src/cpu/ppc/vm/ppc.ad

Fri, 02 May 2014 14:53:06 +0200

author
goetz
date
Fri, 02 May 2014 14:53:06 +0200
changeset 6660
63c5920a038d
parent 6522
3a55cf1e3c9f
child 6723
0bf37f737702
permissions
-rw-r--r--

8042309: Some bugfixes for the ppc64 port.
Reviewed-by: kvn

     1 //
     2 // Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // Copyright 2012, 2013 SAP AG. All rights reserved.
     4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5 //
     6 // This code is free software; you can redistribute it and/or modify it
     7 // under the terms of the GNU General Public License version 2 only, as
     8 // published by the Free Software Foundation.
     9 //
    10 // This code is distributed in the hope that it will be useful, but WITHOUT
    11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13 // version 2 for more details (a copy is included in the LICENSE file that
    14 // accompanied this code).
    15 //
    16 // You should have received a copy of the GNU General Public License version
    17 // 2 along with this work; if not, write to the Free Software Foundation,
    18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19 //
    20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21 // or visit www.oracle.com if you need additional information or have any
    22 // questions.
    23 //
    24 //
    26 //
    27 // PPC64 Architecture Description File
    28 //
    30 //----------REGISTER DEFINITION BLOCK------------------------------------------
    31 // This information is used by the matcher and the register allocator to
    32 // describe individual registers and classes of registers within the target
    33 // architecture.
    34 register %{
    35 //----------Architecture Description Register Definitions----------------------
    36 // General Registers
    37 // "reg_def"  name (register save type, C convention save type,
    38 //                  ideal register type, encoding);
    39 //
    40 // Register Save Types:
    41 //
    42 //   NS  = No-Save:     The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method, &
    44 //                      that they do not need to be saved at call sites.
    45 //
    46 //   SOC = Save-On-Call: The register allocator assumes that these registers
    47 //                      can be used without saving upon entry to the method,
    48 //                      but that they must be saved at call sites.
    49 //                      These are called "volatiles" on ppc.
    50 //
    51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, but they do not need to be saved at call
    54 //                      sites.
    55 //                      These are called "nonvolatiles" on ppc.
    56 //
    57 //   AS  = Always-Save:   The register allocator assumes that these registers
    58 //                      must be saved before using them upon entry to the
    59 //                      method, & that they must be saved at call sites.
    60 //
    61 // Ideal Register Type is used to determine how to save & restore a
    62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
    64 //
    65 // The encoding number is the actual bit-pattern placed into the opcodes.
    66 //
    67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
    68 // Supplement Version 1.7 as of 2003-10-29.
    69 //
    70 // For each 64-bit register we must define two registers: the register
    71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
    72 // e.g. R3_H, which is needed by the allocator, but is not used
    73 // for stores, loads, etc.
    75 // ----------------------------
    76 // Integer/Long Registers
    77 // ----------------------------
    79   // PPC64 has 32 64-bit integer registers.
    81   // types: v = volatile, nv = non-volatile, s = system
    82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
    83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
    84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
    85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
    86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
    87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
    88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
    89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
    90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
    91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
    92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
    93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
    94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
    95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
    96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
    97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
    98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
    99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
   100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
   101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
   102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
   103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
   104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
   105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
   106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
   107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
   108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
   109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
   110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
   111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
   112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
   113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
   114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
   115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
   116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
   117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
   118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
   119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
   120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
   121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
   122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
   123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
   124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
   125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
   126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
   127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
   128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
   129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
   130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
   131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
   132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
   133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
   134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
   135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
   136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
   137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
   138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
   139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
   140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
   141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
   142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
   143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
   144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
   145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
   148 // ----------------------------
   149 // Float/Double Registers
   150 // ----------------------------
   152   // Double Registers
   153   // The rules of ADL require that double registers be defined in pairs.
   154   // Each pair must be two 32-bit values, but not necessarily a pair of
   155   // single float registers. In each pair, ADLC-assigned register numbers
   156   // must be adjacent, with the lower number even. Finally, when the
   157   // CPU stores such a register pair to memory, the word associated with
   158   // the lower ADLC-assigned number must be stored to the lower address.
   160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
   161   // or double precision floating-point value.
   163   // types: v = volatile, nv = non-volatile, s = system
   164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
   165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
   166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
   167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
   168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
   169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
   170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
   171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
   172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
   173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
   174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
   175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
   176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
   177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
   178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
   179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
   180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
   181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
   182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
   183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
   184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
   185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
   186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
   187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
   188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
   189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
   190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
   191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
   192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
   193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
   194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
   195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
   196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
   197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
   198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
   199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
   200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
   201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
   202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
   203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
   204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
   205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
   206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
   207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
   208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
   209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
   210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
   211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
   212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
   213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
   214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
   215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
   216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
   217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
   218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
   219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
   220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
   221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
   222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
   223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
   224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
   225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
   226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
   227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
   229 // ----------------------------
   230 // Special Registers
   231 // ----------------------------
   233 // Condition Codes Flag Registers
   235   // PPC64 has 8 condition code "registers" which are all contained
   236   // in the CR register.
   238   // types: v = volatile, nv = non-volatile, s = system
   239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
   240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
   241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
   242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
   243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
   244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
   245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
   246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
   248   // Special registers of PPC64
   250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
   251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
   252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
   253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
   254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
   255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
   258 // ----------------------------
   259 // Specify priority of register selection within phases of register
   260 // allocation. Highest priority is first. A useful heuristic is to
   261 // give registers a low priority when they are required by machine
   262 // instructions, like EAX and EDX on I486, and choose no-save registers
   263 // before save-on-call, & save-on-call before save-on-entry. Registers
   264 // which participate in fixed calling sequences should come last.
   265 // Registers which are used as pairs must fall on an even boundary.
   267 // It's worth about 1% on SPEC geomean to get this right.
   269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
   270 // in adGlobals_ppc64.hpp which defines the <register>_num values, e.g.
   271 // R3_num. Therefore, R3_num may not be (and in reality is not)
   272 // the same as R3->encoding()! Furthermore, we cannot make any
   273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
   274 // Additionally, the function
   275 //   static enum RC rc_class(OptoReg::Name reg )
   276 // maps a given <register>_num value to its chunk type (except for flags)
   277 // and its current implementation relies on chunk0 and chunk1 having a
   278 // size of 64 each.
   280 // If you change this allocation class, please have a look at the
   281 // default values for the parameters RoundRobinIntegerRegIntervalStart
   282 // and RoundRobinFloatRegIntervalStart
   284 alloc_class chunk0 (
   285   // Chunk0 contains *all* 64 integer registers halves.
   287   // "non-volatile" registers
   288   R14, R14_H,
   289   R15, R15_H,
   290   R17, R17_H,
   291   R18, R18_H,
   292   R19, R19_H,
   293   R20, R20_H,
   294   R21, R21_H,
   295   R22, R22_H,
   296   R23, R23_H,
   297   R24, R24_H,
   298   R25, R25_H,
   299   R26, R26_H,
   300   R27, R27_H,
   301   R28, R28_H,
   302   R29, R29_H,
   303   R30, R30_H,
   304   R31, R31_H,
   306   // scratch/special registers
   307   R11, R11_H,
   308   R12, R12_H,
   310   // argument registers
   311   R10, R10_H,
   312   R9,  R9_H,
   313   R8,  R8_H,
   314   R7,  R7_H,
   315   R6,  R6_H,
   316   R5,  R5_H,
   317   R4,  R4_H,
   318   R3,  R3_H,
   320   // special registers, not available for allocation
   321   R16, R16_H,     // R16_thread
   322   R13, R13_H,     // system thread id
   323   R2,  R2_H,      // may be used for TOC
   324   R1,  R1_H,      // SP
   325   R0,  R0_H       // R0 (scratch)
   326 );
   328 // If you change this allocation class, please have a look at the
   329 // default values for the parameters RoundRobinIntegerRegIntervalStart
   330 // and RoundRobinFloatRegIntervalStart
   332 alloc_class chunk1 (
   333   // Chunk1 contains *all* 64 floating-point registers halves.
   335   // scratch register
   336   F0,  F0_H,
   338   // argument registers
   339   F13, F13_H,
   340   F12, F12_H,
   341   F11, F11_H,
   342   F10, F10_H,
   343   F9,  F9_H,
   344   F8,  F8_H,
   345   F7,  F7_H,
   346   F6,  F6_H,
   347   F5,  F5_H,
   348   F4,  F4_H,
   349   F3,  F3_H,
   350   F2,  F2_H,
   351   F1,  F1_H,
   353   // non-volatile registers
   354   F14, F14_H,
   355   F15, F15_H,
   356   F16, F16_H,
   357   F17, F17_H,
   358   F18, F18_H,
   359   F19, F19_H,
   360   F20, F20_H,
   361   F21, F21_H,
   362   F22, F22_H,
   363   F23, F23_H,
   364   F24, F24_H,
   365   F25, F25_H,
   366   F26, F26_H,
   367   F27, F27_H,
   368   F28, F28_H,
   369   F29, F29_H,
   370   F30, F30_H,
   371   F31, F31_H
   372 );
   374 alloc_class chunk2 (
   375   // Chunk2 contains *all* 8 condition code registers.
   377   CCR0,
   378   CCR1,
   379   CCR2,
   380   CCR3,
   381   CCR4,
   382   CCR5,
   383   CCR6,
   384   CCR7
   385 );
   387 alloc_class chunk3 (
   388   // special registers
   389   // These registers are not allocated, but used for nodes generated by postalloc expand.
   390   SR_XER,
   391   SR_LR,
   392   SR_CTR,
   393   SR_VRSAVE,
   394   SR_SPEFSCR,
   395   SR_PPR
   396 );
   398 //-------Architecture Description Register Classes-----------------------
   400 // Several register classes are automatically defined based upon
   401 // information in this architecture description.
   403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
   405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   407 //
   409 // ----------------------------
   410 // 32 Bit Register Classes
   411 // ----------------------------
   413 // We specify registers twice, once as read/write, and once read-only.
   414 // We use the read-only registers for source operands. With this, we
   415 // can include preset read only registers in this class, as a hard-coded
   416 // '0'-register. (We used to simulate this on ppc.)
   418 // 32 bit registers that can be read and written i.e. these registers
   419 // can be dest (or src) of normal instructions.
   420 reg_class bits32_reg_rw(
   421 /*R0*/              // R0
   422 /*R1*/              // SP
   423   R2,               // TOC
   424   R3,
   425   R4,
   426   R5,
   427   R6,
   428   R7,
   429   R8,
   430   R9,
   431   R10,
   432   R11,
   433   R12,
   434 /*R13*/             // system thread id
   435   R14,
   436   R15,
   437 /*R16*/             // R16_thread
   438   R17,
   439   R18,
   440   R19,
   441   R20,
   442   R21,
   443   R22,
   444   R23,
   445   R24,
   446   R25,
   447   R26,
   448   R27,
   449   R28,
   450 /*R29*/             // global TOC
   451 /*R30*/             // Narrow Oop Base
   452   R31
   453 );
   455 // 32 bit registers that can only be read i.e. these registers can
   456 // only be src of all instructions.
   457 reg_class bits32_reg_ro(
   458 /*R0*/              // R0
   459 /*R1*/              // SP
   460   R2                // TOC
   461   R3,
   462   R4,
   463   R5,
   464   R6,
   465   R7,
   466   R8,
   467   R9,
   468   R10,
   469   R11,
   470   R12,
   471 /*R13*/             // system thread id
   472   R14,
   473   R15,
   474 /*R16*/             // R16_thread
   475   R17,
   476   R18,
   477   R19,
   478   R20,
   479   R21,
   480   R22,
   481   R23,
   482   R24,
   483   R25,
   484   R26,
   485   R27,
   486   R28,
   487 /*R29*/
   488 /*R30*/             // Narrow Oop Base
   489   R31
   490 );
   492 // Complement-required-in-pipeline operands for narrow oops.
   493 reg_class bits32_reg_ro_not_complement (
   494 /*R0*/     // R0
   495   R1,      // SP
   496   R2,      // TOC
   497   R3,
   498   R4,
   499   R5,
   500   R6,
   501   R7,
   502   R8,
   503   R9,
   504   R10,
   505   R11,
   506   R12,
   507 /*R13,*/   // system thread id
   508   R14,
   509   R15,
   510   R16,    // R16_thread
   511   R17,
   512   R18,
   513   R19,
   514   R20,
   515   R21,
   516   R22,
   517 /*R23,
   518   R24,
   519   R25,
   520   R26,
   521   R27,
   522   R28,*/
   523 /*R29,*/ // TODO: let allocator handle TOC!!
   524 /*R30,*/
   525   R31
   526 );
   528 // Complement-required-in-pipeline operands for narrow oops.
   529 // See 64-bit declaration.
   530 reg_class bits32_reg_ro_complement (
   531   R23,
   532   R24,
   533   R25,
   534   R26,
   535   R27,
   536   R28
   537 );
   539 reg_class rscratch1_bits32_reg(R11);
   540 reg_class rscratch2_bits32_reg(R12);
   541 reg_class rarg1_bits32_reg(R3);
   542 reg_class rarg2_bits32_reg(R4);
   543 reg_class rarg3_bits32_reg(R5);
   544 reg_class rarg4_bits32_reg(R6);
   546 // ----------------------------
   547 // 64 Bit Register Classes
   548 // ----------------------------
   549 // 64-bit build means 64-bit pointers means hi/lo pairs
   551 reg_class rscratch1_bits64_reg(R11_H, R11);
   552 reg_class rscratch2_bits64_reg(R12_H, R12);
   553 reg_class rarg1_bits64_reg(R3_H, R3);
   554 reg_class rarg2_bits64_reg(R4_H, R4);
   555 reg_class rarg3_bits64_reg(R5_H, R5);
   556 reg_class rarg4_bits64_reg(R6_H, R6);
   557 // Thread register, 'written' by tlsLoadP, see there.
   558 reg_class thread_bits64_reg(R16_H, R16);
   560 reg_class r19_bits64_reg(R19_H, R19);
   562 // 64 bit registers that can be read and written i.e. these registers
   563 // can be dest (or src) of normal instructions.
   564 reg_class bits64_reg_rw(
   565 /*R0_H,  R0*/     // R0
   566 /*R1_H,  R1*/     // SP
   567   R2_H,  R2,      // TOC
   568   R3_H,  R3,
   569   R4_H,  R4,
   570   R5_H,  R5,
   571   R6_H,  R6,
   572   R7_H,  R7,
   573   R8_H,  R8,
   574   R9_H,  R9,
   575   R10_H, R10,
   576   R11_H, R11,
   577   R12_H, R12,
   578 /*R13_H, R13*/   // system thread id
   579   R14_H, R14,
   580   R15_H, R15,
   581 /*R16_H, R16*/   // R16_thread
   582   R17_H, R17,
   583   R18_H, R18,
   584   R19_H, R19,
   585   R20_H, R20,
   586   R21_H, R21,
   587   R22_H, R22,
   588   R23_H, R23,
   589   R24_H, R24,
   590   R25_H, R25,
   591   R26_H, R26,
   592   R27_H, R27,
   593   R28_H, R28,
   594 /*R29_H, R29*/
   595 /*R30_H, R30*/
   596   R31_H, R31
   597 );
   599 // 64 bit registers used excluding r2, r11 and r12
   600 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
   601 // r2, r11 and r12 internally.
   602 reg_class bits64_reg_leaf_call(
   603 /*R0_H,  R0*/     // R0
   604 /*R1_H,  R1*/     // SP
   605 /*R2_H,  R2*/     // TOC
   606   R3_H,  R3,
   607   R4_H,  R4,
   608   R5_H,  R5,
   609   R6_H,  R6,
   610   R7_H,  R7,
   611   R8_H,  R8,
   612   R9_H,  R9,
   613   R10_H, R10,
   614 /*R11_H, R11*/
   615 /*R12_H, R12*/
   616 /*R13_H, R13*/   // system thread id
   617   R14_H, R14,
   618   R15_H, R15,
   619 /*R16_H, R16*/   // R16_thread
   620   R17_H, R17,
   621   R18_H, R18,
   622   R19_H, R19,
   623   R20_H, R20,
   624   R21_H, R21,
   625   R22_H, R22,
   626   R23_H, R23,
   627   R24_H, R24,
   628   R25_H, R25,
   629   R26_H, R26,
   630   R27_H, R27,
   631   R28_H, R28,
   632 /*R29_H, R29*/
   633 /*R30_H, R30*/
   634   R31_H, R31
   635 );
   637 // Used to hold the TOC to avoid collisions with expanded DynamicCall
   638 // which uses r19 as inline cache internally and expanded LeafCall which uses
   639 // r2, r11 and r12 internally.
   640 reg_class bits64_constant_table_base(
   641 /*R0_H,  R0*/     // R0
   642 /*R1_H,  R1*/     // SP
   643 /*R2_H,  R2*/     // TOC
   644   R3_H,  R3,
   645   R4_H,  R4,
   646   R5_H,  R5,
   647   R6_H,  R6,
   648   R7_H,  R7,
   649   R8_H,  R8,
   650   R9_H,  R9,
   651   R10_H, R10,
   652 /*R11_H, R11*/
   653 /*R12_H, R12*/
   654 /*R13_H, R13*/   // system thread id
   655   R14_H, R14,
   656   R15_H, R15,
   657 /*R16_H, R16*/   // R16_thread
   658   R17_H, R17,
   659   R18_H, R18,
   660 /*R19_H, R19*/
   661   R20_H, R20,
   662   R21_H, R21,
   663   R22_H, R22,
   664   R23_H, R23,
   665   R24_H, R24,
   666   R25_H, R25,
   667   R26_H, R26,
   668   R27_H, R27,
   669   R28_H, R28,
   670 /*R29_H, R29*/
   671 /*R30_H, R30*/
   672   R31_H, R31
   673 );
   675 // 64 bit registers that can only be read i.e. these registers can
   676 // only be src of all instructions.
   677 reg_class bits64_reg_ro(
   678 /*R0_H,  R0*/     // R0
   679   R1_H,  R1,
   680   R2_H,  R2,       // TOC
   681   R3_H,  R3,
   682   R4_H,  R4,
   683   R5_H,  R5,
   684   R6_H,  R6,
   685   R7_H,  R7,
   686   R8_H,  R8,
   687   R9_H,  R9,
   688   R10_H, R10,
   689   R11_H, R11,
   690   R12_H, R12,
   691 /*R13_H, R13*/   // system thread id
   692   R14_H, R14,
   693   R15_H, R15,
   694   R16_H, R16,    // R16_thread
   695   R17_H, R17,
   696   R18_H, R18,
   697   R19_H, R19,
   698   R20_H, R20,
   699   R21_H, R21,
   700   R22_H, R22,
   701   R23_H, R23,
   702   R24_H, R24,
   703   R25_H, R25,
   704   R26_H, R26,
   705   R27_H, R27,
   706   R28_H, R28,
   707 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
   708 /*R30_H, R30,*/
   709   R31_H, R31
   710 );
   712 // Complement-required-in-pipeline operands.
   713 reg_class bits64_reg_ro_not_complement (
   714 /*R0_H,  R0*/     // R0
   715   R1_H,  R1,      // SP
   716   R2_H,  R2,      // TOC
   717   R3_H,  R3,
   718   R4_H,  R4,
   719   R5_H,  R5,
   720   R6_H,  R6,
   721   R7_H,  R7,
   722   R8_H,  R8,
   723   R9_H,  R9,
   724   R10_H, R10,
   725   R11_H, R11,
   726   R12_H, R12,
   727 /*R13_H, R13*/   // system thread id
   728   R14_H, R14,
   729   R15_H, R15,
   730   R16_H, R16,    // R16_thread
   731   R17_H, R17,
   732   R18_H, R18,
   733   R19_H, R19,
   734   R20_H, R20,
   735   R21_H, R21,
   736   R22_H, R22,
   737 /*R23_H, R23,
   738   R24_H, R24,
   739   R25_H, R25,
   740   R26_H, R26,
   741   R27_H, R27,
   742   R28_H, R28,*/
   743 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
   744 /*R30_H, R30,*/
   745   R31_H, R31
   746 );
   748 // Complement-required-in-pipeline operands.
   749 // This register mask is used for the trap instructions that implement
   750 // the null checks on AIX. The trap instruction first computes the
   751 // complement of the value it shall trap on. Because of this, the
   752 // instruction can not be scheduled in the same cycle as an other
   753 // instruction reading the normal value of the same register. So we
   754 // force the value to check into 'bits64_reg_ro_not_complement'
   755 // and then copy it to 'bits64_reg_ro_complement' for the trap.
   756 reg_class bits64_reg_ro_complement (
   757   R23_H, R23,
   758   R24_H, R24,
   759   R25_H, R25,
   760   R26_H, R26,
   761   R27_H, R27,
   762   R28_H, R28
   763 );
   766 // ----------------------------
   767 // Special Class for Condition Code Flags Register
   769 reg_class int_flags(
   770 /*CCR0*/             // scratch
   771 /*CCR1*/             // scratch
   772 /*CCR2*/             // nv!
   773 /*CCR3*/             // nv!
   774 /*CCR4*/             // nv!
   775   CCR5,
   776   CCR6,
   777   CCR7
   778 );
   780 reg_class int_flags_CR0(CCR0);
   781 reg_class int_flags_CR1(CCR1);
   782 reg_class int_flags_CR6(CCR6);
   783 reg_class ctr_reg(SR_CTR);
   785 // ----------------------------
   786 // Float Register Classes
   787 // ----------------------------
   789 reg_class flt_reg(
   790 /*F0*/              // scratch
   791   F1,
   792   F2,
   793   F3,
   794   F4,
   795   F5,
   796   F6,
   797   F7,
   798   F8,
   799   F9,
   800   F10,
   801   F11,
   802   F12,
   803   F13,
   804   F14,              // nv!
   805   F15,              // nv!
   806   F16,              // nv!
   807   F17,              // nv!
   808   F18,              // nv!
   809   F19,              // nv!
   810   F20,              // nv!
   811   F21,              // nv!
   812   F22,              // nv!
   813   F23,              // nv!
   814   F24,              // nv!
   815   F25,              // nv!
   816   F26,              // nv!
   817   F27,              // nv!
   818   F28,              // nv!
   819   F29,              // nv!
   820   F30,              // nv!
   821   F31               // nv!
   822 );
   824 // Double precision float registers have virtual `high halves' that
   825 // are needed by the allocator.
   826 reg_class dbl_reg(
   827 /*F0,  F0_H*/     // scratch
   828   F1,  F1_H,
   829   F2,  F2_H,
   830   F3,  F3_H,
   831   F4,  F4_H,
   832   F5,  F5_H,
   833   F6,  F6_H,
   834   F7,  F7_H,
   835   F8,  F8_H,
   836   F9,  F9_H,
   837   F10, F10_H,
   838   F11, F11_H,
   839   F12, F12_H,
   840   F13, F13_H,
   841   F14, F14_H,    // nv!
   842   F15, F15_H,    // nv!
   843   F16, F16_H,    // nv!
   844   F17, F17_H,    // nv!
   845   F18, F18_H,    // nv!
   846   F19, F19_H,    // nv!
   847   F20, F20_H,    // nv!
   848   F21, F21_H,    // nv!
   849   F22, F22_H,    // nv!
   850   F23, F23_H,    // nv!
   851   F24, F24_H,    // nv!
   852   F25, F25_H,    // nv!
   853   F26, F26_H,    // nv!
   854   F27, F27_H,    // nv!
   855   F28, F28_H,    // nv!
   856   F29, F29_H,    // nv!
   857   F30, F30_H,    // nv!
   858   F31, F31_H     // nv!
   859 );
   861  %}
   863 //----------DEFINITION BLOCK---------------------------------------------------
   864 // Define name --> value mappings to inform the ADLC of an integer valued name
   865 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   866 // Format:
   867 //        int_def  <name>         ( <int_value>, <expression>);
   868 // Generated Code in ad_<arch>.hpp
   869 //        #define  <name>   (<expression>)
   870 //        // value == <int_value>
   871 // Generated code in ad_<arch>.cpp adlc_verification()
   872 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   873 //
   874 definitions %{
   875   // The default cost (of an ALU instruction).
   876   int_def DEFAULT_COST_LOW        (     30,      30);
   877   int_def DEFAULT_COST            (    100,     100);
   878   int_def HUGE_COST               (1000000, 1000000);
   880   // Memory refs
   881   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
   882   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
   884   // Branches are even more expensive.
   885   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
   886   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
   887 %}
   890 //----------SOURCE BLOCK-------------------------------------------------------
   891 // This is a block of C++ code which provides values, functions, and
   892 // definitions necessary in the rest of the architecture description.
   893 source_hpp %{
   894   // Header information of the source block.
   895   // Method declarations/definitions which are used outside
   896   // the ad-scope can conveniently be defined here.
   897   //
   898   // To keep related declarations/definitions/uses close together,
   899   // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   901   // Returns true if Node n is followed by a MemBar node that
   902   // will do an acquire. If so, this node must not do the acquire
   903   // operation.
   904   bool followed_by_acquire(const Node *n);
   905 %}
   907 source %{
   909 // Optimize load-acquire.
   910 //
   911 // Check if acquire is unnecessary due to following operation that does
   912 // acquire anyways.
   913 // Walk the pattern:
   914 //
   915 //      n: Load.acq
   916 //           |
   917 //      MemBarAcquire
   918 //       |         |
   919 //  Proj(ctrl)  Proj(mem)
   920 //       |         |
   921 //   MemBarRelease/Volatile
   922 //
   923 bool followed_by_acquire(const Node *load) {
   924   assert(load->is_Load(), "So far implemented only for loads.");
   926   // Find MemBarAcquire.
   927   const Node *mba = NULL;
   928   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
   929     const Node *out = load->fast_out(i);
   930     if (out->Opcode() == Op_MemBarAcquire) {
   931       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
   932       mba = out;
   933       break;
   934     }
   935   }
   936   if (!mba) return false;
   938   // Find following MemBar node.
   939   //
   940   // The following node must be reachable by control AND memory
   941   // edge to assure no other operations are in between the two nodes.
   942   //
   943   // So first get the Proj node, mem_proj, to use it to iterate forward.
   944   Node *mem_proj = NULL;
   945   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
   946     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
   947     assert(mem_proj->is_Proj(), "only projections here");
   948     ProjNode *proj = mem_proj->as_Proj();
   949     if (proj->_con == TypeFunc::Memory &&
   950         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
   951       break;
   952   }
   953   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
   955   // Search MemBar behind Proj. If there are other memory operations
   956   // behind the Proj we lost.
   957   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
   958     Node *x = mem_proj->fast_out(j);
   959     // Proj might have an edge to a store or load node which precedes the membar.
   960     if (x->is_Mem()) return false;
   962     // On PPC64 release and volatile are implemented by an instruction
   963     // that also has acquire semantics. I.e. there is no need for an
   964     // acquire before these.
   965     int xop = x->Opcode();
   966     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
   967       // Make sure we're not missing Call/Phi/MergeMem by checking
   968       // control edges. The control edge must directly lead back
   969       // to the MemBarAcquire
   970       Node *ctrl_proj = x->in(0);
   971       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
   972         return true;
   973       }
   974     }
   975   }
   977   return false;
   978 }
   980 #define __ _masm.
   982 // Tertiary op of a LoadP or StoreP encoding.
   983 #define REGP_OP true
   985 // ****************************************************************************
   987 // REQUIRED FUNCTIONALITY
   989 // !!!!! Special hack to get all type of calls to specify the byte offset
   990 //       from the start of the call to the point where the return address
   991 //       will point.
   993 // PPC port: Removed use of lazy constant construct.
   995 int MachCallStaticJavaNode::ret_addr_offset() {
   996   // It's only a single branch-and-link instruction.
   997   return 4;
   998 }
  1000 int MachCallDynamicJavaNode::ret_addr_offset() {
  1001   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
  1002   // postalloc expanded calls if we use inline caches and do not update method data.
  1003   if (UseInlineCaches)
  1004     return 4;
  1006   int vtable_index = this->_vtable_index;
  1007   if (vtable_index < 0) {
  1008     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  1009     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  1010     return 12;
  1011   } else {
  1012     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  1013     return 24;
  1017 int MachCallRuntimeNode::ret_addr_offset() {
  1018 #if defined(ABI_ELFv2)
  1019   return 28;
  1020 #else
  1021   return 40;
  1022 #endif
  1025 //=============================================================================
  1027 // condition code conversions
  1029 static int cc_to_boint(int cc) {
  1030   return Assembler::bcondCRbiIs0 | (cc & 8);
  1033 static int cc_to_inverse_boint(int cc) {
  1034   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
  1037 static int cc_to_biint(int cc, int flags_reg) {
  1038   return (flags_reg << 2) | (cc & 3);
  1041 //=============================================================================
  1043 // Compute padding required for nodes which need alignment. The padding
  1044 // is the number of bytes (not instructions) which will be inserted before
  1045 // the instruction. The padding must match the size of a NOP instruction.
  1047 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
  1048   return (3*4-current_offset)&31;
  1051 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
  1052   return (2*4-current_offset)&31;
  1055 int string_indexOf_immNode::compute_padding(int current_offset) const {
  1056   return (3*4-current_offset)&31;
  1059 int string_indexOfNode::compute_padding(int current_offset) const {
  1060   return (1*4-current_offset)&31;
  1063 int string_compareNode::compute_padding(int current_offset) const {
  1064   return (4*4-current_offset)&31;
  1067 int string_equals_immNode::compute_padding(int current_offset) const {
  1068   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
  1069   return (2*4-current_offset)&31;
  1072 int string_equalsNode::compute_padding(int current_offset) const {
  1073   return (7*4-current_offset)&31;
  1076 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
  1077   return (2*4-current_offset)&31;
  1080 //=============================================================================
  1082 // Indicate if the safepoint node needs the polling page as an input.
  1083 bool SafePointNode::needs_polling_address_input() {
  1084   // The address is loaded from thread by a seperate node.
  1085   return true;
  1088 //=============================================================================
  1090 // Emit an interrupt that is caught by the debugger (for debugging compiler).
  1091 void emit_break(CodeBuffer &cbuf) {
  1092   MacroAssembler _masm(&cbuf);
  1093   __ illtrap();
  1096 #ifndef PRODUCT
  1097 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1098   st->print("BREAKPOINT");
  1100 #endif
  1102 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1103   emit_break(cbuf);
  1106 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
  1107   return MachNode::size(ra_);
  1110 //=============================================================================
  1112 void emit_nop(CodeBuffer &cbuf) {
  1113   MacroAssembler _masm(&cbuf);
  1114   __ nop();
  1117 static inline void emit_long(CodeBuffer &cbuf, int value) {
  1118   *((int*)(cbuf.insts_end())) = value;
  1119   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
  1122 //=============================================================================
  1124 %} // interrupt source
  1126 source_hpp %{ // Header information of the source block.
  1128 //--------------------------------------------------------------
  1129 //---<  Used for optimization in Compile::Shorten_branches  >---
  1130 //--------------------------------------------------------------
  1132 const uint trampoline_stub_size     =  6 * BytesPerInstWord;
  1134 class CallStubImpl {
  1136  public:
  1138   // Emit call stub, compiled java to interpreter.
  1139   static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);
  1141   // Size of call trampoline stub.
  1142   // This doesn't need to be accurate to the byte, but it
  1143   // must be larger than or equal to the real size of the stub.
  1144   static uint size_call_trampoline() {
  1145     return trampoline_stub_size;
  1148   // number of relocations needed by a call trampoline stub
  1149   static uint reloc_call_trampoline() {
  1150     return 5;
  1153 };
  1155 %} // end source_hpp
  1157 source %{
  1159 // Emit a trampoline stub for a call to a target which is too far away.
  1160 //
  1161 // code sequences:
  1162 //
  1163 // call-site:
  1164 //   branch-and-link to <destination> or <trampoline stub>
  1165 //
  1166 // Related trampoline stub for this call-site in the stub section:
  1167 //   load the call target from the constant pool
  1168 //   branch via CTR (LR/link still points to the call-site above)
  1170 void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
  1171   // Start the stub.
  1172   address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
  1173   if (stub == NULL) {
  1174     Compile::current()->env()->record_out_of_memory_failure();
  1175     return;
  1178   // For java_to_interp stubs we use R11_scratch1 as scratch register
  1179   // and in call trampoline stubs we use R12_scratch2. This way we
  1180   // can distinguish them (see is_NativeCallTrampolineStub_at()).
  1181   Register reg_scratch = R12_scratch2;
  1183   // Create a trampoline stub relocation which relates this trampoline stub
  1184   // with the call instruction at insts_call_instruction_offset in the
  1185   // instructions code-section.
  1186   __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
  1187   const int stub_start_offset = __ offset();
  1189   // Now, create the trampoline stub's code:
  1190   // - load the TOC
  1191   // - load the call target from the constant pool
  1192   // - call
  1193   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
  1194   __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
  1195   __ mtctr(reg_scratch);
  1196   __ bctr();
  1198   const address stub_start_addr = __ addr_at(stub_start_offset);
  1200   // FIXME: Assert that the trampoline stub can be identified and patched.
  1202   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
  1203   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
  1204          "encoded offset into the constant pool must match");
  1205   // Trampoline_stub_size should be good.
  1206   assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
  1207   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
  1209   // End the stub.
  1210   __ end_a_stub();
  1213 //=============================================================================
  1215 // Emit an inline branch-and-link call and a related trampoline stub.
  1216 //
  1217 // code sequences:
  1218 //
  1219 // call-site:
  1220 //   branch-and-link to <destination> or <trampoline stub>
  1221 //
  1222 // Related trampoline stub for this call-site in the stub section:
  1223 //   load the call target from the constant pool
  1224 //   branch via CTR (LR/link still points to the call-site above)
  1225 //
  1227 typedef struct {
  1228   int insts_call_instruction_offset;
  1229   int ret_addr_offset;
  1230 } EmitCallOffsets;
  1232 // Emit a branch-and-link instruction that branches to a trampoline.
  1233 // - Remember the offset of the branch-and-link instruction.
  1234 // - Add a relocation at the branch-and-link instruction.
  1235 // - Emit a branch-and-link.
  1236 // - Remember the return pc offset.
  1237 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
  1238   EmitCallOffsets offsets = { -1, -1 };
  1239   const int start_offset = __ offset();
  1240   offsets.insts_call_instruction_offset = __ offset();
  1242   // No entry point given, use the current pc.
  1243   if (entry_point == NULL) entry_point = __ pc();
  1245   if (!Compile::current()->in_scratch_emit_size()) {
  1246     // Put the entry point as a constant into the constant pool.
  1247     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  1248     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  1250     // Emit the trampoline stub which will be related to the branch-and-link below.
  1251     CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
  1252     __ relocate(rtype);
  1255   // Note: At this point we do not have the address of the trampoline
  1256   // stub, and the entry point might be too far away for bl, so __ pc()
  1257   // serves as dummy and the bl will be patched later.
  1258   __ bl((address) __ pc());
  1260   offsets.ret_addr_offset = __ offset() - start_offset;
  1262   return offsets;
  1265 //=============================================================================
  1267 // Factory for creating loadConL* nodes for large/small constant pool.
  1269 static inline jlong replicate_immF(float con) {
  1270   // Replicate float con 2 times and pack into vector.
  1271   int val = *((int*)&con);
  1272   jlong lval = val;
  1273   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
  1274   return lval;
  1277 //=============================================================================
  1279 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
  1280 int Compile::ConstantTable::calculate_table_base_offset() const {
  1281   return 0;  // absolute addressing, no offset
  1284 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
  1285 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1286   Compile *C = ra_->C;
  1288   iRegPdstOper *op_dst = new (C) iRegPdstOper();
  1289   MachNode *m1 = new (C) loadToc_hiNode();
  1290   MachNode *m2 = new (C) loadToc_loNode();
  1292   m1->add_req(NULL);
  1293   m2->add_req(NULL, m1);
  1294   m1->_opnds[0] = op_dst;
  1295   m2->_opnds[0] = op_dst;
  1296   m2->_opnds[1] = op_dst;
  1297   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1298   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1299   nodes->push(m1);
  1300   nodes->push(m2);
  1303 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1304   // Is postalloc expanded.
  1305   ShouldNotReachHere();
  1308 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1309   return 0;
  1312 #ifndef PRODUCT
  1313 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1314   st->print("-- \t// MachConstantBaseNode (empty encoding)");
  1316 #endif
  1318 //=============================================================================
  1320 #ifndef PRODUCT
  1321 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1322   Compile* C = ra_->C;
  1323   const long framesize = C->frame_slots() << LogBytesPerInt;
  1325   st->print("PROLOG\n\t");
  1326   if (C->need_stack_bang(framesize)) {
  1327     st->print("stack_overflow_check\n\t");
  1330   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
  1331     st->print("save return pc\n\t");
  1332     st->print("push frame %d\n\t", -framesize);
  1335 #endif
  1337 // Macro used instead of the common __ to emulate the pipes of PPC.
  1338 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
  1339 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
  1340 // still no scheduling of this code is possible, the micro scheduler is aware of the
  1341 // code and can update its internal data. The following mechanism is used to achieve this:
  1342 // The micro scheduler calls size() of each compound node during scheduling. size() does a
  1343 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
  1344 #if 0 // TODO: PPC port
  1345 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1346                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
  1347                 _masm.
  1348 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1349                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
  1350 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
  1351                   C->hb_scheduling()->_pdScheduling->advance_offset
  1352 #else
  1353 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
  1354                   Unimplemented();                                                    \
  1355                 _masm.
  1356 #define ___stop if (UsePower6SchedulerPPC64)                                          \
  1357                   Unimplemented()
  1358 #define ___advance if (UsePower6SchedulerPPC64)                                       \
  1359                   Unimplemented()
  1360 #endif
  1362 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1363   Compile* C = ra_->C;
  1364   MacroAssembler _masm(&cbuf);
  1366   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
  1367   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1369   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
  1371   const Register return_pc            = R20; // Must match return_addr() in frame section.
  1372   const Register callers_sp           = R21;
  1373   const Register push_frame_temp      = R22;
  1374   const Register toc_temp             = R23;
  1375   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
  1377   if (method_is_frameless) {
  1378     // Add nop at beginning of all frameless methods to prevent any
  1379     // oop instructions from getting overwritten by make_not_entrant
  1380     // (patching attempt would fail).
  1381     ___(nop) nop();
  1382   } else {
  1383     // Get return pc.
  1384     ___(mflr) mflr(return_pc);
  1387   // Calls to C2R adapters often do not accept exceptional returns.
  1388   // We require that their callers must bang for them. But be
  1389   // careful, because some VM calls (such as call site linkage) can
  1390   // use several kilobytes of stack. But the stack safety zone should
  1391   // account for that. See bugs 4446381, 4468289, 4497237.
  1392   if (C->need_stack_bang(framesize) && UseStackBanging) {
  1393     // Unfortunately we cannot use the function provided in
  1394     // assembler.cpp as we have to emulate the pipes. So I had to
  1395     // insert the code of generate_stack_overflow_check(), see
  1396     // assembler.cpp for some illuminative comments.
  1397     const int page_size = os::vm_page_size();
  1398     int bang_end = StackShadowPages*page_size;
  1400     // This is how far the previous frame's stack banging extended.
  1401     const int bang_end_safe = bang_end;
  1403     if (framesize > page_size) {
  1404       bang_end += framesize;
  1407     int bang_offset = bang_end_safe;
  1409     while (bang_offset <= bang_end) {
  1410       // Need at least one stack bang at end of shadow zone.
  1412       // Again I had to copy code, this time from assembler_ppc64.cpp,
  1413       // bang_stack_with_offset - see there for comments.
  1415       // Stack grows down, caller passes positive offset.
  1416       assert(bang_offset > 0, "must bang with positive offset");
  1418       long stdoffset = -bang_offset;
  1420       if (Assembler::is_simm(stdoffset, 16)) {
  1421         // Signed 16 bit offset, a simple std is ok.
  1422         if (UseLoadInstructionsForStackBangingPPC64) {
  1423           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
  1424         } else {
  1425           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
  1427       } else if (Assembler::is_simm(stdoffset, 31)) {
  1428         // Use largeoffset calculations for addis & ld/std.
  1429         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
  1430         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
  1432         Register tmp = R11;
  1433         ___(addis) addis(tmp, R1_SP, hi);
  1434         if (UseLoadInstructionsForStackBangingPPC64) {
  1435           ___(ld) ld(R0, lo, tmp);
  1436         } else {
  1437           ___(std) std(R0, lo, tmp);
  1439       } else {
  1440         ShouldNotReachHere();
  1443       bang_offset += page_size;
  1445     // R11 trashed
  1446   } // C->need_stack_bang(framesize) && UseStackBanging
  1448   unsigned int bytes = (unsigned int)framesize;
  1449   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  1450   ciMethod *currMethod = C -> method();
  1452   // Optimized version for most common case.
  1453   if (UsePower6SchedulerPPC64 &&
  1454       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
  1455       !(false /* ConstantsALot TODO: PPC port*/)) {
  1456     ___(or) mr(callers_sp, R1_SP);
  1457     ___(std) std(return_pc, _abi(lr), R1_SP);
  1458     ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1459     return;
  1462   if (!method_is_frameless) {
  1463     // Get callers sp.
  1464     ___(or) mr(callers_sp, R1_SP);
  1466     // Push method's frame, modifies SP.
  1467     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
  1468     // The ABI is already accounted for in 'framesize' via the
  1469     // 'out_preserve' area.
  1470     Register tmp = push_frame_temp;
  1471     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
  1472     if (Assembler::is_simm(-offset, 16)) {
  1473       ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1474     } else {
  1475       long x = -offset;
  1476       // Had to insert load_const(tmp, -offset).
  1477       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
  1478       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
  1479       ___(rldicr) sldi(tmp, tmp, 32);
  1480       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
  1481       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
  1483       ___(stdux) stdux(R1_SP, R1_SP, tmp);
  1486 #if 0 // TODO: PPC port
  1487   // For testing large constant pools, emit a lot of constants to constant pool.
  1488   // "Randomize" const_size.
  1489   if (ConstantsALot) {
  1490     const int num_consts = const_size();
  1491     for (int i = 0; i < num_consts; i++) {
  1492       __ long_constant(0xB0B5B00BBABE);
  1495 #endif
  1496   if (!method_is_frameless) {
  1497     // Save return pc.
  1498     ___(std) std(return_pc, _abi(lr), callers_sp);
  1501 #undef ___
  1502 #undef ___stop
  1503 #undef ___advance
  1505 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1506   // Variable size. determine dynamically.
  1507   return MachNode::size(ra_);
  1510 int MachPrologNode::reloc() const {
  1511   // Return number of relocatable values contained in this instruction.
  1512   return 1; // 1 reloc entry for load_const(toc).
  1515 //=============================================================================
  1517 #ifndef PRODUCT
  1518 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1519   Compile* C = ra_->C;
  1521   st->print("EPILOG\n\t");
  1522   st->print("restore return pc\n\t");
  1523   st->print("pop frame\n\t");
  1525   if (do_polling() && C->is_method_compilation()) {
  1526     st->print("touch polling page\n\t");
  1529 #endif
  1531 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1532   Compile* C = ra_->C;
  1533   MacroAssembler _masm(&cbuf);
  1535   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
  1536   assert(framesize >= 0, "negative frame-size?");
  1538   const bool method_needs_polling = do_polling() && C->is_method_compilation();
  1539   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
  1540   const Register return_pc        = R11;
  1541   const Register polling_page     = R12;
  1543   if (!method_is_frameless) {
  1544     // Restore return pc relative to callers' sp.
  1545     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
  1548   if (method_needs_polling) {
  1549     if (LoadPollAddressFromThread) {
  1550       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1551       Unimplemented();
  1552     } else {
  1553       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
  1557   if (!method_is_frameless) {
  1558     // Move return pc to LR.
  1559     __ mtlr(return_pc);
  1560     // Pop frame (fixed frame-size).
  1561     __ addi(R1_SP, R1_SP, (int)framesize);
  1564   if (method_needs_polling) {
  1565     // We need to mark the code position where the load from the safepoint
  1566     // polling page was emitted as relocInfo::poll_return_type here.
  1567     __ relocate(relocInfo::poll_return_type);
  1568     __ load_from_polling_page(polling_page);
  1572 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1573   // Variable size. Determine dynamically.
  1574   return MachNode::size(ra_);
  1577 int MachEpilogNode::reloc() const {
  1578   // Return number of relocatable values contained in this instruction.
  1579   return 1; // 1 for load_from_polling_page.
  1582 const Pipeline * MachEpilogNode::pipeline() const {
  1583   return MachNode::pipeline_class();
  1586 // This method seems to be obsolete. It is declared in machnode.hpp
  1587 // and defined in all *.ad files, but it is never called. Should we
  1588 // get rid of it?
  1589 int MachEpilogNode::safepoint_offset() const {
  1590   assert(do_polling(), "no return for this epilog node");
  1591   return 0;
  1594 #if 0 // TODO: PPC port
  1595 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1596   MacroAssembler _masm(&cbuf);
  1597   if (LoadPollAddressFromThread) {
  1598     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1599   } else {
  1600     _masm.nop();
  1604 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
  1605   if (LoadPollAddressFromThread) {
  1606     return 4;
  1607   } else {
  1608     return 4;
  1612 #ifndef PRODUCT
  1613 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1614   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
  1616 #endif
  1618 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
  1619   return RSCRATCH1_BITS64_REG_mask();
  1621 #endif // PPC port
  1623 // =============================================================================
  1625 // Figure out which register class each belongs in: rc_int, rc_float or
  1626 // rc_stack.
  1627 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1629 static enum RC rc_class(OptoReg::Name reg) {
  1630   // Return the register class for the given register. The given register
  1631   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
  1632   // enumeration in adGlobals_ppc64.hpp.
