src/share/vm/opto/loopnode.cpp

Wed, 20 Apr 2011 18:29:35 -0700

author
kvn
date
Wed, 20 Apr 2011 18:29:35 -0700
changeset 2810
66b0e2371912
parent 2747
3af54845df98
child 2877
bad7ecd0b6ed
permissions
-rw-r--r--

7026700: regression in 6u24-rev-b23: Crash in C2 compiler in PhaseIdealLoop::build_loop_late_post
Summary: memory slices should be always created for non-static fields after allocation
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/loopnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/superword.hpp"
    40 //=============================================================================
    41 //------------------------------is_loop_iv-------------------------------------
    42 // Determine if a node is Counted loop induction variable.
    43 // The method is declared in node.hpp.
    44 const Node* Node::is_loop_iv() const {
    45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    46       this->as_Phi()->region()->is_CountedLoop() &&
    47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    48     return this;
    49   } else {
    50     return NULL;
    51   }
    52 }
    54 //=============================================================================
    55 //------------------------------dump_spec--------------------------------------
    56 // Dump special per-node info
    57 #ifndef PRODUCT
    58 void LoopNode::dump_spec(outputStream *st) const {
    59   if (is_inner_loop()) st->print( "inner " );
    60   if (is_partial_peel_loop()) st->print( "partial_peel " );
    61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
    62 }
    63 #endif
    65 //------------------------------is_valid_counted_loop-------------------------
    66 bool LoopNode::is_valid_counted_loop() const {
    67   if (is_CountedLoop()) {
    68     CountedLoopNode*    l  = as_CountedLoop();
    69     CountedLoopEndNode* le = l->loopexit();
    70     if (le != NULL &&
    71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
    72       Node* phi  = l->phi();
    73       Node* exit = le->proj_out(0 /* false */);
    74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
    75           phi != NULL && phi->is_Phi() &&
    76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
    77           le->loopnode() == l && le->stride_is_con()) {
    78         return true;
    79       }
    80     }
    81   }
    82   return false;
    83 }
    85 //------------------------------get_early_ctrl---------------------------------
    86 // Compute earliest legal control
    87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    89   uint i;
    90   Node *early;
    91   if( n->in(0) ) {
    92     early = n->in(0);
    93     if( !early->is_CFG() ) // Might be a non-CFG multi-def
    94       early = get_ctrl(early);        // So treat input as a straight data input
    95     i = 1;
    96   } else {
    97     early = get_ctrl(n->in(1));
    98     i = 2;
    99   }
   100   uint e_d = dom_depth(early);
   101   assert( early, "" );
   102   for( ; i < n->req(); i++ ) {
   103     Node *cin = get_ctrl(n->in(i));
   104     assert( cin, "" );
   105     // Keep deepest dominator depth
   106     uint c_d = dom_depth(cin);
   107     if( c_d > e_d ) {           // Deeper guy?
   108       early = cin;              // Keep deepest found so far
   109       e_d = c_d;
   110     } else if( c_d == e_d &&    // Same depth?
   111                early != cin ) { // If not equal, must use slower algorithm
   112       // If same depth but not equal, one _must_ dominate the other
   113       // and we want the deeper (i.e., dominated) guy.
   114       Node *n1 = early;
   115       Node *n2 = cin;
   116       while( 1 ) {
   117         n1 = idom(n1);          // Walk up until break cycle
   118         n2 = idom(n2);
   119         if( n1 == cin ||        // Walked early up to cin
   120             dom_depth(n2) < c_d )
   121           break;                // early is deeper; keep him
   122         if( n2 == early ||      // Walked cin up to early
   123             dom_depth(n1) < c_d ) {
   124           early = cin;          // cin is deeper; keep him
   125           break;
   126         }
   127       }
   128       e_d = dom_depth(early);   // Reset depth register cache
   129     }
   130   }
   132   // Return earliest legal location
   133   assert(early == find_non_split_ctrl(early), "unexpected early control");
   135   return early;
   136 }
   138 //------------------------------set_early_ctrl---------------------------------
   139 // Set earliest legal control
   140 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   141   Node *early = get_early_ctrl(n);
   143   // Record earliest legal location
   144   set_ctrl(n, early);
   145 }
   147 //------------------------------set_subtree_ctrl-------------------------------
   148 // set missing _ctrl entries on new nodes
   149 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   150   // Already set?  Get out.
   151   if( _nodes[n->_idx] ) return;
   152   // Recursively set _nodes array to indicate where the Node goes
   153   uint i;
   154   for( i = 0; i < n->req(); ++i ) {
   155     Node *m = n->in(i);
   156     if( m && m != C->root() )
   157       set_subtree_ctrl( m );
   158   }
   160   // Fixup self
   161   set_early_ctrl( n );
   162 }
   164 //------------------------------is_counted_loop--------------------------------
   165 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   166   PhaseGVN *gvn = &_igvn;
   168   // Counted loop head must be a good RegionNode with only 3 not NULL
   169   // control input edges: Self, Entry, LoopBack.
   170   if (x->in(LoopNode::Self) == NULL || x->req() != 3)
   171     return false;
   173   Node *init_control = x->in(LoopNode::EntryControl);
   174   Node *back_control = x->in(LoopNode::LoopBackControl);
   175   if (init_control == NULL || back_control == NULL)    // Partially dead
   176     return false;
   177   // Must also check for TOP when looking for a dead loop
   178   if (init_control->is_top() || back_control->is_top())
   179     return false;
   181   // Allow funny placement of Safepoint
   182   if (back_control->Opcode() == Op_SafePoint)
   183     back_control = back_control->in(TypeFunc::Control);
   185   // Controlling test for loop
   186   Node *iftrue = back_control;
   187   uint iftrue_op = iftrue->Opcode();
   188   if (iftrue_op != Op_IfTrue &&
   189       iftrue_op != Op_IfFalse)
   190     // I have a weird back-control.  Probably the loop-exit test is in
   191     // the middle of the loop and I am looking at some trailing control-flow
   192     // merge point.  To fix this I would have to partially peel the loop.
   193     return false; // Obscure back-control
   195   // Get boolean guarding loop-back test
   196   Node *iff = iftrue->in(0);
   197   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
   198     return false;
   199   BoolNode *test = iff->in(1)->as_Bool();
   200   BoolTest::mask bt = test->_test._test;
   201   float cl_prob = iff->as_If()->_prob;
   202   if (iftrue_op == Op_IfFalse) {
   203     bt = BoolTest(bt).negate();
   204     cl_prob = 1.0 - cl_prob;
   205   }
   206   // Get backedge compare
   207   Node *cmp = test->in(1);
   208   int cmp_op = cmp->Opcode();
   209   if( cmp_op != Op_CmpI )
   210     return false;                // Avoid pointer & float compares
   212   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   213   Node *incr  = cmp->in(1);
   214   Node *limit = cmp->in(2);
   216   // ---------
   217   // need 'loop()' test to tell if limit is loop invariant
   218   // ---------
   220   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
   221     Node *tmp = incr;            // Then reverse order into the CmpI
   222     incr = limit;
   223     limit = tmp;
   224     bt = BoolTest(bt).commute(); // And commute the exit test
   225   }
   226   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
   227     return false;
   228   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   229     return false;
   231   Node* phi_incr = NULL;
   232   // Trip-counter increment must be commutative & associative.
   233   if (incr->is_Phi()) {
   234     if (incr->as_Phi()->region() != x || incr->req() != 3)
   235       return false; // Not simple trip counter expression
   236     phi_incr = incr;
   237     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
   238     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   239       return false;
   240   }
   242   Node* trunc1 = NULL;
   243   Node* trunc2 = NULL;
   244   const TypeInt* iv_trunc_t = NULL;
   245   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   246     return false; // Funny increment opcode
   247   }
   248   assert(incr->Opcode() == Op_AddI, "wrong increment code");
   250   // Get merge point
   251   Node *xphi = incr->in(1);
   252   Node *stride = incr->in(2);
   253   if (!stride->is_Con()) {     // Oops, swap these
   254     if (!xphi->is_Con())       // Is the other guy a constant?
   255       return false;             // Nope, unknown stride, bail out
   256     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   257     xphi = stride;
   258     stride = tmp;
   259   }
   260   // Stride must be constant
   261   int stride_con = stride->get_int();
   262   assert(stride_con != 0, "missed some peephole opt");
   264   if (!xphi->is_Phi())
   265     return false; // Too much math on the trip counter
   266   if (phi_incr != NULL && phi_incr != xphi)
   267     return false;
   268   PhiNode *phi = xphi->as_Phi();
   270   // Phi must be of loop header; backedge must wrap to increment
   271   if (phi->region() != x)
   272     return false;
   273   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   274       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
   275     return false;
   276   }
   277   Node *init_trip = phi->in(LoopNode::EntryControl);
   279   // If iv trunc type is smaller than int, check for possible wrap.
   280   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   281     assert(trunc1 != NULL, "must have found some truncation");
   283     // Get a better type for the phi (filtered thru if's)
   284     const TypeInt* phi_ft = filtered_type(phi);
   286     // Can iv take on a value that will wrap?
   287     //
   288     // Ensure iv's limit is not within "stride" of the wrap value.
   289     //
   290     // Example for "short" type
   291     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   292     //    If the stride is +10, then the last value of the induction
   293     //    variable before the increment (phi_ft->_hi) must be
   294     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   295     //    ensure no truncation occurs after the increment.
   297     if (stride_con > 0) {
   298       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   299           iv_trunc_t->_lo > phi_ft->_lo) {
   300         return false;  // truncation may occur
   301       }
   302     } else if (stride_con < 0) {
   303       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   304           iv_trunc_t->_hi < phi_ft->_hi) {
   305         return false;  // truncation may occur
   306       }
   307     }
   308     // No possibility of wrap so truncation can be discarded
   309     // Promote iv type to Int
   310   } else {
   311     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   312   }
   314   // If the condition is inverted and we will be rolling
   315   // through MININT to MAXINT, then bail out.
   316   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
   317       // Odd stride
   318       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
   319       // Count down loop rolls through MAXINT
   320       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
   321       // Count up loop rolls through MININT
   322       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0 ) {
   323     return false; // Bail out
   324   }
   326   const TypeInt* init_t = gvn->type(init_trip)->is_int();
   327   const TypeInt* limit_t = gvn->type(limit)->is_int();
   329   if (stride_con > 0) {
   330     long init_p = (long)init_t->_lo + stride_con;
   331     if (init_p > (long)max_jint || init_p > (long)limit_t->_hi)
   332       return false; // cyclic loop or this loop trips only once
   333   } else {
   334     long init_p = (long)init_t->_hi + stride_con;
   335     if (init_p < (long)min_jint || init_p < (long)limit_t->_lo)
   336       return false; // cyclic loop or this loop trips only once
   337   }
   339   // =================================================
   340   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   341   //
   342   assert(x->Opcode() == Op_Loop, "regular loops only");
   343   C->print_method("Before CountedLoop", 3);
   344 #ifndef PRODUCT
   345   if (TraceLoopOpts) {
   346     tty->print("Counted      ");
   347     loop->dump_head();
   348   }
   349 #endif
   350   // If compare points to incr, we are ok.  Otherwise the compare
   351   // can directly point to the phi; in this case adjust the compare so that
   352   // it points to the incr by adjusting the limit.
   353   if (cmp->in(1) == phi || cmp->in(2) == phi)
   354     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
   356   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   357   // Final value for iterator should be: trip_count * stride + init_trip.
   358   Node *one_p = gvn->intcon( 1);
   359   Node *one_m = gvn->intcon(-1);
   361   Node *trip_count = NULL;
   362   Node *hook = new (C, 6) Node(6);
   363   switch( bt ) {
   364   case BoolTest::eq:
   365     ShouldNotReachHere();
   366   case BoolTest::ne:            // Ahh, the case we desire
   367     if (stride_con == 1)
   368       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   369     else if (stride_con == -1)
   370       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
   371     else
   372       ShouldNotReachHere();
   373     set_subtree_ctrl(trip_count);
   374     //_loop.map(trip_count->_idx,loop(limit));
   375     break;
   376   case BoolTest::le:            // Maybe convert to '<' case
   377     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
   378     set_subtree_ctrl( limit );
   379     hook->init_req(4, limit);
   381     bt = BoolTest::lt;
   382     // Make the new limit be in the same loop nest as the old limit
   383     //_loop.map(limit->_idx,limit_loop);
   384     // Fall into next case
   385   case BoolTest::lt: {          // Maybe convert to '!=' case
   386     if (stride_con < 0) // Count down loop rolls through MAXINT
   387       ShouldNotReachHere();
   388     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   389     set_subtree_ctrl( range );
   390     hook->init_req(0, range);
   392     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   393     set_subtree_ctrl( bias );
   394     hook->init_req(1, bias);
   396     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
   397     set_subtree_ctrl( bias1 );
   398     hook->init_req(2, bias1);
   400     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   401     set_subtree_ctrl( trip_count );
   402     hook->init_req(3, trip_count);
   403     break;
   404   }
   406   case BoolTest::ge:            // Maybe convert to '>' case
   407     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
   408     set_subtree_ctrl( limit );
   409     hook->init_req(4 ,limit);
   411     bt = BoolTest::gt;
   412     // Make the new limit be in the same loop nest as the old limit
   413     //_loop.map(limit->_idx,limit_loop);
   414     // Fall into next case
   415   case BoolTest::gt: {          // Maybe convert to '!=' case
   416     if (stride_con > 0) // count up loop rolls through MININT
   417       ShouldNotReachHere();
   418     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   419     set_subtree_ctrl( range );
   420     hook->init_req(0, range);
   422     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   423     set_subtree_ctrl( bias );
   424     hook->init_req(1, bias);
   426     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
   427     set_subtree_ctrl( bias1 );
   428     hook->init_req(2, bias1);
   430     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   431     set_subtree_ctrl( trip_count );
   432     hook->init_req(3, trip_count);
   433     break;
   434   }
   435   } // switch( bt )
   437   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
   438   set_subtree_ctrl( span );
   439   hook->init_req(5, span);
   441   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
   442   set_subtree_ctrl( limit );
   444   // Check for SafePoint on backedge and remove
   445   Node *sfpt = x->in(LoopNode::LoopBackControl);
   446   if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   447     lazy_replace( sfpt, iftrue );
   448     loop->_tail = iftrue;
   449   }
   451   // Build a canonical trip test.
