src/cpu/mips/vm/mips_64.ad

Wed, 15 Feb 2017 09:29:03 -0500

author
fujie
date
Wed, 15 Feb 2017 09:29:03 -0500
changeset 300
5c43ed10ee2f
parent 299
9742e61a5f2d
child 301
d585b6706dc2
permissions
-rw-r--r--

[C2] Add instruct andI_Reg_immI_nonneg_mask in mips_64.ad

     1 //
     2 // Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3 // Copyright (c) 2015, 2016, Loongson Technology. All rights reserved.
     4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5 //
     6 // This code is free software; you can redistribute it and/or modify it
     7 // under the terms of the GNU General Public License version 2 only, as
     8 // published by the Free Software Foundation.
     9 //
    10 // This code is distributed in the hope that it will be useful, but WITHOUT
    11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13 // version 2 for more details (a copy is included in the LICENSE file that
    14 // accompanied this code).
    15 //
    16 // You should have received a copy of the GNU General Public License version
    17 // 2 along with this work; if not, write to the Free Software Foundation,
    18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19 //
    20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21 // or visit www.oracle.com if you need additional information or have any
    22 // questions.
    23 //
    24 //
    26 // GodSon3 Architecture Description File
    28 //----------REGISTER DEFINITION BLOCK------------------------------------------
    29 // This information is used by the matcher and the register allocator to
    30 // describe individual registers and classes of registers within the target
    31 // archtecture.
    33 // format:
    34 // reg_def name (call convention, c-call convention, ideal type, encoding);
    35 // 		call convention : 
    36 //			NS  = No-Save
    37 //			SOC = Save-On-Call
    38 //			SOE = Save-On-Entry
    39 //			AS  = Always-Save
    40 //		ideal type :
    41 //			see opto/opcodes.hpp for more info
    42 // reg_class name (reg, ...);
    43 // alloc_class name (reg, ...); 
    44 register %{
    46 // General Registers
    47 // Integer Registers
    48 	reg_def R0	    ( NS,  NS, 	Op_RegI,  0, VMRegImpl::Bad());
    49 	reg_def AT		( NS,  NS, 	Op_RegI,  1, AT->as_VMReg());
    50 	reg_def AT_H    ( NS,  NS,  Op_RegI,  1, AT->as_VMReg()->next());
    51 	reg_def V0		(SOC, SOC,	Op_RegI,  2, V0->as_VMReg());
    52 	reg_def V0_H	(SOC, SOC,	Op_RegI,  2, V0->as_VMReg()->next());
    53 	reg_def V1		(SOC, SOC,	Op_RegI,  3, V1->as_VMReg());
    54 	reg_def V1_H	(SOC, SOC,	Op_RegI,  3, V1->as_VMReg()->next());
    55 	reg_def A0		(SOC, SOC,	Op_RegI,  4, A0->as_VMReg());
    56 	reg_def A0_H	(SOC, SOC,	Op_RegI,  4, A0->as_VMReg()->next());
    57 	reg_def A1		(SOC, SOC,	Op_RegI,  5, A1->as_VMReg());
    58 	reg_def A1_H	(SOC, SOC,	Op_RegI,  5, A1->as_VMReg()->next());
    59 	reg_def A2		(SOC, SOC,	Op_RegI,  6, A2->as_VMReg());
    60 	reg_def A2_H	(SOC, SOC,	Op_RegI,  6, A2->as_VMReg()->next());
    61 	reg_def A3		(SOC, SOC,	Op_RegI,  7, A3->as_VMReg());
    62 	reg_def A3_H	(SOC, SOC,	Op_RegI,  7, A3->as_VMReg()->next());
    63 	reg_def A4		(SOC, SOC,	Op_RegI,  8, A4->as_VMReg());
    64 	reg_def A4_H	(SOC, SOC,	Op_RegI,  8, A4->as_VMReg()->next());
    65 	reg_def A5		(SOC, SOC,	Op_RegI,  9, A5->as_VMReg());
    66 	reg_def A5_H	(SOC, SOC,	Op_RegI,  9, A5->as_VMReg()->next());
    67 	reg_def A6		(SOC, SOC,	Op_RegI,  10, A6->as_VMReg());
    68 	reg_def A6_H	(SOC, SOC,	Op_RegI,  10, A6->as_VMReg()->next());
    69 	reg_def A7		(SOC, SOC,	Op_RegI,  11, A7->as_VMReg());
    70 	reg_def A7_H	(SOC, SOC,	Op_RegI,  11, A7->as_VMReg()->next());
    71 	reg_def T0		(SOC, SOC,	Op_RegI,  12, T0->as_VMReg());
    72 	reg_def T0_H	(SOC, SOC,	Op_RegI,  12, T0->as_VMReg()->next());
    73 	reg_def T1		(SOC, SOC,	Op_RegI,  13, T1->as_VMReg());
    74 	reg_def T1_H	(SOC, SOC,	Op_RegI,  13, T1->as_VMReg()->next());
    75 	reg_def T2		(SOC, SOC,	Op_RegI,  14, T2->as_VMReg());
    76 	reg_def T2_H	(SOC, SOC,	Op_RegI,  14, T2->as_VMReg()->next());
    77 	reg_def T3		(SOC, SOC,	Op_RegI,  15, T3->as_VMReg());
    78 	reg_def T3_H	(SOC, SOC,	Op_RegI,  15, T3->as_VMReg()->next());
    79 	reg_def S0		(SOC, SOE,	Op_RegI,  16, S0->as_VMReg());
    80 	reg_def S0_H	(SOC, SOE,	Op_RegI,  16, S0->as_VMReg()->next());
    81 	reg_def S1		(SOC, SOE,	Op_RegI,  17, S1->as_VMReg());
    82 	reg_def S1_H	(SOC, SOE,	Op_RegI,  17, S1->as_VMReg()->next());
    83 	reg_def S2		(SOC, SOE,	Op_RegI,  18, S2->as_VMReg());
    84 	reg_def S2_H	(SOC, SOE,	Op_RegI,  18, S2->as_VMReg()->next());
    85 	reg_def S3		(SOC, SOE,	Op_RegI,  19, S3->as_VMReg());
    86 	reg_def S3_H	(SOC, SOE,	Op_RegI,  19, S3->as_VMReg()->next());
    87 	reg_def S4		(SOC, SOE,	Op_RegI,  20, S4->as_VMReg());
    88 	reg_def S4_H	(SOC, SOE,	Op_RegI,  20, S4->as_VMReg()->next());
    89 	reg_def S5		(SOC, SOE,	Op_RegI,  21, S5->as_VMReg());
    90 	reg_def S5_H	(SOC, SOE,	Op_RegI,  21, S5->as_VMReg()->next());
    91 	reg_def S6		(SOC, SOE,	Op_RegI,  22, S6->as_VMReg());
    92 	reg_def S6_H	(SOC, SOE,	Op_RegI,  22, S6->as_VMReg()->next());
    93 	reg_def S7		(SOC, SOE,	Op_RegI,  23, S7->as_VMReg());
    94 	reg_def S7_H	(SOC, SOE,	Op_RegI,  23, S7->as_VMReg()->next());
    95 	reg_def T8		(SOC, SOC,	Op_RegI,  24, T8->as_VMReg());
    96 	reg_def T8_H	(SOC, SOC,	Op_RegI,  24, T8->as_VMReg()->next());
    97 	reg_def T9		(SOC, SOC,	Op_RegI,  25, T9->as_VMReg());
    98 	reg_def T9_H	(SOC, SOC,	Op_RegI,  25, T9->as_VMReg()->next());
   100 // Special Registers
   101 	reg_def K0		( NS,  NS,	Op_RegI, 26, K0->as_VMReg());
   102 	reg_def K1		( NS,  NS,	Op_RegI, 27, K1->as_VMReg());
   103 	reg_def GP		( NS,  NS,	Op_RegI, 28, GP->as_VMReg());
   104 	reg_def GP_H	( NS,  NS,	Op_RegI, 28, GP->as_VMReg()->next());
   105 	reg_def SP		( NS,  NS,	Op_RegI, 29, SP->as_VMReg());
   106 	reg_def SP_H	( NS,  NS,	Op_RegI, 29, SP->as_VMReg()->next());
   107 	reg_def FP		( NS,  NS,	Op_RegI, 30, FP->as_VMReg());
   108 	reg_def FP_H	( NS,  NS,	Op_RegI, 30, FP->as_VMReg()->next());
   109 	reg_def RA		( NS,  NS,	Op_RegI, 31, RA->as_VMReg());
   110 	reg_def RA_H	( NS,  NS,	Op_RegI, 31, RA->as_VMReg()->next());
   112 // Floating registers. 