  1634   if (reg == OptoReg::Bad) return rc_bad;
  1636   // We have 64 integer register halves, starting at index 0.
  1637   if (reg < 64) return rc_int;
  1639   // We have 64 floating-point register halves, starting at index 64.
  1640   if (reg < 64+64) return rc_float;
  1642   // Between float regs & stack are the flags regs.
  1643   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
  1645   return rc_stack;
  1648 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
  1649                         bool do_print, Compile* C, outputStream *st) {
  1651   assert(opcode == Assembler::LD_OPCODE   ||
  1652          opcode == Assembler::STD_OPCODE  ||
  1653          opcode == Assembler::LWZ_OPCODE  ||
  1654          opcode == Assembler::STW_OPCODE  ||
  1655          opcode == Assembler::LFD_OPCODE  ||
  1656          opcode == Assembler::STFD_OPCODE ||
  1657          opcode == Assembler::LFS_OPCODE  ||
  1658          opcode == Assembler::STFS_OPCODE,
  1659          "opcode not supported");
  1661   if (cbuf) {
  1662     int d =
  1663       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
  1664         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
  1665       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
  1666     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
  1668 #ifndef PRODUCT
  1669   else if (do_print) {
  1670     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
  1671               op_str,
  1672               Matcher::regName[reg],
  1673               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
  1675 #endif
  1676   return 4; // size
  1679 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
  1680   Compile* C = ra_->C;
  1682   // Get registers to move.
  1683   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
  1684   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
  1685   OptoReg::Name dst_hi = ra_->get_reg_second(this);
  1686   OptoReg::Name dst_lo = ra_->get_reg_first(this);
  1688   enum RC src_hi_rc = rc_class(src_hi);
  1689   enum RC src_lo_rc = rc_class(src_lo);
  1690   enum RC dst_hi_rc = rc_class(dst_hi);
  1691   enum RC dst_lo_rc = rc_class(dst_lo);
  1693   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
  1694   if (src_hi != OptoReg::Bad)
  1695     assert((src_lo&1)==0 && src_lo+1==src_hi &&
  1696            (dst_lo&1)==0 && dst_lo+1==dst_hi,
  1697            "expected aligned-adjacent pairs");
  1698   // Generate spill code!
  1699   int size = 0;
  1701   if (src_lo == dst_lo && src_hi == dst_hi)
  1702     return size;            // Self copy, no move.
  1704   // --------------------------------------
  1705   // Memory->Memory Spill. Use R0 to hold the value.
  1706   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1707     int src_offset = ra_->reg2offset(src_lo);
  1708     int dst_offset = ra_->reg2offset(dst_lo);
  1709     if (src_hi != OptoReg::Bad) {
  1710       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
  1711              "expected same type of move for high parts");
  1712       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
  1713       if (!cbuf && !do_size) st->print("\n\t");
  1714       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1715     } else {
  1716       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
  1717       if (!cbuf && !do_size) st->print("\n\t");
  1718       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1720     return size;
  1723   // --------------------------------------
  1724   // Check for float->int copy; requires a trip through memory.
  1725   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1726     Unimplemented();
  1729   // --------------------------------------
  1730   // Check for integer reg-reg copy.
  1731   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1732       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1733       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1734       size = (Rsrc != Rdst) ? 4 : 0;
  1736       if (cbuf) {
  1737         MacroAssembler _masm(cbuf);
  1738         if (size) {
  1739           __ mr(Rdst, Rsrc);
  1742 #ifndef PRODUCT
  1743       else if (!do_size) {
  1744         if (size) {
  1745           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1746         } else {
  1747           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1750 #endif
  1751       return size;
  1754   // Check for integer store.
  1755   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1756     int dst_offset = ra_->reg2offset(dst_lo);
  1757     if (src_hi != OptoReg::Bad) {
  1758       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
  1759              "expected same type of move for high parts");
  1760       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1761     } else {
  1762       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1764     return size;
  1767   // Check for integer load.
  1768   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1769     int src_offset = ra_->reg2offset(src_lo);
  1770     if (src_hi != OptoReg::Bad) {
  1771       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
  1772              "expected same type of move for high parts");
  1773       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1774     } else {
  1775       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1777     return size;
  1780   // Check for float reg-reg copy.
  1781   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1782     if (cbuf) {
  1783       MacroAssembler _masm(cbuf);
  1784       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
  1785       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
  1786       __ fmr(Rdst, Rsrc);
  1788 #ifndef PRODUCT
  1789     else if (!do_size) {
  1790       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1792 #endif
  1793     return 4;
  1796   // Check for float store.
  1797   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1798     int dst_offset = ra_->reg2offset(dst_lo);
  1799     if (src_hi != OptoReg::Bad) {
  1800       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
  1801              "expected same type of move for high parts");
  1802       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1803     } else {
  1804       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1806     return size;
  1809   // Check for float load.
  1810   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1811     int src_offset = ra_->reg2offset(src_lo);
  1812     if (src_hi != OptoReg::Bad) {
  1813       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
  1814              "expected same type of move for high parts");
  1815       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1816     } else {
  1817       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1819     return size;
  1822   // --------------------------------------------------------------------
  1823   // Check for hi bits still needing moving. Only happens for misaligned
  1824   // arguments to native calls.
  1825   if (src_hi == dst_hi)
  1826     return size;               // Self copy; no move.
  1828   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
  1829   ShouldNotReachHere(); // Unimplemented
  1830   return 0;
  1833 #ifndef PRODUCT
  1834 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1835   if (!ra_)
  1836     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
  1837   else
  1838     implementation(NULL, ra_, false, st);
  1840 #endif
  1842 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1843   implementation(&cbuf, ra_, false, NULL);
  1846 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1847   return implementation(NULL, ra_, true, NULL);
  1850 #if 0 // TODO: PPC port
  1851 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
  1852 #ifndef PRODUCT
  1853   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
  1854 #endif
  1855   assert(ra_->node_regs_max_index() != 0, "");
  1857   // Get registers to move.
  1858   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
  1859   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
  1860   OptoReg::Name dst_hi = ra_->get_reg_second(n);
  1861   OptoReg::Name dst_lo = ra_->get_reg_first(n);
  1863   enum RC src_lo_rc = rc_class(src_lo);
  1864   enum RC dst_lo_rc = rc_class(dst_lo);
  1866   if (src_lo == dst_lo && src_hi == dst_hi)
  1867     return ppc64Opcode_none;            // Self copy, no move.
  1869   // --------------------------------------
  1870   // Memory->Memory Spill. Use R0 to hold the value.
  1871   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1872     return ppc64Opcode_compound;
  1875   // --------------------------------------
  1876   // Check for float->int copy; requires a trip through memory.
  1877   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1878     Unimplemented();
  1881   // --------------------------------------
  1882   // Check for integer reg-reg copy.
  1883   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1884     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1885     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1886     if (Rsrc == Rdst) {
  1887       return ppc64Opcode_none;
  1888     } else {
  1889       return ppc64Opcode_or;
  1893   // Check for integer store.
  1894   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1895     if (src_hi != OptoReg::Bad) {
  1896       return ppc64Opcode_std;
  1897     } else {
  1898       return ppc64Opcode_stw;
  1902   // Check for integer load.
  1903   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1904     if (src_hi != OptoReg::Bad) {
  1905       return ppc64Opcode_ld;
  1906     } else {
  1907       return ppc64Opcode_lwz;
  1911   // Check for float reg-reg copy.
  1912   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1913     return ppc64Opcode_fmr;
  1916   // Check for float store.
  1917   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1918     if (src_hi != OptoReg::Bad) {
  1919       return ppc64Opcode_stfd;
  1920     } else {
  1921       return ppc64Opcode_stfs;
  1925   // Check for float load.
  1926   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1927     if (src_hi != OptoReg::Bad) {
  1928       return ppc64Opcode_lfd;
  1929     } else {
  1930       return ppc64Opcode_lfs;
  1934   // --------------------------------------------------------------------
  1935   // Check for hi bits still needing moving. Only happens for misaligned
  1936   // arguments to native calls.
  1937   if (src_hi == dst_hi)
  1938     return ppc64Opcode_none;               // Self copy; no move.
  1940   ShouldNotReachHere();
  1941   return ppc64Opcode_undefined;
  1943 #endif // PPC port
  1945 #ifndef PRODUCT
  1946 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1947   st->print("NOP \t// %d nops to pad for loops.", _count);
  1949 #endif
  1951 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
  1952   MacroAssembler _masm(&cbuf);
  1953   // _count contains the number of nops needed for padding.
  1954   for (int i = 0; i < _count; i++) {
  1955     __ nop();
  1959 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1960    return _count * 4;
  1963 #ifndef PRODUCT
  1964 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1965   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1966   int reg = ra_->get_reg_first(this);
  1967   st->print("ADDI %s, SP, %d \t// box node", Matcher::regName[reg], offset);
  1969 #endif
  1971 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1972   MacroAssembler _masm(&cbuf);
  1974   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1975   int reg    = ra_->get_encode(this);
  1977   if (Assembler::is_simm(offset, 16)) {
  1978     __ addi(as_Register(reg), R1, offset);
  1979   } else {
  1980     ShouldNotReachHere();
  1984 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1985   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
  1986   return 4;
  1989 #ifndef PRODUCT
  1990 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1991   st->print_cr("---- MachUEPNode ----");
  1992   st->print_cr("...");
  1994 #endif
  1996 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1997   // This is the unverified entry point.
  1998   MacroAssembler _masm(&cbuf);
  2000   // Inline_cache contains a klass.
  2001   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
  2002   Register receiver_klass = R0;  // tmp
  2004   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
  2005   assert(R11_scratch1 == R11, "need prologue scratch register");
  2007   // Check for NULL argument if we don't have implicit null checks.
  2008   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
  2009     if (TrapBasedNullChecks) {
  2010       __ trap_null_check(R3_ARG1);
  2011     } else {
  2012       Label valid;
  2013       __ cmpdi(CCR0, R3_ARG1, 0);
  2014       __ bne_predict_taken(CCR0, valid);
  2015       // We have a null argument, branch to ic_miss_stub.
  2016       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2017                            relocInfo::runtime_call_type);
  2018       __ bind(valid);
  2021   // Assume argument is not NULL, load klass from receiver.
  2022   __ load_klass(receiver_klass, R3_ARG1);
  2024   if (TrapBasedICMissChecks) {
  2025     __ trap_ic_miss_check(receiver_klass, ic_klass);
  2026   } else {
  2027     Label valid;
  2028     __ cmpd(CCR0, receiver_klass, ic_klass);
  2029     __ beq_predict_taken(CCR0, valid);
  2030     // We have an unexpected klass, branch to ic_miss_stub.
  2031     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2032                          relocInfo::runtime_call_type);
  2033     __ bind(valid);
  2036   // Argument is valid and klass is as expected, continue.
  2039 #if 0 // TODO: PPC port
  2040 // Optimize UEP code on z (save a load_const() call in main path).
  2041 int MachUEPNode::ep_offset() {
  2042   return 0;
  2044 #endif
  2046 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  2047   // Variable size. Determine dynamically.
  2048   return MachNode::size(ra_);
  2051 //=============================================================================
  2053 %} // interrupt source
  2055 source_hpp %{ // Header information of the source block.
  2057 class HandlerImpl {
  2059  public:
  2061   static int emit_exception_handler(CodeBuffer &cbuf);
  2062   static int emit_deopt_handler(CodeBuffer& cbuf);
  2064   static uint size_exception_handler() {
  2065     // The exception_handler is a b64_patchable.
  2066     return MacroAssembler::b64_patchable_size;
  2069   static uint size_deopt_handler() {
  2070     // The deopt_handler is a bl64_patchable.
  2071     return MacroAssembler::bl64_patchable_size;
  2074 };
  2076 %} // end source_hpp
  2078 source %{
  2080 int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
  2081   MacroAssembler _masm(&cbuf);
  2083   address base = __ start_a_stub(size_exception_handler());
  2084   if (base == NULL) return 0; // CodeBuffer::expand failed
  2086   int offset = __ offset();
  2087   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
  2088                        relocInfo::runtime_call_type);
  2089   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
  2090   __ end_a_stub();
  2092   return offset;
  2095 // The deopt_handler is like the exception handler, but it calls to
  2096 // the deoptimization blob instead of jumping to the exception blob.
  2097 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
  2098   MacroAssembler _masm(&cbuf);
  2100   address base = __ start_a_stub(size_deopt_handler());
  2101   if (base == NULL) return 0; // CodeBuffer::expand failed
  2103   int offset = __ offset();
  2104   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
  2105                         relocInfo::runtime_call_type);
  2106   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
  2107   __ end_a_stub();
  2109   return offset;
  2112 //=============================================================================
  2114 // Use a frame slots bias for frameless methods if accessing the stack.
  2115 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
  2116   if (as_Register(reg_enc) == R1_SP) {
  2117     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
  2119   return 0;
  2122 const bool Matcher::match_rule_supported(int opcode) {
  2123   if (!has_match_rule(opcode))
  2124     return false;
  2126   switch (opcode) {
  2127   case Op_SqrtD:
  2128     return VM_Version::has_fsqrt();
  2129   case Op_CountLeadingZerosI:
  2130   case Op_CountLeadingZerosL:
  2131   case Op_CountTrailingZerosI:
  2132   case Op_CountTrailingZerosL:
  2133     if (!UseCountLeadingZerosInstructionsPPC64)
  2134       return false;
  2135     break;
  2137   case Op_PopCountI:
  2138   case Op_PopCountL:
  2139     return (UsePopCountInstruction && VM_Version::has_popcntw());
  2141   case Op_StrComp:
  2142     return SpecialStringCompareTo;
  2143   case Op_StrEquals:
  2144     return SpecialStringEquals;
  2145   case Op_StrIndexOf:
  2146     return SpecialStringIndexOf;
  2149   return true;  // Per default match rules are supported.
  2152 int Matcher::regnum_to_fpu_offset(int regnum) {
  2153   // No user for this method?
  2154   Unimplemented();
  2155   return 999;
  2158 const bool Matcher::convL2FSupported(void) {
  2159   // fcfids can do the conversion (>= Power7).
  2160   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
  2161   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
  2164 // Vector width in bytes.
  2165 const int Matcher::vector_width_in_bytes(BasicType bt) {
  2166   assert(MaxVectorSize == 8, "");
  2167   return 8;
  2170 // Vector ideal reg.
  2171 const int Matcher::vector_ideal_reg(int size) {
  2172   assert(MaxVectorSize == 8 && size == 8, "");
  2173   return Op_RegL;
  2176 const int Matcher::vector_shift_count_ideal_reg(int size) {
  2177   fatal("vector shift is not supported");
  2178   return Node::NotAMachineReg;
  2181 // Limits on vector size (number of elements) loaded into vector.
  2182 const int Matcher::max_vector_size(const BasicType bt) {
  2183   assert(is_java_primitive(bt), "only primitive type vectors");
  2184   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  2187 const int Matcher::min_vector_size(const BasicType bt) {
  2188   return max_vector_size(bt); // Same as max.
  2191 // PPC doesn't support misaligned vectors store/load.
  2192 const bool Matcher::misaligned_vectors_ok() {
  2193   return false;
  2196 // PPC AES support not yet implemented
  2197 const bool Matcher::pass_original_key_for_aes() {
  2198   return false;
  2201 // RETURNS: whether this branch offset is short enough that a short
  2202 // branch can be used.
  2203 //
  2204 // If the platform does not provide any short branch variants, then
  2205 // this method should return `false' for offset 0.
  2206 //
  2207 // `Compile::Fill_buffer' will decide on basis of this information
  2208 // whether to do the pass `Compile::Shorten_branches' at all.
  2209 //
  2210 // And `Compile::Shorten_branches' will decide on basis of this
  2211 // information whether to replace particular branch sites by short
  2212 // ones.
  2213 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  2214   // Is the offset within the range of a ppc64 pc relative branch?
  2215   bool b;
  2217   const int safety_zone = 3 * BytesPerInstWord;
  2218   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
  2219                          29 - 16 + 1 + 2);
  2220   return b;
  2223 const bool Matcher::isSimpleConstant64(jlong value) {
  2224   // Probably always true, even if a temp register is required.
  2225   return true;
  2227 /* TODO: PPC port
  2228 // Make a new machine dependent decode node (with its operands).
  2229 MachTypeNode *Matcher::make_decode_node(Compile *C) {
  2230   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
  2231          "This method is only implemented for unscaled cOops mode so far");
  2232   MachTypeNode *decode = new (C) decodeN_unscaledNode();
  2233   decode->set_opnd_array(0, new (C) iRegPdstOper());
  2234   decode->set_opnd_array(1, new (C) iRegNsrcOper());
  2235   return decode;
  2237 */
  2238 // Threshold size for cleararray.
  2239 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  2241 // false => size gets scaled to BytesPerLong, ok.
  2242 const bool Matcher::init_array_count_is_in_bytes = false;
  2244 // Use conditional move (CMOVL) on Power7.
  2245 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
  2247 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
  2248 // fsel doesn't accept a condition register as input, so this would be slightly different.
  2249 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
  2251 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
  2252 const bool Matcher::require_postalloc_expand = true;
  2254 // Should the Matcher clone shifts on addressing modes, expecting them to
  2255 // be subsumed into complex addressing expressions or compute them into
  2256 // registers? True for Intel but false for most RISCs.
  2257 const bool Matcher::clone_shift_expressions = false;
  2259 // Do we need to mask the count passed to shift instructions or does
  2260 // the cpu only look at the lower 5/6 bits anyway?
  2261 // Off, as masks are generated in expand rules where required.
  2262 // Constant shift counts are handled in Ideal phase.
  2263 const bool Matcher::need_masked_shift_count = false;
  2265 // This affects two different things:
  2266 //  - how Decode nodes are matched
  2267 //  - how ImplicitNullCheck opportunities are recognized
  2268 // If true, the matcher will try to remove all Decodes and match them
  2269 // (as operands) into nodes. NullChecks are not prepared to deal with
  2270 // Decodes by final_graph_reshaping().
  2271 // If false, final_graph_reshaping() forces the decode behind the Cmp
  2272 // for a NullCheck. The matcher matches the Decode node into a register.
  2273 // Implicit_null_check optimization moves the Decode along with the
  2274 // memory operation back up before the NullCheck.
  2275 bool Matcher::narrow_oop_use_complex_address() {
  2276   // TODO: PPC port if (MatchDecodeNodes) return true;
  2277   return false;
  2280 bool Matcher::narrow_klass_use_complex_address() {
  2281   NOT_LP64(ShouldNotCallThis());
  2282   assert(UseCompressedClassPointers, "only for compressed klass code");
  2283   // TODO: PPC port if (MatchDecodeNodes) return true;
  2284   return false;
  2287 // Is it better to copy float constants, or load them directly from memory?
  2288 // Intel can load a float constant from a direct address, requiring no
  2289 // extra registers. Most RISCs will have to materialize an address into a
  2290 // register first, so they would do better to copy the constant from stack.
  2291 const bool Matcher::rematerialize_float_constants = false;
  2293 // If CPU can load and store mis-aligned doubles directly then no fixup is
  2294 // needed. Else we split the double into 2 integer pieces and move it
  2295 // piece-by-piece. Only happens when passing doubles into C code as the
  2296 // Java calling convention forces doubles to be aligned.
  2297 const bool Matcher::misaligned_doubles_ok = true;
  2299 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  2300  Unimplemented();
  2303 // Advertise here if the CPU requires explicit rounding operations
  2304 // to implement the UseStrictFP mode.
  2305 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  2307 // Do floats take an entire double register or just half?
  2308 //
  2309 // A float occupies a ppc64 double register. For the allocator, a
  2310 // ppc64 double register appears as a pair of float registers.
  2311 bool Matcher::float_in_double() { return true; }
  2313 // Do ints take an entire long register or just half?
  2314 // The relevant question is how the int is callee-saved:
  2315 // the whole long is written but de-opt'ing will have to extract
  2316 // the relevant 32 bits.
  2317 const bool Matcher::int_in_long = true;
  2319 // Constants for c2c and c calling conventions.
  2321 const MachRegisterNumbers iarg_reg[8] = {
  2322   R3_num, R4_num, R5_num, R6_num,
  2323   R7_num, R8_num, R9_num, R10_num
  2324 };
  2326 const MachRegisterNumbers farg_reg[13] = {
  2327   F1_num, F2_num, F3_num, F4_num,
  2328   F5_num, F6_num, F7_num, F8_num,
  2329   F9_num, F10_num, F11_num, F12_num,
  2330   F13_num
  2331 };
  2333 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
  2335 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
  2337 // Return whether or not this register is ever used as an argument. This
  2338 // function is used on startup to build the trampoline stubs in generateOptoStub.
  2339 // Registers not mentioned will be killed by the VM call in the trampoline, and
  2340 // arguments in those registers not be available to the callee.
  2341 bool Matcher::can_be_java_arg(int reg) {
  2342   // We return true for all registers contained in iarg_reg[] and
  2343   // farg_reg[] and their virtual halves.
  2344   // We must include the virtual halves in order to get STDs and LDs
  2345   // instead of STWs and LWs in the trampoline stubs.
  2347   if (   reg == R3_num  || reg == R3_H_num
  2348       || reg == R4_num  || reg == R4_H_num
  2349       || reg == R5_num  || reg == R5_H_num
  2350       || reg == R6_num  || reg == R6_H_num
  2351       || reg == R7_num  || reg == R7_H_num
  2352       || reg == R8_num  || reg == R8_H_num
  2353       || reg == R9_num  || reg == R9_H_num
  2354       || reg == R10_num || reg == R10_H_num)
  2355     return true;
  2357   if (   reg == F1_num  || reg == F1_H_num
  2358       || reg == F2_num  || reg == F2_H_num
  2359       || reg == F3_num  || reg == F3_H_num
  2360       || reg == F4_num  || reg == F4_H_num
  2361       || reg == F5_num  || reg == F5_H_num
  2362       || reg == F6_num  || reg == F6_H_num
  2363       || reg == F7_num  || reg == F7_H_num
  2364       || reg == F8_num  || reg == F8_H_num
  2365       || reg == F9_num  || reg == F9_H_num
  2366       || reg == F10_num || reg == F10_H_num
  2367       || reg == F11_num || reg == F11_H_num
  2368       || reg == F12_num || reg == F12_H_num
  2369       || reg == F13_num || reg == F13_H_num)
  2370     return true;
  2372   return false;
  2375 bool Matcher::is_spillable_arg(int reg) {
  2376   return can_be_java_arg(reg);
  2379 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
  2380   return false;
  2383 // Register for DIVI projection of divmodI.
  2384 RegMask Matcher::divI_proj_mask() {
  2385   ShouldNotReachHere();
  2386   return RegMask();
  2389 // Register for MODI projection of divmodI.
  2390 RegMask Matcher::modI_proj_mask() {
  2391   ShouldNotReachHere();
  2392   return RegMask();
  2395 // Register for DIVL projection of divmodL.
  2396 RegMask Matcher::divL_proj_mask() {
  2397   ShouldNotReachHere();
  2398   return RegMask();
  2401 // Register for MODL projection of divmodL.
  2402 RegMask Matcher::modL_proj_mask() {
  2403   ShouldNotReachHere();
  2404   return RegMask();
  2407 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2408   return RegMask();
  2411 %}
  2413 //----------ENCODING BLOCK-----------------------------------------------------
  2414 // This block specifies the encoding classes used by the compiler to output
  2415 // byte streams. Encoding classes are parameterized macros used by
  2416 // Machine Instruction Nodes in order to generate the bit encoding of the
  2417 // instruction. Operands specify their base encoding interface with the
  2418 // interface keyword. There are currently supported four interfaces,
  2419 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
  2420 // operand to generate a function which returns its register number when
  2421 // queried. CONST_INTER causes an operand to generate a function which
  2422 // returns the value of the constant when queried. MEMORY_INTER causes an
  2423 // operand to generate four functions which return the Base Register, the
  2424 // Index Register, the Scale Value, and the Offset Value of the operand when
  2425 // queried. COND_INTER causes an operand to generate six functions which
  2426 // return the encoding code (ie - encoding bits for the instruction)
  2427 // associated with each basic boolean condition for a conditional instruction.
  2428 //
  2429 // Instructions specify two basic values for encoding. Again, a function
  2430 // is available to check if the constant displacement is an oop. They use the
  2431 // ins_encode keyword to specify their encoding classes (which must be
  2432 // a sequence of enc_class names, and their parameters, specified in
  2433 // the encoding block), and they use the
  2434 // opcode keyword to specify, in order, their primary, secondary, and
  2435 // tertiary opcode. Only the opcode sections which a particular instruction
  2436 // needs for encoding need to be specified.
  2437 encode %{
  2438   enc_class enc_unimplemented %{
  2439     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2440     MacroAssembler _masm(&cbuf);
  2441     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
  2442   %}
  2444   enc_class enc_untested %{
  2445 #ifdef ASSERT
  2446     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2447     MacroAssembler _masm(&cbuf);
  2448     __ untested("Untested mach node encoding in AD file.");
  2449 #else
  2450     // TODO: PPC port $archOpcode(ppc64Opcode_none);
  2451 #endif
  2452   %}
  2454   enc_class enc_lbz(iRegIdst dst, memory mem) %{
  2455     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
  2456     MacroAssembler _masm(&cbuf);
  2457     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2458     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  2459   %}
  2461   // Load acquire.
  2462   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
  2463     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2464     MacroAssembler _masm(&cbuf);
  2465     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2466     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  2467     __ twi_0($dst$$Register);
  2468     __ isync();
  2469   %}
  2471   enc_class enc_lhz(iRegIdst dst, memory mem) %{
  2472     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
  2474     MacroAssembler _masm(&cbuf);
  2475     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2476     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  2477   %}
  2479   // Load acquire.
  2480   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
  2481     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2483     MacroAssembler _masm(&cbuf);
  2484     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2485     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  2486     __ twi_0($dst$$Register);
  2487     __ isync();
  2488   %}
  2490   enc_class enc_lwz(iRegIdst dst, memory mem) %{
  2491     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
  2493     MacroAssembler _masm(&cbuf);
  2494     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2495     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  2496   %}
  2498   // Load acquire.
  2499   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
  2500     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2502     MacroAssembler _masm(&cbuf);
  2503     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2504     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  2505     __ twi_0($dst$$Register);
  2506     __ isync();
  2507   %}
  2509   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
  2510     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2511     MacroAssembler _masm(&cbuf);
  2512     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2513     // Operand 'ds' requires 4-alignment.
  2514     assert((Idisp & 0x3) == 0, "unaligned offset");
  2515     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  2516   %}
  2518   // Load acquire.
  2519   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
  2520     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2521     MacroAssembler _masm(&cbuf);
  2522     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2523     // Operand 'ds' requires 4-alignment.
  2524     assert((Idisp & 0x3) == 0, "unaligned offset");
  2525     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  2526     __ twi_0($dst$$Register);
  2527     __ isync();
  2528   %}
  2530   enc_class enc_lfd(RegF dst, memory mem) %{
  2531     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  2532     MacroAssembler _masm(&cbuf);
  2533     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2534     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  2535   %}
  2537   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
  2538     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2540     MacroAssembler _masm(&cbuf);
  2541     int toc_offset = 0;
  2543     if (!ra_->C->in_scratch_emit_size()) {
  2544       address const_toc_addr;
  2545       // Create a non-oop constant, no relocation needed.
  2546       // If it is an IC, it has a virtual_call_Relocation.
  2547       const_toc_addr = __ long_constant((jlong)$src$$constant);
  2549       // Get the constant's TOC offset.
  2550       toc_offset = __ offset_to_method_toc(const_toc_addr);
  2552       // Keep the current instruction offset in mind.
  2553       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
  2556     __ ld($dst$$Register, toc_offset, $toc$$Register);
  2557   %}
  2559   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
  2560     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  2562     MacroAssembler _masm(&cbuf);
  2564     if (!ra_->C->in_scratch_emit_size()) {
  2565       address const_toc_addr;
  2566       // Create a non-oop constant, no relocation needed.
  2567       // If it is an IC, it has a virtual_call_Relocation.
  2568       const_toc_addr = __ long_constant((jlong)$src$$constant);
  2570       // Get the constant's TOC offset.
  2571       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  2572       // Store the toc offset of the constant.
  2573       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
  2575       // Also keep the current instruction offset in mind.
  2576       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
  2579     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  2580   %}
  2582 %} // encode
  2584 source %{
  2586 typedef struct {
  2587   loadConL_hiNode *_large_hi;
  2588   loadConL_loNode *_large_lo;
  2589   loadConLNode    *_small;
  2590   MachNode        *_last;
  2591 } loadConLNodesTuple;
  2593 loadConLNodesTuple loadConLNodesTuple_create(Compile *C, PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
  2594                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
  2595   loadConLNodesTuple nodes;
  2597   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2598   if (large_constant_pool) {
  2599     // Create new nodes.
  2600     loadConL_hiNode *m1 = new (C) loadConL_hiNode();
  2601     loadConL_loNode *m2 = new (C) loadConL_loNode();
  2603     // inputs for new nodes
  2604     m1->add_req(NULL, toc);
  2605     m2->add_req(NULL, m1);
  2607     // operands for new nodes
  2608     m1->_opnds[0] = new (C) iRegLdstOper(); // dst
  2609     m1->_opnds[1] = immSrc;                 // src
  2610     m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  2611     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  2612     m2->_opnds[1] = immSrc;                 // src
  2613     m2->_opnds[2] = new (C) iRegLdstOper(); // base
  2615     // Initialize ins_attrib TOC fields.
  2616     m1->_const_toc_offset = -1;
  2617     m2->_const_toc_offset_hi_node = m1;
  2619     // Initialize ins_attrib instruction offset.
  2620     m1->_cbuf_insts_offset = -1;
  2622     // register allocation for new nodes
  2623     ra_->set_pair(m1->_idx, reg_second, reg_first);
  2624     ra_->set_pair(m2->_idx, reg_second, reg_first);
  2626     // Create result.
  2627     nodes._large_hi = m1;
  2628     nodes._large_lo = m2;
  2629     nodes._small = NULL;
  2630     nodes._last = nodes._large_lo;
  2631     assert(m2->bottom_type()->isa_long(), "must be long");
  2632   } else {
  2633     loadConLNode *m2 = new (C) loadConLNode();
  2635     // inputs for new nodes
  2636     m2->add_req(NULL, toc);
  2638     // operands for new nodes
  2639     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  2640     m2->_opnds[1] = immSrc;                 // src
  2641     m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  2643     // Initialize ins_attrib instruction offset.
  2644     m2->_cbuf_insts_offset = -1;
  2646     // register allocation for new nodes
  2647     ra_->set_pair(m2->_idx, reg_second, reg_first);
  2649     // Create result.
  2650     nodes._large_hi = NULL;
  2651     nodes._large_lo = NULL;
  2652     nodes._small = m2;
  2653     nodes._last = nodes._small;
  2654     assert(m2->bottom_type()->isa_long(), "must be long");
  2657   return nodes;
  2660 %} // source
  2662 encode %{
  2663   // Postalloc expand emitter for loading a long constant from the method's TOC.
  2664   // Enc_class needed as consttanttablebase is not supported by postalloc
  2665   // expand.
  2666   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
  2667     // Create new nodes.
  2668     loadConLNodesTuple loadConLNodes =
  2669       loadConLNodesTuple_create(C, ra_, n_toc, op_src,
  2670                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
  2672     // Push new nodes.
  2673     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  2674     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  2676     // some asserts
  2677     assert(nodes->length() >= 1, "must have created at least 1 node");
  2678     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  2679   %}
  2681   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
  2682     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2684     MacroAssembler _masm(&cbuf);
  2685     int toc_offset = 0;
  2687     if (!ra_->C->in_scratch_emit_size()) {
  2688       intptr_t val = $src$$constant;
  2689       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  2690       address const_toc_addr;
  2691       if (constant_reloc == relocInfo::oop_type) {
  2692         // Create an oop constant and a corresponding relocation.
  2693         AddressLiteral a = __ allocate_oop_address((jobject)val);
  2694         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2695         __ relocate(a.rspec());
  2696       } else if (constant_reloc == relocInfo::metadata_type) {
  2697         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  2698         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2699         __ relocate(a.rspec());
  2700       } else {
  2701         // Create a non-oop constant, no relocation needed.
  2702         const_toc_addr = __ long_constant((jlong)$src$$constant);
  2705       // Get the constant's TOC offset.
  2706       toc_offset = __ offset_to_method_toc(const_toc_addr);
  2709     __ ld($dst$$Register, toc_offset, $toc$$Register);
  2710   %}
  2712   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
  2713     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  2715     MacroAssembler _masm(&cbuf);
  2716     if (!ra_->C->in_scratch_emit_size()) {
  2717       intptr_t val = $src$$constant;
  2718       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  2719       address const_toc_addr;
  2720       if (constant_reloc == relocInfo::oop_type) {
  2721         // Create an oop constant and a corresponding relocation.
  2722         AddressLiteral a = __ allocate_oop_address((jobject)val);
  2723         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2724         __ relocate(a.rspec());
  2725       } else if (constant_reloc == relocInfo::metadata_type) {
  2726         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  2727         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2728         __ relocate(a.rspec());
  2729       } else {  // non-oop pointers, e.g. card mark base, heap top
  2730         // Create a non-oop constant, no relocation needed.
  2731         const_toc_addr = __ long_constant((jlong)$src$$constant);
  2734       // Get the constant's TOC offset.
  2735       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  2736       // Store the toc offset of the constant.
  2737       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
  2740     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  2741   %}
  2743   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
  2744   // Enc_class needed as consttanttablebase is not supported by postalloc
  2745   // expand.
  2746   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
  2747     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2748     if (large_constant_pool) {
  2749       // Create new nodes.
  2750       loadConP_hiNode *m1 = new (C) loadConP_hiNode();
  2751       loadConP_loNode *m2 = new (C) loadConP_loNode();
  2753       // inputs for new nodes
  2754       m1->add_req(NULL, n_toc);
  2755       m2->add_req(NULL, m1);
  2757       // operands for new nodes
  2758       m1->_opnds[0] = new (C) iRegPdstOper(); // dst
  2759       m1->_opnds[1] = op_src;                 // src
  2760       m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  2761       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  2762       m2->_opnds[1] = op_src;                 // src
  2763       m2->_opnds[2] = new (C) iRegLdstOper(); // base
  2765       // Initialize ins_attrib TOC fields.
  2766       m1->_const_toc_offset = -1;
  2767       m2->_const_toc_offset_hi_node = m1;
  2769       // Register allocation for new nodes.
  2770       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2771       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2773       nodes->push(m1);
  2774       nodes->push(m2);
  2775       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  2776     } else {
  2777       loadConPNode *m2 = new (C) loadConPNode();
  2779       // inputs for new nodes
  2780       m2->add_req(NULL, n_toc);
  2782       // operands for new nodes
  2783       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  2784       m2->_opnds[1] = op_src;                 // src
  2785       m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  2787       // Register allocation for new nodes.
  2788       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2790       nodes->push(m2);
  2791       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  2793   %}
  2795   // Enc_class needed as consttanttablebase is not supported by postalloc
  2796   // expand.
  2797   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
  2798     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2800     MachNode *m2;
  2801     if (large_constant_pool) {
  2802       m2 = new (C) loadConFCompNode();
  2803     } else {
  2804       m2 = new (C) loadConFNode();
  2806     // inputs for new nodes
  2807     m2->add_req(NULL, n_toc);
  2809     // operands for new nodes
  2810     m2->_opnds[0] = op_dst;
  2811     m2->_opnds[1] = op_src;
  2812     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  2814     // register allocation for new nodes
  2815     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2816     nodes->push(m2);
  2817   %}
  2819   // Enc_class needed as consttanttablebase is not supported by postalloc
  2820   // expand.
  2821   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
  2822     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2824     MachNode *m2;
  2825     if (large_constant_pool) {
  2826       m2 = new (C) loadConDCompNode();
  2827     } else {
  2828       m2 = new (C) loadConDNode();
  2830     // inputs for new nodes
  2831     m2->add_req(NULL, n_toc);
  2833     // operands for new nodes
  2834     m2->_opnds[0] = op_dst;
  2835     m2->_opnds[1] = op_src;
  2836     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  2838     // register allocation for new nodes
  2839     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2840     nodes->push(m2);
  2841   %}
  2843   enc_class enc_stw(iRegIsrc src, memory mem) %{
  2844     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
  2845     MacroAssembler _masm(&cbuf);
  2846     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2847     __ stw($src$$Register, Idisp, $mem$$base$$Register);
  2848   %}
  2850   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
  2851     // TODO: PPC port $archOpcode(ppc64Opcode_std);
  2852     MacroAssembler _masm(&cbuf);
  2853     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2854     // Operand 'ds' requires 4-alignment.
  2855     assert((Idisp & 0x3) == 0, "unaligned offset");
  2856     __ std($src$$Register, Idisp, $mem$$base$$Register);
  2857   %}
  2859   enc_class enc_stfs(RegF src, memory mem) %{
  2860     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
  2861     MacroAssembler _masm(&cbuf);
  2862     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2863     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
  2864   %}
  2866   enc_class enc_stfd(RegF src, memory mem) %{
  2867     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
  2868     MacroAssembler _masm(&cbuf);
  2869     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2870     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
  2871   %}
  2873   // Use release_store for card-marking to ensure that previous
  2874   // oop-stores are visible before the card-mark change.
  2875   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr) %{
  2876     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2877     // FIXME: Implement this as a cmove and use a fixed condition code
  2878     // register which is written on every transition to compiled code,
  2879     // e.g. in call-stub and when returning from runtime stubs.
  2880     //
  2881     // Proposed code sequence for the cmove implementation:
  2882     //
  2883     // Label skip_release;
  2884     // __ beq(CCRfixed, skip_release);
  2885     // __ release();
  2886     // __ bind(skip_release);
  2887     // __ stb(card mark);
  2889     MacroAssembler _masm(&cbuf);
  2890     Label skip_storestore;
  2892 #if 0 // TODO: PPC port
  2893     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
  2894     // StoreStore barrier conditionally.
  2895     __ lwz(R0, 0, $releaseFieldAddr$$Register);
  2896     __ cmpwi(CCR0, R0, 0);
  2897     __ beq_predict_taken(CCR0, skip_storestore);
  2898 #endif
  2899     __ li(R0, 0);
  2900     __ membar(Assembler::StoreStore);
  2901 #if 0 // TODO: PPC port
  2902     __ bind(skip_storestore);
  2903 #endif
  2905     // Do the store.
  2906     if ($mem$$index == 0) {
  2907       __ stb(R0, $mem$$disp, $mem$$base$$Register);
  2908     } else {
  2909       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
  2910       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
  2912   %}
  2914   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
  2916     if (VM_Version::has_isel()) {
  2917       // use isel instruction with Power 7
  2918       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  2919       encodeP_subNode    *n_sub_base = new (C) encodeP_subNode();
  2920       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  2921       cond_set_0_oopNode *n_cond_set = new (C) cond_set_0_oopNode();
  2923       n_compare->add_req(n_region, n_src);
  2924       n_compare->_opnds[0] = op_crx;
  2925       n_compare->_opnds[1] = op_src;
  2926       n_compare->_opnds[2] = new (C) immL16Oper(0);
  2928       n_sub_base->add_req(n_region, n_src);
  2929       n_sub_base->_opnds[0] = op_dst;
  2930       n_sub_base->_opnds[1] = op_src;
  2931       n_sub_base->_bottom_type = _bottom_type;
  2933       n_shift->add_req(n_region, n_sub_base);
  2934       n_shift->_opnds[0] = op_dst;
  2935       n_shift->_opnds[1] = op_dst;
  2936       n_shift->_bottom_type = _bottom_type;
  2938       n_cond_set->add_req(n_region, n_compare, n_shift);
  2939       n_cond_set->_opnds[0] = op_dst;
  2940       n_cond_set->_opnds[1] = op_crx;
  2941       n_cond_set->_opnds[2] = op_dst;
  2942       n_cond_set->_bottom_type = _bottom_type;
  2944       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  2945       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2946       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2947       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2949       nodes->push(n_compare);
  2950       nodes->push(n_sub_base);
  2951       nodes->push(n_shift);
  2952       nodes->push(n_cond_set);
  2954     } else {
  2955       // before Power 7
  2956       moveRegNode        *n_move     = new (C) moveRegNode();
  2957       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  2958       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  2959       cond_sub_baseNode  *n_sub_base = new (C) cond_sub_baseNode();
  2961       n_move->add_req(n_region, n_src);
  2962       n_move->_opnds[0] = op_dst;
  2963       n_move->_opnds[1] = op_src;
  2964       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
  2966       n_compare->add_req(n_region, n_src);
  2967       n_compare->add_prec(n_move);
  2969       n_compare->_opnds[0] = op_crx;
  2970       n_compare->_opnds[1] = op_src;
  2971       n_compare->_opnds[2] = new (C) immL16Oper(0);
  2973       n_sub_base->add_req(n_region, n_compare, n_src);
  2974       n_sub_base->_opnds[0] = op_dst;
  2975       n_sub_base->_opnds[1] = op_crx;
  2976       n_sub_base->_opnds[2] = op_src;
  2977       n_sub_base->_bottom_type = _bottom_type;
  2979       n_shift->add_req(n_region, n_sub_base);
  2980       n_shift->_opnds[0] = op_dst;
  2981       n_shift->_opnds[1] = op_dst;
  2982       n_shift->_bottom_type = _bottom_type;
  2984       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2985       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  2986       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2987       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2989       nodes->push(n_move);
  2990       nodes->push(n_compare);
  2991       nodes->push(n_sub_base);
  2992       nodes->push(n_shift);
  2995     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  2996   %}
  2998   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
  3000     encodeP_subNode *n1 = new (C) encodeP_subNode();
  3001     n1->add_req(n_region, n_src);
  3002     n1->_opnds[0] = op_dst;
  3003     n1->_opnds[1] = op_src;
  3004     n1->_bottom_type = _bottom_type;
  3006     encodeP_shiftNode *n2 = new (C) encodeP_shiftNode();
  3007     n2->add_req(n_region, n1);
  3008     n2->_opnds[0] = op_dst;
  3009     n2->_opnds[1] = op_dst;
  3010     n2->_bottom_type = _bottom_type;
  3011     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3012     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3014     nodes->push(n1);
  3015     nodes->push(n2);
  3016     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  3017   %}
  3019   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  3020     decodeN_shiftNode *n_shift    = new (C) decodeN_shiftNode();
  3021     cmpN_reg_imm0Node *n_compare  = new (C) cmpN_reg_imm0Node();
  3023     n_compare->add_req(n_region, n_src);
  3024     n_compare->_opnds[0] = op_crx;
  3025     n_compare->_opnds[1] = op_src;
  3026     n_compare->_opnds[2] = new (C) immN_0Oper(TypeNarrowOop::NULL_PTR);
  3028     n_shift->add_req(n_region, n_src);
  3029     n_shift->_opnds[0] = op_dst;
  3030     n_shift->_opnds[1] = op_src;
  3031     n_shift->_bottom_type = _bottom_type;
  3033     if (VM_Version::has_isel()) {
  3034       // use isel instruction with Power 7
  3036       decodeN_addNode *n_add_base = new (C) decodeN_addNode();
  3037       n_add_base->add_req(n_region, n_shift);
  3038       n_add_base->_opnds[0] = op_dst;
  3039       n_add_base->_opnds[1] = op_dst;
  3040       n_add_base->_bottom_type = _bottom_type;
  3042       cond_set_0_ptrNode *n_cond_set = new (C) cond_set_0_ptrNode();
  3043       n_cond_set->add_req(n_region, n_compare, n_add_base);
  3044       n_cond_set->_opnds[0] = op_dst;
  3045       n_cond_set->_opnds[1] = op_crx;
  3046       n_cond_set->_opnds[2] = op_dst;
  3047       n_cond_set->_bottom_type = _bottom_type;
  3049       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3050       ra_->set_oop(n_cond_set, true);
  3052       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3053       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  3054       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3055       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3057       nodes->push(n_compare);
  3058       nodes->push(n_shift);
  3059       nodes->push(n_add_base);
  3060       nodes->push(n_cond_set);
  3062     } else {
  3063       // before Power 7
  3064       cond_add_baseNode *n_add_base = new (C) cond_add_baseNode();
  3066       n_add_base->add_req(n_region, n_compare, n_shift);
  3067       n_add_base->_opnds[0] = op_dst;
  3068       n_add_base->_opnds[1] = op_crx;
  3069       n_add_base->_opnds[2] = op_dst;
  3070       n_add_base->_bottom_type = _bottom_type;
  3072       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3073       ra_->set_oop(n_add_base, true);
  3075       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3076       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  3077       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3079       nodes->push(n_compare);
  3080       nodes->push(n_shift);
  3081       nodes->push(n_add_base);
  3083   %}
  3085   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
  3086     decodeN_shiftNode *n1 = new (C) decodeN_shiftNode();
  3087     n1->add_req(n_region, n_src);
  3088     n1->_opnds[0] = op_dst;
  3089     n1->_opnds[1] = op_src;
  3090     n1->_bottom_type = _bottom_type;
  3092     decodeN_addNode *n2 = new (C) decodeN_addNode();
  3093     n2->add_req(n_region, n1);
  3094     n2->_opnds[0] = op_dst;
  3095     n2->_opnds[1] = op_dst;
  3096     n2->_bottom_type = _bottom_type;
  3097     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3098     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3100     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3101     ra_->set_oop(n2, true);
  3103     nodes->push(n1);
  3104     nodes->push(n2);
  3105   %}
  3107   enc_class enc_cmove_reg(iRegIdst dst, flagsReg crx, iRegIsrc src, cmpOp cmp) %{
  3108     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3110     MacroAssembler _masm(&cbuf);
  3111     int cc        = $cmp$$cmpcode;
  3112     int flags_reg = $crx$$reg;
  3113     Label done;
  3114     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3115     // Branch if not (cmp crx).