   452   // Clone code, as old values may be in use.
   453   Node* nphi = PhiNode::make(x, init_trip, TypeInt::INT);
   454   nphi = _igvn.register_new_node_with_optimizer(nphi);
   455   set_ctrl(nphi, get_ctrl(phi));
   457   incr = incr->clone();
   458   incr->set_req(1,nphi);
   459   incr->set_req(2,stride);
   460   incr = _igvn.register_new_node_with_optimizer(incr);
   461   set_early_ctrl( incr );
   463   nphi->set_req(LoopNode::LoopBackControl, incr);
   464   _igvn.replace_node(phi, nphi);
   465   phi = nphi->as_Phi();
   467   cmp = cmp->clone();
   468   cmp->set_req(1,incr);
   469   cmp->set_req(2,limit);
   470   cmp = _igvn.register_new_node_with_optimizer(cmp);
   471   set_ctrl(cmp, iff->in(0));
   473   test = test->clone()->as_Bool();
   474   (*(BoolTest*)&test->_test)._test = bt;
   475   test->set_req(1,cmp);
   476   _igvn.register_new_node_with_optimizer(test);
   477   set_ctrl(test, iff->in(0));
   479   // Replace the old IfNode with a new LoopEndNode
   480   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
   481   IfNode *le = lex->as_If();
   482   uint dd = dom_depth(iff);
   483   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   484   set_loop(le, loop);
   486   // Get the loop-exit control
   487   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   489   // Need to swap loop-exit and loop-back control?
   490   if (iftrue_op == Op_IfFalse) {
   491     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
   492     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
   494     loop->_tail = back_control = ift2;
   495     set_loop(ift2, loop);
   496     set_loop(iff2, get_loop(iffalse));
   498     // Lazy update of 'get_ctrl' mechanism.
   499     lazy_replace_proj( iffalse, iff2 );
   500     lazy_replace_proj( iftrue,  ift2 );
   502     // Swap names
   503     iffalse = iff2;
   504     iftrue  = ift2;
   505   } else {
   506     _igvn.hash_delete(iffalse);
   507     _igvn.hash_delete(iftrue);
   508     iffalse->set_req_X( 0, le, &_igvn );
   509     iftrue ->set_req_X( 0, le, &_igvn );
   510   }
   512   set_idom(iftrue,  le, dd+1);
   513   set_idom(iffalse, le, dd+1);
   514   assert(iff->outcnt() == 0, "should be dead now");
   515   lazy_replace( iff, le ); // fix 'get_ctrl'
   517   // Now setup a new CountedLoopNode to replace the existing LoopNode
   518   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
   519   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
   520   // The following assert is approximately true, and defines the intention
   521   // of can_be_counted_loop.  It fails, however, because phase->type
   522   // is not yet initialized for this loop and its parts.
   523   //assert(l->can_be_counted_loop(this), "sanity");
   524   _igvn.register_new_node_with_optimizer(l);
   525   set_loop(l, loop);
   526   loop->_head = l;
   527   // Fix all data nodes placed at the old loop head.
   528   // Uses the lazy-update mechanism of 'get_ctrl'.
   529   lazy_replace( x, l );
   530   set_idom(l, init_control, dom_depth(x));
   532   // Check for immediately preceding SafePoint and remove
   533   Node *sfpt2 = le->in(0);
   534   if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
   535     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   537   // Free up intermediate goo
   538   _igvn.remove_dead_node(hook);
   540 #ifdef ASSERT
   541   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
   542   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
   543 #endif
   545   C->print_method("After CountedLoop", 3);
   547   return true;
   548 }
   551 //------------------------------Ideal------------------------------------------
   552 // Return a node which is more "ideal" than the current node.
   553 // Attempt to convert into a counted-loop.
   554 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   555   if (!can_be_counted_loop(phase)) {
   556     phase->C->set_major_progress();
   557   }
   558   return RegionNode::Ideal(phase, can_reshape);
   559 }
   562 //=============================================================================
   563 //------------------------------Ideal------------------------------------------
   564 // Return a node which is more "ideal" than the current node.
   565 // Attempt to convert into a counted-loop.
   566 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   567   return RegionNode::Ideal(phase, can_reshape);
   568 }
   570 //------------------------------dump_spec--------------------------------------
   571 // Dump special per-node info
   572 #ifndef PRODUCT
   573 void CountedLoopNode::dump_spec(outputStream *st) const {
   574   LoopNode::dump_spec(st);
   575   if( stride_is_con() ) {
   576     st->print("stride: %d ",stride_con());
   577   } else {
   578     st->print("stride: not constant ");
   579   }
   580   if( is_pre_loop () ) st->print("pre of N%d" , _main_idx );
   581   if( is_main_loop() ) st->print("main of N%d", _idx );
   582   if( is_post_loop() ) st->print("post of N%d", _main_idx );
   583 }
   584 #endif
   586 //=============================================================================
   587 int CountedLoopEndNode::stride_con() const {
   588   return stride()->bottom_type()->is_int()->get_con();
   589 }
   592 //----------------------match_incr_with_optional_truncation--------------------
   593 // Match increment with optional truncation:
   594 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
   595 // Return NULL for failure. Success returns the increment node.
   596 Node* CountedLoopNode::match_incr_with_optional_truncation(
   597                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
   598   // Quick cutouts:
   599   if (expr == NULL || expr->req() != 3)  return false;
   601   Node *t1 = NULL;
   602   Node *t2 = NULL;
   603   const TypeInt* trunc_t = TypeInt::INT;
   604   Node* n1 = expr;
   605   int   n1op = n1->Opcode();
   607   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
   608   if (n1op == Op_AndI &&
   609       n1->in(2)->is_Con() &&
   610       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
   611     // %%% This check should match any mask of 2**K-1.
   612     t1 = n1;
   613     n1 = t1->in(1);
   614     n1op = n1->Opcode();
   615     trunc_t = TypeInt::CHAR;
   616   } else if (n1op == Op_RShiftI &&
   617              n1->in(1) != NULL &&
   618              n1->in(1)->Opcode() == Op_LShiftI &&
   619              n1->in(2) == n1->in(1)->in(2) &&
   620              n1->in(2)->is_Con()) {
   621     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
   622     // %%% This check should match any shift in [1..31].
   623     if (shift == 16 || shift == 8) {
   624       t1 = n1;
   625       t2 = t1->in(1);
   626       n1 = t2->in(1);
   627       n1op = n1->Opcode();
   628       if (shift == 16) {
   629         trunc_t = TypeInt::SHORT;
   630       } else if (shift == 8) {
   631         trunc_t = TypeInt::BYTE;
   632       }
   633     }
   634   }
   636   // If (maybe after stripping) it is an AddI, we won:
   637   if (n1op == Op_AddI) {
   638     *trunc1 = t1;
   639     *trunc2 = t2;
   640     *trunc_type = trunc_t;
   641     return n1;
   642   }
   644   // failed
   645   return NULL;
   646 }
   649 //------------------------------filtered_type--------------------------------
   650 // Return a type based on condition control flow
   651 // A successful return will be a type that is restricted due
   652 // to a series of dominating if-tests, such as:
   653 //    if (i < 10) {
   654 //       if (i > 0) {
   655 //          here: "i" type is [1..10)
   656 //       }
   657 //    }
   658 // or a control flow merge
   659 //    if (i < 10) {
   660 //       do {
   661 //          phi( , ) -- at top of loop type is [min_int..10)
   662 //         i = ?
   663 //       } while ( i < 10)
   664 //
   665 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
   666   assert(n && n->bottom_type()->is_int(), "must be int");
   667   const TypeInt* filtered_t = NULL;
   668   if (!n->is_Phi()) {
   669     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
   670     filtered_t = filtered_type_from_dominators(n, n_ctrl);
   672   } else {
   673     Node* phi    = n->as_Phi();
   674     Node* region = phi->in(0);
   675     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
   676     if (region && region != C->top()) {
   677       for (uint i = 1; i < phi->req(); i++) {
   678         Node* val   = phi->in(i);
   679         Node* use_c = region->in(i);
   680         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
   681         if (val_t != NULL) {
   682           if (filtered_t == NULL) {
   683             filtered_t = val_t;
   684           } else {
   685             filtered_t = filtered_t->meet(val_t)->is_int();
   686           }
   687         }
   688       }
   689     }
   690   }
   691   const TypeInt* n_t = _igvn.type(n)->is_int();
   692   if (filtered_t != NULL) {
   693     n_t = n_t->join(filtered_t)->is_int();
   694   }
   695   return n_t;
   696 }
   699 //------------------------------filtered_type_from_dominators--------------------------------
   700 // Return a possibly more restrictive type for val based on condition control flow of dominators
   701 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
   702   if (val->is_Con()) {
   703      return val->bottom_type()->is_int();
   704   }
   705   uint if_limit = 10; // Max number of dominating if's visited
   706   const TypeInt* rtn_t = NULL;
   708   if (use_ctrl && use_ctrl != C->top()) {
   709     Node* val_ctrl = get_ctrl(val);
   710     uint val_dom_depth = dom_depth(val_ctrl);
   711     Node* pred = use_ctrl;
   712     uint if_cnt = 0;
   713     while (if_cnt < if_limit) {
   714       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
   715         if_cnt++;
   716         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
   717         if (if_t != NULL) {
   718           if (rtn_t == NULL) {
   719             rtn_t = if_t;
   720           } else {
   721             rtn_t = rtn_t->join(if_t)->is_int();
   722           }
   723         }
   724       }
   725       pred = idom(pred);
   726       if (pred == NULL || pred == C->top()) {
   727         break;
   728       }
   729       // Stop if going beyond definition block of val
   730       if (dom_depth(pred) < val_dom_depth) {
   731         break;
   732       }
   733     }
   734   }
   735   return rtn_t;
   736 }
   739 //------------------------------dump_spec--------------------------------------
   740 // Dump special per-node info
   741 #ifndef PRODUCT
   742 void CountedLoopEndNode::dump_spec(outputStream *st) const {
   743   if( in(TestValue)->is_Bool() ) {
   744     BoolTest bt( test_trip()); // Added this for g++.
   746     st->print("[");
   747     bt.dump_on(st);
   748     st->print("]");
   749   }
   750   st->print(" ");
   751   IfNode::dump_spec(st);
   752 }
   753 #endif
   755 //=============================================================================
   756 //------------------------------is_member--------------------------------------
   757 // Is 'l' a member of 'this'?
   758 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
   759   while( l->_nest > _nest ) l = l->_parent;
   760   return l == this;
   761 }
   763 //------------------------------set_nest---------------------------------------
   764 // Set loop tree nesting depth.  Accumulate _has_call bits.
   765 int IdealLoopTree::set_nest( uint depth ) {
   766   _nest = depth;
   767   int bits = _has_call;
   768   if( _child ) bits |= _child->set_nest(depth+1);
   769   if( bits ) _has_call = 1;
   770   if( _next  ) bits |= _next ->set_nest(depth  );
   771   return bits;
   772 }
   774 //------------------------------split_fall_in----------------------------------
   775 // Split out multiple fall-in edges from the loop header.  Move them to a
   776 // private RegionNode before the loop.  This becomes the loop landing pad.
   777 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
   778   PhaseIterGVN &igvn = phase->_igvn;
   779   uint i;
   781   // Make a new RegionNode to be the landing pad.
   782   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
   783   phase->set_loop(landing_pad,_parent);
   784   // Gather all the fall-in control paths into the landing pad
   785   uint icnt = fall_in_cnt;
   786   uint oreq = _head->req();
   787   for( i = oreq-1; i>0; i-- )
   788     if( !phase->is_member( this, _head->in(i) ) )
   789       landing_pad->set_req(icnt--,_head->in(i));
   791   // Peel off PhiNode edges as well
   792   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   793     Node *oj = _head->fast_out(j);
   794     if( oj->is_Phi() ) {
   795       PhiNode* old_phi = oj->as_Phi();
   796       assert( old_phi->region() == _head, "" );
   797       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
   798       Node *p = PhiNode::make_blank(landing_pad, old_phi);
   799       uint icnt = fall_in_cnt;
   800       for( i = oreq-1; i>0; i-- ) {
   801         if( !phase->is_member( this, _head->in(i) ) ) {
   802           p->init_req(icnt--, old_phi->in(i));
   803           // Go ahead and clean out old edges from old phi
   804           old_phi->del_req(i);
   805         }
   806       }
   807       // Search for CSE's here, because ZKM.jar does a lot of
   808       // loop hackery and we need to be a little incremental
   809       // with the CSE to avoid O(N^2) node blow-up.
   810       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
   811       if( p2 ) {                // Found CSE
   812         p->destruct();          // Recover useless new node
   813         p = p2;                 // Use old node
   814       } else {
   815         igvn.register_new_node_with_optimizer(p, old_phi);
   816       }
   817       // Make old Phi refer to new Phi.
   818       old_phi->add_req(p);
   819       // Check for the special case of making the old phi useless and
   820       // disappear it.  In JavaGrande I have a case where this useless
   821       // Phi is the loop limit and prevents recognizing a CountedLoop
   822       // which in turn prevents removing an empty loop.
