src/share/vm/utilities/taskqueue.hpp

Wed, 03 Mar 2010 14:48:26 -0800

author
jcoomes
date
Wed, 03 Mar 2010 14:48:26 -0800
changeset 1746
2a1472c30599
parent 1719
5f1f51edaff6
child 1907
c18cbe5936b8
permissions
-rw-r--r--

4396719: Mark Sweep stack overflow on deeply nested Object arrays
Summary: Use an explicit stack for object arrays and process them in chunks.
Reviewed-by: iveresov, apetrusenko

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 template <unsigned int N>
    26 class TaskQueueSuper: public CHeapObj {
    27 protected:
    28   // Internal type for indexing the queue; also used for the tag.
    29   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
    31   // The first free element after the last one pushed (mod N).
    32   volatile uint _bottom;
    34   enum { MOD_N_MASK = N - 1 };
    36   class Age {
    37   public:
    38     Age(size_t data = 0)         { _data = data; }
    39     Age(const Age& age)          { _data = age._data; }
    40     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
    42     Age   get()        const volatile { return _data; }
    43     void  set(Age age) volatile       { _data = age._data; }
    45     idx_t top()        const volatile { return _fields._top; }
    46     idx_t tag()        const volatile { return _fields._tag; }
    48     // Increment top; if it wraps, increment tag also.
    49     void increment() {
    50       _fields._top = increment_index(_fields._top);
    51       if (_fields._top == 0) ++_fields._tag;
    52     }
    54     Age cmpxchg(const Age new_age, const Age old_age) volatile {
    55       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
    56                                           (volatile intptr_t *)&_data,
    57                                           (intptr_t)old_age._data);
    58     }
    60     bool operator ==(const Age& other) const { return _data == other._data; }
    62   private:
    63     struct fields {
    64       idx_t _top;
    65       idx_t _tag;
    66     };
    67     union {
    68       size_t _data;
    69       fields _fields;
    70     };
    71   };
    73   volatile Age _age;
    75   // These both operate mod N.
    76   static uint increment_index(uint ind) {
    77     return (ind + 1) & MOD_N_MASK;
    78   }
    79   static uint decrement_index(uint ind) {
    80     return (ind - 1) & MOD_N_MASK;
    81   }
    83   // Returns a number in the range [0..N).  If the result is "N-1", it should be
    84   // interpreted as 0.
    85   uint dirty_size(uint bot, uint top) const {
    86     return (bot - top) & MOD_N_MASK;
    87   }
    89   // Returns the size corresponding to the given "bot" and "top".
    90   uint size(uint bot, uint top) const {
    91     uint sz = dirty_size(bot, top);
    92     // Has the queue "wrapped", so that bottom is less than top?  There's a
    93     // complicated special case here.  A pair of threads could perform pop_local
    94     // and pop_global operations concurrently, starting from a state in which
    95     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
    96     // and the pop_global in incrementing _top (in which case the pop_global
    97     // will be awarded the contested queue element.)  The resulting state must
    98     // be interpreted as an empty queue.  (We only need to worry about one such
    99     // event: only the queue owner performs pop_local's, and several concurrent
   100     // threads attempting to perform the pop_global will all perform the same
   101     // CAS, and only one can succeed.)  Any stealing thread that reads after
   102     // either the increment or decrement will see an empty queue, and will not
   103     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   104     // modified by concurrent queues, so the owner thread can reset the state to
   105     // _bottom == top so subsequent pushes will be performed normally.
   106     return (sz == N - 1) ? 0 : sz;
   107   }
   109 public:
   110   TaskQueueSuper() : _bottom(0), _age() {}
   112   // Return true if the TaskQueue contains any tasks.
   113   bool peek() { return _bottom != _age.top(); }
   115   // Return an estimate of the number of elements in the queue.
   116   // The "careful" version admits the possibility of pop_local/pop_global
   117   // races.
   118   uint size() const {
   119     return size(_bottom, _age.top());
   120   }
   122   uint dirty_size() const {
   123     return dirty_size(_bottom, _age.top());
   124   }
   126   void set_empty() {
   127     _bottom = 0;
   128     _age.set(0);
   129   }
   131   // Maximum number of elements allowed in the queue.  This is two less
   132   // than the actual queue size, for somewhat complicated reasons.
   133   uint max_elems() const { return N - 2; }
   135   // Total size of queue.
