src/share/vm/opto/memnode.hpp

Fri, 22 Feb 2008 17:55:13 -0800

author
kvn
date
Fri, 22 Feb 2008 17:55:13 -0800
changeset 463
67914967a4b5
parent 452
ff5961f4c095
child 464
d5fc211aea19
permissions
-rw-r--r--

6650373: Assert in methodOopDesc::make_adapters()
Summary: AdapterHandlerLibrary::get_create_adapter_index() returns incorrect value (-2) when CodeCache is full.
Reviewed-by: sgoldman

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 class MultiNode;
duke@435 28 class PhaseCCP;
duke@435 29 class PhaseTransform;
duke@435 30
duke@435 31 //------------------------------MemNode----------------------------------------
duke@435 32 // Load or Store, possibly throwing a NULL pointer exception
duke@435 33 class MemNode : public Node {
duke@435 34 protected:
duke@435 35 #ifdef ASSERT
duke@435 36 const TypePtr* _adr_type; // What kind of memory is being addressed?
duke@435 37 #endif
duke@435 38 virtual uint size_of() const; // Size is bigger (ASSERT only)
duke@435 39 public:
duke@435 40 enum { Control, // When is it safe to do this load?
duke@435 41 Memory, // Chunk of memory is being loaded from
duke@435 42 Address, // Actually address, derived from base
duke@435 43 ValueIn, // Value to store
duke@435 44 OopStore // Preceeding oop store, only in StoreCM
duke@435 45 };
duke@435 46 protected:
duke@435 47 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
duke@435 48 : Node(c0,c1,c2 ) {
duke@435 49 init_class_id(Class_Mem);
duke@435 50 debug_only(_adr_type=at; adr_type();)
duke@435 51 }
duke@435 52 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
duke@435 53 : Node(c0,c1,c2,c3) {
duke@435 54 init_class_id(Class_Mem);
duke@435 55 debug_only(_adr_type=at; adr_type();)
duke@435 56 }
duke@435 57 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
duke@435 58 : Node(c0,c1,c2,c3,c4) {
duke@435 59 init_class_id(Class_Mem);
duke@435 60 debug_only(_adr_type=at; adr_type();)
duke@435 61 }
duke@435 62
duke@435 63 // Helpers for the optimizer. Documented in memnode.cpp.
duke@435 64 static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 65 Node* p2, AllocateNode* a2,
duke@435 66 PhaseTransform* phase);
duke@435 67 static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
duke@435 68
duke@435 69 public:
duke@435 70 // This one should probably be a phase-specific function:
duke@435 71 static bool detect_dominating_control(Node* dom, Node* sub);
duke@435 72
duke@435 73 // Is this Node a MemNode or some descendent? Default is YES.
duke@435 74 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
duke@435 75
duke@435 76 virtual const class TypePtr *adr_type() const; // returns bottom_type of address
duke@435 77
duke@435 78 // Shared code for Ideal methods:
duke@435 79 Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL.
duke@435 80
duke@435 81 // Helper function for adr_type() implementations.
duke@435 82 static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
duke@435 83
duke@435 84 // Raw access function, to allow copying of adr_type efficiently in
duke@435 85 // product builds and retain the debug info for debug builds.
duke@435 86 const TypePtr *raw_adr_type() const {
duke@435 87 #ifdef ASSERT
duke@435 88 return _adr_type;
duke@435 89 #else
duke@435 90 return 0;
duke@435 91 #endif
duke@435 92 }
duke@435 93
duke@435 94 // Map a load or store opcode to its corresponding store opcode.
duke@435 95 // (Return -1 if unknown.)
duke@435 96 virtual int store_Opcode() const { return -1; }
duke@435 97
duke@435 98 // What is the type of the value in memory? (T_VOID mean "unspecified".)
duke@435 99 virtual BasicType memory_type() const = 0;
duke@435 100 virtual int memory_size() const { return type2aelembytes[memory_type()]; }
duke@435 101
duke@435 102 // Search through memory states which precede this node (load or store).
duke@435 103 // Look for an exact match for the address, with no intervening
duke@435 104 // aliased stores.
duke@435 105 Node* find_previous_store(PhaseTransform* phase);
duke@435 106
duke@435 107 // Can this node (load or store) accurately see a stored value in
duke@435 108 // the given memory state? (The state may or may not be in(Memory).)
duke@435 109 Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
duke@435 110
duke@435 111 #ifndef PRODUCT
duke@435 112 static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
duke@435 113 virtual void dump_spec(outputStream *st) const;
duke@435 114 #endif
duke@435 115 };
duke@435 116
duke@435 117 //------------------------------LoadNode---------------------------------------
duke@435 118 // Load value; requires Memory and Address
duke@435 119 class LoadNode : public MemNode {
duke@435 120 protected:
duke@435 121 virtual uint cmp( const Node &n ) const;
duke@435 122 virtual uint size_of() const; // Size is bigger
duke@435 123 const Type* const _type; // What kind of value is loaded?
duke@435 124 public:
duke@435 125
duke@435 126 LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
duke@435 127 : MemNode(c,mem,adr,at), _type(rt) {
duke@435 128 init_class_id(Class_Load);
duke@435 129 }
duke@435 130
duke@435 131 // Polymorphic factory method:
duke@435 132 static LoadNode* make( Compile *C, Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, BasicType bt );
duke@435 133
duke@435 134 virtual uint hash() const; // Check the type
duke@435 135
duke@435 136 // Handle algebraic identities here. If we have an identity, return the Node
duke@435 137 // we are equivalent to. We look for Load of a Store.
duke@435 138 virtual Node *Identity( PhaseTransform *phase );
duke@435 139
duke@435 140 // If the load is from Field memory and the pointer is non-null, we can
duke@435 141 // zero out the control input.