  3116     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
  3117     __ mr($dst$$Register, $src$$Register);
  3118     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3119     __ bind(done);
  3120   %}
  3122   enc_class enc_cmove_imm(iRegIdst dst, flagsReg crx, immI16 src, cmpOp cmp) %{
  3123     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3125     MacroAssembler _masm(&cbuf);
  3126     Label done;
  3127     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3128     // Branch if not (cmp crx).
  3129     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  3130     __ li($dst$$Register, $src$$constant);
  3131     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3132     __ bind(done);
  3133   %}
  3135   // New atomics.
  3136   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  3137     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3139     MacroAssembler _masm(&cbuf);
  3140     Register Rtmp   = R0;
  3141     Register Rres   = $res$$Register;
  3142     Register Rsrc   = $src$$Register;
  3143     Register Rptr   = $mem_ptr$$Register;
  3144     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3145     Register Rold   = RegCollision ? Rtmp : Rres;
  3147     Label Lretry;
  3148     __ bind(Lretry);
  3149     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3150     __ add(Rtmp, Rsrc, Rold);
  3151     __ stwcx_(Rtmp, Rptr);
  3152     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3153       __ bne_predict_not_taken(CCR0, Lretry);
  3154     } else {
  3155       __ bne(                  CCR0, Lretry);
  3157     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  3158     __ fence();
  3159   %}
  3161   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  3162     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3164     MacroAssembler _masm(&cbuf);
  3165     Register Rtmp   = R0;
  3166     Register Rres   = $res$$Register;
  3167     Register Rsrc   = $src$$Register;
  3168     Register Rptr   = $mem_ptr$$Register;
  3169     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3170     Register Rold   = RegCollision ? Rtmp : Rres;
  3172     Label Lretry;
  3173     __ bind(Lretry);
  3174     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3175     __ add(Rtmp, Rsrc, Rold);
  3176     __ stdcx_(Rtmp, Rptr);
  3177     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3178       __ bne_predict_not_taken(CCR0, Lretry);
  3179     } else {
  3180       __ bne(                  CCR0, Lretry);
  3182     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  3183     __ fence();
  3184   %}
  3186   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  3187     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3189     MacroAssembler _masm(&cbuf);
  3190     Register Rtmp   = R0;
  3191     Register Rres   = $res$$Register;
  3192     Register Rsrc   = $src$$Register;
  3193     Register Rptr   = $mem_ptr$$Register;
  3194     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3195     Register Rold   = RegCollision ? Rtmp : Rres;
  3197     Label Lretry;
  3198     __ bind(Lretry);
  3199     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3200     __ stwcx_(Rsrc, Rptr);
  3201     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3202       __ bne_predict_not_taken(CCR0, Lretry);
  3203     } else {
  3204       __ bne(                  CCR0, Lretry);
  3206     if (RegCollision) __ mr(Rres, Rtmp);
  3207     __ fence();
  3208   %}
  3210   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  3211     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3213     MacroAssembler _masm(&cbuf);
  3214     Register Rtmp   = R0;
  3215     Register Rres   = $res$$Register;
  3216     Register Rsrc   = $src$$Register;
  3217     Register Rptr   = $mem_ptr$$Register;
  3218     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3219     Register Rold   = RegCollision ? Rtmp : Rres;
  3221     Label Lretry;
  3222     __ bind(Lretry);
  3223     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3224     __ stdcx_(Rsrc, Rptr);
  3225     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3226       __ bne_predict_not_taken(CCR0, Lretry);
  3227     } else {
  3228       __ bne(                  CCR0, Lretry);
  3230     if (RegCollision) __ mr(Rres, Rtmp);
  3231     __ fence();
  3232   %}
  3234   // This enc_class is needed so that scheduler gets proper
  3235   // input mapping for latency computation.
  3236   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  3237     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  3238     MacroAssembler _masm(&cbuf);
  3239     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  3240   %}
  3242   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  3243     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3245     MacroAssembler _masm(&cbuf);
  3247     Label done;
  3248     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
  3249     __ li($dst$$Register, $zero$$constant);
  3250     __ beq($crx$$CondRegister, done);
  3251     __ li($dst$$Register, $notzero$$constant);
  3252     __ bind(done);
  3253   %}
  3255   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  3256     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3258     MacroAssembler _masm(&cbuf);
  3260     Label done;
  3261     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
  3262     __ li($dst$$Register, $zero$$constant);
  3263     __ beq($crx$$CondRegister, done);
  3264     __ li($dst$$Register, $notzero$$constant);
  3265     __ bind(done);
  3266   %}
  3268   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL mem ) %{
  3269     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3271     MacroAssembler _masm(&cbuf);
  3272     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  3273     Label done;
  3274     __ bso($crx$$CondRegister, done);
  3275     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  3276     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3277     __ bind(done);
  3278   %}
  3280   enc_class enc_bc(flagsReg crx, cmpOp cmp, Label lbl) %{
  3281     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3283     MacroAssembler _masm(&cbuf);
  3284     Label d;   // dummy
  3285     __ bind(d);
  3286     Label* p = ($lbl$$label);
  3287     // `p' is `NULL' when this encoding class is used only to
  3288     // determine the size of the encoded instruction.
  3289     Label& l = (NULL == p)? d : *(p);
  3290     int cc = $cmp$$cmpcode;
  3291     int flags_reg = $crx$$reg;
  3292     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3293     int bhint = Assembler::bhintNoHint;
  3295     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3296       if (_prob <= PROB_NEVER) {
  3297         bhint = Assembler::bhintIsNotTaken;
  3298       } else if (_prob >= PROB_ALWAYS) {
  3299         bhint = Assembler::bhintIsTaken;
  3303     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3304           cc_to_biint(cc, flags_reg),
  3305           l);
  3306   %}
  3308   enc_class enc_bc_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  3309     // The scheduler doesn't know about branch shortening, so we set the opcode
  3310     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  3311     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3313     MacroAssembler _masm(&cbuf);
  3314     Label d;    // dummy
  3315     __ bind(d);
  3316     Label* p = ($lbl$$label);
  3317     // `p' is `NULL' when this encoding class is used only to
  3318     // determine the size of the encoded instruction.
  3319     Label& l = (NULL == p)? d : *(p);
  3320     int cc = $cmp$$cmpcode;
  3321     int flags_reg = $crx$$reg;
  3322     int bhint = Assembler::bhintNoHint;
  3324     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3325       if (_prob <= PROB_NEVER) {
  3326         bhint = Assembler::bhintIsNotTaken;
  3327       } else if (_prob >= PROB_ALWAYS) {
  3328         bhint = Assembler::bhintIsTaken;
  3332     // Tell the conditional far branch to optimize itself when being relocated.
  3333     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3334                   cc_to_biint(cc, flags_reg),
  3335                   l,
  3336                   MacroAssembler::bc_far_optimize_on_relocate);
  3337   %}
  3339   // Branch used with Power6 scheduling (can be shortened without changing the node).
  3340   enc_class enc_bc_short_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  3341     // The scheduler doesn't know about branch shortening, so we set the opcode
  3342     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  3343     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3345     MacroAssembler _masm(&cbuf);
  3346     Label d;   // dummy
  3347     __ bind(d);
  3348     Label* p = ($lbl$$label);
  3349     // `p' is `NULL' when this encoding class is used only to
  3350     // determine the size of the encoded instruction.
  3351     Label& l = (NULL == p)? d : *(p);
  3352     int cc = $cmp$$cmpcode;
  3353     int flags_reg = $crx$$reg;
  3354     int bhint = Assembler::bhintNoHint;
  3356     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3357       if (_prob <= PROB_NEVER) {
  3358         bhint = Assembler::bhintIsNotTaken;
  3359       } else if (_prob >= PROB_ALWAYS) {
  3360         bhint = Assembler::bhintIsTaken;
  3364 #if 0 // TODO: PPC port
  3365     if (_size == 8) {
  3366       // Tell the conditional far branch to optimize itself when being relocated.
  3367       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3368                     cc_to_biint(cc, flags_reg),
  3369                     l,
  3370                     MacroAssembler::bc_far_optimize_on_relocate);
  3371     } else {
  3372       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3373                     cc_to_biint(cc, flags_reg),
  3374                     l);
  3376 #endif
  3377     Unimplemented();
  3378   %}
  3380   // Postalloc expand emitter for loading a replicatef float constant from
  3381   // the method's TOC.
  3382   // Enc_class needed as consttanttablebase is not supported by postalloc
  3383   // expand.
  3384   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
  3385     // Create new nodes.
  3387     // Make an operand with the bit pattern to load as float.
  3388     immLOper *op_repl = new (C) immLOper((jlong)replicate_immF(op_src->constantF()));
  3390     loadConLNodesTuple loadConLNodes =
  3391       loadConLNodesTuple_create(C, ra_, n_toc, op_repl,
  3392                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
  3394     // Push new nodes.
  3395     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  3396     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  3398     assert(nodes->length() >= 1, "must have created at least 1 node");
  3399     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  3400   %}
  3402   // This enc_class is needed so that scheduler gets proper
  3403   // input mapping for latency computation.
  3404   enc_class enc_poll(immI dst, iRegLdst poll) %{
  3405     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  3406     // Fake operand dst needed for PPC scheduler.
  3407     assert($dst$$constant == 0x0, "dst must be 0x0");
  3409     MacroAssembler _masm(&cbuf);
  3410     // Mark the code position where the load from the safepoint
  3411     // polling page was emitted as relocInfo::poll_type.
  3412     __ relocate(relocInfo::poll_type);
  3413     __ load_from_polling_page($poll$$Register);
  3414   %}
  3416   // A Java static call or a runtime call.
  3417   //
  3418   // Branch-and-link relative to a trampoline.
  3419   // The trampoline loads the target address and does a long branch to there.
  3420   // In case we call java, the trampoline branches to a interpreter_stub
  3421   // which loads the inline cache and the real call target from the constant pool.
  3422   //
  3423   // This basically looks like this:
  3424   //
  3425   // >>>> consts      -+  -+
  3426   //                   |   |- offset1
  3427   // [call target1]    | <-+
  3428   // [IC cache]        |- offset2
  3429   // [call target2] <--+
  3430   //
  3431   // <<<< consts
  3432   // >>>> insts
  3433   //
  3434   // bl offset16               -+  -+             ??? // How many bits available?
  3435   //                            |   |
  3436   // <<<< insts                 |   |
  3437   // >>>> stubs                 |   |
  3438   //                            |   |- trampoline_stub_Reloc
  3439   // trampoline stub:           | <-+
  3440   //   r2 = toc                 |
  3441   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
  3442   //   mtctr r2                 |
  3443   //   bctr                     |- static_stub_Reloc
  3444   // comp_to_interp_stub:   <---+
  3445   //   r1 = toc
  3446   //   ICreg = [r1 + IC_offset]         // Load IC from const section
  3447   //   r1    = [r1 + offset2]           // Load call target2 from const section
  3448   //   mtctr r1
  3449   //   bctr
  3450   //
  3451   // <<<< stubs
  3452   //
  3453   // The call instruction in the code either
  3454   // - Branches directly to a compiled method if the offset is encodable in instruction.
  3455   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
  3456   // - Branches to the compiled_to_interp stub if the target is interpreted.
  3457   //
  3458   // Further there are three relocations from the loads to the constants in
  3459   // the constant section.
  3460   //
  3461   // Usage of r1 and r2 in the stubs allows to distinguish them.
  3462   enc_class enc_java_static_call(method meth) %{
  3463     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  3465     MacroAssembler _masm(&cbuf);
  3466     address entry_point = (address)$meth$$method;
  3468     if (!_method) {
  3469       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
  3470       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
  3471     } else {
  3472       // Remember the offset not the address.
  3473       const int start_offset = __ offset();
  3474       // The trampoline stub.
  3475       if (!Compile::current()->in_scratch_emit_size()) {
  3476         // No entry point given, use the current pc.
  3477         // Make sure branch fits into
  3478         if (entry_point == 0) entry_point = __ pc();
  3480         // Put the entry point as a constant into the constant pool.
  3481         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  3482         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  3484         // Emit the trampoline stub which will be related to the branch-and-link below.
  3485         CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  3486         __ relocate(_optimized_virtual ?
  3487                     relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
  3490       // The real call.
  3491       // Note: At this point we do not have the address of the trampoline
  3492       // stub, and the entry point might be too far away for bl, so __ pc()
  3493       // serves as dummy and the bl will be patched later.
  3494       cbuf.set_insts_mark();
  3495       __ bl(__ pc());  // Emits a relocation.
  3497       // The stub for call to interpreter.
  3498       CompiledStaticCall::emit_to_interp_stub(cbuf);
  3500   %}
  3502   // Emit a method handle call.
  3503   //
  3504   // Method handle calls from compiled to compiled are going thru a
  3505   // c2i -> i2c adapter, extending the frame for their arguments. The
  3506   // caller however, returns directly to the compiled callee, that has
  3507   // to cope with the extended frame. We restore the original frame by
  3508   // loading the callers sp and adding the calculated framesize.
  3509   enc_class enc_java_handle_call(method meth) %{
  3510     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3512     MacroAssembler _masm(&cbuf);
  3513     address entry_point = (address)$meth$$method;
  3515     // Remember the offset not the address.
  3516     const int start_offset = __ offset();
  3517     // The trampoline stub.
  3518     if (!ra_->C->in_scratch_emit_size()) {
  3519       // No entry point given, use the current pc.
  3520       // Make sure branch fits into
  3521       if (entry_point == 0) entry_point = __ pc();
  3523       // Put the entry point as a constant into the constant pool.
  3524       const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  3525       const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  3527       // Emit the trampoline stub which will be related to the branch-and-link below.
  3528       CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  3529       assert(_optimized_virtual, "methodHandle call should be a virtual call");
  3530       __ relocate(relocInfo::opt_virtual_call_type);
  3533     // The real call.
  3534     // Note: At this point we do not have the address of the trampoline
  3535     // stub, and the entry point might be too far away for bl, so __ pc()
  3536     // serves as dummy and the bl will be patched later.
  3537     cbuf.set_insts_mark();
  3538     __ bl(__ pc());  // Emits a relocation.
  3540     assert(_method, "execute next statement conditionally");
  3541     // The stub for call to interpreter.
  3542     CompiledStaticCall::emit_to_interp_stub(cbuf);
  3544     // Restore original sp.
  3545     __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
  3546     const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
  3547     unsigned int bytes = (unsigned int)framesize;
  3548     long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  3549     if (Assembler::is_simm(-offset, 16)) {
  3550       __ addi(R1_SP, R11_scratch1, -offset);
  3551     } else {
  3552       __ load_const_optimized(R12_scratch2, -offset);
  3553       __ add(R1_SP, R11_scratch1, R12_scratch2);
  3555 #ifdef ASSERT
  3556   __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
  3557   __ cmpd(CCR0, R11_scratch1, R12_scratch2);
  3558   __ asm_assert_eq("backlink changed", 0x8000);
  3559 #endif
  3560     // If fails should store backlink before unextending.
  3562     if (ra_->C->env()->failing()) {
  3563       return;
  3565   %}
  3567   // Second node of expanded dynamic call - the call.
  3568   enc_class enc_java_dynamic_call_sched(method meth) %{
  3569     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  3571     MacroAssembler _masm(&cbuf);
  3573     if (!ra_->C->in_scratch_emit_size()) {
  3574       // Create a call trampoline stub for the given method.
  3575       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
  3576       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
  3577       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
  3578       CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
  3580       if (ra_->C->env()->failing())
  3581         return;
  3583       // Build relocation at call site with ic position as data.
  3584       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
  3585              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
  3586              "must have one, but can't have both");
  3587       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
  3588              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
  3589              "must contain instruction offset");
  3590       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
  3591         ? _load_ic_hi_node->_cbuf_insts_offset
  3592         : _load_ic_node->_cbuf_insts_offset;
  3593       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
  3594       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
  3595              "should be load from TOC");
  3597       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  3600     // At this point I do not have the address of the trampoline stub,
  3601     // and the entry point might be too far away for bl. Pc() serves
  3602     // as dummy and bl will be patched later.
  3603     __ bl((address) __ pc());
  3604   %}
  3606   // postalloc expand emitter for virtual calls.
  3607   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
  3609     // Create the nodes for loading the IC from the TOC.
  3610     loadConLNodesTuple loadConLNodes_IC =
  3611       loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong)Universe::non_oop_word()),
  3612                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
  3614     // Create the call node.
  3615     CallDynamicJavaDirectSchedNode *call = new (C) CallDynamicJavaDirectSchedNode();
  3616     call->_method_handle_invoke = _method_handle_invoke;
  3617     call->_vtable_index      = _vtable_index;
  3618     call->_method            = _method;
  3619     call->_bci               = _bci;
  3620     call->_optimized_virtual = _optimized_virtual;
  3621     call->_tf                = _tf;
  3622     call->_entry_point       = _entry_point;
  3623     call->_cnt               = _cnt;
  3624     call->_argsize           = _argsize;
  3625     call->_oop_map           = _oop_map;
  3626     call->_jvms              = _jvms;
  3627     call->_jvmadj            = _jvmadj;
  3628     call->_in_rms            = _in_rms;
  3629     call->_nesting           = _nesting;
  3631     // New call needs all inputs of old call.
  3632     // Req...
  3633     for (uint i = 0; i < req(); ++i) {
  3634       // The expanded node does not need toc any more.
  3635       // Add the inline cache constant here instead. This expresses the
  3636       // register of the inline cache must be live at the call.
  3637       // Else we would have to adapt JVMState by -1.
  3638       if (i == mach_constant_base_node_input()) {
  3639         call->add_req(loadConLNodes_IC._last);
  3640       } else {
  3641         call->add_req(in(i));
  3644     // ...as well as prec
  3645     for (uint i = req(); i < len(); ++i) {
  3646       call->add_prec(in(i));
  3649     // Remember nodes loading the inline cache into r19.
  3650     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
  3651     call->_load_ic_node    = loadConLNodes_IC._small;
  3653     // Operands for new nodes.
  3654     call->_opnds[0] = _opnds[0];
  3655     call->_opnds[1] = _opnds[1];
  3657     // Only the inline cache is associated with a register.
  3658     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
  3660     // Push new nodes.
  3661     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
  3662     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
  3663     nodes->push(call);
  3664   %}
  3666   // Compound version of call dynamic
  3667   // Toc is only passed so that it can be used in ins_encode statement.
  3668   // In the code we have to use $constanttablebase.
  3669   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
  3670     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3671     MacroAssembler _masm(&cbuf);
  3672     int start_offset = __ offset();
  3674     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
  3675 #if 0
  3676     int vtable_index = this->_vtable_index;
  3677     if (_vtable_index < 0) {
  3678       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  3679       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  3680       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
  3682       // Virtual call relocation will point to ic load.
  3683       address virtual_call_meta_addr = __ pc();
  3684       // Load a clear inline cache.
  3685       AddressLiteral empty_ic((address) Universe::non_oop_word());
  3686       __ load_const_from_method_toc(ic_reg, empty_ic, Rtoc);
  3687       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
  3688       // to determine who we intended to call.
  3689       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
  3690       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
  3691       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  3692              "Fix constant in ret_addr_offset()");
  3693     } else {
  3694       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  3695       // Go thru the vtable. Get receiver klass. Receiver already
  3696       // checked for non-null. If we'll go thru a C2I adapter, the
  3697       // interpreter expects method in R19_method.
  3699       __ load_klass(R11_scratch1, R3);
  3701       int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
  3702       int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  3703       __ li(R19_method, v_off);
  3704       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
  3705       // NOTE: for vtable dispatches, the vtable entry will never be
  3706       // null. However it may very well end up in handle_wrong_method
  3707       // if the method is abstract for the particular class.
  3708       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
  3709       // Call target. Either compiled code or C2I adapter.
  3710       __ mtctr(R11_scratch1);
  3711       __ bctrl();
  3712       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
  3713         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
  3715       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  3716              "Fix constant in ret_addr_offset()");
  3718 #endif
  3719     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
  3720   %}
  3722   // a runtime call
  3723   enc_class enc_java_to_runtime_call (method meth) %{
  3724     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3726     MacroAssembler _masm(&cbuf);
  3727     const address start_pc = __ pc();
  3729 #if defined(ABI_ELFv2)
  3730     address entry= !($meth$$method) ? NULL : (address)$meth$$method;
  3731     __ call_c(entry, relocInfo::runtime_call_type);
  3732 #else
  3733     // The function we're going to call.
  3734     FunctionDescriptor fdtemp;
  3735     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
  3737     Register Rtoc = R12_scratch2;
  3738     // Calculate the method's TOC.
  3739     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
  3740     // Put entry, env, toc into the constant pool, this needs up to 3 constant
  3741     // pool entries; call_c_using_toc will optimize the call.
  3742     __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
  3743 #endif
  3745     // Check the ret_addr_offset.
  3746     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
  3747            "Fix constant in ret_addr_offset()");
  3748   %}
  3750   // Move to ctr for leaf call.
  3751   // This enc_class is needed so that scheduler gets proper
  3752   // input mapping for latency computation.
  3753   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
  3754     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
  3755     MacroAssembler _masm(&cbuf);
  3756     __ mtctr($src$$Register);
  3757   %}
  3759   // Postalloc expand emitter for runtime leaf calls.
  3760   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
  3761     loadConLNodesTuple loadConLNodes_Entry;
  3762 #if defined(ABI_ELFv2)
  3763     jlong entry_address = (jlong) this->entry_point();
  3764     assert(entry_address, "need address here");
  3765     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
  3766                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  3767 #else
  3768     // Get the struct that describes the function we are about to call.
  3769     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
  3770     assert(fd, "need fd here");
  3771     jlong entry_address = (jlong) fd->entry();
  3772     // new nodes
  3773     loadConLNodesTuple loadConLNodes_Env;
  3774     loadConLNodesTuple loadConLNodes_Toc;
  3776     // Create nodes and operands for loading the entry point.
  3777     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
  3778                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  3781     // Create nodes and operands for loading the env pointer.
  3782     if (fd->env() != NULL) {
  3783       loadConLNodes_Env = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->env()),
  3784                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  3785     } else {
  3786       loadConLNodes_Env._large_hi = NULL;
  3787       loadConLNodes_Env._large_lo = NULL;
  3788       loadConLNodes_Env._small    = NULL;
  3789       loadConLNodes_Env._last = new (C) loadConL16Node();
  3790       loadConLNodes_Env._last->_opnds[0] = new (C) iRegLdstOper();
  3791       loadConLNodes_Env._last->_opnds[1] = new (C) immL16Oper(0);
  3792       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  3795     // Create nodes and operands for loading the Toc point.
  3796     loadConLNodes_Toc = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->toc()),
  3797                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
  3798 #endif // ABI_ELFv2
  3799     // mtctr node
  3800     MachNode *mtctr = new (C) CallLeafDirect_mtctrNode();
  3802     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
  3803     mtctr->add_req(0, loadConLNodes_Entry._last);
  3805     mtctr->_opnds[0] = new (C) iRegLdstOper();
  3806     mtctr->_opnds[1] = new (C) iRegLdstOper();
  3808     // call node
  3809     MachCallLeafNode *call = new (C) CallLeafDirectNode();
  3811     call->_opnds[0] = _opnds[0];
  3812     call->_opnds[1] = new (C) methodOper((intptr_t) entry_address); // May get set later.
  3814     // Make the new call node look like the old one.
  3815     call->_name        = _name;
  3816     call->_tf          = _tf;
  3817     call->_entry_point = _entry_point;
  3818     call->_cnt         = _cnt;
  3819     call->_argsize     = _argsize;
  3820     call->_oop_map     = _oop_map;
  3821     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
  3822     call->_jvms        = NULL;
  3823     call->_jvmadj      = _jvmadj;
  3824     call->_in_rms      = _in_rms;
  3825     call->_nesting     = _nesting;
  3828     // New call needs all inputs of old call.
  3829     // Req...
  3830     for (uint i = 0; i < req(); ++i) {
  3831       if (i != mach_constant_base_node_input()) {
  3832         call->add_req(in(i));
  3836     // These must be reqired edges, as the registers are live up to
  3837     // the call. Else the constants are handled as kills.
  3838     call->add_req(mtctr);
  3839 #if !defined(ABI_ELFv2)
  3840     call->add_req(loadConLNodes_Env._last);
  3841     call->add_req(loadConLNodes_Toc._last);
  3842 #endif
  3844     // ...as well as prec
  3845     for (uint i = req(); i < len(); ++i) {
  3846       call->add_prec(in(i));
  3849     // registers
  3850     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
  3852     // Insert the new nodes.
  3853     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
  3854     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
  3855 #if !defined(ABI_ELFv2)
  3856     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
  3857     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
  3858     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
  3859     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
  3860 #endif
  3861     nodes->push(mtctr);
  3862     nodes->push(call);
  3863   %}
  3864 %}
  3866 //----------FRAME--------------------------------------------------------------
  3867 // Definition of frame structure and management information.
  3869 frame %{
  3870   // What direction does stack grow in (assumed to be same for native & Java).
  3871   stack_direction(TOWARDS_LOW);
  3873   // These two registers define part of the calling convention between
  3874   // compiled code and the interpreter.
  3876   // Inline Cache Register or method for I2C.
  3877   inline_cache_reg(R19); // R19_method
  3879   // Method Oop Register when calling interpreter.
  3880   interpreter_method_oop_reg(R19); // R19_method
  3882   // Optional: name the operand used by cisc-spilling to access
  3883   // [stack_pointer + offset].
  3884   cisc_spilling_operand_name(indOffset);
  3886   // Number of stack slots consumed by a Monitor enter.
  3887   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
  3889   // Compiled code's Frame Pointer.
  3890   frame_pointer(R1); // R1_SP
  3892   // Interpreter stores its frame pointer in a register which is
  3893   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
  3894   // interpreted java to compiled java.
  3895   //
  3896   // R14_state holds pointer to caller's cInterpreter.
  3897   interpreter_frame_pointer(R14); // R14_state
  3899   stack_alignment(frame::alignment_in_bytes);
  3901   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
  3903   // Number of outgoing stack slots killed above the
  3904   // out_preserve_stack_slots for calls to C. Supports the var-args
  3905   // backing area for register parms.
  3906   //
  3907   varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
  3909   // The after-PROLOG location of the return address. Location of
  3910   // return address specifies a type (REG or STACK) and a number
  3911   // representing the register number (i.e. - use a register name) or
  3912   // stack slot.
  3913   //
  3914   // A: Link register is stored in stack slot ...
  3915   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
  3916   // J: Therefore, we make sure that the link register is also in R11_scratch1
  3917   //    at the end of the prolog.
  3918   // B: We use R20, now.
  3919   //return_addr(REG R20);
  3921   // G: After reading the comments made by all the luminaries on their
  3922   //    failure to tell the compiler where the return address really is,
  3923   //    I hardly dare to try myself.  However, I'm convinced it's in slot
  3924   //    4 what apparently works and saves us some spills.
  3925   return_addr(STACK 4);
  3927   // This is the body of the function
  3928   //
  3929   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
  3930   //                                  uint length,      // length of array
  3931   //                                  bool is_outgoing)
  3932   //
  3933   // The `sig' array is to be updated. sig[j] represents the location
  3934   // of the j-th argument, either a register or a stack slot.
  3936   // Comment taken from i486.ad:
  3937   // Body of function which returns an integer array locating
  3938   // arguments either in registers or in stack slots. Passed an array
  3939   // of ideal registers called "sig" and a "length" count. Stack-slot
  3940   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3941   // arguments for a CALLEE. Incoming stack arguments are
  3942   // automatically biased by the preserve_stack_slots field above.
  3943   calling_convention %{
  3944     // No difference between ingoing/outgoing. Just pass false.
  3945     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3946   %}
  3948   // Comment taken from i486.ad:
  3949   // Body of function which returns an integer array locating
  3950   // arguments either in registers or in stack slots. Passed an array
  3951   // of ideal registers called "sig" and a "length" count. Stack-slot
  3952   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3953   // arguments for a CALLEE. Incoming stack arguments are
  3954   // automatically biased by the preserve_stack_slots field above.
  3955   c_calling_convention %{
  3956     // This is obviously always outgoing.
  3957     // C argument in register AND stack slot.
  3958     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3959   %}
  3961   // Location of native (C/C++) and interpreter return values. This
  3962   // is specified to be the same as Java. In the 32-bit VM, long
  3963   // values are actually returned from native calls in O0:O1 and
  3964   // returned to the interpreter in I0:I1. The copying to and from
  3965   // the register pairs is done by the appropriate call and epilog
  3966   // opcodes. This simplifies the register allocator.
  3967   c_return_value %{
  3968     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  3969             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  3970             "only return normal values");
  3971     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  3972     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  3973     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  3974     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  3975   %}
  3977   // Location of compiled Java return values.  Same as C
  3978   return_value %{
  3979     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  3980             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  3981             "only return normal values");
  3982     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  3983     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  3984     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  3985     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  3986   %}
  3987 %}
  3990 //----------ATTRIBUTES---------------------------------------------------------
  3992 //----------Operand Attributes-------------------------------------------------
  3993 op_attrib op_cost(1);          // Required cost attribute.
  3995 //----------Instruction Attributes---------------------------------------------
  3997 // Cost attribute. required.
  3998 ins_attrib ins_cost(DEFAULT_COST);
  4000 // Is this instruction a non-matching short branch variant of some
  4001 // long branch? Not required.
  4002 ins_attrib ins_short_branch(0);
  4004 ins_attrib ins_is_TrapBasedCheckNode(true);
  4006 // Number of constants.
  4007 // This instruction uses the given number of constants
  4008 // (optional attribute).
  4009 // This is needed to determine in time whether the constant pool will
  4010 // exceed 4000 entries. Before postalloc_expand the overall number of constants
  4011 // is determined. It's also used to compute the constant pool size
  4012 // in Output().
  4013 ins_attrib ins_num_consts(0);
  4015 // Required alignment attribute (must be a power of 2) specifies the
  4016 // alignment that some part of the instruction (not necessarily the
  4017 // start) requires. If > 1, a compute_padding() function must be
  4018 // provided for the instruction.
  4019 ins_attrib ins_alignment(1);
  4021 // Enforce/prohibit rematerializations.
  4022 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
  4023 //   then rematerialization of that instruction is prohibited and the
  4024 //   instruction's value will be spilled if necessary.
  4025 //   Causes that MachNode::rematerialize() returns false.
  4026 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
  4027 //   then rematerialization should be enforced and a copy of the instruction
  4028 //   should be inserted if possible; rematerialization is not guaranteed.
  4029 //   Note: this may result in rematerializations in front of every use.
  4030 //   Causes that MachNode::rematerialize() can return true.
  4031 // (optional attribute)
  4032 ins_attrib ins_cannot_rematerialize(false);
  4033 ins_attrib ins_should_rematerialize(false);
  4035 // Instruction has variable size depending on alignment.
  4036 ins_attrib ins_variable_size_depending_on_alignment(false);
  4038 // Instruction is a nop.
  4039 ins_attrib ins_is_nop(false);
  4041 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
  4042 ins_attrib ins_use_mach_if_fast_lock_node(false);
  4044 // Field for the toc offset of a constant.
  4045 //
  4046 // This is needed if the toc offset is not encodable as an immediate in
  4047 // the PPC load instruction. If so, the upper (hi) bits of the offset are
  4048 // added to the toc, and from this a load with immediate is performed.
  4049 // With postalloc expand, we get two nodes that require the same offset
  4050 // but which don't know about each other. The offset is only known
  4051 // when the constant is added to the constant pool during emitting.
  4052 // It is generated in the 'hi'-node adding the upper bits, and saved
  4053 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
  4054 // the offset from there when it gets encoded.
  4055 ins_attrib ins_field_const_toc_offset(0);
  4056 ins_attrib ins_field_const_toc_offset_hi_node(0);
  4058 // A field that can hold the instructions offset in the code buffer.
  4059 // Set in the nodes emitter.
  4060 ins_attrib ins_field_cbuf_insts_offset(-1);
  4062 // Fields for referencing a call's load-IC-node.
  4063 // If the toc offset can not be encoded as an immediate in a load, we
  4064 // use two nodes.
  4065 ins_attrib ins_field_load_ic_hi_node(0);
  4066 ins_attrib ins_field_load_ic_node(0);
  4068 //----------OPERANDS-----------------------------------------------------------
  4069 // Operand definitions must precede instruction definitions for correct
  4070 // parsing in the ADLC because operands constitute user defined types
  4071 // which are used in instruction definitions.
  4072 //
  4073 // Formats are generated automatically for constants and base registers.
  4075 //----------Simple Operands----------------------------------------------------
  4076 // Immediate Operands
  4078 // Integer Immediate: 32-bit
  4079 operand immI() %{
  4080   match(ConI);
  4081   op_cost(40);
  4082   format %{ %}
  4083   interface(CONST_INTER);
  4084 %}
  4086 operand immI8() %{
  4087   predicate(Assembler::is_simm(n->get_int(), 8));
  4088   op_cost(0);
  4089   match(ConI);
  4090   format %{ %}
  4091   interface(CONST_INTER);
  4092 %}
  4094 // Integer Immediate: 16-bit
  4095 operand immI16() %{
  4096   predicate(Assembler::is_simm(n->get_int(), 16));
  4097   op_cost(0);
  4098   match(ConI);
  4099   format %{ %}
  4100   interface(CONST_INTER);
  4101 %}
  4103 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
  4104 operand immIhi16() %{
  4105   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
  4106   match(ConI);
  4107   op_cost(0);
  4108   format %{ %}
  4109   interface(CONST_INTER);
  4110 %}
  4112 operand immInegpow2() %{
  4113   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
  4114   match(ConI);
  4115   op_cost(0);
  4116   format %{ %}
  4117   interface(CONST_INTER);
  4118 %}
  4120 operand immIpow2minus1() %{
  4121   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
  4122   match(ConI);
  4123   op_cost(0);
  4124   format %{ %}
  4125   interface(CONST_INTER);
  4126 %}
  4128 operand immIpowerOf2() %{
  4129   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
  4130   match(ConI);
  4131   op_cost(0);
  4132   format %{ %}
  4133   interface(CONST_INTER);
  4134 %}
  4136 // Unsigned Integer Immediate: the values 0-31
  4137 operand uimmI5() %{
  4138   predicate(Assembler::is_uimm(n->get_int(), 5));
  4139   match(ConI);
  4140   op_cost(0);
  4141   format %{ %}
  4142   interface(CONST_INTER);
  4143 %}
  4145 // Unsigned Integer Immediate: 6-bit
  4146 operand uimmI6() %{
  4147   predicate(Assembler::is_uimm(n->get_int(), 6));
  4148   match(ConI);
  4149   op_cost(0);
  4150   format %{ %}
  4151   interface(CONST_INTER);
  4152 %}
  4154 // Unsigned Integer Immediate:  6-bit int, greater than 32
  4155 operand uimmI6_ge32() %{
  4156   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
  4157   match(ConI);
  4158   op_cost(0);
  4159   format %{ %}
  4160   interface(CONST_INTER);
  4161 %}
  4163 // Unsigned Integer Immediate: 15-bit
  4164 operand uimmI15() %{
  4165   predicate(Assembler::is_uimm(n->get_int(), 15));
  4166   match(ConI);
  4167   op_cost(0);
  4168   format %{ %}
  4169   interface(CONST_INTER);
  4170 %}
  4172 // Unsigned Integer Immediate: 16-bit
  4173 operand uimmI16() %{
  4174   predicate(Assembler::is_uimm(n->get_int(), 16));
  4175   match(ConI);
  4176   op_cost(0);
  4177   format %{ %}
  4178   interface(CONST_INTER);
  4179 %}
  4181 // constant 'int 0'.
  4182 operand immI_0() %{
  4183   predicate(n->get_int() == 0);
  4184   match(ConI);
  4185   op_cost(0);
  4186   format %{ %}
  4187   interface(CONST_INTER);
  4188 %}
  4190 // constant 'int 1'.
  4191 operand immI_1() %{
  4192   predicate(n->get_int() == 1);
  4193   match(ConI);
  4194   op_cost(0);
  4195   format %{ %}
  4196   interface(CONST_INTER);
  4197 %}
  4199 // constant 'int -1'.
  4200 operand immI_minus1() %{
  4201   predicate(n->get_int() == -1);
  4202   match(ConI);
  4203   op_cost(0);
  4204   format %{ %}
  4205   interface(CONST_INTER);
  4206 %}
  4208 // int value 16.
  4209 operand immI_16() %{
  4210   predicate(n->get_int() == 16);
  4211   match(ConI);
  4212   op_cost(0);
  4213   format %{ %}
  4214   interface(CONST_INTER);
  4215 %}
  4217 // int value 24.
  4218 operand immI_24() %{
  4219   predicate(n->get_int() == 24);
  4220   match(ConI);
  4221   op_cost(0);
  4222   format %{ %}
  4223   interface(CONST_INTER);
  4224 %}
  4226 // Compressed oops constants
  4227 // Pointer Immediate
  4228 operand immN() %{
  4229   match(ConN);
  4231   op_cost(10);
  4232   format %{ %}
  4233   interface(CONST_INTER);
  4234 %}
  4236 // NULL Pointer Immediate
  4237 operand immN_0() %{
  4238   predicate(n->get_narrowcon() == 0);
  4239   match(ConN);
  4241   op_cost(0);
  4242   format %{ %}
  4243   interface(CONST_INTER);
  4244 %}
  4246 // Compressed klass constants
  4247 operand immNKlass() %{
  4248   match(ConNKlass);
  4250   op_cost(0);
  4251   format %{ %}
  4252   interface(CONST_INTER);
  4253 %}
  4255 // This operand can be used to avoid matching of an instruct
  4256 // with chain rule.
  4257 operand immNKlass_NM() %{
  4258   match(ConNKlass);
  4259   predicate(false);
  4260   op_cost(0);
  4261   format %{ %}
  4262   interface(CONST_INTER);
  4263 %}
  4265 // Pointer Immediate: 64-bit
  4266 operand immP() %{
  4267   match(ConP);
  4268   op_cost(0);
  4269   format %{ %}
  4270   interface(CONST_INTER);
  4271 %}
  4273 // Operand to avoid match of loadConP.
  4274 // This operand can be used to avoid matching of an instruct
  4275 // with chain rule.
  4276 operand immP_NM() %{
  4277   match(ConP);
  4278   predicate(false);
  4279   op_cost(0);
  4280   format %{ %}
  4281   interface(CONST_INTER);
  4282 %}
  4284 // costant 'pointer 0'.
  4285 operand immP_0() %{
  4286   predicate(n->get_ptr() == 0);
  4287   match(ConP);
  4288   op_cost(0);
  4289   format %{ %}
  4290   interface(CONST_INTER);
  4291 %}
  4293 // pointer 0x0 or 0x1
  4294 operand immP_0or1() %{
  4295   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
  4296   match(ConP);
  4297   op_cost(0);
  4298   format %{ %}
  4299   interface(CONST_INTER);
  4300 %}
  4302 operand immL() %{
  4303   match(ConL);
  4304   op_cost(40);
  4305   format %{ %}
  4306   interface(CONST_INTER);
  4307 %}
  4309 // Long Immediate: 16-bit
  4310 operand immL16() %{
  4311   predicate(Assembler::is_simm(n->get_long(), 16));
  4312   match(ConL);
  4313   op_cost(0);
  4314   format %{ %}
  4315   interface(CONST_INTER);
  4316 %}
  4318 // Long Immediate: 16-bit, 4-aligned
  4319 operand immL16Alg4() %{
  4320   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
  4321   match(ConL);
  4322   op_cost(0);
  4323   format %{ %}
  4324   interface(CONST_INTER);
  4325 %}
  4327 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
  4328 operand immL32hi16() %{
  4329   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
  4330   match(ConL);
  4331   op_cost(0);
  4332   format %{ %}
  4333   interface(CONST_INTER);
  4334 %}
  4336 // Long Immediate: 32-bit
  4337 operand immL32() %{
  4338   predicate(Assembler::is_simm(n->get_long(), 32));
  4339   match(ConL);
  4340   op_cost(0);
  4341   format %{ %}
  4342   interface(CONST_INTER);
  4343 %}
  4345 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
  4346 operand immLhighest16() %{
  4347   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
  4348   match(ConL);
  4349   op_cost(0);
  4350   format %{ %}
  4351   interface(CONST_INTER);
  4352 %}
  4354 operand immLnegpow2() %{
  4355   predicate(is_power_of_2_long((jlong)-(n->get_long())));
  4356   match(ConL);
  4357   op_cost(0);
  4358   format %{ %}
  4359   interface(CONST_INTER);
  4360 %}
  4362 operand immLpow2minus1() %{
  4363   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
  4364             (n->get_long() != (jlong)0xffffffffffffffffL));
  4365   match(ConL);
  4366   op_cost(0);
  4367   format %{ %}
  4368   interface(CONST_INTER);
  4369 %}
  4371 // constant 'long 0'.
  4372 operand immL_0() %{
  4373   predicate(n->get_long() == 0L);
  4374   match(ConL);
  4375   op_cost(0);
  4376   format %{ %}
  4377   interface(CONST_INTER);
  4378 %}
  4380 // constat ' long -1'.
  4381 operand immL_minus1() %{
  4382   predicate(n->get_long() == -1L);
  4383   match(ConL);
  4384   op_cost(0);
  4385   format %{ %}
  4386   interface(CONST_INTER);
  4387 %}
  4389 // Long Immediate: low 32-bit mask
  4390 operand immL_32bits() %{
  4391   predicate(n->get_long() == 0xFFFFFFFFL);
  4392   match(ConL);
  4393   op_cost(0);
  4394   format %{ %}
  4395   interface(CONST_INTER);
  4396 %}
  4398 // Unsigned Long Immediate: 16-bit
  4399 operand uimmL16() %{
  4400   predicate(Assembler::is_uimm(n->get_long(), 16));
  4401   match(ConL);
  4402   op_cost(0);
  4403   format %{ %}
  4404   interface(CONST_INTER);
  4405 %}
  4407 // Float Immediate
  4408 operand immF() %{
  4409   match(ConF);
  4410   op_cost(40);
  4411   format %{ %}
  4412   interface(CONST_INTER);
  4413 %}
  4415 // constant 'float +0.0'.
  4416 operand immF_0() %{
  4417   predicate((n->getf() == 0) &&
  4418             (fpclassify(n->getf()) == FP_ZERO) && (signbit(n->getf()) == 0));
  4419   match(ConF);
  4420   op_cost(0);
  4421   format %{ %}
  4422   interface(CONST_INTER);
  4423 %}
  4425 // Double Immediate
  4426 operand immD() %{
  4427   match(ConD);
  4428   op_cost(40);
  4429   format %{ %}
  4430   interface(CONST_INTER);
  4431 %}
  4433 // Integer Register Operands
  4434 // Integer Destination Register
  4435 // See definition of reg_class bits32_reg_rw.
  4436 operand iRegIdst() %{
  4437   constraint(ALLOC_IN_RC(bits32_reg_rw));
  4438   match(RegI);
  4439   match(rscratch1RegI);
  4440   match(rscratch2RegI);
  4441   match(rarg1RegI);
  4442   match(rarg2RegI);
  4443   match(rarg3RegI);
  4444   match(rarg4RegI);
  4445   format %{ %}
  4446   interface(REG_INTER);
  4447 %}
  4449 // Integer Source Register
  4450 // See definition of reg_class bits32_reg_ro.
  4451 operand iRegIsrc() %{
  4452   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4453   match(RegI);
  4454   match(rscratch1RegI);
  4455   match(rscratch2RegI);
  4456   match(rarg1RegI);
  4457   match(rarg2RegI);
  4458   match(rarg3RegI);
  4459   match(rarg4RegI);
  4460   format %{ %}
  4461   interface(REG_INTER);
  4462 %}
  4464 operand rscratch1RegI() %{
  4465   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
  4466   match(iRegIdst);
  4467   format %{ %}
  4468   interface(REG_INTER);
  4469 %}
  4471 operand rscratch2RegI() %{
  4472   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
  4473   match(iRegIdst);
  4474   format %{ %}
  4475   interface(REG_INTER);
  4476 %}
  4478 operand rarg1RegI() %{
  4479   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
  4480   match(iRegIdst);
  4481   format %{ %}
  4482   interface(REG_INTER);
  4483 %}
  4485 operand rarg2RegI() %{
  4486   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
  4487   match(iRegIdst);
  4488   format %{ %}
  4489   interface(REG_INTER);
  4490 %}
  4492 operand rarg3RegI() %{
  4493   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
  4494   match(iRegIdst);
  4495   format %{ %}
  4496   interface(REG_INTER);
  4497 %}
  4499 operand rarg4RegI() %{
  4500   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
  4501   match(iRegIdst);
  4502   format %{ %}
  4503   interface(REG_INTER);
  4504 %}
  4506 operand rarg1RegL() %{
  4507   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  4508   match(iRegLdst);
  4509   format %{ %}
  4510   interface(REG_INTER);
  4511 %}
  4513 operand rarg2RegL() %{
  4514   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  4515   match(iRegLdst);
  4516   format %{ %}
  4517   interface(REG_INTER);
  4518 %}
  4520 operand rarg3RegL() %{
  4521   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  4522   match(iRegLdst);
  4523   format %{ %}
  4524   interface(REG_INTER);
  4525 %}
  4527 operand rarg4RegL() %{
  4528   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  4529   match(iRegLdst);
  4530   format %{ %}
  4531   interface(REG_INTER);
  4532 %}
  4534 // Pointer Destination Register
  4535 // See definition of reg_class bits64_reg_rw.
