src/share/vm/c1/c1_LIRGenerator.cpp

Tue, 04 Sep 2018 21:25:12 +0800

author
aoqi
date
Tue, 04 Sep 2018 21:25:12 +0800
changeset 9228
617b86d17edb
parent 9157
2966b0be4027
child 9637
eef07cd490d4
permissions
-rw-r--r--

#7517 mRegP match a0_RegP

     1 /*
     2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "c1/c1_Defs.hpp"
    33 #include "c1/c1_Compilation.hpp"
    34 #include "c1/c1_FrameMap.hpp"
    35 #include "c1/c1_Instruction.hpp"
    36 #include "c1/c1_LIRAssembler.hpp"
    37 #include "c1/c1_LIRGenerator.hpp"
    38 #include "c1/c1_ValueStack.hpp"
    39 #include "ci/ciArrayKlass.hpp"
    40 #include "ci/ciInstance.hpp"
    41 #include "ci/ciObjArray.hpp"
    42 #include "runtime/sharedRuntime.hpp"
    43 #include "runtime/stubRoutines.hpp"
    44 #include "utilities/bitMap.inline.hpp"
    45 #include "utilities/macros.hpp"
    46 #if INCLUDE_ALL_GCS
    47 #include "gc_implementation/g1/heapRegion.hpp"
    48 #endif // INCLUDE_ALL_GCS
    50 #ifdef ASSERT
    51 #define __ gen()->lir(__FILE__, __LINE__)->
    52 #else
    53 #define __ gen()->lir()->
    54 #endif
    56 #ifndef PATCHED_ADDR
    57 #define PATCHED_ADDR  (max_jint)
    58 #endif
    60 void PhiResolverState::reset(int max_vregs) {
    61   // Initialize array sizes
    62   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    63   _virtual_operands.trunc_to(0);
    64   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
    65   _other_operands.trunc_to(0);
    66   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
    67   _vreg_table.trunc_to(0);
    68 }
    72 //--------------------------------------------------------------
    73 // PhiResolver
    75 // Resolves cycles:
    76 //
    77 //  r1 := r2  becomes  temp := r1
    78 //  r2 := r1           r1 := r2
    79 //                     r2 := temp
    80 // and orders moves:
    81 //
    82 //  r2 := r3  becomes  r1 := r2
    83 //  r1 := r2           r2 := r3
    85 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
    86  : _gen(gen)
    87  , _state(gen->resolver_state())
    88  , _temp(LIR_OprFact::illegalOpr)
    89 {
    90   // reinitialize the shared state arrays
    91   _state.reset(max_vregs);
    92 }
    95 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
    96   assert(src->is_valid(), "");
    97   assert(dest->is_valid(), "");
    98   __ move(src, dest);
    99 }
   102 void PhiResolver::move_temp_to(LIR_Opr dest) {
   103   assert(_temp->is_valid(), "");
   104   emit_move(_temp, dest);
   105   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
   106 }
   109 void PhiResolver::move_to_temp(LIR_Opr src) {
   110   assert(_temp->is_illegal(), "");
   111   _temp = _gen->new_register(src->type());
   112   emit_move(src, _temp);
   113 }
   116 // Traverse assignment graph in depth first order and generate moves in post order
   117 // ie. two assignments: b := c, a := b start with node c:
   118 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
   119 // Generates moves in this order: move b to a and move c to b
   120 // ie. cycle a := b, b := a start with node a
   121 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
   122 // Generates moves in this order: move b to temp, move a to b, move temp to a
   123 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
   124   if (!dest->visited()) {
   125     dest->set_visited();
   126     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
   127       move(dest, dest->destination_at(i));
   128     }
   129   } else if (!dest->start_node()) {
   130     // cylce in graph detected
   131     assert(_loop == NULL, "only one loop valid!");
   132     _loop = dest;
   133     move_to_temp(src->operand());
   134     return;
   135   } // else dest is a start node
   137   if (!dest->assigned()) {
   138     if (_loop == dest) {
   139       move_temp_to(dest->operand());
   140       dest->set_assigned();
   141     } else if (src != NULL) {
   142       emit_move(src->operand(), dest->operand());
   143       dest->set_assigned();
   144     }
   145   }
   146 }
   149 PhiResolver::~PhiResolver() {
   150   int i;
   151   // resolve any cycles in moves from and to virtual registers
   152   for (i = virtual_operands().length() - 1; i >= 0; i --) {
   153     ResolveNode* node = virtual_operands()[i];
   154     if (!node->visited()) {
   155       _loop = NULL;
   156       move(NULL, node);
   157       node->set_start_node();
   158       assert(_temp->is_illegal(), "move_temp_to() call missing");
   159     }
   160   }
   162   // generate move for move from non virtual register to abitrary destination
   163   for (i = other_operands().length() - 1; i >= 0; i --) {
   164     ResolveNode* node = other_operands()[i];
   165     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
   166       emit_move(node->operand(), node->destination_at(j)->operand());
   167     }
   168   }
   169 }
   172 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
   173   ResolveNode* node;
   174   if (opr->is_virtual()) {
   175     int vreg_num = opr->vreg_number();
   176     node = vreg_table().at_grow(vreg_num, NULL);
   177     assert(node == NULL || node->operand() == opr, "");
   178     if (node == NULL) {
   179       node = new ResolveNode(opr);
   180       vreg_table()[vreg_num] = node;
   181     }
   182     // Make sure that all virtual operands show up in the list when
   183     // they are used as the source of a move.
   184     if (source && !virtual_operands().contains(node)) {
   185       virtual_operands().append(node);
   186     }
   187   } else {
   188     assert(source, "");
   189     node = new ResolveNode(opr);
   190     other_operands().append(node);
   191   }
   192   return node;
   193 }
   196 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
   197   assert(dest->is_virtual(), "");
   198   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
   199   assert(src->is_valid(), "");
   200   assert(dest->is_valid(), "");
   201   ResolveNode* source = source_node(src);
   202   source->append(destination_node(dest));
   203 }
   206 //--------------------------------------------------------------
   207 // LIRItem
   209 void LIRItem::set_result(LIR_Opr opr) {
   210   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
   211   value()->set_operand(opr);
   213   if (opr->is_virtual()) {
   214     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
   215   }
   217   _result = opr;
   218 }
   220 void LIRItem::load_item() {
   221   if (result()->is_illegal()) {
   222     // update the items result
   223     _result = value()->operand();
   224   }
   225   if (!result()->is_register()) {
   226     LIR_Opr reg = _gen->new_register(value()->type());
   227     __ move(result(), reg);
   228     if (result()->is_constant()) {
   229       _result = reg;
   230     } else {
   231       set_result(reg);
   232     }
   233   }
   234 }
   237 void LIRItem::load_for_store(BasicType type) {
   238   if (_gen->can_store_as_constant(value(), type)) {
   239     _result = value()->operand();
   240     if (!_result->is_constant()) {
   241       _result = LIR_OprFact::value_type(value()->type());
   242     }
   243   } else if (type == T_BYTE || type == T_BOOLEAN) {
   244     load_byte_item();
   245   } else {
   246     load_item();
   247   }
   248 }
   250 void LIRItem::load_item_force(LIR_Opr reg) {
   251   LIR_Opr r = result();
   252   if (r != reg) {
   253 #if !defined(ARM) && !defined(E500V2)
   254     if (r->type() != reg->type()) {
   255       // moves between different types need an intervening spill slot
   256       r = _gen->force_to_spill(r, reg->type());
   257     }
   258 #endif
   259     __ move(r, reg);
   260     _result = reg;
   261   }
   262 }
   264 ciObject* LIRItem::get_jobject_constant() const {
   265   ObjectType* oc = type()->as_ObjectType();
   266   if (oc) {
   267     return oc->constant_value();
   268   }
   269   return NULL;
   270 }
   273 jint LIRItem::get_jint_constant() const {
   274   assert(is_constant() && value() != NULL, "");
   275   assert(type()->as_IntConstant() != NULL, "type check");
   276   return type()->as_IntConstant()->value();
   277 }
   280 jint LIRItem::get_address_constant() const {
   281   assert(is_constant() && value() != NULL, "");
   282   assert(type()->as_AddressConstant() != NULL, "type check");
   283   return type()->as_AddressConstant()->value();
   284 }
   287 jfloat LIRItem::get_jfloat_constant() const {
   288   assert(is_constant() && value() != NULL, "");
   289   assert(type()->as_FloatConstant() != NULL, "type check");
   290   return type()->as_FloatConstant()->value();
   291 }
   294 jdouble LIRItem::get_jdouble_constant() const {
   295   assert(is_constant() && value() != NULL, "");
   296   assert(type()->as_DoubleConstant() != NULL, "type check");
   297   return type()->as_DoubleConstant()->value();
   298 }
   301 jlong LIRItem::get_jlong_constant() const {
   302   assert(is_constant() && value() != NULL, "");
   303   assert(type()->as_LongConstant() != NULL, "type check");
   304   return type()->as_LongConstant()->value();
   305 }
   309 //--------------------------------------------------------------
   312 void LIRGenerator::init() {
   313   _bs = Universe::heap()->barrier_set();
   314 #ifdef MIPS
   315   assert(_bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   316   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
   317   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   318   //_card_table_base = new LIR_Const((intptr_t)ct->byte_map_base);
   319   _card_table_base = new LIR_Const(ct->byte_map_base);
   320 #endif
   321 }
   324 void LIRGenerator::block_do_prolog(BlockBegin* block) {
   325 #ifndef PRODUCT
   326   if (PrintIRWithLIR) {
   327     block->print();
   328   }
   329 #endif
   331   // set up the list of LIR instructions
   332   assert(block->lir() == NULL, "LIR list already computed for this block");
   333   _lir = new LIR_List(compilation(), block);
   334   block->set_lir(_lir);
   336   __ branch_destination(block->label());
   338   if (LIRTraceExecution &&
   339       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
   340       !block->is_set(BlockBegin::exception_entry_flag)) {
   341     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
   342     trace_block_entry(block);
   343   }
   344 }
   347 void LIRGenerator::block_do_epilog(BlockBegin* block) {
   348 #ifndef PRODUCT
   349   if (PrintIRWithLIR) {
   350     tty->cr();
   351   }
   352 #endif
   354   // LIR_Opr for unpinned constants shouldn't be referenced by other
   355   // blocks so clear them out after processing the block.
   356   for (int i = 0; i < _unpinned_constants.length(); i++) {
   357     _unpinned_constants.at(i)->clear_operand();
   358   }
   359   _unpinned_constants.trunc_to(0);
   361   // clear our any registers for other local constants
   362   _constants.trunc_to(0);
   363   _reg_for_constants.trunc_to(0);
   364 }
   367 void LIRGenerator::block_do(BlockBegin* block) {
   368   CHECK_BAILOUT();
   370   block_do_prolog(block);
   371   set_block(block);
   373   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
   374     if (instr->is_pinned()) do_root(instr);
   375   }
   377   set_block(NULL);
   378   block_do_epilog(block);
   379 }
   382 //-------------------------LIRGenerator-----------------------------
   384 // This is where the tree-walk starts; instr must be root;
   385 void LIRGenerator::do_root(Value instr) {
   386   CHECK_BAILOUT();
   388   InstructionMark im(compilation(), instr);
   390   assert(instr->is_pinned(), "use only with roots");
   391   assert(instr->subst() == instr, "shouldn't have missed substitution");
   393   instr->visit(this);
   395   assert(!instr->has_uses() || instr->operand()->is_valid() ||
   396          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
   397 }
   400 // This is called for each node in tree; the walk stops if a root is reached
   401 void LIRGenerator::walk(Value instr) {
   402   InstructionMark im(compilation(), instr);
   403   //stop walk when encounter a root
   404   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
   405     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
   406   } else {
   407     assert(instr->subst() == instr, "shouldn't have missed substitution");
   408     instr->visit(this);
   409     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
   410   }
   411 }
   414 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
   415   assert(state != NULL, "state must be defined");
   417 #ifndef PRODUCT
   418   state->verify();
   419 #endif
   421   ValueStack* s = state;
   422   for_each_state(s) {
   423     if (s->kind() == ValueStack::EmptyExceptionState) {
   424       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
   425       continue;
   426     }
   428     int index;
   429     Value value;
   430     for_each_stack_value(s, index, value) {
   431       assert(value->subst() == value, "missed substitution");
   432       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   433         walk(value);
   434         assert(value->operand()->is_valid(), "must be evaluated now");
   435       }
   436     }
   438     int bci = s->bci();
   439     IRScope* scope = s->scope();
   440     ciMethod* method = scope->method();
   442     MethodLivenessResult liveness = method->liveness_at_bci(bci);
   443     if (bci == SynchronizationEntryBCI) {
   444       if (x->as_ExceptionObject() || x->as_Throw()) {
   445         // all locals are dead on exit from the synthetic unlocker
   446         liveness.clear();
   447       } else {
   448         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
   449       }
   450     }
   451     if (!liveness.is_valid()) {
   452       // Degenerate or breakpointed method.
   453       bailout("Degenerate or breakpointed method");
   454     } else {
   455       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
   456       for_each_local_value(s, index, value) {
   457         assert(value->subst() == value, "missed substition");
   458         if (liveness.at(index) && !value->type()->is_illegal()) {
   459           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
   460             walk(value);
   461             assert(value->operand()->is_valid(), "must be evaluated now");
   462           }
   463         } else {
   464           // NULL out this local so that linear scan can assume that all non-NULL values are live.