   113 reg_def F0          ( SOC, SOC, Op_RegF, 0, F0->as_VMReg());
   114 reg_def F0_H        ( SOC, SOC, Op_RegF, 0, F0->as_VMReg()->next());
   115 reg_def F1          ( SOC, SOC, Op_RegF, 1, F1->as_VMReg());
   116 reg_def F1_H        ( SOC, SOC, Op_RegF, 1, F1->as_VMReg()->next());
   117 reg_def F2          ( SOC, SOC, Op_RegF, 2, F2->as_VMReg());
   118 reg_def F2_H        ( SOC, SOC, Op_RegF, 2, F2->as_VMReg()->next());
   119 reg_def F3          ( SOC, SOC, Op_RegF, 3, F3->as_VMReg());
   120 reg_def F3_H        ( SOC, SOC, Op_RegF, 3, F3->as_VMReg()->next());
   121 reg_def F4          ( SOC, SOC, Op_RegF, 4, F4->as_VMReg());
   122 reg_def F4_H        ( SOC, SOC, Op_RegF, 4, F4->as_VMReg()->next());
   123 reg_def F5          ( SOC, SOC, Op_RegF, 5, F5->as_VMReg());
   124 reg_def F5_H        ( SOC, SOC, Op_RegF, 5, F5->as_VMReg()->next());
   125 reg_def F6          ( SOC, SOC, Op_RegF, 6, F6->as_VMReg());
   126 reg_def F6_H        ( SOC, SOC, Op_RegF, 6, F6->as_VMReg()->next());
   127 reg_def F7          ( SOC, SOC, Op_RegF, 7, F7->as_VMReg());
   128 reg_def F7_H        ( SOC, SOC, Op_RegF, 7, F7->as_VMReg()->next());
   129 reg_def F8          ( SOC, SOC, Op_RegF, 8, F8->as_VMReg());
   130 reg_def F8_H        ( SOC, SOC, Op_RegF, 8, F8->as_VMReg()->next());
   131 reg_def F9          ( SOC, SOC, Op_RegF, 9, F9->as_VMReg());
   132 reg_def F9_H        ( SOC, SOC, Op_RegF, 9, F9->as_VMReg()->next());
   133 reg_def F10         ( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   134 reg_def F10_H       ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()->next());
   135 reg_def F11         ( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   136 reg_def F11_H       ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()->next());
   137 reg_def F12         ( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   138 reg_def F12_H       ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()->next());
   139 reg_def F13         ( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   140 reg_def F13_H       ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()->next());
   141 reg_def F14         ( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   142 reg_def F14_H       ( SOC, SOC, Op_RegF, 14, F14->as_VMReg()->next());
   143 reg_def F15         ( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   144 reg_def F15_H       ( SOC, SOC, Op_RegF, 15, F15->as_VMReg()->next());
   145 reg_def F16         ( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   146 reg_def F16_H       ( SOC, SOC, Op_RegF, 16, F16->as_VMReg()->next());
   147 reg_def F17         ( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   148 reg_def F17_H       ( SOC, SOC, Op_RegF, 17, F17->as_VMReg()->next());
   149 reg_def F18         ( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   150 reg_def F18_H       ( SOC, SOC, Op_RegF, 18, F18->as_VMReg()->next());
   151 reg_def F19         ( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   152 reg_def F19_H       ( SOC, SOC, Op_RegF, 19, F19->as_VMReg()->next());
   153 reg_def F20         ( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   154 reg_def F20_H       ( SOC, SOC, Op_RegF, 20, F20->as_VMReg()->next());
   155 reg_def F21         ( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   156 reg_def F21_H       ( SOC, SOC, Op_RegF, 21, F21->as_VMReg()->next());
   157 reg_def F22         ( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   158 reg_def F22_H       ( SOC, SOC, Op_RegF, 22, F22->as_VMReg()->next());
   159 reg_def F23         ( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   160 reg_def F23_H       ( SOC, SOC, Op_RegF, 23, F23->as_VMReg()->next());
   161 reg_def F24         ( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   162 reg_def F24_H       ( SOC, SOC, Op_RegF, 24, F24->as_VMReg()->next());
   163 reg_def F25         ( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   164 reg_def F25_H       ( SOC, SOC, Op_RegF, 25, F25->as_VMReg()->next());
   165 reg_def F26         ( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   166 reg_def F26_H       ( SOC, SOC, Op_RegF, 26, F26->as_VMReg()->next());
   167 reg_def F27         ( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   168 reg_def F27_H       ( SOC, SOC, Op_RegF, 27, F27->as_VMReg()->next());
   169 reg_def F28         ( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   170 reg_def F28_H       ( SOC, SOC, Op_RegF, 28, F28->as_VMReg()->next());
   171 reg_def F29         ( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   172 reg_def F29_H       ( SOC, SOC, Op_RegF, 29, F29->as_VMReg()->next());
   173 reg_def F30         ( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   174 reg_def F30_H       ( SOC, SOC, Op_RegF, 30, F30->as_VMReg()->next());
   175 reg_def F31         ( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   176 reg_def F31_H       ( SOC, SOC, Op_RegF, 31, F31->as_VMReg()->next());
   179 // ----------------------------
   180 // Special Registers
   181 // Condition Codes Flag Registers
   182 reg_def MIPS_FLAG (SOC, SOC,  Op_RegFlags, 1, as_Register(1)->as_VMReg());
   183 //S6 is used for get_thread(S6)
   184 //S5 is uesd for heapbase of compressed oop
   185 alloc_class chunk0(  
   186                      S7, S7_H,
   187                      S0, S0_H,
   188                      S1, S1_H,
   189                      S2, S2_H,
   190                      S4, S4_H,
   191                      S5, S5_H,
   192                      S6, S6_H,
   193                      S3, S3_H,
   194                      T2, T2_H,
   195                      T3, T3_H,
   196                      T8, T8_H,
   197                      T9, T9_H,
   198                      T1, T1_H, // inline_cache_reg
   199                      V1, V1_H,
   200                      A7, A7_H,
   201                      A6, A6_H,
   202                      A5, A5_H,
   203                      A4, A4_H,
   204                      V0, V0_H,
   205                      A3, A3_H,
   206                      A2, A2_H,
   207                      A1, A1_H,
   208                      A0, A0_H,
   209                      T0, T0_H,
   210                      GP, GP_H 
   211                      RA, RA_H,
   212                      SP, SP_H, // stack_pointer
   213                      FP, FP_H  // frame_pointer
   214                  );
   216 alloc_class chunk1(  F0, F0_H,
   217                      F1, F1_H,
   218                      F2, F2_H,
   219                      F3, F3_H,
   220                      F4, F4_H,
   221                      F5, F5_H,
   222                      F6, F6_H,
   223                      F7, F7_H,
   224                      F8, F8_H,
   225                      F9, F9_H,
   226                      F10, F10_H,
   227                      F11, F11_H,
   228                      F20, F20_H,
   229                      F21, F21_H,
   230                      F22, F22_H,
   231                      F23, F23_H,
   232                      F24, F24_H,
   233                      F25, F25_H,
   234                      F26, F26_H,
   235                      F27, F27_H,
   236                      F28, F28_H,
   237                      F19, F19_H,
   238                      F18, F18_H,
   239                      F17, F17_H,
   240                      F16, F16_H,
   241                      F15, F15_H,
   242                      F14, F14_H,
   243                      F13, F13_H,
   244                      F12, F12_H,
   245                      F29, F29_H,
   246                      F30, F30_H,
   247                      F31, F31_H);
   249 alloc_class chunk2(MIPS_FLAG);
   251 reg_class s_reg( S0, S1, S2, S3, S4, S5, S6, S7 );
   252 reg_class s0_reg( S0 );
   253 reg_class s1_reg( S1 );
   254 reg_class s2_reg( S2 );
   255 reg_class s3_reg( S3 );
   256 reg_class s4_reg( S4 );
   257 reg_class s5_reg( S5 );
   258 reg_class s6_reg( S6 );
   259 reg_class s7_reg( S7 );
   261 reg_class t_reg( T0, T1, T2, T3, T8, T9 );
   262 reg_class t0_reg( T0 );
   263 reg_class t1_reg( T1 );
   264 reg_class t2_reg( T2 );
   265 reg_class t3_reg( T3 );
   266 reg_class t8_reg( T8 );
   267 reg_class t9_reg( T9 );
   269 reg_class a_reg( A0, A1, A2, A3, A4, A5, A6, A7 );
   270 reg_class a0_reg( A0 );
   271 reg_class a1_reg( A1 );
   272 reg_class a2_reg( A2 );
   273 reg_class a3_reg( A3 );
   274 reg_class a4_reg( A4 );
   275 reg_class a5_reg( A5 );
   276 reg_class a6_reg( A6 );
   277 reg_class a7_reg( A7 );
   279 reg_class v0_reg( V0 );
   280 reg_class v1_reg( V1 );
   282 reg_class sp_reg( SP, SP_H );
   283 reg_class fp_reg( FP, FP_H );
   285 reg_class mips_flags(MIPS_FLAG);
   287 reg_class v0_long_reg( V0, V0_H );
   288 reg_class v1_long_reg( V1, V1_H );
   289 reg_class a0_long_reg( A0, A0_H );
   290 reg_class a1_long_reg( A1, A1_H );
   291 reg_class a2_long_reg( A2, A2_H );
   292 reg_class a3_long_reg( A3, A3_H );
   293 reg_class a4_long_reg( A4, A4_H );
   294 reg_class a5_long_reg( A5, A5_H );
   295 reg_class a6_long_reg( A6, A6_H );
   296 reg_class a7_long_reg( A7, A7_H );
   297 reg_class t0_long_reg( T0, T0_H );
   298 reg_class t1_long_reg( T1, T1_H );
   299 reg_class t2_long_reg( T2, T2_H );
   300 reg_class t3_long_reg( T3, T3_H );
   301 reg_class t8_long_reg( T8, T8_H );
   302 reg_class t9_long_reg( T9, T9_H );
   303 reg_class s0_long_reg( S0, S0_H );
   304 reg_class s1_long_reg( S1, S1_H );
   305 reg_class s2_long_reg( S2, S2_H );
   306 reg_class s3_long_reg( S3, S3_H );
   307 reg_class s4_long_reg( S4, S4_H );
   308 reg_class s5_long_reg( S5, S5_H );
   309 reg_class s6_long_reg( S6, S6_H );
   310 reg_class s7_long_reg( S7, S7_H );
   312 reg_class int_reg( S7, S0, S1, S2, S4, S3, T8, T2, T3, T1, V1, A7, A6, A5, A4, V0, A3, A2, A1, A0, T0 );
   314 reg_class no_Ax_int_reg( S7, S0, S1, S2, S4, S3, T8, T2, T3, T1, V1, V0, T0 );
   316 reg_class p_reg( 
   317                  S7, S7_H,
   318                  S0, S0_H,
   319                  S1, S1_H,
   320                  S2, S2_H,
   321                  S4, S4_H,
   322                  S3, S3_H,
   323                  T8, T8_H,
   324                  T2, T2_H,
   325                  T3, T3_H,
   326                  T1, T1_H,
   327                  A7, A7_H,
   328                  A6, A6_H,
   329                  A5, A5_H,
   330                  A4, A4_H,
   331                  A3, A3_H,
   332                  A2, A2_H,
   333                  A1, A1_H,
   334                  A0, A0_H,
   335                  T0, T0_H
   336                );
   338 reg_class no_T8_p_reg( 
   339                  S7, S7_H,
   340                  S0, S0_H,
   341                  S1, S1_H,
   342                  S2, S2_H,
   343                  S4, S4_H,
   344                  S3, S3_H,
   345                  T2, T2_H,
   346                  T3, T3_H,
   347                  T1, T1_H,
   348                  A7, A7_H,
   349                  A6, A6_H,
   350                  A5, A5_H,
   351                  A4, A4_H,
   352                  A3, A3_H,
   353                  A2, A2_H,
   354                  A1, A1_H,
   355                  A0, A0_H,
   356                  T0, T0_H
   357                );
   359 reg_class long_reg( 
   360                     S7, S7_H,
   361                     S0, S0_H,
   362                     S1, S1_H,
   363                     S2, S2_H,
   364                     S4, S4_H,
   365                     S3, S3_H,
   366                     T8, T8_H,
   367                     T2, T2_H,
   368                     T3, T3_H,
   369                     T1, T1_H,
   370                     A7, A7_H,
   371                     A6, A6_H,
   372                     A5, A5_H,
   373                     A4, A4_H,
   374                     A3, A3_H,
   375                     A2, A2_H,
   376                     A1, A1_H,
   377                     A0, A0_H,
   378                     T0, T0_H
   379                   );
   382 // Floating point registers.
   383 // 2012/8/23 Fu: F30/F31 are used as temporary registers in D2I
   384 // 2016/12/1 aoqi: F31 are not used as temporary registers in D2I
   385 reg_class flt_reg( F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17 F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F31);
   386 reg_class dbl_reg( F0, F0_H,
   387                    F1, F1_H,
   388                    F2, F2_H,
   389                    F3, F3_H,
   390                    F4, F4_H,
   391                    F5, F5_H,
   392                    F6, F6_H,
   393                    F7, F7_H,
   394                    F8, F8_H,
   395                    F9, F9_H,
   396                    F10, F10_H, 
   397                    F11, F11_H, 
   398                    F12, F12_H, 
   399                    F13, F13_H, 
   400                    F14, F14_H, 
   401                    F15, F15_H, 
   402                    F16, F16_H, 
   403                    F17, F17_H, 
   404                    F18, F18_H, 
   405                    F19, F19_H, 
   406                    F20, F20_H, 
   407                    F21, F21_H, 
   408                    F22, F22_H, 
   409                    F23, F23_H, 
   410                    F24, F24_H, 
   411                    F25, F25_H, 
   412                    F26, F26_H, 
   413                    F27, F27_H, 
   414                    F28, F28_H, 
   415                    F29, F29_H, 
   416                    F31, F31_H);
   418 reg_class flt_arg0( F12 );
   419 reg_class dbl_arg0( F12, F12_H );
   420 reg_class dbl_arg1( F14, F14_H );
   422 %} 
   424 //----------DEFINITION BLOCK---------------------------------------------------
   425 // Define name --> value mappings to inform the ADLC of an integer valued name
   426 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   427 // Format:
   428 //        int_def  <name>         ( <int_value>, <expression>);
   429 // Generated Code in ad_<arch>.hpp
   430 //        #define  <name>   (<expression>)
   431 //        // value == <int_value>
   432 // Generated code in ad_<arch>.cpp adlc_verification()
   433 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   434 //
   435 definitions %{
   436 	int_def DEFAULT_COST      (    100,     100);
   437 	int_def HUGE_COST         (1000000, 1000000);
   439 	// Memory refs are twice as expensive as run-of-the-mill.
