305     : LoadNode(c,mem,adr,at,t) {}
   306   virtual int Opcode() const;
   307   virtual uint ideal_reg() const { return Op_RegP; }
   308   virtual int store_Opcode() const { return Op_StoreP; }
   309   virtual BasicType memory_type() const { return T_ADDRESS; }
   310   // depends_only_on_test is almost always true, and needs to be almost always
   311   // true to enable key hoisting & commoning optimizations.  However, for the
   312   // special case of RawPtr loads from TLS top & end, the control edge carries
   313   // the dependence preventing hoisting past a Safepoint instead of the memory
   314   // edge.  (An unfortunate consequence of having Safepoints not set Raw
   315   // Memory; itself an unfortunate consequence of having Nodes which produce
   316   // results (new raw memory state) inside of loops preventing all manner of
   317   // other optimizations).  Basically, it's ugly but so is the alternative.
   318   // See comment in macro.cpp, around line 125 expand_allocate_common().
   319   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
   320 };
   322 //------------------------------LoadKlassNode----------------------------------
   323 // Load a Klass from an object
   324 class LoadKlassNode : public LoadPNode {
   325 public:
   326   LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk = TypeKlassPtr::OBJECT )
   327     : LoadPNode(c,mem,adr,at,tk) {}
   328   virtual int Opcode() const;
   329   virtual const Type *Value( PhaseTransform *phase ) const;
   330   virtual Node *Identity( PhaseTransform *phase );
   331   virtual bool depends_only_on_test() const { return true; }
   332 };
   334 //------------------------------LoadSNode--------------------------------------
   335 // Load a short (16bits signed) from memory
   336 class LoadSNode : public LoadNode {
   337 public:
   338   LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
   339     : LoadNode(c,mem,adr,at,ti) {}
   340   virtual int Opcode() const;
   341   virtual uint ideal_reg() const { return Op_RegI; }
   342   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   343   virtual int store_Opcode() const { return Op_StoreC; }
   344   virtual BasicType memory_type() const { return T_SHORT; }
   345 };
   347 //------------------------------StoreNode--------------------------------------
   348 // Store value; requires Store, Address and Value
   349 class StoreNode : public MemNode {
   350 protected:
   351   virtual uint cmp( const Node &n ) const;
   352   virtual bool depends_only_on_test() const { return false; }
   354   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
   355   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
   357 public:
   358   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
   359     : MemNode(c,mem,adr,at,val) {
   360     init_class_id(Class_Store);
   361   }
   362   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
   363     : MemNode(c,mem,adr,at,val,oop_store) {
   364     init_class_id(Class_Store);
   365   }
   367   // Polymorphic factory method:
   368   static StoreNode* make( Compile *C, Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, BasicType bt );
   370   virtual uint hash() const;    // Check the type
   372   // If the store is to Field memory and the pointer is non-null, we can
   373   // zero out the control input.
   374   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   376   // Compute a new Type for this node.  Basically we just do the pre-check,
   377   // then call the virtual add() to set the type.
   378   virtual const Type *Value( PhaseTransform *phase ) const;
   380   // Check for identity function on memory (Load then Store at same address)
   381   virtual Node *Identity( PhaseTransform *phase );
   383   // Do not match memory edge
   384   virtual uint match_edge(uint idx) const;
   386   virtual const Type *bottom_type() const;  // returns Type::MEMORY
   388   // Map a store opcode to its corresponding own opcode, trivially.
   389   virtual int store_Opcode() const { return Opcode(); }
   391   // have all possible loads of the value stored been optimized away?
   392   bool value_never_loaded(PhaseTransform *phase) const;
   393 };
   395 //------------------------------StoreBNode-------------------------------------
   396 // Store byte to memory
   397 class StoreBNode : public StoreNode {
   398 public:
   399   StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   400   virtual int Opcode() const;
   401   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   402   virtual BasicType memory_type() const { return T_BYTE; }
   403 };
   405 //------------------------------StoreCNode-------------------------------------
   406 // Store char/short to memory
   407 class StoreCNode : public StoreNode {
   408 public:
   409   StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   410   virtual int Opcode() const;
   411   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   412   virtual BasicType memory_type() const { return T_CHAR; }
   413 };
   415 //------------------------------StoreINode-------------------------------------
   416 // Store int to memory
   417 class StoreINode : public StoreNode {
   418 public:
   419   StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   420   virtual int Opcode() const;
   421   virtual BasicType memory_type() const { return T_INT; }
   422 };
   424 //------------------------------StoreLNode-------------------------------------
   425 // Store long to memory
   426 class StoreLNode : public StoreNode {
   427   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
   428   virtual uint cmp( const Node &n ) const {
   429     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
   430       && StoreNode::cmp(n);
   431   }
   432   virtual uint size_of() const { return sizeof(*this); }
   433   const bool _require_atomic_access;  // is piecewise store forbidden?