  4536 operand iRegPdst() %{
  4537   constraint(ALLOC_IN_RC(bits64_reg_rw));
  4538   match(RegP);
  4539   match(rscratch1RegP);
  4540   match(rscratch2RegP);
  4541   match(rarg1RegP);
  4542   match(rarg2RegP);
  4543   match(rarg3RegP);
  4544   match(rarg4RegP);
  4545   format %{ %}
  4546   interface(REG_INTER);
  4547 %}
  4549 // Pointer Destination Register
  4550 // Operand not using r11 and r12 (killed in epilog).
  4551 operand iRegPdstNoScratch() %{
  4552   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
  4553   match(RegP);
  4554   match(rarg1RegP);
  4555   match(rarg2RegP);
  4556   match(rarg3RegP);
  4557   match(rarg4RegP);
  4558   format %{ %}
  4559   interface(REG_INTER);
  4560 %}
  4562 // Pointer Source Register
  4563 // See definition of reg_class bits64_reg_ro.
  4564 operand iRegPsrc() %{
  4565   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4566   match(RegP);
  4567   match(iRegPdst);
  4568   match(rscratch1RegP);
  4569   match(rscratch2RegP);
  4570   match(rarg1RegP);
  4571   match(rarg2RegP);
  4572   match(rarg3RegP);
  4573   match(rarg4RegP);
  4574   match(threadRegP);
  4575   format %{ %}
  4576   interface(REG_INTER);
  4577 %}
  4579 // Thread operand.
  4580 operand threadRegP() %{
  4581   constraint(ALLOC_IN_RC(thread_bits64_reg));
  4582   match(iRegPdst);
  4583   format %{ "R16" %}
  4584   interface(REG_INTER);
  4585 %}
  4587 operand rscratch1RegP() %{
  4588   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  4589   match(iRegPdst);
  4590   format %{ "R11" %}
  4591   interface(REG_INTER);
  4592 %}
  4594 operand rscratch2RegP() %{
  4595   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  4596   match(iRegPdst);
  4597   format %{ %}
  4598   interface(REG_INTER);
  4599 %}
  4601 operand rarg1RegP() %{
  4602   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  4603   match(iRegPdst);
  4604   format %{ %}
  4605   interface(REG_INTER);
  4606 %}
  4608 operand rarg2RegP() %{
  4609   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  4610   match(iRegPdst);
  4611   format %{ %}
  4612   interface(REG_INTER);
  4613 %}
  4615 operand rarg3RegP() %{
  4616   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  4617   match(iRegPdst);
  4618   format %{ %}
  4619   interface(REG_INTER);
  4620 %}
  4622 operand rarg4RegP() %{
  4623   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  4624   match(iRegPdst);
  4625   format %{ %}
  4626   interface(REG_INTER);
  4627 %}
  4629 operand iRegNsrc() %{
  4630   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4631   match(RegN);
  4632   match(iRegNdst);
  4634   format %{ %}
  4635   interface(REG_INTER);
  4636 %}
  4638 operand iRegNdst() %{
  4639   constraint(ALLOC_IN_RC(bits32_reg_rw));
  4640   match(RegN);
  4642   format %{ %}
  4643   interface(REG_INTER);
  4644 %}
  4646 // Long Destination Register
  4647 // See definition of reg_class bits64_reg_rw.
  4648 operand iRegLdst() %{
  4649   constraint(ALLOC_IN_RC(bits64_reg_rw));
  4650   match(RegL);
  4651   match(rscratch1RegL);
  4652   match(rscratch2RegL);
  4653   format %{ %}
  4654   interface(REG_INTER);
  4655 %}
  4657 // Long Source Register
  4658 // See definition of reg_class bits64_reg_ro.
  4659 operand iRegLsrc() %{
  4660   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4661   match(RegL);
  4662   match(iRegLdst);
  4663   match(rscratch1RegL);
  4664   match(rscratch2RegL);
  4665   format %{ %}
  4666   interface(REG_INTER);
  4667 %}
  4669 // Special operand for ConvL2I.
  4670 operand iRegL2Isrc(iRegLsrc reg) %{
  4671   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4672   match(ConvL2I reg);
  4673   format %{ "ConvL2I($reg)" %}
  4674   interface(REG_INTER)
  4675 %}
  4677 operand rscratch1RegL() %{
  4678   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  4679   match(RegL);
  4680   format %{ %}
  4681   interface(REG_INTER);
  4682 %}
  4684 operand rscratch2RegL() %{
  4685   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  4686   match(RegL);
  4687   format %{ %}
  4688   interface(REG_INTER);
  4689 %}
  4691 // Condition Code Flag Registers
  4692 operand flagsReg() %{
  4693   constraint(ALLOC_IN_RC(int_flags));
  4694   match(RegFlags);
  4695   format %{ %}
  4696   interface(REG_INTER);
  4697 %}
  4699 // Condition Code Flag Register CR0
  4700 operand flagsRegCR0() %{
  4701   constraint(ALLOC_IN_RC(int_flags_CR0));
  4702   match(RegFlags);
  4703   format %{ "CR0" %}
  4704   interface(REG_INTER);
  4705 %}
  4707 operand flagsRegCR1() %{
  4708   constraint(ALLOC_IN_RC(int_flags_CR1));
  4709   match(RegFlags);
  4710   format %{ "CR1" %}
  4711   interface(REG_INTER);
  4712 %}
  4714 operand flagsRegCR6() %{
  4715   constraint(ALLOC_IN_RC(int_flags_CR6));
  4716   match(RegFlags);
  4717   format %{ "CR6" %}
  4718   interface(REG_INTER);
  4719 %}
  4721 operand regCTR() %{
  4722   constraint(ALLOC_IN_RC(ctr_reg));
  4723   // RegFlags should work. Introducing a RegSpecial type would cause a
  4724   // lot of changes.
  4725   match(RegFlags);
  4726   format %{"SR_CTR" %}
  4727   interface(REG_INTER);
  4728 %}
  4730 operand regD() %{
  4731   constraint(ALLOC_IN_RC(dbl_reg));
  4732   match(RegD);
  4733   format %{ %}
  4734   interface(REG_INTER);
  4735 %}
  4737 operand regF() %{
  4738   constraint(ALLOC_IN_RC(flt_reg));
  4739   match(RegF);
  4740   format %{ %}
  4741   interface(REG_INTER);
  4742 %}
  4744 // Special Registers
  4746 // Method Register
  4747 operand inline_cache_regP(iRegPdst reg) %{
  4748   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
  4749   match(reg);
  4750   format %{ %}
  4751   interface(REG_INTER);
  4752 %}
  4754 operand compiler_method_oop_regP(iRegPdst reg) %{
  4755   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
  4756   match(reg);
  4757   format %{ %}
  4758   interface(REG_INTER);
  4759 %}
  4761 operand interpreter_method_oop_regP(iRegPdst reg) %{
  4762   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
  4763   match(reg);
  4764   format %{ %}
  4765   interface(REG_INTER);
  4766 %}
  4768 // Operands to remove register moves in unscaled mode.
  4769 // Match read/write registers with an EncodeP node if neither shift nor add are required.
  4770 operand iRegP2N(iRegPsrc reg) %{
  4771   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
  4772   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4773   match(EncodeP reg);
  4774   format %{ "$reg" %}
  4775   interface(REG_INTER)
  4776 %}
  4778 operand iRegN2P(iRegNsrc reg) %{
  4779   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4780   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4781   match(DecodeN reg);
  4782   match(DecodeNKlass reg);
  4783   format %{ "$reg" %}
  4784   interface(REG_INTER)
  4785 %}
  4787 //----------Complex Operands---------------------------------------------------
  4788 // Indirect Memory Reference
  4789 operand indirect(iRegPsrc reg) %{
  4790   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4791   match(reg);
  4792   op_cost(100);
  4793   format %{ "[$reg]" %}
  4794   interface(MEMORY_INTER) %{
  4795     base($reg);
  4796     index(0x0);
  4797     scale(0x0);
  4798     disp(0x0);
  4799   %}
  4800 %}
  4802 // Indirect with Offset
  4803 operand indOffset16(iRegPsrc reg, immL16 offset) %{
  4804   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4805   match(AddP reg offset);
  4806   op_cost(100);
  4807   format %{ "[$reg + $offset]" %}
  4808   interface(MEMORY_INTER) %{
  4809     base($reg);
  4810     index(0x0);
  4811     scale(0x0);
  4812     disp($offset);
  4813   %}
  4814 %}
  4816 // Indirect with 4-aligned Offset
  4817 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
  4818   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4819   match(AddP reg offset);
  4820   op_cost(100);
  4821   format %{ "[$reg + $offset]" %}
  4822   interface(MEMORY_INTER) %{
  4823     base($reg);
  4824     index(0x0);
  4825     scale(0x0);
  4826     disp($offset);
  4827   %}
  4828 %}
  4830 //----------Complex Operands for Compressed OOPs-------------------------------
  4831 // Compressed OOPs with narrow_oop_shift == 0.
  4833 // Indirect Memory Reference, compressed OOP
  4834 operand indirectNarrow(iRegNsrc reg) %{
  4835   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4836   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4837   match(DecodeN reg);
  4838   match(DecodeNKlass reg);
  4839   op_cost(100);
  4840   format %{ "[$reg]" %}
  4841   interface(MEMORY_INTER) %{
  4842     base($reg);
  4843     index(0x0);
  4844     scale(0x0);
  4845     disp(0x0);
  4846   %}
  4847 %}
  4849 // Indirect with Offset, compressed OOP
  4850 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
  4851   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4852   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4853   match(AddP (DecodeN reg) offset);
  4854   match(AddP (DecodeNKlass reg) offset);
  4855   op_cost(100);
  4856   format %{ "[$reg + $offset]" %}
  4857   interface(MEMORY_INTER) %{
  4858     base($reg);
  4859     index(0x0);
  4860     scale(0x0);
  4861     disp($offset);
  4862   %}
  4863 %}
  4865 // Indirect with 4-aligned Offset, compressed OOP
  4866 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
  4867   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4868   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4869   match(AddP (DecodeN reg) offset);
  4870   match(AddP (DecodeNKlass reg) offset);
  4871   op_cost(100);
  4872   format %{ "[$reg + $offset]" %}
  4873   interface(MEMORY_INTER) %{
  4874     base($reg);
  4875     index(0x0);
  4876     scale(0x0);
  4877     disp($offset);
  4878   %}
  4879 %}
  4881 //----------Special Memory Operands--------------------------------------------
  4882 // Stack Slot Operand
  4883 //
  4884 // This operand is used for loading and storing temporary values on
  4885 // the stack where a match requires a value to flow through memory.
  4886 operand stackSlotI(sRegI reg) %{
  4887   constraint(ALLOC_IN_RC(stack_slots));
  4888   op_cost(100);
  4889   //match(RegI);
  4890   format %{ "[sp+$reg]" %}
  4891   interface(MEMORY_INTER) %{
  4892     base(0x1);   // R1_SP
  4893     index(0x0);
  4894     scale(0x0);
  4895     disp($reg);  // Stack Offset
  4896   %}
  4897 %}
  4899 operand stackSlotL(sRegL reg) %{
  4900   constraint(ALLOC_IN_RC(stack_slots));
  4901   op_cost(100);
  4902   //match(RegL);
  4903   format %{ "[sp+$reg]" %}
  4904   interface(MEMORY_INTER) %{
  4905     base(0x1);   // R1_SP
  4906     index(0x0);
  4907     scale(0x0);
  4908     disp($reg);  // Stack Offset
  4909   %}
  4910 %}
  4912 operand stackSlotP(sRegP reg) %{
  4913   constraint(ALLOC_IN_RC(stack_slots));
  4914   op_cost(100);
  4915   //match(RegP);
  4916   format %{ "[sp+$reg]" %}
  4917   interface(MEMORY_INTER) %{
  4918     base(0x1);   // R1_SP
  4919     index(0x0);
  4920     scale(0x0);
  4921     disp($reg);  // Stack Offset
  4922   %}
  4923 %}
  4925 operand stackSlotF(sRegF reg) %{
  4926   constraint(ALLOC_IN_RC(stack_slots));
  4927   op_cost(100);
  4928   //match(RegF);
  4929   format %{ "[sp+$reg]" %}
  4930   interface(MEMORY_INTER) %{
  4931     base(0x1);   // R1_SP
  4932     index(0x0);
  4933     scale(0x0);
  4934     disp($reg);  // Stack Offset
  4935   %}
  4936 %}
  4938 operand stackSlotD(sRegD reg) %{
  4939   constraint(ALLOC_IN_RC(stack_slots));
  4940   op_cost(100);
  4941   //match(RegD);
  4942   format %{ "[sp+$reg]" %}
  4943   interface(MEMORY_INTER) %{
  4944     base(0x1);   // R1_SP
  4945     index(0x0);
  4946     scale(0x0);
  4947     disp($reg);  // Stack Offset
  4948   %}
  4949 %}
  4951 // Operands for expressing Control Flow
  4952 // NOTE: Label is a predefined operand which should not be redefined in
  4953 //       the AD file. It is generically handled within the ADLC.
  4955 //----------Conditional Branch Operands----------------------------------------
  4956 // Comparison Op
  4957 //
  4958 // This is the operation of the comparison, and is limited to the
  4959 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
  4960 // (!=).
  4961 //
  4962 // Other attributes of the comparison, such as unsignedness, are specified
  4963 // by the comparison instruction that sets a condition code flags register.
  4964 // That result is represented by a flags operand whose subtype is appropriate
  4965 // to the unsignedness (etc.) of the comparison.
  4966 //
  4967 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4968 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4969 // by matching a specific subtype of Bool operand below.
  4971 // When used for floating point comparisons: unordered same as less.
  4972 operand cmpOp() %{
  4973   match(Bool);
  4974   format %{ "" %}
  4975   interface(COND_INTER) %{
  4976                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
  4977                            //           BO          &  BI
  4978     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
  4979     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
  4980     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
  4981     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
  4982     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
  4983     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
  4984     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
  4985     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
  4986   %}
  4987 %}
  4989 //----------OPERAND CLASSES----------------------------------------------------
  4990 // Operand Classes are groups of operands that are used to simplify
  4991 // instruction definitions by not requiring the AD writer to specify
  4992 // seperate instructions for every form of operand when the
  4993 // instruction accepts multiple operand types with the same basic
  4994 // encoding and format. The classic case of this is memory operands.
  4995 // Indirect is not included since its use is limited to Compare & Swap.
  4997 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indOffset16Narrow);
  4998 // Memory operand where offsets are 4-aligned. Required for ld, std.
  4999 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4);
  5000 opclass indirectMemory(indirect, indirectNarrow);
  5002 // Special opclass for I and ConvL2I.
  5003 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
  5005 // Operand classes to match encode and decode. iRegN_P2N is only used
  5006 // for storeN. I have never seen an encode node elsewhere.
  5007 opclass iRegN_P2N(iRegNsrc, iRegP2N);
  5008 opclass iRegP_N2P(iRegPsrc, iRegN2P);
  5010 //----------PIPELINE-----------------------------------------------------------
  5012 pipeline %{
  5014 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
  5015 // J. Res. & Dev., No. 1, Jan. 2002.
  5017 //----------ATTRIBUTES---------------------------------------------------------
  5018 attributes %{
  5020   // Power4 instructions are of fixed length.
  5021   fixed_size_instructions;
  5023   // TODO: if `bundle' means number of instructions fetched
  5024   // per cycle, this is 8. If `bundle' means Power4 `group', that is
  5025   // max instructions issued per cycle, this is 5.
  5026   max_instructions_per_bundle = 8;
  5028   // A Power4 instruction is 4 bytes long.
  5029   instruction_unit_size = 4;
  5031   // The Power4 processor fetches 64 bytes...
  5032   instruction_fetch_unit_size = 64;
  5034   // ...in one line
  5035   instruction_fetch_units = 1
  5037   // Unused, list one so that array generated by adlc is not empty.
  5038   // Aix compiler chokes if _nop_count = 0.
  5039   nops(fxNop);
  5040 %}
  5042 //----------RESOURCES----------------------------------------------------------
  5043 // Resources are the functional units available to the machine
  5044 resources(
  5045    PPC_BR,         // branch unit
  5046    PPC_CR,         // condition unit
  5047    PPC_FX1,        // integer arithmetic unit 1
  5048    PPC_FX2,        // integer arithmetic unit 2
  5049    PPC_LDST1,      // load/store unit 1
  5050    PPC_LDST2,      // load/store unit 2
  5051    PPC_FP1,        // float arithmetic unit 1
  5052    PPC_FP2,        // float arithmetic unit 2
  5053    PPC_LDST = PPC_LDST1 | PPC_LDST2,
  5054    PPC_FX = PPC_FX1 | PPC_FX2,
  5055    PPC_FP = PPC_FP1 | PPC_FP2
  5056  );
  5058 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5059 // Pipeline Description specifies the stages in the machine's pipeline
  5060 pipe_desc(
  5061    // Power4 longest pipeline path
  5062    PPC_IF,   // instruction fetch
  5063    PPC_IC,
  5064    //PPC_BP, // branch prediction
  5065    PPC_D0,   // decode
  5066    PPC_D1,   // decode
  5067    PPC_D2,   // decode
  5068    PPC_D3,   // decode
  5069    PPC_Xfer1,
  5070    PPC_GD,   // group definition
  5071    PPC_MP,   // map
  5072    PPC_ISS,  // issue
  5073    PPC_RF,   // resource fetch
  5074    PPC_EX1,  // execute (all units)
  5075    PPC_EX2,  // execute (FP, LDST)
  5076    PPC_EX3,  // execute (FP, LDST)
  5077    PPC_EX4,  // execute (FP)
  5078    PPC_EX5,  // execute (FP)
  5079    PPC_EX6,  // execute (FP)
  5080    PPC_WB,   // write back
  5081    PPC_Xfer2,
  5082    PPC_CP
  5083  );
  5085 //----------PIPELINE CLASSES---------------------------------------------------
  5086 // Pipeline Classes describe the stages in which input and output are
  5087 // referenced by the hardware pipeline.
  5089 // Simple pipeline classes.
  5091 // Default pipeline class.
  5092 pipe_class pipe_class_default() %{
  5093   single_instruction;
  5094   fixed_latency(2);
  5095 %}
  5097 // Pipeline class for empty instructions.
  5098 pipe_class pipe_class_empty() %{
  5099   single_instruction;
  5100   fixed_latency(0);
  5101 %}
  5103 // Pipeline class for compares.
  5104 pipe_class pipe_class_compare() %{
  5105   single_instruction;
  5106   fixed_latency(16);
  5107 %}
  5109 // Pipeline class for traps.
  5110 pipe_class pipe_class_trap() %{
  5111   single_instruction;
  5112   fixed_latency(100);
  5113 %}
  5115 // Pipeline class for memory operations.
  5116 pipe_class pipe_class_memory() %{
  5117   single_instruction;
  5118   fixed_latency(16);
  5119 %}
  5121 // Pipeline class for call.
  5122 pipe_class pipe_class_call() %{
  5123   single_instruction;
  5124   fixed_latency(100);
  5125 %}
  5127 // Define the class for the Nop node.
  5128 define %{
  5129    MachNop = pipe_class_default;
  5130 %}
  5132 %}
  5134 //----------INSTRUCTIONS-------------------------------------------------------
  5136 // Naming of instructions:
  5137 //   opA_operB / opA_operB_operC:
  5138 //     Operation 'op' with one or two source operands 'oper'. Result
  5139 //     type is A, source operand types are B and C.
  5140 //     Iff A == B == C, B and C are left out.
  5141 //
  5142 // The instructions are ordered according to the following scheme:
  5143 //  - loads
  5144 //  - load constants
  5145 //  - prefetch
  5146 //  - store
  5147 //  - encode/decode
  5148 //  - membar
  5149 //  - conditional moves
  5150 //  - compare & swap
  5151 //  - arithmetic and logic operations
  5152 //    * int: Add, Sub, Mul, Div, Mod
  5153 //    * int: lShift, arShift, urShift, rot
  5154 //    * float: Add, Sub, Mul, Div
  5155 //    * and, or, xor ...
  5156 //  - register moves: float <-> int, reg <-> stack, repl
  5157 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
  5158 //  - conv (low level type cast requiring bit changes (sign extend etc)
  5159 //  - compares, range & zero checks.
  5160 //  - branches
  5161 //  - complex operations, intrinsics, min, max, replicate
  5162 //  - lock
  5163 //  - Calls
  5164 //
  5165 // If there are similar instructions with different types they are sorted:
  5166 // int before float
  5167 // small before big
  5168 // signed before unsigned
  5169 // e.g., loadS before loadUS before loadI before loadF.
  5172 //----------Load/Store Instructions--------------------------------------------
  5174 //----------Load Instructions--------------------------------------------------
  5176 // Converts byte to int.
  5177 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
  5178 // reuses the 'amount' operand, but adlc expects that operand specification
  5179 // and operands in match rule are equivalent.
  5180 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
  5181   effect(DEF dst, USE src);
  5182   format %{ "EXTSB   $dst, $src \t// byte->int" %}
  5183   size(4);
  5184   ins_encode %{
  5185     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  5186     __ extsb($dst$$Register, $src$$Register);
  5187   %}
  5188   ins_pipe(pipe_class_default);
  5189 %}
  5191 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
  5192   // match-rule, false predicate
  5193   match(Set dst (LoadB mem));
  5194   predicate(false);
  5196   format %{ "LBZ     $dst, $mem" %}
  5197   size(4);
  5198   ins_encode( enc_lbz(dst, mem) );
  5199   ins_pipe(pipe_class_memory);
  5200 %}
  5202 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
  5203   // match-rule, false predicate
  5204   match(Set dst (LoadB mem));
  5205   predicate(false);
  5207   format %{ "LBZ     $dst, $mem\n\t"
  5208             "TWI     $dst\n\t"
  5209             "ISYNC" %}
  5210   size(12);
  5211   ins_encode( enc_lbz_ac(dst, mem) );
  5212   ins_pipe(pipe_class_memory);
  5213 %}
  5215 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  5216 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
  5217   match(Set dst (LoadB mem));
  5218   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5219   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5220   expand %{
  5221     iRegIdst tmp;
  5222     loadUB_indirect(tmp, mem);
  5223     convB2I_reg_2(dst, tmp);
  5224   %}
  5225 %}
  5227 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
  5228   match(Set dst (LoadB mem));
  5229   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  5230   expand %{
  5231     iRegIdst tmp;
  5232     loadUB_indirect_ac(tmp, mem);
  5233     convB2I_reg_2(dst, tmp);
  5234   %}
  5235 %}
  5237 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
  5238   // match-rule, false predicate
  5239   match(Set dst (LoadB mem));
  5240   predicate(false);
  5242   format %{ "LBZ     $dst, $mem" %}
  5243   size(4);
  5244   ins_encode( enc_lbz(dst, mem) );
  5245   ins_pipe(pipe_class_memory);
  5246 %}
  5248 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
  5249   // match-rule, false predicate
  5250   match(Set dst (LoadB mem));
  5251   predicate(false);
  5253   format %{ "LBZ     $dst, $mem\n\t"
  5254             "TWI     $dst\n\t"
  5255             "ISYNC" %}
  5256   size(12);
  5257   ins_encode( enc_lbz_ac(dst, mem) );
  5258   ins_pipe(pipe_class_memory);
  5259 %}
  5261 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  5262 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
  5263   match(Set dst (LoadB mem));
  5264   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5265   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5267   expand %{
  5268     iRegIdst tmp;
  5269     loadUB_indOffset16(tmp, mem);
  5270     convB2I_reg_2(dst, tmp);
  5271   %}
  5272 %}
  5274 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
  5275   match(Set dst (LoadB mem));
  5276   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  5278   expand %{
  5279     iRegIdst tmp;
  5280     loadUB_indOffset16_ac(tmp, mem);
  5281     convB2I_reg_2(dst, tmp);
  5282   %}
  5283 %}
  5285 // Load Unsigned Byte (8bit UNsigned) into an int reg.
  5286 instruct loadUB(iRegIdst dst, memory mem) %{
  5287   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5288   match(Set dst (LoadUB mem));
  5289   ins_cost(MEMORY_REF_COST);
  5291   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
  5292   size(4);
  5293   ins_encode( enc_lbz(dst, mem) );
  5294   ins_pipe(pipe_class_memory);
  5295 %}
  5297 // Load  Unsigned Byte (8bit UNsigned) acquire.
  5298 instruct loadUB_ac(iRegIdst dst, memory mem) %{
  5299   match(Set dst (LoadUB mem));
  5300   ins_cost(3*MEMORY_REF_COST);
  5302   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
  5303             "TWI     $dst\n\t"
  5304             "ISYNC" %}
  5305   size(12);
  5306   ins_encode( enc_lbz_ac(dst, mem) );
  5307   ins_pipe(pipe_class_memory);
  5308 %}
  5310 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
  5311 instruct loadUB2L(iRegLdst dst, memory mem) %{
  5312   match(Set dst (ConvI2L (LoadUB mem)));
  5313   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  5314   ins_cost(MEMORY_REF_COST);
  5316   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
  5317   size(4);
  5318   ins_encode( enc_lbz(dst, mem) );
  5319   ins_pipe(pipe_class_memory);
  5320 %}
  5322 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
  5323   match(Set dst (ConvI2L (LoadUB mem)));
  5324   ins_cost(3*MEMORY_REF_COST);
  5326   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
  5327             "TWI     $dst\n\t"
  5328             "ISYNC" %}
  5329   size(12);
  5330   ins_encode( enc_lbz_ac(dst, mem) );
  5331   ins_pipe(pipe_class_memory);
  5332 %}
  5334 // Load Short (16bit signed)
  5335 instruct loadS(iRegIdst dst, memory mem) %{
  5336   match(Set dst (LoadS mem));
  5337   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5338   ins_cost(MEMORY_REF_COST);
  5340   format %{ "LHA     $dst, $mem" %}
  5341   size(4);
  5342   ins_encode %{
  5343     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
  5344     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5345     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  5346   %}
  5347   ins_pipe(pipe_class_memory);
  5348 %}
  5350 // Load Short (16bit signed) acquire.
  5351 instruct loadS_ac(iRegIdst dst, memory mem) %{
  5352   match(Set dst (LoadS mem));
  5353   ins_cost(3*MEMORY_REF_COST);
  5355   format %{ "LHA     $dst, $mem\t acquire\n\t"
  5356             "TWI     $dst\n\t"
  5357             "ISYNC" %}
  5358   size(12);
  5359   ins_encode %{
  5360     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5361     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5362     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  5363     __ twi_0($dst$$Register);
  5364     __ isync();
  5365   %}
  5366   ins_pipe(pipe_class_memory);
  5367 %}
  5369 // Load Char (16bit unsigned)
  5370 instruct loadUS(iRegIdst dst, memory mem) %{
  5371   match(Set dst (LoadUS mem));
  5372   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5373   ins_cost(MEMORY_REF_COST);
  5375   format %{ "LHZ     $dst, $mem" %}
  5376   size(4);
  5377   ins_encode( enc_lhz(dst, mem) );
  5378   ins_pipe(pipe_class_memory);
  5379 %}
  5381 // Load Char (16bit unsigned) acquire.
  5382 instruct loadUS_ac(iRegIdst dst, memory mem) %{
  5383   match(Set dst (LoadUS mem));
  5384   ins_cost(3*MEMORY_REF_COST);
  5386   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
  5387             "TWI     $dst\n\t"
  5388             "ISYNC" %}
  5389   size(12);
  5390   ins_encode( enc_lhz_ac(dst, mem) );
  5391   ins_pipe(pipe_class_memory);
  5392 %}
  5394 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
  5395 instruct loadUS2L(iRegLdst dst, memory mem) %{
  5396   match(Set dst (ConvI2L (LoadUS mem)));
  5397   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  5398   ins_cost(MEMORY_REF_COST);
  5400   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
  5401   size(4);
  5402   ins_encode( enc_lhz(dst, mem) );
  5403   ins_pipe(pipe_class_memory);
  5404 %}
  5406 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
  5407 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
  5408   match(Set dst (ConvI2L (LoadUS mem)));
  5409   ins_cost(3*MEMORY_REF_COST);
  5411   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
  5412             "TWI     $dst\n\t"
  5413             "ISYNC" %}
  5414   size(12);
  5415   ins_encode( enc_lhz_ac(dst, mem) );
  5416   ins_pipe(pipe_class_memory);
  5417 %}
  5419 // Load Integer.
  5420 instruct loadI(iRegIdst dst, memory mem) %{
  5421   match(Set dst (LoadI mem));
  5422   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5423   ins_cost(MEMORY_REF_COST);
  5425   format %{ "LWZ     $dst, $mem" %}
  5426   size(4);
  5427   ins_encode( enc_lwz(dst, mem) );
  5428   ins_pipe(pipe_class_memory);
  5429 %}
  5431 // Load Integer acquire.
  5432 instruct loadI_ac(iRegIdst dst, memory mem) %{
  5433   match(Set dst (LoadI mem));
  5434   ins_cost(3*MEMORY_REF_COST);
  5436   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
  5437             "TWI     $dst\n\t"
  5438             "ISYNC" %}
  5439   size(12);
  5440   ins_encode( enc_lwz_ac(dst, mem) );
  5441   ins_pipe(pipe_class_memory);
  5442 %}
  5444 // Match loading integer and casting it to unsigned int in
  5445 // long register.
  5446 // LoadI + ConvI2L + AndL 0xffffffff.
  5447 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
  5448   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5449   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
  5450   ins_cost(MEMORY_REF_COST);
  5452   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
  5453   size(4);
  5454   ins_encode( enc_lwz(dst, mem) );
  5455   ins_pipe(pipe_class_memory);
  5456 %}
  5458 // Match loading integer and casting it to long.
  5459 instruct loadI2L(iRegLdst dst, memory mem) %{
  5460   match(Set dst (ConvI2L (LoadI mem)));
  5461   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  5462   ins_cost(MEMORY_REF_COST);
  5464   format %{ "LWA     $dst, $mem \t// loadI2L" %}
  5465   size(4);
  5466   ins_encode %{
  5467     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  5468     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5469     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  5470   %}
  5471   ins_pipe(pipe_class_memory);
  5472 %}
  5474 // Match loading integer and casting it to long - acquire.
  5475 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
  5476   match(Set dst (ConvI2L (LoadI mem)));
  5477   ins_cost(3*MEMORY_REF_COST);
  5479   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
  5480             "TWI     $dst\n\t"
  5481             "ISYNC" %}
  5482   size(12);
  5483   ins_encode %{
  5484     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  5485     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5486     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  5487     __ twi_0($dst$$Register);
  5488     __ isync();
  5489   %}
  5490   ins_pipe(pipe_class_memory);
  5491 %}
  5493 // Load Long - aligned
  5494 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
  5495   match(Set dst (LoadL mem));
  5496   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5497   ins_cost(MEMORY_REF_COST);
  5499   format %{ "LD      $dst, $mem \t// long" %}
  5500   size(4);
  5501   ins_encode( enc_ld(dst, mem) );
  5502   ins_pipe(pipe_class_memory);
  5503 %}
  5505 // Load Long - aligned acquire.
  5506 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
  5507   match(Set dst (LoadL mem));
  5508   ins_cost(3*MEMORY_REF_COST);
  5510   format %{ "LD      $dst, $mem \t// long acquire\n\t"
  5511             "TWI     $dst\n\t"
  5512             "ISYNC" %}
  5513   size(12);
  5514   ins_encode( enc_ld_ac(dst, mem) );
  5515   ins_pipe(pipe_class_memory);
  5516 %}
  5518 // Load Long - UNaligned
  5519 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
  5520   match(Set dst (LoadL_unaligned mem));
  5521   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  5522   ins_cost(MEMORY_REF_COST);
  5524   format %{ "LD      $dst, $mem \t// unaligned long" %}
  5525   size(4);
  5526   ins_encode( enc_ld(dst, mem) );
  5527   ins_pipe(pipe_class_memory);
  5528 %}
  5530 // Load nodes for superwords
  5532 // Load Aligned Packed Byte
  5533 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
  5534   predicate(n->as_LoadVector()->memory_size() == 8);
  5535   match(Set dst (LoadVector mem));
  5536   ins_cost(MEMORY_REF_COST);
  5538   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
  5539   size(4);
  5540   ins_encode( enc_ld(dst, mem) );
  5541   ins_pipe(pipe_class_memory);
  5542 %}
  5544 // Load Range, range = array length (=jint)
  5545 instruct loadRange(iRegIdst dst, memory mem) %{
  5546   match(Set dst (LoadRange mem));
  5547   ins_cost(MEMORY_REF_COST);
  5549   format %{ "LWZ     $dst, $mem \t// range" %}
  5550   size(4);
  5551   ins_encode( enc_lwz(dst, mem) );
  5552   ins_pipe(pipe_class_memory);
  5553 %}
  5555 // Load Compressed Pointer
  5556 instruct loadN(iRegNdst dst, memory mem) %{
  5557   match(Set dst (LoadN mem));
  5558   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5559   ins_cost(MEMORY_REF_COST);
  5561   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
  5562   size(4);
  5563   ins_encode( enc_lwz(dst, mem) );
  5564   ins_pipe(pipe_class_memory);
  5565 %}
  5567 // Load Compressed Pointer acquire.
  5568 instruct loadN_ac(iRegNdst dst, memory mem) %{
  5569   match(Set dst (LoadN mem));
  5570   ins_cost(3*MEMORY_REF_COST);
  5572   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
  5573             "TWI     $dst\n\t"
  5574             "ISYNC" %}
  5575   size(12);
  5576   ins_encode( enc_lwz_ac(dst, mem) );
  5577   ins_pipe(pipe_class_memory);
  5578 %}
  5580 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
  5581 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
  5582   match(Set dst (DecodeN (LoadN mem)));
  5583   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
  5584   ins_cost(MEMORY_REF_COST);
  5586   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
  5587   size(4);
  5588   ins_encode( enc_lwz(dst, mem) );
  5589   ins_pipe(pipe_class_memory);
  5590 %}
  5592 // Load Pointer
  5593 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
  5594   match(Set dst (LoadP mem));
  5595   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5596   ins_cost(MEMORY_REF_COST);
  5598   format %{ "LD      $dst, $mem \t// ptr" %}
  5599   size(4);
  5600   ins_encode( enc_ld(dst, mem) );
  5601   ins_pipe(pipe_class_memory);
  5602 %}
  5604 // Load Pointer acquire.
  5605 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
  5606   match(Set dst (LoadP mem));
  5607   ins_cost(3*MEMORY_REF_COST);
  5609   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
  5610             "TWI     $dst\n\t"
  5611             "ISYNC" %}
  5612   size(12);
  5613   ins_encode( enc_ld_ac(dst, mem) );
  5614   ins_pipe(pipe_class_memory);
  5615 %}
  5617 // LoadP + CastP2L
  5618 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
  5619   match(Set dst (CastP2X (LoadP mem)));
  5620   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  5621   ins_cost(MEMORY_REF_COST);
  5623   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
  5624   size(4);
  5625   ins_encode( enc_ld(dst, mem) );
  5626   ins_pipe(pipe_class_memory);
  5627 %}
  5629 // Load compressed klass pointer.
  5630 instruct loadNKlass(iRegNdst dst, memory mem) %{
  5631   match(Set dst (LoadNKlass mem));
  5632   ins_cost(MEMORY_REF_COST);
  5634   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
  5635   size(4);
  5636   ins_encode( enc_lwz(dst, mem) );
  5637   ins_pipe(pipe_class_memory);
  5638 %}
  5640 //// Load compressed klass and decode it if narrow_klass_shift == 0.
  5641 //// TODO: will narrow_klass_shift ever be 0?
  5642 //instruct decodeNKlass2Klass(iRegPdst dst, memory mem) %{
  5643 //  match(Set dst (DecodeNKlass (LoadNKlass mem)));
  5644 //  predicate(false /* TODO: PPC port Universe::narrow_klass_shift() == 0*);
  5645 //  ins_cost(MEMORY_REF_COST);
  5646 //
  5647 //  format %{ "LWZ     $dst, $mem \t// DecodeNKlass (unscaled)" %}
  5648 //  size(4);
  5649 //  ins_encode( enc_lwz(dst, mem) );
  5650 //  ins_pipe(pipe_class_memory);
  5651 //%}
  5653 // Load Klass Pointer
  5654 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
  5655   match(Set dst (LoadKlass mem));
  5656   ins_cost(MEMORY_REF_COST);
  5658   format %{ "LD      $dst, $mem \t// klass ptr" %}
  5659   size(4);
  5660   ins_encode( enc_ld(dst, mem) );
  5661   ins_pipe(pipe_class_memory);
  5662 %}
  5664 // Load Float
  5665 instruct loadF(regF dst, memory mem) %{
  5666   match(Set dst (LoadF mem));
  5667   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5668   ins_cost(MEMORY_REF_COST);
  5670   format %{ "LFS     $dst, $mem" %}
  5671   size(4);
  5672   ins_encode %{
  5673     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  5674     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5675     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5676   %}
  5677   ins_pipe(pipe_class_memory);
  5678 %}
  5680 // Load Float acquire.
  5681 instruct loadF_ac(regF dst, memory mem) %{
  5682   match(Set dst (LoadF mem));
  5683   ins_cost(3*MEMORY_REF_COST);
  5685   format %{ "LFS     $dst, $mem \t// acquire\n\t"
  5686             "FCMPU   cr0, $dst, $dst\n\t"
  5687             "BNE     cr0, next\n"
  5688             "next:\n\t"
  5689             "ISYNC" %}
  5690   size(16);
  5691   ins_encode %{
  5692     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5693     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5694     Label next;
  5695     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5696     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  5697     __ bne(CCR0, next);
  5698     __ bind(next);
  5699     __ isync();
  5700   %}
  5701   ins_pipe(pipe_class_memory);
  5702 %}
  5704 // Load Double - aligned
  5705 instruct loadD(regD dst, memory mem) %{
  5706   match(Set dst (LoadD mem));
  5707   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5708   ins_cost(MEMORY_REF_COST);
  5710   format %{ "LFD     $dst, $mem" %}
  5711   size(4);
  5712   ins_encode( enc_lfd(dst, mem) );
  5713   ins_pipe(pipe_class_memory);
  5714 %}
  5716 // Load Double - aligned acquire.
  5717 instruct loadD_ac(regD dst, memory mem) %{
  5718   match(Set dst (LoadD mem));
  5719   ins_cost(3*MEMORY_REF_COST);
  5721   format %{ "LFD     $dst, $mem \t// acquire\n\t"
  5722             "FCMPU   cr0, $dst, $dst\n\t"
  5723             "BNE     cr0, next\n"
  5724             "next:\n\t"
  5725             "ISYNC" %}
  5726   size(16);
  5727   ins_encode %{
  5728     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5729     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5730     Label next;
  5731     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5732     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  5733     __ bne(CCR0, next);
  5734     __ bind(next);
  5735     __ isync();
  5736   %}
  5737   ins_pipe(pipe_class_memory);
  5738 %}
  5740 // Load Double - UNaligned
  5741 instruct loadD_unaligned(regD dst, memory mem) %{
  5742   match(Set dst (LoadD_unaligned mem));
  5743   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  5744   ins_cost(MEMORY_REF_COST);
  5746   format %{ "LFD     $dst, $mem" %}
  5747   size(4);
  5748   ins_encode( enc_lfd(dst, mem) );
  5749   ins_pipe(pipe_class_memory);
  5750 %}
  5752 //----------Constants--------------------------------------------------------
  5754 // Load MachConstantTableBase: add hi offset to global toc.
  5755 // TODO: Handle hidden register r29 in bundler!
  5756 instruct loadToc_hi(iRegLdst dst) %{
  5757   effect(DEF dst);
  5758   ins_cost(DEFAULT_COST);
  5760   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
  5761   size(4);
  5762   ins_encode %{
  5763     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5764     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
  5765   %}
  5766   ins_pipe(pipe_class_default);
  5767 %}
  5769 // Load MachConstantTableBase: add lo offset to global toc.
  5770 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
  5771   effect(DEF dst, USE src);
  5772   ins_cost(DEFAULT_COST);
  5774   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
  5775   size(4);
  5776   ins_encode %{
  5777     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5778     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
  5779   %}
  5780   ins_pipe(pipe_class_default);
  5781 %}
  5783 // Load 16-bit integer constant 0xssss????
  5784 instruct loadConI16(iRegIdst dst, immI16 src) %{
  5785   match(Set dst src);
  5787   format %{ "LI      $dst, $src" %}
  5788   size(4);
  5789   ins_encode %{
  5790     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5791     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  5792   %}
  5793   ins_pipe(pipe_class_default);
  5794 %}
  5796 // Load integer constant 0x????0000
  5797 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
  5798   match(Set dst src);
  5799   ins_cost(DEFAULT_COST);
  5801   format %{ "LIS     $dst, $src.hi" %}
  5802   size(4);
  5803   ins_encode %{
  5804     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5805     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
  5806     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  5807   %}
  5808   ins_pipe(pipe_class_default);
  5809 %}
  5811 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
  5812 // and sign extended), this adds the low 16 bits.
  5813 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  5814   // no match-rule, false predicate
  5815   effect(DEF dst, USE src1, USE src2);
  5816   predicate(false);
  5818   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
  5819   size(4);
  5820   ins_encode %{
  5821     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5822     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  5823   %}
  5824   ins_pipe(pipe_class_default);
  5825 %}
  5827 instruct loadConI_Ex(iRegIdst dst, immI src) %{
  5828   match(Set dst src);
  5829   ins_cost(DEFAULT_COST*2);
  5831   expand %{
  5832     // Would like to use $src$$constant.
  5833     immI16 srcLo %{ _opnds[1]->constant() %}
  5834     // srcHi can be 0000 if srcLo sign-extends to a negative number.
  5835     immIhi16 srcHi %{ _opnds[1]->constant() %}
  5836     iRegIdst tmpI;
  5837     loadConIhi16(tmpI, srcHi);
  5838     loadConI32_lo16(dst, tmpI, srcLo);
  5839   %}
  5840 %}
  5842 // No constant pool entries required.
  5843 instruct loadConL16(iRegLdst dst, immL16 src) %{
  5844   match(Set dst src);
  5846   format %{ "LI      $dst, $src \t// long" %}
  5847   size(4);
  5848   ins_encode %{
  5849     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5850     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
  5851   %}
  5852   ins_pipe(pipe_class_default);
  5853 %}
  5855 // Load long constant 0xssssssss????0000
  5856 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
  5857   match(Set dst src);
  5858   ins_cost(DEFAULT_COST);
  5860   format %{ "LIS     $dst, $src.hi \t// long" %}
  5861   size(4);
  5862   ins_encode %{
  5863     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5864     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  5865   %}
  5866   ins_pipe(pipe_class_default);
  5867 %}
  5869 // To load a 32 bit constant: merge lower 16 bits into already loaded
  5870 // high 16 bits.
  5871 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  5872   // no match-rule, false predicate
  5873   effect(DEF dst, USE src1, USE src2);
  5874   predicate(false);
  5876   format %{ "ORI     $dst, $src1, $src2.lo" %}
  5877   size(4);
  5878   ins_encode %{
  5879     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5880     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  5881   %}
  5882   ins_pipe(pipe_class_default);
  5883 %}
  5885 // Load 32-bit long constant
  5886 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
  5887   match(Set dst src);
  5888   ins_cost(DEFAULT_COST*2);
  5890   expand %{
  5891     // Would like to use $src$$constant.
  5892     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
  5893     // srcHi can be 0000 if srcLo sign-extends to a negative number.
  5894     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
  5895     iRegLdst tmpL;
  5896     loadConL32hi16(tmpL, srcHi);
  5897     loadConL32_lo16(dst, tmpL, srcLo);
  5898   %}
  5899 %}
  5901 // Load long constant 0x????000000000000.
  5902 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
  5903   match(Set dst src);
  5904   ins_cost(DEFAULT_COST);
  5906   expand %{
  5907     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
  5908     immI shift32 %{ 32 %}
  5909     iRegLdst tmpL;
  5910     loadConL32hi16(tmpL, srcHi);
  5911     lshiftL_regL_immI(dst, tmpL, shift32);
  5912   %}
  5913 %}
  5915 // Expand node for constant pool load: small offset.
  5916 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
  5917   effect(DEF dst, USE src, USE toc);
  5918   ins_cost(MEMORY_REF_COST);
  5920   ins_num_consts(1);
  5921   // Needed so that CallDynamicJavaDirect can compute the address of this
  5922   // instruction for relocation.
  5923   ins_field_cbuf_insts_offset(int);
  5925   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
  5926   size(4);
  5927   ins_encode( enc_load_long_constL(dst, src, toc) );
  5928   ins_pipe(pipe_class_memory);
  5929 %}
  5931 // Expand node for constant pool load: large offset.
  5932 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
  5933   effect(DEF dst, USE src, USE toc);
  5934   predicate(false);
  5936   ins_num_consts(1);
  5937   ins_field_const_toc_offset(int);
  5938   // Needed so that CallDynamicJavaDirect can compute the address of this
  5939   // instruction for relocation.
  5940   ins_field_cbuf_insts_offset(int);
  5942   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
  5943   size(4);
  5944   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
  5945   ins_pipe(pipe_class_default);
  5946 %}
  5948 // Expand node for constant pool load: large offset.
  5949 // No constant pool entries required.
  5950 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
  5951   effect(DEF dst, USE src, USE base);
  5952   predicate(false);
  5954   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
  5956   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
  5957   size(4);
  5958   ins_encode %{
  5959     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  5960     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  5961     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  5962   %}
  5963   ins_pipe(pipe_class_memory);
  5964 %}
  5966 // Load long constant from constant table. Expand in case of
  5967 // offset > 16 bit is needed.
  5968 // Adlc adds toc node MachConstantTableBase.
  5969 instruct loadConL_Ex(iRegLdst dst, immL src) %{
  5970   match(Set dst src);
  5971   ins_cost(MEMORY_REF_COST);
  5973   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
  5974   // We can not inline the enc_class for the expand as that does not support constanttablebase.