   440 	int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   442 	// Branches are even more expensive.
   443 	int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   444 	// we use jr instruction to construct call, so more expensive
   445 	// by yjl 2/28/2006
   446 	int_def CALL_COST         (    500, DEFAULT_COST * 5);
   447 /*
   448         int_def EQUAL             (   1, 1  );
   449         int_def NOT_EQUAL         (   2, 2  );
   450         int_def GREATER           (   3, 3  );
   451         int_def GREATER_EQUAL     (   4, 4  );
   452         int_def LESS              (   5, 5  );
   453         int_def LESS_EQUAL        (   6, 6  );
   454 */
   455 %}
   459 //----------SOURCE BLOCK-------------------------------------------------------
   460 // This is a block of C++ code which provides values, functions, and
   461 // definitions necessary in the rest of the architecture description
   463 source_hpp %{
   464 // Header information of the source block.
   465 // Method declarations/definitions which are used outside
   466 // the ad-scope can conveniently be defined here.
   467 //
   468 // To keep related declarations/definitions/uses close together,
   469 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   471 class CallStubImpl {
   473   //--------------------------------------------------------------
   474   //---<  Used for optimization in Compile::shorten_branches  >---
   475   //--------------------------------------------------------------
   477  public:
   478   // Size of call trampoline stub.
   479   static uint size_call_trampoline() {
   480     return 0; // no call trampolines on this platform
   481   }
   483   // number of relocations needed by a call trampoline stub
   484   static uint reloc_call_trampoline() { 
   485     return 0; // no call trampolines on this platform
   486   }
   487 };
   489 class HandlerImpl {
   491  public:
   493   static int emit_exception_handler(CodeBuffer &cbuf);
   494   static int emit_deopt_handler(CodeBuffer& cbuf);
   496   static uint size_exception_handler() {
   497     // NativeCall instruction size is the same as NativeJump.
   498     // exception handler starts out as jump and can be patched to
   499     // a call be deoptimization.  (4932387)
   500     // Note that this value is also credited (in output.cpp) to
   501     // the size of the code section.
   502 //    return NativeJump::instruction_size;
   503     int size = NativeCall::instruction_size;
   504     return round_to(size, 16);
   505   }
   507 #ifdef _LP64
   508   static uint size_deopt_handler() {
   509     int size = NativeCall::instruction_size;
   510     return round_to(size, 16);
   511   }
   512 #else
   513   static uint size_deopt_handler() {
   514     // NativeCall instruction size is the same as NativeJump.
   515     // exception handler starts out as jump and can be patched to
   516     // a call be deoptimization.  (4932387)
   517     // Note that this value is also credited (in output.cpp) to
   518     // the size of the code section.
   519     return 5 + NativeJump::instruction_size; // pushl(); jmp;
   520   }
   521 #endif
   522 };
   524 %} // end source_hpp
   526 source %{
   528 #define   NO_INDEX    0
   529 #define   RELOC_IMM64    Assembler::imm_operand
   530 #define   RELOC_DISP32   Assembler::disp32_operand
   533 #define __ _masm.
   536 // Emit exception handler code.
   537 // Stuff framesize into a register and call a VM stub routine.
   538 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
   539 /*
   540   // Note that the code buffer's insts_mark is always relative to insts.
   541   // That's why we must use the macroassembler to generate a handler.
   542   MacroAssembler _masm(&cbuf);
   543   address base = __ start_a_stub(size_exception_handler());
   544   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   545   int offset = __ offset();
   546   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
   547   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
   548   __ end_a_stub();
   549   return offset;
   550 */
   551   // Note that the code buffer's insts_mark is always relative to insts.
   552   // That's why we must use the macroassembler to generate a handler.
   553   MacroAssembler _masm(&cbuf);
   554   address base =
   555   __ start_a_stub(size_exception_handler());
   556   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   557   int offset = __ offset();
   559   __ block_comment("; emit_exception_handler");
   561   /* 2012/9/25 FIXME Jin: According to X86, we should use direct jumpt.
   562  *    *  However, this will trigger an assert after the 40th method:
   563  *       *
   564  *          *        39   b   java.lang.Throwable::<init> (25 bytes)
   565  *             *       ---   ns  java.lang.Throwable::fillInStackTrace
   566  *                *        40  !b   java.net.URLClassLoader::findClass (29 bytes)
   567  *                   *       /vm/opto/runtime.cpp, 900 , assert(caller.is_compiled_frame(),"must be")
   568  *                      *        40   made not entrant  (2)  java.net.URLClassLoader::findClass (29 bytes)
   569  *                         *
   570  *                            *  If we change from JR to JALR, the assert will disappear, but WebClient will
   571  *                               *  fail  after the 403th method with unknown reason.
   572  *                                  */
   573   __ li48(T9, (long)OptoRuntime::exception_blob()->entry_point());
   574   __ jr(T9);
   575   __ delayed()->nop();
   576   __ align(16);
   577   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
   578   __ end_a_stub();
   579   return offset;
   580 }
   582 // Emit deopt handler code.
   583 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
   584 /*
   585   // Note that the code buffer's insts_mark is always relative to insts.
   586   // That's why we must use the macroassembler to generate a handler.
   587   MacroAssembler _masm(&cbuf);
   588   address base = __ start_a_stub(size_deopt_handler());
   589   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   590   int offset = __ offset();
   592 #ifdef _LP64
   593   address the_pc = (address) __ pc();
   594   Label next;
   595   // push a "the_pc" on the stack without destroying any registers
   596   // as they all may be live.
   598   // push address of "next"
   599   __ call(next, relocInfo::none); // reloc none is fine since it is a disp32
   600   __ bind(next);
   601   // adjust it so it matches "the_pc"
   602   __ subptr(Address(rsp, 0), __ offset() - offset);
   603 #else
   604   InternalAddress here(__ pc());
   605   __ pushptr(here.addr());
   606 #endif
   608   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   609   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
   610   __ end_a_stub();
   611   return offset;
   612 */
   613   // Note that the code buffer's insts_mark is always relative to insts.
   614   // That's why we must use the macroassembler to generate a handler.
   615   MacroAssembler _masm(&cbuf);
   616   address base =
   617   __ start_a_stub(size_deopt_handler());
   619   // FIXME
   620   if (base == NULL)  return 0;  // CodeBuffer::expand failed
   621   int offset = __ offset();
   623   __ block_comment("; emit_deopt_handler");
   625   cbuf.set_insts_mark();
   626   __ relocate(relocInfo::runtime_call_type);
   628   __ li48(T9, (long)SharedRuntime::deopt_blob()->unpack());
   629   __ jalr(T9);
   630   __ delayed()->nop();
   631   __ align(16);
   632   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
   633   __ end_a_stub();
   634   return offset;
   635 }
   638 const bool Matcher::match_rule_supported(int opcode) {
   639   if (!has_match_rule(opcode))
   640     return false;
   642   switch (opcode) {
   643     //Op_CountLeadingZerosI Op_CountLeadingZerosL can be deleted, all MIPS CPUs support clz & dclz.
   644     case Op_CountLeadingZerosI:
   645     case Op_CountLeadingZerosL:
   646       if (!UseCountLeadingZerosInstruction)
   647         return false;
   648       break;
   649     case Op_CountTrailingZerosI:
   650     case Op_CountTrailingZerosL:
   651       if (!UseCountTrailingZerosInstruction)
   652         return false;
   653       break;
   654   }
   656   return true;  // Per default match rules are supported.
   657 }
   659 //FIXME
   660 // emit call stub, compiled java to interpreter
   661 void emit_java_to_interp(CodeBuffer &cbuf ) {
   662   // Stub is fixed up when the corresponding call is converted from calling
   663   // compiled code to calling interpreted code.
   664   // mov rbx,0
   665   // jmp -1
   667   address mark = cbuf.insts_mark();  // get mark within main instrs section
   669   // Note that the code buffer's insts_mark is always relative to insts.
   670   // That's why we must use the macroassembler to generate a stub.
   671   MacroAssembler _masm(&cbuf);
   673   address base =
   674   __ start_a_stub(Compile::MAX_stubs_size);
   675   if (base == NULL)  return;  // CodeBuffer::expand failed
   676   // static stub relocation stores the instruction address of the call
   678   __ relocate(static_stub_Relocation::spec(mark), 0);
   680   /* 2012/10/29 Jin: Rmethod contains methodOop, it should be relocated for GC */
   681 /*
   682   int oop_index = __ oop_recorder()->allocate_index(NULL);
   683   RelocationHolder rspec = oop_Relocation::spec(oop_index);
   684   __ relocate(rspec);
   685 */
   687   // static stub relocation also tags the methodOop in the code-stream.
   688   __ li48(S3, (long)0);
   689   // This is recognized as unresolved by relocs/nativeInst/ic code
   691   __ relocate(relocInfo::runtime_call_type);
   693   cbuf.set_insts_mark();
   694   address call_pc = (address)-1;
   695   __ li48(AT, (long)call_pc);
   696   __ jr(AT);
   697   __ nop();
   698   __ align(16);
   699   __ end_a_stub();
   700   // Update current stubs pointer and restore code_end.
   701 }
   703 // size of call stub, compiled java to interpretor
   704 uint size_java_to_interp() {
   705   int size = 4 * 4 + NativeCall::instruction_size; // sizeof(li48) + NativeCall::instruction_size
   706   return round_to(size, 16);
   707 }
   709 // relocation entries for call stub, compiled java to interpreter
   710 uint reloc_java_to_interp() {
   711   return 16;  //  in emit_java_to_interp +  in Java_Static_Call
   712 }
   714 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
   715  if( Assembler::is_simm16(offset) ) return true;
   716  else 
   717  {
   718     assert(false, "Not implemented yet !" );
   719     Unimplemented();
   720  }
   721 }
   724 // No additional cost for CMOVL.
   725 const int Matcher::long_cmove_cost() { return 0; }
   727 // No CMOVF/CMOVD with SSE2
   728 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
   730 // Does the CPU require late expand (see block.cpp for description of late expand)?
   731 const bool Matcher::require_postalloc_expand = false;
   733 // Should the Matcher clone shifts on addressing modes, expecting them
   734 // to be subsumed into complex addressing expressions or compute them
   735 // into registers?  True for Intel but false for most RISCs
   736 const bool Matcher::clone_shift_expressions = false;
   738 // Do we need to mask the count passed to shift instructions or does
   739 // the cpu only look at the lower 5/6 bits anyway?
   740 const bool Matcher::need_masked_shift_count = false;
   742 bool Matcher::narrow_oop_use_complex_address() {
   743   NOT_LP64(ShouldNotCallThis());
   744   assert(UseCompressedOops, "only for compressed oops code");
   745   return false;
   746 }
   748 bool Matcher::narrow_klass_use_complex_address() {
   749   NOT_LP64(ShouldNotCallThis());
   750   assert(UseCompressedClassPointers, "only for compressed klass code");
   751   return false;
   752 }
   754 // This is UltraSparc specific, true just means we have fast l2f conversion
   755 const bool Matcher::convL2FSupported(void) {
   756   return true;
   757 }
   759 // Max vector size in bytes. 0 if not supported.