   465           s->invalidate_local(index);
   466         }
   467       }
   468     }
   469   }
   471   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
   472 }
   475 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
   476   return state_for(x, x->exception_state());
   477 }
   480 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
   481   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
   482    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
   483    * the class. */
   484   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
   485     assert(info != NULL, "info must be set if class is not loaded");
   486     __ klass2reg_patch(NULL, r, info);
   487   } else {
   488     // no patching needed
   489     __ metadata2reg(obj->constant_encoding(), r);
   490   }
   491 }
   494 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
   495                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
   496   CodeStub* stub = new RangeCheckStub(range_check_info, index);
   497   if (index->is_constant()) {
   498 #ifndef MIPS
   499     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
   500                 index->as_jint(), null_check_info);
   501     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   502 #else
   503     LIR_Opr left = LIR_OprFact::address(new LIR_Address(array, arrayOopDesc::length_offset_in_bytes(), T_INT));
   504     LIR_Opr right = LIR_OprFact::intConst(index->as_jint());
   505     __ null_check_for_branch(lir_cond_belowEqual, left, right, null_check_info);
   506     __ branch(lir_cond_belowEqual, left, right ,T_INT, stub); // forward branch
   507 #endif
   508   } else {
   509 #ifndef MIPS
   510     cmp_reg_mem(lir_cond_aboveEqual, index, array,
   511                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
   512     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   513 #else
   514     LIR_Opr left = index;
   515     LIR_Opr right = LIR_OprFact::address(new LIR_Address( array, arrayOopDesc::length_offset_in_bytes(), T_INT));
   516     __ null_check_for_branch(lir_cond_aboveEqual, left, right, null_check_info);
   517     __ branch(lir_cond_aboveEqual,left, right ,T_INT, stub); // forward branch
   518 #endif
   519   }
   520 }
   523 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
   524   CodeStub* stub = new RangeCheckStub(info, index, true);
   525   if (index->is_constant()) {
   526 #ifndef MIPS
   527     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
   528     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
   529 #else
   530     LIR_Opr left = LIR_OprFact::address(new LIR_Address(buffer, java_nio_Buffer::limit_offset(),T_INT));
   531     LIR_Opr right = LIR_OprFact::intConst(index->as_jint());
   532     __ null_check_for_branch(lir_cond_belowEqual, left, right, info);
   533     __ branch(lir_cond_belowEqual,left, right ,T_INT, stub); // forward branch
   534 #endif
   535   } else {
   536 #ifndef MIPS
   537     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
   538                 java_nio_Buffer::limit_offset(), T_INT, info);
   539     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
   540 #else
   541     LIR_Opr left = index;
   542     LIR_Opr right = LIR_OprFact::address(new LIR_Address( buffer, java_nio_Buffer::limit_offset(), T_INT));
   543     __ null_check_for_branch(lir_cond_aboveEqual, left, right, info);
   544     __ branch(lir_cond_aboveEqual,left, right ,T_INT, stub); // forward branch
   545 #endif
   546   }
   547   __ move(index, result);
   548 }
   552 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
   553   LIR_Opr result_op = result;
   554   LIR_Opr left_op   = left;
   555   LIR_Opr right_op  = right;
   557   if (TwoOperandLIRForm && left_op != result_op) {
   558     assert(right_op != result_op, "malformed");
   559     __ move(left_op, result_op);
   560     left_op = result_op;
   561   }
   563   switch(code) {
   564     case Bytecodes::_dadd:
   565     case Bytecodes::_fadd:
   566     case Bytecodes::_ladd:
   567     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
   568     case Bytecodes::_fmul:
   569     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
   571     case Bytecodes::_dmul:
   572       {
   573         if (is_strictfp) {
   574           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
   575         } else {
   576           __ mul(left_op, right_op, result_op); break;
   577         }
   578       }
   579       break;
   581     case Bytecodes::_imul:
   582       {
   583         bool    did_strength_reduce = false;
   585         if (right->is_constant()) {
   586           int c = right->as_jint();
   587           if (is_power_of_2(c)) {
   588             // do not need tmp here
   589             __ shift_left(left_op, exact_log2(c), result_op);
   590             did_strength_reduce = true;
   591           } else {
   592             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
   593           }
   594         }
   595         // we couldn't strength reduce so just emit the multiply
   596         if (!did_strength_reduce) {
   597           __ mul(left_op, right_op, result_op);
   598         }
   599       }
   600       break;
   602     case Bytecodes::_dsub:
   603     case Bytecodes::_fsub:
   604     case Bytecodes::_lsub:
   605     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
   607     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
   608     // ldiv and lrem are implemented with a direct runtime call
   610     case Bytecodes::_ddiv:
   611       {
   612         if (is_strictfp) {
   613           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
   614         } else {
   615           __ div (left_op, right_op, result_op); break;
   616         }
   617       }
   618       break;
   620     case Bytecodes::_drem:
   621     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
   623     default: ShouldNotReachHere();
   624   }
   625 }
   628 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
   629   arithmetic_op(code, result, left, right, false, tmp);
   630 }
   633 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
   634   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
   635 }
   638 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
   639   arithmetic_op(code, result, left, right, is_strictfp, tmp);
   640 }
   643 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
   644   if (TwoOperandLIRForm && value != result_op) {
   645     assert(count != result_op, "malformed");
   646     __ move(value, result_op);
   647     value = result_op;
   648   }
   650   assert(count->is_constant() || count->is_register(), "must be");
   651   switch(code) {
   652   case Bytecodes::_ishl:
   653   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
   654   case Bytecodes::_ishr:
   655   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
   656   case Bytecodes::_iushr:
   657   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
   658   default: ShouldNotReachHere();
   659   }
   660 }
   663 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
   664   if (TwoOperandLIRForm && left_op != result_op) {
   665     assert(right_op != result_op, "malformed");
   666     __ move(left_op, result_op);
   667     left_op = result_op;
   668   }
   670   switch(code) {
   671     case Bytecodes::_iand:
   672     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
   674     case Bytecodes::_ior:
   675     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
   677     case Bytecodes::_ixor:
   678     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
   680     default: ShouldNotReachHere();
   681   }
   682 }
   685 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
   686   if (!GenerateSynchronizationCode) return;
   687   // for slow path, use debug info for state after successful locking
   688   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
   689   __ load_stack_address_monitor(monitor_no, lock);
   690   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
   691   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
   692 }
   695 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
   696   if (!GenerateSynchronizationCode) return;
   697   // setup registers
   698   LIR_Opr hdr = lock;
   699   lock = new_hdr;
   700   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
   701   __ load_stack_address_monitor(monitor_no, lock);
   702   __ unlock_object(hdr, object, lock, scratch, slow_path);
   703 }
   705 #ifndef PRODUCT
   706 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
   707   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
   708     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
   709   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
   710     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
   711   }
   712 }
   713 #endif
   715 #ifndef MIPS
   716 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
   717 #else
   718 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3,
   719                                 LIR_Opr scratch4, LIR_Opr scratch5, LIR_Opr scratch6,LIR_Opr klass_reg, CodeEmitInfo* info) {
   720 #endif
   721   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
   722   // If klass is not loaded we do not know if the klass has finalizers:
   723   if (UseFastNewInstance && klass->is_loaded()
   724       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
   726     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
   728     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
   730     assert(klass->is_loaded(), "must be loaded");
   731     // allocate space for instance
   732     assert(klass->size_helper() >= 0, "illegal instance size");
   733     const int instance_size = align_object_size(klass->size_helper());
   734 #ifndef MIPS
   735     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
   736                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   737 #else
   738     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, scratch5, scratch6,
   739                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
   741 #endif
   742   } else {
   743     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
   744 #ifndef MIPS
   745     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
   746     __ branch_destination(slow_path->continuation());
   747 #else
   748     __ branch(lir_cond_always, LIR_OprFact::illegalOpr,  LIR_OprFact::illegalOpr, T_ILLEGAL, slow_path);
   749     __ branch_destination(slow_path->continuation());
   750 #endif
   751   }
   752 }
   755 static bool is_constant_zero(Instruction* inst) {
   756   IntConstant* c = inst->type()->as_IntConstant();
   757   if (c) {
   758     return (c->value() == 0);
   759   }
   760   return false;
   761 }
   764 static bool positive_constant(Instruction* inst) {
   765   IntConstant* c = inst->type()->as_IntConstant();
   766   if (c) {
   767     return (c->value() >= 0);
   768   }
   769   return false;
   770 }
   773 static ciArrayKlass* as_array_klass(ciType* type) {
   774   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
   775     return (ciArrayKlass*)type;
   776   } else {
   777     return NULL;
   778   }
   779 }
   781 static ciType* phi_declared_type(Phi* phi) {
   782   ciType* t = phi->operand_at(0)->declared_type();
   783   if (t == NULL) {
   784     return NULL;
   785   }
   786   for(int i = 1; i < phi->operand_count(); i++) {
   787     if (t != phi->operand_at(i)->declared_type()) {
   788       return NULL;
   789     }
   790   }
   791   return t;
   792 }
   794 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
   795   Instruction* src     = x->argument_at(0);
   796   Instruction* src_pos = x->argument_at(1);
   797   Instruction* dst     = x->argument_at(2);
   798   Instruction* dst_pos = x->argument_at(3);
   799   Instruction* length  = x->argument_at(4);
   801   // first try to identify the likely type of the arrays involved
   802   ciArrayKlass* expected_type = NULL;
   803   bool is_exact = false, src_objarray = false, dst_objarray = false;
   804   {
   805     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
   806     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
   807     Phi* phi;
   808     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
   809       src_declared_type = as_array_klass(phi_declared_type(phi));
   810     }
   811     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
   812     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
   813     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
   814       dst_declared_type = as_array_klass(phi_declared_type(phi));
   815     }
   817     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
   818       // the types exactly match so the type is fully known
   819       is_exact = true;
   820       expected_type = src_exact_type;
   821     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
   822       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
   823       ciArrayKlass* src_type = NULL;
   824       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
   825         src_type = (ciArrayKlass*) src_exact_type;
   826       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
   827         src_type = (ciArrayKlass*) src_declared_type;
   828       }
   829       if (src_type != NULL) {
   830         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
   831           is_exact = true;
   832           expected_type = dst_type;
   833         }
   834       }
   835     }
   836     // at least pass along a good guess
   837     if (expected_type == NULL) expected_type = dst_exact_type;
   838     if (expected_type == NULL) expected_type = src_declared_type;
   839     if (expected_type == NULL) expected_type = dst_declared_type;
   841     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
   842     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
   843   }
   845   // if a probable array type has been identified, figure out if any
   846   // of the required checks for a fast case can be elided.
   847   int flags = LIR_OpArrayCopy::all_flags;
   849   if (!src_objarray)
   850     flags &= ~LIR_OpArrayCopy::src_objarray;
   851   if (!dst_objarray)
   852     flags &= ~LIR_OpArrayCopy::dst_objarray;
   854   if (!x->arg_needs_null_check(0))
   855     flags &= ~LIR_OpArrayCopy::src_null_check;
   856   if (!x->arg_needs_null_check(2))
   857     flags &= ~LIR_OpArrayCopy::dst_null_check;
   860   if (expected_type != NULL) {
   861     Value length_limit = NULL;
   863     IfOp* ifop = length->as_IfOp();
   864     if (ifop != NULL) {
   865       // look for expressions like min(v, a.length) which ends up as
   866       //   x > y ? y : x  or  x >= y ? y : x
   867       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
   868           ifop->x() == ifop->fval() &&
   869           ifop->y() == ifop->tval()) {
   870         length_limit = ifop->y();
   871       }
   872     }
   874     // try to skip null checks and range checks
   875     NewArray* src_array = src->as_NewArray();
   876     if (src_array != NULL) {
   877       flags &= ~LIR_OpArrayCopy::src_null_check;
   878       if (length_limit != NULL &&
   879           src_array->length() == length_limit &&
   880           is_constant_zero(src_pos)) {
   881         flags &= ~LIR_OpArrayCopy::src_range_check;
   882       }
   883     }
   885     NewArray* dst_array = dst->as_NewArray();
   886     if (dst_array != NULL) {
   887       flags &= ~LIR_OpArrayCopy::dst_null_check;
   888       if (length_limit != NULL &&
   889           dst_array->length() == length_limit &&
   890           is_constant_zero(dst_pos)) {
   891         flags &= ~LIR_OpArrayCopy::dst_range_check;
   892       }
   893     }
   895     // check from incoming constant values
   896     if (positive_constant(src_pos))
   897       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
   898     if (positive_constant(dst_pos))
   899       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
   900     if (positive_constant(length))
   901       flags &= ~LIR_OpArrayCopy::length_positive_check;
   903     // see if the range check can be elided, which might also imply
   904     // that src or dst is non-null.
   905     ArrayLength* al = length->as_ArrayLength();
   906     if (al != NULL) {
   907       if (al->array() == src) {
   908         // it's the length of the source array
   909         flags &= ~LIR_OpArrayCopy::length_positive_check;
   910         flags &= ~LIR_OpArrayCopy::src_null_check;
   911         if (is_constant_zero(src_pos))
   912           flags &= ~LIR_OpArrayCopy::src_range_check;
   913       }
   914       if (al->array() == dst) {
   915         // it's the length of the destination array
   916         flags &= ~LIR_OpArrayCopy::length_positive_check;
   917         flags &= ~LIR_OpArrayCopy::dst_null_check;
   918         if (is_constant_zero(dst_pos))
   919           flags &= ~LIR_OpArrayCopy::dst_range_check;
   920       }
   921     }
   922     if (is_exact) {
   923       flags &= ~LIR_OpArrayCopy::type_check;
   924     }
   925   }
   927   IntConstant* src_int = src_pos->type()->as_IntConstant();
   928   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
   929   if (src_int && dst_int) {
   930     int s_offs = src_int->value();
   931     int d_offs = dst_int->value();
   932     if (src_int->value() >= dst_int->value()) {
   933       flags &= ~LIR_OpArrayCopy::overlapping;
   934     }
   935     if (expected_type != NULL) {
   936       BasicType t = expected_type->element_type()->basic_type();
   937       int element_size = type2aelembytes(t);
   938       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
   939           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
   940         flags &= ~LIR_OpArrayCopy::unaligned;
   941       }
   942     }
   943   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
   944     // src and dest positions are the same, or dst is zero so assume
   945     // nonoverlapping copy.
   946     flags &= ~LIR_OpArrayCopy::overlapping;
   947   }
   949   if (src == dst) {
   950     // moving within a single array so no type checks are needed
   951     if (flags & LIR_OpArrayCopy::type_check) {
   952       flags &= ~LIR_OpArrayCopy::type_check;
   953     }
   954   }
   955   *flagsp = flags;
   956   *expected_typep = (ciArrayKlass*)expected_type;
   957 }
   960 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
   961   assert(opr->is_register(), "why spill if item is not register?");
   963   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
   964     LIR_Opr result = new_register(T_FLOAT);
   965     set_vreg_flag(result, must_start_in_memory);
   966     assert(opr->is_register(), "only a register can be spilled");
   967     assert(opr->value_type()->is_float(), "rounding only for floats available");
   968     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
   969     return result;
   970   }
   971   return opr;
   972 }
   975 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
   976   assert(type2size[t] == type2size[value->type()],
   977          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
   978   if (!value->is_register()) {
   979     // force into a register
   980     LIR_Opr r = new_register(value->type());
   981     __ move(value, r);
   982     value = r;
   983   }
   985   // create a spill location
   986   LIR_Opr tmp = new_register(t);
   987   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
   989   // move from register to spill
   990   __ move(value, tmp);
   991   return tmp;
   992 }
   994 #ifndef MIPS
   995 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
   996   if (if_instr->should_profile()) {
   997     ciMethod* method = if_instr->profiled_method();
   998     assert(method != NULL, "method should be set if branch is profiled");
   999     ciMethodData* md = method->method_data_or_null();
  1000     assert(md != NULL, "Sanity");
  1001     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
  1002     assert(data != NULL, "must have profiling data");
  1003     assert(data->is_BranchData(), "need BranchData for two-way branches");
  1004     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
  1005     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  1006     if (if_instr->is_swapped()) {
  1007       int t = taken_count_offset;
  1008       taken_count_offset = not_taken_count_offset;
  1009       not_taken_count_offset = t;
  1012     LIR_Opr md_reg = new_register(T_METADATA);
  1013     __ metadata2reg(md->constant_encoding(), md_reg);
  1015     LIR_Opr data_offset_reg = new_pointer_register();
  1016     __ cmove(lir_cond(cond),
  1017              LIR_OprFact::intptrConst(taken_count_offset),
  1018              LIR_OprFact::intptrConst(not_taken_count_offset),
  1019              data_offset_reg, as_BasicType(if_instr->x()->type()));
  1021     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
  1022     LIR_Opr data_reg = new_pointer_register();
  1023     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
  1024     __ move(data_addr, data_reg);
  1025     // Use leal instead of add to avoid destroying condition codes on x86
  1026     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
  1027     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
  1028     __ move(data_reg, data_addr);
  1031 #else
  1032 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond , LIR_Opr left, LIR_Opr right) {
  1033   if (if_instr->should_profile()) {
  1034     ciMethod* method = if_instr->profiled_method();
  1035     assert(method != NULL, "method should be set if branch is profiled");
  1036     ciMethodData* md = method->method_data_or_null();
  1037     assert(md != NULL, "Sanity");
  1038     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
  1039     assert(data != NULL, "must have profiling data");
  1040     assert(data->is_BranchData(), "need BranchData for two-way branches");
  1041     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
  1042     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  1043     if (if_instr->is_swapped()) {
  1044       int t = taken_count_offset;
  1045       taken_count_offset = not_taken_count_offset;
  1046       not_taken_count_offset = t;
  1049     LIR_Opr md_reg = new_register(T_METADATA);
  1050     __ metadata2reg(md->constant_encoding(), md_reg);
  1051     LIR_Opr data_offset_reg = new_pointer_register();
  1053     LIR_Opr opr1 =  LIR_OprFact::intptrConst(taken_count_offset);
  1054     LIR_Opr opr2 =  LIR_OprFact::intptrConst(not_taken_count_offset);
  1055     LabelObj* skip = new LabelObj();
  1057     __ cmove_mips(lir_cond(cond), left, right, opr1, opr2, data_offset_reg, as_BasicType(if_instr->x()->type()));
  1059     LIR_Opr data_reg = new_pointer_register();
  1060     LIR_Opr tmp_reg = new_pointer_register();
  1061     __ move(data_offset_reg, tmp_reg);
  1062     __ add(tmp_reg, md_reg, tmp_reg);
  1063     LIR_Address* data_addr = new LIR_Address(tmp_reg, 0, data_reg->type());
  1064     __ move(data_addr, data_reg);
  1065     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
  1066     // Use leal instead of add to avoid destroying condition codes on x86
  1067     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
  1068     __ move(data_reg, data_addr);
  1072 #endif
  1074 // Phi technique:
  1075 // This is about passing live values from one basic block to the other.