   136   static const uint total_size() { return N; }
   137 };
   139 template<class E, unsigned int N = TASKQUEUE_SIZE>
   140 class GenericTaskQueue: public TaskQueueSuper<N> {
   141 protected:
   142   typedef typename TaskQueueSuper<N>::Age Age;
   143   typedef typename TaskQueueSuper<N>::idx_t idx_t;
   145   using TaskQueueSuper<N>::_bottom;
   146   using TaskQueueSuper<N>::_age;
   147   using TaskQueueSuper<N>::increment_index;
   148   using TaskQueueSuper<N>::decrement_index;
   149   using TaskQueueSuper<N>::dirty_size;
   151 public:
   152   using TaskQueueSuper<N>::max_elems;
   153   using TaskQueueSuper<N>::size;
   155 private:
   156   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   157   bool push_slow(E t, uint dirty_n_elems);
   158   bool pop_local_slow(uint localBot, Age oldAge);
   160 public:
   161   typedef E element_type;
   163   // Initializes the queue to empty.
   164   GenericTaskQueue();
   166   void initialize();
   168   // Push the task "t" on the queue.  Returns "false" iff the queue is
   169   // full.
   170   inline bool push(E t);
   172   // If succeeds in claiming a task (from the 'local' end, that is, the
   173   // most recently pushed task), returns "true" and sets "t" to that task.
   174   // Otherwise, the queue is empty and returns false.
   175   inline bool pop_local(E& t);
   177   // If succeeds in claiming a task (from the 'global' end, that is, the
   178   // least recently pushed task), returns "true" and sets "t" to that task.
   179   // Otherwise, the queue is empty and returns false.
   180   bool pop_global(E& t);
   182   // Delete any resource associated with the queue.
   183   ~GenericTaskQueue();
   185   // apply the closure to all elements in the task queue
   186   void oops_do(OopClosure* f);
   188 private:
   189   // Element array.
   190   volatile E* _elems;
   191 };
   193 template<class E, unsigned int N>
   194 GenericTaskQueue<E, N>::GenericTaskQueue() {
   195   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   196 }
   198 template<class E, unsigned int N>
   199 void GenericTaskQueue<E, N>::initialize() {
   200   _elems = NEW_C_HEAP_ARRAY(E, N);
   201   guarantee(_elems != NULL, "Allocation failed.");
   202 }
   204 template<class E, unsigned int N>
   205 void GenericTaskQueue<E, N>::oops_do(OopClosure* f) {
   206   // tty->print_cr("START OopTaskQueue::oops_do");
   207   uint iters = size();
   208   uint index = _bottom;
   209   for (uint i = 0; i < iters; ++i) {
   210     index = decrement_index(index);
   211     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   212     //            index, &_elems[index], _elems[index]);
   213     E* t = (E*)&_elems[index];      // cast away volatility
   214     oop* p = (oop*)t;
   215     assert((*t)->is_oop_or_null(), "Not an oop or null");
   216     f->do_oop(p);
   217   }
   218   // tty->print_cr("END OopTaskQueue::oops_do");
   219 }
   221 template<class E, unsigned int N>
   222 bool GenericTaskQueue<E, N>::push_slow(E t, uint dirty_n_elems) {
   223   if (dirty_n_elems == N - 1) {
   224     // Actually means 0, so do the push.
   225     uint localBot = _bottom;
   226     // g++ complains if the volatile result of the assignment is unused.
   227     const_cast<E&>(_elems[localBot] = t);
   228     OrderAccess::release_store(&_bottom, increment_index(localBot));
   229     return true;
   230   }
   231   return false;
   232 }
   234 template<class E, unsigned int N>
   235 bool GenericTaskQueue<E, N>::
   236 pop_local_slow(uint localBot, Age oldAge) {
   237   // This queue was observed to contain exactly one element; either this
   238   // thread will claim it, or a competing "pop_global".  In either case,
   239   // the queue will be logically empty afterwards.  Create a new Age value
   240   // that represents the empty queue for the given value of "_bottom".  (We
   241   // must also increment "tag" because of the case where "bottom == 1",
   242   // "top == 0".  A pop_global could read the queue element in that case,
   243   // then have the owner thread do a pop followed by another push.  Without
   244   // the incrementing of "tag", the pop_global's CAS could succeed,
   245   // allowing it to believe it has claimed the stale element.)
   246   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   247   // Perhaps a competing pop_global has already incremented "top", in which
   248   // case it wins the element.
   249   if (localBot == oldAge.top()) {
   250     // No competing pop_global has yet incremented "top"; we'll try to
   251     // install new_age, thus claiming the element.