   760 const int Matcher::vector_width_in_bytes(BasicType bt) {
   761   assert(MaxVectorSize == 8, "");
   762   return 8;
   763 }
   765 // Vector ideal reg
   766 const int Matcher::vector_ideal_reg(int size) {
   767   assert(MaxVectorSize == 8, "");
   768   switch(size) {
   769     case  8: return Op_VecD;
   770   }
   771   ShouldNotReachHere();
   772   return 0;
   773 }
   775 // Only lowest bits of xmm reg are used for vector shift count.
   776 const int Matcher::vector_shift_count_ideal_reg(int size) {
   777   fatal("vector shift is not supported");
   778   return Node::NotAMachineReg;
   779 }
   781 // Limits on vector size (number of elements) loaded into vector.
   782 const int Matcher::max_vector_size(const BasicType bt) {
   783   assert(is_java_primitive(bt), "only primitive type vectors");
   784   return vector_width_in_bytes(bt)/type2aelembytes(bt);
   785 }
   787 const int Matcher::min_vector_size(const BasicType bt) {
   788   return max_vector_size(bt); // Same as max.
   789 }
   791 // MIPS supports misaligned vectors store/load? FIXME
   792 const bool Matcher::misaligned_vectors_ok() {
   793   return false;
   794   //return !AlignVector; // can be changed by flag
   795 }
   797 // Register for DIVI projection of divmodI
   798 RegMask Matcher::divI_proj_mask() {
   799   ShouldNotReachHere();
   800   return RegMask();
   801 }
   803 // Register for MODI projection of divmodI
   804 RegMask Matcher::modI_proj_mask() {
   805   ShouldNotReachHere();
   806   return RegMask();
   807 }
   809 // Register for DIVL projection of divmodL
   810 RegMask Matcher::divL_proj_mask() {
   811   ShouldNotReachHere();
   812   return RegMask();
   813 }
   815 int Matcher::regnum_to_fpu_offset(int regnum) {
   816   return regnum - 32; // The FP registers are in the second chunk
   817 }
   820 const bool Matcher::isSimpleConstant64(jlong value) {
   821   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
   822   return true;
   823 }
   826 // Return whether or not this register is ever used as an argument.  This
   827 // function is used on startup to build the trampoline stubs in generateOptoStub.
   828 // Registers not mentioned will be killed by the VM call in the trampoline, and
   829 // arguments in those registers not be available to the callee.
   830 bool Matcher::can_be_java_arg( int reg ) {
   831   /* Refer to: [sharedRuntime_mips_64.cpp] SharedRuntime::java_calling_convention() */
   832   if (    reg == T0_num || reg == T0_H_num
   833 	   || reg == A0_num || reg == A0_H_num 
   834        || reg == A1_num || reg == A1_H_num 
   835        || reg == A2_num || reg == A2_H_num 
   836        || reg == A3_num || reg == A3_H_num 
   837        || reg == A4_num || reg == A4_H_num 
   838        || reg == A5_num || reg == A5_H_num 
   839        || reg == A6_num || reg == A6_H_num 
   840        || reg == A7_num || reg == A7_H_num )
   841     return true;
   843   if (    reg == F12_num || reg == F12_H_num
   844        || reg == F13_num || reg == F13_H_num 
   845        || reg == F14_num || reg == F14_H_num 
   846        || reg == F15_num || reg == F15_H_num 
   847        || reg == F16_num || reg == F16_H_num 
   848        || reg == F17_num || reg == F17_H_num 
   849        || reg == F18_num || reg == F18_H_num 
   850        || reg == F19_num || reg == F19_H_num )
   851     return true;
   853   return false;
   854 }
   856 bool Matcher::is_spillable_arg( int reg ) {
   857   return can_be_java_arg(reg);
   858 }
   860 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
   861   return false;
   862 }
   864 // Register for MODL projection of divmodL
   865 RegMask Matcher::modL_proj_mask() {
   866   ShouldNotReachHere();
   867   return RegMask();
   868 }
   870 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
   871   return FP_REG_mask();
   872 }
   874 // MIPS doesn't support AES intrinsics
   875 const bool Matcher::pass_original_key_for_aes() {
   876   return false;
   877 }
   879 // The address of the call instruction needs to be 16-byte aligned to
   880 // ensure that it does not span a cache line so that it can be patched.
   882 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   883   //lui
   884   //ori
   885   //dsll
   886   //ori
   888   //jalr
   889   //nop
   891   return round_to(current_offset, alignment_required()) - current_offset;
   892 }
   894 // The address of the call instruction needs to be 16-byte aligned to
   895 // ensure that it does not span a cache line so that it can be patched.
   896 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   897   //li64   <--- skip
   899   //lui
   900   //ori
   901   //dsll
   902   //ori
   904   //jalr
   905   //nop
   907   current_offset += 4 * 6; // skip li64 
   908   return round_to(current_offset, alignment_required()) - current_offset;
   909 }
   911 int CallLeafNoFPDirectNode::compute_padding(int current_offset) const {
   912   //lui
   913   //ori
   914   //dsll
   915   //ori
   917   //jalr
   918   //nop
   920   return round_to(current_offset, alignment_required()) - current_offset;
   921 }
   923 int CallLeafDirectNode::compute_padding(int current_offset) const {
   924   //lui
   925   //ori
   926   //dsll
   927   //ori
   929   //jalr
   930   //nop
   932   return round_to(current_offset, alignment_required()) - current_offset;
   933 }
   935 int CallRuntimeDirectNode::compute_padding(int current_offset) const {
   936   //lui
   937   //ori
   938   //dsll
   939   //ori
   941   //jalr
   942   //nop
   944   return round_to(current_offset, alignment_required()) - current_offset;
   945 }
   947 // If CPU can load and store mis-aligned doubles directly then no fixup is
   948 // needed.  Else we split the double into 2 integer pieces and move it
   949 // piece-by-piece.  Only happens when passing doubles into C code as the
   950 // Java calling convention forces doubles to be aligned.
   951 const bool Matcher::misaligned_doubles_ok = false;
   952 // Do floats take an entire double register or just half?
   953 //const bool Matcher::float_in_double = true;
   954 bool Matcher::float_in_double() { return false; }
   955 // Threshold size for cleararray.
   956 const int Matcher::init_array_short_size = 8 * BytesPerLong;
   957 // Do ints take an entire long register or just half?
   958 const bool Matcher::int_in_long = true;
   959 // Is it better to copy float constants, or load them directly from memory?
   960 // Intel can load a float constant from a direct address, requiring no
   961 // extra registers.  Most RISCs will have to materialize an address into a
   962 // register first, so they would do better to copy the constant from stack.
   963 const bool Matcher::rematerialize_float_constants = false;
   964 // Advertise here if the CPU requires explicit rounding operations
   965 // to implement the UseStrictFP mode.
   966 const bool Matcher::strict_fp_requires_explicit_rounding = false;
   967 // The ecx parameter to rep stos for the ClearArray node is in dwords.
   968 const bool Matcher::init_array_count_is_in_bytes = false;
   971 // Indicate if the safepoint node needs the polling page as an input.
   972 // Since MIPS doesn't have absolute addressing, it needs.
   973 bool SafePointNode::needs_polling_address_input() {
   974   return true;
   975 }
   977 // !!!!! Special hack to get all type of calls to specify the byte offset
   978 //       from the start of the call to the point where the return address
   979 //       will point.
   980 int MachCallStaticJavaNode::ret_addr_offset() {
   981   assert(NativeCall::instruction_size == 24, "in MachCallStaticJavaNode::ret_addr_offset");
   982   //The value ought to be 16 bytes.
   983   //lui
   984   //ori
   985   //dsll
   986   //ori
   987   //jalr
   988   //nop
   989   return NativeCall::instruction_size; 
   990 }
   992 int MachCallDynamicJavaNode::ret_addr_offset() {
   993   /* 2012/9/10 Jin: must be kept in sync with Java_Dynamic_Call */
   995  // return NativeCall::instruction_size; 
   996   assert(NativeCall::instruction_size == 24, "in MachCallDynamicJavaNode::ret_addr_offset");
   997   //The value ought to be 4 + 16 bytes.
   998   //lui IC_Klass,
   999   //ori IC_Klass,
  1000   //dsll IC_Klass
  1001   //ori IC_Klass
  1002   //lui T9
  1003   //ori T9
  1004   //dsll T9
  1005   //ori T9
  1006   //jalr T9
  1007   //nop
  1008   return 6 * 4 + NativeCall::instruction_size; 
  1012 /*
  1013 // EMIT_OPCODE()
  1014 void emit_opcode(CodeBuffer &cbuf, int code) {
  1015   *(cbuf.code_end()) = (unsigned char)code;
  1016   cbuf.set_code_end(cbuf.code_end() + 1);
  1018 */
  1020 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
  1021         int format) {
  1022   cbuf.relocate(cbuf.insts_mark(), reloc, format);
  1023   cbuf.insts()->emit_int32(d32);
  1026 //=============================================================================
  1028 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1029 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1030 static enum RC rc_class( OptoReg::Name reg ) {
  1031   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1032   if (OptoReg::is_stack(reg)) return rc_stack;
  1033   VMReg r = OptoReg::as_VMReg(reg);
  1034   if (r->is_Register()) return rc_int;
  1035   assert(r->is_FloatRegister(), "must be");
  1036   return rc_float;
  1039 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
  1040   // Get registers to move
  1041   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1042   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1043   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1044   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1046   enum RC src_second_rc = rc_class(src_second);
  1047   enum RC src_first_rc = rc_class(src_first);
  1048   enum RC dst_second_rc = rc_class(dst_second);
  1049   enum RC dst_first_rc = rc_class(dst_first);
  1051   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1053   // Generate spill code!