   823       Node *id_old_phi = old_phi->Identity( &igvn );
   824       if( id_old_phi != old_phi ) { // Found a simple identity?
   825         // Note that I cannot call 'replace_node' here, because
   826         // that will yank the edge from old_phi to the Region and
   827         // I'm mid-iteration over the Region's uses.
   828         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
   829           Node* use = old_phi->last_out(i);
   830           igvn.hash_delete(use);
   831           igvn._worklist.push(use);
   832           uint uses_found = 0;
   833           for (uint j = 0; j < use->len(); j++) {
   834             if (use->in(j) == old_phi) {
   835               if (j < use->req()) use->set_req (j, id_old_phi);
   836               else                use->set_prec(j, id_old_phi);
   837               uses_found++;
   838             }
   839           }
   840           i -= uses_found;    // we deleted 1 or more copies of this edge
   841         }
   842       }
   843       igvn._worklist.push(old_phi);
   844     }
   845   }
   846   // Finally clean out the fall-in edges from the RegionNode
   847   for( i = oreq-1; i>0; i-- ) {
   848     if( !phase->is_member( this, _head->in(i) ) ) {
   849       _head->del_req(i);
   850     }
   851   }
   852   // Transform landing pad
   853   igvn.register_new_node_with_optimizer(landing_pad, _head);
   854   // Insert landing pad into the header
   855   _head->add_req(landing_pad);
   856 }
   858 //------------------------------split_outer_loop-------------------------------
   859 // Split out the outermost loop from this shared header.
   860 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
   861   PhaseIterGVN &igvn = phase->_igvn;
   863   // Find index of outermost loop; it should also be my tail.
   864   uint outer_idx = 1;
   865   while( _head->in(outer_idx) != _tail ) outer_idx++;
   867   // Make a LoopNode for the outermost loop.
   868   Node *ctl = _head->in(LoopNode::EntryControl);
   869   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
   870   outer = igvn.register_new_node_with_optimizer(outer, _head);
   871   phase->set_created_loop_node();
   873   Node* pred = phase->clone_loop_predicates(ctl, outer);
   874   // Outermost loop falls into '_head' loop
   875   _head->set_req(LoopNode::EntryControl, pred);
   876   _head->del_req(outer_idx);
   877   // Split all the Phis up between '_head' loop and 'outer' loop.
   878   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   879     Node *out = _head->fast_out(j);
   880     if( out->is_Phi() ) {
   881       PhiNode *old_phi = out->as_Phi();
   882       assert( old_phi->region() == _head, "" );
   883       Node *phi = PhiNode::make_blank(outer, old_phi);
   884       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
   885       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
   886       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
   887       // Make old Phi point to new Phi on the fall-in path
   888       igvn.hash_delete(old_phi);
   889       old_phi->set_req(LoopNode::EntryControl, phi);
   890       old_phi->del_req(outer_idx);
   891       igvn._worklist.push(old_phi);
   892     }
   893   }
   895   // Use the new loop head instead of the old shared one
   896   _head = outer;
   897   phase->set_loop(_head, this);
   898 }
   900 //------------------------------fix_parent-------------------------------------
   901 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
   902   loop->_parent = parent;
   903   if( loop->_child ) fix_parent( loop->_child, loop   );
   904   if( loop->_next  ) fix_parent( loop->_next , parent );
   905 }
   907 //------------------------------estimate_path_freq-----------------------------
   908 static float estimate_path_freq( Node *n ) {
   909   // Try to extract some path frequency info
   910   IfNode *iff;
   911   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
   912     uint nop = n->Opcode();
   913     if( nop == Op_SafePoint ) {   // Skip any safepoint
   914       n = n->in(0);
   915       continue;
   916     }
   917     if( nop == Op_CatchProj ) {   // Get count from a prior call
   918       // Assume call does not always throw exceptions: means the call-site
   919       // count is also the frequency of the fall-through path.
   920       assert( n->is_CatchProj(), "" );
   921       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
   922         return 0.0f;            // Assume call exception path is rare
   923       Node *call = n->in(0)->in(0)->in(0);
   924       assert( call->is_Call(), "expect a call here" );
   925       const JVMState *jvms = ((CallNode*)call)->jvms();
   926       ciMethodData* methodData = jvms->method()->method_data();
   927       if (!methodData->is_mature())  return 0.0f; // No call-site data
   928       ciProfileData* data = methodData->bci_to_data(jvms->bci());
   929       if ((data == NULL) || !data->is_CounterData()) {
   930         // no call profile available, try call's control input
   931         n = n->in(0);
   932         continue;
   933       }
   934       return data->as_CounterData()->count()/FreqCountInvocations;
   935     }
   936     // See if there's a gating IF test
   937     Node *n_c = n->in(0);
   938     if( !n_c->is_If() ) break;       // No estimate available
   939     iff = n_c->as_If();
   940     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
   941       // Compute how much count comes on this path
   942       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
   943     // Have no count info.  Skip dull uncommon-trap like branches.
   944     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
   945         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
   946       break;
   947     // Skip through never-taken branch; look for a real loop exit.
   948     n = iff->in(0);
   949   }
   950   return 0.0f;                  // No estimate available
   951 }
   953 //------------------------------merge_many_backedges---------------------------
   954 // Merge all the backedges from the shared header into a private Region.
   955 // Feed that region as the one backedge to this loop.
   956 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
   957   uint i;
   959   // Scan for the top 2 hottest backedges
   960   float hotcnt = 0.0f;
   961   float warmcnt = 0.0f;
   962   uint hot_idx = 0;
   963   // Loop starts at 2 because slot 1 is the fall-in path
   964   for( i = 2; i < _head->req(); i++ ) {
   965     float cnt = estimate_path_freq(_head->in(i));
   966     if( cnt > hotcnt ) {       // Grab hottest path
   967       warmcnt = hotcnt;
   968       hotcnt = cnt;
   969       hot_idx = i;
   970     } else if( cnt > warmcnt ) { // And 2nd hottest path
   971       warmcnt = cnt;
   972     }
   973   }
   975   // See if the hottest backedge is worthy of being an inner loop
   976   // by being much hotter than the next hottest backedge.
   977   if( hotcnt <= 0.0001 ||
   978       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
   980   // Peel out the backedges into a private merge point; peel
   981   // them all except optionally hot_idx.
   982   PhaseIterGVN &igvn = phase->_igvn;
   984   Node *hot_tail = NULL;
   985   // Make a Region for the merge point
   986   Node *r = new (phase->C, 1) RegionNode(1);
   987   for( i = 2; i < _head->req(); i++ ) {
   988     if( i != hot_idx )
   989       r->add_req( _head->in(i) );
   990     else hot_tail = _head->in(i);
   991   }
   992   igvn.register_new_node_with_optimizer(r, _head);
   993   // Plug region into end of loop _head, followed by hot_tail
   994   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
   995   _head->set_req(2, r);
   996   if( hot_idx ) _head->add_req(hot_tail);
   998   // Split all the Phis up between '_head' loop and the Region 'r'
   999   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1000     Node *out = _head->fast_out(j);
  1001     if( out->is_Phi() ) {
  1002       PhiNode* n = out->as_Phi();
  1003       igvn.hash_delete(n);      // Delete from hash before hacking edges
  1004       Node *hot_phi = NULL;
  1005       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
  1006       // Check all inputs for the ones to peel out
  1007       uint j = 1;
  1008       for( uint i = 2; i < n->req(); i++ ) {
  1009         if( i != hot_idx )
  1010           phi->set_req( j++, n->in(i) );
  1011         else hot_phi = n->in(i);
  1013       // Register the phi but do not transform until whole place transforms
  1014       igvn.register_new_node_with_optimizer(phi, n);
  1015       // Add the merge phi to the old Phi
  1016       while( n->req() > 3 ) n->del_req( n->req()-1 );
  1017       n->set_req(2, phi);
  1018       if( hot_idx ) n->add_req(hot_phi);
  1023   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
  1024   // of self loop tree.  Turn self into a loop headed by _head and with
  1025   // tail being the new merge point.
  1026   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
  1027   phase->set_loop(_tail,ilt);   // Adjust tail
  1028   _tail = r;                    // Self's tail is new merge point
  1029   phase->set_loop(r,this);
  1030   ilt->_child = _child;         // New guy has my children
  1031   _child = ilt;                 // Self has new guy as only child
  1032   ilt->_parent = this;          // new guy has self for parent
  1033   ilt->_nest = _nest;           // Same nesting depth (for now)
  1035   // Starting with 'ilt', look for child loop trees using the same shared
  1036   // header.  Flatten these out; they will no longer be loops in the end.
  1037   IdealLoopTree **pilt = &_child;
  1038   while( ilt ) {
  1039     if( ilt->_head == _head ) {
  1040       uint i;
  1041       for( i = 2; i < _head->req(); i++ )
  1042         if( _head->in(i) == ilt->_tail )
  1043           break;                // Still a loop
  1044       if( i == _head->req() ) { // No longer a loop
  1045         // Flatten ilt.  Hang ilt's "_next" list from the end of
  1046         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
  1047         IdealLoopTree **cp = &ilt->_child;
  1048         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
  1049         *cp = ilt->_next;       // Hang next list at end of child list
  1050         *pilt = ilt->_child;    // Move child up to replace ilt
  1051         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1052         ilt = ilt->_child;      // Repeat using new ilt
  1053         continue;               // do not advance over ilt->_child
  1055       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1056       phase->set_loop(_head,ilt);
  1058     pilt = &ilt->_child;        // Advance to next
  1059     ilt = *pilt;
  1062   if( _child ) fix_parent( _child, this );
  1065 //------------------------------beautify_loops---------------------------------
  1066 // Split shared headers and insert loop landing pads.
  1067 // Insert a LoopNode to replace the RegionNode.
  1068 // Return TRUE if loop tree is structurally changed.
  1069 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1070   bool result = false;
  1071   // Cache parts in locals for easy
  1072   PhaseIterGVN &igvn = phase->_igvn;
  1074   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1076   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1077   int fall_in_cnt = 0;
  1078   for( uint i = 1; i < _head->req(); i++ )
  1079     if( !phase->is_member( this, _head->in(i) ) )
  1080       fall_in_cnt++;
  1081   assert( fall_in_cnt, "at least 1 fall-in path" );
  1082   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1083     split_fall_in( phase, fall_in_cnt );
  1085   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1086   // the left.
  1087   fall_in_cnt = 1;
  1088   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1089     fall_in_cnt++;
  1090   if( fall_in_cnt > 1 ) {
  1091     // Since I am just swapping inputs I do not need to update def-use info
  1092     Node *tmp = _head->in(1);
  1093     _head->set_req( 1, _head->in(fall_in_cnt) );
  1094     _head->set_req( fall_in_cnt, tmp );
  1095     // Swap also all Phis
  1096     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1097       Node* phi = _head->fast_out(i);
  1098       if( phi->is_Phi() ) {
  1099         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1100         tmp = phi->in(1);
  1101         phi->set_req( 1, phi->in(fall_in_cnt) );
  1102         phi->set_req( fall_in_cnt, tmp );
  1106   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1107   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1109   // If I am a shared header (multiple backedges), peel off the many
  1110   // backedges into a private merge point and use the merge point as
  1111   // the one true backedge.
  1112   if( _head->req() > 3 ) {
  1113     // Merge the many backedges into a single backedge but leave
  1114     // the hottest backedge as separate edge for the following peel.
  1115     merge_many_backedges( phase );
  1116     result = true;
  1119   // If I have one hot backedge, peel off myself loop.
  1120   // I better be the outermost loop.
  1121   if( _head->req() > 3 ) {
  1122     split_outer_loop( phase );
  1123     result = true;
  1125   } else if( !_head->is_Loop() && !_irreducible ) {
  1126     // Make a new LoopNode to replace the old loop head
  1127     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
  1128     l = igvn.register_new_node_with_optimizer(l, _head);
  1129     phase->set_created_loop_node();
  1130     // Go ahead and replace _head
  1131     phase->_igvn.replace_node( _head, l );
  1132     _head = l;
  1133     phase->set_loop(_head, this);
  1136   // Now recursively beautify nested loops
  1137   if( _child ) result |= _child->beautify_loops( phase );
  1138   if( _next  ) result |= _next ->beautify_loops( phase );
  1139   return result;
  1142 //------------------------------allpaths_check_safepts----------------------------
  1143 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1144 // encountered.  Helper for check_safepts.
  1145 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1146   assert(stack.size() == 0, "empty stack");
  1147   stack.push(_tail);
  1148   visited.Clear();
  1149   visited.set(_tail->_idx);
  1150   while (stack.size() > 0) {
  1151     Node* n = stack.pop();
  1152     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1153       // Terminate this path
  1154     } else if (n->Opcode() == Op_SafePoint) {
  1155       if (_phase->get_loop(n) != this) {
  1156         if (_required_safept == NULL) _required_safept = new Node_List();
  1157         _required_safept->push(n);  // save the one closest to the tail
  1159       // Terminate this path
  1160     } else {
  1161       uint start = n->is_Region() ? 1 : 0;
  1162       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1163       for (uint i = start; i < end; i++) {
  1164         Node* in = n->in(i);
  1165         assert(in->is_CFG(), "must be");
  1166         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1167           stack.push(in);
  1174 //------------------------------check_safepts----------------------------
  1175 // Given dominators, try to find loops with calls that must always be
  1176 // executed (call dominates loop tail).  These loops do not need non-call
  1177 // safepoints (ncsfpt).