  1076 // In code generated with Java it is rather rare that more than one
  1077 // value is on the stack from one basic block to the other.
  1078 // We optimize our technique for efficient passing of one value
  1079 // (of type long, int, double..) but it can be extended.
  1080 // When entering or leaving a basic block, all registers and all spill
  1081 // slots are release and empty. We use the released registers
  1082 // and spill slots to pass the live values from one block
  1083 // to the other. The topmost value, i.e., the value on TOS of expression
  1084 // stack is passed in registers. All other values are stored in spilling
  1085 // area. Every Phi has an index which designates its spill slot
  1086 // At exit of a basic block, we fill the register(s) and spill slots.
  1087 // At entry of a basic block, the block_prolog sets up the content of phi nodes
  1088 // and locks necessary registers and spilling slots.
  1091 // move current value to referenced phi function
  1092 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
  1093   Phi* phi = sux_val->as_Phi();
  1094   // cur_val can be null without phi being null in conjunction with inlining
  1095   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
  1096     LIR_Opr operand = cur_val->operand();
  1097     if (cur_val->operand()->is_illegal()) {
  1098       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
  1099              "these can be produced lazily");
  1100       operand = operand_for_instruction(cur_val);
  1102     resolver->move(operand, operand_for_instruction(phi));
  1107 // Moves all stack values into their PHI position
  1108 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
  1109   BlockBegin* bb = block();
  1110   if (bb->number_of_sux() == 1) {
  1111     BlockBegin* sux = bb->sux_at(0);
  1112     assert(sux->number_of_preds() > 0, "invalid CFG");
  1114     // a block with only one predecessor never has phi functions
  1115     if (sux->number_of_preds() > 1) {
  1116       int max_phis = cur_state->stack_size() + cur_state->locals_size();
  1117       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
  1119       ValueStack* sux_state = sux->state();
  1120       Value sux_value;
  1121       int index;
  1123       assert(cur_state->scope() == sux_state->scope(), "not matching");
  1124       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
  1125       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
  1127       for_each_stack_value(sux_state, index, sux_value) {
  1128         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
  1131       for_each_local_value(sux_state, index, sux_value) {
  1132         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
  1135       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
  1141 LIR_Opr LIRGenerator::new_register(BasicType type) {
  1142   int vreg = _virtual_register_number;
  1143   // add a little fudge factor for the bailout, since the bailout is
  1144   // only checked periodically.  This gives a few extra registers to
  1145   // hand out before we really run out, which helps us keep from
  1146   // tripping over assertions.
  1147   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
  1148     bailout("out of virtual registers");
  1149     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
  1150       // wrap it around
  1151       _virtual_register_number = LIR_OprDesc::vreg_base;
  1154   _virtual_register_number += 1;
  1155   return LIR_OprFact::virtual_register(vreg, type);
  1159 // Try to lock using register in hint
  1160 LIR_Opr LIRGenerator::rlock(Value instr) {
  1161   return new_register(instr->type());
  1165 // does an rlock and sets result
  1166 LIR_Opr LIRGenerator::rlock_result(Value x) {
  1167   LIR_Opr reg = rlock(x);
  1168   set_result(x, reg);
  1169   return reg;
  1173 // does an rlock and sets result
  1174 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
  1175   LIR_Opr reg;
  1176   switch (type) {
  1177   case T_BYTE:
  1178   case T_BOOLEAN:
  1179     reg = rlock_byte(type);
  1180     break;
  1181   default:
  1182     reg = rlock(x);
  1183     break;
  1186   set_result(x, reg);
  1187   return reg;
  1191 //---------------------------------------------------------------------
  1192 ciObject* LIRGenerator::get_jobject_constant(Value value) {
  1193   ObjectType* oc = value->type()->as_ObjectType();
  1194   if (oc) {
  1195     return oc->constant_value();
  1197   return NULL;
  1199 #ifdef MIPS
  1200 void LIRGenerator::write_barrier(LIR_Opr addr) {
  1201         if (addr->is_address()) {
  1202         LIR_Address* address = (LIR_Address*)addr;
  1203         LIR_Opr ptr = new_register(T_OBJECT);
  1204         if (!address->index()->is_valid() && address->disp() == 0) {
  1205                 __ move(address->base(), ptr);
  1206         } else {
  1207                 __ leal(addr, ptr);
  1209                 addr = ptr;
  1211         assert(addr->is_register(), "must be a register at this point");
  1213         LIR_Opr tmp = new_pointer_register();
  1214         if (TwoOperandLIRForm) {
  1215                 __ move(addr, tmp);
  1216                 __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1217         } else {
  1218                 __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1220         if (can_inline_as_constant(card_table_base())) {
  1221                 __ move(LIR_OprFact::intConst(0), new LIR_Address(tmp, card_table_base()->as_jint(), T_BYTE));
  1222         } else {
  1223                 __ add(tmp, load_constant(card_table_base()), tmp);
  1224                 __ move(LIR_OprFact::intConst(0), new LIR_Address(tmp, 0, T_BYTE));
  1227 #endif
  1230 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
  1231   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
  1232   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
  1234   // no moves are created for phi functions at the begin of exception
  1235   // handlers, so assign operands manually here
  1236   for_each_phi_fun(block(), phi,
  1237                    operand_for_instruction(phi));
  1239   LIR_Opr thread_reg = getThreadPointer();
  1240   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
  1241                exceptionOopOpr());
  1242   __ move_wide(LIR_OprFact::oopConst(NULL),
  1243                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
  1244   __ move_wide(LIR_OprFact::oopConst(NULL),
  1245                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
  1247   LIR_Opr result = new_register(T_OBJECT);
  1248   __ move(exceptionOopOpr(), result);
  1249   set_result(x, result);
  1253 //----------------------------------------------------------------------
  1254 //----------------------------------------------------------------------
  1255 //----------------------------------------------------------------------
  1256 //----------------------------------------------------------------------
  1257 //                        visitor functions
  1258 //----------------------------------------------------------------------
  1259 //----------------------------------------------------------------------
  1260 //----------------------------------------------------------------------
  1261 //----------------------------------------------------------------------
  1263 void LIRGenerator::do_Phi(Phi* x) {
  1264   // phi functions are never visited directly
  1265   ShouldNotReachHere();
  1269 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
  1270 void LIRGenerator::do_Constant(Constant* x) {
  1271   if (x->state_before() != NULL) {
  1272     // Any constant with a ValueStack requires patching so emit the patch here
  1273     LIR_Opr reg = rlock_result(x);
  1274     CodeEmitInfo* info = state_for(x, x->state_before());
  1275     __ oop2reg_patch(NULL, reg, info);
  1276   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
  1277     if (!x->is_pinned()) {
  1278       // unpinned constants are handled specially so that they can be
  1279       // put into registers when they are used multiple times within a
  1280       // block.  After the block completes their operand will be
  1281       // cleared so that other blocks can't refer to that register.
  1282       set_result(x, load_constant(x));
  1283     } else {
  1284       LIR_Opr res = x->operand();
  1285       if (!res->is_valid()) {
  1286         res = LIR_OprFact::value_type(x->type());
  1288       if (res->is_constant()) {
  1289         LIR_Opr reg = rlock_result(x);
  1290         __ move(res, reg);
  1291       } else {
  1292         set_result(x, res);
  1295   } else {
  1296     set_result(x, LIR_OprFact::value_type(x->type()));
  1301 void LIRGenerator::do_Local(Local* x) {
  1302   // operand_for_instruction has the side effect of setting the result
  1303   // so there's no need to do it here.
  1304   operand_for_instruction(x);
  1308 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
  1309   Unimplemented();
  1313 void LIRGenerator::do_Return(Return* x) {
  1314   if (compilation()->env()->dtrace_method_probes()) {
  1315     BasicTypeList signature;
  1316     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  1317     signature.append(T_METADATA); // Method*
  1318     LIR_OprList* args = new LIR_OprList();
  1319     args->append(getThreadPointer());
  1320     LIR_Opr meth = new_register(T_METADATA);
  1321     __ metadata2reg(method()->constant_encoding(), meth);
  1322     args->append(meth);
  1323     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
  1326   if (x->type()->is_void()) {
  1327     __ return_op(LIR_OprFact::illegalOpr);
  1328   } else {
  1329     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
  1330     LIRItem result(x->result(), this);
  1332     result.load_item_force(reg);
  1333     __ return_op(result.result());
  1335   set_no_result(x);
  1338 // Examble: ref.get()
  1339 // Combination of LoadField and g1 pre-write barrier
  1340 void LIRGenerator::do_Reference_get(Intrinsic* x) {
  1342   const int referent_offset = java_lang_ref_Reference::referent_offset;
  1343   guarantee(referent_offset > 0, "referent offset not initialized");
  1345   assert(x->number_of_arguments() == 1, "wrong type");
  1347   LIRItem reference(x->argument_at(0), this);
  1348   reference.load_item();
  1350   // need to perform the null check on the reference objecy
  1351   CodeEmitInfo* info = NULL;
  1352   if (x->needs_null_check()) {
  1353     info = state_for(x);
  1356   LIR_Address* referent_field_adr =
  1357     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
  1359   LIR_Opr result = rlock_result(x);
  1361   __ load(referent_field_adr, result, info);
  1363   // Register the value in the referent field with the pre-barrier
  1364   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  1365               result /* pre_val */,
  1366               false  /* do_load */,
  1367               false  /* patch */,
  1368               NULL   /* info */);
  1371 // Example: clazz.isInstance(object)
  1372 void LIRGenerator::do_isInstance(Intrinsic* x) {
  1373   assert(x->number_of_arguments() == 2, "wrong type");
  1375   // TODO could try to substitute this node with an equivalent InstanceOf
  1376   // if clazz is known to be a constant Class. This will pick up newly found
  1377   // constants after HIR construction. I'll leave this to a future change.
  1379   // as a first cut, make a simple leaf call to runtime to stay platform independent.
  1380   // could follow the aastore example in a future change.
  1382   LIRItem clazz(x->argument_at(0), this);
  1383   LIRItem object(x->argument_at(1), this);
  1384   clazz.load_item();
  1385   object.load_item();
  1386   LIR_Opr result = rlock_result(x);
  1388   // need to perform null check on clazz
  1389   if (x->needs_null_check()) {
  1390     CodeEmitInfo* info = state_for(x);
  1391     __ null_check(clazz.result(), info);
  1394   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
  1395                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
  1396                                      x->type(),
  1397                                      NULL); // NULL CodeEmitInfo results in a leaf call
  1398   __ move(call_result, result);
  1401 // Example: object.getClass ()
  1402 void LIRGenerator::do_getClass(Intrinsic* x) {
  1403   assert(x->number_of_arguments() == 1, "wrong type");
  1405   LIRItem rcvr(x->argument_at(0), this);
  1406   rcvr.load_item();
  1407   LIR_Opr temp = new_register(T_METADATA);
  1408   LIR_Opr result = rlock_result(x);
  1410   // need to perform the null check on the rcvr
  1411   CodeEmitInfo* info = NULL;
  1412   if (x->needs_null_check()) {
  1413     info = state_for(x);
  1416   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
  1417   // meaning of these two is mixed up (see JDK-8026837).
  1418   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
  1419   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
  1423 // Example: Thread.currentThread()
  1424 void LIRGenerator::do_currentThread(Intrinsic* x) {
  1425   assert(x->number_of_arguments() == 0, "wrong type");
  1426   LIR_Opr reg = rlock_result(x);
  1427   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
  1431 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
  1432   assert(x->number_of_arguments() == 1, "wrong type");
  1433   LIRItem receiver(x->argument_at(0), this);
  1435   receiver.load_item();
  1436   BasicTypeList signature;
  1437   signature.append(T_OBJECT); // receiver
  1438   LIR_OprList* args = new LIR_OprList();
  1439   args->append(receiver.result());
  1440   CodeEmitInfo* info = state_for(x, x->state());
  1441   call_runtime(&signature, args,
  1442                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
  1443                voidType, info);
  1445   set_no_result(x);
  1449 //------------------------local access--------------------------------------
  1451 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
  1452   if (x->operand()->is_illegal()) {
  1453     Constant* c = x->as_Constant();
  1454     if (c != NULL) {
  1455       x->set_operand(LIR_OprFact::value_type(c->type()));
  1456     } else {
  1457       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
  1458       // allocate a virtual register for this local or phi
  1459       x->set_operand(rlock(x));
  1460       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
  1463   return x->operand();
  1467 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
  1468   if (opr->is_virtual()) {
  1469     return instruction_for_vreg(opr->vreg_number());
  1471   return NULL;
  1475 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
  1476   if (reg_num < _instruction_for_operand.length()) {
  1477     return _instruction_for_operand.at(reg_num);
  1479   return NULL;
  1483 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
  1484   if (_vreg_flags.size_in_bits() == 0) {
  1485     BitMap2D temp(100, num_vreg_flags);
  1486     temp.clear();
  1487     _vreg_flags = temp;
  1489   _vreg_flags.at_put_grow(vreg_num, f, true);
  1492 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
  1493   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
  1494     return false;
  1496   return _vreg_flags.at(vreg_num, f);
  1500 // Block local constant handling.  This code is useful for keeping
  1501 // unpinned constants and constants which aren't exposed in the IR in
  1502 // registers.  Unpinned Constant instructions have their operands
  1503 // cleared when the block is finished so that other blocks can't end
  1504 // up referring to their registers.
