src/share/vm/utilities/taskqueue.hpp

Wed, 24 Feb 2010 07:00:33 -0800

author
jmasa
date
Wed, 24 Feb 2010 07:00:33 -0800
changeset 1719
5f1f51edaff6
parent 1460
1ee412f7fec9
child 1746
2a1472c30599
permissions
-rw-r--r--

6928081: G1: rename parameters common with CMS
Summary: Rename marking stack sizing flags to be common between G1 and CMS
Reviewed-by: ysr, tonyp

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class TaskQueueSuper: public CHeapObj {
    26 protected:
    27   // Internal type for indexing the queue; also used for the tag.
    28   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
    30   // The first free element after the last one pushed (mod N).
    31   volatile uint _bottom;
    33   enum {
    34     N = 1 << NOT_LP64(14) LP64_ONLY(17), // Queue size: 16K or 128K
    35     MOD_N_MASK = N - 1                   // To compute x mod N efficiently.
    36   };
    38   class Age {
    39   public:
    40     Age(size_t data = 0)         { _data = data; }
    41     Age(const Age& age)          { _data = age._data; }
    42     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
    44     Age   get()        const volatile { return _data; }
    45     void  set(Age age) volatile       { _data = age._data; }
    47     idx_t top()        const volatile { return _fields._top; }
    48     idx_t tag()        const volatile { return _fields._tag; }
    50     // Increment top; if it wraps, increment tag also.
    51     void increment() {
    52       _fields._top = increment_index(_fields._top);
    53       if (_fields._top == 0) ++_fields._tag;
    54     }
    56     Age cmpxchg(const Age new_age, const Age old_age) volatile {
    57       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
    58                                           (volatile intptr_t *)&_data,
    59                                           (intptr_t)old_age._data);
    60     }
    62     bool operator ==(const Age& other) const { return _data == other._data; }
    64   private:
    65     struct fields {
    66       idx_t _top;
    67       idx_t _tag;
    68     };
    69     union {
    70       size_t _data;
    71       fields _fields;
    72     };
    73   };
    75   volatile Age _age;
    77   // These both operate mod N.
    78   static uint increment_index(uint ind) {
    79     return (ind + 1) & MOD_N_MASK;
    80   }
    81   static uint decrement_index(uint ind) {
    82     return (ind - 1) & MOD_N_MASK;
    83   }
    85   // Returns a number in the range [0..N).  If the result is "N-1", it should be
    86   // interpreted as 0.
    87   uint dirty_size(uint bot, uint top) {
    88     return (bot - top) & MOD_N_MASK;
    89   }
    91   // Returns the size corresponding to the given "bot" and "top".
    92   uint size(uint bot, uint top) {
    93     uint sz = dirty_size(bot, top);
    94     // Has the queue "wrapped", so that bottom is less than top?  There's a
    95     // complicated special case here.  A pair of threads could perform pop_local
    96     // and pop_global operations concurrently, starting from a state in which
    97     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
    98     // and the pop_global in incrementing _top (in which case the pop_global
    99     // will be awarded the contested queue element.)  The resulting state must
   100     // be interpreted as an empty queue.  (We only need to worry about one such
   101     // event: only the queue owner performs pop_local's, and several concurrent
   102     // threads attempting to perform the pop_global will all perform the same
   103     // CAS, and only one can succeed.)  Any stealing thread that reads after
   104     // either the increment or decrement will see an empty queue, and will not
   105     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   106     // modified by concurrent queues, so the owner thread can reset the state to
   107     // _bottom == top so subsequent pushes will be performed normally.
   108     return (sz == N - 1) ? 0 : sz;
   109   }
   111 public:
   112   TaskQueueSuper() : _bottom(0), _age() {}
   114   // Return "true" if the TaskQueue contains any tasks.
   115   bool peek();
   117   // Return an estimate of the number of elements in the queue.
   118   // The "careful" version admits the possibility of pop_local/pop_global
   119   // races.