  1054   int size = 0;
  1056   if( src_first == dst_first && src_second == dst_second )
  1057     return 0;            // Self copy, no move
  1059   if (src_first_rc == rc_stack) {
  1060     // mem ->
  1061     if (dst_first_rc == rc_stack) {
  1062       // mem -> mem
  1063       assert(src_second != dst_first, "overlap");
  1064       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1065           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1066         // 64-bit
  1067         int src_offset = ra_->reg2offset(src_first);
  1068         int dst_offset = ra_->reg2offset(dst_first);
  1069         if (cbuf) {
  1070           MacroAssembler _masm(cbuf);
  1071           __ ld(AT, Address(SP, src_offset));
  1072           __ sd(AT, Address(SP, dst_offset));
  1073 #ifndef PRODUCT
  1074         } else {
  1075 			if(!do_size){
  1076 				if (size != 0) st->print("\n\t");
  1077 				st->print("ld    AT, [SP + #%d]\t# 64-bit mem-mem spill 1\n\t"
  1078 						  "sd    AT, [SP + #%d]",
  1079 						  src_offset, dst_offset);
  1081 #endif
  1083 		size += 8;
  1084       } else {
  1085         // 32-bit
  1086         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1087         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1088         // No pushl/popl, so:
  1089         int src_offset = ra_->reg2offset(src_first);
  1090         int dst_offset = ra_->reg2offset(dst_first);
  1091         if (cbuf) {
  1092           MacroAssembler _masm(cbuf);
  1093           __ lw(AT, Address(SP, src_offset));
  1094           __ sw(AT, Address(SP, dst_offset));
  1095 #ifndef PRODUCT
  1096         } else {
  1097 			if(!do_size){
  1098 				if (size != 0) st->print("\n\t");
  1099 				st->print("lw    AT, [SP + #%d] spill 2\n\t"
  1100 						  "sw    AT, [SP + #%d]\n\t",
  1101 						  src_offset, dst_offset);
  1103 #endif
  1105 		size += 8;
  1107       return size;
  1108     } else if (dst_first_rc == rc_int) {
  1109       // mem -> gpr
  1110       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1111           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1112         // 64-bit
  1113         int offset = ra_->reg2offset(src_first);
  1114         if (cbuf) {
  1115           MacroAssembler _masm(cbuf);
  1116           __ ld(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1117 #ifndef PRODUCT
  1118         } else {
  1119 			if(!do_size){
  1120 				if (size != 0) st->print("\n\t");
  1121 				st->print("ld    %s, [SP + #%d]\t# spill 3",
  1122 						  Matcher::regName[dst_first],
  1123 						  offset);
  1125 #endif
  1127 		size += 4;
  1128       } else {
  1129         // 32-bit
  1130         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1131         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1132         int offset = ra_->reg2offset(src_first);
  1133         if (cbuf) {
  1134           MacroAssembler _masm(cbuf);
  1135           if (this->ideal_reg() == Op_RegI)
  1136             __ lw(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1137           else
  1138             __ lwu(as_Register(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1139 #ifndef PRODUCT
  1140         } else {
  1141 			if(!do_size){
  1142 				if (size != 0) st->print("\n\t");
  1143           if (this->ideal_reg() == Op_RegI)
  1144 				st->print("lw    %s, [SP + #%d]\t# spill 4",
  1145 						   Matcher::regName[dst_first],
  1146 						   offset);
  1147 		  else
  1148 				st->print("lwu    %s, [SP + #%d]\t# spill 5",
  1149 						   Matcher::regName[dst_first],
  1150 						   offset);
  1152 #endif
  1154 		size += 4;
  1156       return size;
  1157     } else if (dst_first_rc == rc_float) {
  1158       // mem-> xmm
  1159       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1160           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1161         // 64-bit
  1162         int offset = ra_->reg2offset(src_first);
  1163         if (cbuf) {
  1164           MacroAssembler _masm(cbuf);
  1165           __ ldc1( as_FloatRegister(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1166 #ifndef PRODUCT
  1167         } else {
  1168 			if(!do_size){
  1169 				if (size != 0) st->print("\n\t");
  1170 				st->print("ldc1  %s, [SP + #%d]\t# spill 6",
  1171 						  Matcher::regName[dst_first],
  1172 						  offset);
  1174 #endif
  1176 		size += 4;
  1177       } else {
  1178         // 32-bit
  1179         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1180         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1181         int offset = ra_->reg2offset(src_first);
  1182         if (cbuf) {
  1183           MacroAssembler _masm(cbuf);
  1184           __ lwc1( as_FloatRegister(Matcher::_regEncode[dst_first]), Address(SP, offset));
  1185 #ifndef PRODUCT
  1186         } else {
  1187 			if(!do_size){
  1188 				if (size != 0) st->print("\n\t");
  1189 				st->print("lwc1   %s, [SP + #%d]\t# spill 7",
  1190 						  Matcher::regName[dst_first],
  1191 						  offset);
  1193 #endif
  1195 		size += 4;
  1197       return size;
  1199   } else if (src_first_rc == rc_int) {
  1200     // gpr ->
  1201     if (dst_first_rc == rc_stack) {
  1202       // gpr -> mem
  1203       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1204           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1205         // 64-bit
  1206         int offset = ra_->reg2offset(dst_first);
  1207         if (cbuf) {
  1208           MacroAssembler _masm(cbuf);
  1209           __ sd(as_Register(Matcher::_regEncode[src_first]), Address(SP, offset));
  1210 #ifndef PRODUCT
  1211         } else {
  1212 			if(!do_size){
  1213 				if (size != 0) st->print("\n\t");
  1214 				st->print("sd    %s, [SP + #%d] # spill 8",
  1215 						  Matcher::regName[src_first],
  1216 						  offset);
  1218 #endif
  1220 		size += 4;
  1221       } else {
  1222         // 32-bit
  1223         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1224         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1225         int offset = ra_->reg2offset(dst_first);
  1226         if (cbuf) {
  1227           MacroAssembler _masm(cbuf);
  1228           __ sw(as_Register(Matcher::_regEncode[src_first]), Address(SP, offset));
  1229 #ifndef PRODUCT
  1230         } else {
  1231 			if(!do_size){
  1232 				if (size != 0) st->print("\n\t");
  1233 				st->print("sw    %s, [SP + #%d]\t# spill 9",
  1234 						Matcher::regName[src_first], offset);
  1236 #endif
  1238 		size += 4;
  1240       return size;
  1241     } else if (dst_first_rc == rc_int) {
  1242       // gpr -> gpr
  1243       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1244           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1245         // 64-bit
  1246         if (cbuf) {
  1247           MacroAssembler _masm(cbuf);
  1248           __ move(as_Register(Matcher::_regEncode[dst_first]),
  1249                   as_Register(Matcher::_regEncode[src_first]));
  1250 #ifndef PRODUCT
  1251         } else {
  1252 			if(!do_size){
  1253 				if (size != 0) st->print("\n\t");
  1254 				st->print("move(64bit)    %s <-- %s\t# spill 10",
  1255 						  Matcher::regName[dst_first],
  1256 						  Matcher::regName[src_first]);
  1258 #endif
  1260 		size += 4;
  1261         return size;
  1262       } else {
  1263         // 32-bit
  1264         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1265         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1266         if (cbuf) {
  1267           MacroAssembler _masm(cbuf);
  1268           if (this->ideal_reg() == Op_RegI)
  1269               __ move_u32(as_Register(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
  1270           else
  1271               __ daddu(as_Register(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]), R0);
  1273 #ifndef PRODUCT
  1274         } else {
  1275 			if(!do_size){
  1276 				if (size != 0) st->print("\n\t");
  1277 				st->print("move(32-bit)    %s <-- %s\t# spill 11",
  1278 						  Matcher::regName[dst_first],
  1279 						  Matcher::regName[src_first]);
  1281 #endif
  1283 		size += 4;	
  1284         return size;
  1286     } else if (dst_first_rc == rc_float) {
  1287       // gpr -> xmm
  1288       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1289           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1290         // 64-bit
  1291         if (cbuf) {
  1292           MacroAssembler _masm(cbuf);
  1293           __ dmtc1(as_Register(Matcher::_regEncode[src_first]), as_FloatRegister(Matcher::_regEncode[dst_first]));
  1294 #ifndef PRODUCT
  1295         } else {
  1296 			if(!do_size){
  1297 				if (size != 0) st->print("\n\t");
  1298 				st->print("dmtc1   %s, %s\t# spill 12",
  1299 						  Matcher::regName[dst_first],
  1300 						  Matcher::regName[src_first]);
  1302 #endif
  1304 		size += 4;
  1305       } else {
  1306         // 32-bit
  1307         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1308         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1309         if (cbuf) {
  1310           MacroAssembler _masm(cbuf);
  1311           __ mtc1( as_Register(Matcher::_regEncode[src_first]), as_FloatRegister(Matcher::_regEncode[dst_first]) );
  1312 #ifndef PRODUCT
  1313         } else {
  1314 			if(!do_size){
  1315 				if (size != 0) st->print("\n\t");
  1316 				st->print("mtc1   %s, %s\t# spill 13",
  1317 						  Matcher::regName[dst_first],
  1318 						  Matcher::regName[src_first]);
  1320 #endif
  1322 		size += 4;
  1324       return size;
  1326   } else if (src_first_rc == rc_float) {
  1327     // xmm ->
  1328     if (dst_first_rc == rc_stack) {
  1329       // xmm -> mem
  1330       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1331           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1332         // 64-bit
  1333         int offset = ra_->reg2offset(dst_first);
  1334         if (cbuf) {
  1335           MacroAssembler _masm(cbuf);
  1336           __ sdc1( as_FloatRegister(Matcher::_regEncode[src_first]), Address(SP, offset) );
  1337 #ifndef PRODUCT
  1338         } else {
  1339 			if(!do_size){
  1340 				if (size != 0) st->print("\n\t");
  1341 				st->print("sdc1   %s, [SP + #%d]\t# spill 14",
  1342 						  Matcher::regName[src_first],
  1343 						  offset);
  1345 #endif
  1347 		size += 4;
  1348       } else {
  1349         // 32-bit
  1350         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1351         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1352         int offset = ra_->reg2offset(dst_first);
  1353         if (cbuf) {
  1354           MacroAssembler _masm(cbuf);
  1355           __ swc1(as_FloatRegister(Matcher::_regEncode[src_first]), Address(SP, offset));
  1356 #ifndef PRODUCT
  1357         } else {
  1358 			if(!do_size){
  1359 				if (size != 0) st->print("\n\t");
  1360 				st->print("swc1   %s, [SP + #%d]\t# spill 15",
  1361 						Matcher::regName[src_first],
  1362 						offset);
  1364 #endif
  1366 		size += 4;
  1368       return size;
  1369     } else if (dst_first_rc == rc_int) {
  1370       // xmm -> gpr
  1371       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1372           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1373         // 64-bit
  1374         if (cbuf) {
  1375           MacroAssembler _masm(cbuf);
  1376           __ dmfc1( as_Register(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1377 #ifndef PRODUCT
  1378         } else {
  1379 			if(!do_size){
  1380 				if (size != 0) st->print("\n\t");
  1381 				st->print("dmfc1   %s, %s\t# spill 16",
  1382 						  Matcher::regName[dst_first],
  1383 						  Matcher::regName[src_first]);
  1385 #endif
  1387 		size += 4;
  1388       } else {
  1389         // 32-bit
  1390         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1391         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1392         if (cbuf) {
  1393           MacroAssembler _masm(cbuf);
  1394           __ mfc1( as_Register(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1395 #ifndef PRODUCT
  1396         } else {
  1397 			if(!do_size){
  1398 				if (size != 0) st->print("\n\t");
  1399 				st->print("mfc1   %s, %s\t# spill 17",
  1400 						  Matcher::regName[dst_first],
  1401 						  Matcher::regName[src_first]);
  1403 #endif
  1405 		size += 4;
  1407       return size;
  1408     } else if (dst_first_rc == rc_float) {
  1409       // xmm -> xmm
  1410       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1411           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1412         // 64-bit
  1413         if (cbuf) {
  1414           MacroAssembler _masm(cbuf);
  1415           __ mov_d( as_FloatRegister(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1416 #ifndef PRODUCT
  1417         } else {
  1418 			if(!do_size){
  1419 				if (size != 0) st->print("\n\t");
  1420 				st->print("mov_d  %s <-- %s\t# spill 18",
  1421 						  Matcher::regName[dst_first],
  1422 						  Matcher::regName[src_first]);
  1424 #endif
  1426 		size += 4;
  1427       } else {
  1428         // 32-bit
  1429         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1430         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1431         if (cbuf) {