  1178 //
  1179 // A complication is that a safepoint in a inner loop may be needed
  1180 // by an outer loop. In the following, the inner loop sees it has a
  1181 // call (block 3) on every path from the head (block 2) to the
  1182 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1183 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1184 //
  1185 //          entry  0
  1186 //                 |
  1187 //                 v
  1188 // outer 1,2    +->1
  1189 //              |  |
  1190 //              |  v
  1191 //              |  2<---+  ncsfpt in 2
  1192 //              |_/|\   |
  1193 //                 | v  |
  1194 // inner 2,3      /  3  |  call in 3
  1195 //               /   |  |
  1196 //              v    +--+
  1197 //        exit  4
  1198 //
  1199 //
  1200 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1201 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1202 // is first looked for in the lists for the outer loops of the current loop.
  1203 //
  1204 // The insights into the problem:
  1205 //  A) counted loops are okay
  1206 //  B) innermost loops are okay (only an inner loop can delete
  1207 //     a ncsfpt needed by an outer loop)
  1208 //  C) a loop is immune from an inner loop deleting a safepoint
  1209 //     if the loop has a call on the idom-path
  1210 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1211 //     idom-path that is not in a nested loop
  1212 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1213 //     loop needs to be prevented from deletion by an inner loop
  1214 //
  1215 // There are two analyses:
  1216 //  1) The first, and cheaper one, scans the loop body from
  1217 //     tail to head following the idom (immediate dominator)
  1218 //     chain, looking for the cases (C,D,E) above.
  1219 //     Since inner loops are scanned before outer loops, there is summary
  1220 //     information about inner loops.  Inner loops can be skipped over
  1221 //     when the tail of an inner loop is encountered.
  1222 //
  1223 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1224 //     the idom path (which is rare), scans all predecessor control paths
  1225 //     from the tail to the head, terminating a path when a call or sfpt
  1226 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1227 //
  1228 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1229   // Bottom up traversal
  1230   IdealLoopTree* ch = _child;
  1231   while (ch != NULL) {
  1232     ch->check_safepts(visited, stack);
  1233     ch = ch->_next;
  1236   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1237     bool  has_call         = false; // call on dom-path
  1238     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1239     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1240     // Scan the dom-path nodes from tail to head
  1241     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1242       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1243         has_call = true;
  1244         _has_sfpt = 1;          // Then no need for a safept!
  1245         break;
  1246       } else if (n->Opcode() == Op_SafePoint) {
  1247         if (_phase->get_loop(n) == this) {
  1248           has_local_ncsfpt = true;
  1249           break;
  1251         if (nonlocal_ncsfpt == NULL) {
  1252           nonlocal_ncsfpt = n; // save the one closest to the tail
  1254       } else {
  1255         IdealLoopTree* nlpt = _phase->get_loop(n);
  1256         if (this != nlpt) {
  1257           // If at an inner loop tail, see if the inner loop has already
  1258           // recorded seeing a call on the dom-path (and stop.)  If not,
  1259           // jump to the head of the inner loop.
  1260           assert(is_member(nlpt), "nested loop");
  1261           Node* tail = nlpt->_tail;
  1262           if (tail->in(0)->is_If()) tail = tail->in(0);
  1263           if (n == tail) {
  1264             // If inner loop has call on dom-path, so does outer loop
  1265             if (nlpt->_has_sfpt) {
  1266               has_call = true;
  1267               _has_sfpt = 1;
  1268               break;
  1270             // Skip to head of inner loop
  1271             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1272             n = nlpt->_head;
  1277     // Record safept's that this loop needs preserved when an
  1278     // inner loop attempts to delete it's safepoints.
  1279     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1280       if (nonlocal_ncsfpt != NULL) {
  1281         if (_required_safept == NULL) _required_safept = new Node_List();
  1282         _required_safept->push(nonlocal_ncsfpt);
  1283       } else {
  1284         // Failed to find a suitable safept on the dom-path.  Now use
  1285         // an all paths walk from tail to head, looking for safepoints to preserve.
  1286         allpaths_check_safepts(visited, stack);
  1292 //---------------------------is_deleteable_safept----------------------------
  1293 // Is safept not required by an outer loop?
  1294 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1295   assert(sfpt->Opcode() == Op_SafePoint, "");
  1296   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1297   while (lp != NULL) {
  1298     Node_List* sfpts = lp->_required_safept;
  1299     if (sfpts != NULL) {
  1300       for (uint i = 0; i < sfpts->size(); i++) {
  1301         if (sfpt == sfpts->at(i))
  1302           return false;
  1305     lp = lp->_parent;
  1307   return true;
  1310 //---------------------------replace_parallel_iv-------------------------------
  1311 // Replace parallel induction variable (parallel to trip counter)
  1312 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
  1313   assert(loop->_head->is_CountedLoop(), "");
  1314   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1315   Node *incr = cl->incr();
  1316   if (incr == NULL)
  1317     return;         // Dead loop?
  1318   Node *init = cl->init_trip();
  1319   Node *phi  = cl->phi();
  1320   // protect against stride not being a constant
  1321   if (!cl->stride_is_con())
  1322     return;
  1323   int stride_con = cl->stride_con();
  1325   PhaseGVN *gvn = &_igvn;
  1327   // Visit all children, looking for Phis
  1328   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1329     Node *out = cl->out(i);
  1330     // Look for other phis (secondary IVs). Skip dead ones
  1331     if (!out->is_Phi() || out == phi || !has_node(out))
  1332       continue;
  1333     PhiNode* phi2 = out->as_Phi();
  1334     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1335     // Look for induction variables of the form:  X += constant
  1336     if (phi2->region() != loop->_head ||
  1337         incr2->req() != 3 ||
  1338         incr2->in(1) != phi2 ||
  1339         incr2 == incr ||
  1340         incr2->Opcode() != Op_AddI ||
  1341         !incr2->in(2)->is_Con())
  1342       continue;
  1344     // Check for parallel induction variable (parallel to trip counter)
  1345     // via an affine function.  In particular, count-down loops with
  1346     // count-up array indices are common. We only RCE references off
  1347     // the trip-counter, so we need to convert all these to trip-counter
  1348     // expressions.
  1349     Node *init2 = phi2->in( LoopNode::EntryControl );
  1350     int stride_con2 = incr2->in(2)->get_int();
  1352     // The general case here gets a little tricky.  We want to find the
  1353     // GCD of all possible parallel IV's and make a new IV using this
  1354     // GCD for the loop.  Then all possible IVs are simple multiples of
  1355     // the GCD.  In practice, this will cover very few extra loops.
  1356     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1357     // where +/-1 is the common case, but other integer multiples are
  1358     // also easy to handle.
  1359     int ratio_con = stride_con2/stride_con;
  1361     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
  1362       // Convert to using the trip counter.  The parallel induction
  1363       // variable differs from the trip counter by a loop-invariant
  1364       // amount, the difference between their respective initial values.
  1365       // It is scaled by the 'ratio_con'.
  1366       // Perform local Ideal transformation since in most cases ratio == 1.
  1367       Node* ratio = _igvn.intcon(ratio_con);
  1368       set_ctrl(ratio, C->root());
  1369       Node* hook = new (C, 3) Node(3);
  1370       Node* ratio_init = gvn->transform(new (C, 3) MulINode(init, ratio));
  1371       hook->init_req(0, ratio_init);
  1372       Node* diff = gvn->transform(new (C, 3) SubINode(init2, ratio_init));
  1373       hook->init_req(1, diff);
  1374       Node* ratio_idx = gvn->transform(new (C, 3) MulINode(phi, ratio));
  1375       hook->init_req(2, ratio_idx);
  1376       Node* add  = gvn->transform(new (C, 3) AddINode(ratio_idx, diff));
  1377       set_subtree_ctrl(add);
  1378       _igvn.replace_node( phi2, add );
  1379       // Free up intermediate goo
  1380       _igvn.remove_dead_node(hook);
  1381       // Sometimes an induction variable is unused
  1382       if (add->outcnt() == 0) {
  1383         _igvn.remove_dead_node(add);
  1385       --i; // deleted this phi; rescan starting with next position
  1386       continue;
  1391 //------------------------------counted_loop-----------------------------------
  1392 // Convert to counted loops where possible
  1393 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1395   // For grins, set the inner-loop flag here
  1396   if (!_child) {
  1397     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
  1400   if (_head->is_CountedLoop() ||
  1401       phase->is_counted_loop(_head, this)) {
  1402     _has_sfpt = 1;              // Indicate we do not need a safepoint here
  1404     // Look for a safepoint to remove
  1405     for (Node* n = tail(); n != _head; n = phase->idom(n))
  1406       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1407           phase->is_deleteable_safept(n))
  1408         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1410     // Look for induction variables
  1411     phase->replace_parallel_iv(this);
  1413   } else if (_parent != NULL && !_irreducible) {
  1414     // Not a counted loop.
  1415     // Look for a safepoint on the idom-path to remove, preserving the first one
  1416     bool found = false;
  1417     Node* n = tail();
  1418     for (; n != _head && !found; n = phase->idom(n)) {
  1419       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
  1420         found = true; // Found one
  1422     // Skip past it and delete the others
  1423     for (; n != _head; n = phase->idom(n)) {
  1424       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1425           phase->is_deleteable_safept(n))
  1426         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1430   // Recursively
  1431   if (_child) _child->counted_loop( phase );
  1432   if (_next)  _next ->counted_loop( phase );
  1435 #ifndef PRODUCT
  1436 //------------------------------dump_head--------------------------------------
  1437 // Dump 1 liner for loop header info
  1438 void IdealLoopTree::dump_head( ) const {
  1439   for (uint i=0; i<_nest; i++)
  1440     tty->print("  ");
  1441   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1442   if (_irreducible) tty->print(" IRREDUCIBLE");
  1443   if (UseLoopPredicate) {
  1444     Node* entry = PhaseIdealLoop::find_predicate_insertion_point(_head->in(LoopNode::EntryControl),
  1445                                                                  Deoptimization::Reason_predicate);
  1446     if (entry != NULL) {
  1447       tty->print(" predicated");
  1450   if (_head->is_CountedLoop()) {
  1451     CountedLoopNode *cl = _head->as_CountedLoop();
  1452     tty->print(" counted");
  1454     Node* init_n = cl->init_trip();
  1455     if (init_n  != NULL &&  init_n->is_Con())
  1456       tty->print(" [%d,", cl->init_trip()->get_int());
  1457     else
  1458       tty->print(" [int,");
  1459     Node* limit_n = cl->limit();
  1460     if (limit_n  != NULL &&  limit_n->is_Con())
  1461       tty->print("%d),", cl->limit()->get_int());
  1462     else
  1463       tty->print("int),");
  1464     int stride_con  = cl->stride_con();
  1465     if (stride_con > 0) tty->print("+");
  1466     tty->print("%d", stride_con);
  1468     if (cl->is_pre_loop ()) tty->print(" pre" );
  1469     if (cl->is_main_loop()) tty->print(" main");
  1470     if (cl->is_post_loop()) tty->print(" post");
  1472   tty->cr();
  1475 //------------------------------dump-------------------------------------------
  1476 // Dump loops by loop tree
  1477 void IdealLoopTree::dump( ) const {
  1478   dump_head();
  1479   if (_child) _child->dump();
  1480   if (_next)  _next ->dump();
  1483 #endif
  1485 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
  1486   if (loop == root) {
  1487     if (loop->_child != NULL) {
  1488       log->begin_head("loop_tree");
  1489       log->end_head();
  1490       if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1491       log->tail("loop_tree");
  1492       assert(loop->_next == NULL, "what?");
  1494   } else {
  1495     Node* head = loop->_head;
  1496     log->begin_head("loop");
  1497     log->print(" idx='%d' ", head->_idx);
  1498     if (loop->_irreducible) log->print("irreducible='1' ");
  1499     if (head->is_Loop()) {
  1500       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
  1501       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
  1503     if (head->is_CountedLoop()) {
  1504       CountedLoopNode* cl = head->as_CountedLoop();
  1505       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
  1506       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
  1507       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
  1509     log->end_head();
  1510     if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1511     log->tail("loop");
  1512     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
  1516 //---------------------collect_potentially_useful_predicates-----------------------
  1517 // Helper function to collect potentially useful predicates to prevent them from
  1518 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
  1519 void PhaseIdealLoop::collect_potentially_useful_predicates(
  1520                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
  1521   if (loop->_child) { // child
  1522     collect_potentially_useful_predicates(loop->_child, useful_predicates);
  1525   // self (only loops that we can apply loop predication may use their predicates)
  1526   if (loop->_head->is_Loop() &&
  1527       !loop->_irreducible    &&
  1528       !loop->tail()->is_top()) {
  1529     LoopNode* lpn = loop->_head->as_Loop();
  1530     Node* entry = lpn->in(LoopNode::EntryControl);
  1531     Node* predicate_proj = find_predicate(entry);
  1532     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
  1533       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
  1534       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1538   if (loop->_next) { // sibling
  1539     collect_potentially_useful_predicates(loop->_next, useful_predicates);
  1543 //------------------------eliminate_useless_predicates-----------------------------
  1544 // Eliminate all inserted predicates if they could not be used by loop predication.