   435 public:
   436   StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
   437               bool require_atomic_access = false )
   438     : StoreNode(c,mem,adr,at,val)
   439     , _require_atomic_access(require_atomic_access)
   440   {}
   441   virtual int Opcode() const;
   442   virtual BasicType memory_type() const { return T_LONG; }
   443   bool require_atomic_access() { return _require_atomic_access; }
   444   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
   445 #ifndef PRODUCT
   446   virtual void dump_spec(outputStream *st) const {
   447     StoreNode::dump_spec(st);
   448     if (_require_atomic_access)  st->print(" Atomic!");
   449   }
   450 #endif
   451 };
   453 //------------------------------StoreFNode-------------------------------------
   454 // Store float to memory
   455 class StoreFNode : public StoreNode {
   456 public:
   457   StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   458   virtual int Opcode() const;
   459   virtual BasicType memory_type() const { return T_FLOAT; }
   460 };
   462 //------------------------------StoreDNode-------------------------------------
   463 // Store double to memory
   464 class StoreDNode : public StoreNode {
   465 public:
   466   StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   467   virtual int Opcode() const;
   468   virtual BasicType memory_type() const { return T_DOUBLE; }
   469 };
   471 //------------------------------StorePNode-------------------------------------
   472 // Store pointer to memory
   473 class StorePNode : public StoreNode {
   474 public:
   475   StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   476   virtual int Opcode() const;
   477   virtual BasicType memory_type() const { return T_ADDRESS; }
   478 };
   480 //------------------------------StoreCMNode-----------------------------------
   481 // Store card-mark byte to memory for CM
   482 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
   483 // Preceeding equivalent StoreCMs may be eliminated.
   484 class StoreCMNode : public StoreNode {
   485 public:
   486   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store ) : StoreNode(c,mem,adr,at,val,oop_store) {}
   487   virtual int Opcode() const;
   488   virtual Node *Identity( PhaseTransform *phase );
   489   virtual const Type *Value( PhaseTransform *phase ) const;
   490   virtual BasicType memory_type() const { return T_VOID; } // unspecific
   491 };
   493 //------------------------------LoadPLockedNode---------------------------------
   494 // Load-locked a pointer from memory (either object or array).
   495 // On Sparc & Intel this is implemented as a normal pointer load.
   496 // On PowerPC and friends it's a real load-locked.
   497 class LoadPLockedNode : public LoadPNode {
   498 public:
   499   LoadPLockedNode( Node *c, Node *mem, Node *adr )
   500     : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
   501   virtual int Opcode() const;
   502   virtual int store_Opcode() const { return Op_StorePConditional; }
   503   virtual bool depends_only_on_test() const { return true; }
   504 };
   506 //------------------------------LoadLLockedNode---------------------------------
   507 // Load-locked a pointer from memory (either object or array).
   508 // On Sparc & Intel this is implemented as a normal long load.
   509 class LoadLLockedNode : public LoadLNode {
   510 public:
   511   LoadLLockedNode( Node *c, Node *mem, Node *adr )
   512     : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
   513   virtual int Opcode() const;
   514   virtual int store_Opcode() const { return Op_StoreLConditional; }
   515 };
   517 //------------------------------SCMemProjNode---------------------------------------
   518 // This class defines a projection of the memory  state of a store conditional node.
   519 // These nodes return a value, but also update memory.
   520 class SCMemProjNode : public ProjNode {
   521 public:
   522   enum {SCMEMPROJCON = (uint)-2};
   523   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
   524   virtual int Opcode() const;
   525   virtual bool      is_CFG() const  { return false; }
   526   virtual const Type *bottom_type() const {return Type::MEMORY;}
   527   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
   528   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
   529   virtual const Type *Value( PhaseTransform *phase ) const;
   530 #ifndef PRODUCT
   531   virtual void dump_spec(outputStream *st) const {};
   532 #endif
   533 };
   535 //------------------------------LoadStoreNode---------------------------
   536 class LoadStoreNode : public Node {
   537 public:
   538   enum {
   539     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
   540   };
   541   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
   542   virtual bool depends_only_on_test() const { return false; }
   543   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
   544   virtual uint ideal_reg() const { return Op_RegI; }
   545   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
   546 };
   548 //------------------------------StorePConditionalNode---------------------------
   549 // Conditionally store pointer to memory, if no change since prior
   550 // load-locked.  Sets flags for success or failure of the store.