   252     Age tempAge = _age.cmpxchg(newAge, oldAge);
   253     if (tempAge == oldAge) {
   254       // We win.
   255       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   256       return true;
   257     }
   258   }
   259   // We lose; a completing pop_global gets the element.  But the queue is empty
   260   // and top is greater than bottom.  Fix this representation of the empty queue
   261   // to become the canonical one.
   262   _age.set(newAge);
   263   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   264   return false;
   265 }
   267 template<class E, unsigned int N>
   268 bool GenericTaskQueue<E, N>::pop_global(E& t) {
   269   Age oldAge = _age.get();
   270   uint localBot = _bottom;
   271   uint n_elems = size(localBot, oldAge.top());
   272   if (n_elems == 0) {
   273     return false;
   274   }
   276   const_cast<E&>(t = _elems[oldAge.top()]);
   277   Age newAge(oldAge);
   278   newAge.increment();
   279   Age resAge = _age.cmpxchg(newAge, oldAge);
   281   // Note that using "_bottom" here might fail, since a pop_local might
   282   // have decremented it.
   283   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   284   return resAge == oldAge;
   285 }
   287 template<class E, unsigned int N>
   288 GenericTaskQueue<E, N>::~GenericTaskQueue() {
   289   FREE_C_HEAP_ARRAY(E, _elems);
   290 }
   292 // Inherits the typedef of "Task" from above.
   293 class TaskQueueSetSuper: public CHeapObj {
   294 protected:
   295   static int randomParkAndMiller(int* seed0);
   296 public:
   297   // Returns "true" if some TaskQueue in the set contains a task.
   298   virtual bool peek() = 0;
   299 };
   301 template<class T>
   302 class GenericTaskQueueSet: public TaskQueueSetSuper {
   303 private:
   304   uint _n;
   305   T** _queues;
   307 public:
   308   typedef typename T::element_type E;
   310   GenericTaskQueueSet(int n) : _n(n) {
   311     typedef T* GenericTaskQueuePtr;
   312     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
   313     for (int i = 0; i < n; i++) {
   314       _queues[i] = NULL;
   315     }
   316   }
   318   bool steal_1_random(uint queue_num, int* seed, E& t);
   319   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   320   bool steal_best_of_all(uint queue_num, int* seed, E& t);
   322   void register_queue(uint i, T* q);
   324   T* queue(uint n);
   326   // The thread with queue number "queue_num" (and whose random number seed
   327   // is at "seed") is trying to steal a task from some other queue.  (It
   328   // may try several queues, according to some configuration parameter.)
   329   // If some steal succeeds, returns "true" and sets "t" the stolen task,
   330   // otherwise returns false.
   331   bool steal(uint queue_num, int* seed, E& t);
   333   bool peek();
   334 };
   336 template<class T> void
   337 GenericTaskQueueSet<T>::register_queue(uint i, T* q) {
   338   assert(i < _n, "index out of range.");
   339   _queues[i] = q;
   340 }
   342 template<class T> T*
   343 GenericTaskQueueSet<T>::queue(uint i) {
   344   return _queues[i];
   345 }
   347 template<class T> bool
   348 GenericTaskQueueSet<T>::steal(uint queue_num, int* seed, E& t) {
   349   for (uint i = 0; i < 2 * _n; i++)
   350     if (steal_best_of_2(queue_num, seed, t))
   351       return true;
   352   return false;
   353 }
   355 template<class T> bool
   356 GenericTaskQueueSet<T>::steal_best_of_all(uint queue_num, int* seed, E& t) {
   357   if (_n > 2) {
   358     int best_k;
   359     uint best_sz = 0;
   360     for (uint k = 0; k < _n; k++) {
   361       if (k == queue_num) continue;
   362       uint sz = _queues[k]->size();
   363       if (sz > best_sz) {
   364         best_sz = sz;
   365         best_k = k;
   366       }
   367     }
   368     return best_sz > 0 && _queues[best_k]->pop_global(t);
   369   } else if (_n == 2) {
   370     // Just try the other one.
   371     int k = (queue_num + 1) % 2;
   372     return _queues[k]->pop_global(t);
   373   } else {
   374     assert(_n == 1, "can't be zero.");
   375     return false;
   376   }
   377 }
   379 template<class T> bool
   380 GenericTaskQueueSet<T>::steal_1_random(uint queue_num, int* seed, E& t) {
   381   if (_n > 2) {
   382     uint k = queue_num;
   383     while (k == queue_num) k = randomParkAndMiller(seed) % _n;
   384     return _queues[2]->pop_global(t);
   385   } else if (_n == 2) {
   386     // Just try the other one.