  1545 void PhaseIdealLoop::eliminate_useless_predicates() {
  1546   if (C->predicate_count() == 0)
  1547     return; // no predicate left
  1549   Unique_Node_List useful_predicates; // to store useful predicates
  1550   if (C->has_loops()) {
  1551     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
  1554   for (int i = C->predicate_count(); i > 0; i--) {
  1555      Node * n = C->predicate_opaque1_node(i-1);
  1556      assert(n->Opcode() == Op_Opaque1, "must be");
  1557      if (!useful_predicates.member(n)) { // not in the useful list
  1558        _igvn.replace_node(n, n->in(1));
  1563 //=============================================================================
  1564 //----------------------------build_and_optimize-------------------------------
  1565 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  1566 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  1567 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs) {
  1568   ResourceMark rm;
  1570   int old_progress = C->major_progress();
  1571   uint orig_worklist_size = _igvn._worklist.size();
  1573   // Reset major-progress flag for the driver's heuristics
  1574   C->clear_major_progress();
  1576 #ifndef PRODUCT
  1577   // Capture for later assert
  1578   uint unique = C->unique();
  1579   _loop_invokes++;
  1580   _loop_work += unique;
  1581 #endif
  1583   // True if the method has at least 1 irreducible loop
  1584   _has_irreducible_loops = false;
  1586   _created_loop_node = false;
  1588   Arena *a = Thread::current()->resource_area();
  1589   VectorSet visited(a);
  1590   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  1591   _nodes.map(C->unique(), NULL);
  1592   memset(_nodes.adr(), 0, wordSize * C->unique());
  1594   // Pre-build the top-level outermost loop tree entry
  1595   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  1596   // Do not need a safepoint at the top level
  1597   _ltree_root->_has_sfpt = 1;
  1599   // Initialize Dominators.
  1600   // Checked in clone_loop_predicate() during beautify_loops().
  1601   _idom_size = 0;
  1602   _idom      = NULL;
  1603   _dom_depth = NULL;
  1604   _dom_stk   = NULL;
  1606   // Empty pre-order array
  1607   allocate_preorders();
  1609   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  1610   // IdealLoopTree entries.  Data nodes are NOT walked.
  1611   build_loop_tree();
  1612   // Check for bailout, and return
  1613   if (C->failing()) {
  1614     return;
  1617   // No loops after all
  1618   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
  1620   // There should always be an outer loop containing the Root and Return nodes.
  1621   // If not, we have a degenerate empty program.  Bail out in this case.
  1622   if (!has_node(C->root())) {
  1623     if (!_verify_only) {
  1624       C->clear_major_progress();
  1625       C->record_method_not_compilable("empty program detected during loop optimization");
  1627     return;
  1630   // Nothing to do, so get out
  1631   if( !C->has_loops() && !do_split_ifs && !_verify_me && !_verify_only ) {
  1632     _igvn.optimize();           // Cleanup NeverBranches
  1633     return;
  1636   // Set loop nesting depth
  1637   _ltree_root->set_nest( 0 );
  1639   // Split shared headers and insert loop landing pads.
  1640   // Do not bother doing this on the Root loop of course.
  1641   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
  1642     C->print_method("Before beautify loops", 3);
  1643     if( _ltree_root->_child->beautify_loops( this ) ) {
  1644       // Re-build loop tree!
  1645       _ltree_root->_child = NULL;
  1646       _nodes.clear();
  1647       reallocate_preorders();
  1648       build_loop_tree();
  1649       // Check for bailout, and return
  1650       if (C->failing()) {
  1651         return;
  1653       // Reset loop nesting depth
  1654       _ltree_root->set_nest( 0 );
  1656       C->print_method("After beautify loops", 3);
  1660   // Build Dominators for elision of NULL checks & loop finding.
  1661   // Since nodes do not have a slot for immediate dominator, make
  1662   // a persistent side array for that info indexed on node->_idx.
  1663   _idom_size = C->unique();
  1664   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  1665   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  1666   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  1667   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  1669   Dominators();
  1671   if (!_verify_only) {
  1672     // As a side effect, Dominators removed any unreachable CFG paths
  1673     // into RegionNodes.  It doesn't do this test against Root, so
  1674     // we do it here.
  1675     for( uint i = 1; i < C->root()->req(); i++ ) {
  1676       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  1677         _igvn.hash_delete(C->root());
  1678         C->root()->del_req(i);
  1679         _igvn._worklist.push(C->root());
  1680         i--;                      // Rerun same iteration on compressed edges
  1684     // Given dominators, try to find inner loops with calls that must
  1685     // always be executed (call dominates loop tail).  These loops do
  1686     // not need a separate safepoint.
  1687     Node_List cisstack(a);
  1688     _ltree_root->check_safepts(visited, cisstack);
  1691   // Walk the DATA nodes and place into loops.  Find earliest control
  1692   // node.  For CFG nodes, the _nodes array starts out and remains
  1693   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  1694   // _nodes array holds the earliest legal controlling CFG node.
  1696   // Allocate stack with enough space to avoid frequent realloc
  1697   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
  1698   Node_Stack nstack( a, stack_size );
  1700   visited.Clear();
  1701   Node_List worklist(a);
  1702   // Don't need C->root() on worklist since
  1703   // it will be processed among C->top() inputs
  1704   worklist.push( C->top() );
  1705   visited.set( C->top()->_idx ); // Set C->top() as visited now
  1706   build_loop_early( visited, worklist, nstack );
  1708   // Given early legal placement, try finding counted loops.  This placement
  1709   // is good enough to discover most loop invariants.
  1710   if( !_verify_me && !_verify_only )
  1711     _ltree_root->counted_loop( this );
  1713   // Find latest loop placement.  Find ideal loop placement.
  1714   visited.Clear();
  1715   init_dom_lca_tags();
  1716   // Need C->root() on worklist when processing outs
  1717   worklist.push( C->root() );
  1718   NOT_PRODUCT( C->verify_graph_edges(); )
  1719   worklist.push( C->top() );
  1720   build_loop_late( visited, worklist, nstack );
  1722   if (_verify_only) {
  1723     // restore major progress flag
  1724     for (int i = 0; i < old_progress; i++)
  1725       C->set_major_progress();
  1726     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
  1727     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
  1728     return;
  1731   // Some parser-inserted loop predicates could never be used by loop
  1732   // predication or they were moved away from loop during some optimizations.
  1733   // For example, peeling. Eliminate them before next loop optimizations.
  1734   if (UseLoopPredicate) {
  1735     eliminate_useless_predicates();
  1738   // clear out the dead code
  1739   while(_deadlist.size()) {
  1740     _igvn.remove_globally_dead_node(_deadlist.pop());
  1743 #ifndef PRODUCT
  1744   C->verify_graph_edges();
  1745   if (_verify_me) {             // Nested verify pass?
  1746     // Check to see if the verify mode is broken
  1747     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  1748     return;
  1750   if(VerifyLoopOptimizations) verify();
  1751   if(TraceLoopOpts && C->has_loops()) {
  1752     _ltree_root->dump();
  1754 #endif
  1756   if (ReassociateInvariants) {
  1757     // Reassociate invariants and prep for split_thru_phi
  1758     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  1759       IdealLoopTree* lpt = iter.current();
  1760       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  1762       lpt->reassociate_invariants(this);
  1764       // Because RCE opportunities can be masked by split_thru_phi,
  1765       // look for RCE candidates and inhibit split_thru_phi
  1766       // on just their loop-phi's for this pass of loop opts
  1767       if (SplitIfBlocks && do_split_ifs) {
  1768         if (lpt->policy_range_check(this)) {
  1769           lpt->_rce_candidate = 1; // = true
  1775   // Check for aggressive application of split-if and other transforms
  1776   // that require basic-block info (like cloning through Phi's)
  1777   if( SplitIfBlocks && do_split_ifs ) {
  1778     visited.Clear();
  1779     split_if_with_blocks( visited, nstack );
  1780     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  1783   // Perform loop predication before iteration splitting
  1784   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
  1785     _ltree_root->_child->loop_predication(this);
  1788   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
  1789     if (do_intrinsify_fill()) {
  1790       C->set_major_progress();
  1794   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  1795   // range checks or one-shot null checks.
  1797   // If split-if's didn't hack the graph too bad (no CFG changes)
  1798   // then do loop opts.
  1799   if (C->has_loops() && !C->major_progress()) {
  1800     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  1801     _ltree_root->_child->iteration_split( this, worklist );
  1802     // No verify after peeling!  GCM has hoisted code out of the loop.
  1803     // After peeling, the hoisted code could sink inside the peeled area.
  1804     // The peeling code does not try to recompute the best location for
  1805     // all the code before the peeled area, so the verify pass will always
  1806     // complain about it.
  1808   // Do verify graph edges in any case
  1809   NOT_PRODUCT( C->verify_graph_edges(); );
  1811   if (!do_split_ifs) {
  1812     // We saw major progress in Split-If to get here.  We forced a
  1813     // pass with unrolling and not split-if, however more split-if's
  1814     // might make progress.  If the unrolling didn't make progress
  1815     // then the major-progress flag got cleared and we won't try
  1816     // another round of Split-If.  In particular the ever-common
  1817     // instance-of/check-cast pattern requires at least 2 rounds of
  1818     // Split-If to clear out.
  1819     C->set_major_progress();
  1822   // Repeat loop optimizations if new loops were seen
  1823   if (created_loop_node()) {
  1824     C->set_major_progress();
  1827   // Keep loop predicates and perform optimizations with them
  1828   // until no more loop optimizations could be done.
  1829   // After that switch predicates off and do more loop optimizations.
  1830   if (!C->major_progress() && (C->predicate_count() > 0)) {
  1831      C->cleanup_loop_predicates(_igvn);
  1832 #ifndef PRODUCT
  1833      if (TraceLoopOpts) {
  1834        tty->print_cr("PredicatesOff");
  1836 #endif
  1837      C->set_major_progress();
  1840   // Convert scalar to superword operations at the end of all loop opts.
  1841   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  1842     // SuperWord transform
  1843     SuperWord sw(this);
  1844     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  1845       IdealLoopTree* lpt = iter.current();
  1846       if (lpt->is_counted()) {
  1847         sw.transform_loop(lpt);
  1852   // Cleanup any modified bits
  1853   _igvn.optimize();
  1855   // disable assert until issue with split_flow_path is resolved (6742111)
  1856   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
  1857   //        "shouldn't introduce irreducible loops");
  1859   if (C->log() != NULL) {
  1860     log_loop_tree(_ltree_root, _ltree_root, C->log());
  1864 #ifndef PRODUCT
  1865 //------------------------------print_statistics-------------------------------
  1866 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  1867 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  1868 void PhaseIdealLoop::print_statistics() {
  1869   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  1872 //------------------------------verify-----------------------------------------
  1873 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  1874 static int fail;                // debug only, so its multi-thread dont care
  1875 void PhaseIdealLoop::verify() const {
  1876   int old_progress = C->major_progress();
  1877   ResourceMark rm;
  1878   PhaseIdealLoop loop_verify( _igvn, this );
  1879   VectorSet visited(Thread::current()->resource_area());
  1881   fail = 0;
  1882   verify_compare( C->root(), &loop_verify, visited );
  1883   assert( fail == 0, "verify loops failed" );
  1884   // Verify loop structure is the same
  1885   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  1886   // Reset major-progress.  It was cleared by creating a verify version of
  1887   // PhaseIdealLoop.
  1888   for( int i=0; i<old_progress; i++ )
  1889     C->set_major_progress();
  1892 //------------------------------verify_compare---------------------------------
  1893 // Make sure me and the given PhaseIdealLoop agree on key data structures
  1894 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  1895   if( !n ) return;
  1896   if( visited.test_set( n->_idx ) ) return;
  1897   if( !_nodes[n->_idx] ) {      // Unreachable
  1898     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  1899     return;
  1902   uint i;
  1903   for( i = 0; i < n->req(); i++ )
  1904     verify_compare( n->in(i), loop_verify, visited );
  1906   // Check the '_nodes' block/loop structure
  1907   i = n->_idx;
  1908   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  1909     if( _nodes[i] != loop_verify->_nodes[i] &&
  1910         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  1911       tty->print("Mismatched control setting for: ");
  1912       n->dump();
  1913       if( fail++ > 10 ) return;
  1914       Node *c = get_ctrl_no_update(n);
  1915       tty->print("We have it as: ");
  1916       if( c->in(0) ) c->dump();
  1917         else tty->print_cr("N%d",c->_idx);
  1918       tty->print("Verify thinks: ");
  1919       if( loop_verify->has_ctrl(n) )
  1920         loop_verify->get_ctrl_no_update(n)->dump();
  1921       else
  1922         loop_verify->get_loop_idx(n)->dump();
  1923       tty->cr();
  1925   } else {                    // We have a loop
  1926     IdealLoopTree *us = get_loop_idx(n);
  1927     if( loop_verify->has_ctrl(n) ) {
  1928       tty->print("Mismatched loop setting for: ");
  1929       n->dump();
  1930       if( fail++ > 10 ) return;
  1931       tty->print("We have it as: ");
  1932       us->dump();
  1933       tty->print("Verify thinks: ");
  1934       loop_verify->get_ctrl_no_update(n)->dump();
  1935       tty->cr();
  1936     } else if (!C->major_progress()) {
  1937       // Loop selection can be messed up if we did a major progress
  1938       // operation, like split-if.  Do not verify in that case.
  1939       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  1940       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  1941         tty->print("Unequals loops for: ");
  1942         n->dump();
  1943         if( fail++ > 10 ) return;
  1944         tty->print("We have it as: ");
  1945         us->dump();
  1946         tty->print("Verify thinks: ");
  1947         them->dump();
  1948         tty->cr();
  1953   // Check for immediate dominators being equal
  1954   if( i >= _idom_size ) {
  1955     if( !n->is_CFG() ) return;
  1956     tty->print("CFG Node with no idom: ");
  1957     n->dump();
  1958     return;
  1960   if( !n->is_CFG() ) return;
  1961   if( n == C->root() ) return; // No IDOM here
  1963   assert(n->_idx == i, "sanity");
  1964   Node *id = idom_no_update(n);
  1965   if( id != loop_verify->idom_no_update(n) ) {
  1966     tty->print("Unequals idoms for: ");
  1967     n->dump();
  1968     if( fail++ > 10 ) return;
  1969     tty->print("We have it as: ");
  1970     id->dump();
  1971     tty->print("Verify thinks: ");
  1972     loop_verify->idom_no_update(n)->dump();
  1973     tty->cr();
  1978 //------------------------------verify_tree------------------------------------
  1979 // Verify that tree structures match.  Because the CFG can change, siblings
  1980 // within the loop tree can be reordered.  We attempt to deal with that by
  1981 // reordering the verify's loop tree if possible.