duke@435 142 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 143
never@452 144 // Recover original value from boxed values
never@452 145 Node *eliminate_autobox(PhaseGVN *phase);
never@452 146
duke@435 147 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 148 // then call the virtual add() to set the type.
duke@435 149 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 150
duke@435 151 virtual uint ideal_reg() const;
duke@435 152 virtual const Type *bottom_type() const;
duke@435 153 // Following method is copied from TypeNode:
duke@435 154 void set_type(const Type* t) {
duke@435 155 assert(t != NULL, "sanity");
duke@435 156 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@435 157 *(const Type**)&_type = t; // cast away const-ness
duke@435 158 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@435 159 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
duke@435 160 }
duke@435 161 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
duke@435 162
duke@435 163 // Do not match memory edge
duke@435 164 virtual uint match_edge(uint idx) const;
duke@435 165
duke@435 166 // Map a load opcode to its corresponding store opcode.
duke@435 167 virtual int store_Opcode() const = 0;
duke@435 168
duke@435 169 #ifndef PRODUCT
duke@435 170 virtual void dump_spec(outputStream *st) const;
duke@435 171 #endif
duke@435 172 protected:
duke@435 173 const Type* load_array_final_field(const TypeKlassPtr *tkls,
duke@435 174 ciKlass* klass) const;
duke@435 175 };
duke@435 176
duke@435 177 //------------------------------LoadBNode--------------------------------------
duke@435 178 // Load a byte (8bits signed) from memory
duke@435 179 class LoadBNode : public LoadNode {
duke@435 180 public:
duke@435 181 LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
duke@435 182 : LoadNode(c,mem,adr,at,ti) {}
duke@435 183 virtual int Opcode() const;
duke@435 184 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 185 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 186 virtual int store_Opcode() const { return Op_StoreB; }
duke@435 187 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 188 };
duke@435 189
duke@435 190 //------------------------------LoadCNode--------------------------------------
duke@435 191 // Load a char (16bits unsigned) from memory
duke@435 192 class LoadCNode : public LoadNode {
duke@435 193 public:
duke@435 194 LoadCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
duke@435 195 : LoadNode(c,mem,adr,at,ti) {}
duke@435 196 virtual int Opcode() const;
duke@435 197 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 198 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 199 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 200 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 201 };
duke@435 202
duke@435 203 //------------------------------LoadINode--------------------------------------
duke@435 204 // Load an integer from memory
duke@435 205 class LoadINode : public LoadNode {
duke@435 206 public:
duke@435 207 LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
duke@435 208 : LoadNode(c,mem,adr,at,ti) {}
duke@435 209 virtual int Opcode() const;
duke@435 210 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 211 virtual int store_Opcode() const { return Op_StoreI; }
duke@435 212 virtual BasicType memory_type() const { return T_INT; }
duke@435 213 };
duke@435 214
duke@435 215 //------------------------------LoadRangeNode----------------------------------
duke@435 216 // Load an array length from the array
duke@435 217 class LoadRangeNode : public LoadINode {
duke@435 218 public:
duke@435 219 LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
duke@435 220 : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
duke@435 221 virtual int Opcode() const;
duke@435 222 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 223 virtual Node *Identity( PhaseTransform *phase );
duke@435 224 };
duke@435 225
duke@435 226 //------------------------------LoadLNode--------------------------------------
duke@435 227 // Load a long from memory
duke@435 228 class LoadLNode : public LoadNode {
duke@435 229 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
duke@435 230 virtual uint cmp( const Node &n ) const {
duke@435 231 return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
duke@435 232 && LoadNode::cmp(n);
duke@435 233 }
duke@435 234 virtual uint size_of() const { return sizeof(*this); }
duke@435 235 const bool _require_atomic_access; // is piecewise load forbidden?
duke@435 236
duke@435 237 public:
duke@435 238 LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
duke@435 239 const TypeLong *tl = TypeLong::LONG,
duke@435 240 bool require_atomic_access = false )
duke@435 241 : LoadNode(c,mem,adr,at,tl)
duke@435 242 , _require_atomic_access(require_atomic_access)
duke@435 243 {}
duke@435 244 virtual int Opcode() const;
duke@435 245 virtual uint ideal_reg() const { return Op_RegL; }
duke@435 246 virtual int store_Opcode() const { return Op_StoreL; }
duke@435 247 virtual BasicType memory_type() const { return T_LONG; }
duke@435 248 bool require_atomic_access() { return _require_atomic_access; }
duke@435 249 static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
duke@435 250 #ifndef PRODUCT
duke@435 251 virtual void dump_spec(outputStream *st) const {
duke@435 252 LoadNode::dump_spec(st);
duke@435 253 if (_require_atomic_access) st->print(" Atomic!");
duke@435 254 }
duke@435 255 #endif
duke@435 256 };
duke@435 257
duke@435 258 //------------------------------LoadL_unalignedNode----------------------------
duke@435 259 // Load a long from unaligned memory
duke@435 260 class LoadL_unalignedNode : public LoadLNode {
duke@435 261 public:
duke@435 262 LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
duke@435 263 : LoadLNode(c,mem,adr,at) {}
duke@435 264 virtual int Opcode() const;
duke@435 265 };
duke@435 266
duke@435 267 //------------------------------LoadFNode--------------------------------------
duke@435 268 // Load a float (64 bits) from memory
duke@435 269 class LoadFNode : public LoadNode {
duke@435 270 public:
duke@435 271 LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