   387     int k = (queue_num + 1) % 2;
   388     return _queues[k]->pop_global(t);
   389   } else {
   390     assert(_n == 1, "can't be zero.");
   391     return false;
   392   }
   393 }
   395 template<class T> bool
   396 GenericTaskQueueSet<T>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   397   if (_n > 2) {
   398     uint k1 = queue_num;
   399     while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
   400     uint k2 = queue_num;
   401     while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
   402     // Sample both and try the larger.
   403     uint sz1 = _queues[k1]->size();
   404     uint sz2 = _queues[k2]->size();
   405     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   406     else return _queues[k1]->pop_global(t);
   407   } else if (_n == 2) {
   408     // Just try the other one.
   409     uint k = (queue_num + 1) % 2;
   410     return _queues[k]->pop_global(t);
   411   } else {
   412     assert(_n == 1, "can't be zero.");
   413     return false;
   414   }
   415 }
   417 template<class T>
   418 bool GenericTaskQueueSet<T>::peek() {
   419   // Try all the queues.
   420   for (uint j = 0; j < _n; j++) {
   421     if (_queues[j]->peek())
   422       return true;
   423   }
   424   return false;
   425 }
   427 // When to terminate from the termination protocol.
   428 class TerminatorTerminator: public CHeapObj {
   429 public:
   430   virtual bool should_exit_termination() = 0;
   431 };
   433 // A class to aid in the termination of a set of parallel tasks using
   434 // TaskQueueSet's for work stealing.
   436 #undef TRACESPINNING
   438 class ParallelTaskTerminator: public StackObj {
   439 private:
   440   int _n_threads;
   441   TaskQueueSetSuper* _queue_set;
   442   int _offered_termination;
   444 #ifdef TRACESPINNING
   445   static uint _total_yields;
   446   static uint _total_spins;
   447   static uint _total_peeks;
   448 #endif
   450   bool peek_in_queue_set();
   451 protected:
   452   virtual void yield();
   453   void sleep(uint millis);
   455 public:
   457   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   458   // queue sets of work queues of other threads.
   459   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   461   // The current thread has no work, and is ready to terminate if everyone
   462   // else is.  If returns "true", all threads are terminated.  If returns
   463   // "false", available work has been observed in one of the task queues,
   464   // so the global task is not complete.
   465   bool offer_termination() {
   466     return offer_termination(NULL);
   467   }
   469   // As above, but it also terminates if the should_exit_termination()
   470   // method of the terminator parameter returns true. If terminator is
   471   // NULL, then it is ignored.
   472   bool offer_termination(TerminatorTerminator* terminator);
   474   // Reset the terminator, so that it may be reused again.
   475   // The caller is responsible for ensuring that this is done
   476   // in an MT-safe manner, once the previous round of use of
   477   // the terminator is finished.
   478   void reset_for_reuse();
   480 #ifdef TRACESPINNING
   481   static uint total_yields() { return _total_yields; }
   482   static uint total_spins() { return _total_spins; }
   483   static uint total_peeks() { return _total_peeks; }
   484   static void print_termination_counts();
   485 #endif
   486 };
   488 template<class E, unsigned int N> inline bool
   489 GenericTaskQueue<E, N>::push(E t) {
   490   uint localBot = _bottom;
   491   assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
   492   idx_t top = _age.top();
   493   uint dirty_n_elems = dirty_size(localBot, top);
   494   assert(dirty_n_elems < N, "n_elems out of range.");
   495   if (dirty_n_elems < max_elems()) {
   496     // g++ complains if the volatile result of the assignment is unused.
   497     const_cast<E&>(_elems[localBot] = t);
   498     OrderAccess::release_store(&_bottom, increment_index(localBot));
   499     return true;
   500   } else {
   501     return push_slow(t, dirty_n_elems);
   502   }
   503 }
   505 template<class E, unsigned int N> inline bool
   506 GenericTaskQueue<E, N>::pop_local(E& t) {
   507   uint localBot = _bottom;
   508   // This value cannot be N-1.  That can only occur as a result of
   509   // the assignment to bottom in this method.  If it does, this method
   510   // resets the size( to 0 before the next call (which is sequential,
   511   // since this is pop_local.)
   512   uint dirty_n_elems = dirty_size(localBot, _age.top());
   513   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   514   if (dirty_n_elems == 0) return false;
   515   localBot = decrement_index(localBot);
   516   _bottom = localBot;
   517   // This is necessary to prevent any read below from being reordered
   518   // before the store just above.