  1982 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  1983   assert( _parent == parent, "Badly formed loop tree" );
  1985   // Siblings not in same order?  Attempt to re-order.
  1986   if( _head != loop->_head ) {
  1987     // Find _next pointer to update
  1988     IdealLoopTree **pp = &loop->_parent->_child;
  1989     while( *pp != loop )
  1990       pp = &((*pp)->_next);
  1991     // Find proper sibling to be next
  1992     IdealLoopTree **nn = &loop->_next;
  1993     while( (*nn) && (*nn)->_head != _head )
  1994       nn = &((*nn)->_next);
  1996     // Check for no match.
  1997     if( !(*nn) ) {
  1998       // Annoyingly, irreducible loops can pick different headers
  1999       // after a major_progress operation, so the rest of the loop
  2000       // tree cannot be matched.
  2001       if (_irreducible && Compile::current()->major_progress())  return;
  2002       assert( 0, "failed to match loop tree" );
  2005     // Move (*nn) to (*pp)
  2006     IdealLoopTree *hit = *nn;
  2007     *nn = hit->_next;
  2008     hit->_next = loop;
  2009     *pp = loop;
  2010     loop = hit;
  2011     // Now try again to verify
  2014   assert( _head  == loop->_head , "mismatched loop head" );
  2015   Node *tail = _tail;           // Inline a non-updating version of
  2016   while( !tail->in(0) )         // the 'tail()' call.
  2017     tail = tail->in(1);
  2018   assert( tail == loop->_tail, "mismatched loop tail" );
  2020   // Counted loops that are guarded should be able to find their guards
  2021   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  2022     CountedLoopNode *cl = _head->as_CountedLoop();
  2023     Node *init = cl->init_trip();
  2024     Node *ctrl = cl->in(LoopNode::EntryControl);
  2025     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  2026     Node *iff  = ctrl->in(0);
  2027     assert( iff->Opcode() == Op_If, "" );
  2028     Node *bol  = iff->in(1);
  2029     assert( bol->Opcode() == Op_Bool, "" );
  2030     Node *cmp  = bol->in(1);
  2031     assert( cmp->Opcode() == Op_CmpI, "" );
  2032     Node *add  = cmp->in(1);
  2033     Node *opaq;
  2034     if( add->Opcode() == Op_Opaque1 ) {
  2035       opaq = add;
  2036     } else {
  2037       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  2038       assert( add == init, "" );
  2039       opaq = cmp->in(2);
  2041     assert( opaq->Opcode() == Op_Opaque1, "" );
  2045   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  2046   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  2047   // Innermost loops need to verify loop bodies,
  2048   // but only if no 'major_progress'
  2049   int fail = 0;
  2050   if (!Compile::current()->major_progress() && _child == NULL) {
  2051     for( uint i = 0; i < _body.size(); i++ ) {
  2052       Node *n = _body.at(i);
  2053       if (n->outcnt() == 0)  continue; // Ignore dead
  2054       uint j;
  2055       for( j = 0; j < loop->_body.size(); j++ )
  2056         if( loop->_body.at(j) == n )
  2057           break;
  2058       if( j == loop->_body.size() ) { // Not found in loop body
  2059         // Last ditch effort to avoid assertion: Its possible that we
  2060         // have some users (so outcnt not zero) but are still dead.
  2061         // Try to find from root.
  2062         if (Compile::current()->root()->find(n->_idx)) {
  2063           fail++;
  2064           tty->print("We have that verify does not: ");
  2065           n->dump();
  2069     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  2070       Node *n = loop->_body.at(i2);
  2071       if (n->outcnt() == 0)  continue; // Ignore dead
  2072       uint j;
  2073       for( j = 0; j < _body.size(); j++ )
  2074         if( _body.at(j) == n )
  2075           break;
  2076       if( j == _body.size() ) { // Not found in loop body
  2077         // Last ditch effort to avoid assertion: Its possible that we
  2078         // have some users (so outcnt not zero) but are still dead.
  2079         // Try to find from root.
  2080         if (Compile::current()->root()->find(n->_idx)) {
  2081           fail++;
  2082           tty->print("Verify has that we do not: ");
  2083           n->dump();
  2087     assert( !fail, "loop body mismatch" );
  2091 #endif
  2093 //------------------------------set_idom---------------------------------------
  2094 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  2095   uint idx = d->_idx;
  2096   if (idx >= _idom_size) {
  2097     uint newsize = _idom_size<<1;
  2098     while( idx >= newsize ) {
  2099       newsize <<= 1;
  2101     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  2102     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  2103     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  2104     _idom_size = newsize;
  2106   _idom[idx] = n;
  2107   _dom_depth[idx] = dom_depth;
  2110 //------------------------------recompute_dom_depth---------------------------------------
  2111 // The dominator tree is constructed with only parent pointers.
  2112 // This recomputes the depth in the tree by first tagging all
  2113 // nodes as "no depth yet" marker.  The next pass then runs up
  2114 // the dom tree from each node marked "no depth yet", and computes
  2115 // the depth on the way back down.
  2116 void PhaseIdealLoop::recompute_dom_depth() {
  2117   uint no_depth_marker = C->unique();
  2118   uint i;
  2119   // Initialize depth to "no depth yet"
  2120   for (i = 0; i < _idom_size; i++) {
  2121     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  2122      _dom_depth[i] = no_depth_marker;
  2125   if (_dom_stk == NULL) {
  2126     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
  2127     if (init_size < 10) init_size = 10;
  2128     _dom_stk = new GrowableArray<uint>(init_size);
  2130   // Compute new depth for each node.
  2131   for (i = 0; i < _idom_size; i++) {
  2132     uint j = i;
  2133     // Run up the dom tree to find a node with a depth
  2134     while (_dom_depth[j] == no_depth_marker) {
  2135       _dom_stk->push(j);
  2136       j = _idom[j]->_idx;
  2138     // Compute the depth on the way back down this tree branch
  2139     uint dd = _dom_depth[j] + 1;
  2140     while (_dom_stk->length() > 0) {
  2141       uint j = _dom_stk->pop();
  2142       _dom_depth[j] = dd;
  2143       dd++;
  2148 //------------------------------sort-------------------------------------------
  2149 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  2150 // loop tree, not the root.
  2151 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  2152   if( !innermost ) return loop; // New innermost loop
  2154   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  2155   assert( loop_preorder, "not yet post-walked loop" );
  2156   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  2157   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  2159   // Insert at start of list
  2160   while( l ) {                  // Insertion sort based on pre-order
  2161     if( l == loop ) return innermost; // Already on list!
  2162     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  2163     assert( l_preorder, "not yet post-walked l" );
  2164     // Check header pre-order number to figure proper nesting
  2165     if( loop_preorder > l_preorder )
  2166       break;                    // End of insertion
  2167     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  2168     // Since I split shared headers, you'd think this could not happen.
  2169     // BUT: I must first do the preorder numbering before I can discover I
  2170     // have shared headers, so the split headers all get the same preorder
  2171     // number as the RegionNode they split from.
  2172     if( loop_preorder == l_preorder &&
  2173         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  2174       break;                    // Also check for shared headers (same pre#)
  2175     pp = &l->_parent;           // Chain up list
  2176     l = *pp;
  2178   // Link into list
  2179   // Point predecessor to me
  2180   *pp = loop;
  2181   // Point me to successor
  2182   IdealLoopTree *p = loop->_parent;
  2183   loop->_parent = l;            // Point me to successor
  2184   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2185   return innermost;
  2188 //------------------------------build_loop_tree--------------------------------
  2189 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2190 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2191 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2192 // tightest enclosing IdealLoopTree for post-walked.
  2193 //
  2194 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2195 // a loop backedge with that doesn't have any work on the backedge.  This
  2196 // helps me construct nested loops with shared headers better.
  2197 //
  2198 // Once I've done the forward recursion, I do the post-work.  For each child
  2199 // I check to see if there is a backedge.  Backedges define a loop!  I
  2200 // insert an IdealLoopTree at the target of the backedge.
  2201 //
  2202 // During the post-work I also check to see if I have several children
  2203 // belonging to different loops.  If so, then this Node is a decision point
  2204 // where control flow can choose to change loop nests.  It is at this
  2205 // decision point where I can figure out how loops are nested.  At this
  2206 // time I can properly order the different loop nests from my children.
  2207 // Note that there may not be any backedges at the decision point!
  2208 //
  2209 // Since the decision point can be far removed from the backedges, I can't
  2210 // order my loops at the time I discover them.  Thus at the decision point
  2211 // I need to inspect loop header pre-order numbers to properly nest my
  2212 // loops.  This means I need to sort my childrens' loops by pre-order.
  2213 // The sort is of size number-of-control-children, which generally limits
  2214 // it to size 2 (i.e., I just choose between my 2 target loops).
  2215 void PhaseIdealLoop::build_loop_tree() {
  2216   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2217   GrowableArray <Node *> bltstack(C->unique() >> 1);
  2218   Node *n = C->root();
  2219   bltstack.push(n);
  2220   int pre_order = 1;
  2221   int stack_size;
  2223   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2224     n = bltstack.top(); // Leave node on stack
  2225     if ( !is_visited(n) ) {
  2226       // ---- Pre-pass Work ----
  2227       // Pre-walked but not post-walked nodes need a pre_order number.
  2229       set_preorder_visited( n, pre_order ); // set as visited
  2231       // ---- Scan over children ----
  2232       // Scan first over control projections that lead to loop headers.
  2233       // This helps us find inner-to-outer loops with shared headers better.
  2235       // Scan children's children for loop headers.
  2236       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2237         Node* m = n->raw_out(i);       // Child
  2238         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2239           // Scan over children's children to find loop
  2240           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2241             Node* l = m->fast_out(j);
  2242             if( is_visited(l) &&       // Been visited?
  2243                 !is_postvisited(l) &&  // But not post-visited
  2244                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2245               // Found!  Scan the DFS down this path before doing other paths
  2246               bltstack.push(m);
  2247               break;
  2252       pre_order++;
  2254     else if ( !is_postvisited(n) ) {
  2255       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2256       // such as com.sun.rsasign.am::a.
  2257       // For non-recursive version, first, process current children.
  2258       // On next iteration, check if additional children were added.
  2259       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2260         Node* u = n->raw_out(k);
  2261         if ( u->is_CFG() && !is_visited(u) ) {
  2262           bltstack.push(u);
  2265       if ( bltstack.length() == stack_size ) {
  2266         // There were no additional children, post visit node now
  2267         (void)bltstack.pop(); // Remove node from stack
  2268         pre_order = build_loop_tree_impl( n, pre_order );
  2269         // Check for bailout
  2270         if (C->failing()) {
  2271           return;
  2273         // Check to grow _preorders[] array for the case when
  2274         // build_loop_tree_impl() adds new nodes.
  2275         check_grow_preorders();
  2278     else {
  2279       (void)bltstack.pop(); // Remove post-visited node from stack
  2284 //------------------------------build_loop_tree_impl---------------------------
  2285 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2286   // ---- Post-pass Work ----
  2287   // Pre-walked but not post-walked nodes need a pre_order number.
  2289   // Tightest enclosing loop for this Node
  2290   IdealLoopTree *innermost = NULL;
  2292   // For all children, see if any edge is a backedge.  If so, make a loop
  2293   // for it.  Then find the tightest enclosing loop for the self Node.
  2294   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2295     Node* m = n->fast_out(i);   // Child
  2296     if( n == m ) continue;      // Ignore control self-cycles
  2297     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2299     IdealLoopTree *l;           // Child's loop
  2300     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2301       // Found a backedge
  2302       assert( get_preorder(m) < pre_order, "should be backedge" );
  2303       // Check for the RootNode, which is already a LoopNode and is allowed
  2304       // to have multiple "backedges".
  2305       if( m == C->root()) {     // Found the root?
  2306         l = _ltree_root;        // Root is the outermost LoopNode
  2307       } else {                  // Else found a nested loop
  2308         // Insert a LoopNode to mark this loop.
  2309         l = new IdealLoopTree(this, m, n);
  2310       } // End of Else found a nested loop
  2311       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2312         set_loop(m, l);         // Set loop header to loop now
  2314     } else {                    // Else not a nested loop
  2315       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2316       l = get_loop(m);          // Get previously determined loop
  2317       // If successor is header of a loop (nest), move up-loop till it
  2318       // is a member of some outer enclosing loop.  Since there are no
  2319       // shared headers (I've split them already) I only need to go up
  2320       // at most 1 level.
  2321       while( l && l->_head == m ) // Successor heads loop?
  2322         l = l->_parent;         // Move up 1 for me
  2323       // If this loop is not properly parented, then this loop
  2324       // has no exit path out, i.e. its an infinite loop.
  2325       if( !l ) {
  2326         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2327         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2328         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2329         // many backedges as well.
  2331         // Here I set the loop to be the root loop.  I could have, after
  2332         // inserting a bogus loop exit, restarted the recursion and found my
  2333         // new loop exit.  This would make the infinite loop a first-class
  2334         // loop and it would then get properly optimized.  What's the use of
  2335         // optimizing an infinite loop?
  2336         l = _ltree_root;        // Oops, found infinite loop
  2338         if (!_verify_only) {
  2339           // Insert the NeverBranch between 'm' and it's control user.