duke@435 272 : LoadNode(c,mem,adr,at,t) {}
duke@435 273 virtual int Opcode() const;
duke@435 274 virtual uint ideal_reg() const { return Op_RegF; }
duke@435 275 virtual int store_Opcode() const { return Op_StoreF; }
duke@435 276 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 277 };
duke@435 278
duke@435 279 //------------------------------LoadDNode--------------------------------------
duke@435 280 // Load a double (64 bits) from memory
duke@435 281 class LoadDNode : public LoadNode {
duke@435 282 public:
duke@435 283 LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
duke@435 284 : LoadNode(c,mem,adr,at,t) {}
duke@435 285 virtual int Opcode() const;
duke@435 286 virtual uint ideal_reg() const { return Op_RegD; }
duke@435 287 virtual int store_Opcode() const { return Op_StoreD; }
duke@435 288 virtual BasicType memory_type() const { return T_DOUBLE; }
duke@435 289 };
duke@435 290
duke@435 291 //------------------------------LoadD_unalignedNode----------------------------
duke@435 292 // Load a double from unaligned memory
duke@435 293 class LoadD_unalignedNode : public LoadDNode {
duke@435 294 public:
duke@435 295 LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
duke@435 296 : LoadDNode(c,mem,adr,at) {}
duke@435 297 virtual int Opcode() const;
duke@435 298 };
duke@435 299
duke@435 300 //------------------------------LoadPNode--------------------------------------
duke@435 301 // Load a pointer from memory (either object or array)
duke@435 302 class LoadPNode : public LoadNode {
duke@435 303 public:
duke@435 304 LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
duke@435 305 : LoadNode(c,mem,adr,at,t) {}
duke@435 306 virtual int Opcode() const;
duke@435 307 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 308 virtual int store_Opcode() const { return Op_StoreP; }
duke@435 309 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 310 // depends_only_on_test is almost always true, and needs to be almost always
duke@435 311 // true to enable key hoisting & commoning optimizations. However, for the
duke@435 312 // special case of RawPtr loads from TLS top & end, the control edge carries
duke@435 313 // the dependence preventing hoisting past a Safepoint instead of the memory
duke@435 314 // edge. (An unfortunate consequence of having Safepoints not set Raw
duke@435 315 // Memory; itself an unfortunate consequence of having Nodes which produce
duke@435 316 // results (new raw memory state) inside of loops preventing all manner of
duke@435 317 // other optimizations). Basically, it's ugly but so is the alternative.
duke@435 318 // See comment in macro.cpp, around line 125 expand_allocate_common().
duke@435 319 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
duke@435 320 };
duke@435 321
duke@435 322 //------------------------------LoadKlassNode----------------------------------
duke@435 323 // Load a Klass from an object
duke@435 324 class LoadKlassNode : public LoadPNode {
duke@435 325 public:
duke@435 326 LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk = TypeKlassPtr::OBJECT )
duke@435 327 : LoadPNode(c,mem,adr,at,tk) {}
duke@435 328 virtual int Opcode() const;
duke@435 329 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 330 virtual Node *Identity( PhaseTransform *phase );
duke@435 331 virtual bool depends_only_on_test() const { return true; }
duke@435 332 };
duke@435 333
duke@435 334 //------------------------------LoadSNode--------------------------------------
duke@435 335 // Load a short (16bits signed) from memory
duke@435 336 class LoadSNode : public LoadNode {
duke@435 337 public:
duke@435 338 LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
duke@435 339 : LoadNode(c,mem,adr,at,ti) {}
duke@435 340 virtual int Opcode() const;
duke@435 341 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 342 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 343 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 344 virtual BasicType memory_type() const { return T_SHORT; }
duke@435 345 };
duke@435 346
duke@435 347 //------------------------------StoreNode--------------------------------------
duke@435 348 // Store value; requires Store, Address and Value
duke@435 349 class StoreNode : public MemNode {
duke@435 350 protected:
duke@435 351 virtual uint cmp( const Node &n ) const;
duke@435 352 virtual bool depends_only_on_test() const { return false; }
duke@435 353
duke@435 354 Node *Ideal_masked_input (PhaseGVN *phase, uint mask);
duke@435 355 Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits);
duke@435 356
duke@435 357 public:
duke@435 358 StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
duke@435 359 : MemNode(c,mem,adr,at,val) {
duke@435 360 init_class_id(Class_Store);
duke@435 361 }
duke@435 362 StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
duke@435 363 : MemNode(c,mem,adr,at,val,oop_store) {
duke@435 364 init_class_id(Class_Store);
duke@435 365 }
duke@435 366
duke@435 367 // Polymorphic factory method:
duke@435 368 static StoreNode* make( Compile *C, Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, BasicType bt );
duke@435 369
duke@435 370 virtual uint hash() const; // Check the type
duke@435 371
duke@435 372 // If the store is to Field memory and the pointer is non-null, we can
duke@435 373 // zero out the control input.
duke@435 374 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 375
duke@435 376 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 377 // then call the virtual add() to set the type.
duke@435 378 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 379
duke@435 380 // Check for identity function on memory (Load then Store at same address)
duke@435 381 virtual Node *Identity( PhaseTransform *phase );
duke@435 382
duke@435 383 // Do not match memory edge
duke@435 384 virtual uint match_edge(uint idx) const;
duke@435 385
duke@435 386 virtual const Type *bottom_type() const; // returns Type::MEMORY
duke@435 387
duke@435 388 // Map a store opcode to its corresponding own opcode, trivially.
duke@435 389 virtual int store_Opcode() const { return Opcode(); }
duke@435 390
duke@435 391 // have all possible loads of the value stored been optimized away?