  1432           MacroAssembler _masm(cbuf);
  1433           __ mov_s( as_FloatRegister(Matcher::_regEncode[dst_first]), as_FloatRegister(Matcher::_regEncode[src_first]));
  1434 #ifndef PRODUCT
  1435         } else {
  1436 			if(!do_size){
  1437 				if (size != 0) st->print("\n\t");
  1438 				st->print("mov_s  %s <-- %s\t# spill 19",
  1439 						  Matcher::regName[dst_first],
  1440 						  Matcher::regName[src_first]);
  1442 #endif
  1444 		size += 4;
  1446       return size;
  1450   assert(0," foo ");
  1451   Unimplemented();
  1452   return size;
  1456 #ifndef PRODUCT
  1457 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1458   implementation( NULL, ra_, false, st );
  1460 #endif
  1462 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1463   implementation( &cbuf, ra_, false, NULL );
  1466 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1467   return implementation( NULL, ra_, true, NULL );
  1470 //=============================================================================
  1473 #ifndef PRODUCT
  1474 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1475   st->print("INT3");
  1477 #endif
  1479 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc* ra_) const {
  1480   MacroAssembler _masm(&cbuf);
  1481   __ int3();
  1484 uint MachBreakpointNode::size(PhaseRegAlloc* ra_) const {
  1485   return MachNode::size(ra_);
  1489 //=============================================================================
  1490 #ifndef PRODUCT
  1491 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1492   Compile *C = ra_->C;
  1493   int framesize = C->frame_size_in_bytes();
  1495   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1497   st->print("daddiu   SP, SP, %d # Rlease stack @ MachEpilogNode",framesize);
  1498   st->cr(); st->print("\t");
  1499   if (UseLoongsonISA) {
  1500      st->print("gslq  RA, FP, SP, %d # Restore FP & RA @ MachEpilogNode", -wordSize*2);
  1501   } else {
  1502      st->print("ld    RA, SP, %d # Restore RA @ MachEpilogNode", -wordSize);
  1503      st->cr(); st->print("\t");
  1504      st->print("ld    FP, SP, %d # Restore FP @ MachEpilogNode", -wordSize*2);
  1507   if( do_polling() && C->is_method_compilation() ) {
  1508     st->print("Poll Safepoint # MachEpilogNode");
  1511 #endif
  1513 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1514   Compile *C = ra_->C;
  1515   MacroAssembler _masm(&cbuf);
  1516   int framesize = C->frame_size_in_bytes();
  1518   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1520   __ daddiu(SP, SP, framesize);
  1522   if (UseLoongsonISA) {
  1523     __ gslq(RA, FP, SP, -wordSize*2);
  1524   } else {
  1525     __ ld(RA, SP, -wordSize );
  1526     __ ld(FP, SP, -wordSize*2 );
  1529   /* 2012/11/19 Jin: The epilog in a RuntimeStub should not contain a safepoint */
  1530   if( do_polling() && C->is_method_compilation() ) {
  1531 #ifndef OPT_SAFEPOINT
  1532     __ set64(AT, (long)os::get_polling_page());
  1533     __ relocate(relocInfo::poll_return_type);
  1534     __ lw(AT, AT, 0);
  1535 #else
  1536     __ lui(AT, Assembler::split_high((intptr_t)os::get_polling_page()));
  1537     __ relocate(relocInfo::poll_return_type);
  1538     __ lw(AT, AT, Assembler::split_low((intptr_t)os::get_polling_page()));
  1539 #endif
  1543 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1544   return MachNode::size(ra_); // too many variables; just compute it the hard way  fujie debug
  1547 int MachEpilogNode::reloc() const {
  1548   return 0; // a large enough number
  1551 const Pipeline * MachEpilogNode::pipeline() const {
  1552   return MachNode::pipeline_class();
  1555 int MachEpilogNode::safepoint_offset() const { return 0; }
  1557 //=============================================================================
  1559 #ifndef PRODUCT
  1560 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1561   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1562   int reg = ra_->get_reg_first(this);
  1563   st->print("ADDI %s, SP, %d   @BoxLockNode",Matcher::regName[reg],offset);
  1565 #endif
  1568 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1569   return 4;
  1572 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1573   MacroAssembler _masm(&cbuf);
  1574   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1575   int reg = ra_->get_encode(this);
  1577   __ addi(as_Register(reg), SP, offset);
  1578 /*
  1579   if( offset >= 128 ) {
  1580     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1581     emit_rm(cbuf, 0x2, reg, 0x04);
  1582     emit_rm(cbuf, 0x0, 0x04, SP_enc);
  1583     emit_d32(cbuf, offset);
  1585   else {
  1586     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1587     emit_rm(cbuf, 0x1, reg, 0x04);
  1588     emit_rm(cbuf, 0x0, 0x04, SP_enc);
  1589     emit_d8(cbuf, offset);
  1591 */
  1595 //static int sizeof_FFree_Float_Stack_All = -1;
  1597 int MachCallRuntimeNode::ret_addr_offset() {
  1598   //lui
  1599   //ori
  1600   //dsll
  1601   //ori
  1602   //jalr
  1603   //nop
  1604   assert(NativeCall::instruction_size == 24, "in MachCallRuntimeNode::ret_addr_offset()");
  1605   return NativeCall::instruction_size;
  1606 //  return 16;
  1613 //=============================================================================
  1614 #ifndef PRODUCT
  1615 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1616   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1618 #endif
  1620 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1621   MacroAssembler _masm(&cbuf);
  1622   int i = 0;
  1623   for(i = 0; i < _count; i++)
  1624      __ nop();
  1627 uint MachNopNode::size(PhaseRegAlloc *) const {
  1628   return 4 * _count; 
  1630 const Pipeline* MachNopNode::pipeline() const {
  1631   return MachNode::pipeline_class();
  1634 //=============================================================================
  1636 //=============================================================================
  1637 #ifndef PRODUCT
  1638 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1639   st->print_cr("load_klass(AT, T0)");
  1640   st->print_cr("\tbeq(AT, iCache, L)");
  1641   st->print_cr("\tnop");
  1642   st->print_cr("\tjmp(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type)");
  1643   st->print_cr("\tnop");
  1644   st->print_cr("\tnop");
  1645   st->print_cr("    L:");
  1647 #endif
  1650 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1651   MacroAssembler _masm(&cbuf);
  1652 #ifdef ASSERT
  1653   //uint code_size = cbuf.code_size();
  1654 #endif
  1655   int  ic_reg = Matcher::inline_cache_reg_encode();
  1656   Label L;
  1657   Register receiver = T0;
  1658   Register   iCache = as_Register(ic_reg);
  1659   __ load_klass(AT, receiver);
  1660   __ beq(AT, iCache, L);
  1661   __ nop();
  1663   __ relocate(relocInfo::runtime_call_type);
  1664   __ li48(T9, (long)SharedRuntime::get_ic_miss_stub());
  1665   __ jr(T9);
  1666   __ nop();
  1668   /* WARNING these NOPs are critical so that verified entry point is properly
  1669    *      8 bytes aligned for patching by NativeJump::patch_verified_entry() */
  1670   __ align(CodeEntryAlignment);
  1671   __ bind(L);
  1674 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1675   return MachNode::size(ra_); 
  1680 //=============================================================================
  1682 const RegMask& MachConstantBaseNode::_out_RegMask = P_REG_mask();
  1684 int Compile::ConstantTable::calculate_table_base_offset() const {
  1685   return 0;  // absolute addressing, no offset
  1688 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
  1689 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1690   ShouldNotReachHere();
  1693 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1694   Compile* C = ra_->C;
  1695   Compile::ConstantTable& constant_table = C->constant_table();
  1696   MacroAssembler _masm(&cbuf);
  1698   Register Rtoc = as_Register(ra_->get_encode(this));
  1699   CodeSection* consts_section = __ code()->consts();
  1700   int consts_size = consts_section->align_at_start(consts_section->size());
  1701   assert(constant_table.size() == consts_size, "must be equal");
  1703   if (consts_section->size()) {
  1704     // Materialize the constant table base.
  1705     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
  1706     // RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1707     __ relocate(relocInfo::internal_pc_type);
  1708     __ li48(Rtoc, (long)baseaddr);
  1712 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1713   // li48 (4 insts)
  1714   return 4 * 4;
  1717 #ifndef PRODUCT
  1718 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1719   Register r = as_Register(ra_->get_encode(this));
  1720   st->print("li48    %s, &constanttable (constant table base) @ MachConstantBaseNode", r->name());
  1722 #endif
  1725 //=============================================================================
  1726 #ifndef PRODUCT
  1727 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1728   Compile* C = ra_->C;
  1730   int framesize = C->frame_size_in_bytes();
  1731   int bangsize = C->bang_size_in_bytes();
  1732   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1734   // Calls to C2R adapters often do not accept exceptional returns.
  1735   // We require that their callers must bang for them.  But be careful, because
  1736   // some VM calls (such as call site linkage) can use several kilobytes of
  1737   // stack.  But the stack safety zone should account for that.
  1738   // See bugs 4446381, 4468289, 4497237.
  1739   if (C->need_stack_bang(bangsize)) {
  1740     st->print_cr("# stack bang"); st->print("\t");
  1742     if (UseLoongsonISA) {
  1743        st->print("gssq     RA, FP, %d(SP)  @ MachPrologNode\n\t", -wordSize*2);
  1744     } else {
  1745        st->print("sd       RA, %d(SP)  @ MachPrologNode\n\t", -wordSize);
  1746        st->print("sd       FP, %d(SP)  @ MachPrologNode\n\t", -wordSize*2);
  1748     st->print("daddiu   FP, SP, -%d \n\t", wordSize*2);
  1749     st->print("daddiu   SP, SP, -%d \t",framesize);
  1751 #endif
  1754 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1755   Compile* C = ra_->C;
  1756   MacroAssembler _masm(&cbuf);
  1758   int framesize = C->frame_size_in_bytes();
  1759   int bangsize = C->bang_size_in_bytes();
  1761 //  __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, false);
  1763   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1765   if (C->need_stack_bang(framesize)) {
  1766     __ generate_stack_overflow_check(framesize);
  1769   if (UseLoongsonISA) {
  1770      __ gssq(RA, FP, SP, -wordSize*2); 
  1771   } else {
  1772      __ sd(RA, SP, -wordSize);
  1773      __ sd(FP, SP, -wordSize*2);
  1775   __ daddiu(FP, SP, -wordSize*2);
  1776   __ daddiu(SP, SP, -framesize);
  1777   __ nop(); /* 2013.10.22 Jin: Make enough room for patch_verified_entry() */
  1778   __ nop();
  1780   C->set_frame_complete(cbuf.insts_size());
  1781   if (C->has_mach_constant_base_node()) {
  1782 	  // NOTE: We set the table base offset here because users might be
  1783 	  // emitted before MachConstantBaseNode.
  1784 	  Compile::ConstantTable& constant_table = C->constant_table();
  1785 	  constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
  1791 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1792 //fprintf(stderr, "\nPrologNode::size(ra_)= %d \n", MachNode::size(ra_));//fujie debug
  1793   return MachNode::size(ra_); // too many variables; just compute it the hard way
  1796 int MachPrologNode::reloc() const {
  1797   return 0; // a large enough number
  1800 %}
  1802 //----------ENCODING BLOCK-----------------------------------------------------
  1803 // This block specifies the encoding classes used by the compiler to output
  1804 // byte streams.  Encoding classes generate functions which are called by
  1805 // Machine Instruction Nodes in order to generate the bit encoding of the
  1806 // instruction.  Operands specify their base encoding interface with the
  1807 // interface keyword.  There are currently supported four interfaces,
  1808 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1809 // operand to generate a function which returns its register number when
  1810 // queried.   CONST_INTER causes an operand to generate a function which
  1811 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1812 // operand to generate four functions which return the Base Register, the
  1813 // Index Register, the Scale Value, and the Offset Value of the operand when
  1814 // queried.  COND_INTER causes an operand to generate six functions which
  1815 // return the encoding code (ie - encoding bits for the instruction)
  1816 // associated with each basic boolean condition for a conditional instruction.
  1817 // Instructions specify two basic values for encoding.  They use the
  1818 // ins_encode keyword to specify their encoding class (which must be one of
  1819 // the class names specified in the encoding block), and they use the
  1820 // opcode keyword to specify, in order, their primary, secondary, and
  1821 // tertiary opcode.  Only the opcode sections which a particular instruction
  1822 // needs for encoding need to be specified.