  5975   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
  5976 %}
  5978 // Load NULL as compressed oop.
  5979 instruct loadConN0(iRegNdst dst, immN_0 src) %{
  5980   match(Set dst src);
  5981   ins_cost(DEFAULT_COST);
  5983   format %{ "LI      $dst, $src \t// compressed ptr" %}
  5984   size(4);
  5985   ins_encode %{
  5986     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5987     __ li($dst$$Register, 0);
  5988   %}
  5989   ins_pipe(pipe_class_default);
  5990 %}
  5992 // Load hi part of compressed oop constant.
  5993 instruct loadConN_hi(iRegNdst dst, immN src) %{
  5994   effect(DEF dst, USE src);
  5995   ins_cost(DEFAULT_COST);
  5997   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
  5998   size(4);
  5999   ins_encode %{
  6000     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  6001     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
  6002   %}
  6003   ins_pipe(pipe_class_default);
  6004 %}
  6006 // Add lo part of compressed oop constant to already loaded hi part.
  6007 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
  6008   effect(DEF dst, USE src1, USE src2);
  6009   ins_cost(DEFAULT_COST);
  6011   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
  6012   size(4);
  6013   ins_encode %{
  6014     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6015     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6016     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
  6017     RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6018     __ relocate(rspec, 1);
  6019     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
  6020   %}
  6021   ins_pipe(pipe_class_default);
  6022 %}
  6024 // Needed to postalloc expand loadConN: ConN is loaded as ConI
  6025 // leaving the upper 32 bits with sign-extension bits.
  6026 // This clears these bits: dst = src & 0xFFFFFFFF.
  6027 // TODO: Eventually call this maskN_regN_FFFFFFFF.
  6028 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
  6029   effect(DEF dst, USE src);
  6030   predicate(false);
  6032   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
  6033   size(4);
  6034   ins_encode %{
  6035     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6036     __ clrldi($dst$$Register, $src$$Register, 0x20);
  6037   %}
  6038   ins_pipe(pipe_class_default);
  6039 %}
  6041 // Loading ConN must be postalloc expanded so that edges between
  6042 // the nodes are safe. They may not interfere with a safepoint.
  6043 // GL TODO: This needs three instructions: better put this into the constant pool.
  6044 instruct loadConN_Ex(iRegNdst dst, immN src) %{
  6045   match(Set dst src);
  6046   ins_cost(DEFAULT_COST*2);
  6048   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  6049   postalloc_expand %{
  6050     MachNode *m1 = new (C) loadConN_hiNode();
  6051     MachNode *m2 = new (C) loadConN_loNode();
  6052     MachNode *m3 = new (C) clearMs32bNode();
  6053     m1->add_req(NULL);
  6054     m2->add_req(NULL, m1);
  6055     m3->add_req(NULL, m2);
  6056     m1->_opnds[0] = op_dst;
  6057     m1->_opnds[1] = op_src;
  6058     m2->_opnds[0] = op_dst;
  6059     m2->_opnds[1] = op_dst;
  6060     m2->_opnds[2] = op_src;
  6061     m3->_opnds[0] = op_dst;
  6062     m3->_opnds[1] = op_dst;
  6063     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6064     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6065     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6066     nodes->push(m1);
  6067     nodes->push(m2);
  6068     nodes->push(m3);
  6069   %}
  6070 %}
  6072 instruct loadConNKlass_hi(iRegNdst dst, immNKlass src) %{
  6073   effect(DEF dst, USE src);
  6074   ins_cost(DEFAULT_COST);
  6076   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
  6077   size(4);
  6078   ins_encode %{
  6079     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  6080     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
  6081     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
  6082   %}
  6083   ins_pipe(pipe_class_default);
  6084 %}
  6086 // This needs a match rule so that build_oop_map knows this is
  6087 // not a narrow oop.
  6088 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
  6089   match(Set dst src1);
  6090   effect(TEMP src2);
  6091   ins_cost(DEFAULT_COST);
  6093   format %{ "ADDI    $dst, $src1, $src2 \t// narrow oop lo" %}
  6094   size(4);
  6095   ins_encode %{
  6096     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6097     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
  6098     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6099     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
  6100     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6102     __ relocate(rspec, 1);
  6103     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
  6104   %}
  6105   ins_pipe(pipe_class_default);
  6106 %}
  6108 // Loading ConNKlass must be postalloc expanded so that edges between
  6109 // the nodes are safe. They may not interfere with a safepoint.
  6110 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
  6111   match(Set dst src);
  6112   ins_cost(DEFAULT_COST*2);
  6114   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  6115   postalloc_expand %{
  6116     // Load high bits into register. Sign extended.
  6117     MachNode *m1 = new (C) loadConNKlass_hiNode();
  6118     m1->add_req(NULL);
  6119     m1->_opnds[0] = op_dst;
  6120     m1->_opnds[1] = op_src;
  6121     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6122     nodes->push(m1);
  6124     MachNode *m2 = m1;
  6125     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
  6126       // Value might be 1-extended. Mask out these bits.
  6127       m2 = new (C) clearMs32bNode();
  6128       m2->add_req(NULL, m1);
  6129       m2->_opnds[0] = op_dst;
  6130       m2->_opnds[1] = op_dst;
  6131       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6132       nodes->push(m2);
  6135     MachNode *m3 = new (C) loadConNKlass_loNode();
  6136     m3->add_req(NULL, m2);
  6137     m3->_opnds[0] = op_dst;
  6138     m3->_opnds[1] = op_src;
  6139     m3->_opnds[2] = op_dst;
  6140     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6141     nodes->push(m3);
  6142   %}
  6143 %}
  6145 // 0x1 is used in object initialization (initial object header).
  6146 // No constant pool entries required.
  6147 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
  6148   match(Set dst src);
  6150   format %{ "LI      $dst, $src \t// ptr" %}
  6151   size(4);
  6152   ins_encode %{
  6153     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6154     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  6155   %}
  6156   ins_pipe(pipe_class_default);
  6157 %}
  6159 // Expand node for constant pool load: small offset.
  6160 // The match rule is needed to generate the correct bottom_type(),
  6161 // however this node should never match. The use of predicate is not
  6162 // possible since ADLC forbids predicates for chain rules. The higher
  6163 // costs do not prevent matching in this case. For that reason the
  6164 // operand immP_NM with predicate(false) is used.
  6165 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  6166   match(Set dst src);
  6167   effect(TEMP toc);
  6169   ins_num_consts(1);
  6171   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
  6172   size(4);
  6173   ins_encode( enc_load_long_constP(dst, src, toc) );
  6174   ins_pipe(pipe_class_memory);
  6175 %}
  6177 // Expand node for constant pool load: large offset.
  6178 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  6179   effect(DEF dst, USE src, USE toc);
  6180   predicate(false);
  6182   ins_num_consts(1);
  6183   ins_field_const_toc_offset(int);
  6185   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
  6186   size(4);
  6187   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
  6188   ins_pipe(pipe_class_default);
  6189 %}
  6191 // Expand node for constant pool load: large offset.
  6192 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
  6193   match(Set dst src);
  6194   effect(TEMP base);
  6196   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
  6198   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
  6199   size(4);
  6200   ins_encode %{
  6201     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  6202     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  6203     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  6204   %}
  6205   ins_pipe(pipe_class_memory);
  6206 %}
  6208 // Load pointer constant from constant table. Expand in case an
  6209 // offset > 16 bit is needed.
  6210 // Adlc adds toc node MachConstantTableBase.
  6211 instruct loadConP_Ex(iRegPdst dst, immP src) %{
  6212   match(Set dst src);
  6213   ins_cost(MEMORY_REF_COST);
  6215   // This rule does not use "expand" because then
  6216   // the result type is not known to be an Oop.  An ADLC
  6217   // enhancement will be needed to make that work - not worth it!
  6219   // If this instruction rematerializes, it prolongs the live range
  6220   // of the toc node, causing illegal graphs.
  6221   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
  6222   ins_cannot_rematerialize(true);
  6224   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
  6225   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
  6226 %}
  6228 // Expand node for constant pool load: small offset.
  6229 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
  6230   effect(DEF dst, USE src, USE toc);
  6231   ins_cost(MEMORY_REF_COST);
  6233   ins_num_consts(1);
  6235   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
  6236   size(4);
  6237   ins_encode %{
  6238     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  6239     address float_address = __ float_constant($src$$constant);
  6240     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
  6241   %}
  6242   ins_pipe(pipe_class_memory);
  6243 %}
  6245 // Expand node for constant pool load: large offset.
  6246 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
  6247   effect(DEF dst, USE src, USE toc);
  6248   ins_cost(MEMORY_REF_COST);
  6250   ins_num_consts(1);
  6252   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  6253             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
  6254             "ADDIS   $toc, $toc, -offset_hi"%}
  6255   size(12);
  6256   ins_encode %{
  6257     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6258     FloatRegister Rdst    = $dst$$FloatRegister;
  6259     Register Rtoc         = $toc$$Register;
  6260     address float_address = __ float_constant($src$$constant);
  6261     int offset            = __ offset_to_method_toc(float_address);
  6262     int hi = (offset + (1<<15))>>16;
  6263     int lo = offset - hi * (1<<16);
  6265     __ addis(Rtoc, Rtoc, hi);
  6266     __ lfs(Rdst, lo, Rtoc);
  6267     __ addis(Rtoc, Rtoc, -hi);
  6268   %}
  6269   ins_pipe(pipe_class_memory);
  6270 %}
  6272 // Adlc adds toc node MachConstantTableBase.
  6273 instruct loadConF_Ex(regF dst, immF src) %{
  6274   match(Set dst src);
  6275   ins_cost(MEMORY_REF_COST);
  6277   // See loadConP.
  6278   ins_cannot_rematerialize(true);
  6280   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  6281   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
  6282 %}
  6284 // Expand node for constant pool load: small offset.
  6285 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
  6286   effect(DEF dst, USE src, USE toc);
  6287   ins_cost(MEMORY_REF_COST);
  6289   ins_num_consts(1);
  6291   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
  6292   size(4);
  6293   ins_encode %{
  6294     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  6295     int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
  6296     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
  6297   %}
  6298   ins_pipe(pipe_class_memory);
  6299 %}
  6301 // Expand node for constant pool load: large offset.
  6302 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
  6303   effect(DEF dst, USE src, USE toc);
  6304   ins_cost(MEMORY_REF_COST);
  6306   ins_num_consts(1);
  6308   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  6309             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
  6310             "ADDIS   $toc, $toc, -offset_hi" %}
  6311   size(12);
  6312   ins_encode %{
  6313     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6314     FloatRegister Rdst    = $dst$$FloatRegister;
  6315     Register      Rtoc    = $toc$$Register;
  6316     address float_address = __ double_constant($src$$constant);
  6317     int offset            = __ offset_to_method_toc(float_address);
  6318     int hi = (offset + (1<<15))>>16;
  6319     int lo = offset - hi * (1<<16);
  6321     __ addis(Rtoc, Rtoc, hi);
  6322     __ lfd(Rdst, lo, Rtoc);
  6323     __ addis(Rtoc, Rtoc, -hi);
  6324   %}
  6325   ins_pipe(pipe_class_memory);
  6326 %}
  6328 // Adlc adds toc node MachConstantTableBase.
  6329 instruct loadConD_Ex(regD dst, immD src) %{
  6330   match(Set dst src);
  6331   ins_cost(MEMORY_REF_COST);
  6333   // See loadConP.
  6334   ins_cannot_rematerialize(true);
  6336   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  6337   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
  6338 %}
  6340 // Prefetch instructions.
  6341 // Must be safe to execute with invalid address (cannot fault).
  6343 instruct prefetchr(indirectMemory mem, iRegLsrc src) %{
  6344   match(PrefetchRead (AddP mem src));
  6345   ins_cost(MEMORY_REF_COST);
  6347   format %{ "PREFETCH $mem, 0, $src \t// Prefetch read-many" %}
  6348   size(4);
  6349   ins_encode %{
  6350     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  6351     __ dcbt($src$$Register, $mem$$base$$Register);
  6352   %}
  6353   ins_pipe(pipe_class_memory);
  6354 %}
  6356 instruct prefetchr_no_offset(indirectMemory mem) %{
  6357   match(PrefetchRead mem);
  6358   ins_cost(MEMORY_REF_COST);
  6360   format %{ "PREFETCH $mem" %}
  6361   size(4);
  6362   ins_encode %{
  6363     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  6364     __ dcbt($mem$$base$$Register);
  6365   %}
  6366   ins_pipe(pipe_class_memory);
  6367 %}
  6369 instruct prefetchw(indirectMemory mem, iRegLsrc src) %{
  6370   match(PrefetchWrite (AddP mem src));
  6371   ins_cost(MEMORY_REF_COST);
  6373   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many (and read)" %}
  6374   size(4);
  6375   ins_encode %{
  6376     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6377     __ dcbtst($src$$Register, $mem$$base$$Register);
  6378   %}
  6379   ins_pipe(pipe_class_memory);
  6380 %}
  6382 instruct prefetchw_no_offset(indirectMemory mem) %{
  6383   match(PrefetchWrite mem);
  6384   ins_cost(MEMORY_REF_COST);
  6386   format %{ "PREFETCH $mem" %}
  6387   size(4);
  6388   ins_encode %{
  6389     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6390     __ dcbtst($mem$$base$$Register);
  6391   %}
  6392   ins_pipe(pipe_class_memory);
  6393 %}
  6395 // Special prefetch versions which use the dcbz instruction.
  6396 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
  6397   match(PrefetchAllocation (AddP mem src));
  6398   predicate(AllocatePrefetchStyle == 3);
  6399   ins_cost(MEMORY_REF_COST);
  6401   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
  6402   size(4);
  6403   ins_encode %{
  6404     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6405     __ dcbz($src$$Register, $mem$$base$$Register);
  6406   %}
  6407   ins_pipe(pipe_class_memory);
  6408 %}
  6410 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
  6411   match(PrefetchAllocation mem);
  6412   predicate(AllocatePrefetchStyle == 3);
  6413   ins_cost(MEMORY_REF_COST);
  6415   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
  6416   size(4);
  6417   ins_encode %{
  6418     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6419     __ dcbz($mem$$base$$Register);
  6420   %}
  6421   ins_pipe(pipe_class_memory);
  6422 %}
  6424 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
  6425   match(PrefetchAllocation (AddP mem src));
  6426   predicate(AllocatePrefetchStyle != 3);
  6427   ins_cost(MEMORY_REF_COST);
  6429   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
  6430   size(4);
  6431   ins_encode %{
  6432     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6433     __ dcbtst($src$$Register, $mem$$base$$Register);
  6434   %}
  6435   ins_pipe(pipe_class_memory);
  6436 %}
  6438 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
  6439   match(PrefetchAllocation mem);
  6440   predicate(AllocatePrefetchStyle != 3);
  6441   ins_cost(MEMORY_REF_COST);
  6443   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
  6444   size(4);
  6445   ins_encode %{
  6446     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6447     __ dcbtst($mem$$base$$Register);
  6448   %}
  6449   ins_pipe(pipe_class_memory);
  6450 %}
  6452 //----------Store Instructions-------------------------------------------------
  6454 // Store Byte
  6455 instruct storeB(memory mem, iRegIsrc src) %{
  6456   match(Set mem (StoreB mem src));
  6457   ins_cost(MEMORY_REF_COST);
  6459   format %{ "STB     $src, $mem \t// byte" %}
  6460   size(4);
  6461   ins_encode %{
  6462     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
  6463     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  6464     __ stb($src$$Register, Idisp, $mem$$base$$Register);
  6465   %}
  6466   ins_pipe(pipe_class_memory);
  6467 %}
  6469 // Store Char/Short
  6470 instruct storeC(memory mem, iRegIsrc src) %{
  6471   match(Set mem (StoreC mem src));
  6472   ins_cost(MEMORY_REF_COST);
  6474   format %{ "STH     $src, $mem \t// short" %}
  6475   size(4);
  6476   ins_encode %{
  6477     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
  6478     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  6479     __ sth($src$$Register, Idisp, $mem$$base$$Register);
  6480   %}
  6481   ins_pipe(pipe_class_memory);
  6482 %}
  6484 // Store Integer
  6485 instruct storeI(memory mem, iRegIsrc src) %{
  6486   match(Set mem (StoreI mem src));
  6487   ins_cost(MEMORY_REF_COST);
  6489   format %{ "STW     $src, $mem" %}
  6490   size(4);
  6491   ins_encode( enc_stw(src, mem) );
  6492   ins_pipe(pipe_class_memory);
  6493 %}
  6495 // ConvL2I + StoreI.
  6496 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
  6497   match(Set mem (StoreI mem (ConvL2I src)));
  6498   ins_cost(MEMORY_REF_COST);
  6500   format %{ "STW     l2i($src), $mem" %}
  6501   size(4);
  6502   ins_encode( enc_stw(src, mem) );
  6503   ins_pipe(pipe_class_memory);
  6504 %}
  6506 // Store Long
  6507 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
  6508   match(Set mem (StoreL mem src));
  6509   ins_cost(MEMORY_REF_COST);
  6511   format %{ "STD     $src, $mem \t// long" %}
  6512   size(4);
  6513   ins_encode( enc_std(src, mem) );
  6514   ins_pipe(pipe_class_memory);
  6515 %}
  6517 // Store super word nodes.
  6519 // Store Aligned Packed Byte long register to memory
  6520 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
  6521   predicate(n->as_StoreVector()->memory_size() == 8);
  6522   match(Set mem (StoreVector mem src));
  6523   ins_cost(MEMORY_REF_COST);
  6525   format %{ "STD     $mem, $src \t// packed8B" %}
  6526   size(4);
  6527   ins_encode( enc_std(src, mem) );
  6528   ins_pipe(pipe_class_memory);
  6529 %}
  6531 // Store Compressed Oop
  6532 instruct storeN(memory dst, iRegN_P2N src) %{
  6533   match(Set dst (StoreN dst src));
  6534   ins_cost(MEMORY_REF_COST);
  6536   format %{ "STW     $src, $dst \t// compressed oop" %}
  6537   size(4);
  6538   ins_encode( enc_stw(src, dst) );
  6539   ins_pipe(pipe_class_memory);
  6540 %}
  6542 // Store Compressed KLass
  6543 instruct storeNKlass(memory dst, iRegN_P2N src) %{
  6544   match(Set dst (StoreNKlass dst src));
  6545   ins_cost(MEMORY_REF_COST);
  6547   format %{ "STW     $src, $dst \t// compressed klass" %}
  6548   size(4);
  6549   ins_encode( enc_stw(src, dst) );
  6550   ins_pipe(pipe_class_memory);
  6551 %}
  6553 // Store Pointer
  6554 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
  6555   match(Set dst (StoreP dst src));
  6556   ins_cost(MEMORY_REF_COST);
  6558   format %{ "STD     $src, $dst \t// ptr" %}
  6559   size(4);
  6560   ins_encode( enc_std(src, dst) );
  6561   ins_pipe(pipe_class_memory);
  6562 %}
  6564 // Store Float
  6565 instruct storeF(memory mem, regF src) %{
  6566   match(Set mem (StoreF mem src));
  6567   ins_cost(MEMORY_REF_COST);
  6569   format %{ "STFS    $src, $mem" %}
  6570   size(4);
  6571   ins_encode( enc_stfs(src, mem) );
  6572   ins_pipe(pipe_class_memory);
  6573 %}
  6575 // Store Double
  6576 instruct storeD(memory mem, regD src) %{
  6577   match(Set mem (StoreD mem src));
  6578   ins_cost(MEMORY_REF_COST);
  6580   format %{ "STFD    $src, $mem" %}
  6581   size(4);
  6582   ins_encode( enc_stfd(src, mem) );
  6583   ins_pipe(pipe_class_memory);
  6584 %}
  6586 //----------Store Instructions With Zeros--------------------------------------
  6588 // Card-mark for CMS garbage collection.
  6589 // This cardmark does an optimization so that it must not always
  6590 // do a releasing store. For this, it gets the address of
  6591 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
  6592 // (Using releaseFieldAddr in the match rule is a hack.)
  6593 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr) %{
  6594   match(Set mem (StoreCM mem releaseFieldAddr));
  6595   predicate(false);
  6596   ins_cost(MEMORY_REF_COST);
  6598   // See loadConP.
  6599   ins_cannot_rematerialize(true);
  6601   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
  6602   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr) );
  6603   ins_pipe(pipe_class_memory);
  6604 %}
  6606 // Card-mark for CMS garbage collection.
  6607 // This cardmark does an optimization so that it must not always
  6608 // do a releasing store. For this, it needs the constant address of
  6609 // CMSCollectorCardTableModRefBSExt::_requires_release.
  6610 // This constant address is split off here by expand so we can use
  6611 // adlc / matcher functionality to load it from the constant section.
  6612 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
  6613   match(Set mem (StoreCM mem zero));
  6614   predicate(UseConcMarkSweepGC);
  6616   expand %{
  6617     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
  6618     iRegLdst releaseFieldAddress;
  6619     loadConL_Ex(releaseFieldAddress, baseImm);
  6620     storeCM_CMS(mem, releaseFieldAddress);
  6621   %}
  6622 %}
  6624 instruct storeCM_G1(memory mem, immI_0 zero) %{
  6625   match(Set mem (StoreCM mem zero));
  6626   predicate(UseG1GC);
  6627   ins_cost(MEMORY_REF_COST);
  6629   ins_cannot_rematerialize(true);
  6631   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
  6632   size(8);
  6633   ins_encode %{
  6634     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6635     __ li(R0, 0);
  6636     //__ release(); // G1: oops are allowed to get visible after dirty marking
  6637     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
  6638     __ stb(R0, $mem$$disp, $mem$$base$$Register);
  6639   %}
  6640   ins_pipe(pipe_class_memory);
  6641 %}
  6643 // Convert oop pointer into compressed form.
  6645 // Nodes for postalloc expand.
  6647 // Shift node for expand.
  6648 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
  6649   // The match rule is needed to make it a 'MachTypeNode'!
  6650   match(Set dst (EncodeP src));
  6651   predicate(false);
  6653   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  6654   size(4);
  6655   ins_encode %{
  6656     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6657     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  6658   %}
  6659   ins_pipe(pipe_class_default);
  6660 %}
  6662 // Add node for expand.
  6663 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
  6664   // The match rule is needed to make it a 'MachTypeNode'!
  6665   match(Set dst (EncodeP src));
  6666   predicate(false);
  6668   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
  6669   size(4);
  6670   ins_encode %{
  6671     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  6672     __ subf($dst$$Register, R30, $src$$Register);
  6673   %}
  6674   ins_pipe(pipe_class_default);
  6675 %}
  6677 // Conditional sub base.
  6678 instruct cond_sub_base(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  6679   // The match rule is needed to make it a 'MachTypeNode'!
  6680   match(Set dst (EncodeP (Binary crx src1)));
  6681   predicate(false);
  6683   ins_variable_size_depending_on_alignment(true);
  6685   format %{ "BEQ     $crx, done\n\t"
  6686             "SUB     $dst, $src1, R30 \t// encode: subtract base if != NULL\n"
  6687             "done:" %}
  6688   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  6689   ins_encode %{
  6690     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  6691     Label done;
  6692     __ beq($crx$$CondRegister, done);
  6693     __ subf($dst$$Register, R30, $src1$$Register);
  6694     // TODO PPC port __ endgroup_if_needed(_size == 12);
  6695     __ bind(done);
  6696   %}
  6697   ins_pipe(pipe_class_default);
  6698 %}
  6700 // Power 7 can use isel instruction
  6701 instruct cond_set_0_oop(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  6702   // The match rule is needed to make it a 'MachTypeNode'!
  6703   match(Set dst (EncodeP (Binary crx src1)));
  6704   predicate(false);
  6706   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
  6707   size(4);
  6708   ins_encode %{
  6709     // This is a Power7 instruction for which no machine description exists.
  6710     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6711     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  6712   %}
  6713   ins_pipe(pipe_class_default);
  6714 %}
  6716 // base != 0
  6717 // 32G aligned narrow oop base.
  6718 instruct encodeP_32GAligned(iRegNdst dst, iRegPsrc src) %{
  6719   match(Set dst (EncodeP src));
  6720   predicate(false /* TODO: PPC port Universe::narrow_oop_base_disjoint()*/);
  6722   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  6723   size(4);
  6724   ins_encode %{
  6725     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6726     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
  6727   %}
  6728   ins_pipe(pipe_class_default);
  6729 %}
  6731 // shift != 0, base != 0
  6732 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
  6733   match(Set dst (EncodeP src));
  6734   effect(TEMP crx);
  6735   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
  6736             Universe::narrow_oop_shift() != 0 &&
  6737             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  6739   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
  6740   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
  6741 %}
  6743 // shift != 0, base != 0
  6744 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
  6745   match(Set dst (EncodeP src));
  6746   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
  6747             Universe::narrow_oop_shift() != 0 &&
  6748             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  6750   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
  6751   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
  6752 %}
  6754 // shift != 0, base == 0
  6755 // TODO: This is the same as encodeP_shift. Merge!
  6756 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
  6757   match(Set dst (EncodeP src));
  6758   predicate(Universe::narrow_oop_shift() != 0 &&
  6759             Universe::narrow_oop_base() ==0);
  6761   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
  6762   size(4);
  6763   ins_encode %{
  6764     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6765     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  6766   %}
  6767   ins_pipe(pipe_class_default);
  6768 %}
  6770 // Compressed OOPs with narrow_oop_shift == 0.
  6771 // shift == 0, base == 0
  6772 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
  6773   match(Set dst (EncodeP src));
  6774   predicate(Universe::narrow_oop_shift() == 0);
  6776   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
  6777   // variable size, 0 or 4.
  6778   ins_encode %{
  6779     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6780     __ mr_if_needed($dst$$Register, $src$$Register);
  6781   %}
  6782   ins_pipe(pipe_class_default);
  6783 %}
  6785 // Decode nodes.
  6787 // Shift node for expand.
  6788 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
  6789   // The match rule is needed to make it a 'MachTypeNode'!
  6790   match(Set dst (DecodeN src));
  6791   predicate(false);
  6793   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
  6794   size(4);
  6795   ins_encode %{
  6796     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6797     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  6798   %}
  6799   ins_pipe(pipe_class_default);
  6800 %}
  6802 // Add node for expand.
  6803 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
  6804   // The match rule is needed to make it a 'MachTypeNode'!
  6805   match(Set dst (DecodeN src));
  6806   predicate(false);
  6808   format %{ "ADD     $dst, $src, R30 \t// DecodeN, add oop base" %}
  6809   size(4);
  6810   ins_encode %{
  6811     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  6812     __ add($dst$$Register, $src$$Register, R30);
  6813   %}
  6814   ins_pipe(pipe_class_default);
  6815 %}
  6817 // conditianal add base for expand
  6818 instruct cond_add_base(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  6819   // The match rule is needed to make it a 'MachTypeNode'!
  6820   // NOTICE that the rule is nonsense - we just have to make sure that:
  6821   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  6822   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  6823   match(Set dst (DecodeN (Binary crx src1)));
  6824   predicate(false);
  6826   ins_variable_size_depending_on_alignment(true);
  6828   format %{ "BEQ     $crx, done\n\t"
  6829             "ADD     $dst, $src1, R30 \t// DecodeN: add oop base if $src1 != NULL\n"
  6830             "done:" %}
  6831   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling()) */? 12 : 8);
  6832   ins_encode %{
  6833     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  6834     Label done;
  6835     __ beq($crx$$CondRegister, done);
  6836     __ add($dst$$Register, $src1$$Register, R30);
  6837     // TODO PPC port  __ endgroup_if_needed(_size == 12);
  6838     __ bind(done);
  6839   %}
  6840   ins_pipe(pipe_class_default);
  6841 %}
  6843 instruct cond_set_0_ptr(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  6844   // The match rule is needed to make it a 'MachTypeNode'!
  6845   // NOTICE that the rule is nonsense - we just have to make sure that:
  6846   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  6847   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  6848   match(Set dst (DecodeN (Binary crx src1)));
  6849   predicate(false);
  6851   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
  6852   size(4);
  6853   ins_encode %{
  6854     // This is a Power7 instruction for which no machine description exists.
  6855     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6856     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  6857   %}
  6858   ins_pipe(pipe_class_default);
  6859 %}
  6861 //  shift != 0, base != 0
  6862 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  6863   match(Set dst (DecodeN src));
  6864   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6865              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
  6866             Universe::narrow_oop_shift() != 0 &&
  6867             Universe::narrow_oop_base() != 0);
  6868   effect(TEMP crx);
  6870   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
  6871   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
  6872 %}
  6874 // shift != 0, base == 0
  6875 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
  6876   match(Set dst (DecodeN src));
  6877   predicate(Universe::narrow_oop_shift() != 0 &&
  6878             Universe::narrow_oop_base() == 0);
  6880   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
  6881   size(4);
  6882   ins_encode %{
  6883     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6884     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  6885   %}
  6886   ins_pipe(pipe_class_default);
  6887 %}
  6889 // src != 0, shift != 0, base != 0
  6890 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
  6891   match(Set dst (DecodeN src));
  6892   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6893              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
  6894             Universe::narrow_oop_shift() != 0 &&
  6895             Universe::narrow_oop_base() != 0);
  6897   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
  6898   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
  6899 %}
  6901 // Compressed OOPs with narrow_oop_shift == 0.
  6902 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
  6903   match(Set dst (DecodeN src));
  6904   predicate(Universe::narrow_oop_shift() == 0);
  6905   ins_cost(DEFAULT_COST);
  6907   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
  6908   // variable size, 0 or 4.
  6909   ins_encode %{
  6910     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6911     __ mr_if_needed($dst$$Register, $src$$Register);
  6912   %}
  6913   ins_pipe(pipe_class_default);
  6914 %}
  6916 // Convert compressed oop into int for vectors alignment masking.
  6917 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
  6918   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
  6919   predicate(Universe::narrow_oop_shift() == 0);
  6920   ins_cost(DEFAULT_COST);
  6922   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
  6923   // variable size, 0 or 4.
  6924   ins_encode %{
  6925     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6926     __ mr_if_needed($dst$$Register, $src$$Register);
  6927   %}
  6928   ins_pipe(pipe_class_default);
  6929 %}
  6931 // Convert klass pointer into compressed form.
  6933 // Nodes for postalloc expand.
  6935 // Shift node for expand.
  6936 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
  6937   // The match rule is needed to make it a 'MachTypeNode'!
  6938   match(Set dst (EncodePKlass src));
  6939   predicate(false);
  6941   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  6942   size(4);
  6943   ins_encode %{
  6944     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6945     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  6946   %}
  6947   ins_pipe(pipe_class_default);
  6948 %}
  6950 // Add node for expand.
  6951 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  6952   // The match rule is needed to make it a 'MachTypeNode'!
  6953   match(Set dst (EncodePKlass (Binary base src)));
  6954   predicate(false);
  6956   format %{ "SUB     $dst, $base, $src \t// encode" %}
  6957   size(4);
  6958   ins_encode %{
  6959     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  6960     __ subf($dst$$Register, $base$$Register, $src$$Register);
  6961   %}
  6962   ins_pipe(pipe_class_default);
  6963 %}
  6965 // base != 0
  6966 // 32G aligned narrow oop base.
  6967 instruct encodePKlass_32GAligned(iRegNdst dst, iRegPsrc src) %{
  6968   match(Set dst (EncodePKlass src));
  6969   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
  6971   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  6972   size(4);
  6973   ins_encode %{
  6974     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6975     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
  6976   %}
  6977   ins_pipe(pipe_class_default);
  6978 %}
  6980 // shift != 0, base != 0
  6981 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
  6982   match(Set dst (EncodePKlass (Binary base src)));
  6983   predicate(false);
  6985   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  6986   postalloc_expand %{
  6987     encodePKlass_sub_baseNode *n1 = new (C) encodePKlass_sub_baseNode();
  6988     n1->add_req(n_region, n_base, n_src);
  6989     n1->_opnds[0] = op_dst;
  6990     n1->_opnds[1] = op_base;
  6991     n1->_opnds[2] = op_src;
  6992     n1->_bottom_type = _bottom_type;
  6994     encodePKlass_shiftNode *n2 = new (C) encodePKlass_shiftNode();
  6995     n2->add_req(n_region, n1);
  6996     n2->_opnds[0] = op_dst;
  6997     n2->_opnds[1] = op_dst;
  6998     n2->_bottom_type = _bottom_type;
  6999     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7000     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7002     nodes->push(n1);
  7003     nodes->push(n2);
  7004   %}
  7005 %}
  7007 // shift != 0, base != 0
  7008 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
  7009   match(Set dst (EncodePKlass src));
  7010   //predicate(Universe::narrow_klass_shift() != 0 &&
  7011   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
  7013   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  7014   ins_cost(DEFAULT_COST*2);  // Don't count constant.
  7015   expand %{
  7016     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
  7017     iRegLdst base;
  7018     loadConL_Ex(base, baseImm);
  7019     encodePKlass_not_null_Ex(dst, base, src);
  7020   %}
  7021 %}
  7023 // Decode nodes.
  7025 // Shift node for expand.
  7026 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
  7027   // The match rule is needed to make it a 'MachTypeNode'!
  7028   match(Set dst (DecodeNKlass src));
  7029   predicate(false);
  7031   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
  7032   size(4);
  7033   ins_encode %{
  7034     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  7035     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  7036   %}
  7037   ins_pipe(pipe_class_default);
  7038 %}
  7040 // Add node for expand.
  7042 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  7043   // The match rule is needed to make it a 'MachTypeNode'!
  7044   match(Set dst (DecodeNKlass (Binary base src)));
  7045   predicate(false);
  7047   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
  7048   size(4);
  7049   ins_encode %{
  7050     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7051     __ add($dst$$Register, $base$$Register, $src$$Register);
  7052   %}
  7053   ins_pipe(pipe_class_default);
  7054 %}
  7056 // src != 0, shift != 0, base != 0
  7057 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
  7058   match(Set dst (DecodeNKlass (Binary base src)));
  7059   //effect(kill src); // We need a register for the immediate result after shifting.
  7060   predicate(false);
  7062   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
  7063   postalloc_expand %{
  7064     decodeNKlass_add_baseNode *n1 = new (C) decodeNKlass_add_baseNode();
  7065     n1->add_req(n_region, n_base, n_src);
  7066     n1->_opnds[0] = op_dst;
  7067     n1->_opnds[1] = op_base;
  7068     n1->_opnds[2] = op_src;
  7069     n1->_bottom_type = _bottom_type;
  7071     decodeNKlass_shiftNode *n2 = new (C) decodeNKlass_shiftNode();
  7072     n2->add_req(n_region, n1);
  7073     n2->_opnds[0] = op_dst;
  7074     n2->_opnds[1] = op_dst;
  7075     n2->_bottom_type = _bottom_type;
  7077     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7078     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7080     nodes->push(n1);
  7081     nodes->push(n2);
  7082   %}
  7083 %}
  7085 // src != 0, shift != 0, base != 0
  7086 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
  7087   match(Set dst (DecodeNKlass src));
  7088   // predicate(Universe::narrow_klass_shift() != 0 &&
  7089   //           Universe::narrow_klass_base() != 0);
  7091   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
  7093   ins_cost(DEFAULT_COST*2);  // Don't count constant.
  7094   expand %{
  7095     // We add first, then we shift. Like this, we can get along with one register less.
  7096     // But we have to load the base pre-shifted.
  7097     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
  7098     iRegLdst base;
  7099     loadConL_Ex(base, baseImm);
  7100     decodeNKlass_notNull_addBase_Ex(dst, base, src);
  7101   %}
  7102 %}
  7104 //----------MemBar Instructions-----------------------------------------------
  7105 // Memory barrier flavors
  7107 instruct membar_acquire() %{
  7108   match(LoadFence);
  7109   ins_cost(4*MEMORY_REF_COST);
  7111   format %{ "MEMBAR-acquire" %}
  7112   size(4);
  7113   ins_encode %{
  7114     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7115     __ acquire();
  7116   %}
  7117   ins_pipe(pipe_class_default);
  7118 %}
  7120 instruct unnecessary_membar_acquire() %{
  7121   match(MemBarAcquire);
  7122   ins_cost(0);
  7124   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
  7125   size(0);
  7126   ins_encode( /*empty*/ );
  7127   ins_pipe(pipe_class_default);
  7128 %}
  7130 instruct membar_acquire_lock() %{
  7131   match(MemBarAcquireLock);
  7132   ins_cost(0);
  7134   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
  7135   size(0);
  7136   ins_encode( /*empty*/ );
  7137   ins_pipe(pipe_class_default);
  7138 %}
  7140 instruct membar_release() %{
  7141   match(MemBarRelease);
  7142   match(StoreFence);
  7143   ins_cost(4*MEMORY_REF_COST);
  7145   format %{ "MEMBAR-release" %}
  7146   size(4);
  7147   ins_encode %{
  7148     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7149     __ release();
  7150   %}
  7151   ins_pipe(pipe_class_default);
  7152 %}
  7154 instruct membar_storestore() %{
  7155   match(MemBarStoreStore);
  7156   ins_cost(4*MEMORY_REF_COST);
  7158   format %{ "MEMBAR-store-store" %}
  7159   size(4);
  7160   ins_encode %{
  7161     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7162     __ membar(Assembler::StoreStore);
  7163   %}
  7164   ins_pipe(pipe_class_default);
  7165 %}
  7167 instruct membar_release_lock() %{
  7168   match(MemBarReleaseLock);
  7169   ins_cost(0);
  7171   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
  7172   size(0);
  7173   ins_encode( /*empty*/ );
  7174   ins_pipe(pipe_class_default);
  7175 %}
  7177 instruct membar_volatile() %{
  7178   match(MemBarVolatile);
  7179   ins_cost(4*MEMORY_REF_COST);
  7181   format %{ "MEMBAR-volatile" %}
  7182   size(4);
  7183   ins_encode %{
  7184     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
  7185     __ fence();
  7186   %}
  7187   ins_pipe(pipe_class_default);
  7188 %}
  7190 // This optimization is wrong on PPC. The following pattern is not supported:
  7191 //  MemBarVolatile
  7192 //   ^        ^
  7193 //   |        |
  7194 //  CtrlProj MemProj
  7195 //   ^        ^
  7196 //   |        |
  7197 //   |       Load
  7198 //   |
  7199 //  MemBarVolatile
  7200 //
  7201 //  The first MemBarVolatile could get optimized out! According to
  7202 //  Vladimir, this pattern can not occur on Oracle platforms.
  7203 //  However, it does occur on PPC64 (because of membars in
  7204 //  inline_unsafe_load_store).
  7205 //
  7206 // Add this node again if we found a good solution for inline_unsafe_load_store().
  7207 // Don't forget to look at the implementation of post_store_load_barrier again,
  7208 // we did other fixes in that method.
  7209 //instruct unnecessary_membar_volatile() %{
  7210 //  match(MemBarVolatile);
  7211 //  predicate(Matcher::post_store_load_barrier(n));
  7212 //  ins_cost(0);
  7213 //
  7214 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
  7215 //  size(0);
  7216 //  ins_encode( /*empty*/ );
  7217 //  ins_pipe(pipe_class_default);
  7218 //%}
  7220 instruct membar_CPUOrder() %{
  7221   match(MemBarCPUOrder);
  7222   ins_cost(0);
  7224   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
  7225   size(0);
  7226   ins_encode( /*empty*/ );
  7227   ins_pipe(pipe_class_default);
  7228 %}
  7230 //----------Conditional Move---------------------------------------------------
  7232 // Cmove using isel.
  7233 instruct cmovI_reg_isel(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  7234   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7235   predicate(VM_Version::has_isel());
  7236   ins_cost(DEFAULT_COST);
  7238   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7239   size(4);
  7240   ins_encode %{
  7241     // This is a Power7 instruction for which no machine description
  7242     // exists. Anyways, the scheduler should be off on Power7.
  7243     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7244     int cc        = $cmp$$cmpcode;
  7245     __ isel($dst$$Register, $crx$$CondRegister,
  7246             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7247   %}
  7248   ins_pipe(pipe_class_default);
  7249 %}
  7251 instruct cmovI_reg(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  7252   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7253   predicate(!VM_Version::has_isel());
  7254   ins_cost(DEFAULT_COST+BRANCH_COST);
  7256   ins_variable_size_depending_on_alignment(true);
  7258   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7259   // Worst case is branch + move + stop, no stop without scheduler
  7260   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7261   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7262   ins_pipe(pipe_class_default);
  7263 %}
  7265 instruct cmovI_imm(cmpOp cmp, flagsReg crx, iRegIdst dst, immI16 src) %{
  7266   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7267   ins_cost(DEFAULT_COST+BRANCH_COST);
  7269   ins_variable_size_depending_on_alignment(true);
  7271   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7272   // Worst case is branch + move + stop, no stop without scheduler
  7273   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7274   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7275   ins_pipe(pipe_class_default);
  7276 %}
  7278 // Cmove using isel.
  7279 instruct cmovL_reg_isel(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  7280   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7281   predicate(VM_Version::has_isel());
  7282   ins_cost(DEFAULT_COST);
  7284   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7285   size(4);
  7286   ins_encode %{
  7287     // This is a Power7 instruction for which no machine description
  7288     // exists. Anyways, the scheduler should be off on Power7.
  7289     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7290     int cc        = $cmp$$cmpcode;
  7291     __ isel($dst$$Register, $crx$$CondRegister,
  7292             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7293   %}
  7294   ins_pipe(pipe_class_default);
  7295 %}
  7297 instruct cmovL_reg(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  7298   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7299   predicate(!VM_Version::has_isel());
  7300   ins_cost(DEFAULT_COST+BRANCH_COST);
  7302   ins_variable_size_depending_on_alignment(true);
  7304   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7305   // Worst case is branch + move + stop, no stop without scheduler.
  7306   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7307   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7308   ins_pipe(pipe_class_default);
  7309 %}
  7311 instruct cmovL_imm(cmpOp cmp, flagsReg crx, iRegLdst dst, immL16 src) %{
  7312   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7313   ins_cost(DEFAULT_COST+BRANCH_COST);
  7315   ins_variable_size_depending_on_alignment(true);
  7317   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7318   // Worst case is branch + move + stop, no stop without scheduler.
  7319   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7320   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7321   ins_pipe(pipe_class_default);
  7322 %}
  7324 // Cmove using isel.
  7325 instruct cmovN_reg_isel(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  7326   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7327   predicate(VM_Version::has_isel());
  7328   ins_cost(DEFAULT_COST);
  7330   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7331   size(4);
  7332   ins_encode %{
  7333     // This is a Power7 instruction for which no machine description
  7334     // exists. Anyways, the scheduler should be off on Power7.
  7335     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7336     int cc        = $cmp$$cmpcode;
  7337     __ isel($dst$$Register, $crx$$CondRegister,
  7338             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7339   %}
  7340   ins_pipe(pipe_class_default);
  7341 %}
  7343 // Conditional move for RegN. Only cmov(reg, reg).
  7344 instruct cmovN_reg(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  7345   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7346   predicate(!VM_Version::has_isel());
  7347   ins_cost(DEFAULT_COST+BRANCH_COST);
  7349   ins_variable_size_depending_on_alignment(true);
  7351   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7352   // Worst case is branch + move + stop, no stop without scheduler.
  7353   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7354   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7355   ins_pipe(pipe_class_default);
  7356 %}
  7358 instruct cmovN_imm(cmpOp cmp, flagsReg crx, iRegNdst dst, immN_0 src) %{
  7359   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7360   ins_cost(DEFAULT_COST+BRANCH_COST);
  7362   ins_variable_size_depending_on_alignment(true);
  7364   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7365   // Worst case is branch + move + stop, no stop without scheduler.
  7366   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7367   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7368   ins_pipe(pipe_class_default);
  7369 %}
  7371 // Cmove using isel.
  7372 instruct cmovP_reg_isel(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegPsrc src) %{
  7373   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7374   predicate(VM_Version::has_isel());
  7375   ins_cost(DEFAULT_COST);
  7377   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7378   size(4);
  7379   ins_encode %{
  7380     // This is a Power7 instruction for which no machine description
  7381     // exists. Anyways, the scheduler should be off on Power7.
  7382     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7383     int cc        = $cmp$$cmpcode;
  7384     __ isel($dst$$Register, $crx$$CondRegister,
  7385             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7386   %}
  7387   ins_pipe(pipe_class_default);
  7388 %}
  7390 instruct cmovP_reg(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegP_N2P src) %{
  7391   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7392   predicate(!VM_Version::has_isel());
  7393   ins_cost(DEFAULT_COST+BRANCH_COST);
  7395   ins_variable_size_depending_on_alignment(true);
  7397   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7398   // Worst case is branch + move + stop, no stop without scheduler.
  7399   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7400   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7401   ins_pipe(pipe_class_default);
  7402 %}
  7404 instruct cmovP_imm(cmpOp cmp, flagsReg crx, iRegPdst dst, immP_0 src) %{
  7405   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7406   ins_cost(DEFAULT_COST+BRANCH_COST);
  7408   ins_variable_size_depending_on_alignment(true);
  7410   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7411   // Worst case is branch + move + stop, no stop without scheduler.
  7412   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7413   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7414   ins_pipe(pipe_class_default);
  7415 %}
  7417 instruct cmovF_reg(cmpOp cmp, flagsReg crx, regF dst, regF src) %{
  7418   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
  7419   ins_cost(DEFAULT_COST+BRANCH_COST);
  7421   ins_variable_size_depending_on_alignment(true);
  7423   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  7424   // Worst case is branch + move + stop, no stop without scheduler.
  7425   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  7426   ins_encode %{
  7427     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  7428     Label done;
  7429     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  7430     // Branch if not (cmp crx).