duke@435 392 bool value_never_loaded(PhaseTransform *phase) const;
duke@435 393 };
duke@435 394
duke@435 395 //------------------------------StoreBNode-------------------------------------
duke@435 396 // Store byte to memory
duke@435 397 class StoreBNode : public StoreNode {
duke@435 398 public:
duke@435 399 StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 400 virtual int Opcode() const;
duke@435 401 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 402 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 403 };
duke@435 404
duke@435 405 //------------------------------StoreCNode-------------------------------------
duke@435 406 // Store char/short to memory
duke@435 407 class StoreCNode : public StoreNode {
duke@435 408 public:
duke@435 409 StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 410 virtual int Opcode() const;
duke@435 411 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 412 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 413 };
duke@435 414
duke@435 415 //------------------------------StoreINode-------------------------------------
duke@435 416 // Store int to memory
duke@435 417 class StoreINode : public StoreNode {
duke@435 418 public:
duke@435 419 StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 420 virtual int Opcode() const;
duke@435 421 virtual BasicType memory_type() const { return T_INT; }
duke@435 422 };
duke@435 423
duke@435 424 //------------------------------StoreLNode-------------------------------------
duke@435 425 // Store long to memory
duke@435 426 class StoreLNode : public StoreNode {
duke@435 427 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
duke@435 428 virtual uint cmp( const Node &n ) const {
duke@435 429 return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
duke@435 430 && StoreNode::cmp(n);
duke@435 431 }
duke@435 432 virtual uint size_of() const { return sizeof(*this); }
duke@435 433 const bool _require_atomic_access; // is piecewise store forbidden?
duke@435 434
duke@435 435 public:
duke@435 436 StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
duke@435 437 bool require_atomic_access = false )
duke@435 438 : StoreNode(c,mem,adr,at,val)
duke@435 439 , _require_atomic_access(require_atomic_access)
duke@435 440 {}
duke@435 441 virtual int Opcode() const;
duke@435 442 virtual BasicType memory_type() const { return T_LONG; }
duke@435 443 bool require_atomic_access() { return _require_atomic_access; }
duke@435 444 static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
duke@435 445 #ifndef PRODUCT
duke@435 446 virtual void dump_spec(outputStream *st) const {
duke@435 447 StoreNode::dump_spec(st);
duke@435 448 if (_require_atomic_access) st->print(" Atomic!");
duke@435 449 }
duke@435 450 #endif
duke@435 451 };
duke@435 452
duke@435 453 //------------------------------StoreFNode-------------------------------------
duke@435 454 // Store float to memory
duke@435 455 class StoreFNode : public StoreNode {
duke@435 456 public:
duke@435 457 StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 458 virtual int Opcode() const;
duke@435 459 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 460 };
duke@435 461
duke@435 462 //------------------------------StoreDNode-------------------------------------
duke@435 463 // Store double to memory
duke@435 464 class StoreDNode : public StoreNode {
duke@435 465 public:
duke@435 466 StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 467 virtual int Opcode() const;
duke@435 468 virtual BasicType memory_type() const { return T_DOUBLE; }
duke@435 469 };
duke@435 470
duke@435 471 //------------------------------StorePNode-------------------------------------
duke@435 472 // Store pointer to memory
duke@435 473 class StorePNode : public StoreNode {
duke@435 474 public:
duke@435 475 StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 476 virtual int Opcode() const;
duke@435 477 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 478 };
duke@435 479
duke@435 480 //------------------------------StoreCMNode-----------------------------------
duke@435 481 // Store card-mark byte to memory for CM
duke@435 482 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
duke@435 483 // Preceeding equivalent StoreCMs may be eliminated.
duke@435 484 class StoreCMNode : public StoreNode {
duke@435 485 public:
duke@435 486 StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store ) : StoreNode(c,mem,adr,at,val,oop_store) {}
duke@435 487 virtual int Opcode() const;
duke@435 488 virtual Node *Identity( PhaseTransform *phase );
duke@435 489 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 490 virtual BasicType memory_type() const { return T_VOID; } // unspecific
duke@435 491 };
duke@435 492
duke@435 493 //------------------------------LoadPLockedNode---------------------------------
duke@435 494 // Load-locked a pointer from memory (either object or array).
duke@435 495 // On Sparc & Intel this is implemented as a normal pointer load.
duke@435 496 // On PowerPC and friends it's a real load-locked.
duke@435 497 class LoadPLockedNode : public LoadPNode {
duke@435 498 public:
duke@435 499 LoadPLockedNode( Node *c, Node *mem, Node *adr )
duke@435 500 : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
duke@435 501 virtual int Opcode() const;
duke@435 502 virtual int store_Opcode() const { return Op_StorePConditional; }
duke@435 503 virtual bool depends_only_on_test() const { return true; }
duke@435 504 };
duke@435 505
duke@435 506 //------------------------------LoadLLockedNode---------------------------------
duke@435 507 // Load-locked a pointer from memory (either object or array).
duke@435 508 // On Sparc & Intel this is implemented as a normal long load.
duke@435 509 class LoadLLockedNode : public LoadLNode {
duke@435 510 public:
duke@435 511 LoadLLockedNode( Node *c, Node *mem, Node *adr )
duke@435 512 : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
duke@435 513 virtual int Opcode() const;
duke@435 514 virtual int store_Opcode() const { return Op_StoreLConditional; }
duke@435 515 };
duke@435 516
duke@435 517 //------------------------------SCMemProjNode---------------------------------------
duke@435 518 // This class defines a projection of the memory state of a store conditional node.
duke@435 519 // These nodes return a value, but also update memory.
duke@435 520 class SCMemProjNode : public ProjNode {
duke@435 521 public:
duke@435 522 enum {SCMEMPROJCON = (uint)-2};
duke@435 523 SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
duke@435 524 virtual int Opcode() const;
duke@435 525 virtual bool is_CFG() const { return false; }
duke@435 526 virtual const Type *bottom_type() const {return Type::MEMORY;}
duke@435 527 virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
duke@435 528 virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
duke@435 529 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 530 #ifndef PRODUCT
duke@435 531 virtual void dump_spec(outputStream *st) const {};
duke@435 532 #endif
duke@435 533 };
duke@435 534
duke@435 535 //------------------------------LoadStoreNode---------------------------
duke@435 536 class LoadStoreNode : public Node {
duke@435 537 public:
duke@435 538 enum {
duke@435 539 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
duke@435 540 };
duke@435 541 LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
duke@435 542 virtual bool depends_only_on_test() const { return false; }
duke@435 543 virtual const Type *bottom_type() const { return TypeInt::BOOL; }
duke@435 544 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 545 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
duke@435 546 };
duke@435 547
duke@435 548 //------------------------------StorePConditionalNode---------------------------
duke@435 549 // Conditionally store pointer to memory, if no change since prior
duke@435 550 // load-locked. Sets flags for success or failure of the store.