  1823 encode %{
  1824 /*
  1825 Alias:
  1826 1044   b   java.io.ObjectInputStream::readHandle (130 bytes)
  1827     118   B14: #    B19 B15 <- B13  Freq: 0.899955
  1828     118     add    S1, S2, V0 #@addP_reg_reg
  1829     11c     lb   S0, [S1 + #-8257524] #@loadB
  1830     120     BReq   S0, #3, B19 #@branchConI_reg_imm  P=0.100000 C=-1.000000
  1831 */
  1832   //Load byte signed
  1833   enc_class load_B_enc (mRegI dst, memory mem) %{
  1834      MacroAssembler _masm(&cbuf);
  1835      int  dst = $dst$$reg;
  1836      int  base = $mem$$base;
  1837      int  index = $mem$$index;
  1838      int  scale = $mem$$scale;
  1839      int  disp = $mem$$disp;
  1841      if( index != 0 ) {
  1842         if( Assembler::is_simm16(disp) ) { 
  1843            if( UseLoongsonISA ) {
  1844               if (scale == 0) {
  1845                  __ gslbx(as_Register(dst), as_Register(base), as_Register(index), disp);
  1846               } else {
  1847                  __ dsll(AT, as_Register(index), scale);
  1848                  __ gslbx(as_Register(dst), as_Register(base), AT, disp);
  1850            } else {
  1851               if (scale == 0) {
  1852                  __ addu(AT, as_Register(base), as_Register(index));
  1853               } else {
  1854                  __ dsll(AT, as_Register(index), scale);
  1855                  __ addu(AT, as_Register(base), AT);
  1857               __ lb(as_Register(dst), AT, disp);
  1859         } else {
  1860            if (scale == 0) {
  1861               __ addu(AT, as_Register(base), as_Register(index));
  1862            } else {
  1863               __ dsll(AT, as_Register(index), scale);
  1864               __ addu(AT, as_Register(base), AT);
  1866            __ move(T9, disp);
  1867            if( UseLoongsonISA ) {
  1868               __ gslbx(as_Register(dst), AT, T9, 0);
  1869            } else {
  1870               __ addu(AT, AT, T9); 
  1871               __ lb(as_Register(dst), AT, 0);
  1874      } else {
  1875         if( Assembler::is_simm16(disp) ) { 
  1876            __ lb(as_Register(dst), as_Register(base), disp);
  1877         } else {
  1878            __ move(T9, disp);   
  1879            if( UseLoongsonISA ) {
  1880               __ gslbx(as_Register(dst), as_Register(base), T9, 0);
  1881            } else {
  1882               __ addu(AT, as_Register(base), T9); 
  1883               __ lb(as_Register(dst), AT, 0);
  1887   %}
  1889   //Load byte unsigned
  1890   enc_class load_UB_enc (mRegI dst, memory mem) %{
  1891      MacroAssembler _masm(&cbuf);
  1892      int  dst = $dst$$reg;
  1893      int  base = $mem$$base;
  1894      int  index = $mem$$index;
  1895      int  scale = $mem$$scale;
  1896      int  disp = $mem$$disp;
  1898      if( index != 0 ) {
  1899         if (scale == 0) {
  1900            __ daddu(AT, as_Register(base), as_Register(index));
  1901         } else {
  1902            __ dsll(AT, as_Register(index), scale);
  1903            __ daddu(AT, as_Register(base), AT);
  1905         if( Assembler::is_simm16(disp) ) { 
  1906            __ lbu(as_Register(dst), AT, disp);
  1907         } else {
  1908            __ move(T9, disp);
  1909            __ daddu(AT, AT, T9); 
  1910            __ lbu(as_Register(dst), AT, 0);
  1912      } else {
  1913         if( Assembler::is_simm16(disp) ) { 
  1914            __ lbu(as_Register(dst), as_Register(base), disp);
  1915         } else {
  1916            __ move(T9, disp);   
  1917            __ daddu(AT, as_Register(base), T9); 
  1918            __ lbu(as_Register(dst), AT, 0);
  1921   %}
  1923   enc_class store_B_reg_enc (memory mem, mRegI src) %{
  1924      MacroAssembler _masm(&cbuf);
  1925      int  src = $src$$reg;
  1926      int  base = $mem$$base;
  1927      int  index = $mem$$index;
  1928      int  scale = $mem$$scale;
  1929      int  disp = $mem$$disp;
  1931      if( index != 0 ) {
  1932         if (scale == 0) {
  1933            if( Assembler::is_simm(disp, 8) ) { 
  1934               if (UseLoongsonISA) {
  1935                  __ gssbx(as_Register(src), as_Register(base), as_Register(index), disp);
  1936               } else {
  1937                  __ addu(AT, as_Register(base), as_Register(index));
  1938                  __ sb(as_Register(src), AT, disp);
  1940            } else if( Assembler::is_simm16(disp) ) { 
  1941               __ addu(AT, as_Register(base), as_Register(index));
  1942               __ sb(as_Register(src), AT, disp);
  1943            } else {
  1944               __ addu(AT, as_Register(base), as_Register(index));
  1945               __ move(T9, disp);
  1946               if (UseLoongsonISA) {
  1947                  __ gssbx(as_Register(src), AT, T9, 0);
  1948               } else {
  1949                  __ addu(AT, AT, T9); 
  1950                  __ sb(as_Register(src), AT, 0);
  1953         } else {
  1954            __ dsll(AT, as_Register(index), scale);
  1955            if( Assembler::is_simm(disp, 8) ) { 
  1956               if (UseLoongsonISA) {
  1957                  __ gssbx(as_Register(src), AT, as_Register(base), disp);
  1958               } else {
  1959                  __ addu(AT, as_Register(base), AT);
  1960                  __ sb(as_Register(src), AT, disp);
  1962            } else if( Assembler::is_simm16(disp) ) { 
  1963               __ addu(AT, as_Register(base), AT);
  1964               __ sb(as_Register(src), AT, disp);
  1965            } else {
  1966               __ addu(AT, as_Register(base), AT);
  1967               __ move(T9, disp);
  1968               if (UseLoongsonISA) {
  1969                  __ gssbx(as_Register(src), AT, T9, 0);
  1970               } else {
  1971                  __ addu(AT, AT, T9); 
  1972                  __ sb(as_Register(src), AT, 0);
  1976      } else {
  1977         if( Assembler::is_simm16(disp) ) { 
  1978            __ sb(as_Register(src), as_Register(base), disp);
  1979         } else {
  1980            __ move(T9, disp);   
  1981            if (UseLoongsonISA) {
  1982               __ gssbx(as_Register(src), as_Register(base), T9, 0);
  1983            } else {
  1984               __ addu(AT, as_Register(base), T9); 
  1985               __ sb(as_Register(src), AT, 0);
  1989   %}
  1991   enc_class store_B_immI_enc (memory mem, immI8 src) %{
  1992      MacroAssembler _masm(&cbuf);
  1993      int  base = $mem$$base;
  1994      int  index = $mem$$index;
  1995      int  scale = $mem$$scale;
  1996      int  disp = $mem$$disp;
  1997      int value = $src$$constant;
  1999      if( index != 0 ) {
  2000         if (!UseLoongsonISA) {
  2001            if (scale == 0) {
  2002               __ daddu(AT, as_Register(base), as_Register(index));
  2003            } else {
  2004               __ dsll(AT, as_Register(index), scale);
  2005               __ daddu(AT, as_Register(base), AT);
  2007            if( Assembler::is_simm16(disp) ) { 
  2008               if (value == 0) {
  2009                  __ sb(R0, AT, disp);
  2010               } else {
  2011                  __ move(T9, value);
  2012                  __ sb(T9, AT, disp);
  2014            } else {
  2015               if (value == 0) {
  2016                  __ move(T9, disp);
  2017                  __ daddu(AT, AT, T9); 
  2018                  __ sb(R0, AT, 0);
  2019               } else {
  2020                  __ move(T9, disp);
  2021                  __ daddu(AT, AT, T9); 
  2022                  __ move(T9, value);
  2023                  __ sb(T9, AT, 0);
  2026         } else {
  2028            if (scale == 0) {
  2029               if( Assembler::is_simm(disp, 8) ) { 
  2030                  if (value == 0) {
  2031                     __ gssbx(R0, as_Register(base), as_Register(index), disp);
  2032                  } else {
  2033                     __ move(T9, value);
  2034                     __ gssbx(T9, as_Register(base), as_Register(index), disp);
  2036               } else if( Assembler::is_simm16(disp) ) { 
  2037                  __ daddu(AT, as_Register(base), as_Register(index));
  2038                  if (value == 0) {
  2039                     __ sb(R0, AT, disp);
  2040                  } else {
  2041                     __ move(T9, value);
  2042                     __ sb(T9, AT, disp);
  2044               } else {
  2045                  if (value == 0) {
  2046                     __ daddu(AT, as_Register(base), as_Register(index));
  2047                     __ move(T9, disp);
  2048                     __ gssbx(R0, AT, T9, 0);
  2049                  } else {
  2050                     __ move(AT, disp);
  2051                     __ move(T9, value);
  2052                     __ daddu(AT, as_Register(base), AT);
  2053                     __ gssbx(T9, AT, as_Register(index), 0);
  2057            } else {
  2059               if( Assembler::is_simm(disp, 8) ) { 
  2060                  __ dsll(AT, as_Register(index), scale);
  2061                  if (value == 0) {
  2062                     __ gssbx(R0, as_Register(base), AT, disp);
  2063                  } else {
  2064                     __ move(T9, value);
  2065                     __ gssbx(T9, as_Register(base), AT, disp);
  2067               } else if( Assembler::is_simm16(disp) ) { 
  2068                  __ dsll(AT, as_Register(index), scale);
  2069                  __ daddu(AT, as_Register(base), AT);
  2070                  if (value == 0) {
  2071                     __ sb(R0, AT, disp);
  2072                  } else {
  2073                     __ move(T9, value);
  2074                     __ sb(T9, AT, disp);
  2076               } else {
  2077                  __ dsll(AT, as_Register(index), scale);
  2078                  if (value == 0) {
  2079                     __ daddu(AT, as_Register(base), AT);
  2080                     __ move(T9, disp);
  2081                     __ gssbx(R0, AT, T9, 0);
  2082                  } else {
  2083                     __ move(T9, disp);
  2084                     __ daddu(AT, AT, T9); 
  2085                     __ move(T9, value);
  2086                     __ gssbx(T9, as_Register(base), AT, 0);
  2091      } else {
  2092         if( Assembler::is_simm16(disp) ) { 
  2093            if (value == 0) {
  2094               __ sb(R0, as_Register(base), disp);
  2095            } else {
  2096               __ move(AT, value);
  2097               __ sb(AT, as_Register(base), disp);
  2099         } else {
  2100            if (value == 0) {
  2101               __ move(T9, disp);   
  2102               if (UseLoongsonISA) {
  2103                 __ gssbx(R0, as_Register(base), T9, 0);
  2104               } else {
  2105                 __ daddu(AT, as_Register(base), T9); 
  2106                 __ sb(R0, AT, 0);
  2108            } else {
  2109               __ move(T9, disp);   
  2110               if (UseLoongsonISA) {
  2111                 __ move(AT, value);
  2112                 __ gssbx(AT, as_Register(base), T9, 0);
  2113               } else {
  2114                 __ daddu(AT, as_Register(base), T9); 
  2115                 __ move(T9, value);
  2116                 __ sb(T9, AT, 0);
  2121   %}