   120   uint size() {
   121     return size(_bottom, _age.top());
   122   }
   124   uint dirty_size() {
   125     return dirty_size(_bottom, _age.top());
   126   }
   128   void set_empty() {
   129     _bottom = 0;
   130     _age.set(0);
   131   }
   133   // Maximum number of elements allowed in the queue.  This is two less
   134   // than the actual queue size, for somewhat complicated reasons.
   135   uint max_elems() { return N - 2; }
   137   // Total size of queue.
   138   static const uint total_size() { return N; }
   139 };
   141 template<class E> class GenericTaskQueue: public TaskQueueSuper {
   142 private:
   143   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   144   bool push_slow(E t, uint dirty_n_elems);
   145   bool pop_local_slow(uint localBot, Age oldAge);
   147 public:
   148   // Initializes the queue to empty.
   149   GenericTaskQueue();
   151   void initialize();
   153   // Push the task "t" on the queue.  Returns "false" iff the queue is
   154   // full.
   155   inline bool push(E t);
   157   // If succeeds in claiming a task (from the 'local' end, that is, the
   158   // most recently pushed task), returns "true" and sets "t" to that task.
   159   // Otherwise, the queue is empty and returns false.
   160   inline bool pop_local(E& t);
   162   // If succeeds in claiming a task (from the 'global' end, that is, the
   163   // least recently pushed task), returns "true" and sets "t" to that task.
   164   // Otherwise, the queue is empty and returns false.
   165   bool pop_global(E& t);
   167   // Delete any resource associated with the queue.
   168   ~GenericTaskQueue();
   170   // apply the closure to all elements in the task queue
   171   void oops_do(OopClosure* f);
   173 private:
   174   // Element array.
   175   volatile E* _elems;
   176 };
   178 template<class E>
   179 GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
   180   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   181 }
   183 template<class E>
   184 void GenericTaskQueue<E>::initialize() {
   185   _elems = NEW_C_HEAP_ARRAY(E, N);
   186   guarantee(_elems != NULL, "Allocation failed.");
   187 }
   189 template<class E>
   190 void GenericTaskQueue<E>::oops_do(OopClosure* f) {
   191   // tty->print_cr("START OopTaskQueue::oops_do");
   192   uint iters = size();
   193   uint index = _bottom;
   194   for (uint i = 0; i < iters; ++i) {
   195     index = decrement_index(index);
   196     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   197     //            index, &_elems[index], _elems[index]);
   198     E* t = (E*)&_elems[index];      // cast away volatility
   199     oop* p = (oop*)t;
   200     assert((*t)->is_oop_or_null(), "Not an oop or null");
   201     f->do_oop(p);
   202   }
   203   // tty->print_cr("END OopTaskQueue::oops_do");
   204 }
   207 template<class E>
   208 bool GenericTaskQueue<E>::push_slow(E t, uint dirty_n_elems) {
   209   if (dirty_n_elems == N - 1) {
   210     // Actually means 0, so do the push.
   211     uint localBot = _bottom;
   212     _elems[localBot] = t;
   213     OrderAccess::release_store(&_bottom, increment_index(localBot));
   214     return true;
   215   }
   216   return false;
   217 }
   219 template<class E>
   220 bool GenericTaskQueue<E>::
   221 pop_local_slow(uint localBot, Age oldAge) {
   222   // This queue was observed to contain exactly one element; either this
   223   // thread will claim it, or a competing "pop_global".  In either case,
   224   // the queue will be logically empty afterwards.  Create a new Age value
   225   // that represents the empty queue for the given value of "_bottom".  (We
   226   // must also increment "tag" because of the case where "bottom == 1",
   227   // "top == 0".  A pop_global could read the queue element in that case,
   228   // then have the owner thread do a pop followed by another push.  Without
   229   // the incrementing of "tag", the pop_global's CAS could succeed,
   230   // allowing it to believe it has claimed the stale element.)
   231   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   232   // Perhaps a competing pop_global has already incremented "top", in which
   233   // case it wins the element.
   234   if (localBot == oldAge.top()) {
   235     // No competing pop_global has yet incremented "top"; we'll try to
   236     // install new_age, thus claiming the element.