   551 class StorePConditionalNode : public LoadStoreNode {
   552 public:
   553   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
   554   virtual int Opcode() const;
   555   // Produces flags
   556   virtual uint ideal_reg() const { return Op_RegFlags; }
   557 };
   559 //------------------------------StoreLConditionalNode---------------------------
   560 // Conditionally store long to memory, if no change since prior
   561 // load-locked.  Sets flags for success or failure of the store.
   562 class StoreLConditionalNode : public LoadStoreNode {
   563 public:
   564   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
   565   virtual int Opcode() const;
   566 };
   569 //------------------------------CompareAndSwapLNode---------------------------
   570 class CompareAndSwapLNode : public LoadStoreNode {
   571 public:
   572   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   573   virtual int Opcode() const;
   574 };
   577 //------------------------------CompareAndSwapINode---------------------------
   578 class CompareAndSwapINode : public LoadStoreNode {
   579 public:
   580   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   581   virtual int Opcode() const;
   582 };
   585 //------------------------------CompareAndSwapPNode---------------------------
   586 class CompareAndSwapPNode : public LoadStoreNode {
   587 public:
   588   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   589   virtual int Opcode() const;
   590 };
   592 //------------------------------ClearArray-------------------------------------
   593 class ClearArrayNode: public Node {
   594 public:
   595   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base ) : Node(ctrl,arymem,word_cnt,base) {}
   596   virtual int         Opcode() const;
   597   virtual const Type *bottom_type() const { return Type::MEMORY; }
   598   // ClearArray modifies array elements, and so affects only the
   599   // array memory addressed by the bottom_type of its base address.
   600   virtual const class TypePtr *adr_type() const;
   601   virtual Node *Identity( PhaseTransform *phase );
   602   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   603   virtual uint match_edge(uint idx) const;
   605   // Clear the given area of an object or array.
   606   // The start offset must always be aligned mod BytesPerInt.
   607   // The end offset must always be aligned mod BytesPerLong.
   608   // Return the new memory.
   609   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   610                             intptr_t start_offset,
   611                             intptr_t end_offset,
   612                             PhaseGVN* phase);
   613   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   614                             intptr_t start_offset,
   615                             Node* end_offset,
   616                             PhaseGVN* phase);
   617   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   618                             Node* start_offset,
   619                             Node* end_offset,
   620                             PhaseGVN* phase);
   621 };
   623 //------------------------------StrComp-------------------------------------
   624 class StrCompNode: public Node {
   625 public:
   626   StrCompNode(Node *control,
   627               Node* char_array_mem,
   628               Node* value_mem,
   629               Node* count_mem,
   630               Node* offset_mem,
   631               Node* s1, Node* s2): Node(control,
   632                                         char_array_mem,
   633                                         value_mem,
   634                                         count_mem,
   635                                         offset_mem,
   636                                         s1, s2) {};
   637   virtual int Opcode() const;
   638   virtual bool depends_only_on_test() const { return false; }
   639   virtual const Type* bottom_type() const { return TypeInt::INT; }
   640   // a StrCompNode (conservatively) aliases with everything:
   641   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
   642   virtual uint match_edge(uint idx) const;
   643   virtual uint ideal_reg() const { return Op_RegI; }
   644   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   645 };
   647 //------------------------------MemBar-----------------------------------------
   648 // There are different flavors of Memory Barriers to match the Java Memory
   649 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
   650 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
   651 // volatile-load.  Monitor-exit and volatile-store act as Release: no
   652 // preceeding ref can be moved to after them.  We insert a MemBar-Release
   653 // before a FastUnlock or volatile-store.  All volatiles need to be
   654 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
   655 // seperate it from any following volatile-load.
   656 class MemBarNode: public MultiNode {
   657   virtual uint hash() const ;                  // { return NO_HASH; }
   658   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
   660   virtual uint size_of() const { return sizeof(*this); }
   661   // Memory type this node is serializing.  Usually either rawptr or bottom.