  7431     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  7432     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  7433     // TODO PPC port __ endgroup_if_needed(_size == 12);
  7434     __ bind(done);
  7435   %}
  7436   ins_pipe(pipe_class_default);
  7437 %}
  7439 instruct cmovD_reg(cmpOp cmp, flagsReg crx, regD dst, regD src) %{
  7440   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
  7441   ins_cost(DEFAULT_COST+BRANCH_COST);
  7443   ins_variable_size_depending_on_alignment(true);
  7445   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  7446   // Worst case is branch + move + stop, no stop without scheduler.
  7447   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  7448   ins_encode %{
  7449     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  7450     Label done;
  7451     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  7452     // Branch if not (cmp crx).
  7453     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  7454     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  7455     // TODO PPC port __ endgroup_if_needed(_size == 12);
  7456     __ bind(done);
  7457   %}
  7458   ins_pipe(pipe_class_default);
  7459 %}
  7461 //----------Conditional_store--------------------------------------------------
  7462 // Conditional-store of the updated heap-top.
  7463 // Used during allocation of the shared heap.
  7464 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
  7466 // As compareAndSwapL, but return flag register instead of boolean value in
  7467 // int register.
  7468 // Used by sun/misc/AtomicLongCSImpl.java.
  7469 // Mem_ptr must be a memory operand, else this node does not get
  7470 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  7471 // can be rematerialized which leads to errors.
  7472 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal) %{
  7473   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
  7474   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  7475   ins_encode %{
  7476     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7477     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  7478                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7479                 noreg, NULL, true);
  7480   %}
  7481   ins_pipe(pipe_class_default);
  7482 %}
  7484 // As compareAndSwapP, but return flag register instead of boolean value in
  7485 // int register.
  7486 // This instruction is matched if UseTLAB is off.
  7487 // Mem_ptr must be a memory operand, else this node does not get
  7488 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  7489 // can be rematerialized which leads to errors.
  7490 instruct storePConditional_regP_regP_regP(flagsReg crx, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
  7491   match(Set crx (StorePConditional mem_ptr (Binary oldVal newVal)));
  7492   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  7493   ins_encode %{
  7494     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7495     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  7496                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7497                 noreg, NULL, true);
  7498   %}
  7499   ins_pipe(pipe_class_default);
  7500 %}
  7502 // Implement LoadPLocked. Must be ordered against changes of the memory location
  7503 // by storePConditional.
  7504 // Don't know whether this is ever used.
  7505 instruct loadPLocked(iRegPdst dst, memory mem) %{
  7506   match(Set dst (LoadPLocked mem));
  7507   ins_cost(MEMORY_REF_COST);
  7509   format %{ "LD      $dst, $mem \t// loadPLocked\n\t"
  7510             "TWI     $dst\n\t"
  7511             "ISYNC" %}
  7512   size(12);
  7513   ins_encode( enc_ld_ac(dst, mem) );
  7514   ins_pipe(pipe_class_memory);
  7515 %}
  7517 //----------Compare-And-Swap---------------------------------------------------
  7519 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
  7520 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
  7521 // matched.
  7523 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2) %{
  7524   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
  7525   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  7526   // Variable size: instruction count smaller if regs are disjoint.
  7527   ins_encode %{
  7528     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7529     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7530     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7531                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7532                 $res$$Register, true);
  7533   %}
  7534   ins_pipe(pipe_class_default);
  7535 %}
  7537 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2) %{
  7538   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
  7539   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  7540   // Variable size: instruction count smaller if regs are disjoint.
  7541   ins_encode %{
  7542     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7543     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7544     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7545                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7546                 $res$$Register, true);
  7547   %}
  7548   ins_pipe(pipe_class_default);
  7549 %}
  7551 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2) %{
  7552   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
  7553   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
  7554   // Variable size: instruction count smaller if regs are disjoint.
  7555   ins_encode %{
  7556     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7557     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7558     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7559                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7560                 $res$$Register, NULL, true);
  7561   %}
  7562   ins_pipe(pipe_class_default);
  7563 %}
  7565 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2) %{
  7566   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
  7567   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
  7568   // Variable size: instruction count smaller if regs are disjoint.
  7569   ins_encode %{
  7570     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7571     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7572     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7573                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7574                 $res$$Register, NULL, true);
  7575   %}
  7576   ins_pipe(pipe_class_default);
  7577 %}
  7579 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  7580   match(Set res (GetAndAddI mem_ptr src));
  7581   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
  7582   // Variable size: instruction count smaller if regs are disjoint.
  7583   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
  7584   ins_pipe(pipe_class_default);
  7585 %}
  7587 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  7588   match(Set res (GetAndAddL mem_ptr src));
  7589   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
  7590   // Variable size: instruction count smaller if regs are disjoint.
  7591   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
  7592   ins_pipe(pipe_class_default);
  7593 %}
  7595 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  7596   match(Set res (GetAndSetI mem_ptr src));
  7597   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
  7598   // Variable size: instruction count smaller if regs are disjoint.
  7599   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  7600   ins_pipe(pipe_class_default);
  7601 %}
  7603 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  7604   match(Set res (GetAndSetL mem_ptr src));
  7605   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
  7606   // Variable size: instruction count smaller if regs are disjoint.
  7607   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  7608   ins_pipe(pipe_class_default);
  7609 %}
  7611 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src) %{
  7612   match(Set res (GetAndSetP mem_ptr src));
  7613   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
  7614   // Variable size: instruction count smaller if regs are disjoint.
  7615   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  7616   ins_pipe(pipe_class_default);
  7617 %}
  7619 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src) %{
  7620   match(Set res (GetAndSetN mem_ptr src));
  7621   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
  7622   // Variable size: instruction count smaller if regs are disjoint.
  7623   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  7624   ins_pipe(pipe_class_default);
  7625 %}
  7627 //----------Arithmetic Instructions--------------------------------------------
  7628 // Addition Instructions
  7630 // Register Addition
  7631 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
  7632   match(Set dst (AddI src1 src2));
  7633   format %{ "ADD     $dst, $src1, $src2" %}
  7634   size(4);
  7635   ins_encode %{
  7636     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7637     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7638   %}
  7639   ins_pipe(pipe_class_default);
  7640 %}
  7642 // Expand does not work with above instruct. (??)
  7643 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7644   // no match-rule
  7645   effect(DEF dst, USE src1, USE src2);
  7646   format %{ "ADD     $dst, $src1, $src2" %}
  7647   size(4);
  7648   ins_encode %{
  7649     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7650     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7651   %}
  7652   ins_pipe(pipe_class_default);
  7653 %}
  7655 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  7656   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
  7657   ins_cost(DEFAULT_COST*3);
  7659   expand %{
  7660     // FIXME: we should do this in the ideal world.
  7661     iRegIdst tmp1;
  7662     iRegIdst tmp2;
  7663     addI_reg_reg(tmp1, src1, src2);
  7664     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
  7665     addI_reg_reg(dst, tmp1, tmp2);
  7666   %}
  7667 %}
  7669 // Immediate Addition
  7670 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7671   match(Set dst (AddI src1 src2));
  7672   format %{ "ADDI    $dst, $src1, $src2" %}
  7673   size(4);
  7674   ins_encode %{
  7675     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7676     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7677   %}
  7678   ins_pipe(pipe_class_default);
  7679 %}
  7681 // Immediate Addition with 16-bit shifted operand
  7682 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
  7683   match(Set dst (AddI src1 src2));
  7684   format %{ "ADDIS   $dst, $src1, $src2" %}
  7685   size(4);
  7686   ins_encode %{
  7687     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7688     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7689   %}
  7690   ins_pipe(pipe_class_default);
  7691 %}
  7693 // Long Addition
  7694 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7695   match(Set dst (AddL src1 src2));
  7696   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  7697   size(4);
  7698   ins_encode %{
  7699     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7700     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7701   %}
  7702   ins_pipe(pipe_class_default);
  7703 %}
  7705 // Expand does not work with above instruct. (??)
  7706 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7707   // no match-rule
  7708   effect(DEF dst, USE src1, USE src2);
  7709   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  7710   size(4);
  7711   ins_encode %{
  7712     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7713     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7714   %}
  7715   ins_pipe(pipe_class_default);
  7716 %}
  7718 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
  7719   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
  7720   ins_cost(DEFAULT_COST*3);
  7722   expand %{
  7723     // FIXME: we should do this in the ideal world.
  7724     iRegLdst tmp1;
  7725     iRegLdst tmp2;
  7726     addL_reg_reg(tmp1, src1, src2);
  7727     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  7728     addL_reg_reg(dst, tmp1, tmp2);
  7729   %}
  7730 %}
  7732 // AddL + ConvL2I.
  7733 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7734   match(Set dst (ConvL2I (AddL src1 src2)));
  7736   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
  7737   size(4);
  7738   ins_encode %{
  7739     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7740     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7741   %}
  7742   ins_pipe(pipe_class_default);
  7743 %}
  7745 // No constant pool entries required.
  7746 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7747   match(Set dst (AddL src1 src2));
  7749   format %{ "ADDI    $dst, $src1, $src2" %}
  7750   size(4);
  7751   ins_encode %{
  7752     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7753     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7754   %}
  7755   ins_pipe(pipe_class_default);
  7756 %}
  7758 // Long Immediate Addition with 16-bit shifted operand.
  7759 // No constant pool entries required.
  7760 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
  7761   match(Set dst (AddL src1 src2));
  7763   format %{ "ADDIS   $dst, $src1, $src2" %}
  7764   size(4);
  7765   ins_encode %{
  7766     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7767     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7768   %}
  7769   ins_pipe(pipe_class_default);
  7770 %}
  7772 // Pointer Register Addition
  7773 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
  7774   match(Set dst (AddP src1 src2));
  7775   format %{ "ADD     $dst, $src1, $src2" %}
  7776   size(4);
  7777   ins_encode %{
  7778     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7779     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7780   %}
  7781   ins_pipe(pipe_class_default);
  7782 %}
  7784 // Pointer Immediate Addition
  7785 // No constant pool entries required.
  7786 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
  7787   match(Set dst (AddP src1 src2));
  7789   format %{ "ADDI    $dst, $src1, $src2" %}
  7790   size(4);
  7791   ins_encode %{
  7792     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7793     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7794   %}
  7795   ins_pipe(pipe_class_default);
  7796 %}
  7798 // Pointer Immediate Addition with 16-bit shifted operand.
  7799 // No constant pool entries required.
  7800 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
  7801   match(Set dst (AddP src1 src2));
  7803   format %{ "ADDIS   $dst, $src1, $src2" %}
  7804   size(4);
  7805   ins_encode %{
  7806     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7807     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7808   %}
  7809   ins_pipe(pipe_class_default);
  7810 %}
  7812 //---------------------
  7813 // Subtraction Instructions
  7815 // Register Subtraction
  7816 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7817   match(Set dst (SubI src1 src2));
  7818   format %{ "SUBF    $dst, $src2, $src1" %}
  7819   size(4);
  7820   ins_encode %{
  7821     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7822     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7823   %}
  7824   ins_pipe(pipe_class_default);
  7825 %}
  7827 // Immediate Subtraction
  7828 // The compiler converts "x-c0" into "x+ -c0" (see SubINode::Ideal),
  7829 // so this rule seems to be unused.
  7830 instruct subI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7831   match(Set dst (SubI src1 src2));
  7832   format %{ "SUBI    $dst, $src1, $src2" %}
  7833   size(4);
  7834   ins_encode %{
  7835     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7836     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  7837   %}
  7838   ins_pipe(pipe_class_default);
  7839 %}
  7841 // SubI from constant (using subfic).
  7842 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
  7843   match(Set dst (SubI src1 src2));
  7844   format %{ "SUBI    $dst, $src1, $src2" %}
  7846   size(4);
  7847   ins_encode %{
  7848     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
  7849     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
  7850   %}
  7851   ins_pipe(pipe_class_default);
  7852 %}
  7854 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
  7855 // positive integers and 0xF...F for negative ones.
  7856 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
  7857   // no match-rule, false predicate
  7858   effect(DEF dst, USE src);
  7859   predicate(false);
  7861   format %{ "SRAWI   $dst, $src, #31" %}
  7862   size(4);
  7863   ins_encode %{
  7864     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  7865     __ srawi($dst$$Register, $src$$Register, 0x1f);
  7866   %}
  7867   ins_pipe(pipe_class_default);
  7868 %}
  7870 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
  7871   match(Set dst (AbsI src));
  7872   ins_cost(DEFAULT_COST*3);
  7874   expand %{
  7875     iRegIdst tmp1;
  7876     iRegIdst tmp2;
  7877     signmask32I_regI(tmp1, src);
  7878     xorI_reg_reg(tmp2, tmp1, src);
  7879     subI_reg_reg(dst, tmp2, tmp1);
  7880   %}
  7881 %}
  7883 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
  7884   match(Set dst (SubI zero src2));
  7885   format %{ "NEG     $dst, $src2" %}
  7886   size(4);
  7887   ins_encode %{
  7888     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7889     __ neg($dst$$Register, $src2$$Register);
  7890   %}
  7891   ins_pipe(pipe_class_default);
  7892 %}
  7894 // Long subtraction
  7895 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7896   match(Set dst (SubL src1 src2));
  7897   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
  7898   size(4);
  7899   ins_encode %{
  7900     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7901     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7902   %}
  7903   ins_pipe(pipe_class_default);
  7904 %}
  7906 // SubL + convL2I.
  7907 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7908   match(Set dst (ConvL2I (SubL src1 src2)));
  7910   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
  7911   size(4);
  7912   ins_encode %{
  7913     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7914     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7915   %}
  7916   ins_pipe(pipe_class_default);
  7917 %}
  7919 // Immediate Subtraction
  7920 // The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
  7921 // so this rule seems to be unused.
  7922 // No constant pool entries required.
  7923 instruct subL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7924   match(Set dst (SubL src1 src2));
  7926   format %{ "SUBI    $dst, $src1, $src2 \t// long" %}
  7927   size(4);
  7928   ins_encode %{
  7929     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7930     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  7931   %}
  7932   ins_pipe(pipe_class_default);
  7933 %}
  7935 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  7936 // positive longs and 0xF...F for negative ones.
  7937 instruct signmask64I_regL(iRegIdst dst, iRegLsrc src) %{
  7938   // no match-rule, false predicate
  7939   effect(DEF dst, USE src);
  7940   predicate(false);
  7942   format %{ "SRADI   $dst, $src, #63" %}
  7943   size(4);
  7944   ins_encode %{
  7945     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  7946     __ sradi($dst$$Register, $src$$Register, 0x3f);
  7947   %}
  7948   ins_pipe(pipe_class_default);
  7949 %}
  7951 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  7952 // positive longs and 0xF...F for negative ones.
  7953 instruct signmask64L_regL(iRegLdst dst, iRegLsrc src) %{
  7954   // no match-rule, false predicate
  7955   effect(DEF dst, USE src);
  7956   predicate(false);
  7958   format %{ "SRADI   $dst, $src, #63" %}
  7959   size(4);
  7960   ins_encode %{
  7961     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  7962     __ sradi($dst$$Register, $src$$Register, 0x3f);
  7963   %}
  7964   ins_pipe(pipe_class_default);
  7965 %}
  7967 // Long negation
  7968 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
  7969   match(Set dst (SubL zero src2));
  7970   format %{ "NEG     $dst, $src2 \t// long" %}
  7971   size(4);
  7972   ins_encode %{
  7973     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7974     __ neg($dst$$Register, $src2$$Register);
  7975   %}
  7976   ins_pipe(pipe_class_default);
  7977 %}
  7979 // NegL + ConvL2I.
  7980 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
  7981   match(Set dst (ConvL2I (SubL zero src2)));
  7983   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
  7984   size(4);
  7985   ins_encode %{
  7986     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7987     __ neg($dst$$Register, $src2$$Register);
  7988   %}
  7989   ins_pipe(pipe_class_default);
  7990 %}
  7992 // Multiplication Instructions
  7993 // Integer Multiplication
  7995 // Register Multiplication
  7996 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7997   match(Set dst (MulI src1 src2));
  7998   ins_cost(DEFAULT_COST);
  8000   format %{ "MULLW   $dst, $src1, $src2" %}
  8001   size(4);
  8002   ins_encode %{
  8003     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
  8004     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
  8005   %}
  8006   ins_pipe(pipe_class_default);
  8007 %}
  8009 // Immediate Multiplication
  8010 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  8011   match(Set dst (MulI src1 src2));
  8012   ins_cost(DEFAULT_COST);
  8014   format %{ "MULLI   $dst, $src1, $src2" %}
  8015   size(4);
  8016   ins_encode %{
  8017     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  8018     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  8019   %}
  8020   ins_pipe(pipe_class_default);
  8021 %}
  8023 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8024   match(Set dst (MulL src1 src2));
  8025   ins_cost(DEFAULT_COST);
  8027   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
  8028   size(4);
  8029   ins_encode %{
  8030     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
  8031     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
  8032   %}
  8033   ins_pipe(pipe_class_default);
  8034 %}
  8036 // Multiply high for optimized long division by constant.
  8037 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8038   match(Set dst (MulHiL src1 src2));
  8039   ins_cost(DEFAULT_COST);
  8041   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
  8042   size(4);
  8043   ins_encode %{
  8044     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
  8045     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
  8046   %}
  8047   ins_pipe(pipe_class_default);
  8048 %}
  8050 // Immediate Multiplication
  8051 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  8052   match(Set dst (MulL src1 src2));
  8053   ins_cost(DEFAULT_COST);
  8055   format %{ "MULLI   $dst, $src1, $src2" %}
  8056   size(4);
  8057   ins_encode %{
  8058     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  8059     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  8060   %}
  8061   ins_pipe(pipe_class_default);
  8062 %}
  8064 // Integer Division with Immediate -1: Negate.
  8065 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  8066   match(Set dst (DivI src1 src2));
  8067   ins_cost(DEFAULT_COST);
  8069   format %{ "NEG     $dst, $src1 \t// /-1" %}
  8070   size(4);
  8071   ins_encode %{
  8072     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8073     __ neg($dst$$Register, $src1$$Register);
  8074   %}
  8075   ins_pipe(pipe_class_default);
  8076 %}
  8078 // Integer Division with constant, but not -1.
  8079 // We should be able to improve this by checking the type of src2.
  8080 // It might well be that src2 is known to be positive.
  8081 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8082   match(Set dst (DivI src1 src2));
  8083   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
  8084   ins_cost(2*DEFAULT_COST);
  8086   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
  8087   size(4);
  8088   ins_encode %{
  8089     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
  8090     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
  8091   %}
  8092   ins_pipe(pipe_class_default);
  8093 %}
  8095 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsReg crx, iRegIsrc src1) %{
  8096   effect(USE_DEF dst, USE src1, USE crx);
  8097   predicate(false);
  8099   ins_variable_size_depending_on_alignment(true);
  8101   format %{ "CMOVE   $dst, neg($src1), $crx" %}
  8102   // Worst case is branch + move + stop, no stop without scheduler.
  8103   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  8104   ins_encode %{
  8105     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  8106     Label done;
  8107     __ bne($crx$$CondRegister, done);
  8108     __ neg($dst$$Register, $src1$$Register);
  8109     // TODO PPC port __ endgroup_if_needed(_size == 12);
  8110     __ bind(done);
  8111   %}
  8112   ins_pipe(pipe_class_default);
  8113 %}
  8115 // Integer Division with Registers not containing constants.
  8116 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8117   match(Set dst (DivI src1 src2));
  8118   ins_cost(10*DEFAULT_COST);
  8120   expand %{
  8121     immI16 imm %{ (int)-1 %}
  8122     flagsReg tmp1;
  8123     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  8124     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  8125     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  8126   %}
  8127 %}
  8129 // Long Division with Immediate -1: Negate.
  8130 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  8131   match(Set dst (DivL src1 src2));
  8132   ins_cost(DEFAULT_COST);
  8134   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
  8135   size(4);
  8136   ins_encode %{
  8137     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8138     __ neg($dst$$Register, $src1$$Register);
  8139   %}
  8140   ins_pipe(pipe_class_default);
  8141 %}
  8143 // Long Division with constant, but not -1.
  8144 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8145   match(Set dst (DivL src1 src2));
  8146   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
  8147   ins_cost(2*DEFAULT_COST);
  8149   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
  8150   size(4);
  8151   ins_encode %{
  8152     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
  8153     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
  8154   %}
  8155   ins_pipe(pipe_class_default);
  8156 %}
  8158 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsReg crx, iRegLsrc src1) %{
  8159   effect(USE_DEF dst, USE src1, USE crx);
  8160   predicate(false);
  8162   ins_variable_size_depending_on_alignment(true);
  8164   format %{ "CMOVE   $dst, neg($src1), $crx" %}
  8165   // Worst case is branch + move + stop, no stop without scheduler.
  8166   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  8167   ins_encode %{
  8168     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  8169     Label done;
  8170     __ bne($crx$$CondRegister, done);
  8171     __ neg($dst$$Register, $src1$$Register);
  8172     // TODO PPC port __ endgroup_if_needed(_size == 12);
  8173     __ bind(done);
  8174   %}
  8175   ins_pipe(pipe_class_default);
  8176 %}
  8178 // Long Division with Registers not containing constants.
  8179 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8180   match(Set dst (DivL src1 src2));
  8181   ins_cost(10*DEFAULT_COST);
  8183   expand %{
  8184     immL16 imm %{ (int)-1 %}
  8185     flagsReg tmp1;
  8186     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  8187     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  8188     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  8189   %}
  8190 %}
  8192 // Integer Remainder with registers.
  8193 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8194   match(Set dst (ModI src1 src2));
  8195   ins_cost(10*DEFAULT_COST);
  8197   expand %{
  8198     immI16 imm %{ (int)-1 %}
  8199     flagsReg tmp1;
  8200     iRegIdst tmp2;
  8201     iRegIdst tmp3;
  8202     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
  8203     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
  8204     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
  8205     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
  8206     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
  8207   %}
  8208 %}
  8210 // Long Remainder with registers
  8211 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
  8212   match(Set dst (ModL src1 src2));
  8213   ins_cost(10*DEFAULT_COST);
  8215   expand %{
  8216     immL16 imm %{ (int)-1 %}
  8217     flagsReg tmp1;
  8218     iRegLdst tmp2;
  8219     iRegLdst tmp3;
  8220     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
  8221     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
  8222     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
  8223     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
  8224     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
  8225   %}
  8226 %}
  8228 // Integer Shift Instructions
  8230 // Register Shift Left
  8232 // Clear all but the lowest #mask bits.
  8233 // Used to normalize shift amounts in registers.
  8234 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
  8235   // no match-rule, false predicate
  8236   effect(DEF dst, USE src, USE mask);
  8237   predicate(false);
  8239   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
  8240   size(4);
  8241   ins_encode %{
  8242     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8243     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
  8244   %}
  8245   ins_pipe(pipe_class_default);
  8246 %}
  8248 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8249   // no match-rule, false predicate
  8250   effect(DEF dst, USE src1, USE src2);
  8251   predicate(false);
  8253   format %{ "SLW     $dst, $src1, $src2" %}
  8254   size(4);
  8255   ins_encode %{
  8256     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
  8257     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
  8258   %}
  8259   ins_pipe(pipe_class_default);
  8260 %}
  8262 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8263   match(Set dst (LShiftI src1 src2));
  8264   ins_cost(DEFAULT_COST*2);
  8265   expand %{
  8266     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8267     iRegIdst tmpI;
  8268     maskI_reg_imm(tmpI, src2, mask);
  8269     lShiftI_reg_reg(dst, src1, tmpI);
  8270   %}
  8271 %}
  8273 // Register Shift Left Immediate
  8274 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8275   match(Set dst (LShiftI src1 src2));
  8277   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
  8278   size(4);
  8279   ins_encode %{
  8280     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8281     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8282   %}
  8283   ins_pipe(pipe_class_default);
  8284 %}
  8286 // AndI with negpow2-constant + LShiftI
  8287 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  8288   match(Set dst (LShiftI (AndI src1 src2) src3));
  8289   predicate(UseRotateAndMaskInstructionsPPC64);
  8291   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
  8292   size(4);
  8293   ins_encode %{
  8294     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  8295     long src2      = $src2$$constant;
  8296     long src3      = $src3$$constant;
  8297     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  8298     if (maskbits >= 32) {
  8299       __ li($dst$$Register, 0); // addi
  8300     } else {
  8301       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
  8303   %}
  8304   ins_pipe(pipe_class_default);
  8305 %}
  8307 // RShiftI + AndI with negpow2-constant + LShiftI
  8308 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  8309   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
  8310   predicate(UseRotateAndMaskInstructionsPPC64);
  8312   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
  8313   size(4);
  8314   ins_encode %{
  8315     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  8316     long src2      = $src2$$constant;
  8317     long src3      = $src3$$constant;
  8318     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  8319     if (maskbits >= 32) {
  8320       __ li($dst$$Register, 0); // addi
  8321     } else {
  8322       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
  8324   %}
  8325   ins_pipe(pipe_class_default);
  8326 %}
  8328 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8329   // no match-rule, false predicate
  8330   effect(DEF dst, USE src1, USE src2);
  8331   predicate(false);
  8333   format %{ "SLD     $dst, $src1, $src2" %}
  8334   size(4);
  8335   ins_encode %{
  8336     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
  8337     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
  8338   %}
  8339   ins_pipe(pipe_class_default);
  8340 %}
  8342 // Register Shift Left
  8343 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8344   match(Set dst (LShiftL src1 src2));
  8345   ins_cost(DEFAULT_COST*2);
  8346   expand %{
  8347     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8348     iRegIdst tmpI;
  8349     maskI_reg_imm(tmpI, src2, mask);
  8350     lShiftL_regL_regI(dst, src1, tmpI);
  8351   %}
  8352 %}
  8354 // Register Shift Left Immediate
  8355 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8356   match(Set dst (LShiftL src1 src2));
  8357   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
  8358   size(4);
  8359   ins_encode %{
  8360     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8361     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8362   %}
  8363   ins_pipe(pipe_class_default);
  8364 %}
  8366 // If we shift more than 32 bits, we need not convert I2L.
  8367 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
  8368   match(Set dst (LShiftL (ConvI2L src1) src2));
  8369   ins_cost(DEFAULT_COST);
  8371   size(4);
  8372   format %{ "SLDI    $dst, i2l($src1), $src2" %}
  8373   ins_encode %{
  8374     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8375     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8376   %}
  8377   ins_pipe(pipe_class_default);
  8378 %}
  8380 // Shift a postivie int to the left.
  8381 // Clrlsldi clears the upper 32 bits and shifts.
  8382 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
  8383   match(Set dst (LShiftL (ConvI2L src1) src2));
  8384   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
  8386   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
  8387   size(4);
  8388   ins_encode %{
  8389     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
  8390     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
  8391   %}
  8392   ins_pipe(pipe_class_default);
  8393 %}
  8395 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8396   // no match-rule, false predicate
  8397   effect(DEF dst, USE src1, USE src2);
  8398   predicate(false);
  8400   format %{ "SRAW    $dst, $src1, $src2" %}
  8401   size(4);
  8402   ins_encode %{
  8403     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
  8404     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
  8405   %}
  8406   ins_pipe(pipe_class_default);
  8407 %}
  8409 // Register Arithmetic Shift Right
  8410 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8411   match(Set dst (RShiftI src1 src2));
  8412   ins_cost(DEFAULT_COST*2);
  8413   expand %{
  8414     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8415     iRegIdst tmpI;
  8416     maskI_reg_imm(tmpI, src2, mask);
  8417     arShiftI_reg_reg(dst, src1, tmpI);
  8418   %}
  8419 %}
  8421 // Register Arithmetic Shift Right Immediate
  8422 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8423   match(Set dst (RShiftI src1 src2));
  8425   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
  8426   size(4);
  8427   ins_encode %{
  8428     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  8429     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8430   %}
  8431   ins_pipe(pipe_class_default);
  8432 %}
  8434 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8435   // no match-rule, false predicate
  8436   effect(DEF dst, USE src1, USE src2);
  8437   predicate(false);
  8439   format %{ "SRAD    $dst, $src1, $src2" %}
  8440   size(4);
  8441   ins_encode %{
  8442     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
  8443     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
  8444   %}
  8445   ins_pipe(pipe_class_default);
  8446 %}
  8448 // Register Shift Right Arithmetic Long
  8449 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8450   match(Set dst (RShiftL src1 src2));
  8451   ins_cost(DEFAULT_COST*2);
  8453   expand %{
  8454     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8455     iRegIdst tmpI;
  8456     maskI_reg_imm(tmpI, src2, mask);
  8457     arShiftL_regL_regI(dst, src1, tmpI);
  8458   %}
  8459 %}
  8461 // Register Shift Right Immediate
  8462 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8463   match(Set dst (RShiftL src1 src2));
  8465   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
  8466   size(4);
  8467   ins_encode %{
  8468     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  8469     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8470   %}
  8471   ins_pipe(pipe_class_default);
  8472 %}
  8474 // RShiftL + ConvL2I
  8475 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  8476   match(Set dst (ConvL2I (RShiftL src1 src2)));
  8478   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  8479   size(4);
  8480   ins_encode %{
  8481     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  8482     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8483   %}
  8484   ins_pipe(pipe_class_default);
  8485 %}
  8487 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8488   // no match-rule, false predicate
  8489   effect(DEF dst, USE src1, USE src2);
  8490   predicate(false);
  8492   format %{ "SRW     $dst, $src1, $src2" %}
  8493   size(4);
  8494   ins_encode %{
  8495     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
  8496     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
  8497   %}
  8498   ins_pipe(pipe_class_default);
  8499 %}
  8501 // Register Shift Right
  8502 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8503   match(Set dst (URShiftI src1 src2));
  8504   ins_cost(DEFAULT_COST*2);
  8506   expand %{
  8507     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8508     iRegIdst tmpI;
  8509     maskI_reg_imm(tmpI, src2, mask);
  8510     urShiftI_reg_reg(dst, src1, tmpI);
  8511   %}
  8512 %}
  8514 // Register Shift Right Immediate
  8515 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8516   match(Set dst (URShiftI src1 src2));
  8518   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
  8519   size(4);
  8520   ins_encode %{
  8521     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8522     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8523   %}
  8524   ins_pipe(pipe_class_default);
  8525 %}
  8527 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8528   // no match-rule, false predicate
  8529   effect(DEF dst, USE src1, USE src2);
  8530   predicate(false);
  8532   format %{ "SRD     $dst, $src1, $src2" %}
  8533   size(4);
  8534   ins_encode %{
  8535     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
  8536     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
  8537   %}
  8538   ins_pipe(pipe_class_default);
  8539 %}
  8541 // Register Shift Right
  8542 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8543   match(Set dst (URShiftL src1 src2));
  8544   ins_cost(DEFAULT_COST*2);
  8546   expand %{
  8547     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8548     iRegIdst tmpI;
  8549     maskI_reg_imm(tmpI, src2, mask);
  8550     urShiftL_regL_regI(dst, src1, tmpI);
  8551   %}
  8552 %}
  8554 // Register Shift Right Immediate
  8555 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8556   match(Set dst (URShiftL src1 src2));
  8558   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
  8559   size(4);
  8560   ins_encode %{
  8561     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8562     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8563   %}
  8564   ins_pipe(pipe_class_default);
  8565 %}
  8567 // URShiftL + ConvL2I.
  8568 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  8569   match(Set dst (ConvL2I (URShiftL src1 src2)));
  8571   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  8572   size(4);
  8573   ins_encode %{
  8574     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8575     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8576   %}
  8577   ins_pipe(pipe_class_default);
  8578 %}
  8580 // Register Shift Right Immediate with a CastP2X
  8581 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
  8582   match(Set dst (URShiftL (CastP2X src1) src2));
  8584   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
  8585   size(4);
  8586   ins_encode %{
  8587     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8588     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8589   %}
  8590   ins_pipe(pipe_class_default);
  8591 %}
  8593 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
  8594   match(Set dst (ConvL2I (ConvI2L src)));
  8596   format %{ "EXTSW   $dst, $src \t// int->int" %}
  8597   size(4);
  8598   ins_encode %{
  8599     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  8600     __ extsw($dst$$Register, $src$$Register);
  8601   %}
  8602   ins_pipe(pipe_class_default);
  8603 %}
  8605 //----------Rotate Instructions------------------------------------------------
  8607 // Rotate Left by 8-bit immediate
  8608 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
  8609   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
  8610   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8612   format %{ "ROTLWI  $dst, $src, $lshift" %}
  8613   size(4);
  8614   ins_encode %{
  8615     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8616     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
  8617   %}
  8618   ins_pipe(pipe_class_default);
  8619 %}
  8621 // Rotate Right by 8-bit immediate
  8622 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
  8623   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
  8624   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8626   format %{ "ROTRWI  $dst, $rshift" %}
  8627   size(4);
  8628   ins_encode %{
  8629     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8630     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
  8631   %}
  8632   ins_pipe(pipe_class_default);
  8633 %}
  8635 //----------Floating Point Arithmetic Instructions-----------------------------
  8637 // Add float single precision
  8638 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  8639   match(Set dst (AddF src1 src2));
  8641   format %{ "FADDS   $dst, $src1, $src2" %}
  8642   size(4);
  8643   ins_encode %{
  8644     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
  8645     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8646   %}
  8647   ins_pipe(pipe_class_default);
  8648 %}
  8650 // Add float double precision
  8651 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  8652   match(Set dst (AddD src1 src2));
  8654   format %{ "FADD    $dst, $src1, $src2" %}
  8655   size(4);
  8656   ins_encode %{
  8657     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
  8658     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8659   %}
  8660   ins_pipe(pipe_class_default);
  8661 %}
  8663 // Sub float single precision
  8664 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  8665   match(Set dst (SubF src1 src2));
  8667   format %{ "FSUBS   $dst, $src1, $src2" %}
  8668   size(4);
  8669   ins_encode %{
  8670     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
  8671     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8672   %}
  8673   ins_pipe(pipe_class_default);
  8674 %}
  8676 // Sub float double precision
  8677 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  8678   match(Set dst (SubD src1 src2));
  8679   format %{ "FSUB    $dst, $src1, $src2" %}
  8680   size(4);
  8681   ins_encode %{
  8682     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
  8683     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8684   %}
  8685   ins_pipe(pipe_class_default);
  8686 %}
  8688 // Mul float single precision
  8689 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  8690   match(Set dst (MulF src1 src2));
  8691   format %{ "FMULS   $dst, $src1, $src2" %}
  8692   size(4);
  8693   ins_encode %{
  8694     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
  8695     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8696   %}
  8697   ins_pipe(pipe_class_default);
  8698 %}
  8700 // Mul float double precision
  8701 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  8702   match(Set dst (MulD src1 src2));
  8703   format %{ "FMUL    $dst, $src1, $src2" %}
  8704   size(4);
  8705   ins_encode %{
  8706     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
  8707     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8708   %}
  8709   ins_pipe(pipe_class_default);
  8710 %}
  8712 // Div float single precision
  8713 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  8714   match(Set dst (DivF src1 src2));
  8715   format %{ "FDIVS   $dst, $src1, $src2" %}
  8716   size(4);
  8717   ins_encode %{
  8718     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
  8719     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8720   %}
  8721   ins_pipe(pipe_class_default);
  8722 %}
  8724 // Div float double precision
  8725 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  8726   match(Set dst (DivD src1 src2));
  8727   format %{ "FDIV    $dst, $src1, $src2" %}
  8728   size(4);
  8729   ins_encode %{
  8730     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
  8731     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8732   %}
  8733   ins_pipe(pipe_class_default);
  8734 %}
  8736 // Absolute float single precision
  8737 instruct absF_reg(regF dst, regF src) %{
  8738   match(Set dst (AbsF src));
  8739   format %{ "FABS    $dst, $src \t// float" %}
  8740   size(4);
  8741   ins_encode %{
  8742     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  8743     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  8744   %}
  8745   ins_pipe(pipe_class_default);
  8746 %}
  8748 // Absolute float double precision
  8749 instruct absD_reg(regD dst, regD src) %{
  8750   match(Set dst (AbsD src));
  8751   format %{ "FABS    $dst, $src \t// double" %}
  8752   size(4);
  8753   ins_encode %{
  8754     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  8755     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  8756   %}
  8757   ins_pipe(pipe_class_default);
  8758 %}
  8760 instruct negF_reg(regF dst, regF src) %{
  8761   match(Set dst (NegF src));
  8762   format %{ "FNEG    $dst, $src \t// float" %}
  8763   size(4);
  8764   ins_encode %{
  8765     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  8766     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  8767   %}
  8768   ins_pipe(pipe_class_default);
  8769 %}
  8771 instruct negD_reg(regD dst, regD src) %{
  8772   match(Set dst (NegD src));
  8773   format %{ "FNEG    $dst, $src \t// double" %}
  8774   size(4);
  8775   ins_encode %{
  8776     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  8777     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  8778   %}
  8779   ins_pipe(pipe_class_default);
  8780 %}
  8782 // AbsF + NegF.
  8783 instruct negF_absF_reg(regF dst, regF src) %{
  8784   match(Set dst (NegF (AbsF src)));
  8785   format %{ "FNABS   $dst, $src \t// float" %}
  8786   size(4);
  8787   ins_encode %{
  8788     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  8789     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  8790   %}
  8791   ins_pipe(pipe_class_default);
  8792 %}
  8794 // AbsD + NegD.
  8795 instruct negD_absD_reg(regD dst, regD src) %{
  8796   match(Set dst (NegD (AbsD src)));
  8797   format %{ "FNABS   $dst, $src \t// double" %}
  8798   size(4);
  8799   ins_encode %{
  8800     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  8801     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  8802   %}
  8803   ins_pipe(pipe_class_default);
  8804 %}
  8806 // VM_Version::has_fsqrt() decides if this node will be used.
  8807 // Sqrt float double precision
  8808 instruct sqrtD_reg(regD dst, regD src) %{
  8809   match(Set dst (SqrtD src));
  8810   format %{ "FSQRT   $dst, $src" %}
  8811   size(4);
  8812   ins_encode %{
  8813     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
  8814     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
  8815   %}
  8816   ins_pipe(pipe_class_default);
  8817 %}
  8819 // Single-precision sqrt.
  8820 instruct sqrtF_reg(regF dst, regF src) %{
  8821   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  8822   predicate(VM_Version::has_fsqrts());
  8823   ins_cost(DEFAULT_COST);
  8825   format %{ "FSQRTS  $dst, $src" %}
  8826   size(4);
  8827   ins_encode %{
  8828     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
  8829     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
  8830   %}
  8831   ins_pipe(pipe_class_default);
  8832 %}
  8834 instruct roundDouble_nop(regD dst) %{
  8835   match(Set dst (RoundDouble dst));
  8836   ins_cost(0);
  8838   format %{ " -- \t// RoundDouble not needed - empty" %}
  8839   size(0);
  8840   // PPC results are already "rounded" (i.e., normal-format IEEE).
  8841   ins_encode( /*empty*/ );
  8842   ins_pipe(pipe_class_default);
  8843 %}
  8845 instruct roundFloat_nop(regF dst) %{
  8846   match(Set dst (RoundFloat dst));
  8847   ins_cost(0);
  8849   format %{ " -- \t// RoundFloat not needed - empty" %}
  8850   size(0);
  8851   // PPC results are already "rounded" (i.e., normal-format IEEE).
  8852   ins_encode( /*empty*/ );
  8853   ins_pipe(pipe_class_default);
  8854 %}
  8856 //----------Logical Instructions-----------------------------------------------
  8858 // And Instructions
  8860 // Register And
  8861 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8862   match(Set dst (AndI src1 src2));
  8863   format %{ "AND     $dst, $src1, $src2" %}
  8864   size(4);
  8865   ins_encode %{
  8866     // TODO: PPC port $archOpcode(ppc64Opcode_and);
  8867     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  8868   %}
  8869   ins_pipe(pipe_class_default);
  8870 %}
  8872 // Immediate And
  8873 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
  8874   match(Set dst (AndI src1 src2));
  8875   effect(KILL cr0);
  8877   format %{ "ANDI    $dst, $src1, $src2" %}
  8878   size(4);
  8879   ins_encode %{
  8880     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  8881     // FIXME: avoid andi_ ?
  8882     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  8883   %}
  8884   ins_pipe(pipe_class_default);
  8885 %}
  8887 // Immediate And where the immediate is a negative power of 2.
  8888 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
  8889   match(Set dst (AndI src1 src2));
  8890   format %{ "ANDWI   $dst, $src1, $src2" %}
  8891   size(4);
  8892   ins_encode %{
  8893     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8894     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
  8895   %}
  8896   ins_pipe(pipe_class_default);
  8897 %}
  8899 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
  8900   match(Set dst (AndI src1 src2));
  8901   format %{ "ANDWI   $dst, $src1, $src2" %}
  8902   size(4);
  8903   ins_encode %{
  8904     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8905     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8906   %}
  8907   ins_pipe(pipe_class_default);
  8908 %}
  8910 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
  8911   match(Set dst (AndI src1 src2));
  8912   predicate(UseRotateAndMaskInstructionsPPC64);
  8913   format %{ "ANDWI   $dst, $src1, $src2" %}
  8914   size(4);
  8915   ins_encode %{
  8916     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8917     __ rlwinm($dst$$Register, $src1$$Register, 0,
  8918               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
  8919   %}
  8920   ins_pipe(pipe_class_default);
  8921 %}
  8923 // Register And Long
  8924 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8925   match(Set dst (AndL src1 src2));
  8926   ins_cost(DEFAULT_COST);
  8928   format %{ "AND     $dst, $src1, $src2 \t// long" %}
  8929   size(4);
  8930   ins_encode %{
  8931     // TODO: PPC port $archOpcode(ppc64Opcode_and);
  8932     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  8933   %}
  8934   ins_pipe(pipe_class_default);
  8935 %}
  8937 // Immediate And long
  8938 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
  8939   match(Set dst (AndL src1 src2));
  8940   effect(KILL cr0);
  8941   ins_cost(DEFAULT_COST);
  8943   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
  8944   size(4);
  8945   ins_encode %{
  8946     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  8947     // FIXME: avoid andi_ ?
  8948     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  8949   %}
  8950   ins_pipe(pipe_class_default);
  8951 %}
  8953 // Immediate And Long where the immediate is a negative power of 2.
  8954 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
  8955   match(Set dst (AndL src1 src2));
  8956   format %{ "ANDDI   $dst, $src1, $src2" %}
  8957   size(4);
  8958   ins_encode %{
  8959     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8960     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
  8961   %}
  8962   ins_pipe(pipe_class_default);
  8963 %}
  8965 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  8966   match(Set dst (AndL src1 src2));
  8967   format %{ "ANDDI   $dst, $src1, $src2" %}
  8968   size(4);
  8969   ins_encode %{
  8970     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8971     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8972   %}
  8973   ins_pipe(pipe_class_default);
  8974 %}
  8976 // AndL + ConvL2I.
  8977 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  8978   match(Set dst (ConvL2I (AndL src1 src2)));
  8979   ins_cost(DEFAULT_COST);
  8981   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
  8982   size(4);
  8983   ins_encode %{
  8984     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8985     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8986   %}
  8987   ins_pipe(pipe_class_default);
  8988 %}
  8990 // Or Instructions
  8992 // Register Or
  8993 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8994   match(Set dst (OrI src1 src2));
  8995   format %{ "OR      $dst, $src1, $src2" %}
  8996   size(4);
  8997   ins_encode %{
  8998     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  8999     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9000   %}
  9001   ins_pipe(pipe_class_default);
  9002 %}
  9004 // Expand does not work with above instruct. (??)
  9005 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9006   // no match-rule
  9007   effect(DEF dst, USE src1, USE src2);
  9008   format %{ "OR      $dst, $src1, $src2" %}
  9009   size(4);
  9010   ins_encode %{
  9011     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9012     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9013   %}
  9014   ins_pipe(pipe_class_default);
  9015 %}
  9017 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  9018   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
  9019   ins_cost(DEFAULT_COST*3);
  9021   expand %{
  9022     // FIXME: we should do this in the ideal world.
  9023     iRegIdst tmp1;
  9024     iRegIdst tmp2;
  9025     orI_reg_reg(tmp1, src1, src2);
  9026     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  9027     orI_reg_reg(dst, tmp1, tmp2);
  9028   %}
  9029 %}
  9031 // Immediate Or
  9032 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  9033   match(Set dst (OrI src1 src2));
  9034   format %{ "ORI     $dst, $src1, $src2" %}
  9035   size(4);
  9036   ins_encode %{
  9037     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  9038     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  9039   %}
  9040   ins_pipe(pipe_class_default);
  9041 %}
  9043 // Register Or Long
  9044 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9045   match(Set dst (OrL src1 src2));
  9046   ins_cost(DEFAULT_COST);
  9048   size(4);
  9049   format %{ "OR      $dst, $src1, $src2 \t// long" %}
  9050   ins_encode %{
  9051     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9052     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9053   %}
  9054   ins_pipe(pipe_class_default);
  9055 %}
  9057 // OrL + ConvL2I.
  9058 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9059   match(Set dst (ConvL2I (OrL src1 src2)));
  9060   ins_cost(DEFAULT_COST);
  9062   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
  9063   size(4);
  9064   ins_encode %{
  9065     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9066     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9067   %}
  9068   ins_pipe(pipe_class_default);
  9069 %}
  9071 // Immediate Or long
  9072 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
  9073   match(Set dst (OrL src1 con));
  9074   ins_cost(DEFAULT_COST);
  9076   format %{ "ORI     $dst, $src1, $con \t// long" %}
  9077   size(4);
  9078   ins_encode %{
  9079     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  9080     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
  9081   %}
  9082   ins_pipe(pipe_class_default);
  9083 %}
  9085 // Xor Instructions
  9087 // Register Xor
  9088 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9089   match(Set dst (XorI src1 src2));
  9090   format %{ "XOR     $dst, $src1, $src2" %}
  9091   size(4);
  9092   ins_encode %{
  9093     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9094     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9095   %}
  9096   ins_pipe(pipe_class_default);
  9097 %}
  9099 // Expand does not work with above instruct. (??)