duke@435 551 class StorePConditionalNode : public LoadStoreNode {
duke@435 552 public:
duke@435 553 StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
duke@435 554 virtual int Opcode() const;
duke@435 555 // Produces flags
duke@435 556 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 557 };
duke@435 558
duke@435 559 //------------------------------StoreLConditionalNode---------------------------
duke@435 560 // Conditionally store long to memory, if no change since prior
duke@435 561 // load-locked. Sets flags for success or failure of the store.
duke@435 562 class StoreLConditionalNode : public LoadStoreNode {
duke@435 563 public:
duke@435 564 StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
duke@435 565 virtual int Opcode() const;
duke@435 566 };
duke@435 567
duke@435 568
duke@435 569 //------------------------------CompareAndSwapLNode---------------------------
duke@435 570 class CompareAndSwapLNode : public LoadStoreNode {
duke@435 571 public:
duke@435 572 CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 573 virtual int Opcode() const;
duke@435 574 };
duke@435 575
duke@435 576
duke@435 577 //------------------------------CompareAndSwapINode---------------------------
duke@435 578 class CompareAndSwapINode : public LoadStoreNode {
duke@435 579 public:
duke@435 580 CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 581 virtual int Opcode() const;
duke@435 582 };
duke@435 583
duke@435 584
duke@435 585 //------------------------------CompareAndSwapPNode---------------------------
duke@435 586 class CompareAndSwapPNode : public LoadStoreNode {
duke@435 587 public:
duke@435 588 CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 589 virtual int Opcode() const;
duke@435 590 };
duke@435 591
duke@435 592 //------------------------------ClearArray-------------------------------------
duke@435 593 class ClearArrayNode: public Node {
duke@435 594 public:
duke@435 595 ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base ) : Node(ctrl,arymem,word_cnt,base) {}
duke@435 596 virtual int Opcode() const;
duke@435 597 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 598 // ClearArray modifies array elements, and so affects only the
duke@435 599 // array memory addressed by the bottom_type of its base address.
duke@435 600 virtual const class TypePtr *adr_type() const;
duke@435 601 virtual Node *Identity( PhaseTransform *phase );
duke@435 602 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 603 virtual uint match_edge(uint idx) const;
duke@435 604
duke@435 605 // Clear the given area of an object or array.
duke@435 606 // The start offset must always be aligned mod BytesPerInt.
duke@435 607 // The end offset must always be aligned mod BytesPerLong.
duke@435 608 // Return the new memory.
duke@435 609 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 610 intptr_t start_offset,
duke@435 611 intptr_t end_offset,
duke@435 612 PhaseGVN* phase);
duke@435 613 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 614 intptr_t start_offset,
duke@435 615 Node* end_offset,
duke@435 616 PhaseGVN* phase);
duke@435 617 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 618 Node* start_offset,
duke@435 619 Node* end_offset,
duke@435 620 PhaseGVN* phase);
duke@435 621 };
duke@435 622
duke@435 623 //------------------------------StrComp-------------------------------------
duke@435 624 class StrCompNode: public Node {
duke@435 625 public:
duke@435 626 StrCompNode(Node *control,
duke@435 627 Node* char_array_mem,
duke@435 628 Node* value_mem,
duke@435 629 Node* count_mem,
duke@435 630 Node* offset_mem,
duke@435 631 Node* s1, Node* s2): Node(control,
duke@435 632 char_array_mem,
duke@435 633 value_mem,
duke@435 634 count_mem,
duke@435 635 offset_mem,
duke@435 636 s1, s2) {};
duke@435 637 virtual int Opcode() const;
duke@435 638 virtual bool depends_only_on_test() const { return false; }
duke@435 639 virtual const Type* bottom_type() const { return TypeInt::INT; }
duke@435 640 // a StrCompNode (conservatively) aliases with everything:
duke@435 641 virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
duke@435 642 virtual uint match_edge(uint idx) const;
duke@435 643 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 644 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 645 };
duke@435 646
duke@435 647 //------------------------------MemBar-----------------------------------------
duke@435 648 // There are different flavors of Memory Barriers to match the Java Memory
duke@435 649 // Model. Monitor-enter and volatile-load act as Aquires: no following ref
duke@435 650 // can be moved to before them. We insert a MemBar-Acquire after a FastLock or
duke@435 651 // volatile-load. Monitor-exit and volatile-store act as Release: no
duke@435 652 // preceeding ref can be moved to after them. We insert a MemBar-Release
duke@435 653 // before a FastUnlock or volatile-store. All volatiles need to be
duke@435 654 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
duke@435 655 // seperate it from any following volatile-load.
duke@435 656 class MemBarNode: public MultiNode {
duke@435 657 virtual uint hash() const ; // { return NO_HASH; }
duke@435 658 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 659
duke@435 660 virtual uint size_of() const { return sizeof(*this); }
duke@435 661 // Memory type this node is serializing. Usually either rawptr or bottom.
duke@435 662 const TypePtr* _adr_type;
duke@435 663
duke@435 664 public:
duke@435 665 enum {
duke@435 666 Precedent = TypeFunc::Parms // optional edge to force precedence
duke@435 667 };
duke@435 668 MemBarNode(Compile* C, int alias_idx, Node* precedent);
duke@435 669 virtual int Opcode() const = 0;
duke@435 670 virtual const class TypePtr *adr_type() const { return _adr_type; }
duke@435 671 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 672 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 673 virtual uint match_edge(uint idx) const { return 0; }
duke@435 674 virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
duke@435 675 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 676 // Factory method. Builds a wide or narrow membar.