  1506 LIR_Opr LIRGenerator::load_constant(Constant* x) {
  1507   assert(!x->is_pinned(), "only for unpinned constants");
  1508   _unpinned_constants.append(x);
  1509   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
  1513 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
  1514   BasicType t = c->type();
  1515   for (int i = 0; i < _constants.length(); i++) {
  1516     LIR_Const* other = _constants.at(i);
  1517     if (t == other->type()) {
  1518       switch (t) {
  1519       case T_INT:
  1520       case T_FLOAT:
  1521         if (c->as_jint_bits() != other->as_jint_bits()) continue;
  1522         break;
  1523       case T_LONG:
  1524       case T_DOUBLE:
  1525         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
  1526         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
  1527         break;
  1528       case T_OBJECT:
  1529         if (c->as_jobject() != other->as_jobject()) continue;
  1530         break;
  1532       return _reg_for_constants.at(i);
  1536   LIR_Opr result = new_register(t);
  1537   __ move((LIR_Opr)c, result);
  1538   _constants.append(c);
  1539   _reg_for_constants.append(result);
  1540   return result;
  1543 // Various barriers
  1545 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1546                                bool do_load, bool patch, CodeEmitInfo* info) {
  1547   // Do the pre-write barrier, if any.
  1548   switch (_bs->kind()) {
  1549 #if INCLUDE_ALL_GCS
  1550     case BarrierSet::G1SATBCT:
  1551     case BarrierSet::G1SATBCTLogging:
  1552       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
  1553       break;
  1554 #endif // INCLUDE_ALL_GCS
  1555     case BarrierSet::CardTableModRef:
  1556     case BarrierSet::CardTableExtension:
  1557       // No pre barriers
  1558       break;
  1559     case BarrierSet::ModRef:
  1560     case BarrierSet::Other:
  1561       // No pre barriers
  1562       break;
  1563     default      :
  1564       ShouldNotReachHere();
  1569 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1570   switch (_bs->kind()) {
  1571 #if INCLUDE_ALL_GCS
  1572     case BarrierSet::G1SATBCT:
  1573     case BarrierSet::G1SATBCTLogging:
  1574       G1SATBCardTableModRef_post_barrier(addr,  new_val);
  1575       break;
  1576 #endif // INCLUDE_ALL_GCS
  1577     case BarrierSet::CardTableModRef:
  1578     case BarrierSet::CardTableExtension:
  1579       CardTableModRef_post_barrier(addr,  new_val);
  1580       break;
  1581     case BarrierSet::ModRef:
  1582     case BarrierSet::Other:
  1583       // No post barriers
  1584       break;
  1585     default      :
  1586       ShouldNotReachHere();
  1590 ////////////////////////////////////////////////////////////////////////
  1591 #if INCLUDE_ALL_GCS
  1593 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
  1594                                                      bool do_load, bool patch, CodeEmitInfo* info) {
  1595   // First we test whether marking is in progress.
  1596   BasicType flag_type;
  1597   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1598     flag_type = T_INT;
  1599   } else {
  1600     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  1601               "Assumption");
  1602     flag_type = T_BYTE;
  1604   LIR_Opr thrd = getThreadPointer();
  1605   LIR_Address* mark_active_flag_addr =
  1606     new LIR_Address(thrd,
  1607                     in_bytes(JavaThread::satb_mark_queue_offset() +
  1608                              PtrQueue::byte_offset_of_active()),
  1609                     flag_type);
  1610   // Read the marking-in-progress flag.
  1611   LIR_Opr flag_val = new_register(T_INT);
  1612   __ load(mark_active_flag_addr, flag_val);
  1613   //MIPS not support cmp.
  1614 #ifndef MIPS
  1615   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
  1616 #endif
  1618   LIR_PatchCode pre_val_patch_code = lir_patch_none;
  1620   CodeStub* slow;
  1622   if (do_load) {
  1623     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
  1624     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
  1626     if (patch)
  1627       pre_val_patch_code = lir_patch_normal;
  1629     pre_val = new_register(T_OBJECT);
  1631     if (!addr_opr->is_address()) {
  1632       assert(addr_opr->is_register(), "must be");
  1633       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
  1635     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
  1636   } else {
  1637     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
  1638     assert(pre_val->is_register(), "must be");
  1639     assert(pre_val->type() == T_OBJECT, "must be an object");
  1640     assert(info == NULL, "sanity");
  1642     slow = new G1PreBarrierStub(pre_val);
  1645 #ifndef MIPS
  1646   __ branch(lir_cond_notEqual, T_INT, slow);
  1647 #else
  1648   __ branch(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0), T_INT, slow);
  1649 #endif
  1650   __ branch_destination(slow->continuation());
  1653 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1654   // If the "new_val" is a constant NULL, no barrier is necessary.
  1655   if (new_val->is_constant() &&
  1656       new_val->as_constant_ptr()->as_jobject() == NULL) return;
  1658   if (!new_val->is_register()) {
  1659     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1660     if (new_val->is_constant()) {
  1661       __ move(new_val, new_val_reg);
  1662     } else {
  1663       __ leal(new_val, new_val_reg);
  1665     new_val = new_val_reg;
  1667   assert(new_val->is_register(), "must be a register at this point");
  1669   if (addr->is_address()) {
  1670     LIR_Address* address = addr->as_address_ptr();
  1671     LIR_Opr ptr = new_pointer_register();
  1672     if (!address->index()->is_valid() && address->disp() == 0) {
  1673       __ move(address->base(), ptr);
  1674     } else {
  1675       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1676       __ leal(addr, ptr);
  1678     addr = ptr;
  1680   assert(addr->is_register(), "must be a register at this point");
  1682   LIR_Opr xor_res = new_pointer_register();
  1683   LIR_Opr xor_shift_res = new_pointer_register();
  1684   if (TwoOperandLIRForm ) {
  1685     __ move(addr, xor_res);
  1686     __ logical_xor(xor_res, new_val, xor_res);
  1687     __ move(xor_res, xor_shift_res);
  1688     __ unsigned_shift_right(xor_shift_res,
  1689                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1690                             xor_shift_res,
  1691                             LIR_OprDesc::illegalOpr());
  1692   } else {
  1693     __ logical_xor(addr, new_val, xor_res);
  1694     __ unsigned_shift_right(xor_res,
  1695                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
  1696                             xor_shift_res,
  1697                             LIR_OprDesc::illegalOpr());
  1700   if (!new_val->is_register()) {
  1701     LIR_Opr new_val_reg = new_register(T_OBJECT);
  1702     __ leal(new_val, new_val_reg);
  1703     new_val = new_val_reg;
  1705   assert(new_val->is_register(), "must be a register at this point");
  1707 #ifndef MIPS
  1708   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
  1710 #endif
  1711   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
  1712 #ifndef MIPS
  1713   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1714 #else
  1715   __ branch(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst((intptr_t)NULL_WORD), LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
  1716 #endif
  1717   __ branch_destination(slow->continuation());
  1720 #endif // INCLUDE_ALL_GCS
  1721 ////////////////////////////////////////////////////////////////////////
  1723 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
  1725   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
  1726   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
  1727   if (addr->is_address()) {
  1728     LIR_Address* address = addr->as_address_ptr();
  1729     // ptr cannot be an object because we use this barrier for array card marks
  1730     // and addr can point in the middle of an array.
  1731     LIR_Opr ptr = new_pointer_register();
  1732     if (!address->index()->is_valid() && address->disp() == 0) {
  1733       __ move(address->base(), ptr);
  1734     } else {
  1735       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
  1736       __ leal(addr, ptr);
  1738     addr = ptr;
  1740   assert(addr->is_register(), "must be a register at this point");
  1742 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
  1743   CardTableModRef_post_barrier_helper(addr, card_table_base);
  1744 #else
  1745   LIR_Opr tmp = new_pointer_register();
  1746   if (TwoOperandLIRForm) {
  1747     __ move(addr, tmp);
  1748     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
  1749   } else {
  1750     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
  1752   if (can_inline_as_constant(card_table_base)) {
  1753     __ move(LIR_OprFact::intConst(0),
  1754               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
  1755   } else {
  1756 #ifndef MIPS
  1757     __ move(LIR_OprFact::intConst(0),
  1758               new LIR_Address(tmp, load_constant(card_table_base),
  1759                               T_BYTE));
  1760 #else
  1761     __ add(tmp, load_constant(card_table_base), tmp);
  1762     __ move(LIR_OprFact::intConst(0),
  1763               new LIR_Address(tmp, 0,
  1764                               T_BYTE));
  1765 #endif
  1767 #endif
  1771 //------------------------field access--------------------------------------
  1773 // Comment copied form templateTable_i486.cpp
  1774 // ----------------------------------------------------------------------------
  1775 // Volatile variables demand their effects be made known to all CPU's in
  1776 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1777 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1778 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1779 // reorder volatile references, the hardware also must not reorder them).
  1780 //
  1781 // According to the new Java Memory Model (JMM):
  1782 // (1) All volatiles are serialized wrt to each other.
  1783 // ALSO reads & writes act as aquire & release, so:
  1784 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1785 // the read float up to before the read.  It's OK for non-volatile memory refs
  1786 // that happen before the volatile read to float down below it.
  1787 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1788 // that happen BEFORE the write float down to after the write.  It's OK for
  1789 // non-volatile memory refs that happen after the volatile write to float up
  1790 // before it.
  1791 //
  1792 // We only put in barriers around volatile refs (they are expensive), not
  1793 // _between_ memory refs (that would require us to track the flavor of the
  1794 // previous memory refs).  Requirements (2) and (3) require some barriers
  1795 // before volatile stores and after volatile loads.  These nearly cover
  1796 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1797 // case is placed after volatile-stores although it could just as well go
  1798 // before volatile-loads.
  1801 void LIRGenerator::do_StoreField(StoreField* x) {
  1802   bool needs_patching = x->needs_patching();
  1803   bool is_volatile = x->field()->is_volatile();
  1804   BasicType field_type = x->field_type();
  1805   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
  1807   CodeEmitInfo* info = NULL;
  1808   if (needs_patching) {
  1809     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1810     info = state_for(x, x->state_before());
  1811   } else if (x->needs_null_check()) {
  1812     NullCheck* nc = x->explicit_null_check();
  1813     if (nc == NULL) {
  1814       info = state_for(x);
  1815     } else {
  1816       info = state_for(nc);
  1821   LIRItem object(x->obj(), this);
  1822   LIRItem value(x->value(),  this);
  1824   object.load_item();
  1826   if (is_volatile || needs_patching) {
  1827     // load item if field is volatile (fewer special cases for volatiles)
  1828     // load item if field not initialized
  1829     // load item if field not constant
  1830     // because of code patching we cannot inline constants
  1831     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
  1832       value.load_byte_item();
  1833     } else  {
  1834       value.load_item();
  1836   } else {
  1837     value.load_for_store(field_type);
  1840   set_no_result(x);
  1842 #ifndef PRODUCT
  1843   if (PrintNotLoaded && needs_patching) {
  1844     tty->print_cr("   ###class not loaded at store_%s bci %d",
  1845                   x->is_static() ?  "static" : "field", x->printable_bci());
  1847 #endif
  1849   if (x->needs_null_check() &&
  1850       (needs_patching ||
  1851        MacroAssembler::needs_explicit_null_check(x->offset()))) {
  1852     // Emit an explicit null check because the offset is too large.
  1853     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
  1854     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
  1855     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
  1858   LIR_Address* address;
  1859   if (needs_patching) {
  1860     // we need to patch the offset in the instruction so don't allow
  1861     // generate_address to try to be smart about emitting the -1.
  1862     // Otherwise the patching code won't know how to find the
  1863     // instruction to patch.
  1864     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1865   } else {
  1866     address = generate_address(object.result(), x->offset(), field_type);
  1869   if (is_volatile && os::is_MP()) {
  1870     __ membar_release();
  1873   if (is_oop) {
  1874     // Do the pre-write barrier, if any.
  1875     pre_barrier(LIR_OprFact::address(address),
  1876                 LIR_OprFact::illegalOpr /* pre_val */,
  1877                 true /* do_load*/,
  1878                 needs_patching,
  1879                 (info ? new CodeEmitInfo(info) : NULL));
  1882   if (is_volatile && !needs_patching) {
  1883     volatile_field_store(value.result(), address, info);
  1884   } else {
  1885     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1886     __ store(value.result(), address, info, patch_code);
  1889   if (is_oop) {
  1890     // Store to object so mark the card of the header
  1891     post_barrier(object.result(), value.result());
  1894   if (is_volatile && os::is_MP()) {
  1895     __ membar();
  1900 void LIRGenerator::do_LoadField(LoadField* x) {
  1901   bool needs_patching = x->needs_patching();
  1902   bool is_volatile = x->field()->is_volatile();
  1903   BasicType field_type = x->field_type();
  1905   CodeEmitInfo* info = NULL;
  1906   if (needs_patching) {
  1907     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
  1908     info = state_for(x, x->state_before());
  1909   } else if (x->needs_null_check()) {
  1910     NullCheck* nc = x->explicit_null_check();
  1911     if (nc == NULL) {
  1912       info = state_for(x);
  1913     } else {
  1914       info = state_for(nc);
  1918   LIRItem object(x->obj(), this);
  1920   object.load_item();
  1922 #ifndef PRODUCT
  1923   if (PrintNotLoaded && needs_patching) {
  1924     tty->print_cr("   ###class not loaded at load_%s bci %d",
  1925                   x->is_static() ?  "static" : "field", x->printable_bci());
  1927 #endif
  1929   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
  1930   if (x->needs_null_check() &&
  1931       (needs_patching ||
  1932        MacroAssembler::needs_explicit_null_check(x->offset()) ||
  1933        stress_deopt)) {
  1934     LIR_Opr obj = object.result();
  1935     if (stress_deopt) {
  1936       obj = new_register(T_OBJECT);
  1937       __ move(LIR_OprFact::oopConst(NULL), obj);
  1939     // Emit an explicit null check because the offset is too large.
  1940     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
  1941     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
  1942     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
  1945   LIR_Opr reg = rlock_result(x, field_type);
  1946   LIR_Address* address;
  1947   if (needs_patching) {
  1948     // we need to patch the offset in the instruction so don't allow
  1949     // generate_address to try to be smart about emitting the -1.
  1950     // Otherwise the patching code won't know how to find the
  1951     // instruction to patch.
  1952     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
  1953   } else {
  1954     address = generate_address(object.result(), x->offset(), field_type);
  1957   if (is_volatile && !needs_patching) {
  1958     volatile_field_load(address, reg, info);
  1959   } else {
  1960     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
  1961     __ load(address, reg, info, patch_code);
  1964   if (is_volatile && os::is_MP()) {
  1965     __ membar_acquire();
  1970 //------------------------java.nio.Buffer.checkIndex------------------------
  1972 // int java.nio.Buffer.checkIndex(int)
  1973 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
  1974   // NOTE: by the time we are in checkIndex() we are guaranteed that
  1975   // the buffer is non-null (because checkIndex is package-private and
  1976   // only called from within other methods in the buffer).