   519   OrderAccess::fence();
   520   const_cast<E&>(t = _elems[localBot]);
   521   // This is a second read of "age"; the "size()" above is the first.
   522   // If there's still at least one element in the queue, based on the
   523   // "_bottom" and "age" we've read, then there can be no interference with
   524   // a "pop_global" operation, and we're done.
   525   idx_t tp = _age.top();    // XXX
   526   if (size(localBot, tp) > 0) {
   527     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   528     return true;
   529   } else {
   530     // Otherwise, the queue contained exactly one element; we take the slow
   531     // path.
   532     return pop_local_slow(localBot, _age.get());
   533   }
   534 }
   536 typedef oop Task;
   537 typedef GenericTaskQueue<Task>            OopTaskQueue;
   538 typedef GenericTaskQueueSet<OopTaskQueue> OopTaskQueueSet;
   540 #ifdef _MSC_VER
   541 #pragma warning(push)
   542 // warning C4522: multiple assignment operators specified
   543 #pragma warning(disable:4522)
   544 #endif
   546 // This is a container class for either an oop* or a narrowOop*.
   547 // Both are pushed onto a task queue and the consumer will test is_narrow()
   548 // to determine which should be processed.
   549 class StarTask {
   550   void*  _holder;        // either union oop* or narrowOop*
   552   enum { COMPRESSED_OOP_MASK = 1 };
   554  public:
   555   StarTask(narrowOop* p) {
   556     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   557     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   558   }
   559   StarTask(oop* p)       {
   560     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   561     _holder = (void*)p;
   562   }
   563   StarTask()             { _holder = NULL; }
   564   operator oop*()        { return (oop*)_holder; }
   565   operator narrowOop*()  {
   566     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   567   }
   569   StarTask& operator=(const StarTask& t) {
   570     _holder = t._holder;
   571     return *this;
   572   }
   573   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   574     _holder = t._holder;
   575     return *this;
   576   }
   578   bool is_narrow() const {
   579     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   580   }
   581 };
   583 class ObjArrayTask
   584 {
   585 public:
   586   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   587   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   588     assert(idx <= size_t(max_jint), "too big");
   589   }
   590   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   592   ObjArrayTask& operator =(const ObjArrayTask& t) {
   593     _obj = t._obj;
   594     _index = t._index;
   595     return *this;
   596   }
   597   volatile ObjArrayTask&
   598   operator =(const volatile ObjArrayTask& t) volatile {
   599     _obj = t._obj;
   600     _index = t._index;
   601     return *this;
   602   }
   604   inline oop obj()   const { return _obj; }
   605   inline int index() const { return _index; }
   607   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   609 private:
   610   oop _obj;
   611   int _index;
   612 };
   614 #ifdef _MSC_VER
   615 #pragma warning(pop)
   616 #endif
   618 typedef GenericTaskQueue<StarTask>            OopStarTaskQueue;
   619 typedef GenericTaskQueueSet<OopStarTaskQueue> OopStarTaskQueueSet;
   621 typedef size_t RegionTask;  // index for region
   622 typedef GenericTaskQueue<RegionTask>         RegionTaskQueue;
   623 typedef GenericTaskQueueSet<RegionTaskQueue> RegionTaskQueueSet;
   625 class RegionTaskQueueWithOverflow: public CHeapObj {
   626  protected:
   627   RegionTaskQueue              _region_queue;
   628   GrowableArray<RegionTask>*   _overflow_stack;
   630  public:
   631   RegionTaskQueueWithOverflow() : _overflow_stack(NULL) {}
   632   // Initialize both stealable queue and overflow
   633   void initialize();
   634   // Save first to stealable queue and then to overflow
   635   void save(RegionTask t);
   636   // Retrieve first from overflow and then from stealable queue
   637   bool retrieve(RegionTask& region_index);
   638   // Retrieve from stealable queue
   639   bool retrieve_from_stealable_queue(RegionTask& region_index);
   640   // Retrieve from overflow
   641   bool retrieve_from_overflow(RegionTask& region_index);
   642   bool is_empty();
   643   bool stealable_is_empty();
   644   bool overflow_is_empty();
   645   uint stealable_size() { return _region_queue.size(); }
   646   RegionTaskQueue* task_queue() { return &_region_queue; }
   647 };
   649 #define USE_RegionTaskQueueWithOverflow

mercurial