duke@435 677 // Optional 'precedent' becomes an extra edge if not null.
duke@435 678 static MemBarNode* make(Compile* C, int opcode,
duke@435 679 int alias_idx = Compile::AliasIdxBot,
duke@435 680 Node* precedent = NULL);
duke@435 681 };
duke@435 682
duke@435 683 // "Acquire" - no following ref can move before (but earlier refs can
duke@435 684 // follow, like an early Load stalled in cache). Requires multi-cpu
duke@435 685 // visibility. Inserted after a volatile load or FastLock.
duke@435 686 class MemBarAcquireNode: public MemBarNode {
duke@435 687 public:
duke@435 688 MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
duke@435 689 : MemBarNode(C, alias_idx, precedent) {}
duke@435 690 virtual int Opcode() const;
duke@435 691 };
duke@435 692
duke@435 693 // "Release" - no earlier ref can move after (but later refs can move
duke@435 694 // up, like a speculative pipelined cache-hitting Load). Requires
duke@435 695 // multi-cpu visibility. Inserted before a volatile store or FastUnLock.
duke@435 696 class MemBarReleaseNode: public MemBarNode {
duke@435 697 public:
duke@435 698 MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
duke@435 699 : MemBarNode(C, alias_idx, precedent) {}
duke@435 700 virtual int Opcode() const;
duke@435 701 };
duke@435 702
duke@435 703 // Ordering between a volatile store and a following volatile load.
duke@435 704 // Requires multi-CPU visibility?
duke@435 705 class MemBarVolatileNode: public MemBarNode {
duke@435 706 public:
duke@435 707 MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
duke@435 708 : MemBarNode(C, alias_idx, precedent) {}
duke@435 709 virtual int Opcode() const;
duke@435 710 };
duke@435 711
duke@435 712 // Ordering within the same CPU. Used to order unsafe memory references
duke@435 713 // inside the compiler when we lack alias info. Not needed "outside" the
duke@435 714 // compiler because the CPU does all the ordering for us.
duke@435 715 class MemBarCPUOrderNode: public MemBarNode {
duke@435 716 public:
duke@435 717 MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
duke@435 718 : MemBarNode(C, alias_idx, precedent) {}
duke@435 719 virtual int Opcode() const;
duke@435 720 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 721 };
duke@435 722
duke@435 723 // Isolation of object setup after an AllocateNode and before next safepoint.
duke@435 724 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
duke@435 725 class InitializeNode: public MemBarNode {
duke@435 726 friend class AllocateNode;
duke@435 727
duke@435 728 bool _is_complete;
duke@435 729
duke@435 730 public:
duke@435 731 enum {
duke@435 732 Control = TypeFunc::Control,
duke@435 733 Memory = TypeFunc::Memory, // MergeMem for states affected by this op
duke@435 734 RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address
duke@435 735 RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP)
duke@435 736 };
duke@435 737
duke@435 738 InitializeNode(Compile* C, int adr_type, Node* rawoop);
duke@435 739 virtual int Opcode() const;
duke@435 740 virtual uint size_of() const { return sizeof(*this); }
duke@435 741 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 742 virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress
duke@435 743
duke@435 744 // Manage incoming memory edges via a MergeMem on in(Memory):
duke@435 745 Node* memory(uint alias_idx);
duke@435 746
duke@435 747 // The raw memory edge coming directly from the Allocation.
duke@435 748 // The contents of this memory are *always* all-zero-bits.
duke@435 749 Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
duke@435 750
duke@435 751 // Return the corresponding allocation for this initialization (or null if none).
duke@435 752 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 753 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 754 AllocateNode* allocation();
duke@435 755
duke@435 756 // Anything other than zeroing in this init?
duke@435 757 bool is_non_zero();
duke@435 758
duke@435 759 // An InitializeNode must completed before macro expansion is done.
duke@435 760 // Completion requires that the AllocateNode must be followed by
duke@435 761 // initialization of the new memory to zero, then to any initializers.
duke@435 762 bool is_complete() { return _is_complete; }
duke@435 763
duke@435 764 // Mark complete. (Must not yet be complete.)
duke@435 765 void set_complete(PhaseGVN* phase);
duke@435 766
duke@435 767 #ifdef ASSERT
duke@435 768 // ensure all non-degenerate stores are ordered and non-overlapping
duke@435 769 bool stores_are_sane(PhaseTransform* phase);
duke@435 770 #endif //ASSERT
duke@435 771
duke@435 772 // See if this store can be captured; return offset where it initializes.
duke@435 773 // Return 0 if the store cannot be moved (any sort of problem).
duke@435 774 intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
duke@435 775
duke@435 776 // Capture another store; reformat it to write my internal raw memory.
duke@435 777 // Return the captured copy, else NULL if there is some sort of problem.
duke@435 778 Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
duke@435 779
duke@435 780 // Find captured store which corresponds to the range [start..start+size).
duke@435 781 // Return my own memory projection (meaning the initial zero bits)
duke@435 782 // if there is no such store. Return NULL if there is a problem.
duke@435 783 Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
duke@435 784
duke@435 785 // Called when the associated AllocateNode is expanded into CFG.
duke@435 786 Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 787 intptr_t header_size, Node* size_in_bytes,
duke@435 788 PhaseGVN* phase);
duke@435 789
duke@435 790 private:
duke@435 791 void remove_extra_zeroes();
duke@435 792
duke@435 793 // Find out where a captured store should be placed (or already is placed).