  9100 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9101   // no match-rule
  9102   effect(DEF dst, USE src1, USE src2);
  9103   format %{ "XOR     $dst, $src1, $src2" %}
  9104   size(4);
  9105   ins_encode %{
  9106     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9107     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9108   %}
  9109   ins_pipe(pipe_class_default);
  9110 %}
  9112 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  9113   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
  9114   ins_cost(DEFAULT_COST*3);
  9116   expand %{
  9117     // FIXME: we should do this in the ideal world.
  9118     iRegIdst tmp1;
  9119     iRegIdst tmp2;
  9120     xorI_reg_reg(tmp1, src1, src2);
  9121     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
  9122     xorI_reg_reg(dst, tmp1, tmp2);
  9123   %}
  9124 %}
  9126 // Immediate Xor
  9127 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  9128   match(Set dst (XorI src1 src2));
  9129   format %{ "XORI    $dst, $src1, $src2" %}
  9130   size(4);
  9131   ins_encode %{
  9132     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  9133     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  9134   %}
  9135   ins_pipe(pipe_class_default);
  9136 %}
  9138 // Register Xor Long
  9139 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9140   match(Set dst (XorL src1 src2));
  9141   ins_cost(DEFAULT_COST);
  9143   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
  9144   size(4);
  9145   ins_encode %{
  9146     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9147     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9148   %}
  9149   ins_pipe(pipe_class_default);
  9150 %}
  9152 // XorL + ConvL2I.
  9153 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9154   match(Set dst (ConvL2I (XorL src1 src2)));
  9155   ins_cost(DEFAULT_COST);
  9157   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
  9158   size(4);
  9159   ins_encode %{
  9160     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9161     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9162   %}
  9163   ins_pipe(pipe_class_default);
  9164 %}
  9166 // Immediate Xor Long
  9167 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
  9168   match(Set dst (XorL src1 src2));
  9169   ins_cost(DEFAULT_COST);
  9171   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
  9172   size(4);
  9173   ins_encode %{
  9174     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  9175     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  9176   %}
  9177   ins_pipe(pipe_class_default);
  9178 %}
  9180 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  9181   match(Set dst (XorI src1 src2));
  9182   ins_cost(DEFAULT_COST);
  9184   format %{ "NOT     $dst, $src1 ($src2)" %}
  9185   size(4);
  9186   ins_encode %{
  9187     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  9188     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  9189   %}
  9190   ins_pipe(pipe_class_default);
  9191 %}
  9193 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  9194   match(Set dst (XorL src1 src2));
  9195   ins_cost(DEFAULT_COST);
  9197   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
  9198   size(4);
  9199   ins_encode %{
  9200     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  9201     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  9202   %}
  9203   ins_pipe(pipe_class_default);
  9204 %}
  9206 // And-complement
  9207 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
  9208   match(Set dst (AndI (XorI src1 src2) src3));
  9209   ins_cost(DEFAULT_COST);
  9211   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
  9212   size(4);
  9213   ins_encode( enc_andc(dst, src3, src1) );
  9214   ins_pipe(pipe_class_default);
  9215 %}
  9217 // And-complement
  9218 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9219   // no match-rule, false predicate
  9220   effect(DEF dst, USE src1, USE src2);
  9221   predicate(false);
  9223   format %{ "ANDC    $dst, $src1, $src2" %}
  9224   size(4);
  9225   ins_encode %{
  9226     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  9227     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  9228   %}
  9229   ins_pipe(pipe_class_default);
  9230 %}
  9232 //----------Moves between int/long and float/double----------------------------
  9233 //
  9234 // The following rules move values from int/long registers/stack-locations
  9235 // to float/double registers/stack-locations and vice versa, without doing any
  9236 // conversions. These rules are used to implement the bit-conversion methods
  9237 // of java.lang.Float etc., e.g.
  9238 //   int   floatToIntBits(float value)
  9239 //   float intBitsToFloat(int bits)
  9240 //
  9241 // Notes on the implementation on ppc64:
  9242 // We only provide rules which move between a register and a stack-location,
  9243 // because we always have to go through memory when moving between a float
  9244 // register and an integer register.
  9246 //---------- Chain stack slots between similar types --------
  9248 // These are needed so that the rules below can match.
  9250 // Load integer from stack slot
  9251 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
  9252   match(Set dst src);
  9253   ins_cost(MEMORY_REF_COST);
  9255   format %{ "LWZ     $dst, $src" %}
  9256   size(4);
  9257   ins_encode( enc_lwz(dst, src) );
  9258   ins_pipe(pipe_class_memory);
  9259 %}
  9261 // Store integer to stack slot
  9262 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
  9263   match(Set dst src);
  9264   ins_cost(MEMORY_REF_COST);
  9266   format %{ "STW     $src, $dst \t// stk" %}
  9267   size(4);
  9268   ins_encode( enc_stw(src, dst) ); // rs=rt
  9269   ins_pipe(pipe_class_memory);
  9270 %}
  9272 // Load long from stack slot
  9273 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
  9274   match(Set dst src);
  9275   ins_cost(MEMORY_REF_COST);
  9277   format %{ "LD      $dst, $src \t// long" %}
  9278   size(4);
  9279   ins_encode( enc_ld(dst, src) );
  9280   ins_pipe(pipe_class_memory);
  9281 %}
  9283 // Store long to stack slot
  9284 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
  9285   match(Set dst src);
  9286   ins_cost(MEMORY_REF_COST);
  9288   format %{ "STD     $src, $dst \t// long" %}
  9289   size(4);
  9290   ins_encode( enc_std(src, dst) ); // rs=rt
  9291   ins_pipe(pipe_class_memory);
  9292 %}
  9294 //----------Moves between int and float
  9296 // Move float value from float stack-location to integer register.
  9297 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
  9298   match(Set dst (MoveF2I src));
  9299   ins_cost(MEMORY_REF_COST);
  9301   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
  9302   size(4);
  9303   ins_encode( enc_lwz(dst, src) );
  9304   ins_pipe(pipe_class_memory);
  9305 %}
  9307 // Move float value from float register to integer stack-location.
  9308 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
  9309   match(Set dst (MoveF2I src));
  9310   ins_cost(MEMORY_REF_COST);
  9312   format %{ "STFS    $src, $dst \t// MoveF2I" %}
  9313   size(4);
  9314   ins_encode( enc_stfs(src, dst) );
  9315   ins_pipe(pipe_class_memory);
  9316 %}
  9318 // Move integer value from integer stack-location to float register.
  9319 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
  9320   match(Set dst (MoveI2F src));
  9321   ins_cost(MEMORY_REF_COST);
  9323   format %{ "LFS     $dst, $src \t// MoveI2F" %}
  9324   size(4);
  9325   ins_encode %{
  9326     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  9327     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
  9328     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
  9329   %}
  9330   ins_pipe(pipe_class_memory);
  9331 %}
  9333 // Move integer value from integer register to float stack-location.
  9334 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
  9335   match(Set dst (MoveI2F src));
  9336   ins_cost(MEMORY_REF_COST);
  9338   format %{ "STW     $src, $dst \t// MoveI2F" %}
  9339   size(4);
  9340   ins_encode( enc_stw(src, dst) );
  9341   ins_pipe(pipe_class_memory);
  9342 %}
  9344 //----------Moves between long and float
  9346 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
  9347   // no match-rule, false predicate
  9348   effect(DEF dst, USE src);
  9349   predicate(false);
  9351   format %{ "storeD  $src, $dst \t// STACK" %}
  9352   size(4);
  9353   ins_encode( enc_stfd(src, dst) );
  9354   ins_pipe(pipe_class_default);
  9355 %}
  9357 //----------Moves between long and double
  9359 // Move double value from double stack-location to long register.
  9360 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
  9361   match(Set dst (MoveD2L src));
  9362   ins_cost(MEMORY_REF_COST);
  9363   size(4);
  9364   format %{ "LD      $dst, $src \t// MoveD2L" %}
  9365   ins_encode( enc_ld(dst, src) );
  9366   ins_pipe(pipe_class_memory);
  9367 %}
  9369 // Move double value from double register to long stack-location.
  9370 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
  9371   match(Set dst (MoveD2L src));
  9372   effect(DEF dst, USE src);
  9373   ins_cost(MEMORY_REF_COST);
  9375   format %{ "STFD    $src, $dst \t// MoveD2L" %}
  9376   size(4);
  9377   ins_encode( enc_stfd(src, dst) );
  9378   ins_pipe(pipe_class_memory);
  9379 %}
  9381 // Move long value from long stack-location to double register.
  9382 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
  9383   match(Set dst (MoveL2D src));
  9384   ins_cost(MEMORY_REF_COST);
  9386   format %{ "LFD     $dst, $src \t// MoveL2D" %}
  9387   size(4);
  9388   ins_encode( enc_lfd(dst, src) );
  9389   ins_pipe(pipe_class_memory);
  9390 %}
  9392 // Move long value from long register to double stack-location.
  9393 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
  9394   match(Set dst (MoveL2D src));
  9395   ins_cost(MEMORY_REF_COST);
  9397   format %{ "STD     $src, $dst \t// MoveL2D" %}
  9398   size(4);
  9399   ins_encode( enc_std(src, dst) );
  9400   ins_pipe(pipe_class_memory);
  9401 %}
  9403 //----------Register Move Instructions-----------------------------------------
  9405 // Replicate for Superword
  9407 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
  9408   predicate(false);
  9409   effect(DEF dst, USE src);
  9411   format %{ "MR      $dst, $src \t// replicate " %}
  9412   // variable size, 0 or 4.
  9413   ins_encode %{
  9414     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9415     __ mr_if_needed($dst$$Register, $src$$Register);
  9416   %}
  9417   ins_pipe(pipe_class_default);
  9418 %}
  9420 //----------Cast instructions (Java-level type cast)---------------------------
  9422 // Cast Long to Pointer for unsafe natives.
  9423 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
  9424   match(Set dst (CastX2P src));
  9426   format %{ "MR      $dst, $src \t// Long->Ptr" %}
  9427   // variable size, 0 or 4.
  9428   ins_encode %{
  9429     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9430     __ mr_if_needed($dst$$Register, $src$$Register);
  9431   %}
  9432  ins_pipe(pipe_class_default);
  9433 %}
  9435 // Cast Pointer to Long for unsafe natives.
  9436 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
  9437   match(Set dst (CastP2X src));
  9439   format %{ "MR      $dst, $src \t// Ptr->Long" %}
  9440   // variable size, 0 or 4.
  9441   ins_encode %{
  9442     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9443     __ mr_if_needed($dst$$Register, $src$$Register);
  9444   %}
  9445   ins_pipe(pipe_class_default);
  9446 %}
  9448 instruct castPP(iRegPdst dst) %{
  9449   match(Set dst (CastPP dst));
  9450   format %{ " -- \t// castPP of $dst" %}
  9451   size(0);
  9452   ins_encode( /*empty*/ );
  9453   ins_pipe(pipe_class_default);
  9454 %}
  9456 instruct castII(iRegIdst dst) %{
  9457   match(Set dst (CastII dst));
  9458   format %{ " -- \t// castII of $dst" %}
  9459   size(0);
  9460   ins_encode( /*empty*/ );
  9461   ins_pipe(pipe_class_default);
  9462 %}
  9464 instruct checkCastPP(iRegPdst dst) %{
  9465   match(Set dst (CheckCastPP dst));
  9466   format %{ " -- \t// checkcastPP of $dst" %}
  9467   size(0);
  9468   ins_encode( /*empty*/ );
  9469   ins_pipe(pipe_class_default);
  9470 %}
  9472 //----------Convert instructions-----------------------------------------------
  9474 // Convert to boolean.
  9476 // int_to_bool(src) : { 1   if src != 0
  9477 //                    { 0   else
  9478 //
  9479 // strategy:
  9480 // 1) Count leading zeros of 32 bit-value src,
  9481 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
  9482 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  9483 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  9485 // convI2Bool
  9486 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
  9487   match(Set dst (Conv2B src));
  9488   predicate(UseCountLeadingZerosInstructionsPPC64);
  9489   ins_cost(DEFAULT_COST);
  9491   expand %{
  9492     immI shiftAmount %{ 0x5 %}
  9493     uimmI16 mask %{ 0x1 %}
  9494     iRegIdst tmp1;
  9495     iRegIdst tmp2;
  9496     countLeadingZerosI(tmp1, src);
  9497     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  9498     xorI_reg_uimm16(dst, tmp2, mask);
  9499   %}
  9500 %}
  9502 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
  9503   match(Set dst (Conv2B src));
  9504   effect(TEMP crx);
  9505   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9506   ins_cost(DEFAULT_COST);
  9508   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
  9509             "LI      $dst, #0\n\t"
  9510             "BEQ     $crx, done\n\t"
  9511             "LI      $dst, #1\n"
  9512             "done:" %}
  9513   size(16);
  9514   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
  9515   ins_pipe(pipe_class_compare);
  9516 %}
  9518 // ConvI2B + XorI
  9519 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
  9520   match(Set dst (XorI (Conv2B src) mask));
  9521   predicate(UseCountLeadingZerosInstructionsPPC64);
  9522   ins_cost(DEFAULT_COST);
  9524   expand %{
  9525     immI shiftAmount %{ 0x5 %}
  9526     iRegIdst tmp1;
  9527     countLeadingZerosI(tmp1, src);
  9528     urShiftI_reg_imm(dst, tmp1, shiftAmount);
  9529   %}
  9530 %}
  9532 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
  9533   match(Set dst (XorI (Conv2B src) mask));
  9534   effect(TEMP crx);
  9535   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9536   ins_cost(DEFAULT_COST);
  9538   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
  9539             "LI      $dst, #1\n\t"
  9540             "BEQ     $crx, done\n\t"
  9541             "LI      $dst, #0\n"
  9542             "done:" %}
  9543   size(16);
  9544   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
  9545   ins_pipe(pipe_class_compare);
  9546 %}
  9548 // AndI 0b0..010..0 + ConvI2B
  9549 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
  9550   match(Set dst (Conv2B (AndI src mask)));
  9551   predicate(UseRotateAndMaskInstructionsPPC64);
  9552   ins_cost(DEFAULT_COST);
  9554   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
  9555   size(4);
  9556   ins_encode %{
  9557     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  9558     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
  9559   %}
  9560   ins_pipe(pipe_class_default);
  9561 %}
  9563 // Convert pointer to boolean.
  9564 //
  9565 // ptr_to_bool(src) : { 1   if src != 0
  9566 //                    { 0   else
  9567 //
  9568 // strategy:
  9569 // 1) Count leading zeros of 64 bit-value src,
  9570 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
  9571 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  9572 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  9574 // ConvP2B
  9575 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
  9576   match(Set dst (Conv2B src));
  9577   predicate(UseCountLeadingZerosInstructionsPPC64);
  9578   ins_cost(DEFAULT_COST);
  9580   expand %{
  9581     immI shiftAmount %{ 0x6 %}
  9582     uimmI16 mask %{ 0x1 %}
  9583     iRegIdst tmp1;
  9584     iRegIdst tmp2;
  9585     countLeadingZerosP(tmp1, src);
  9586     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  9587     xorI_reg_uimm16(dst, tmp2, mask);
  9588   %}
  9589 %}
  9591 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
  9592   match(Set dst (Conv2B src));
  9593   effect(TEMP crx);
  9594   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9595   ins_cost(DEFAULT_COST);
  9597   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
  9598             "LI      $dst, #0\n\t"
  9599             "BEQ     $crx, done\n\t"
  9600             "LI      $dst, #1\n"
  9601             "done:" %}
  9602   size(16);
  9603   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
  9604   ins_pipe(pipe_class_compare);
  9605 %}
  9607 // ConvP2B + XorI
  9608 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
  9609   match(Set dst (XorI (Conv2B src) mask));
  9610   predicate(UseCountLeadingZerosInstructionsPPC64);
  9611   ins_cost(DEFAULT_COST);
  9613   expand %{
  9614     immI shiftAmount %{ 0x6 %}
  9615     iRegIdst tmp1;
  9616     countLeadingZerosP(tmp1, src);
  9617     urShiftI_reg_imm(dst, tmp1, shiftAmount);
  9618   %}
  9619 %}
  9621 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
  9622   match(Set dst (XorI (Conv2B src) mask));
  9623   effect(TEMP crx);
  9624   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9625   ins_cost(DEFAULT_COST);
  9627   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
  9628             "LI      $dst, #1\n\t"
  9629             "BEQ     $crx, done\n\t"
  9630             "LI      $dst, #0\n"
  9631             "done:" %}
  9632   size(16);
  9633   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
  9634   ins_pipe(pipe_class_compare);
  9635 %}
  9637 // if src1 < src2, return -1 else return 0
  9638 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9639   match(Set dst (CmpLTMask src1 src2));
  9640   ins_cost(DEFAULT_COST*4);
  9642   expand %{
  9643     iRegLdst src1s;
  9644     iRegLdst src2s;
  9645     iRegLdst diff;
  9646     convI2L_reg(src1s, src1); // Ensure proper sign extension.
  9647     convI2L_reg(src2s, src2); // Ensure proper sign extension.
  9648     subL_reg_reg(diff, src1s, src2s);
  9649     // Need to consider >=33 bit result, therefore we need signmaskL.
  9650     signmask64I_regL(dst, diff);
  9651   %}
  9652 %}
  9654 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
  9655   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
  9656   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
  9657   size(4);
  9658   ins_encode %{
  9659     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  9660     __ srawi($dst$$Register, $src1$$Register, 0x1f);
  9661   %}
  9662   ins_pipe(pipe_class_default);
  9663 %}
  9665 //----------Arithmetic Conversion Instructions---------------------------------
  9667 // Convert to Byte  -- nop
  9668 // Convert to Short -- nop
  9670 // Convert to Int
  9672 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
  9673   match(Set dst (RShiftI (LShiftI src amount) amount));
  9674   format %{ "EXTSB   $dst, $src \t// byte->int" %}
  9675   size(4);
  9676   ins_encode %{
  9677     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  9678     __ extsb($dst$$Register, $src$$Register);
  9679   %}
  9680   ins_pipe(pipe_class_default);
  9681 %}
  9683 // LShiftI 16 + RShiftI 16 converts short to int.
  9684 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
  9685   match(Set dst (RShiftI (LShiftI src amount) amount));
  9686   format %{ "EXTSH   $dst, $src \t// short->int" %}
  9687   size(4);
  9688   ins_encode %{
  9689     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
  9690     __ extsh($dst$$Register, $src$$Register);
  9691   %}
  9692   ins_pipe(pipe_class_default);
  9693 %}
  9695 // ConvL2I + ConvI2L: Sign extend int in long register.
  9696 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
  9697   match(Set dst (ConvI2L (ConvL2I src)));
  9699   format %{ "EXTSW   $dst, $src \t// long->long" %}
  9700   size(4);
  9701   ins_encode %{
  9702     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  9703     __ extsw($dst$$Register, $src$$Register);
  9704   %}
  9705   ins_pipe(pipe_class_default);
  9706 %}
  9708 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
  9709   match(Set dst (ConvL2I src));
  9710   format %{ "MR      $dst, $src \t// long->int" %}
  9711   // variable size, 0 or 4
  9712   ins_encode %{
  9713     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9714     __ mr_if_needed($dst$$Register, $src$$Register);
  9715   %}
  9716   ins_pipe(pipe_class_default);
  9717 %}
  9719 instruct convD2IRaw_regD(regD dst, regD src) %{
  9720   // no match-rule, false predicate
  9721   effect(DEF dst, USE src);
  9722   predicate(false);
  9724   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
  9725   size(4);
  9726   ins_encode %{
  9727     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
  9728     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  9729   %}
  9730   ins_pipe(pipe_class_default);
  9731 %}
  9733 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsReg crx, stackSlotL src) %{
  9734   // no match-rule, false predicate
  9735   effect(DEF dst, USE crx, USE src);
  9736   predicate(false);
  9738   ins_variable_size_depending_on_alignment(true);
  9740   format %{ "cmovI   $crx, $dst, $src" %}
  9741   // Worst case is branch + move + stop, no stop without scheduler.
  9742   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  9743   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  9744   ins_pipe(pipe_class_default);
  9745 %}
  9747 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsReg crx, stackSlotL mem) %{
  9748   // no match-rule, false predicate
  9749   effect(DEF dst, USE crx, USE mem);
  9750   predicate(false);
  9752   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
  9753   postalloc_expand %{
  9754     //
  9755     // replaces
  9756     //
  9757     //   region  dst  crx  mem
  9758     //    \       |    |   /
  9759     //     dst=cmovI_bso_stackSlotL_conLvalue0
  9760     //
  9761     // with
  9762     //
  9763     //   region  dst
  9764     //    \       /
  9765     //     dst=loadConI16(0)
  9766     //      |
  9767     //      ^  region  dst  crx  mem
  9768     //      |   \       |    |    /
  9769     //      dst=cmovI_bso_stackSlotL
  9770     //
  9772     // Create new nodes.
  9773     MachNode *m1 = new (C) loadConI16Node();
  9774     MachNode *m2 = new (C) cmovI_bso_stackSlotLNode();
  9776     // inputs for new nodes
  9777     m1->add_req(n_region);
  9778     m2->add_req(n_region, n_crx, n_mem);
  9780     // precedences for new nodes
  9781     m2->add_prec(m1);
  9783     // operands for new nodes
  9784     m1->_opnds[0] = op_dst;
  9785     m1->_opnds[1] = new (C) immI16Oper(0);
  9787     m2->_opnds[0] = op_dst;
  9788     m2->_opnds[1] = op_crx;
  9789     m2->_opnds[2] = op_mem;
  9791     // registers for new nodes
  9792     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9793     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9795     // Insert new nodes.
  9796     nodes->push(m1);
  9797     nodes->push(m2);
  9798   %}
  9799 %}
  9801 // Double to Int conversion, NaN is mapped to 0.
  9802 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
  9803   match(Set dst (ConvD2I src));
  9804   ins_cost(DEFAULT_COST);
  9806   expand %{
  9807     regD tmpD;
  9808     stackSlotL tmpS;
  9809     flagsReg crx;
  9810     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9811     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
  9812     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
  9813     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9814   %}
  9815 %}
  9817 instruct convF2IRaw_regF(regF dst, regF src) %{
  9818   // no match-rule, false predicate
  9819   effect(DEF dst, USE src);
  9820   predicate(false);
  9822   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
  9823   size(4);
  9824   ins_encode %{
  9825     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9826     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  9827   %}
  9828   ins_pipe(pipe_class_default);
  9829 %}
  9831 // Float to Int conversion, NaN is mapped to 0.
  9832 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
  9833   match(Set dst (ConvF2I src));
  9834   ins_cost(DEFAULT_COST);
  9836   expand %{
  9837     regF tmpF;
  9838     stackSlotL tmpS;
  9839     flagsReg crx;
  9840     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9841     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
  9842     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  9843     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9844   %}
  9845 %}
  9847 // Convert to Long
  9849 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
  9850   match(Set dst (ConvI2L src));
  9851   format %{ "EXTSW   $dst, $src \t// int->long" %}
  9852   size(4);
  9853   ins_encode %{
  9854     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  9855     __ extsw($dst$$Register, $src$$Register);
  9856   %}
  9857   ins_pipe(pipe_class_default);
  9858 %}
  9860 // Zero-extend: convert unsigned int to long (convUI2L).
  9861 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
  9862   match(Set dst (AndL (ConvI2L src) mask));
  9863   ins_cost(DEFAULT_COST);
  9865   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  9866   size(4);
  9867   ins_encode %{
  9868     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  9869     __ clrldi($dst$$Register, $src$$Register, 32);
  9870   %}
  9871   ins_pipe(pipe_class_default);
  9872 %}
  9874 // Zero-extend: convert unsigned int to long in long register.
  9875 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
  9876   match(Set dst (AndL src mask));
  9877   ins_cost(DEFAULT_COST);
  9879   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  9880   size(4);
  9881   ins_encode %{
  9882     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  9883     __ clrldi($dst$$Register, $src$$Register, 32);
  9884   %}
  9885   ins_pipe(pipe_class_default);
  9886 %}
  9888 instruct convF2LRaw_regF(regF dst, regF src) %{
  9889   // no match-rule, false predicate
  9890   effect(DEF dst, USE src);
  9891   predicate(false);
  9893   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
  9894   size(4);
  9895   ins_encode %{
  9896     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9897     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  9898   %}
  9899   ins_pipe(pipe_class_default);
  9900 %}
  9902 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL src) %{
  9903   // no match-rule, false predicate
  9904   effect(DEF dst, USE crx, USE src);
  9905   predicate(false);
  9907   ins_variable_size_depending_on_alignment(true);
  9909   format %{ "cmovL   $crx, $dst, $src" %}
  9910   // Worst case is branch + move + stop, no stop without scheduler.
  9911   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  9912   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  9913   ins_pipe(pipe_class_default);
  9914 %}
  9916 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsReg crx, stackSlotL mem) %{
  9917   // no match-rule, false predicate
  9918   effect(DEF dst, USE crx, USE mem);
  9919   predicate(false);
  9921   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
  9922   postalloc_expand %{
  9923     //
  9924     // replaces
  9925     //
  9926     //   region  dst  crx  mem
  9927     //    \       |    |   /
  9928     //     dst=cmovL_bso_stackSlotL_conLvalue0
  9929     //
  9930     // with
  9931     //
  9932     //   region  dst
  9933     //    \       /
  9934     //     dst=loadConL16(0)
  9935     //      |
  9936     //      ^  region  dst  crx  mem
  9937     //      |   \       |    |    /
  9938     //      dst=cmovL_bso_stackSlotL
  9939     //
  9941     // Create new nodes.
  9942     MachNode *m1 = new (C) loadConL16Node();
  9943     MachNode *m2 = new (C) cmovL_bso_stackSlotLNode();
  9945     // inputs for new nodes
  9946     m1->add_req(n_region);
  9947     m2->add_req(n_region, n_crx, n_mem);
  9948     m2->add_prec(m1);
  9950     // operands for new nodes
  9951     m1->_opnds[0] = op_dst;
  9952     m1->_opnds[1] = new (C) immL16Oper(0);
  9953     m2->_opnds[0] = op_dst;
  9954     m2->_opnds[1] = op_crx;
  9955     m2->_opnds[2] = op_mem;
  9957     // registers for new nodes
  9958     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9959     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9961     // Insert new nodes.
  9962     nodes->push(m1);
  9963     nodes->push(m2);
  9964   %}
  9965 %}
  9967 // Float to Long conversion, NaN is mapped to 0.
  9968 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
  9969   match(Set dst (ConvF2L src));
  9970   ins_cost(DEFAULT_COST);
  9972   expand %{
  9973     regF tmpF;
  9974     stackSlotL tmpS;
  9975     flagsReg crx;
  9976     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9977     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
  9978     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  9979     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9980   %}
  9981 %}
  9983 instruct convD2LRaw_regD(regD dst, regD src) %{
  9984   // no match-rule, false predicate
  9985   effect(DEF dst, USE src);
  9986   predicate(false);
  9988   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
  9989   size(4);
  9990   ins_encode %{
  9991     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9992     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  9993   %}
  9994   ins_pipe(pipe_class_default);
  9995 %}
  9997 // Double to Long conversion, NaN is mapped to 0.
  9998 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
  9999   match(Set dst (ConvD2L src));
 10000   ins_cost(DEFAULT_COST);
 10002   expand %{
 10003     regD tmpD;
 10004     stackSlotL tmpS;
 10005     flagsReg crx;
 10006     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
 10007     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
 10008     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
 10009     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
 10010   %}
 10011 %}
 10013 // Convert to Float
 10015 // Placed here as needed in expand.
 10016 instruct convL2DRaw_regD(regD dst, regD src) %{
 10017   // no match-rule, false predicate
 10018   effect(DEF dst, USE src);
 10019   predicate(false);
 10021   format %{ "FCFID $dst, $src \t// convL2D" %}
 10022   size(4);
 10023   ins_encode %{
 10024     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 10025     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
 10026   %}
 10027   ins_pipe(pipe_class_default);
 10028 %}
 10030 // Placed here as needed in expand.
 10031 instruct convD2F_reg(regF dst, regD src) %{
 10032   match(Set dst (ConvD2F src));
 10033   format %{ "FRSP    $dst, $src \t// convD2F" %}
 10034   size(4);
 10035   ins_encode %{
 10036     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
 10037     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
 10038   %}
 10039   ins_pipe(pipe_class_default);
 10040 %}
 10042 // Integer to Float conversion.
 10043 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
 10044   match(Set dst (ConvI2F src));
 10045   predicate(!VM_Version::has_fcfids());
 10046   ins_cost(DEFAULT_COST);
 10048   expand %{
 10049     iRegLdst tmpL;
 10050     stackSlotL tmpS;
 10051     regD tmpD;
 10052     regD tmpD2;
 10053     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10054     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10055     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10056     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
 10057     convD2F_reg(dst, tmpD2);             // Convert double to float.
 10058   %}
 10059 %}
 10061 instruct convL2FRaw_regF(regF dst, regD src) %{
 10062   // no match-rule, false predicate
 10063   effect(DEF dst, USE src);
 10064   predicate(false);
 10066   format %{ "FCFIDS $dst, $src \t// convL2F" %}
 10067   size(4);
 10068   ins_encode %{
 10069     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 10070     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
 10071   %}
 10072   ins_pipe(pipe_class_default);
 10073 %}
 10075 // Integer to Float conversion. Special version for Power7.
 10076 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
 10077   match(Set dst (ConvI2F src));
 10078   predicate(VM_Version::has_fcfids());
 10079   ins_cost(DEFAULT_COST);
 10081   expand %{
 10082     iRegLdst tmpL;
 10083     stackSlotL tmpS;
 10084     regD tmpD;
 10085     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10086     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10087     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10088     convL2FRaw_regF(dst, tmpD);          // Convert to float.
 10089   %}
 10090 %}
 10092 // L2F to avoid runtime call.
 10093 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
 10094   match(Set dst (ConvL2F src));
 10095   predicate(VM_Version::has_fcfids());
 10096   ins_cost(DEFAULT_COST);
 10098   expand %{
 10099     stackSlotL tmpS;
 10100     regD tmpD;
 10101     regL_to_stkL(tmpS, src);             // Store long to stack.
 10102     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10103     convL2FRaw_regF(dst, tmpD);          // Convert to float.
 10104   %}
 10105 %}
 10107 // Moved up as used in expand.
 10108 //instruct convD2F_reg(regF dst, regD src) %{%}
 10110 // Convert to Double
 10112 // Integer to Double conversion.
 10113 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
 10114   match(Set dst (ConvI2D src));
 10115   ins_cost(DEFAULT_COST);
 10117   expand %{
 10118     iRegLdst tmpL;
 10119     stackSlotL tmpS;
 10120     regD tmpD;
 10121     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10122     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10123     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10124     convL2DRaw_regD(dst, tmpD);          // Convert to double.
 10125   %}
 10126 %}
 10128 // Long to Double conversion
 10129 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
 10130   match(Set dst (ConvL2D src));
 10131   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10133   expand %{
 10134     regD tmpD;
 10135     moveL2D_stack_reg(tmpD, src);
 10136     convL2DRaw_regD(dst, tmpD);
 10137   %}
 10138 %}
 10140 instruct convF2D_reg(regD dst, regF src) %{
 10141   match(Set dst (ConvF2D src));
 10142   format %{ "FMR     $dst, $src \t// float->double" %}
 10143   // variable size, 0 or 4
 10144   ins_encode %{
 10145     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 10146     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
 10147   %}
 10148   ins_pipe(pipe_class_default);
 10149 %}
 10151 //----------Control Flow Instructions------------------------------------------
 10152 // Compare Instructions
 10154 // Compare Integers
 10155 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 10156   match(Set crx (CmpI src1 src2));
 10157   size(4);
 10158   format %{ "CMPW    $crx, $src1, $src2" %}
 10159   ins_encode %{
 10160     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 10161     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10162   %}
 10163   ins_pipe(pipe_class_compare);
 10164 %}
 10166 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
 10167   match(Set crx (CmpI src1 src2));
 10168   format %{ "CMPWI   $crx, $src1, $src2" %}
 10169   size(4);
 10170   ins_encode %{
 10171     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10172     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10173   %}
 10174   ins_pipe(pipe_class_compare);
 10175 %}
 10177 // (src1 & src2) == 0?
 10178 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
 10179   match(Set cr0 (CmpI (AndI src1 src2) zero));
 10180   // r0 is killed
 10181   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
 10182   size(4);
 10183   ins_encode %{
 10184     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 10185     // FIXME: avoid andi_ ?
 10186     __ andi_(R0, $src1$$Register, $src2$$constant);
 10187   %}
 10188   ins_pipe(pipe_class_compare);
 10189 %}
 10191 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
 10192   match(Set crx (CmpL src1 src2));
 10193   format %{ "CMPD    $crx, $src1, $src2" %}
 10194   size(4);
 10195   ins_encode %{
 10196     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 10197     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10198   %}
 10199   ins_pipe(pipe_class_compare);
 10200 %}
 10202 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
 10203   match(Set crx (CmpL src1 src2));
 10204   format %{ "CMPDI   $crx, $src1, $src2" %}
 10205   size(4);
 10206   ins_encode %{
 10207     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10208     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10209   %}
 10210   ins_pipe(pipe_class_compare);
 10211 %}
 10213 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
 10214   match(Set cr0 (CmpL (AndL src1 src2) zero));
 10215   // r0 is killed
 10216   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
 10217   size(4);
 10218   ins_encode %{
 10219     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
 10220     __ and_(R0, $src1$$Register, $src2$$Register);
 10221   %}
 10222   ins_pipe(pipe_class_compare);
 10223 %}
 10225 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
 10226   match(Set cr0 (CmpL (AndL src1 src2) zero));
 10227   // r0 is killed
 10228   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
 10229   size(4);
 10230   ins_encode %{
 10231     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 10232     // FIXME: avoid andi_ ?
 10233     __ andi_(R0, $src1$$Register, $src2$$constant);
 10234   %}
 10235   ins_pipe(pipe_class_compare);
 10236 %}
 10238 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsReg crx) %{
 10239   // no match-rule, false predicate
 10240   effect(DEF dst, USE crx);
 10241   predicate(false);
 10243   ins_variable_size_depending_on_alignment(true);
 10245   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
 10246   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
 10247   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
 10248   ins_encode %{
 10249     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
 10250     Label done;
 10251     // li(Rdst, 0);              // equal -> 0
 10252     __ beq($crx$$CondRegister, done);
 10253     __ li($dst$$Register, 1);    // greater -> +1
 10254     __ bgt($crx$$CondRegister, done);
 10255     __ li($dst$$Register, -1);   // unordered or less -> -1
 10256     // TODO: PPC port__ endgroup_if_needed(_size == 20);
 10257     __ bind(done);
 10258   %}
 10259   ins_pipe(pipe_class_compare);
 10260 %}
 10262 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsReg crx) %{
 10263   // no match-rule, false predicate
 10264   effect(DEF dst, USE crx);
 10265   predicate(false);
 10267   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
 10268   postalloc_expand %{
 10269     //
 10270     // replaces
 10271     //
 10272     //   region  crx
 10273     //    \       |
 10274     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
 10275     //
 10276     // with
 10277     //
 10278     //   region
 10279     //    \
 10280     //     dst=loadConI16(0)
 10281     //      |
 10282     //      ^  region  crx
 10283     //      |   \       |
 10284     //      dst=cmovI_conIvalueMinus1_conIvalue1
 10285     //
 10287     // Create new nodes.
 10288     MachNode *m1 = new (C) loadConI16Node();
 10289     MachNode *m2 = new (C) cmovI_conIvalueMinus1_conIvalue1Node();
 10291     // inputs for new nodes
 10292     m1->add_req(n_region);
 10293     m2->add_req(n_region, n_crx);
 10294     m2->add_prec(m1);
 10296     // operands for new nodes
 10297     m1->_opnds[0] = op_dst;
 10298     m1->_opnds[1] = new (C) immI16Oper(0);
 10299     m2->_opnds[0] = op_dst;
 10300     m2->_opnds[1] = op_crx;
 10302     // registers for new nodes
 10303     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 10304     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 10306     // Insert new nodes.
 10307     nodes->push(m1);
 10308     nodes->push(m2);
 10309   %}
 10310 %}
 10312 // Manifest a CmpL3 result in an integer register. Very painful.
 10313 // This is the test to avoid.
 10314 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 10315 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
 10316   match(Set dst (CmpL3 src1 src2));
 10317   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10319   expand %{
 10320     flagsReg tmp1;
 10321     cmpL_reg_reg(tmp1, src1, src2);
 10322     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10323   %}
 10324 %}
 10326 // Implicit range checks.
 10327 // A range check in the ideal world has one of the following shapes:
 10328 //  - (If le (CmpU length index)), (IfTrue  throw exception)
 10329 //  - (If lt (CmpU index length)), (IfFalse throw exception)
 10330 //
 10331 // Match range check 'If le (CmpU length index)'.
 10332 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
 10333   match(If cmp (CmpU src_length index));
 10334   effect(USE labl);
 10335   predicate(TrapBasedRangeChecks &&
 10336             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
 10337             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
 10338             (Matcher::branches_to_uncommon_trap(_leaf)));
 10340   ins_is_TrapBasedCheckNode(true);
 10342   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
 10343   size(4);
 10344   ins_encode %{
 10345     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 10346     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
 10347       __ trap_range_check_le($src_length$$Register, $index$$constant);
 10348     } else {
 10349       // Both successors are uncommon traps, probability is 0.
 10350       // Node got flipped during fixup flow.
 10351       assert($cmp$$cmpcode == 0x9, "must be greater");
 10352       __ trap_range_check_g($src_length$$Register, $index$$constant);
 10354   %}
 10355   ins_pipe(pipe_class_trap);
 10356 %}
 10358 // Match range check 'If lt (CmpU index length)'.
 10359 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
 10360   match(If cmp (CmpU src_index src_length));
 10361   effect(USE labl);
 10362   predicate(TrapBasedRangeChecks &&
 10363             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 10364             _leaf->as_If()->_prob >= PROB_ALWAYS &&
 10365             (Matcher::branches_to_uncommon_trap(_leaf)));
 10367   ins_is_TrapBasedCheckNode(true);
 10369   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
 10370   size(4);
 10371   ins_encode %{
 10372     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
 10373     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 10374       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
 10375     } else {
 10376       // Both successors are uncommon traps, probability is 0.
 10377       // Node got flipped during fixup flow.
 10378       assert($cmp$$cmpcode == 0x8, "must be less");
 10379       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
 10381   %}
 10382   ins_pipe(pipe_class_trap);
 10383 %}
 10385 // Match range check 'If lt (CmpU index length)'.
 10386 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
 10387   match(If cmp (CmpU src_index length));
 10388   effect(USE labl);
 10389   predicate(TrapBasedRangeChecks &&
 10390             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 10391             _leaf->as_If()->_prob >= PROB_ALWAYS &&
 10392             (Matcher::branches_to_uncommon_trap(_leaf)));
 10394   ins_is_TrapBasedCheckNode(true);
 10396   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
 10397   size(4);
 10398   ins_encode %{
 10399     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 10400     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 10401       __ trap_range_check_ge($src_index$$Register, $length$$constant);
 10402     } else {
 10403       // Both successors are uncommon traps, probability is 0.
 10404       // Node got flipped during fixup flow.
 10405       assert($cmp$$cmpcode == 0x8, "must be less");
 10406       __ trap_range_check_l($src_index$$Register, $length$$constant);
 10408   %}
 10409   ins_pipe(pipe_class_trap);
 10410 %}
 10412 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 10413   match(Set crx (CmpU src1 src2));
 10414   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
 10415   size(4);
 10416   ins_encode %{
 10417     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10418     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10419   %}
 10420   ins_pipe(pipe_class_compare);
 10421 %}
 10423 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
 10424   match(Set crx (CmpU src1 src2));
 10425   size(4);
 10426   format %{ "CMPLWI  $crx, $src1, $src2" %}
 10427   ins_encode %{
 10428     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 10429     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10430   %}
 10431   ins_pipe(pipe_class_compare);
 10432 %}
 10434 // Implicit zero checks (more implicit null checks).
 10435 // No constant pool entries required.
 10436 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
 10437   match(If cmp (CmpN value zero));
 10438   effect(USE labl);
 10439   predicate(TrapBasedNullChecks &&
 10440             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 10441             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 10442             Matcher::branches_to_uncommon_trap(_leaf));
 10443   ins_cost(1);
 10445   ins_is_TrapBasedCheckNode(true);
 10447   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
 10448   size(4);
 10449   ins_encode %{
 10450     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 10451     if ($cmp$$cmpcode == 0xA) {
 10452       __ trap_null_check($value$$Register);
 10453     } else {
 10454       // Both successors are uncommon traps, probability is 0.
 10455       // Node got flipped during fixup flow.
 10456       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 10457       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 10459   %}
 10460   ins_pipe(pipe_class_trap);
 10461 %}
 10463 // Compare narrow oops.
 10464 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
 10465   match(Set crx (CmpN src1 src2));
 10467   size(4);
 10468   ins_cost(DEFAULT_COST);
 10469   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
 10470   ins_encode %{
 10471     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10472     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10473   %}
 10474   ins_pipe(pipe_class_compare);
 10475 %}
 10477 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
 10478   match(Set crx (CmpN src1 src2));
 10479   // Make this more expensive than zeroCheckN_iReg_imm0.
 10480   ins_cost(DEFAULT_COST);
 10482   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
 10483   size(4);
 10484   ins_encode %{
 10485     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 10486     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10487   %}
 10488   ins_pipe(pipe_class_compare);
 10489 %}
 10491 // Implicit zero checks (more implicit null checks).
 10492 // No constant pool entries required.
 10493 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
 10494   match(If cmp (CmpP value zero));
 10495   effect(USE labl);
 10496   predicate(TrapBasedNullChecks &&
 10497             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 10498             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 10499             Matcher::branches_to_uncommon_trap(_leaf));
 10501   ins_is_TrapBasedCheckNode(true);
 10503   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
 10504   size(4);
 10505   ins_encode %{
 10506     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 10507     if ($cmp$$cmpcode == 0xA) {
 10508       __ trap_null_check($value$$Register);
 10509     } else {
 10510       // Both successors are uncommon traps, probability is 0.
 10511       // Node got flipped during fixup flow.
 10512       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 10513       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 10515   %}
 10516   ins_pipe(pipe_class_trap);
 10517 %}
 10519 // Compare Pointers
 10520 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
 10521   match(Set crx (CmpP src1 src2));
 10522   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
 10523   size(4);
 10524   ins_encode %{
 10525     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10526     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10527   %}
 10528   ins_pipe(pipe_class_compare);
 10529 %}
 10531 // Used in postalloc expand.
 10532 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
 10533   // This match rule prevents reordering of node before a safepoint.
 10534   // This only makes sense if this instructions is used exclusively
 10535   // for the expansion of EncodeP!
 10536   match(Set crx (CmpP src1 src2));
 10537   predicate(false);
 10539   format %{ "CMPDI   $crx, $src1, $src2" %}
 10540   size(4);
 10541   ins_encode %{
 10542     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10543     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10544   %}
 10545   ins_pipe(pipe_class_compare);
 10546 %}
 10548 //----------Float Compares----------------------------------------------------
 10550 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
 10551   // no match-rule, false predicate
 10552   effect(DEF crx, USE src1, USE src2);
 10553   predicate(false);
 10555   format %{ "cmpFUrd $crx, $src1, $src2" %}
 10556   size(4);
 10557   ins_encode %{
 10558     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 10559     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 10560   %}
 10561   ins_pipe(pipe_class_default);
 10562 %}
 10564 instruct cmov_bns_less(flagsReg crx) %{
 10565   // no match-rule, false predicate
 10566   effect(DEF crx);
 10567   predicate(false);
 10569   ins_variable_size_depending_on_alignment(true);
 10571   format %{ "cmov    $crx" %}
 10572   // Worst case is branch + move + stop, no stop without scheduler.
 10573   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
 10574   ins_encode %{
 10575     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
 10576     Label done;
 10577     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
 10578     __ li(R0, 0);
 10579     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
 10580     // TODO PPC port __ endgroup_if_needed(_size == 16);
 10581     __ bind(done);
 10582   %}
 10583   ins_pipe(pipe_class_default);
 10584 %}
 10586 // Compare floating, generate condition code.
 10587 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
 10588   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
 10589   //
 10590   // The following code sequence occurs a lot in mpegaudio:
 10591   //
 10592   // block BXX:
 10593   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
 10594   //    cmpFUrd CCR6, F11, F9
 10595   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
 10596   //    cmov CCR6
 10597   // 8: instruct branchConSched:
 10598   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
 10599   match(Set crx (CmpF src1 src2));
 10600   ins_cost(DEFAULT_COST+BRANCH_COST);
 10602   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
 10603   postalloc_expand %{
 10604     //
 10605     // replaces
 10606     //
 10607     //   region  src1  src2
 10608     //    \       |     |
 10609     //     crx=cmpF_reg_reg
 10610     //
 10611     // with
 10612     //
 10613     //   region  src1  src2
 10614     //    \       |     |
 10615     //     crx=cmpFUnordered_reg_reg
 10616     //      |
 10617     //      ^  region
 10618     //      |   \
 10619     //      crx=cmov_bns_less
 10620     //
 10622     // Create new nodes.