   237     Age tempAge = _age.cmpxchg(newAge, oldAge);
   238     if (tempAge == oldAge) {
   239       // We win.
   240       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   241       return true;
   242     }
   243   }
   244   // We lose; a completing pop_global gets the element.  But the queue is empty
   245   // and top is greater than bottom.  Fix this representation of the empty queue
   246   // to become the canonical one.
   247   _age.set(newAge);
   248   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   249   return false;
   250 }
   252 template<class E>
   253 bool GenericTaskQueue<E>::pop_global(E& t) {
   254   Age oldAge = _age.get();
   255   uint localBot = _bottom;
   256   uint n_elems = size(localBot, oldAge.top());
   257   if (n_elems == 0) {
   258     return false;
   259   }
   261   t = _elems[oldAge.top()];
   262   Age newAge(oldAge);
   263   newAge.increment();
   264   Age resAge = _age.cmpxchg(newAge, oldAge);
   266   // Note that using "_bottom" here might fail, since a pop_local might
   267   // have decremented it.
   268   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   269   return resAge == oldAge;
   270 }
   272 template<class E>
   273 GenericTaskQueue<E>::~GenericTaskQueue() {
   274   FREE_C_HEAP_ARRAY(E, _elems);
   275 }
   277 // Inherits the typedef of "Task" from above.
   278 class TaskQueueSetSuper: public CHeapObj {
   279 protected:
   280   static int randomParkAndMiller(int* seed0);
   281 public:
   282   // Returns "true" if some TaskQueue in the set contains a task.
   283   virtual bool peek() = 0;
   284 };
   286 template<class E> class GenericTaskQueueSet: public TaskQueueSetSuper {
   287 private:
   288   uint _n;
   289   GenericTaskQueue<E>** _queues;
   291 public:
   292   GenericTaskQueueSet(int n) : _n(n) {
   293     typedef GenericTaskQueue<E>* GenericTaskQueuePtr;
   294     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
   295     guarantee(_queues != NULL, "Allocation failure.");
   296     for (int i = 0; i < n; i++) {
   297       _queues[i] = NULL;
   298     }
   299   }
   301   bool steal_1_random(uint queue_num, int* seed, E& t);
   302   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   303   bool steal_best_of_all(uint queue_num, int* seed, E& t);
   305   void register_queue(uint i, GenericTaskQueue<E>* q);
   307   GenericTaskQueue<E>* queue(uint n);
   309   // The thread with queue number "queue_num" (and whose random number seed
   310   // is at "seed") is trying to steal a task from some other queue.  (It
   311   // may try several queues, according to some configuration parameter.)
   312   // If some steal succeeds, returns "true" and sets "t" the stolen task,
   313   // otherwise returns false.
   314   bool steal(uint queue_num, int* seed, E& t);
   316   bool peek();
   317 };
   319 template<class E>
   320 void GenericTaskQueueSet<E>::register_queue(uint i, GenericTaskQueue<E>* q) {
   321   assert(i < _n, "index out of range.");
   322   _queues[i] = q;
   323 }
   325 template<class E>
   326 GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(uint i) {
   327   return _queues[i];
   328 }
   330 template<class E>
   331 bool GenericTaskQueueSet<E>::steal(uint queue_num, int* seed, E& t) {
   332   for (uint i = 0; i < 2 * _n; i++)
   333     if (steal_best_of_2(queue_num, seed, t))
   334       return true;
   335   return false;
   336 }
   338 template<class E>
   339 bool GenericTaskQueueSet<E>::steal_best_of_all(uint queue_num, int* seed, E& t) {
   340   if (_n > 2) {
   341     int best_k;
   342     uint best_sz = 0;
   343     for (uint k = 0; k < _n; k++) {
   344       if (k == queue_num) continue;
   345       uint sz = _queues[k]->size();
   346       if (sz > best_sz) {
   347         best_sz = sz;
   348         best_k = k;
   349       }
   350     }
   351     return best_sz > 0 && _queues[best_k]->pop_global(t);
   352   } else if (_n == 2) {
   353     // Just try the other one.