  2340           NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
  2341           _igvn.register_new_node_with_optimizer(iff);
  2342           set_loop(iff, l);
  2343           Node *if_t = new (C, 1) CProjNode( iff, 0 );
  2344           _igvn.register_new_node_with_optimizer(if_t);
  2345           set_loop(if_t, l);
  2347           Node* cfg = NULL;       // Find the One True Control User of m
  2348           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2349             Node* x = m->fast_out(j);
  2350             if (x->is_CFG() && x != m && x != iff)
  2351               { cfg = x; break; }
  2353           assert(cfg != NULL, "must find the control user of m");
  2354           uint k = 0;             // Probably cfg->in(0)
  2355           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2356           cfg->set_req( k, if_t ); // Now point to NeverBranch
  2358           // Now create the never-taken loop exit
  2359           Node *if_f = new (C, 1) CProjNode( iff, 1 );
  2360           _igvn.register_new_node_with_optimizer(if_f);
  2361           set_loop(if_f, l);
  2362           // Find frame ptr for Halt.  Relies on the optimizer
  2363           // V-N'ing.  Easier and quicker than searching through
  2364           // the program structure.
  2365           Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
  2366           _igvn.register_new_node_with_optimizer(frame);
  2367           // Halt & Catch Fire
  2368           Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
  2369           _igvn.register_new_node_with_optimizer(halt);
  2370           set_loop(halt, l);
  2371           C->root()->add_req(halt);
  2373         set_loop(C->root(), _ltree_root);
  2376     // Weeny check for irreducible.  This child was already visited (this
  2377     // IS the post-work phase).  Is this child's loop header post-visited
  2378     // as well?  If so, then I found another entry into the loop.
  2379     if (!_verify_only) {
  2380       while( is_postvisited(l->_head) ) {
  2381         // found irreducible
  2382         l->_irreducible = 1; // = true
  2383         l = l->_parent;
  2384         _has_irreducible_loops = true;
  2385         // Check for bad CFG here to prevent crash, and bailout of compile
  2386         if (l == NULL) {
  2387           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2388           return pre_order;
  2393     // This Node might be a decision point for loops.  It is only if
  2394     // it's children belong to several different loops.  The sort call
  2395     // does a trivial amount of work if there is only 1 child or all
  2396     // children belong to the same loop.  If however, the children
  2397     // belong to different loops, the sort call will properly set the
  2398     // _parent pointers to show how the loops nest.
  2399     //
  2400     // In any case, it returns the tightest enclosing loop.
  2401     innermost = sort( l, innermost );
  2404   // Def-use info will have some dead stuff; dead stuff will have no
  2405   // loop decided on.
  2407   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  2408   if( innermost && innermost->_head == n ) {
  2409     assert( get_loop(n) == innermost, "" );
  2410     IdealLoopTree *p = innermost->_parent;
  2411     IdealLoopTree *l = innermost;
  2412     while( p && l->_head == n ) {
  2413       l->_next = p->_child;     // Put self on parents 'next child'
  2414       p->_child = l;            // Make self as first child of parent
  2415       l = p;                    // Now walk up the parent chain
  2416       p = l->_parent;
  2418   } else {
  2419     // Note that it is possible for a LoopNode to reach here, if the
  2420     // backedge has been made unreachable (hence the LoopNode no longer
  2421     // denotes a Loop, and will eventually be removed).
  2423     // Record tightest enclosing loop for self.  Mark as post-visited.
  2424     set_loop(n, innermost);
  2425     // Also record has_call flag early on
  2426     if( innermost ) {
  2427       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  2428         // Do not count uncommon calls
  2429         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  2430           Node *iff = n->in(0)->in(0);
  2431           if( !iff->is_If() ||
  2432               (n->in(0)->Opcode() == Op_IfFalse &&
  2433                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  2434               (iff->as_If()->_prob >= 0.01) )
  2435             innermost->_has_call = 1;
  2437       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  2438         // Disable loop optimizations if the loop has a scalar replaceable
  2439         // allocation. This disabling may cause a potential performance lost
  2440         // if the allocation is not eliminated for some reason.
  2441         innermost->_allow_optimizations = false;
  2442         innermost->_has_call = 1; // = true
  2447   // Flag as post-visited now
  2448   set_postvisited(n);
  2449   return pre_order;
  2453 //------------------------------build_loop_early-------------------------------
  2454 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2455 // First pass computes the earliest controlling node possible.  This is the
  2456 // controlling input with the deepest dominating depth.
  2457 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  2458   while (worklist.size() != 0) {
  2459     // Use local variables nstack_top_n & nstack_top_i to cache values
  2460     // on nstack's top.
  2461     Node *nstack_top_n = worklist.pop();
  2462     uint  nstack_top_i = 0;
  2463 //while_nstack_nonempty:
  2464     while (true) {
  2465       // Get parent node and next input's index from stack's top.
  2466       Node  *n = nstack_top_n;
  2467       uint   i = nstack_top_i;
  2468       uint cnt = n->req(); // Count of inputs
  2469       if (i == 0) {        // Pre-process the node.
  2470         if( has_node(n) &&            // Have either loop or control already?
  2471             !has_ctrl(n) ) {          // Have loop picked out already?
  2472           // During "merge_many_backedges" we fold up several nested loops
  2473           // into a single loop.  This makes the members of the original
  2474           // loop bodies pointing to dead loops; they need to move up
  2475           // to the new UNION'd larger loop.  I set the _head field of these
  2476           // dead loops to NULL and the _parent field points to the owning
  2477           // loop.  Shades of UNION-FIND algorithm.
  2478           IdealLoopTree *ilt;
  2479           while( !(ilt = get_loop(n))->_head ) {
  2480             // Normally I would use a set_loop here.  But in this one special
  2481             // case, it is legal (and expected) to change what loop a Node
  2482             // belongs to.
  2483             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  2485           // Remove safepoints ONLY if I've already seen I don't need one.
  2486           // (the old code here would yank a 2nd safepoint after seeing a
  2487           // first one, even though the 1st did not dominate in the loop body
  2488           // and thus could be avoided indefinitely)
  2489           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  2490               is_deleteable_safept(n)) {
  2491             Node *in = n->in(TypeFunc::Control);
  2492             lazy_replace(n,in);       // Pull safepoint now
  2493             // Carry on with the recursion "as if" we are walking
  2494             // only the control input
  2495             if( !visited.test_set( in->_idx ) ) {
  2496               worklist.push(in);      // Visit this guy later, using worklist
  2498             // Get next node from nstack:
  2499             // - skip n's inputs processing by setting i > cnt;
  2500             // - we also will not call set_early_ctrl(n) since
  2501             //   has_node(n) == true (see the condition above).
  2502             i = cnt + 1;
  2505       } // if (i == 0)
  2507       // Visit all inputs
  2508       bool done = true;       // Assume all n's inputs will be processed
  2509       while (i < cnt) {
  2510         Node *in = n->in(i);
  2511         ++i;
  2512         if (in == NULL) continue;
  2513         if (in->pinned() && !in->is_CFG())
  2514           set_ctrl(in, in->in(0));
  2515         int is_visited = visited.test_set( in->_idx );
  2516         if (!has_node(in)) {  // No controlling input yet?
  2517           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  2518           assert( !is_visited, "visit only once" );
  2519           nstack.push(n, i);  // Save parent node and next input's index.
  2520           nstack_top_n = in;  // Process current input now.
  2521           nstack_top_i = 0;
  2522           done = false;       // Not all n's inputs processed.
  2523           break; // continue while_nstack_nonempty;
  2524         } else if (!is_visited) {
  2525           // This guy has a location picked out for him, but has not yet
  2526           // been visited.  Happens to all CFG nodes, for instance.
  2527           // Visit him using the worklist instead of recursion, to break
  2528           // cycles.  Since he has a location already we do not need to
  2529           // find his location before proceeding with the current Node.
  2530           worklist.push(in);  // Visit this guy later, using worklist
  2533       if (done) {
  2534         // All of n's inputs have been processed, complete post-processing.
  2536         // Compute earliest point this Node can go.
  2537         // CFG, Phi, pinned nodes already know their controlling input.
  2538         if (!has_node(n)) {
  2539           // Record earliest legal location
  2540           set_early_ctrl( n );
  2542         if (nstack.is_empty()) {
  2543           // Finished all nodes on stack.
  2544           // Process next node on the worklist.
  2545           break;
  2547         // Get saved parent node and next input's index.
  2548         nstack_top_n = nstack.node();
  2549         nstack_top_i = nstack.index();
  2550         nstack.pop();
  2552     } // while (true)
  2556 //------------------------------dom_lca_internal--------------------------------
  2557 // Pair-wise LCA
  2558 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  2559   if( !n1 ) return n2;          // Handle NULL original LCA
  2560   assert( n1->is_CFG(), "" );
  2561   assert( n2->is_CFG(), "" );
  2562   // find LCA of all uses
  2563   uint d1 = dom_depth(n1);
  2564   uint d2 = dom_depth(n2);
  2565   while (n1 != n2) {
  2566     if (d1 > d2) {
  2567       n1 =      idom(n1);
  2568       d1 = dom_depth(n1);
  2569     } else if (d1 < d2) {
  2570       n2 =      idom(n2);
  2571       d2 = dom_depth(n2);
  2572     } else {
  2573       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2574       // of the tree might have the same depth.  These sections have
  2575       // to be searched more carefully.
  2577       // Scan up all the n1's with equal depth, looking for n2.
  2578       Node *t1 = idom(n1);
  2579       while (dom_depth(t1) == d1) {
  2580         if (t1 == n2)  return n2;
  2581         t1 = idom(t1);
  2583       // Scan up all the n2's with equal depth, looking for n1.
  2584       Node *t2 = idom(n2);
  2585       while (dom_depth(t2) == d2) {
  2586         if (t2 == n1)  return n1;
  2587         t2 = idom(t2);
  2589       // Move up to a new dominator-depth value as well as up the dom-tree.
  2590       n1 = t1;
  2591       n2 = t2;
  2592       d1 = dom_depth(n1);
  2593       d2 = dom_depth(n2);
  2596   return n1;
  2599 //------------------------------compute_idom-----------------------------------
  2600 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  2601 // IDOMs are correct.
  2602 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  2603   assert( region->is_Region(), "" );
  2604   Node *LCA = NULL;
  2605   for( uint i = 1; i < region->req(); i++ ) {
  2606     if( region->in(i) != C->top() )
  2607       LCA = dom_lca( LCA, region->in(i) );
  2609   return LCA;
  2612 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
  2613   bool had_error = false;
  2614 #ifdef ASSERT
  2615   if (early != C->root()) {
  2616     // Make sure that there's a dominance path from use to LCA
  2617     Node* d = use;
  2618     while (d != LCA) {
  2619       d = idom(d);
  2620       if (d == C->root()) {
  2621         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
  2622         n->dump();
  2623         use->dump();
  2624         had_error = true;
  2625         break;
  2629 #endif
  2630   return had_error;
  2634 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
  2635   // Compute LCA over list of uses
  2636   bool had_error = false;
  2637   Node *LCA = NULL;
  2638   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  2639     Node* c = n->fast_out(i);
  2640     if (_nodes[c->_idx] == NULL)
  2641       continue;                 // Skip the occasional dead node
  2642     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  2643       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  2644         if( c->in(j) == n ) {   // Found matching input?
  2645           Node *use = c->in(0)->in(j);
  2646           if (_verify_only && use->is_top()) continue;
  2647           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2648           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2651     } else {
  2652       // For CFG data-users, use is in the block just prior
  2653       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  2654       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2655       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  2658   assert(!had_error, "bad dominance");
  2659   return LCA;
  2662 //------------------------------get_late_ctrl----------------------------------
  2663 // Compute latest legal control.
  2664 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  2665   assert(early != NULL, "early control should not be NULL");
  2667   Node* LCA = compute_lca_of_uses(n, early);
  2668 #ifdef ASSERT
  2669   if (LCA == C->root() && LCA != early) {
  2670     // def doesn't dominate uses so print some useful debugging output
  2671     compute_lca_of_uses(n, early, true);
  2673 #endif
  2675   // if this is a load, check for anti-dependent stores
  2676   // We use a conservative algorithm to identify potential interfering
  2677   // instructions and for rescheduling the load.  The users of the memory
  2678   // input of this load are examined.  Any use which is not a load and is
  2679   // dominated by early is considered a potentially interfering store.
  2680   // This can produce false positives.
  2681   if (n->is_Load() && LCA != early) {
  2682     Node_List worklist;
  2684     Node *mem = n->in(MemNode::Memory);
  2685     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  2686       Node* s = mem->fast_out(i);
  2687       worklist.push(s);
  2689     while(worklist.size() != 0 && LCA != early) {
  2690       Node* s = worklist.pop();
  2691       if (s->is_Load()) {
  2692         continue;
  2693       } else if (s->is_MergeMem()) {
  2694         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  2695           Node* s1 = s->fast_out(i);
  2696           worklist.push(s1);
  2698       } else {
  2699         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  2700         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  2701         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  2702           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  2708   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  2709   return LCA;
  2712 // true if CFG node d dominates CFG node n
  2713 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  2714   if (d == n)
  2715     return true;
  2716   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  2717   uint dd = dom_depth(d);
  2718   while (dom_depth(n) >= dd) {
  2719     if (n == d)
  2720       return true;
  2721     n = idom(n);
  2723   return false;
  2726 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  2727 // Pair-wise LCA with tags.
  2728 // Tag each index with the node 'tag' currently being processed
  2729 // before advancing up the dominator chain using idom().
  2730 // Later calls that find a match to 'tag' know that this path has already
  2731 // been considered in the current LCA (which is input 'n1' by convention).
  2732 // Since get_late_ctrl() is only called once for each node, the tag array
  2733 // does not need to be cleared between calls to get_late_ctrl().