 10623     MachNode *m1 = new (C) cmpFUnordered_reg_regNode();
 10624     MachNode *m2 = new (C) cmov_bns_lessNode();
 10626     // inputs for new nodes
 10627     m1->add_req(n_region, n_src1, n_src2);
 10628     m2->add_req(n_region);
 10629     m2->add_prec(m1);
 10631     // operands for new nodes
 10632     m1->_opnds[0] = op_crx;
 10633     m1->_opnds[1] = op_src1;
 10634     m1->_opnds[2] = op_src2;
 10635     m2->_opnds[0] = op_crx;
 10637     // registers for new nodes
 10638     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10639     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10641     // Insert new nodes.
 10642     nodes->push(m1);
 10643     nodes->push(m2);
 10644   %}
 10645 %}
 10647 // Compare float, generate -1,0,1
 10648 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
 10649   match(Set dst (CmpF3 src1 src2));
 10650   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10652   expand %{
 10653     flagsReg tmp1;
 10654     cmpFUnordered_reg_reg(tmp1, src1, src2);
 10655     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10656   %}
 10657 %}
 10659 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
 10660   // no match-rule, false predicate
 10661   effect(DEF crx, USE src1, USE src2);
 10662   predicate(false);
 10664   format %{ "cmpFUrd $crx, $src1, $src2" %}
 10665   size(4);
 10666   ins_encode %{
 10667     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 10668     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 10669   %}
 10670   ins_pipe(pipe_class_default);
 10671 %}
 10673 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
 10674   match(Set crx (CmpD src1 src2));
 10675   ins_cost(DEFAULT_COST+BRANCH_COST);
 10677   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
 10678   postalloc_expand %{
 10679     //
 10680     // replaces
 10681     //
 10682     //   region  src1  src2
 10683     //    \       |     |
 10684     //     crx=cmpD_reg_reg
 10685     //
 10686     // with
 10687     //
 10688     //   region  src1  src2
 10689     //    \       |     |
 10690     //     crx=cmpDUnordered_reg_reg
 10691     //      |
 10692     //      ^  region
 10693     //      |   \
 10694     //      crx=cmov_bns_less
 10695     //
 10697     // create new nodes
 10698     MachNode *m1 = new (C) cmpDUnordered_reg_regNode();
 10699     MachNode *m2 = new (C) cmov_bns_lessNode();
 10701     // inputs for new nodes
 10702     m1->add_req(n_region, n_src1, n_src2);
 10703     m2->add_req(n_region);
 10704     m2->add_prec(m1);
 10706     // operands for new nodes
 10707     m1->_opnds[0] = op_crx;
 10708     m1->_opnds[1] = op_src1;
 10709     m1->_opnds[2] = op_src2;
 10710     m2->_opnds[0] = op_crx;
 10712     // registers for new nodes
 10713     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10714     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10716     // Insert new nodes.
 10717     nodes->push(m1);
 10718     nodes->push(m2);
 10719   %}
 10720 %}
 10722 // Compare double, generate -1,0,1
 10723 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
 10724   match(Set dst (CmpD3 src1 src2));
 10725   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10727   expand %{
 10728     flagsReg tmp1;
 10729     cmpDUnordered_reg_reg(tmp1, src1, src2);
 10730     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10731   %}
 10732 %}
 10734 //----------Branches---------------------------------------------------------
 10735 // Jump
 10737 // Direct Branch.
 10738 instruct branch(label labl) %{
 10739   match(Goto);
 10740   effect(USE labl);
 10741   ins_cost(BRANCH_COST);
 10743   format %{ "B       $labl" %}
 10744   size(4);
 10745   ins_encode %{
 10746     // TODO: PPC port $archOpcode(ppc64Opcode_b);
 10747      Label d;    // dummy
 10748      __ bind(d);
 10749      Label* p = $labl$$label;
 10750      // `p' is `NULL' when this encoding class is used only to
 10751      // determine the size of the encoded instruction.
 10752      Label& l = (NULL == p)? d : *(p);
 10753      __ b(l);
 10754   %}
 10755   ins_pipe(pipe_class_default);
 10756 %}
 10758 // Conditional Near Branch
 10759 instruct branchCon(cmpOp cmp, flagsReg crx, label lbl) %{
 10760   // Same match rule as `branchConFar'.
 10761   match(If cmp crx);
 10762   effect(USE lbl);
 10763   ins_cost(BRANCH_COST);
 10765   // If set to 1 this indicates that the current instruction is a
 10766   // short variant of a long branch. This avoids using this
 10767   // instruction in first-pass matching. It will then only be used in
 10768   // the `Shorten_branches' pass.
 10769   ins_short_branch(1);
 10771   format %{ "B$cmp     $crx, $lbl" %}
 10772   size(4);
 10773   ins_encode( enc_bc(crx, cmp, lbl) );
 10774   ins_pipe(pipe_class_default);
 10775 %}
 10777 // This is for cases when the ppc64 `bc' instruction does not
 10778 // reach far enough. So we emit a far branch here, which is more
 10779 // expensive.
 10780 //
 10781 // Conditional Far Branch
 10782 instruct branchConFar(cmpOp cmp, flagsReg crx, label lbl) %{
 10783   // Same match rule as `branchCon'.
 10784   match(If cmp crx);
 10785   effect(USE crx, USE lbl);
 10786   predicate(!false /* TODO: PPC port HB_Schedule*/);
 10787   // Higher cost than `branchCon'.
 10788   ins_cost(5*BRANCH_COST);
 10790   // This is not a short variant of a branch, but the long variant.
 10791   ins_short_branch(0);
 10793   format %{ "B_FAR$cmp $crx, $lbl" %}
 10794   size(8);
 10795   ins_encode( enc_bc_far(crx, cmp, lbl) );
 10796   ins_pipe(pipe_class_default);
 10797 %}
 10799 // Conditional Branch used with Power6 scheduler (can be far or short).
 10800 instruct branchConSched(cmpOp cmp, flagsReg crx, label lbl) %{
 10801   // Same match rule as `branchCon'.
 10802   match(If cmp crx);
 10803   effect(USE crx, USE lbl);
 10804   predicate(false /* TODO: PPC port HB_Schedule*/);
 10805   // Higher cost than `branchCon'.
 10806   ins_cost(5*BRANCH_COST);
 10808   // Actually size doesn't depend on alignment but on shortening.
 10809   ins_variable_size_depending_on_alignment(true);
 10810   // long variant.
 10811   ins_short_branch(0);
 10813   format %{ "B_FAR$cmp $crx, $lbl" %}
 10814   size(8); // worst case
 10815   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
 10816   ins_pipe(pipe_class_default);
 10817 %}
 10819 instruct branchLoopEnd(cmpOp cmp, flagsReg crx, label labl) %{
 10820   match(CountedLoopEnd cmp crx);
 10821   effect(USE labl);
 10822   ins_cost(BRANCH_COST);
 10824   // short variant.
 10825   ins_short_branch(1);
 10827   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
 10828   size(4);
 10829   ins_encode( enc_bc(crx, cmp, labl) );
 10830   ins_pipe(pipe_class_default);
 10831 %}
 10833 instruct branchLoopEndFar(cmpOp cmp, flagsReg crx, label labl) %{
 10834   match(CountedLoopEnd cmp crx);
 10835   effect(USE labl);
 10836   predicate(!false /* TODO: PPC port HB_Schedule */);
 10837   ins_cost(BRANCH_COST);
 10839   // Long variant.
 10840   ins_short_branch(0);
 10842   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 10843   size(8);
 10844   ins_encode( enc_bc_far(crx, cmp, labl) );
 10845   ins_pipe(pipe_class_default);
 10846 %}
 10848 // Conditional Branch used with Power6 scheduler (can be far or short).
 10849 instruct branchLoopEndSched(cmpOp cmp, flagsReg crx, label labl) %{
 10850   match(CountedLoopEnd cmp crx);
 10851   effect(USE labl);
 10852   predicate(false /* TODO: PPC port HB_Schedule */);
 10853   // Higher cost than `branchCon'.
 10854   ins_cost(5*BRANCH_COST);
 10856   // Actually size doesn't depend on alignment but on shortening.
 10857   ins_variable_size_depending_on_alignment(true);
 10858   // Long variant.
 10859   ins_short_branch(0);
 10861   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 10862   size(8); // worst case
 10863   ins_encode( enc_bc_short_far(crx, cmp, labl) );
 10864   ins_pipe(pipe_class_default);
 10865 %}
 10867 // ============================================================================
 10868 // Java runtime operations, intrinsics and other complex operations.
 10870 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
 10871 // array for an instance of the superklass. Set a hidden internal cache on a
 10872 // hit (cache is checked with exposed code in gen_subtype_check()). Return
 10873 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
 10874 //
 10875 // GL TODO: Improve this.
 10876 // - result should not be a TEMP
 10877 // - Add match rule as on sparc avoiding additional Cmp.
 10878 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
 10879                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
 10880   match(Set result (PartialSubtypeCheck subklass superklass));
 10881   effect(TEMP result, TEMP tmp_klass, TEMP tmp_arrayptr);
 10882   ins_cost(DEFAULT_COST*10);
 10884   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
 10885   ins_encode %{
 10886     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10887     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register,
 10888                                      $tmp_klass$$Register, NULL, $result$$Register);
 10889   %}
 10890   ins_pipe(pipe_class_default);
 10891 %}
 10893 // inlined locking and unlocking
 10895 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 10896   match(Set crx (FastLock oop box));
 10897   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 10898   // TODO PPC port predicate(!UseNewFastLockPPC64 || UseBiasedLocking);
 10900   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
 10901   ins_encode %{
 10902     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10903     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 10904                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 10905     // If locking was successfull, crx should indicate 'EQ'.
 10906     // The compiler generates a branch to the runtime call to
 10907     // _complete_monitor_locking_Java for the case where crx is 'NE'.
 10908   %}
 10909   ins_pipe(pipe_class_compare);
 10910 %}
 10912 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 10913   match(Set crx (FastUnlock oop box));
 10914   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 10916   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
 10917   ins_encode %{
 10918     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10919     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 10920                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 10921     // If unlocking was successfull, crx should indicate 'EQ'.
 10922     // The compiler generates a branch to the runtime call to
 10923     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
 10924   %}
 10925   ins_pipe(pipe_class_compare);
 10926 %}
 10928 // Align address.
 10929 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
 10930   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
 10932   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
 10933   size(4);
 10934   ins_encode %{
 10935     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
 10936     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
 10937   %}
 10938   ins_pipe(pipe_class_default);
 10939 %}
 10941 // Array size computation.
 10942 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
 10943   match(Set dst (SubL (CastP2X end) (CastP2X start)));
 10945   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
 10946   size(4);
 10947   ins_encode %{
 10948     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
 10949     __ subf($dst$$Register, $start$$Register, $end$$Register);
 10950   %}
 10951   ins_pipe(pipe_class_default);
 10952 %}
 10954 // Clear-array with dynamic array-size.
 10955 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
 10956   match(Set dummy (ClearArray cnt base));
 10957   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
 10958   ins_cost(MEMORY_REF_COST);
 10960   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 10962   format %{ "ClearArray $cnt, $base" %}
 10963   ins_encode %{
 10964     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10965     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
 10966   %}
 10967   ins_pipe(pipe_class_default);
 10968 %}
 10970 // String_IndexOf for needle of length 1.
 10971 //
 10972 // Match needle into immediate operands: no loadConP node needed. Saves one
 10973 // register and two instructions over string_indexOf_imm1Node.
 10974 //
 10975 // Assumes register result differs from all input registers.
 10976 //
 10977 // Preserves registers haystack, haycnt
 10978 // Kills     registers tmp1, tmp2
 10979 // Defines   registers result
 10980 //
 10981 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 10982 //
 10983 // Unfortunately this does not match too often. In many situations the AddP is used
 10984 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
 10985 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 10986                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
 10987                                   iRegIdst tmp1, iRegIdst tmp2,
 10988                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 10989   predicate(SpecialStringIndexOf);  // type check implicit by parameter type, See Matcher::match_rule_supported
 10990   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
 10992   effect(TEMP result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
 10994   ins_cost(150);
 10995   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
 10996             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
 10998   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
 10999   ins_encode %{
 11000     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11001     immPOper *needleOper = (immPOper *)$needleImm;
 11002     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
 11003     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
 11005     __ string_indexof_1($result$$Register,
 11006                         $haystack$$Register, $haycnt$$Register,
 11007                         R0, needle_values->char_at(0),
 11008                         $tmp1$$Register, $tmp2$$Register);
 11009   %}
 11010   ins_pipe(pipe_class_compare);
 11011 %}
 11013 // String_IndexOf for needle of length 1.
 11014 //
 11015 // Special case requires less registers and emits less instructions.
 11016 //
 11017 // Assumes register result differs from all input registers.
 11018 //
 11019 // Preserves registers haystack, haycnt
 11020 // Kills     registers tmp1, tmp2, needle
 11021 // Defines   registers result
 11022 //
 11023 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11024 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 11025                              rscratch2RegP needle, immI_1 needlecntImm,
 11026                              iRegIdst tmp1, iRegIdst tmp2,
 11027                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 11028   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 11029   effect(USE_KILL needle, /* TDEF needle, */ TEMP result,
 11030          TEMP tmp1, TEMP tmp2);
 11031   // Required for EA: check if it is still a type_array.
 11032   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 11033             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 11034   ins_cost(180);
 11036   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11038   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 11039             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
 11040   ins_encode %{
 11041     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11042     Node *ndl = in(operand_index($needle));  // The node that defines needle.
 11043     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 11044     guarantee(needle_values, "sanity");
 11045     if (needle_values != NULL) {
 11046       __ string_indexof_1($result$$Register,
 11047                           $haystack$$Register, $haycnt$$Register,
 11048                           R0, needle_values->char_at(0),
 11049                           $tmp1$$Register, $tmp2$$Register);
 11050     } else {
 11051       __ string_indexof_1($result$$Register,
 11052                           $haystack$$Register, $haycnt$$Register,
 11053                           $needle$$Register, 0,
 11054                           $tmp1$$Register, $tmp2$$Register);
 11056   %}
 11057   ins_pipe(pipe_class_compare);
 11058 %}
 11060 // String_IndexOf.
 11061 //
 11062 // Length of needle as immediate. This saves instruction loading constant needle
 11063 // length.
 11064 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
 11065 // completely or do it in vector instruction. This should save registers for
 11066 // needlecnt and needle.
 11067 //
 11068 // Assumes register result differs from all input registers.
 11069 // Overwrites haycnt, needlecnt.
 11070 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11071 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
 11072                             iRegPsrc needle, uimmI15 needlecntImm,
 11073                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
 11074                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 11075   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 11076   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP result,
 11077          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
 11078   // Required for EA: check if it is still a type_array.
 11079   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 11080             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 11081   ins_cost(250);
 11083   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11085   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 11086             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
 11087   ins_encode %{
 11088     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11089     Node *ndl = in(operand_index($needle));  // The node that defines needle.
 11090     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 11092     __ string_indexof($result$$Register,
 11093                       $haystack$$Register, $haycnt$$Register,
 11094                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
 11095                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 11096   %}
 11097   ins_pipe(pipe_class_compare);
 11098 %}
 11100 // StrIndexOf node.
 11101 //
 11102 // Assumes register result differs from all input registers.
 11103 // Overwrites haycnt, needlecnt.
 11104 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11105 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
 11106                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
 11107                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 11108   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
 11109   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
 11110          TEMP result,
 11111          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
 11112   predicate(SpecialStringIndexOf);  // See Matcher::match_rule_supported.
 11113   ins_cost(300);
 11115   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11117   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
 11118              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
 11119   ins_encode %{
 11120     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11121     __ string_indexof($result$$Register,
 11122                       $haystack$$Register, $haycnt$$Register,
 11123                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
 11124                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 11125   %}
 11126   ins_pipe(pipe_class_compare);
 11127 %}
 11129 // String equals with immediate.
 11130 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
 11131                            iRegPdst tmp1, iRegPdst tmp2,
 11132                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
 11133   match(Set result (StrEquals (Binary str1 str2) cntImm));
 11134   effect(TEMP result, TEMP tmp1, TEMP tmp2,
 11135          KILL cr0, KILL cr6, KILL ctr);
 11136   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 11137   ins_cost(250);
 11139   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11141   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
 11142             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
 11143   ins_encode %{
 11144     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11145     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
 11146                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
 11147   %}
 11148   ins_pipe(pipe_class_compare);
 11149 %}
 11151 // String equals.
 11152 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
 11153 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
 11154                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
 11155                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
 11156   match(Set result (StrEquals (Binary str1 str2) cnt));
 11157   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
 11158          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
 11159   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 11160   ins_cost(300);
 11162   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11164   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
 11165             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
 11166   ins_encode %{
 11167     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11168     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
 11169                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
 11170   %}
 11171   ins_pipe(pipe_class_compare);
 11172 %}
 11174 // String compare.
 11175 // Char[] pointers are passed in.
 11176 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
 11177 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
 11178                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
 11179   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11180   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP result, TEMP tmp, KILL cr0, KILL ctr);
 11181   ins_cost(300);
 11183   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11185   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
 11186             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
 11187   ins_encode %{
 11188     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11189     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
 11190                       $result$$Register, $tmp$$Register);
 11191   %}
 11192   ins_pipe(pipe_class_compare);
 11193 %}
 11195 //---------- Min/Max Instructions ---------------------------------------------
 11197 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 11198   match(Set dst (MinI src1 src2));
 11199   ins_cost(DEFAULT_COST*6);
 11201   expand %{
 11202     iRegLdst src1s;
 11203     iRegLdst src2s;
 11204     iRegLdst diff;
 11205     iRegLdst sm;
 11206     iRegLdst doz; // difference or zero
 11207     convI2L_reg(src1s, src1); // Ensure proper sign extension.
 11208     convI2L_reg(src2s, src2); // Ensure proper sign extension.
 11209     subL_reg_reg(diff, src2s, src1s);
 11210     // Need to consider >=33 bit result, therefore we need signmaskL.
 11211     signmask64L_regL(sm, diff);
 11212     andL_reg_reg(doz, diff, sm); // <=0
 11213     addI_regL_regL(dst, doz, src1s);
 11214   %}
 11215 %}
 11217 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 11218   match(Set dst (MaxI src1 src2));
 11219   ins_cost(DEFAULT_COST*6);
 11221   expand %{
 11222     iRegLdst src1s;
 11223     iRegLdst src2s;
 11224     iRegLdst diff;
 11225     iRegLdst sm;
 11226     iRegLdst doz; // difference or zero
 11227     convI2L_reg(src1s, src1); // Ensure proper sign extension.
 11228     convI2L_reg(src2s, src2); // Ensure proper sign extension.
 11229     subL_reg_reg(diff, src2s, src1s);
 11230     // Need to consider >=33 bit result, therefore we need signmaskL.
 11231     signmask64L_regL(sm, diff);
 11232     andcL_reg_reg(doz, diff, sm); // >=0
 11233     addI_regL_regL(dst, doz, src1s);
 11234   %}
 11235 %}
 11237 //---------- Population Count Instructions ------------------------------------
 11239 // Popcnt for Power7.
 11240 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
 11241   match(Set dst (PopCountI src));
 11242   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 11243   ins_cost(DEFAULT_COST);
 11245   format %{ "POPCNTW $dst, $src" %}
 11246   size(4);
 11247   ins_encode %{
 11248     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 11249     __ popcntw($dst$$Register, $src$$Register);
 11250   %}
 11251   ins_pipe(pipe_class_default);
 11252 %}
 11254 // Popcnt for Power7.
 11255 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
 11256   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 11257   match(Set dst (PopCountL src));
 11258   ins_cost(DEFAULT_COST);
 11260   format %{ "POPCNTD $dst, $src" %}
 11261   size(4);
 11262   ins_encode %{
 11263     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 11264     __ popcntd($dst$$Register, $src$$Register);
 11265   %}
 11266   ins_pipe(pipe_class_default);
 11267 %}
 11269 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
 11270   match(Set dst (CountLeadingZerosI src));
 11271   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 11272   ins_cost(DEFAULT_COST);
 11274   format %{ "CNTLZW  $dst, $src" %}
 11275   size(4);
 11276   ins_encode %{
 11277     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
 11278     __ cntlzw($dst$$Register, $src$$Register);
 11279   %}
 11280   ins_pipe(pipe_class_default);
 11281 %}
 11283 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
 11284   match(Set dst (CountLeadingZerosL src));
 11285   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 11286   ins_cost(DEFAULT_COST);
 11288   format %{ "CNTLZD  $dst, $src" %}
 11289   size(4);
 11290   ins_encode %{
 11291     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 11292     __ cntlzd($dst$$Register, $src$$Register);
 11293   %}
 11294   ins_pipe(pipe_class_default);
 11295 %}
 11297 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
 11298   // no match-rule, false predicate
 11299   effect(DEF dst, USE src);
 11300   predicate(false);
 11302   format %{ "CNTLZD  $dst, $src" %}
 11303   size(4);
 11304   ins_encode %{
 11305     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 11306     __ cntlzd($dst$$Register, $src$$Register);
 11307   %}
 11308   ins_pipe(pipe_class_default);
 11309 %}
 11311 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
 11312   match(Set dst (CountTrailingZerosI src));
 11313   predicate(UseCountLeadingZerosInstructionsPPC64);
 11314   ins_cost(DEFAULT_COST);
 11316   expand %{
 11317     immI16 imm1 %{ (int)-1 %}
 11318     immI16 imm2 %{ (int)32 %}
 11319     immI_minus1 m1 %{ -1 %}
 11320     iRegIdst tmpI1;
 11321     iRegIdst tmpI2;
 11322     iRegIdst tmpI3;
 11323     addI_reg_imm16(tmpI1, src, imm1);
 11324     andcI_reg_reg(tmpI2, src, m1, tmpI1);
 11325     countLeadingZerosI(tmpI3, tmpI2);
 11326     subI_imm16_reg(dst, imm2, tmpI3);
 11327   %}
 11328 %}
 11330 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
 11331   match(Set dst (CountTrailingZerosL src));
 11332   predicate(UseCountLeadingZerosInstructionsPPC64);
 11333   ins_cost(DEFAULT_COST);
 11335   expand %{
 11336     immL16 imm1 %{ (long)-1 %}
 11337     immI16 imm2 %{ (int)64 %}
 11338     iRegLdst tmpL1;
 11339     iRegLdst tmpL2;
 11340     iRegIdst tmpL3;
 11341     addL_reg_imm16(tmpL1, src, imm1);
 11342     andcL_reg_reg(tmpL2, tmpL1, src);
 11343     countLeadingZerosL(tmpL3, tmpL2);
 11344     subI_imm16_reg(dst, imm2, tmpL3);
 11345  %}
 11346 %}
 11348 // Expand nodes for byte_reverse_int.
 11349 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 11350   effect(DEF dst, USE src, USE pos, USE shift);
 11351   predicate(false);
 11353   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 11354   size(4);
 11355   ins_encode %{
 11356     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 11357     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 11358   %}
 11359   ins_pipe(pipe_class_default);
 11360 %}
 11362 // As insrwi_a, but with USE_DEF.
 11363 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 11364   effect(USE_DEF dst, USE src, USE pos, USE shift);
 11365   predicate(false);
 11367   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 11368   size(4);
 11369   ins_encode %{
 11370     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 11371     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 11372   %}
 11373   ins_pipe(pipe_class_default);
 11374 %}
 11376 // Just slightly faster than java implementation.
 11377 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
 11378   match(Set dst (ReverseBytesI src));
 11379   predicate(UseCountLeadingZerosInstructionsPPC64);
 11380   ins_cost(DEFAULT_COST);
 11382   expand %{
 11383     immI16 imm24 %{ (int) 24 %}
 11384     immI16 imm16 %{ (int) 16 %}
 11385     immI16  imm8 %{ (int)  8 %}
 11386     immI16  imm4 %{ (int)  4 %}
 11387     immI16  imm0 %{ (int)  0 %}
 11388     iRegLdst tmpI1;
 11389     iRegLdst tmpI2;
 11390     iRegLdst tmpI3;
 11392     urShiftI_reg_imm(tmpI1, src, imm24);
 11393     insrwi_a(dst, tmpI1, imm24, imm8);
 11394     urShiftI_reg_imm(tmpI2, src, imm16);
 11395     insrwi(dst, tmpI2, imm8, imm16);
 11396     urShiftI_reg_imm(tmpI3, src, imm8);
 11397     insrwi(dst, tmpI3, imm8, imm8);
 11398     insrwi(dst, src, imm0, imm8);
 11399   %}
 11400 %}
 11402 //---------- Replicate Vector Instructions ------------------------------------
 11404 // Insrdi does replicate if src == dst.
 11405 instruct repl32(iRegLdst dst) %{
 11406   predicate(false);
 11407   effect(USE_DEF dst);
 11409   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
 11410   size(4);
 11411   ins_encode %{
 11412     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11413     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
 11414   %}
 11415   ins_pipe(pipe_class_default);
 11416 %}
 11418 // Insrdi does replicate if src == dst.
 11419 instruct repl48(iRegLdst dst) %{
 11420   predicate(false);
 11421   effect(USE_DEF dst);
 11423   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
 11424   size(4);
 11425   ins_encode %{
 11426     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11427     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
 11428   %}
 11429   ins_pipe(pipe_class_default);
 11430 %}
 11432 // Insrdi does replicate if src == dst.
 11433 instruct repl56(iRegLdst dst) %{
 11434   predicate(false);
 11435   effect(USE_DEF dst);
 11437   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
 11438   size(4);
 11439   ins_encode %{
 11440     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11441     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
 11442   %}
 11443   ins_pipe(pipe_class_default);
 11444 %}
 11446 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11447   match(Set dst (ReplicateB src));
 11448   predicate(n->as_Vector()->length() == 8);
 11449   expand %{
 11450     moveReg(dst, src);
 11451     repl56(dst);
 11452     repl48(dst);
 11453     repl32(dst);
 11454   %}
 11455 %}
 11457 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
 11458   match(Set dst (ReplicateB zero));
 11459   predicate(n->as_Vector()->length() == 8);
 11460   format %{ "LI      $dst, #0 \t// replicate8B" %}
 11461   size(4);
 11462   ins_encode %{
 11463     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11464     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11465   %}
 11466   ins_pipe(pipe_class_default);
 11467 %}
 11469 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11470   match(Set dst (ReplicateB src));
 11471   predicate(n->as_Vector()->length() == 8);
 11472   format %{ "LI      $dst, #-1 \t// replicate8B" %}
 11473   size(4);
 11474   ins_encode %{
 11475     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11476     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11477   %}
 11478   ins_pipe(pipe_class_default);
 11479 %}
 11481 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11482   match(Set dst (ReplicateS src));
 11483   predicate(n->as_Vector()->length() == 4);
 11484   expand %{
 11485     moveReg(dst, src);
 11486     repl48(dst);
 11487     repl32(dst);
 11488   %}
 11489 %}
 11491 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
 11492   match(Set dst (ReplicateS zero));
 11493   predicate(n->as_Vector()->length() == 4);
 11494   format %{ "LI      $dst, #0 \t// replicate4C" %}
 11495   size(4);
 11496   ins_encode %{
 11497     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11498     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11499   %}
 11500   ins_pipe(pipe_class_default);
 11501 %}
 11503 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11504   match(Set dst (ReplicateS src));
 11505   predicate(n->as_Vector()->length() == 4);
 11506   format %{ "LI      $dst, -1 \t// replicate4C" %}
 11507   size(4);
 11508   ins_encode %{
 11509     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11510     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11511   %}
 11512   ins_pipe(pipe_class_default);
 11513 %}
 11515 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11516   match(Set dst (ReplicateI src));
 11517   predicate(n->as_Vector()->length() == 2);
 11518   ins_cost(2 * DEFAULT_COST);
 11519   expand %{
 11520     moveReg(dst, src);
 11521     repl32(dst);
 11522   %}
 11523 %}
 11525 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
 11526   match(Set dst (ReplicateI zero));
 11527   predicate(n->as_Vector()->length() == 2);
 11528   format %{ "LI      $dst, #0 \t// replicate4C" %}
 11529   size(4);
 11530   ins_encode %{
 11531     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11532     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11533   %}
 11534   ins_pipe(pipe_class_default);
 11535 %}
 11537 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11538   match(Set dst (ReplicateI src));
 11539   predicate(n->as_Vector()->length() == 2);
 11540   format %{ "LI      $dst, -1 \t// replicate4C" %}
 11541   size(4);
 11542   ins_encode %{
 11543     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11544     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11545   %}
 11546   ins_pipe(pipe_class_default);
 11547 %}
 11549 // Move float to int register via stack, replicate.
 11550 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
 11551   match(Set dst (ReplicateF src));
 11552   predicate(n->as_Vector()->length() == 2);
 11553   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
 11554   expand %{
 11555     stackSlotL tmpS;
 11556     iRegIdst tmpI;
 11557     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
 11558     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
 11559     moveReg(dst, tmpI);             // Move int to long reg.
 11560     repl32(dst);                    // Replicate bitpattern.
 11561   %}
 11562 %}
 11564 // Replicate scalar constant to packed float values in Double register
 11565 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
 11566   match(Set dst (ReplicateF src));
 11567   predicate(n->as_Vector()->length() == 2);
 11568   ins_cost(5 * DEFAULT_COST);
 11570   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
 11571   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
 11572 %}
 11574 // Replicate scalar zero constant to packed float values in Double register
 11575 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
 11576   match(Set dst (ReplicateF zero));
 11577   predicate(n->as_Vector()->length() == 2);
 11579   format %{ "LI      $dst, #0 \t// replicate2F" %}
 11580   ins_encode %{
 11581     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11582     __ li($dst$$Register, 0x0);
 11583   %}
 11584   ins_pipe(pipe_class_default);
 11585 %}
 11587 // ============================================================================
 11588 // Safepoint Instruction
 11590 instruct safePoint_poll(iRegPdst poll) %{
 11591   match(SafePoint poll);
 11592   predicate(LoadPollAddressFromThread);
 11594   // It caused problems to add the effect that r0 is killed, but this
 11595   // effect no longer needs to be mentioned, since r0 is not contained
 11596   // in a reg_class.
 11598   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
 11599   size(4);
 11600   ins_encode( enc_poll(0x0, poll) );
 11601   ins_pipe(pipe_class_default);
 11602 %}
 11604 // Safepoint without per-thread support. Load address of page to poll
 11605 // as constant.
 11606 // Rscratch2RegP is R12.
 11607 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
 11608 // a seperate node so that the oop map is at the right location.
 11609 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
 11610   match(SafePoint poll);
 11611   predicate(!LoadPollAddressFromThread);
 11613   // It caused problems to add the effect that r0 is killed, but this
 11614   // effect no longer needs to be mentioned, since r0 is not contained
 11615   // in a reg_class.
 11617   format %{ "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
 11618   ins_encode( enc_poll(0x0, poll) );
 11619   ins_pipe(pipe_class_default);
 11620 %}
 11622 // ============================================================================
 11623 // Call Instructions
 11625 // Call Java Static Instruction
 11627 // Schedulable version of call static node.
 11628 instruct CallStaticJavaDirect(method meth) %{
 11629   match(CallStaticJava);
 11630   effect(USE meth);
 11631   predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
 11632   ins_cost(CALL_COST);
 11634   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 11636   format %{ "CALL,static $meth \t// ==> " %}
 11637   size(4);
 11638   ins_encode( enc_java_static_call(meth) );
 11639   ins_pipe(pipe_class_call);
 11640 %}
 11642 // Schedulable version of call static node.
 11643 instruct CallStaticJavaDirectHandle(method meth) %{
 11644   match(CallStaticJava);
 11645   effect(USE meth);
 11646   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 11647   ins_cost(CALL_COST);
 11649   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 11651   format %{ "CALL,static $meth \t// ==> " %}
 11652   ins_encode( enc_java_handle_call(meth) );
 11653   ins_pipe(pipe_class_call);
 11654 %}
 11656 // Call Java Dynamic Instruction
 11658 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
 11659 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
 11660 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
 11661 // The call destination must still be placed in the constant pool.
 11662 instruct CallDynamicJavaDirectSched(method meth) %{
 11663   match(CallDynamicJava); // To get all the data fields we need ...
 11664   effect(USE meth);
 11665   predicate(false);       // ... but never match.
 11667   ins_field_load_ic_hi_node(loadConL_hiNode*);
 11668   ins_field_load_ic_node(loadConLNode*);
 11669   ins_num_consts(1 /* 1 patchable constant: call destination */);
 11671   format %{ "BL        \t// dynamic $meth ==> " %}
 11672   size(4);
 11673   ins_encode( enc_java_dynamic_call_sched(meth) );
 11674   ins_pipe(pipe_class_call);
 11675 %}
 11677 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
 11678 // We use postalloc expanded calls if we use inline caches
 11679 // and do not update method data.
 11680 //
 11681 // This instruction has two constants: inline cache (IC) and call destination.
 11682 // Loading the inline cache will be postalloc expanded, thus leaving a call with
 11683 // one constant.
 11684 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
 11685   match(CallDynamicJava);
 11686   effect(USE meth);
 11687   predicate(UseInlineCaches);
 11688   ins_cost(CALL_COST);
 11690   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
 11692   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
 11693   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
 11694 %}
 11696 // Compound version of call dynamic java
 11697 // We use postalloc expanded calls if we use inline caches
 11698 // and do not update method data.
 11699 instruct CallDynamicJavaDirect(method meth) %{
 11700   match(CallDynamicJava);
 11701   effect(USE meth);
 11702   predicate(!UseInlineCaches);
 11703   ins_cost(CALL_COST);
 11705   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
 11706   ins_num_consts(4);
 11708   format %{ "CALL,dynamic $meth \t// ==> " %}
 11709   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
 11710   ins_pipe(pipe_class_call);
 11711 %}
 11713 // Call Runtime Instruction
 11715 instruct CallRuntimeDirect(method meth) %{
 11716   match(CallRuntime);
 11717   effect(USE meth);
 11718   ins_cost(CALL_COST);
 11720   // Enc_java_to_runtime_call needs up to 3 constants: call target,
 11721   // env for callee, C-toc.
 11722   ins_num_consts(3);
 11724   format %{ "CALL,runtime" %}
 11725   ins_encode( enc_java_to_runtime_call(meth) );
 11726   ins_pipe(pipe_class_call);
 11727 %}
 11729 // Call Leaf
 11731 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
 11732 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
 11733   effect(DEF dst, USE src);
 11735   ins_num_consts(1);
 11737   format %{ "MTCTR   $src" %}
 11738   size(4);
 11739   ins_encode( enc_leaf_call_mtctr(src) );
 11740   ins_pipe(pipe_class_default);
 11741 %}
 11743 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
 11744 instruct CallLeafDirect(method meth) %{
 11745   match(CallLeaf);   // To get the data all the data fields we need ...
 11746   effect(USE meth);
 11747   predicate(false);  // but never match.
 11749   format %{ "BCTRL     \t// leaf call $meth ==> " %}
 11750   size(4);
 11751   ins_encode %{
 11752     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
 11753     __ bctrl();
 11754   %}
 11755   ins_pipe(pipe_class_call);
 11756 %}
 11758 // postalloc expand of CallLeafDirect.
 11759 // Load adress to call from TOC, then bl to it.
 11760 instruct CallLeafDirect_Ex(method meth) %{
 11761   match(CallLeaf);
 11762   effect(USE meth);
 11763   ins_cost(CALL_COST);
 11765   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
 11766   // env for callee, C-toc.
 11767   ins_num_consts(3);
 11769   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
 11770   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 11771 %}
 11773 // Call runtime without safepoint - same as CallLeaf.
 11774 // postalloc expand of CallLeafNoFPDirect.
 11775 // Load adress to call from TOC, then bl to it.
 11776 instruct CallLeafNoFPDirect_Ex(method meth) %{
 11777   match(CallLeafNoFP);
 11778   effect(USE meth);
 11779   ins_cost(CALL_COST);
 11781   // Enc_java_to_runtime_call needs up to 3 constants: call target,
 11782   // env for callee, C-toc.
 11783   ins_num_consts(3);
 11785   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
 11786   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 11787 %}
 11789 // Tail Call; Jump from runtime stub to Java code.
 11790 // Also known as an 'interprocedural jump'.
 11791 // Target of jump will eventually return to caller.
 11792 // TailJump below removes the return address.
 11793 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
 11794   match(TailCall jump_target method_oop);
 11795   ins_cost(CALL_COST);
 11797   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
 11798             "BCTR         \t// tail call" %}
 11799   size(8);
 11800   ins_encode %{
 11801     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11802     __ mtctr($jump_target$$Register);
 11803     __ bctr();
 11804   %}
 11805   ins_pipe(pipe_class_call);
 11806 %}
 11808 // Return Instruction
 11809 instruct Ret() %{
 11810   match(Return);
 11811   format %{ "BLR      \t// branch to link register" %}
 11812   size(4);
 11813   ins_encode %{
 11814     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
 11815     // LR is restored in MachEpilogNode. Just do the RET here.
 11816     __ blr();
 11817   %}
 11818   ins_pipe(pipe_class_default);
 11819 %}
 11821 // Tail Jump; remove the return address; jump to target.
 11822 // TailCall above leaves the return address around.
 11823 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 11824 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 11825 // "restore" before this instruction (in Epilogue), we need to materialize it
 11826 // in %i0.
 11827 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
 11828   match(TailJump jump_target ex_oop);
 11829   ins_cost(CALL_COST);
 11831   format %{ "LD      R4_ARG2 = LR\n\t"
 11832             "MTCTR   $jump_target\n\t"
 11833             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
 11834   size(12);
 11835   ins_encode %{
 11836     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11837     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
 11838     __ mtctr($jump_target$$Register);
 11839     __ bctr();
 11840   %}
 11841   ins_pipe(pipe_class_call);
 11842 %}
 11844 // Create exception oop: created by stack-crawling runtime code.
 11845 // Created exception is now available to this handler, and is setup
 11846 // just prior to jumping to this handler. No code emitted.
 11847 instruct CreateException(rarg1RegP ex_oop) %{
 11848   match(Set ex_oop (CreateEx));
 11849   ins_cost(0);
 11851   format %{ " -- \t// exception oop; no code emitted" %}
 11852   size(0);
 11853   ins_encode( /*empty*/ );
 11854   ins_pipe(pipe_class_default);
 11855 %}
 11857 // Rethrow exception: The exception oop will come in the first
 11858 // argument position. Then JUMP (not call) to the rethrow stub code.
 11859 instruct RethrowException() %{
 11860   match(Rethrow);
 11861   ins_cost(CALL_COST);
 11863   format %{ "Jmp     rethrow_stub" %}
 11864   ins_encode %{
 11865     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11866     cbuf.set_insts_mark();
 11867     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
 11868   %}
 11869   ins_pipe(pipe_class_call);
 11870 %}
 11872 // Die now.
 11873 instruct ShouldNotReachHere() %{
 11874   match(Halt);
 11875   ins_cost(CALL_COST);
 11877   format %{ "ShouldNotReachHere" %}
 11878   size(4);
 11879   ins_encode %{
 11880     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 11881     __ trap_should_not_reach_here();
 11882   %}
 11883   ins_pipe(pipe_class_default);
 11884 %}
 11886 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
 11887 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
 11888 // Get a DEF on threadRegP, no costs, no encoding, use
 11889 // 'ins_should_rematerialize(true)' to avoid spilling.
 11890 instruct tlsLoadP(threadRegP dst) %{
 11891   match(Set dst (ThreadLocal));
 11892   ins_cost(0);
 11894   ins_should_rematerialize(true);
 11896   format %{ " -- \t// $dst=Thread::current(), empty" %}
 11897   size(0);
 11898   ins_encode( /*empty*/ );
 11899   ins_pipe(pipe_class_empty);
 11900 %}
 11902 //---Some PPC specific nodes---------------------------------------------------
 11904 // Stop a group.
 11905 instruct endGroup() %{
 11906   ins_cost(0);
 11908   ins_is_nop(true);
 11910   format %{ "End Bundle (ori r1, r1, 0)" %}
 11911   size(4);
 11912   ins_encode %{
 11913     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
 11914     __ endgroup();
 11915   %}
 11916   ins_pipe(pipe_class_default);
 11917 %}
 11919 // Nop instructions
 11921 instruct fxNop() %{
 11922   ins_cost(0);
 11924   ins_is_nop(true);
 11926   format %{ "fxNop" %}
 11927   size(4);
 11928   ins_encode %{
 11929     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11930     __ nop();
 11931   %}
 11932   ins_pipe(pipe_class_default);
 11933 %}
 11935 instruct fpNop0() %{
 11936   ins_cost(0);
 11938   ins_is_nop(true);
 11940   format %{ "fpNop0" %}
 11941   size(4);
 11942   ins_encode %{
 11943     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11944     __ fpnop0();
 11945   %}
 11946   ins_pipe(pipe_class_default);
 11947 %}
 11949 instruct fpNop1() %{
 11950   ins_cost(0);
 11952   ins_is_nop(true);
 11954   format %{ "fpNop1" %}
 11955   size(4);
 11956   ins_encode %{
 11957     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11958     __ fpnop1();
 11959   %}
 11960   ins_pipe(pipe_class_default);
 11961 %}
 11963 instruct brNop0() %{
 11964   ins_cost(0);
 11965   size(4);
 11966   format %{ "brNop0" %}
 11967   ins_encode %{
 11968     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11969     __ brnop0();
 11970   %}
 11971   ins_is_nop(true);
 11972   ins_pipe(pipe_class_default);
 11973 %}
 11975 instruct brNop1() %{
 11976   ins_cost(0);
 11978   ins_is_nop(true);
 11980   format %{ "brNop1" %}
 11981   size(4);
 11982   ins_encode %{
 11983     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11984     __ brnop1();
 11985   %}
 11986   ins_pipe(pipe_class_default);
 11987 %}
 11989 instruct brNop2() %{
 11990   ins_cost(0);
 11992   ins_is_nop(true);
 11994   format %{ "brNop2" %}
 11995   size(4);
 11996   ins_encode %{
 11997     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11998     __ brnop2();
 11999   %}
 12000   ins_pipe(pipe_class_default);
 12001 %}
 12003 //----------PEEPHOLE RULES-----------------------------------------------------
 12004 // These must follow all instruction definitions as they use the names
 12005 // defined in the instructions definitions.
 12006 //
 12007 // peepmatch ( root_instr_name [preceeding_instruction]* );
 12008 //
 12009 // peepconstraint %{
 12010 // (instruction_number.operand_name relational_op instruction_number.operand_name
 12011 //  [, ...] );
 12012 // // instruction numbers are zero-based using left to right order in peepmatch
 12013 //
 12014 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
 12015 // // provide an instruction_number.operand_name for each operand that appears
 12016 // // in the replacement instruction's match rule
 12017 //
 12018 // ---------VM FLAGS---------------------------------------------------------
 12019 //
 12020 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 12021 //
 12022 // Each peephole rule is given an identifying number starting with zero and
 12023 // increasing by one in the order seen by the parser. An individual peephole
 12024 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 12025 // on the command-line.
 12026 //
 12027 // ---------CURRENT LIMITATIONS----------------------------------------------
 12028 //
 12029 // Only match adjacent instructions in same basic block
 12030 // Only equality constraints
 12031 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 12032 // Only one replacement instruction
 12033 //
 12034 // ---------EXAMPLE----------------------------------------------------------
 12035 //
 12036 // // pertinent parts of existing instructions in architecture description
 12037 // instruct movI(eRegI dst, eRegI src) %{
 12038 //   match(Set dst (CopyI src));
 12039 // %}
 12040 //
 12041 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 12042 //   match(Set dst (AddI dst src));
 12043 //   effect(KILL cr);
 12044 // %}
 12045 //
 12046 // // Change (inc mov) to lea
 12047 // peephole %{
 12048 //   // increment preceeded by register-register move
 12049 //   peepmatch ( incI_eReg movI );
 12050 //   // require that the destination register of the increment
 12051 //   // match the destination register of the move
 12052 //   peepconstraint ( 0.dst == 1.dst );
 12053 //   // construct a replacement instruction that sets
 12054 //   // the destination to ( move's source register + one )
 12055 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12056 // %}
 12057 //
 12058 // Implementation no longer uses movX instructions since
 12059 // machine-independent system no longer uses CopyX nodes.
 12060 //
 12061 // peephole %{
 12062 //   peepmatch ( incI_eReg movI );
 12063 //   peepconstraint ( 0.dst == 1.dst );
 12064 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12065 // %}
 12066 //
 12067 // peephole %{
 12068 //   peepmatch ( decI_eReg movI );
 12069 //   peepconstraint ( 0.dst == 1.dst );
 12070 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12071 // %}
 12072 //
 12073 // peephole %{
 12074 //   peepmatch ( addI_eReg_imm movI );
 12075 //   peepconstraint ( 0.dst == 1.dst );
 12076 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12077 // %}
 12078 //
 12079 // peephole %{
 12080 //   peepmatch ( addP_eReg_imm movP );
 12081 //   peepconstraint ( 0.dst == 1.dst );
 12082 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 12083 // %}
 12085 // // Change load of spilled value to only a spill
 12086 // instruct storeI(memory mem, eRegI src) %{
 12087 //   match(Set mem (StoreI mem src));
 12088 // %}
 12089 //
 12090 // instruct loadI(eRegI dst, memory mem) %{
 12091 //   match(Set dst (LoadI mem));
 12092 // %}
 12093 //
 12094 peephole %{
 12095   peepmatch ( loadI storeI );
 12096   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 12097   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 12098 %}
 12100 peephole %{
 12101   peepmatch ( loadL storeL );
 12102   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 12103   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
 12104 %}
 12106 peephole %{
 12107   peepmatch ( loadP storeP );
 12108   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
 12109   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
 12110 %}
 12112 //----------SMARTSPILL RULES---------------------------------------------------
 12113 // These must follow all instruction definitions as they use the names
 12114 // defined in the instructions definitions.

mercurial