duke@435 794 int captured_store_insertion_point(intptr_t start, int size_in_bytes,
duke@435 795 PhaseTransform* phase);
duke@435 796
duke@435 797 static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
duke@435 798
duke@435 799 Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
duke@435 800
duke@435 801 bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
duke@435 802
duke@435 803 void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
duke@435 804 PhaseGVN* phase);
duke@435 805
duke@435 806 intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
duke@435 807 };
duke@435 808
duke@435 809 //------------------------------MergeMem---------------------------------------
duke@435 810 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
duke@435 811 class MergeMemNode: public Node {
duke@435 812 virtual uint hash() const ; // { return NO_HASH; }
duke@435 813 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 814 friend class MergeMemStream;
duke@435 815 MergeMemNode(Node* def); // clients use MergeMemNode::make
duke@435 816
duke@435 817 public:
duke@435 818 // If the input is a whole memory state, clone it with all its slices intact.
duke@435 819 // Otherwise, make a new memory state with just that base memory input.
duke@435 820 // In either case, the result is a newly created MergeMem.
duke@435 821 static MergeMemNode* make(Compile* C, Node* base_memory);
duke@435 822
duke@435 823 virtual int Opcode() const;
duke@435 824 virtual Node *Identity( PhaseTransform *phase );
duke@435 825 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 826 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 827 virtual uint match_edge(uint idx) const { return 0; }
duke@435 828 virtual const RegMask &out_RegMask() const;
duke@435 829 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 830 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 831 // sparse accessors
duke@435 832 // Fetch the previously stored "set_memory_at", or else the base memory.
duke@435 833 // (Caller should clone it if it is a phi-nest.)
duke@435 834 Node* memory_at(uint alias_idx) const;
duke@435 835 // set the memory, regardless of its previous value
duke@435 836 void set_memory_at(uint alias_idx, Node* n);
duke@435 837 // the "base" is the memory that provides the non-finite support
duke@435 838 Node* base_memory() const { return in(Compile::AliasIdxBot); }
duke@435 839 // warning: setting the base can implicitly set any of the other slices too
duke@435 840 void set_base_memory(Node* def);
duke@435 841 // sentinel value which denotes a copy of the base memory:
duke@435 842 Node* empty_memory() const { return in(Compile::AliasIdxTop); }
duke@435 843 static Node* make_empty_memory(); // where the sentinel comes from
duke@435 844 bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
duke@435 845 // hook for the iterator, to perform any necessary setup
duke@435 846 void iteration_setup(const MergeMemNode* other = NULL);
duke@435 847 // push sentinels until I am at least as long as the other (semantic no-op)
duke@435 848 void grow_to_match(const MergeMemNode* other);
duke@435 849 bool verify_sparse() const PRODUCT_RETURN0;
duke@435 850 #ifndef PRODUCT
duke@435 851 virtual void dump_spec(outputStream *st) const;
duke@435 852 #endif
duke@435 853 };
duke@435 854
duke@435 855 class MergeMemStream : public StackObj {
duke@435 856 private:
duke@435 857 MergeMemNode* _mm;
duke@435 858 const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations
duke@435 859 Node* _mm_base; // loop-invariant base memory of _mm
duke@435 860 int _idx;
duke@435 861 int _cnt;
duke@435 862 Node* _mem;
duke@435 863 Node* _mem2;
duke@435 864 int _cnt2;
duke@435 865
duke@435 866 void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
duke@435 867 // subsume_node will break sparseness at times, whenever a memory slice
duke@435 868 // folds down to a copy of the base ("fat") memory. In such a case,
duke@435 869 // the raw edge will update to base, although it should be top.
duke@435 870 // This iterator will recognize either top or base_memory as an
duke@435 871 // "empty" slice. See is_empty, is_empty2, and next below.
duke@435 872 //
duke@435 873 // The sparseness property is repaired in MergeMemNode::Ideal.
duke@435 874 // As long as access to a MergeMem goes through this iterator
duke@435 875 // or the memory_at accessor, flaws in the sparseness will
duke@435 876 // never be observed.
duke@435 877 //
duke@435 878 // Also, iteration_setup repairs sparseness.
duke@435 879 assert(mm->verify_sparse(), "please, no dups of base");
duke@435 880 assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
duke@435 881
duke@435 882 _mm = mm;
duke@435 883 _mm_base = mm->base_memory();
duke@435 884 _mm2 = mm2;
duke@435 885 _cnt = mm->req();
duke@435 886 _idx = Compile::AliasIdxBot-1; // start at the base memory
duke@435 887 _mem = NULL;
duke@435 888 _mem2 = NULL;
duke@435 889 }
duke@435 890
duke@435 891 #ifdef ASSERT
duke@435 892 Node* check_memory() const {
duke@435 893 if (at_base_memory())
duke@435 894 return _mm->base_memory();
duke@435 895 else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
duke@435 896 return _mm->memory_at(_idx);
duke@435 897 else
duke@435 898 return _mm_base;
duke@435 899 }
duke@435 900 Node* check_memory2() const {
duke@435 901 return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
duke@435 902 }
duke@435 903 #endif
duke@435 904
duke@435 905 static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
duke@435 906 void assert_synch() const {
duke@435 907 assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
duke@435 908 "no side-effects except through the stream");
duke@435 909 }
duke@435 910
duke@435 911 public:
duke@435 912
duke@435 913 // expected usages:
duke@435 914 // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
duke@435 915 // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
duke@435 916