  1977   assert(x->number_of_arguments() == 2, "wrong type");
  1978   LIRItem buf  (x->argument_at(0), this);
  1979   LIRItem index(x->argument_at(1), this);
  1980   buf.load_item();
  1981   index.load_item();
  1983   LIR_Opr result = rlock_result(x);
  1984   if (GenerateRangeChecks) {
  1985     CodeEmitInfo* info = state_for(x);
  1986     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
  1987     if (index.result()->is_constant()) {
  1988 #ifndef MIPS
  1989       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
  1990       __ branch(lir_cond_belowEqual, T_INT, stub);
  1991 #else
  1992       LIR_Opr left = LIR_OprFact::address(new LIR_Address( buf.result(),
  1993                                                 java_nio_Buffer::limit_offset(),T_INT));
  1994       LIR_Opr right = LIR_OprFact::intConst(index.result()->as_jint());
  1995       __ null_check_for_branch(lir_cond_belowEqual, left, right, info);
  1996       __ branch(lir_cond_belowEqual,left, right ,T_INT, stub); // forward branch
  1998 #endif
  1999     } else {
  2000 #ifndef MIPS
  2001       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
  2002                   java_nio_Buffer::limit_offset(), T_INT, info);
  2003       __ branch(lir_cond_aboveEqual, T_INT, stub);
  2004 #else
  2005       LIR_Opr right = LIR_OprFact::address(new LIR_Address( buf.result(), java_nio_Buffer::limit_offset(),T_INT));
  2006       LIR_Opr left =  index.result();
  2007       __ null_check_for_branch(lir_cond_aboveEqual, left, right, info);
  2008       __ branch(lir_cond_aboveEqual, left, right , T_INT, stub); // forward branch
  2009 #endif
  2011     __ move(index.result(), result);
  2012   } else {
  2013     // Just load the index into the result register
  2014     __ move(index.result(), result);
  2019 //------------------------array access--------------------------------------
  2022 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
  2023   LIRItem array(x->array(), this);
  2024   array.load_item();
  2025   LIR_Opr reg = rlock_result(x);
  2027   CodeEmitInfo* info = NULL;
  2028   if (x->needs_null_check()) {
  2029     NullCheck* nc = x->explicit_null_check();
  2030     if (nc == NULL) {
  2031       info = state_for(x);
  2032     } else {
  2033       info = state_for(nc);
  2035     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
  2036       LIR_Opr obj = new_register(T_OBJECT);
  2037       __ move(LIR_OprFact::oopConst(NULL), obj);
  2038       __ null_check(obj, new CodeEmitInfo(info));
  2041   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
  2045 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
  2046   bool use_length = x->length() != NULL;
  2047   LIRItem array(x->array(), this);
  2048   LIRItem index(x->index(), this);
  2049   LIRItem length(this);
  2050   bool needs_range_check = x->compute_needs_range_check();
  2052   if (use_length && needs_range_check) {
  2053     length.set_instruction(x->length());
  2054     length.load_item();
  2057   array.load_item();
  2058   if (index.is_constant() && can_inline_as_constant(x->index())) {
  2059     // let it be a constant
  2060     index.dont_load_item();
  2061   } else {
  2062     index.load_item();
  2065   CodeEmitInfo* range_check_info = state_for(x);
  2066   CodeEmitInfo* null_check_info = NULL;
  2067   if (x->needs_null_check()) {
  2068     NullCheck* nc = x->explicit_null_check();
  2069     if (nc != NULL) {
  2070       null_check_info = state_for(nc);
  2071     } else {
  2072       null_check_info = range_check_info;
  2074     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
  2075       LIR_Opr obj = new_register(T_OBJECT);
  2076       __ move(LIR_OprFact::oopConst(NULL), obj);
  2077       __ null_check(obj, new CodeEmitInfo(null_check_info));
  2081   // emit array address setup early so it schedules better
  2082   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
  2084   if (GenerateRangeChecks && needs_range_check) {
  2085     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
  2086 #ifndef MIPS
  2087       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
  2088 #else
  2089       tty->print_cr("LIRGenerator::do_LoadIndexed(LoadIndexed* x) unimplemented yet!");
  2090       Unimplemented();
  2091 #endif
  2092     } else if (use_length) {
  2093       // TODO: use a (modified) version of array_range_check that does not require a
  2094       //       constant length to be loaded to a register
  2095 #ifndef MIPS
  2096       __ cmp(lir_cond_belowEqual, length.result(), index.result());
  2097       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
  2098 #else
  2099       __ branch(lir_cond_belowEqual, length.result(), index.result(),T_INT, new RangeCheckStub(range_check_info, index.result()));
  2100 #endif
  2101     } else {
  2102       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
  2103       // The range check performs the null check, so clear it out for the load
  2104       null_check_info = NULL;
  2108   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
  2112 void LIRGenerator::do_NullCheck(NullCheck* x) {
  2113   if (x->can_trap()) {
  2114     LIRItem value(x->obj(), this);
  2115     value.load_item();
  2116     CodeEmitInfo* info = state_for(x);
  2117     __ null_check(value.result(), info);
  2122 void LIRGenerator::do_TypeCast(TypeCast* x) {
  2123   LIRItem value(x->obj(), this);
  2124   value.load_item();
  2125   // the result is the same as from the node we are casting
  2126   set_result(x, value.result());
  2130 void LIRGenerator::do_Throw(Throw* x) {
  2131   LIRItem exception(x->exception(), this);
  2132   exception.load_item();
  2133   set_no_result(x);
  2134   LIR_Opr exception_opr = exception.result();
  2135   CodeEmitInfo* info = state_for(x, x->state());
  2137 #ifndef PRODUCT
  2138   if (PrintC1Statistics) {
  2139     increment_counter(Runtime1::throw_count_address(), T_INT);
  2141 #endif
  2143   // check if the instruction has an xhandler in any of the nested scopes
  2144   bool unwind = false;
  2145   if (info->exception_handlers()->length() == 0) {
  2146     // this throw is not inside an xhandler
  2147     unwind = true;
  2148   } else {
  2149     // get some idea of the throw type
  2150     bool type_is_exact = true;
  2151     ciType* throw_type = x->exception()->exact_type();
  2152     if (throw_type == NULL) {
  2153       type_is_exact = false;
  2154       throw_type = x->exception()->declared_type();
  2156     if (throw_type != NULL && throw_type->is_instance_klass()) {
  2157       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
  2158       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
  2162   // do null check before moving exception oop into fixed register
  2163   // to avoid a fixed interval with an oop during the null check.
  2164   // Use a copy of the CodeEmitInfo because debug information is
  2165   // different for null_check and throw.
  2166   if (GenerateCompilerNullChecks &&
  2167       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
  2168     // if the exception object wasn't created using new then it might be null.
  2169     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
  2172   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
  2173     // we need to go through the exception lookup path to get JVMTI
  2174     // notification done
  2175     unwind = false;
  2178   // move exception oop into fixed register
  2179   __ move(exception_opr, exceptionOopOpr());
  2181   if (unwind) {
  2182     __ unwind_exception(exceptionOopOpr());
  2183   } else {
  2184     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
  2189 void LIRGenerator::do_RoundFP(RoundFP* x) {
  2190   LIRItem input(x->input(), this);
  2191   input.load_item();
  2192   LIR_Opr input_opr = input.result();
  2193   assert(input_opr->is_register(), "why round if value is not in a register?");
  2194   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
  2195   if (input_opr->is_single_fpu()) {
  2196     set_result(x, round_item(input_opr)); // This code path not currently taken
  2197   } else {
  2198     LIR_Opr result = new_register(T_DOUBLE);
  2199     set_vreg_flag(result, must_start_in_memory);
  2200     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
  2201     set_result(x, result);
  2205 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
  2206 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
  2207 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
  2208   LIRItem base(x->base(), this);
  2209   LIRItem idx(this);
  2211   base.load_item();
  2212   if (x->has_index()) {
  2213     idx.set_instruction(x->index());
  2214     idx.load_nonconstant();
  2217   LIR_Opr reg = rlock_result(x, x->basic_type());
  2219   int   log2_scale = 0;
  2220   if (x->has_index()) {
  2221     log2_scale = x->log2_scale();
  2224   assert(!x->has_index() || idx.value() == x->index(), "should match");
  2226   LIR_Opr base_op = base.result();
  2227   LIR_Opr index_op = idx.result();
  2228 #ifndef _LP64
  2229   if (base_op->type() == T_LONG) {
  2230     base_op = new_register(T_INT);
  2231     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2233   if (x->has_index()) {
  2234     if (index_op->type() == T_LONG) {
  2235       LIR_Opr long_index_op = index_op;
  2236       if (index_op->is_constant()) {
  2237         long_index_op = new_register(T_LONG);
  2238         __ move(index_op, long_index_op);
  2240       index_op = new_register(T_INT);
  2241       __ convert(Bytecodes::_l2i, long_index_op, index_op);
  2242     } else {
  2243       assert(x->index()->type()->tag() == intTag, "must be");
  2246   // At this point base and index should be all ints.
  2247   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
  2248   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
  2249 #else
  2250   if (x->has_index()) {
  2251     if (index_op->type() == T_INT) {
  2252       if (!index_op->is_constant()) {
  2253         index_op = new_register(T_LONG);
  2254         __ convert(Bytecodes::_i2l, idx.result(), index_op);
  2256     } else {
  2257       assert(index_op->type() == T_LONG, "must be");
  2258       if (index_op->is_constant()) {
  2259         index_op = new_register(T_LONG);
  2260         __ move(idx.result(), index_op);
  2264   // At this point base is a long non-constant
  2265   // Index is a long register or a int constant.
  2266   // We allow the constant to stay an int because that would allow us a more compact encoding by
  2267   // embedding an immediate offset in the address expression. If we have a long constant, we have to
  2268   // move it into a register first.
  2269   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
  2270   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
  2271                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
  2272 #endif
  2274   BasicType dst_type = x->basic_type();
  2276   LIR_Address* addr;
  2277   if (index_op->is_constant()) {
  2278     assert(log2_scale == 0, "must not have a scale");
  2279     assert(index_op->type() == T_INT, "only int constants supported");
  2280     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
  2281   } else {
  2282 #ifdef X86
  2283     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
  2284 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
  2285     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
  2286 #else
  2287     if (index_op->is_illegal() || log2_scale == 0) {
  2288 #ifndef MIPS
  2289       addr = new LIR_Address(base_op, index_op, dst_type);
  2290 #else
  2291    #ifdef _LP64
  2292       LIR_Opr ptr = new_register(T_LONG);
  2293    #else
  2294       LIR_Opr ptr = new_register(T_INT);
  2295    #endif
  2296       __ move(base_op, ptr);
  2297       if(index_op -> is_valid())
  2298          __ add(ptr, index_op, ptr);
  2299       addr = new LIR_Address(ptr, 0, dst_type);
  2300 #endif
  2301     } else {
  2302       LIR_Opr tmp = new_pointer_register();
  2303       __ shift_left(index_op, log2_scale, tmp);
  2304       addr = new LIR_Address(base_op, tmp, dst_type);
  2306 #endif
  2309   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
  2310     __ unaligned_move(addr, reg);
  2311   } else {
  2312     if (dst_type == T_OBJECT && x->is_wide()) {
  2313       __ move_wide(addr, reg);
  2314     } else {
  2315       __ move(addr, reg);
  2321 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
  2322   int  log2_scale = 0;
  2323   BasicType type = x->basic_type();
  2325   if (x->has_index()) {
  2326     log2_scale = x->log2_scale();
  2329   LIRItem base(x->base(), this);
  2330   LIRItem value(x->value(), this);
  2331   LIRItem idx(this);
  2333   base.load_item();
  2334   if (x->has_index()) {
  2335     idx.set_instruction(x->index());
  2336     idx.load_item();
  2339   if (type == T_BYTE || type == T_BOOLEAN) {
  2340     value.load_byte_item();
  2341   } else {
  2342     value.load_item();
  2345   set_no_result(x);
  2347   LIR_Opr base_op = base.result();
  2348   LIR_Opr index_op = idx.result();
  2350 #ifdef GENERATE_ADDRESS_IS_PREFERRED
  2351   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
  2352 #else
  2353 #ifndef _LP64
  2354   if (base_op->type() == T_LONG) {
  2355     base_op = new_register(T_INT);
  2356     __ convert(Bytecodes::_l2i, base.result(), base_op);
  2358   if (x->has_index()) {
  2359     if (index_op->type() == T_LONG) {
  2360       index_op = new_register(T_INT);
  2361       __ convert(Bytecodes::_l2i, idx.result(), index_op);
  2364   // At this point base and index should be all ints and not constants
  2365   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
  2366   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
  2367 #else
  2368   if (x->has_index()) {
  2369     if (index_op->type() == T_INT) {
  2370       index_op = new_register(T_LONG);
  2371       __ convert(Bytecodes::_i2l, idx.result(), index_op);
  2374   // At this point base and index are long and non-constant
  2375   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
  2376   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
  2377 #endif
  2379   if (log2_scale != 0) {
  2380     // temporary fix (platform dependent code without shift on Intel would be better)
  2381     // TODO: ARM also allows embedded shift in the address
  2382     LIR_Opr tmp = new_pointer_register();
  2383     if (TwoOperandLIRForm) {
  2384       __ move(index_op, tmp);
  2385       index_op = tmp;
  2387     __ shift_left(index_op, log2_scale, tmp);
  2388     if (!TwoOperandLIRForm) {
  2389       index_op = tmp;
  2393   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
  2394 #endif // !GENERATE_ADDRESS_IS_PREFERRED
  2395   __ move(value.result(), addr);
  2399 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
  2400   BasicType type = x->basic_type();
  2401   LIRItem src(x->object(), this);
  2402   LIRItem off(x->offset(), this);
  2404   off.load_item();
  2405   src.load_item();
  2407   LIR_Opr value = rlock_result(x, x->basic_type());
  2409   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
  2411 #if INCLUDE_ALL_GCS
  2412   // We might be reading the value of the referent field of a
  2413   // Reference object in order to attach it back to the live
  2414   // object graph. If G1 is enabled then we need to record
  2415   // the value that is being returned in an SATB log buffer.
  2416   //
  2417   // We need to generate code similar to the following...
  2418   //
  2419   // if (offset == java_lang_ref_Reference::referent_offset) {
  2420   //   if (src != NULL) {
  2421   //     if (klass(src)->reference_type() != REF_NONE) {
  2422   //       pre_barrier(..., value, ...);
  2423   //     }
  2424   //   }
  2425   // }
  2427   if (UseG1GC && type == T_OBJECT) {
  2428     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
  2429     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
  2430     bool gen_source_check = true;    // Assume we need to check the src object for null.
  2431     bool gen_type_check = true;      // Assume we need to check the reference_type.
  2433     if (off.is_constant()) {
  2434       jlong off_con = (off.type()->is_int() ?
  2435                         (jlong) off.get_jint_constant() :
  2436                         off.get_jlong_constant());
  2439       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
  2440         // The constant offset is something other than referent_offset.
  2441         // We can skip generating/checking the remaining guards and
  2442         // skip generation of the code stub.
  2443         gen_pre_barrier = false;
  2444       } else {
  2445         // The constant offset is the same as referent_offset -
  2446         // we do not need to generate a runtime offset check.
  2447         gen_offset_check = false;
  2451     // We don't need to generate stub if the source object is an array
  2452     if (gen_pre_barrier && src.type()->is_array()) {
  2453       gen_pre_barrier = false;
  2456     if (gen_pre_barrier) {
  2457       // We still need to continue with the checks.
  2458       if (src.is_constant()) {
  2459         ciObject* src_con = src.get_jobject_constant();
  2460         guarantee(src_con != NULL, "no source constant");
  2462         if (src_con->is_null_object()) {
  2463           // The constant src object is null - We can skip
  2464           // generating the code stub.
  2465           gen_pre_barrier = false;
  2466         } else {
  2467           // Non-null constant source object. We still have to generate
  2468           // the slow stub - but we don't need to generate the runtime
  2469           // null object check.
  2470           gen_source_check = false;
  2474     if (gen_pre_barrier && !PatchALot) {
  2475       // Can the klass of object be statically determined to be
  2476       // a sub-class of Reference?
  2477       ciType* type = src.value()->declared_type();
  2478       if ((type != NULL) && type->is_loaded()) {
  2479         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
  2480           gen_type_check = false;
  2481         } else if (type->is_klass() &&
  2482                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
  2483           // Not Reference and not Object klass.