   662   const TypePtr* _adr_type;
   664 public:
   665   enum {
   666     Precedent = TypeFunc::Parms  // optional edge to force precedence
   667   };
   668   MemBarNode(Compile* C, int alias_idx, Node* precedent);
   669   virtual int Opcode() const = 0;
   670   virtual const class TypePtr *adr_type() const { return _adr_type; }
   671   virtual const Type *Value( PhaseTransform *phase ) const;
   672   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   673   virtual uint match_edge(uint idx) const { return 0; }
   674   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
   675   virtual Node *match( const ProjNode *proj, const Matcher *m );
   676   // Factory method.  Builds a wide or narrow membar.
   677   // Optional 'precedent' becomes an extra edge if not null.
   678   static MemBarNode* make(Compile* C, int opcode,
   679                           int alias_idx = Compile::AliasIdxBot,
   680                           Node* precedent = NULL);
   681 };
   683 // "Acquire" - no following ref can move before (but earlier refs can
   684 // follow, like an early Load stalled in cache).  Requires multi-cpu
   685 // visibility.  Inserted after a volatile load or FastLock.
   686 class MemBarAcquireNode: public MemBarNode {
   687 public:
   688   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
   689     : MemBarNode(C, alias_idx, precedent) {}
   690   virtual int Opcode() const;
   691 };
   693 // "Release" - no earlier ref can move after (but later refs can move
   694 // up, like a speculative pipelined cache-hitting Load).  Requires
   695 // multi-cpu visibility.  Inserted before a volatile store or FastUnLock.
   696 class MemBarReleaseNode: public MemBarNode {
   697 public:
   698   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
   699     : MemBarNode(C, alias_idx, precedent) {}
   700   virtual int Opcode() const;
   701 };
   703 // Ordering between a volatile store and a following volatile load.
   704 // Requires multi-CPU visibility?
   705 class MemBarVolatileNode: public MemBarNode {
   706 public:
   707   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
   708     : MemBarNode(C, alias_idx, precedent) {}
   709   virtual int Opcode() const;
   710 };
   712 // Ordering within the same CPU.  Used to order unsafe memory references
   713 // inside the compiler when we lack alias info.  Not needed "outside" the
   714 // compiler because the CPU does all the ordering for us.
   715 class MemBarCPUOrderNode: public MemBarNode {
   716 public:
   717   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
   718     : MemBarNode(C, alias_idx, precedent) {}
   719   virtual int Opcode() const;
   720   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
   721 };
   723 // Isolation of object setup after an AllocateNode and before next safepoint.
   724 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
   725 class InitializeNode: public MemBarNode {
   726   friend class AllocateNode;
   728   bool _is_complete;
   730 public:
   731   enum {
   732     Control    = TypeFunc::Control,
   733     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
   734     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
   735     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
   736   };
   738   InitializeNode(Compile* C, int adr_type, Node* rawoop);
   739   virtual int Opcode() const;
   740   virtual uint size_of() const { return sizeof(*this); }
   741   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
   742   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
   744   // Manage incoming memory edges via a MergeMem on in(Memory):
   745   Node* memory(uint alias_idx);
   747   // The raw memory edge coming directly from the Allocation.
   748   // The contents of this memory are *always* all-zero-bits.
   749   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
   751   // Return the corresponding allocation for this initialization (or null if none).
   752   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   753   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   754   AllocateNode* allocation();
   756   // Anything other than zeroing in this init?
   757   bool is_non_zero();
   759   // An InitializeNode must completed before macro expansion is done.
   760   // Completion requires that the AllocateNode must be followed by
   761   // initialization of the new memory to zero, then to any initializers.
   762   bool is_complete() { return _is_complete; }
   764   // Mark complete.  (Must not yet be complete.)
   765   void set_complete(PhaseGVN* phase);
   767 #ifdef ASSERT
   768   // ensure all non-degenerate stores are ordered and non-overlapping
   769   bool stores_are_sane(PhaseTransform* phase);
   770 #endif //ASSERT
   772   // See if this store can be captured; return offset where it initializes.
   773   // Return 0 if the store cannot be moved (any sort of problem).
   774   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
   776   // Capture another store; reformat it to write my internal raw memory.
   777   // Return the captured copy, else NULL if there is some sort of problem.
   778   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
   780   // Find captured store which corresponds to the range [start..start+size).
   781   // Return my own memory projection (meaning the initial zero bits)
   782   // if there is no such store.  Return NULL if there is a problem.
   783   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
   785   // Called when the associated AllocateNode is expanded into CFG.
   786   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
   787                         intptr_t header_size, Node* size_in_bytes,
   788                         PhaseGVN* phase);
   790  private:
   791   void remove_extra_zeroes();
   793   // Find out where a captured store should be placed (or already is placed).