  2734 // Algorithm trades a larger constant factor for better asymptotic behavior
  2735 //
  2736 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  2737   uint d1 = dom_depth(n1);
  2738   uint d2 = dom_depth(n2);
  2740   do {
  2741     if (d1 > d2) {
  2742       // current lca is deeper than n2
  2743       _dom_lca_tags.map(n1->_idx, tag);
  2744       n1 =      idom(n1);
  2745       d1 = dom_depth(n1);
  2746     } else if (d1 < d2) {
  2747       // n2 is deeper than current lca
  2748       Node *memo = _dom_lca_tags[n2->_idx];
  2749       if( memo == tag ) {
  2750         return n1;    // Return the current LCA
  2752       _dom_lca_tags.map(n2->_idx, tag);
  2753       n2 =      idom(n2);
  2754       d2 = dom_depth(n2);
  2755     } else {
  2756       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2757       // of the tree might have the same depth.  These sections have
  2758       // to be searched more carefully.
  2760       // Scan up all the n1's with equal depth, looking for n2.
  2761       _dom_lca_tags.map(n1->_idx, tag);
  2762       Node *t1 = idom(n1);
  2763       while (dom_depth(t1) == d1) {
  2764         if (t1 == n2)  return n2;
  2765         _dom_lca_tags.map(t1->_idx, tag);
  2766         t1 = idom(t1);
  2768       // Scan up all the n2's with equal depth, looking for n1.
  2769       _dom_lca_tags.map(n2->_idx, tag);
  2770       Node *t2 = idom(n2);
  2771       while (dom_depth(t2) == d2) {
  2772         if (t2 == n1)  return n1;
  2773         _dom_lca_tags.map(t2->_idx, tag);
  2774         t2 = idom(t2);
  2776       // Move up to a new dominator-depth value as well as up the dom-tree.
  2777       n1 = t1;
  2778       n2 = t2;
  2779       d1 = dom_depth(n1);
  2780       d2 = dom_depth(n2);
  2782   } while (n1 != n2);
  2783   return n1;
  2786 //------------------------------init_dom_lca_tags------------------------------
  2787 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  2788 // Intended use does not involve any growth for the array, so it could
  2789 // be of fixed size.
  2790 void PhaseIdealLoop::init_dom_lca_tags() {
  2791   uint limit = C->unique() + 1;
  2792   _dom_lca_tags.map( limit, NULL );
  2793 #ifdef ASSERT
  2794   for( uint i = 0; i < limit; ++i ) {
  2795     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  2797 #endif // ASSERT
  2800 //------------------------------clear_dom_lca_tags------------------------------
  2801 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  2802 // Intended use does not involve any growth for the array, so it could
  2803 // be of fixed size.
  2804 void PhaseIdealLoop::clear_dom_lca_tags() {
  2805   uint limit = C->unique() + 1;
  2806   _dom_lca_tags.map( limit, NULL );
  2807   _dom_lca_tags.clear();
  2808 #ifdef ASSERT
  2809   for( uint i = 0; i < limit; ++i ) {
  2810     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  2812 #endif // ASSERT
  2815 //------------------------------build_loop_late--------------------------------
  2816 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2817 // Second pass finds latest legal placement, and ideal loop placement.
  2818 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  2819   while (worklist.size() != 0) {
  2820     Node *n = worklist.pop();
  2821     // Only visit once
  2822     if (visited.test_set(n->_idx)) continue;
  2823     uint cnt = n->outcnt();
  2824     uint   i = 0;
  2825     while (true) {
  2826       assert( _nodes[n->_idx], "no dead nodes" );
  2827       // Visit all children
  2828       if (i < cnt) {
  2829         Node* use = n->raw_out(i);
  2830         ++i;
  2831         // Check for dead uses.  Aggressively prune such junk.  It might be
  2832         // dead in the global sense, but still have local uses so I cannot
  2833         // easily call 'remove_dead_node'.
  2834         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  2835           // Due to cycles, we might not hit the same fixed point in the verify
  2836           // pass as we do in the regular pass.  Instead, visit such phis as
  2837           // simple uses of the loop head.
  2838           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  2839             if( !visited.test(use->_idx) )
  2840               worklist.push(use);
  2841           } else if( !visited.test_set(use->_idx) ) {
  2842             nstack.push(n, i); // Save parent and next use's index.
  2843             n   = use;         // Process all children of current use.
  2844             cnt = use->outcnt();
  2845             i   = 0;
  2847         } else {
  2848           // Do not visit around the backedge of loops via data edges.
  2849           // push dead code onto a worklist
  2850           _deadlist.push(use);
  2852       } else {
  2853         // All of n's children have been processed, complete post-processing.
  2854         build_loop_late_post(n);
  2855         if (nstack.is_empty()) {
  2856           // Finished all nodes on stack.
  2857           // Process next node on the worklist.
  2858           break;
  2860         // Get saved parent node and next use's index. Visit the rest of uses.
  2861         n   = nstack.node();
  2862         cnt = n->outcnt();
  2863         i   = nstack.index();
  2864         nstack.pop();
  2870 //------------------------------build_loop_late_post---------------------------
  2871 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2872 // Second pass finds latest legal placement, and ideal loop placement.
  2873 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
  2875   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
  2876     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  2879   // CFG and pinned nodes already handled
  2880   if( n->in(0) ) {
  2881     if( n->in(0)->is_top() ) return; // Dead?
  2883     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  2884     // _must_ be pinned (they have to observe their control edge of course).
  2885     // Unlike Stores (which modify an unallocable resource, the memory
  2886     // state), Mods/Loads can float around.  So free them up.
  2887     bool pinned = true;
  2888     switch( n->Opcode() ) {
  2889     case Op_DivI:
  2890     case Op_DivF:
  2891     case Op_DivD:
  2892     case Op_ModI:
  2893     case Op_ModF:
  2894     case Op_ModD:
  2895     case Op_LoadB:              // Same with Loads; they can sink
  2896     case Op_LoadUS:             // during loop optimizations.
  2897     case Op_LoadD:
  2898     case Op_LoadF:
  2899     case Op_LoadI:
  2900     case Op_LoadKlass:
  2901     case Op_LoadNKlass:
  2902     case Op_LoadL:
  2903     case Op_LoadS:
  2904     case Op_LoadP:
  2905     case Op_LoadN:
  2906     case Op_LoadRange:
  2907     case Op_LoadD_unaligned:
  2908     case Op_LoadL_unaligned:
  2909     case Op_StrComp:            // Does a bunch of load-like effects
  2910     case Op_StrEquals:
  2911     case Op_StrIndexOf:
  2912     case Op_AryEq:
  2913       pinned = false;
  2915     if( pinned ) {
  2916       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  2917       if( !chosen_loop->_child )       // Inner loop?
  2918         chosen_loop->_body.push(n); // Collect inner loops
  2919       return;
  2921   } else {                      // No slot zero
  2922     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  2923       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  2924       return;
  2926     assert(!n->is_CFG() || n->outcnt() == 0, "");
  2929   // Do I have a "safe range" I can select over?
  2930   Node *early = get_ctrl(n);// Early location already computed
  2932   // Compute latest point this Node can go
  2933   Node *LCA = get_late_ctrl( n, early );
  2934   // LCA is NULL due to uses being dead
  2935   if( LCA == NULL ) {
  2936 #ifdef ASSERT
  2937     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  2938       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  2940 #endif
  2941     _nodes.map(n->_idx, 0);     // This node is useless
  2942     _deadlist.push(n);
  2943     return;
  2945   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  2947   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  2948   Node *least = legal;          // Best legal position so far
  2949   while( early != legal ) {     // While not at earliest legal
  2950 #ifdef ASSERT
  2951     if (legal->is_Start() && !early->is_Root()) {
  2952       // Bad graph. Print idom path and fail.
  2953       tty->print_cr( "Bad graph detected in build_loop_late");
  2954       tty->print("n: ");n->dump(); tty->cr();
  2955       tty->print("early: ");early->dump(); tty->cr();
  2956       int ct = 0;
  2957       Node *dbg_legal = LCA;
  2958       while(!dbg_legal->is_Start() && ct < 100) {
  2959         tty->print("idom[%d] ",ct); dbg_legal->dump(); tty->cr();
  2960         ct++;
  2961         dbg_legal = idom(dbg_legal);
  2963       assert(false, "Bad graph detected in build_loop_late");
  2965 #endif
  2966     // Find least loop nesting depth
  2967     legal = idom(legal);        // Bump up the IDOM tree
  2968     // Check for lower nesting depth
  2969     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  2970       least = legal;
  2972   assert(early == legal || legal != C->root(), "bad dominance of inputs");
  2974   // Try not to place code on a loop entry projection
  2975   // which can inhibit range check elimination.
  2976   if (least != early) {
  2977     Node* ctrl_out = least->unique_ctrl_out();
  2978     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  2979         least == ctrl_out->in(LoopNode::EntryControl)) {
  2980       Node* least_dom = idom(least);
  2981       if (get_loop(least_dom)->is_member(get_loop(least))) {
  2982         least = least_dom;
  2987 #ifdef ASSERT
  2988   // If verifying, verify that 'verify_me' has a legal location
  2989   // and choose it as our location.
  2990   if( _verify_me ) {
  2991     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
  2992     Node *legal = LCA;
  2993     while( early != legal ) {   // While not at earliest legal
  2994       if( legal == v_ctrl ) break;  // Check for prior good location
  2995       legal = idom(legal)      ;// Bump up the IDOM tree
  2997     // Check for prior good location
  2998     if( legal == v_ctrl ) least = legal; // Keep prior if found
  3000 #endif
  3002   // Assign discovered "here or above" point
  3003   least = find_non_split_ctrl(least);
  3004   set_ctrl(n, least);
  3006   // Collect inner loop bodies
  3007   IdealLoopTree *chosen_loop = get_loop(least);
  3008   if( !chosen_loop->_child )   // Inner loop?
  3009     chosen_loop->_body.push(n);// Collect inner loops
  3012 #ifndef PRODUCT
  3013 //------------------------------dump-------------------------------------------
  3014 void PhaseIdealLoop::dump( ) const {
  3015   ResourceMark rm;
  3016   Arena* arena = Thread::current()->resource_area();
  3017   Node_Stack stack(arena, C->unique() >> 2);
  3018   Node_List rpo_list;
  3019   VectorSet visited(arena);
  3020   visited.set(C->top()->_idx);
  3021   rpo( C->root(), stack, visited, rpo_list );
  3022   // Dump root loop indexed by last element in PO order
  3023   dump( _ltree_root, rpo_list.size(), rpo_list );
  3026 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  3027   loop->dump_head();
  3029   // Now scan for CFG nodes in the same loop
  3030   for( uint j=idx; j > 0;  j-- ) {
  3031     Node *n = rpo_list[j-1];
  3032     if( !_nodes[n->_idx] )      // Skip dead nodes
  3033       continue;
  3034     if( get_loop(n) != loop ) { // Wrong loop nest
  3035       if( get_loop(n)->_head == n &&    // Found nested loop?
  3036           get_loop(n)->_parent == loop )
  3037         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  3038       continue;
  3041     // Dump controlling node
  3042     for( uint x = 0; x < loop->_nest; x++ )
  3043       tty->print("  ");
  3044     tty->print("C");
  3045     if( n == C->root() ) {
  3046       n->dump();
  3047     } else {
  3048       Node* cached_idom   = idom_no_update(n);
  3049       Node *computed_idom = n->in(0);
  3050       if( n->is_Region() ) {
  3051         computed_idom = compute_idom(n);
  3052         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  3053         // any MultiBranch ctrl node), so apply a similar transform to
  3054         // the cached idom returned from idom_no_update.
  3055         cached_idom = find_non_split_ctrl(cached_idom);
  3057       tty->print(" ID:%d",computed_idom->_idx);
  3058       n->dump();
  3059       if( cached_idom != computed_idom ) {
  3060         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  3061                       computed_idom->_idx, cached_idom->_idx);
  3064     // Dump nodes it controls
  3065     for( uint k = 0; k < _nodes.Size(); k++ ) {
  3066       // (k < C->unique() && get_ctrl(find(k)) == n)
  3067       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  3068         Node *m = C->root()->find(k);
  3069         if( m && m->outcnt() > 0 ) {
  3070           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  3071             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  3072                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  3074           for( uint j = 0; j < loop->_nest; j++ )
  3075             tty->print("  ");
  3076           tty->print(" ");
  3077           m->dump();
  3084 // Collect a R-P-O for the whole CFG.
  3085 // Result list is in post-order (scan backwards for RPO)
  3086 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  3087   stk.push(start, 0);
  3088   visited.set(start->_idx);
  3090   while (stk.is_nonempty()) {
  3091     Node* m   = stk.node();
  3092     uint  idx = stk.index();
  3093     if (idx < m->outcnt()) {
  3094       stk.set_index(idx + 1);
  3095       Node* n = m->raw_out(idx);
  3096       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  3097         stk.push(n, 0);
  3099     } else {
  3100       rpo_list.push(m);
  3101       stk.pop();
  3105 #endif
  3108 //=============================================================================
  3109 //------------------------------LoopTreeIterator-----------------------------------
  3111 // Advance to next loop tree using a preorder, left-to-right traversal.
  3112 void LoopTreeIterator::next() {
  3113   assert(!done(), "must not be done.");
  3114   if (_curnt->_child != NULL) {
  3115     _curnt = _curnt->_child;
  3116   } else if (_curnt->_next != NULL) {
  3117     _curnt = _curnt->_next;
  3118   } else {
  3119     while (_curnt != _root && _curnt->_next == NULL) {
  3120       _curnt = _curnt->_parent;
  3122     if (_curnt == _root) {
  3123       _curnt = NULL;
  3124       assert(done(), "must be done.");
  3125     } else {
  3126       assert(_curnt->_next != NULL, "must be more to do");
  3127       _curnt = _curnt->_next;

mercurial