  2484           gen_pre_barrier = false;
  2489     if (gen_pre_barrier) {
  2490       LabelObj* Lcont = new LabelObj();
  2492       // We can have generate one runtime check here. Let's start with
  2493       // the offset check.
  2494       if (gen_offset_check) {
  2495         // if (offset != referent_offset) -> continue
  2496         // If offset is an int then we can do the comparison with the
  2497         // referent_offset constant; otherwise we need to move
  2498         // referent_offset into a temporary register and generate
  2499         // a reg-reg compare.
  2501         LIR_Opr referent_off;
  2503         if (off.type()->is_int()) {
  2504           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
  2505         } else {
  2506           assert(off.type()->is_long(), "what else?");
  2507           referent_off = new_register(T_LONG);
  2508           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
  2510 #ifndef MIPS
  2511         __ cmp(lir_cond_notEqual, off.result(), referent_off);
  2512         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
  2513 #else
  2514         __ branch(lir_cond_notEqual, off.result(), referent_off,  Lcont->label());
  2515 #endif
  2517       if (gen_source_check) {
  2518         // offset is a const and equals referent offset
  2519         // if (source == null) -> continue
  2520 #ifndef MIPS
  2521         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
  2522         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
  2523 #else
  2524         __ branch(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL),  Lcont->label());
  2525 #endif
  2527       LIR_Opr src_klass = new_register(T_OBJECT);
  2528       if (gen_type_check) {
  2529         // We have determined that offset == referent_offset && src != null.
  2530         // if (src->_klass->_reference_type == REF_NONE) -> continue
  2531         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
  2532         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
  2533         LIR_Opr reference_type = new_register(T_INT);
  2534         __ move(reference_type_addr, reference_type);
  2535 #ifndef MIPS
  2536         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
  2537         __ branch(lir_cond_equal, T_INT, Lcont->label());
  2538 #else
  2539         __ branch(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE),  Lcont->label());
  2540 #endif
  2543         // We have determined that src->_klass->_reference_type != REF_NONE
  2544         // so register the value in the referent field with the pre-barrier.
  2545         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
  2546                     value  /* pre_val */,
  2547                     false  /* do_load */,
  2548                     false  /* patch */,
  2549                     NULL   /* info */);
  2551       __ branch_destination(Lcont->label());
  2554 #endif // INCLUDE_ALL_GCS
  2556   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
  2560 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
  2561   BasicType type = x->basic_type();
  2562   LIRItem src(x->object(), this);
  2563   LIRItem off(x->offset(), this);
  2564   LIRItem data(x->value(), this);
  2566   src.load_item();
  2567   if (type == T_BOOLEAN || type == T_BYTE) {
  2568     data.load_byte_item();
  2569   } else {
  2570     data.load_item();
  2572   off.load_item();
  2574   set_no_result(x);
  2576   if (x->is_volatile() && os::is_MP()) __ membar_release();
  2577   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
  2578   if (x->is_volatile() && os::is_MP()) __ membar();
  2582 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
  2583   LIRItem src(x->object(), this);
  2584   LIRItem off(x->offset(), this);
  2586   src.load_item();
  2587   if (off.is_constant() && can_inline_as_constant(x->offset())) {
  2588     // let it be a constant
  2589     off.dont_load_item();
  2590   } else {
  2591     off.load_item();
  2594   set_no_result(x);
  2596   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
  2597   __ prefetch(addr, is_store);
  2601 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
  2602   do_UnsafePrefetch(x, false);
  2606 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
  2607   do_UnsafePrefetch(x, true);
  2611 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
  2612   int lng = x->length();
  2614   for (int i = 0; i < lng; i++) {
  2615     SwitchRange* one_range = x->at(i);
  2616     int low_key = one_range->low_key();
  2617     int high_key = one_range->high_key();
  2618     BlockBegin* dest = one_range->sux();
  2619     if (low_key == high_key) {
  2620 #ifndef MIPS
  2621       __ cmp(lir_cond_equal, value, low_key);
  2622       __ branch(lir_cond_equal, T_INT, dest);
  2623 #else
  2624       __ branch(lir_cond_equal, value, LIR_OprFact::intConst(low_key), T_INT, dest);
  2625 #endif
  2626     } else if (high_key - low_key == 1) {
  2627 #ifndef MIPS
  2628       __ cmp(lir_cond_equal, value, low_key);
  2629       __ branch(lir_cond_equal, T_INT, dest);
  2630       __ cmp(lir_cond_equal, value, high_key);
  2631       __ branch(lir_cond_equal, T_INT, dest);
  2632 #else
  2633       __ branch(lir_cond_equal, value, LIR_OprFact::intConst(low_key), T_INT, dest);
  2634       __ branch(lir_cond_equal, value, LIR_OprFact::intConst(high_key), T_INT, dest);
  2636 #endif
  2637     } else {
  2638       LabelObj* L = new LabelObj();
  2639 #ifndef MIPS
  2640       __ cmp(lir_cond_less, value, low_key);
  2641       __ branch(lir_cond_less, T_INT, L->label());
  2642       __ cmp(lir_cond_lessEqual, value, high_key);
  2643       __ branch(lir_cond_lessEqual, T_INT, dest);
  2644       __ branch_destination(L->label());
  2645 #else
  2646       __ branch(lir_cond_less, value, LIR_OprFact::intConst(low_key), L->label());
  2647       __ branch(lir_cond_lessEqual, value, LIR_OprFact::intConst(high_key), T_INT, dest);
  2648       __ branch_destination(L->label());
  2649 #endif
  2652   __ jump(default_sux);
  2656 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
  2657   SwitchRangeList* res = new SwitchRangeList();
  2658   int len = x->length();
  2659   if (len > 0) {
  2660     BlockBegin* sux = x->sux_at(0);
  2661     int key = x->lo_key();
  2662     BlockBegin* default_sux = x->default_sux();
  2663     SwitchRange* range = new SwitchRange(key, sux);
  2664     for (int i = 0; i < len; i++, key++) {
  2665       BlockBegin* new_sux = x->sux_at(i);
  2666       if (sux == new_sux) {
  2667         // still in same range
  2668         range->set_high_key(key);
  2669       } else {
  2670         // skip tests which explicitly dispatch to the default
  2671         if (sux != default_sux) {
  2672           res->append(range);
  2674         range = new SwitchRange(key, new_sux);
  2676       sux = new_sux;
  2678     if (res->length() == 0 || res->last() != range)  res->append(range);
  2680   return res;
  2684 // we expect the keys to be sorted by increasing value
  2685 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
  2686   SwitchRangeList* res = new SwitchRangeList();
  2687   int len = x->length();
  2688   if (len > 0) {
  2689     BlockBegin* default_sux = x->default_sux();
  2690     int key = x->key_at(0);
  2691     BlockBegin* sux = x->sux_at(0);
  2692     SwitchRange* range = new SwitchRange(key, sux);
  2693     for (int i = 1; i < len; i++) {
  2694       int new_key = x->key_at(i);
  2695       BlockBegin* new_sux = x->sux_at(i);
  2696       if (key+1 == new_key && sux == new_sux) {
  2697         // still in same range
  2698         range->set_high_key(new_key);
  2699       } else {
  2700         // skip tests which explicitly dispatch to the default
  2701         if (range->sux() != default_sux) {
  2702           res->append(range);
  2704         range = new SwitchRange(new_key, new_sux);
  2706       key = new_key;
  2707       sux = new_sux;
  2709     if (res->length() == 0 || res->last() != range)  res->append(range);
  2711   return res;
  2715 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
  2716   LIRItem tag(x->tag(), this);
  2717   tag.load_item();
  2718   set_no_result(x);
  2720   if (x->is_safepoint()) {
  2721     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2724   // move values into phi locations
  2725   move_to_phi(x->state());
  2727   int lo_key = x->lo_key();
  2728   int hi_key = x->hi_key();
  2729   int len = x->length();
  2730   LIR_Opr value = tag.result();
  2731   if (UseTableRanges) {
  2732     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2733   } else {
  2734     for (int i = 0; i < len; i++) {
  2735 #ifndef MIPS
  2736       __ cmp(lir_cond_equal, value, i + lo_key);
  2737       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2738 #else
  2739       __ branch(lir_cond_equal, value, LIR_OprFact::intConst(i+lo_key), T_INT, x->sux_at(i));
  2740 #endif
  2742     __ jump(x->default_sux());
  2747 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
  2748   LIRItem tag(x->tag(), this);
  2749   tag.load_item();
  2750   set_no_result(x);
  2752   if (x->is_safepoint()) {
  2753     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
  2756   // move values into phi locations
  2757   move_to_phi(x->state());
  2759   LIR_Opr value = tag.result();
  2760   if (UseTableRanges) {
  2761     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
  2762   } else {
  2763     int len = x->length();
  2764     for (int i = 0; i < len; i++) {
  2765 #ifndef MIPS
  2766       __ cmp(lir_cond_equal, value, x->key_at(i));
  2767       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
  2768 #else
  2769       __ branch(lir_cond_equal, value, LIR_OprFact::intConst(x->key_at(i)), T_INT, x->sux_at(i));
  2770 #endif
  2772     __ jump(x->default_sux());
  2777 void LIRGenerator::do_Goto(Goto* x) {
  2778   set_no_result(x);
  2780   if (block()->next()->as_OsrEntry()) {
  2781     // need to free up storage used for OSR entry point
  2782     LIR_Opr osrBuffer = block()->next()->operand();
  2783     BasicTypeList signature;
  2784     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
  2785     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
  2786     __ move(osrBuffer, cc->args()->at(0));
  2787     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
  2788                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
  2791   if (x->is_safepoint()) {
  2792     ValueStack* state = x->state_before() ? x->state_before() : x->state();
  2794     // increment backedge counter if needed
  2795     CodeEmitInfo* info = state_for(x, state);
  2796     increment_backedge_counter(info, x->profiled_bci());
  2797     CodeEmitInfo* safepoint_info = state_for(x, state);
  2798     __ safepoint(safepoint_poll_register(), safepoint_info);
  2801   // Gotos can be folded Ifs, handle this case.
  2802   if (x->should_profile()) {
  2803     ciMethod* method = x->profiled_method();
  2804     assert(method != NULL, "method should be set if branch is profiled");
  2805     ciMethodData* md = method->method_data_or_null();
  2806     assert(md != NULL, "Sanity");
  2807     ciProfileData* data = md->bci_to_data(x->profiled_bci());
  2808     assert(data != NULL, "must have profiling data");
  2809     int offset;
  2810     if (x->direction() == Goto::taken) {
  2811       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2812       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
  2813     } else if (x->direction() == Goto::not_taken) {
  2814       assert(data->is_BranchData(), "need BranchData for two-way branches");
  2815       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
  2816     } else {
  2817       assert(data->is_JumpData(), "need JumpData for branches");
  2818       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
  2820     LIR_Opr md_reg = new_register(T_METADATA);
  2821     __ metadata2reg(md->constant_encoding(), md_reg);
  2822     increment_counter(new LIR_Address(md_reg, offset,
  2823                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
  2826   // emit phi-instruction move after safepoint since this simplifies
  2827   // describing the state as the safepoint.
  2828   move_to_phi(x->state());
  2830   __ jump(x->default_sux());
  2833 /**
  2834  * Emit profiling code if needed for arguments, parameters, return value types
  2836  * @param md                    MDO the code will update at runtime
  2837  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
  2838  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
  2839  * @param profiled_k            current profile
  2840  * @param obj                   IR node for the object to be profiled
  2841  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
  2842  *                              Set once we find an update to make and use for next ones.
  2843  * @param not_null              true if we know obj cannot be null
  2844  * @param signature_at_call_k   signature at call for obj
  2845  * @param callee_signature_k    signature of callee for obj
  2846  *                              at call and callee signatures differ at method handle call
  2847  * @return                      the only klass we know will ever be seen at this profile point
  2848  */
  2849 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
  2850                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
  2851                                     ciKlass* callee_signature_k) {
  2852   ciKlass* result = NULL;
  2853   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
  2854   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
  2855   // known not to be null or null bit already set and already set to
  2856   // unknown: nothing we can do to improve profiling
  2857   if (!do_null && !do_update) {
  2858     return result;
  2861   ciKlass* exact_klass = NULL;
  2862   Compilation* comp = Compilation::current();
  2863   if (do_update) {
  2864     // try to find exact type, using CHA if possible, so that loading
  2865     // the klass from the object can be avoided
  2866     ciType* type = obj->exact_type();
  2867     if (type == NULL) {
  2868       type = obj->declared_type();
  2869       type = comp->cha_exact_type(type);
  2871     assert(type == NULL || type->is_klass(), "type should be class");
  2872     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
  2874     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
  2877   if (!do_null && !do_update) {
  2878     return result;
  2881   ciKlass* exact_signature_k = NULL;
  2882   if (do_update) {
  2883     // Is the type from the signature exact (the only one possible)?
  2884     exact_signature_k = signature_at_call_k->exact_klass();
  2885     if (exact_signature_k == NULL) {
  2886       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
  2887     } else {
  2888       result = exact_signature_k;
  2889       // Known statically. No need to emit any code: prevent
  2890       // LIR_Assembler::emit_profile_type() from emitting useless code
  2891       profiled_k = ciTypeEntries::with_status(result, profiled_k);
  2893     // exact_klass and exact_signature_k can be both non NULL but
  2894     // different if exact_klass is loaded after the ciObject for
  2895     // exact_signature_k is created.
  2896     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
  2897       // sometimes the type of the signature is better than the best type
  2898       // the compiler has
  2899       exact_klass = exact_signature_k;
  2901     if (callee_signature_k != NULL &&
  2902         callee_signature_k != signature_at_call_k) {
  2903       ciKlass* improved_klass = callee_signature_k->exact_klass();
  2904       if (improved_klass == NULL) {
  2905         improved_klass = comp->cha_exact_type(callee_signature_k);
  2907       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
  2908         exact_klass = exact_signature_k;
  2911     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
  2914   if (!do_null && !do_update) {
  2915     return result;
  2918   if (mdp == LIR_OprFact::illegalOpr) {
  2919     mdp = new_register(T_METADATA);
  2920     __ metadata2reg(md->constant_encoding(), mdp);
  2921     if (md_base_offset != 0) {
  2922       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
  2923       mdp = new_pointer_register();
  2924       __ leal(LIR_OprFact::address(base_type_address), mdp);
  2927   LIRItem value(obj, this);
  2928   value.load_item();
  2929   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
  2930                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
  2931   return result;
  2934 // profile parameters on entry to the root of the compilation
  2935 void LIRGenerator::profile_parameters(Base* x) {
  2936   if (compilation()->profile_parameters()) {
  2937     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2938     ciMethodData* md = scope()->method()->method_data_or_null();
  2939     assert(md != NULL, "Sanity");
  2941     if (md->parameters_type_data() != NULL) {
  2942       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
  2943       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
  2944       LIR_Opr mdp = LIR_OprFact::illegalOpr;
  2945       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
  2946         LIR_Opr src = args->at(i);
  2947         assert(!src->is_illegal(), "check");
  2948         BasicType t = src->type();
  2949         if (t == T_OBJECT || t == T_ARRAY) {
  2950           intptr_t profiled_k = parameters->type(j);
  2951           Local* local = x->state()->local_at(java_index)->as_Local();
  2952           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
  2953                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
  2954                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
  2955           // If the profile is known statically set it once for all and do not emit any code
  2956           if (exact != NULL) {
  2957             md->set_parameter_type(j, exact);
  2959           j++;
  2961         java_index += type2size[t];
  2967 void LIRGenerator::do_Base(Base* x) {
  2968   __ std_entry(LIR_OprFact::illegalOpr);
  2969   // Emit moves from physical registers / stack slots to virtual registers
  2970   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
  2971   IRScope* irScope = compilation()->hir()->top_scope();
  2972   int java_index = 0;
  2973   for (int i = 0; i < args->length(); i++) {
  2974     LIR_Opr src = args->at(i);
  2975     assert(!src->is_illegal(), "check");
  2976     BasicType t = src->type();
  2978     // Types which are smaller than int are passed as int, so
  2979     // correct the type which passed.