   794   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
   795                                      PhaseTransform* phase);
   797   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
   799   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
   801   bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
   803   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
   804                                PhaseGVN* phase);
   806   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
   807 };
   809 //------------------------------MergeMem---------------------------------------
   810 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
   811 class MergeMemNode: public Node {
   812   virtual uint hash() const ;                  // { return NO_HASH; }
   813   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
   814   friend class MergeMemStream;
   815   MergeMemNode(Node* def);  // clients use MergeMemNode::make
   817 public:
   818   // If the input is a whole memory state, clone it with all its slices intact.
   819   // Otherwise, make a new memory state with just that base memory input.
   820   // In either case, the result is a newly created MergeMem.
   821   static MergeMemNode* make(Compile* C, Node* base_memory);
   823   virtual int Opcode() const;
   824   virtual Node *Identity( PhaseTransform *phase );
   825   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   826   virtual uint ideal_reg() const { return NotAMachineReg; }
   827   virtual uint match_edge(uint idx) const { return 0; }
   828   virtual const RegMask &out_RegMask() const;
   829   virtual const Type *bottom_type() const { return Type::MEMORY; }
   830   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
   831   // sparse accessors
   832   // Fetch the previously stored "set_memory_at", or else the base memory.
   833   // (Caller should clone it if it is a phi-nest.)
   834   Node* memory_at(uint alias_idx) const;
   835   // set the memory, regardless of its previous value
   836   void set_memory_at(uint alias_idx, Node* n);
   837   // the "base" is the memory that provides the non-finite support
   838   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
   839   // warning: setting the base can implicitly set any of the other slices too
   840   void set_base_memory(Node* def);
   841   // sentinel value which denotes a copy of the base memory:
   842   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
   843   static Node* make_empty_memory(); // where the sentinel comes from
   844   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
   845   // hook for the iterator, to perform any necessary setup
   846   void iteration_setup(const MergeMemNode* other = NULL);
   847   // push sentinels until I am at least as long as the other (semantic no-op)
   848   void grow_to_match(const MergeMemNode* other);
   849   bool verify_sparse() const PRODUCT_RETURN0;
   850 #ifndef PRODUCT
   851   virtual void dump_spec(outputStream *st) const;
   852 #endif
   853 };
   855 class MergeMemStream : public StackObj {
   856  private:
   857   MergeMemNode*       _mm;
   858   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
   859   Node*               _mm_base;  // loop-invariant base memory of _mm
   860   int                 _idx;
   861   int                 _cnt;
   862   Node*               _mem;
   863   Node*               _mem2;
   864   int                 _cnt2;
   866   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
   867     // subsume_node will break sparseness at times, whenever a memory slice
   868     // folds down to a copy of the base ("fat") memory.  In such a case,
   869     // the raw edge will update to base, although it should be top.
   870     // This iterator will recognize either top or base_memory as an
   871     // "empty" slice.  See is_empty, is_empty2, and next below.
   872     //
   873     // The sparseness property is repaired in MergeMemNode::Ideal.
   874     // As long as access to a MergeMem goes through this iterator
   875     // or the memory_at accessor, flaws in the sparseness will
   876     // never be observed.
   877     //
   878     // Also, iteration_setup repairs sparseness.