   354     int k = (queue_num + 1) % 2;
   355     return _queues[k]->pop_global(t);
   356   } else {
   357     assert(_n == 1, "can't be zero.");
   358     return false;
   359   }
   360 }
   362 template<class E>
   363 bool GenericTaskQueueSet<E>::steal_1_random(uint queue_num, int* seed, E& t) {
   364   if (_n > 2) {
   365     uint k = queue_num;
   366     while (k == queue_num) k = randomParkAndMiller(seed) % _n;
   367     return _queues[2]->pop_global(t);
   368   } else if (_n == 2) {
   369     // Just try the other one.
   370     int k = (queue_num + 1) % 2;
   371     return _queues[k]->pop_global(t);
   372   } else {
   373     assert(_n == 1, "can't be zero.");
   374     return false;
   375   }
   376 }
   378 template<class E>
   379 bool GenericTaskQueueSet<E>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   380   if (_n > 2) {
   381     uint k1 = queue_num;
   382     while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
   383     uint k2 = queue_num;
   384     while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
   385     // Sample both and try the larger.
   386     uint sz1 = _queues[k1]->size();
   387     uint sz2 = _queues[k2]->size();
   388     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   389     else return _queues[k1]->pop_global(t);
   390   } else if (_n == 2) {
   391     // Just try the other one.
   392     uint k = (queue_num + 1) % 2;
   393     return _queues[k]->pop_global(t);
   394   } else {
   395     assert(_n == 1, "can't be zero.");
   396     return false;
   397   }
   398 }
   400 template<class E>
   401 bool GenericTaskQueueSet<E>::peek() {
   402   // Try all the queues.
   403   for (uint j = 0; j < _n; j++) {
   404     if (_queues[j]->peek())
   405       return true;
   406   }
   407   return false;
   408 }
   410 // When to terminate from the termination protocol.
   411 class TerminatorTerminator: public CHeapObj {
   412 public:
   413   virtual bool should_exit_termination() = 0;
   414 };
   416 // A class to aid in the termination of a set of parallel tasks using
   417 // TaskQueueSet's for work stealing.
   419 #undef TRACESPINNING
   421 class ParallelTaskTerminator: public StackObj {
   422 private:
   423   int _n_threads;
   424   TaskQueueSetSuper* _queue_set;
   425   int _offered_termination;
   427 #ifdef TRACESPINNING
   428   static uint _total_yields;
   429   static uint _total_spins;
   430   static uint _total_peeks;
   431 #endif
   433   bool peek_in_queue_set();
   434 protected:
   435   virtual void yield();
   436   void sleep(uint millis);
   438 public:
   440   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   441   // queue sets of work queues of other threads.
   442   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   444   // The current thread has no work, and is ready to terminate if everyone
   445   // else is.  If returns "true", all threads are terminated.  If returns
   446   // "false", available work has been observed in one of the task queues,
   447   // so the global task is not complete.
   448   bool offer_termination() {
   449     return offer_termination(NULL);
   450   }
   452   // As above, but it also terminates if the should_exit_termination()
   453   // method of the terminator parameter returns true. If terminator is
   454   // NULL, then it is ignored.
   455   bool offer_termination(TerminatorTerminator* terminator);
   457   // Reset the terminator, so that it may be reused again.
   458   // The caller is responsible for ensuring that this is done
   459   // in an MT-safe manner, once the previous round of use of
   460   // the terminator is finished.
   461   void reset_for_reuse();
   463 #ifdef TRACESPINNING
   464   static uint total_yields() { return _total_yields; }
   465   static uint total_spins() { return _total_spins; }
   466   static uint total_peeks() { return _total_peeks; }
   467   static void print_termination_counts();
   468 #endif
   469 };
   471 template<class E> inline bool GenericTaskQueue<E>::push(E t) {
   472   uint localBot = _bottom;
   473   assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
   474   idx_t top = _age.top();
   475   uint dirty_n_elems = dirty_size(localBot, top);
   476   assert((dirty_n_elems >= 0) && (dirty_n_elems < N), "n_elems out of range.");
   477   if (dirty_n_elems < max_elems()) {
   478     _elems[localBot] = t;
   479     OrderAccess::release_store(&_bottom, increment_index(localBot));
   480     return true;
   481   } else {
   482     return push_slow(t, dirty_n_elems);
   483   }
   484 }
   486 template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
   487   uint localBot = _bottom;
   488   // This value cannot be N-1.  That can only occur as a result of
   489   // the assignment to bottom in this method.  If it does, this method
   490   // resets the size( to 0 before the next call (which is sequential,
   491   // since this is pop_local.)