  2980     switch (t) {
  2981     case T_BYTE:
  2982     case T_BOOLEAN:
  2983     case T_SHORT:
  2984     case T_CHAR:
  2985       t = T_INT;
  2986       break;
  2989     LIR_Opr dest = new_register(t);
  2990     __ move(src, dest);
  2992     // Assign new location to Local instruction for this local
  2993     Local* local = x->state()->local_at(java_index)->as_Local();
  2994     assert(local != NULL, "Locals for incoming arguments must have been created");
  2995 #ifndef __SOFTFP__
  2996     // The java calling convention passes double as long and float as int.
  2997     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
  2998 #endif // __SOFTFP__
  2999     local->set_operand(dest);
  3000     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
  3001     java_index += type2size[t];
  3004   if (compilation()->env()->dtrace_method_probes()) {
  3005     BasicTypeList signature;
  3006     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  3007     signature.append(T_METADATA); // Method*
  3008     LIR_OprList* args = new LIR_OprList();
  3009     args->append(getThreadPointer());
  3010     LIR_Opr meth = new_register(T_METADATA);
  3011     __ metadata2reg(method()->constant_encoding(), meth);
  3012     args->append(meth);
  3013     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
  3016   if (method()->is_synchronized()) {
  3017     LIR_Opr obj;
  3018     if (method()->is_static()) {
  3019       obj = new_register(T_OBJECT);
  3020       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
  3021     } else {
  3022       Local* receiver = x->state()->local_at(0)->as_Local();
  3023       assert(receiver != NULL, "must already exist");
  3024       obj = receiver->operand();
  3026     assert(obj->is_valid(), "must be valid");
  3028     if (method()->is_synchronized() && GenerateSynchronizationCode) {
  3029       LIR_Opr lock = new_register(T_INT);
  3030       __ load_stack_address_monitor(0, lock);
  3032       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
  3033       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
  3035       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
  3036       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
  3040   // increment invocation counters if needed
  3041   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
  3042     profile_parameters(x);
  3043     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
  3044     increment_invocation_counter(info);
  3047   // all blocks with a successor must end with an unconditional jump
  3048   // to the successor even if they are consecutive
  3049   __ jump(x->default_sux());
  3053 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
  3054   // construct our frame and model the production of incoming pointer
  3055   // to the OSR buffer.
  3056   __ osr_entry(LIR_Assembler::osrBufferPointer());
  3057   LIR_Opr result = rlock_result(x);
  3058   __ move(LIR_Assembler::osrBufferPointer(), result);
  3062 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
  3063   assert(args->length() == arg_list->length(),
  3064          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
  3065   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
  3066     LIRItem* param = args->at(i);
  3067     LIR_Opr loc = arg_list->at(i);
  3068     if (loc->is_register()) {
  3069       param->load_item_force(loc);
  3070     } else {
  3071       LIR_Address* addr = loc->as_address_ptr();
  3072       param->load_for_store(addr->type());
  3073       if (addr->type() == T_OBJECT) {
  3074         __ move_wide(param->result(), addr);
  3075       } else
  3076         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3077           __ unaligned_move(param->result(), addr);
  3078         } else {
  3079           __ move(param->result(), addr);
  3084   if (x->has_receiver()) {
  3085     LIRItem* receiver = args->at(0);
  3086     LIR_Opr loc = arg_list->at(0);
  3087     if (loc->is_register()) {
  3088       receiver->load_item_force(loc);
  3089     } else {
  3090       assert(loc->is_address(), "just checking");
  3091       receiver->load_for_store(T_OBJECT);
  3092       __ move_wide(receiver->result(), loc->as_address_ptr());
  3098 // Visits all arguments, returns appropriate items without loading them
  3099 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
  3100   LIRItemList* argument_items = new LIRItemList();
  3101   if (x->has_receiver()) {
  3102     LIRItem* receiver = new LIRItem(x->receiver(), this);
  3103     argument_items->append(receiver);
  3105   for (int i = 0; i < x->number_of_arguments(); i++) {
  3106     LIRItem* param = new LIRItem(x->argument_at(i), this);
  3107     argument_items->append(param);
  3109   return argument_items;
  3113 // The invoke with receiver has following phases:
  3114 //   a) traverse and load/lock receiver;
  3115 //   b) traverse all arguments -> item-array (invoke_visit_argument)
  3116 //   c) push receiver on stack
  3117 //   d) load each of the items and push on stack
  3118 //   e) unlock receiver
  3119 //   f) move receiver into receiver-register %o0
  3120 //   g) lock result registers and emit call operation
  3121 //
  3122 // Before issuing a call, we must spill-save all values on stack
  3123 // that are in caller-save register. "spill-save" moves those registers
  3124 // either in a free callee-save register or spills them if no free
  3125 // callee save register is available.
  3126 //
  3127 // The problem is where to invoke spill-save.
  3128 // - if invoked between e) and f), we may lock callee save
  3129 //   register in "spill-save" that destroys the receiver register
  3130 //   before f) is executed
  3131 // - if we rearrange f) to be earlier (by loading %o0) it
  3132 //   may destroy a value on the stack that is currently in %o0
  3133 //   and is waiting to be spilled
  3134 // - if we keep the receiver locked while doing spill-save,
  3135 //   we cannot spill it as it is spill-locked
  3136 //
  3137 void LIRGenerator::do_Invoke(Invoke* x) {
  3138   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
  3140   LIR_OprList* arg_list = cc->args();
  3141   LIRItemList* args = invoke_visit_arguments(x);
  3142   LIR_Opr receiver = LIR_OprFact::illegalOpr;
  3144   // setup result register
  3145   LIR_Opr result_register = LIR_OprFact::illegalOpr;
  3146   if (x->type() != voidType) {
  3147     result_register = result_register_for(x->type());
  3150   CodeEmitInfo* info = state_for(x, x->state());
  3152   invoke_load_arguments(x, args, arg_list);
  3154   if (x->has_receiver()) {
  3155     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
  3156     receiver = args->at(0)->result();
  3159   // emit invoke code
  3160   bool optimized = x->target_is_loaded() && x->target_is_final();
  3161   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
  3163   // JSR 292
  3164   // Preserve the SP over MethodHandle call sites, if needed.
  3165   ciMethod* target = x->target();
  3166   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
  3167                                   target->is_method_handle_intrinsic() ||
  3168                                   target->is_compiled_lambda_form());
  3169   if (is_method_handle_invoke) {
  3170     info->set_is_method_handle_invoke(true);
  3171     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
  3172         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
  3176   switch (x->code()) {
  3177     case Bytecodes::_invokestatic:
  3178       __ call_static(target, result_register,
  3179                      SharedRuntime::get_resolve_static_call_stub(),
  3180                      arg_list, info);
  3181       break;
  3182     case Bytecodes::_invokespecial:
  3183     case Bytecodes::_invokevirtual:
  3184     case Bytecodes::_invokeinterface:
  3185       // for final target we still produce an inline cache, in order
  3186       // to be able to call mixed mode
  3187       if (x->code() == Bytecodes::_invokespecial || optimized) {
  3188         __ call_opt_virtual(target, receiver, result_register,
  3189                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3190                             arg_list, info);
  3191       } else if (x->vtable_index() < 0) {
  3192         __ call_icvirtual(target, receiver, result_register,
  3193                           SharedRuntime::get_resolve_virtual_call_stub(),
  3194                           arg_list, info);
  3195       } else {
  3196         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
  3197         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  3198         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
  3200       break;
  3201     case Bytecodes::_invokedynamic: {
  3202       __ call_dynamic(target, receiver, result_register,
  3203                       SharedRuntime::get_resolve_static_call_stub(),
  3204                       arg_list, info);
  3205       break;
  3207     default:
  3208       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
  3209       break;
  3212   // JSR 292
  3213   // Restore the SP after MethodHandle call sites, if needed.
  3214   if (is_method_handle_invoke
  3215       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
  3216     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
  3219   if (x->type()->is_float() || x->type()->is_double()) {
  3220     // Force rounding of results from non-strictfp when in strictfp
  3221     // scope (or when we don't know the strictness of the callee, to
  3222     // be safe.)
  3223     if (method()->is_strict()) {
  3224       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
  3225         result_register = round_item(result_register);
  3230   if (result_register->is_valid()) {
  3231     LIR_Opr result = rlock_result(x);
  3232     __ move(result_register, result);
  3237 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
  3238   assert(x->number_of_arguments() == 1, "wrong type");
  3239   LIRItem value       (x->argument_at(0), this);
  3240   LIR_Opr reg = rlock_result(x);
  3241   value.load_item();
  3242   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
  3243   __ move(tmp, reg);
  3248 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
  3249 void LIRGenerator::do_IfOp(IfOp* x) {
  3250 #ifdef ASSERT
  3252     ValueTag xtag = x->x()->type()->tag();
  3253     ValueTag ttag = x->tval()->type()->tag();
  3254     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
  3255     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
  3256     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
  3258 #endif
  3260   LIRItem left(x->x(), this);
  3261   LIRItem right(x->y(), this);
  3262   left.load_item();
  3263   if (can_inline_as_constant(right.value())) {
  3264     right.dont_load_item();
  3265   } else {
  3266     right.load_item();
  3269   LIRItem t_val(x->tval(), this);
  3270   LIRItem f_val(x->fval(), this);
  3271   t_val.dont_load_item();
  3272   f_val.dont_load_item();
  3273   LIR_Opr reg = rlock_result(x);
  3275 #ifndef MIPS
  3276   __ cmp(lir_cond(x->cond()), left.result(), right.result());
  3277   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
  3278 #else
  3279   LIR_Opr opr1 =  t_val.result();
  3280   LIR_Opr opr2 =  f_val.result();
  3281   LabelObj* skip = new LabelObj();
  3282   __ move(opr1, reg);
  3283   __ branch(lir_cond(x->cond()), left.result(), right.result(), skip->label());
  3284   __ move(opr2, reg);
  3285   __ branch_destination(skip->label());
  3286 #endif
  3289 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
  3290     assert(x->number_of_arguments() == expected_arguments, "wrong type");
  3291     LIR_Opr reg = result_register_for(x->type());
  3292     __ call_runtime_leaf(routine, getThreadTemp(),
  3293                          reg, new LIR_OprList());
  3294     LIR_Opr result = rlock_result(x);
  3295     __ move(reg, result);
  3298 #ifdef TRACE_HAVE_INTRINSICS
  3299 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
  3300     LIR_Opr thread = getThreadPointer();
  3301     LIR_Opr osthread = new_pointer_register();
  3302     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
  3303     size_t thread_id_size = OSThread::thread_id_size();
  3304     if (thread_id_size == (size_t) BytesPerLong) {
  3305       LIR_Opr id = new_register(T_LONG);
  3306       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
  3307       __ convert(Bytecodes::_l2i, id, rlock_result(x));
  3308     } else if (thread_id_size == (size_t) BytesPerInt) {
  3309       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
  3310     } else {
  3311       ShouldNotReachHere();
  3315 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
  3316     CodeEmitInfo* info = state_for(x);
  3317     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
  3318     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
  3319     assert(info != NULL, "must have info");
  3320     LIRItem arg(x->argument_at(1), this);
  3321     arg.load_item();
  3322     LIR_Opr klass = new_pointer_register();
  3323     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
  3324     LIR_Opr id = new_register(T_LONG);
  3325     ByteSize offset = TRACE_ID_OFFSET;
  3326     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
  3327     __ move(trace_id_addr, id);
  3328     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
  3329     __ store(id, trace_id_addr);
  3330     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
  3331     __ move(id, rlock_result(x));
  3333 #endif
  3335 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
  3336   switch (x->id()) {
  3337   case vmIntrinsics::_intBitsToFloat      :
  3338   case vmIntrinsics::_doubleToRawLongBits :
  3339   case vmIntrinsics::_longBitsToDouble    :
  3340   case vmIntrinsics::_floatToRawIntBits   : {
  3341     do_FPIntrinsics(x);
  3342     break;
  3345 #ifdef TRACE_HAVE_INTRINSICS
  3346   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
  3347   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
  3348   case vmIntrinsics::_counterTime:
  3349     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
  3350     break;
  3351 #endif
  3353   case vmIntrinsics::_currentTimeMillis:
  3354     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
  3355     break;
  3357   case vmIntrinsics::_nanoTime:
  3358     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
  3359     break;
  3361   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
  3362   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
  3363   case vmIntrinsics::_getClass:       do_getClass(x);      break;
  3364   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
  3366   case vmIntrinsics::_dlog:           // fall through
  3367   case vmIntrinsics::_dlog10:         // fall through
  3368   case vmIntrinsics::_dabs:           // fall through
  3369   case vmIntrinsics::_dsqrt:          // fall through
  3370   case vmIntrinsics::_dtan:           // fall through
  3371   case vmIntrinsics::_dsin :          // fall through
  3372   case vmIntrinsics::_dcos :          // fall through
  3373   case vmIntrinsics::_dexp :          // fall through
  3374   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
  3375   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
  3377   // java.nio.Buffer.checkIndex
  3378   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
  3380   case vmIntrinsics::_compareAndSwapObject:
  3381     do_CompareAndSwap(x, objectType);
  3382     break;
  3383   case vmIntrinsics::_compareAndSwapInt:
  3384     do_CompareAndSwap(x, intType);
  3385     break;
  3386   case vmIntrinsics::_compareAndSwapLong:
  3387     do_CompareAndSwap(x, longType);
  3388     break;
  3390   case vmIntrinsics::_loadFence :
  3391     if (os::is_MP()) __ membar_acquire();
  3392     break;
  3393   case vmIntrinsics::_storeFence:
  3394     if (os::is_MP()) __ membar_release();
  3395     break;
  3396   case vmIntrinsics::_fullFence :
  3397     if (os::is_MP()) __ membar();
  3398     break;
  3400   case vmIntrinsics::_Reference_get:
  3401     do_Reference_get(x);
  3402     break;
  3404   case vmIntrinsics::_updateCRC32:
  3405   case vmIntrinsics::_updateBytesCRC32:
  3406   case vmIntrinsics::_updateByteBufferCRC32:
  3407     do_update_CRC32(x);
  3408     break;
  3410   default: ShouldNotReachHere(); break;
  3414 void LIRGenerator::profile_arguments(ProfileCall* x) {
  3415   if (compilation()->profile_arguments()) {
  3416     int bci = x->bci_of_invoke();
  3417     ciMethodData* md = x->method()->method_data_or_null();
  3418     ciProfileData* data = md->bci_to_data(bci);
  3419     if (data != NULL) {
  3420       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
  3421           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
  3422         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
  3423         int base_offset = md->byte_offset_of_slot(data, extra);
  3424         LIR_Opr mdp = LIR_OprFact::illegalOpr;
  3425         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
  3427         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
  3428         int start = 0;
  3429         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
  3430         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
  3431           // first argument is not profiled at call (method handle invoke)
  3432           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
  3433           start = 1;
  3435         ciSignature* callee_signature = x->callee()->signature();
  3436         // method handle call to virtual method
  3437         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
  3438         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
  3440         bool ignored_will_link;
  3441         ciSignature* signature_at_call = NULL;
  3442         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
  3443         ciSignatureStream signature_at_call_stream(signature_at_call);
  3445         // if called through method handle invoke, some arguments may have been popped
  3446         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
  3447           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
  3448           ciKlass* exact = profile_type(md, base_offset, off,
  3449               args->type(i), x->profiled_arg_at(i+start), mdp,
  3450               !x->arg_needs_null_check(i+start),
  3451               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
  3452           if (exact != NULL) {
  3453             md->set_argument_type(bci, i, exact);
  3456       } else {
  3457 #ifdef ASSERT
  3458         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
  3459         int n = x->nb_profiled_args();
  3460         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
  3461             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
  3462             "only at JSR292 bytecodes");
  3463 #endif
  3469 // profile parameters on entry to an inlined method
  3470 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
  3471   if (compilation()->profile_parameters() && x->inlined()) {
  3472     ciMethodData* md = x->callee()->method_data_or_null();
  3473     if (md != NULL) {
  3474       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
  3475       if (parameters_type_data != NULL) {
  3476         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
  3477         LIR_Opr mdp = LIR_OprFact::illegalOpr;
  3478         bool has_receiver = !x->callee()->is_static();
  3479         ciSignature* sig = x->callee()->signature();
  3480         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
  3481         int i = 0; // to iterate on the Instructions
  3482         Value arg = x->recv();
  3483         bool not_null = false;
  3484         int bci = x->bci_of_invoke();
  3485         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
  3486         // The first parameter is the receiver so that's what we start
  3487         // with if it exists. One exception is method handle call to
  3488         // virtual method: the receiver is in the args list
  3489         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
  3490           i = 1;
  3491           arg = x->profiled_arg_at(0);
  3492           not_null = !x->arg_needs_null_check(0);
  3494         int k = 0; // to iterate on the profile data
  3495         for (;;) {
  3496           intptr_t profiled_k = parameters->type(k);
  3497           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
  3498                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
  3499                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
  3500           // If the profile is known statically set it once for all and do not emit any code
  3501           if (exact != NULL) {
  3502             md->set_parameter_type(k, exact);
  3504           k++;
  3505           if (k >= parameters_type_data->number_of_parameters()) {
  3506 #ifdef ASSERT
  3507             int extra = 0;
  3508             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
  3509                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
  3510                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
  3511               extra += 1;
  3513             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
  3514 #endif
  3515             break;
  3517           arg = x->profiled_arg_at(i);
  3518           not_null = !x->arg_needs_null_check(i);
  3519           i++;
  3526 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
  3527   // Need recv in a temporary register so it interferes with the other temporaries
  3528   LIR_Opr recv = LIR_OprFact::illegalOpr;
  3529   LIR_Opr mdo = new_register(T_OBJECT);
  3530   // tmp is used to hold the counters on SPARC
  3531   LIR_Opr tmp = new_pointer_register();
  3533   if (x->nb_profiled_args() > 0) {
  3534     profile_arguments(x);
  3537   // profile parameters on inlined method entry including receiver
  3538   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
  3539     profile_parameters_at_call(x);
  3542   if (x->recv() != NULL) {
  3543     LIRItem value(x->recv(), this);
  3544     value.load_item();
  3545     recv = new_register(T_OBJECT);
  3546     __ move(value.result(), recv);
  3548   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
  3551 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
  3552   int bci = x->bci_of_invoke();
  3553   ciMethodData* md = x->method()->method_data_or_null();
  3554   ciProfileData* data = md->bci_to_data(bci);
  3555   if (data != NULL) {
  3556     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
  3557     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
  3558     LIR_Opr mdp = LIR_OprFact::illegalOpr;
  3560     bool ignored_will_link;
  3561     ciSignature* signature_at_call = NULL;
  3562     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
  3564     // The offset within the MDO of the entry to update may be too large
  3565     // to be used in load/store instructions on some platforms. So have
  3566     // profile_type() compute the address of the profile in a register.