   879     assert(mm->verify_sparse(), "please, no dups of base");
   880     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
   882     _mm  = mm;
   883     _mm_base = mm->base_memory();
   884     _mm2 = mm2;
   885     _cnt = mm->req();
   886     _idx = Compile::AliasIdxBot-1; // start at the base memory
   887     _mem = NULL;
   888     _mem2 = NULL;
   889   }
   891 #ifdef ASSERT
   892   Node* check_memory() const {
   893     if (at_base_memory())
   894       return _mm->base_memory();
   895     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
   896       return _mm->memory_at(_idx);
   897     else
   898       return _mm_base;
   899   }
   900   Node* check_memory2() const {
   901     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
   902   }
   903 #endif
   905   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
   906   void assert_synch() const {
   907     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
   908            "no side-effects except through the stream");
   909   }
   911  public:
   913   // expected usages:
   914   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
   915   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
   917   // iterate over one merge
   918   MergeMemStream(MergeMemNode* mm) {
   919     mm->iteration_setup();
   920     init(mm);
   921     debug_only(_cnt2 = 999);
   922   }
   923   // iterate in parallel over two merges
   924   // only iterates through non-empty elements of mm2
   925   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
   926     assert(mm2, "second argument must be a MergeMem also");
   927     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
   928     mm->iteration_setup(mm2);
   929     init(mm, mm2);
   930     _cnt2 = mm2->req();
   931   }
   932 #ifdef ASSERT
   933   ~MergeMemStream() {
   934     assert_synch();
   935   }
   936 #endif
   938   MergeMemNode* all_memory() const {
   939     return _mm;
   940   }
   941   Node* base_memory() const {
   942     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
   943     return _mm_base;
   944   }
   945   const MergeMemNode* all_memory2() const {
   946     assert(_mm2 != NULL, "");
   947     return _mm2;
   948   }
   949   bool at_base_memory() const {
   950     return _idx == Compile::AliasIdxBot;
   951   }
   952   int alias_idx() const {
   953     assert(_mem, "must call next 1st");
   954     return _idx;
   955   }
   957   const TypePtr* adr_type() const {
   958     return Compile::current()->get_adr_type(alias_idx());
   959   }
   961   const TypePtr* adr_type(Compile* C) const {
   962     return C->get_adr_type(alias_idx());
   963   }
   964   bool is_empty() const {
   965     assert(_mem, "must call next 1st");
   966     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
   967     return _mem->is_top();
   968   }
   969   bool is_empty2() const {
   970     assert(_mem2, "must call next 1st");
   971     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
   972     return _mem2->is_top();
   973   }
   974   Node* memory() const {
   975     assert(!is_empty(), "must not be empty");
   976     assert_synch();
   977     return _mem;
   978   }
   979   // get the current memory, regardless of empty or non-empty status
   980   Node* force_memory() const {
   981     assert(!is_empty() || !at_base_memory(), "");
   982     // Use _mm_base to defend against updates to _mem->base_memory().
   983     Node *mem = _mem->is_top() ? _mm_base : _mem;
   984     assert(mem == check_memory(), "");
   985     return mem;
   986   }
   987   Node* memory2() const {
   988     assert(_mem2 == check_memory2(), "");
   989     return _mem2;
   990   }
   991   void set_memory(Node* mem) {
   992     if (at_base_memory()) {
   993       // Note that this does not change the invariant _mm_base.
   994       _mm->set_base_memory(mem);
   995     } else {
   996       _mm->set_memory_at(_idx, mem);
   997     }
   998     _mem = mem;
   999     assert_synch();
  1002   // Recover from a side effect to the MergeMemNode.
  1003   void set_memory() {
  1004     _mem = _mm->in(_idx);
  1007   bool next()  { return next(false); }
  1008   bool next2() { return next(true); }
  1010   bool next_non_empty()  { return next_non_empty(false); }
  1011   bool next_non_empty2() { return next_non_empty(true); }
  1012   // next_non_empty2 can yield states where is_empty() is true
  1014  private:
  1015   // find the next item, which might be empty
  1016   bool next(bool have_mm2) {
  1017     assert((_mm2 != NULL) == have_mm2, "use other next");
  1018     assert_synch();
  1019     if (++_idx < _cnt) {
  1020       // Note:  This iterator allows _mm to be non-sparse.
  1021       // It behaves the same whether _mem is top or base_memory.
  1022       _mem = _mm->in(_idx);
  1023       if (have_mm2)
  1024         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
  1025       return true;
  1027     return false;
  1030   // find the next non-empty item
  1031   bool next_non_empty(bool have_mm2) {
  1032     while (next(have_mm2)) {
  1033       if (!is_empty()) {
  1034         // make sure _mem2 is filled in sensibly
  1035         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
  1036         return true;
  1037       } else if (have_mm2 && !is_empty2()) {
  1038         return true;   // is_empty() == true
  1041     return false;
  1043 };
  1045 //------------------------------Prefetch---------------------------------------
  1047 // Non-faulting prefetch load.  Prefetch for many reads.
  1048 class PrefetchReadNode : public Node {
  1049 public:
  1050   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1051   virtual int Opcode() const;
  1052   virtual uint ideal_reg() const { return NotAMachineReg; }
  1053   virtual uint match_edge(uint idx) const { return idx==2; }
  1054   virtual const Type *bottom_type() const { return Type::ABIO; }
  1055 };
  1057 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
  1058 class PrefetchWriteNode : public Node {
  1059 public:
  1060   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1061   virtual int Opcode() const;
  1062   virtual uint ideal_reg() const { return NotAMachineReg; }
  1063   virtual uint match_edge(uint idx) const { return idx==2; }
  1064   virtual const Type *bottom_type() const { return Type::ABIO; }
  1065 };

mercurial