   492   uint dirty_n_elems = dirty_size(localBot, _age.top());
   493   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   494   if (dirty_n_elems == 0) return false;
   495   localBot = decrement_index(localBot);
   496   _bottom = localBot;
   497   // This is necessary to prevent any read below from being reordered
   498   // before the store just above.
   499   OrderAccess::fence();
   500   t = _elems[localBot];
   501   // This is a second read of "age"; the "size()" above is the first.
   502   // If there's still at least one element in the queue, based on the
   503   // "_bottom" and "age" we've read, then there can be no interference with
   504   // a "pop_global" operation, and we're done.
   505   idx_t tp = _age.top();    // XXX
   506   if (size(localBot, tp) > 0) {
   507     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   508     return true;
   509   } else {
   510     // Otherwise, the queue contained exactly one element; we take the slow
   511     // path.
   512     return pop_local_slow(localBot, _age.get());
   513   }
   514 }
   516 typedef oop Task;
   517 typedef GenericTaskQueue<Task>         OopTaskQueue;
   518 typedef GenericTaskQueueSet<Task>      OopTaskQueueSet;
   521 #define COMPRESSED_OOP_MASK  1
   523 // This is a container class for either an oop* or a narrowOop*.
   524 // Both are pushed onto a task queue and the consumer will test is_narrow()
   525 // to determine which should be processed.
   526 class StarTask {
   527   void*  _holder;        // either union oop* or narrowOop*
   528  public:
   529   StarTask(narrowOop* p) {
   530     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   531     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   532   }
   533   StarTask(oop* p)       {
   534     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   535     _holder = (void*)p;
   536   }
   537   StarTask()             { _holder = NULL; }
   538   operator oop*()        { return (oop*)_holder; }
   539   operator narrowOop*()  {
   540     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   541   }
   543   // Operators to preserve const/volatile in assignments required by gcc
   544   void operator=(const volatile StarTask& t) volatile { _holder = t._holder; }
   546   bool is_narrow() const {
   547     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   548   }
   549 };
   551 typedef GenericTaskQueue<StarTask>     OopStarTaskQueue;
   552 typedef GenericTaskQueueSet<StarTask>  OopStarTaskQueueSet;
   554 typedef size_t RegionTask;  // index for region
   555 typedef GenericTaskQueue<RegionTask>    RegionTaskQueue;
   556 typedef GenericTaskQueueSet<RegionTask> RegionTaskQueueSet;
   558 class RegionTaskQueueWithOverflow: public CHeapObj {
   559  protected:
   560   RegionTaskQueue              _region_queue;
   561   GrowableArray<RegionTask>*   _overflow_stack;
   563  public:
   564   RegionTaskQueueWithOverflow() : _overflow_stack(NULL) {}
   565   // Initialize both stealable queue and overflow
   566   void initialize();
   567   // Save first to stealable queue and then to overflow
   568   void save(RegionTask t);
   569   // Retrieve first from overflow and then from stealable queue
   570   bool retrieve(RegionTask& region_index);
   571   // Retrieve from stealable queue
   572   bool retrieve_from_stealable_queue(RegionTask& region_index);
   573   // Retrieve from overflow
   574   bool retrieve_from_overflow(RegionTask& region_index);
   575   bool is_empty();
   576   bool stealable_is_empty();
   577   bool overflow_is_empty();
   578   uint stealable_size() { return _region_queue.size(); }
   579   RegionTaskQueue* task_queue() { return &_region_queue; }
   580 };
   582 #define USE_RegionTaskQueueWithOverflow

mercurial