  3567     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
  3568         ret->type(), x->ret(), mdp,
  3569         !x->needs_null_check(),
  3570         signature_at_call->return_type()->as_klass(),
  3571         x->callee()->signature()->return_type()->as_klass());
  3572     if (exact != NULL) {
  3573       md->set_return_type(bci, exact);
  3578 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
  3579   // We can safely ignore accessors here, since c2 will inline them anyway,
  3580   // accessors are also always mature.
  3581   if (!x->inlinee()->is_accessor()) {
  3582     CodeEmitInfo* info = state_for(x, x->state(), true);
  3583     // Notify the runtime very infrequently only to take care of counter overflows
  3584     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
  3588 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
  3589   int freq_log = 0;
  3590   int level = compilation()->env()->comp_level();
  3591   if (level == CompLevel_limited_profile) {
  3592     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
  3593   } else if (level == CompLevel_full_profile) {
  3594     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
  3595   } else {
  3596     ShouldNotReachHere();
  3598   // Increment the appropriate invocation/backedge counter and notify the runtime.
  3599   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
  3602 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
  3603                                                 ciMethod *method, int frequency,
  3604                                                 int bci, bool backedge, bool notify) {
  3605   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
  3606   int level = _compilation->env()->comp_level();
  3607   assert(level > CompLevel_simple, "Shouldn't be here");
  3609   int offset = -1;
  3610   LIR_Opr counter_holder = NULL;
  3611   if (level == CompLevel_limited_profile) {
  3612     MethodCounters* counters_adr = method->ensure_method_counters();
  3613     if (counters_adr == NULL) {
  3614       bailout("method counters allocation failed");
  3615       return;
  3617     counter_holder = new_pointer_register();
  3618     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
  3619     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
  3620                                  MethodCounters::invocation_counter_offset());
  3621   } else if (level == CompLevel_full_profile) {
  3622     counter_holder = new_register(T_METADATA);
  3623     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
  3624                                  MethodData::invocation_counter_offset());
  3625     ciMethodData* md = method->method_data_or_null();
  3626     assert(md != NULL, "Sanity");
  3627     __ metadata2reg(md->constant_encoding(), counter_holder);
  3628   } else {
  3629     ShouldNotReachHere();
  3631   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
  3632   LIR_Opr result = new_register(T_INT);
  3633   __ load(counter, result);
  3634   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
  3635   __ store(result, counter);
  3636   if (notify) {
  3637     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
  3638     LIR_Opr meth = new_register(T_METADATA);
  3639     __ metadata2reg(method->constant_encoding(), meth);
  3640     __ logical_and(result, mask, result);
  3641 #ifndef MIPS
  3642     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
  3643 #endif
  3644     // The bci for info can point to cmp for if's we want the if bci
  3645     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
  3646 #ifndef MIPS
  3647     __ branch(lir_cond_equal, T_INT, overflow);
  3648 #else
  3649     __ branch(lir_cond_equal, result, LIR_OprFact::intConst(0), T_INT, overflow);
  3650 #endif
  3651     __ branch_destination(overflow->continuation());
  3655 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
  3656   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
  3657   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
  3659   if (x->pass_thread()) {
  3660     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
  3661     args->append(getThreadPointer());
  3664   for (int i = 0; i < x->number_of_arguments(); i++) {
  3665     Value a = x->argument_at(i);
  3666     LIRItem* item = new LIRItem(a, this);
  3667     item->load_item();
  3668     args->append(item->result());
  3669     signature->append(as_BasicType(a->type()));
  3672   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
  3673   if (x->type() == voidType) {
  3674     set_no_result(x);
  3675   } else {
  3676     __ move(result, rlock_result(x));
  3680 #ifdef ASSERT
  3681 void LIRGenerator::do_Assert(Assert *x) {
  3682   ValueTag tag = x->x()->type()->tag();
  3683   If::Condition cond = x->cond();
  3685   LIRItem xitem(x->x(), this);
  3686   LIRItem yitem(x->y(), this);
  3687   LIRItem* xin = &xitem;
  3688   LIRItem* yin = &yitem;
  3690   assert(tag == intTag, "Only integer assertions are valid!");
  3692   xin->load_item();
  3693   yin->dont_load_item();
  3695   set_no_result(x);
  3697   LIR_Opr left = xin->result();
  3698   LIR_Opr right = yin->result();
  3700   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
  3702 #endif
  3704 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
  3707   Instruction *a = x->x();
  3708   Instruction *b = x->y();
  3709   if (!a || StressRangeCheckElimination) {
  3710     assert(!b || StressRangeCheckElimination, "B must also be null");
  3712     CodeEmitInfo *info = state_for(x, x->state());
  3713     CodeStub* stub = new PredicateFailedStub(info);
  3715     __ jump(stub);
  3716   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
  3717     int a_int = a->type()->as_IntConstant()->value();
  3718     int b_int = b->type()->as_IntConstant()->value();
  3720     bool ok = false;
  3722     switch(x->cond()) {
  3723       case Instruction::eql: ok = (a_int == b_int); break;
  3724       case Instruction::neq: ok = (a_int != b_int); break;
  3725       case Instruction::lss: ok = (a_int < b_int); break;
  3726       case Instruction::leq: ok = (a_int <= b_int); break;
  3727       case Instruction::gtr: ok = (a_int > b_int); break;
  3728       case Instruction::geq: ok = (a_int >= b_int); break;
  3729       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
  3730       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
  3731       default: ShouldNotReachHere();
  3734     if (ok) {
  3736       CodeEmitInfo *info = state_for(x, x->state());
  3737       CodeStub* stub = new PredicateFailedStub(info);
  3739       __ jump(stub);
  3741   } else {
  3743     ValueTag tag = x->x()->type()->tag();
  3744     If::Condition cond = x->cond();
  3745     LIRItem xitem(x->x(), this);
  3746     LIRItem yitem(x->y(), this);
  3747     LIRItem* xin = &xitem;
  3748     LIRItem* yin = &yitem;
  3750     assert(tag == intTag, "Only integer deoptimizations are valid!");
  3752     xin->load_item();
  3753     yin->dont_load_item();
  3754     set_no_result(x);
  3756     LIR_Opr left = xin->result();
  3757     LIR_Opr right = yin->result();
  3759     CodeEmitInfo *info = state_for(x, x->state());
  3760     CodeStub* stub = new PredicateFailedStub(info);
  3762 #ifndef MIPS
  3763     __ cmp(lir_cond(cond), left, right);
  3764     __ branch(lir_cond(cond), right->type(), stub);
  3765 #else
  3766     tty->print_cr("LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) unimplemented yet!");
  3767     Unimplemented();
  3768 #endif
  3773 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3774   LIRItemList args(1);
  3775   LIRItem value(arg1, this);
  3776   args.append(&value);
  3777   BasicTypeList signature;
  3778   signature.append(as_BasicType(arg1->type()));
  3780   return call_runtime(&signature, &args, entry, result_type, info);
  3784 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
  3785   LIRItemList args(2);
  3786   LIRItem value1(arg1, this);
  3787   LIRItem value2(arg2, this);
  3788   args.append(&value1);
  3789   args.append(&value2);
  3790   BasicTypeList signature;
  3791   signature.append(as_BasicType(arg1->type()));
  3792   signature.append(as_BasicType(arg2->type()));
  3794   return call_runtime(&signature, &args, entry, result_type, info);
  3798 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
  3799                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3800   // get a result register
  3801   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3802   LIR_Opr result = LIR_OprFact::illegalOpr;
  3803   if (result_type->tag() != voidTag) {
  3804     result = new_register(result_type);
  3805     phys_reg = result_register_for(result_type);
  3808   // move the arguments into the correct location
  3809   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3810   assert(cc->length() == args->length(), "argument mismatch");
  3811   for (int i = 0; i < args->length(); i++) {
  3812     LIR_Opr arg = args->at(i);
  3813     LIR_Opr loc = cc->at(i);
  3814     if (loc->is_register()) {
  3815       __ move(arg, loc);
  3816     } else {
  3817       LIR_Address* addr = loc->as_address_ptr();
  3818 //           if (!can_store_as_constant(arg)) {
  3819 //             LIR_Opr tmp = new_register(arg->type());
  3820 //             __ move(arg, tmp);
  3821 //             arg = tmp;
  3822 //           }
  3823       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3824         __ unaligned_move(arg, addr);
  3825       } else {
  3826         __ move(arg, addr);
  3831   if (info) {
  3832     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3833   } else {
  3834     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3836   if (result->is_valid()) {
  3837     __ move(phys_reg, result);
  3839   return result;
  3843 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
  3844                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
  3845   // get a result register
  3846   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
  3847   LIR_Opr result = LIR_OprFact::illegalOpr;
  3848   if (result_type->tag() != voidTag) {
  3849     result = new_register(result_type);
  3850     phys_reg = result_register_for(result_type);
  3853   // move the arguments into the correct location
  3854   CallingConvention* cc = frame_map()->c_calling_convention(signature);
  3856   assert(cc->length() == args->length(), "argument mismatch");
  3857   for (int i = 0; i < args->length(); i++) {
  3858     LIRItem* arg = args->at(i);
  3859     LIR_Opr loc = cc->at(i);
  3860     if (loc->is_register()) {
  3861       arg->load_item_force(loc);
  3862     } else {
  3863       LIR_Address* addr = loc->as_address_ptr();
  3864       arg->load_for_store(addr->type());
  3865       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
  3866         __ unaligned_move(arg->result(), addr);
  3867       } else {
  3868         __ move(arg->result(), addr);
  3873   if (info) {
  3874     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
  3875   } else {
  3876     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
  3878   if (result->is_valid()) {
  3879     __ move(phys_reg, result);
  3881   return result;
  3884 void LIRGenerator::do_MemBar(MemBar* x) {
  3885   if (os::is_MP()) {
  3886     LIR_Code code = x->code();
  3887     switch(code) {
  3888       case lir_membar_acquire   : __ membar_acquire(); break;
  3889       case lir_membar_release   : __ membar_release(); break;
  3890       case lir_membar           : __ membar(); break;
  3891       case lir_membar_loadload  : __ membar_loadload(); break;
  3892       case lir_membar_storestore: __ membar_storestore(); break;
  3893       case lir_membar_loadstore : __ membar_loadstore(); break;
  3894       case lir_membar_storeload : __ membar_storeload(); break;
  3895       default                   : ShouldNotReachHere(); break;
  3900 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
  3901   if (x->check_boolean()) {
  3902     LIR_Opr value_fixed = rlock_byte(T_BYTE);
  3903     if (TwoOperandLIRForm) {
  3904       __ move(value, value_fixed);
  3905       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
  3906     } else {
  3907       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
  3909     LIR_Opr klass = new_register(T_METADATA);
  3910     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
  3911     null_check_info = NULL;
  3912     LIR_Opr layout = new_register(T_INT);
  3913     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
  3914     int diffbit = Klass::layout_helper_boolean_diffbit();
  3915     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
  3916 #ifdef MIPS
  3917     guarantee(false, "not implemented yet for mips");
  3918     // __ cmp();
  3919     // __ cmov();
  3920 #else
  3921     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
  3922     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
  3923 #endif
  3924     value = value_fixed;
  3926   return value;

mercurial