duke@435 917 // iterate over one merge
duke@435 918 MergeMemStream(MergeMemNode* mm) {
duke@435 919 mm->iteration_setup();
duke@435 920 init(mm);
duke@435 921 debug_only(_cnt2 = 999);
duke@435 922 }
duke@435 923 // iterate in parallel over two merges
duke@435 924 // only iterates through non-empty elements of mm2
duke@435 925 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
duke@435 926 assert(mm2, "second argument must be a MergeMem also");
duke@435 927 ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state
duke@435 928 mm->iteration_setup(mm2);
duke@435 929 init(mm, mm2);
duke@435 930 _cnt2 = mm2->req();
duke@435 931 }
duke@435 932 #ifdef ASSERT
duke@435 933 ~MergeMemStream() {
duke@435 934 assert_synch();
duke@435 935 }
duke@435 936 #endif
duke@435 937
duke@435 938 MergeMemNode* all_memory() const {
duke@435 939 return _mm;
duke@435 940 }
duke@435 941 Node* base_memory() const {
duke@435 942 assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
duke@435 943 return _mm_base;
duke@435 944 }
duke@435 945 const MergeMemNode* all_memory2() const {
duke@435 946 assert(_mm2 != NULL, "");
duke@435 947 return _mm2;
duke@435 948 }
duke@435 949 bool at_base_memory() const {
duke@435 950 return _idx == Compile::AliasIdxBot;
duke@435 951 }
duke@435 952 int alias_idx() const {
duke@435 953 assert(_mem, "must call next 1st");
duke@435 954 return _idx;
duke@435 955 }
duke@435 956
duke@435 957 const TypePtr* adr_type() const {
duke@435 958 return Compile::current()->get_adr_type(alias_idx());
duke@435 959 }
duke@435 960
duke@435 961 const TypePtr* adr_type(Compile* C) const {
duke@435 962 return C->get_adr_type(alias_idx());
duke@435 963 }
duke@435 964 bool is_empty() const {
duke@435 965 assert(_mem, "must call next 1st");
duke@435 966 assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
duke@435 967 return _mem->is_top();
duke@435 968 }
duke@435 969 bool is_empty2() const {
duke@435 970 assert(_mem2, "must call next 1st");
duke@435 971 assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
duke@435 972 return _mem2->is_top();
duke@435 973 }
duke@435 974 Node* memory() const {
duke@435 975 assert(!is_empty(), "must not be empty");
duke@435 976 assert_synch();
duke@435 977 return _mem;
duke@435 978 }
duke@435 979 // get the current memory, regardless of empty or non-empty status
duke@435 980 Node* force_memory() const {
duke@435 981 assert(!is_empty() || !at_base_memory(), "");
duke@435 982 // Use _mm_base to defend against updates to _mem->base_memory().
duke@435 983 Node *mem = _mem->is_top() ? _mm_base : _mem;
duke@435 984 assert(mem == check_memory(), "");
duke@435 985 return mem;
duke@435 986 }
duke@435 987 Node* memory2() const {
duke@435 988 assert(_mem2 == check_memory2(), "");
duke@435 989 return _mem2;
duke@435 990 }
duke@435 991 void set_memory(Node* mem) {
duke@435 992 if (at_base_memory()) {
duke@435 993 // Note that this does not change the invariant _mm_base.
duke@435 994 _mm->set_base_memory(mem);
duke@435 995 } else {
duke@435 996 _mm->set_memory_at(_idx, mem);
duke@435 997 }
duke@435 998 _mem = mem;
duke@435 999 assert_synch();
duke@435 1000 }
duke@435 1001
duke@435 1002 // Recover from a side effect to the MergeMemNode.
duke@435 1003 void set_memory() {
duke@435 1004 _mem = _mm->in(_idx);
duke@435 1005 }
duke@435 1006
duke@435 1007 bool next() { return next(false); }
duke@435 1008 bool next2() { return next(true); }
duke@435 1009
duke@435 1010 bool next_non_empty() { return next_non_empty(false); }
duke@435 1011 bool next_non_empty2() { return next_non_empty(true); }
duke@435 1012 // next_non_empty2 can yield states where is_empty() is true
duke@435 1013
duke@435 1014 private:
duke@435 1015 // find the next item, which might be empty
duke@435 1016 bool next(bool have_mm2) {
duke@435 1017 assert((_mm2 != NULL) == have_mm2, "use other next");
duke@435 1018 assert_synch();
duke@435 1019 if (++_idx < _cnt) {
duke@435 1020 // Note: This iterator allows _mm to be non-sparse.
duke@435 1021 // It behaves the same whether _mem is top or base_memory.
duke@435 1022 _mem = _mm->in(_idx);
duke@435 1023 if (have_mm2)
duke@435 1024 _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
duke@435 1025 return true;
duke@435 1026 }
duke@435 1027 return false;
duke@435 1028 }
duke@435 1029
duke@435 1030 // find the next non-empty item
duke@435 1031 bool next_non_empty(bool have_mm2) {
duke@435 1032 while (next(have_mm2)) {
duke@435 1033 if (!is_empty()) {
duke@435 1034 // make sure _mem2 is filled in sensibly
duke@435 1035 if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory();
duke@435 1036 return true;
duke@435 1037 } else if (have_mm2 && !is_empty2()) {
duke@435 1038 return true; // is_empty() == true
duke@435 1039 }
duke@435 1040 }
duke@435 1041 return false;
duke@435 1042 }
duke@435 1043 };
duke@435 1044
duke@435 1045 //------------------------------Prefetch---------------------------------------
duke@435 1046
duke@435 1047 // Non-faulting prefetch load. Prefetch for many reads.
duke@435 1048 class PrefetchReadNode : public Node {
duke@435 1049 public:
duke@435 1050 PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1051 virtual int Opcode() const;
duke@435 1052 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1053 virtual uint match_edge(uint idx) const { return idx==2; }
duke@435 1054 virtual const Type *bottom_type() const { return Type::ABIO; }
duke@435 1055 };
duke@435 1056
duke@435 1057 // Non-faulting prefetch load. Prefetch for many reads & many writes.
duke@435 1058 class PrefetchWriteNode : public Node {
duke@435 1059 public:
duke@435 1060 PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1061 virtual int Opcode() const;
duke@435 1062 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1063 virtual uint match_edge(uint idx) const { return idx==2; }
duke@435 1064 virtual const Type *bottom_type() const { return Type::ABIO; }
duke@435 1065 };

mercurial