  2124   enc_class store_B_immI_enc_sync (memory mem, immI8 src) %{
  2125      MacroAssembler _masm(&cbuf);
  2126      int  base = $mem$$base;
  2127      int  index = $mem$$index;
  2128      int  scale = $mem$$scale;
  2129      int  disp = $mem$$disp;
  2130      int value = $src$$constant;
  2132      if( index != 0 ) {
  2133         if (scale == 0) {
  2134            __ daddu(AT, as_Register(base), as_Register(index));
  2135         } else {
  2136            __ dsll(AT, as_Register(index), scale);
  2137            __ daddu(AT, as_Register(base), AT);
  2139         if( Assembler::is_simm16(disp) ) { 
  2140            if (value == 0) {
  2141               __ sb(R0, AT, disp);
  2142            } else {
  2143               __ move(T9, value);
  2144               __ sb(T9, AT, disp);
  2146         } else {
  2147            if (value == 0) {
  2148               __ move(T9, disp);
  2149               __ daddu(AT, AT, T9); 
  2150               __ sb(R0, AT, 0);
  2151            } else {
  2152               __ move(T9, disp);
  2153               __ daddu(AT, AT, T9); 
  2154               __ move(T9, value);
  2155               __ sb(T9, AT, 0);
  2158      } else {
  2159         if( Assembler::is_simm16(disp) ) { 
  2160            if (value == 0) {
  2161               __ sb(R0, as_Register(base), disp);
  2162            } else {
  2163               __ move(AT, value);
  2164               __ sb(AT, as_Register(base), disp);
  2166         } else {
  2167            if (value == 0) {
  2168               __ move(T9, disp);   
  2169               __ daddu(AT, as_Register(base), T9); 
  2170               __ sb(R0, AT, 0);
  2171            } else {
  2172               __ move(T9, disp);   
  2173               __ daddu(AT, as_Register(base), T9); 
  2174               __ move(T9, value);
  2175               __ sb(T9, AT, 0);
  2180      __ sync();
  2181   %}
  2183   // Load Short (16bit signed)
  2184   enc_class load_S_enc (mRegI dst, memory mem) %{
  2185      MacroAssembler _masm(&cbuf);
  2186      int  dst = $dst$$reg;
  2187      int  base = $mem$$base;
  2188      int  index = $mem$$index;
  2189      int  scale = $mem$$scale;
  2190      int  disp = $mem$$disp;
  2192      if( index != 0 ) {
  2193         if (scale == 0) {
  2194            __ daddu(AT, as_Register(base), as_Register(index));
  2195         } else {
  2196            __ dsll(AT, as_Register(index), scale);
  2197            __ daddu(AT, as_Register(base), AT);
  2199         if( Assembler::is_simm16(disp) ) { 
  2200            __ lh(as_Register(dst), AT, disp);
  2201         } else {
  2202            __ move(T9, disp);
  2203            __ addu(AT, AT, T9); 
  2204            __ lh(as_Register(dst), AT, 0);
  2206      } else {
  2207         if( Assembler::is_simm16(disp) ) { 
  2208            __ lh(as_Register(dst), as_Register(base), disp);
  2209         } else {
  2210            __ move(T9, disp);   
  2211            __ addu(AT, as_Register(base), T9); 
  2212            __ lh(as_Register(dst), AT, 0);
  2215   %}
  2217   // Load Char (16bit unsigned)
  2218   enc_class load_C_enc (mRegI dst, memory mem) %{
  2219      MacroAssembler _masm(&cbuf);
  2220      int  dst = $dst$$reg;
  2221      int  base = $mem$$base;
  2222      int  index = $mem$$index;
  2223      int  scale = $mem$$scale;
  2224      int  disp = $mem$$disp;
  2226      if( index != 0 ) {
  2227         if (scale == 0) {
  2228            __ daddu(AT, as_Register(base), as_Register(index));
  2229         } else {
  2230            __ dsll(AT, as_Register(index), scale);
  2231            __ daddu(AT, as_Register(base), AT);
  2233         if( Assembler::is_simm16(disp) ) { 
  2234            __ lhu(as_Register(dst), AT, disp);
  2235         } else {
  2236            __ move(T9, disp);
  2237            __ addu(AT, AT, T9); 
  2238            __ lhu(as_Register(dst), AT, 0);
  2240      } else {
  2241         if( Assembler::is_simm16(disp) ) { 
  2242            __ lhu(as_Register(dst), as_Register(base), disp);
  2243         } else {
  2244            __ move(T9, disp);   
  2245            __ daddu(AT, as_Register(base), T9); 
  2246            __ lhu(as_Register(dst), AT, 0);
  2249   %}
  2251   // Store Char (16bit unsigned)
  2252   enc_class store_C_reg_enc (memory mem, mRegI src) %{
  2253      MacroAssembler _masm(&cbuf);
  2254      int  src = $src$$reg;
  2255      int  base = $mem$$base;
  2256      int  index = $mem$$index;
  2257      int  scale = $mem$$scale;
  2258      int  disp = $mem$$disp;
  2260      if( index != 0 ) {
  2261         if( Assembler::is_simm16(disp) ) { 
  2262            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2263               if (scale == 0) {
  2264                  __ gsshx(as_Register(src), as_Register(base), as_Register(index), disp);
  2265               } else {
  2266                  __ dsll(AT, as_Register(index), scale);
  2267                  __ gsshx(as_Register(src), as_Register(base), AT, disp);
  2269            } else {
  2270               if (scale == 0) {
  2271                  __ addu(AT, as_Register(base), as_Register(index));
  2272               } else {
  2273                  __ dsll(AT, as_Register(index), scale);
  2274                  __ addu(AT, as_Register(base), AT);
  2276               __ sh(as_Register(src), AT, disp);
  2278         } else {
  2279            if (scale == 0) {
  2280               __ addu(AT, as_Register(base), as_Register(index));
  2281            } else {
  2282               __ dsll(AT, as_Register(index), scale);
  2283               __ addu(AT, as_Register(base), AT);
  2285            __ move(T9, disp);
  2286            if( UseLoongsonISA ) {
  2287               __ gsshx(as_Register(src), AT, T9, 0);
  2288            } else {
  2289               __ addu(AT, AT, T9); 
  2290               __ sh(as_Register(src), AT, 0);
  2293      } else {
  2294         if( Assembler::is_simm16(disp) ) { 
  2295            __ sh(as_Register(src), as_Register(base), disp);
  2296         } else {
  2297            __ move(T9, disp);   
  2298            if( UseLoongsonISA ) {
  2299               __ gsshx(as_Register(src), as_Register(base), T9, 0);
  2300            } else {
  2301               __ addu(AT, as_Register(base), T9); 
  2302               __ sh(as_Register(src), AT, 0);
  2306   %}
  2308   enc_class load_I_enc (mRegI dst, memory mem) %{
  2309      MacroAssembler _masm(&cbuf);
  2310      int  dst = $dst$$reg;
  2311      int  base = $mem$$base;
  2312      int  index = $mem$$index;
  2313      int  scale = $mem$$scale;
  2314      int  disp = $mem$$disp;
  2316      if( index != 0 ) {
  2317         if( Assembler::is_simm16(disp) ) { 
  2318            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2319               if (scale == 0) {
  2320                  __ gslwx(as_Register(dst), as_Register(base), as_Register(index), disp);
  2321               } else {
  2322                  __ dsll(AT, as_Register(index), scale);
  2323                  __ gslwx(as_Register(dst), as_Register(base), AT, disp);
  2325            } else {
  2326               if (scale == 0) {
  2327                  __ addu(AT, as_Register(base), as_Register(index));
  2328               } else {
  2329                  __ dsll(AT, as_Register(index), scale);
  2330                  __ addu(AT, as_Register(base), AT);
  2332               __ lw(as_Register(dst), AT, disp);
  2334         } else {
  2335            if (scale == 0) {
  2336               __ addu(AT, as_Register(base), as_Register(index));
  2337            } else {
  2338               __ dsll(AT, as_Register(index), scale);
  2339               __ addu(AT, as_Register(base), AT);
  2341            __ move(T9, disp);
  2342            if( UseLoongsonISA ) {
  2343               __ gslwx(as_Register(dst), AT, T9, 0);
  2344            } else {
  2345               __ addu(AT, AT, T9); 
  2346               __ lw(as_Register(dst), AT, 0);
  2349      } else {
  2350         if( Assembler::is_simm16(disp) ) { 
  2351            __ lw(as_Register(dst), as_Register(base), disp);
  2352         } else {
  2353            __ move(T9, disp);   
  2354            if( UseLoongsonISA ) {
  2355               __ gslwx(as_Register(dst), as_Register(base), T9, 0);
  2356            } else {
  2357               __ addu(AT, as_Register(base), T9); 
  2358               __ lw(as_Register(dst), AT, 0);
  2362   %}
  2364   enc_class store_I_reg_enc (memory mem, mRegI src) %{
  2365      MacroAssembler _masm(&cbuf);
  2366      int  src = $src$$reg;
  2367      int  base = $mem$$base;
  2368      int  index = $mem$$index;
  2369      int  scale = $mem$$scale;
  2370      int  disp = $mem$$disp;
  2372      if( index != 0 ) {
  2373         if( Assembler::is_simm16(disp) ) { 
  2374            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  2375               if (scale == 0) {
  2376                  __ gsswx(as_Register(src), as_Register(base), as_Register(index), disp);
  2377               } else {
  2378                  __ dsll(AT, as_Register(index), scale);
  2379                  __ gsswx(as_Register(src), as_Register(base), AT, disp);
  2381            } else {
  2382               if (scale == 0) {
  2383                  __ addu(AT, as_Register(base), as_Register(index));
  2384               } else {
  2385                  __ dsll(AT, as_Register(index), scale);
  2386                  __ addu(AT, as_Register(base), AT);
  2388               __ sw(as_Register(src), AT, disp);
  2390         } else {
  2391            if (scale == 0) {
  2392               __ addu(AT, as_Register(base), as_Register(index));
  2393            } else {
  2394               __ dsll(AT, as_Register(index), scale);
  2395               __ addu(AT, as_Register(base), AT);
  2397            __ move(T9, disp);
  2398            if( UseLoongsonISA ) {
  2399               __ gsswx(as_Register(src), AT, T9, 0);
  2400            } else {
  2401               __ addu(AT, AT, T9); 
  2402               __ sw(as_Register(src), AT, 0);
  2405      } else {
  2406         if( Assembler::is_simm16(disp) ) { 
  2407            __ sw(as_Register(src), as_Register(base), disp);
  2408         } else {
  2409            __ move(T9, disp);   
  2410            if( UseLoongsonISA ) {
  2411               __ gsswx(as_Register(src), as_Register(base), T9, 0);
  2412            } else {
  2413               __ addu(AT, as_Register(base), T9); 
  2414               __ sw(as_Register(src), AT, 0);
  2418   %}
  2420   enc_class store_I_immI_enc (memory mem, immI src) %{
  2421      MacroAssembler _masm(&cbuf);
  2422      int  base = $mem$$base;
  2423      int  index = $mem$$index;
  2424      int  scale = $mem$$scale;
  2425      int  disp = $mem$$disp;
  2426      int value = $src$$constant;
  2428      if( index != 0 ) {
  2429         if (scale == 0) {
  2430            __ daddu(AT, as_Register(base), as_Register(index));
  2431         } else {
  2432            __ dsll(AT, as_Register(index), scale);
  2433            __ daddu(AT, as_Register(base), AT);
  2435         if( Assembler::is_simm16(disp) ) { 
  2436            if (value == 0) {
  2437               __ sw(R0, AT, disp);
  2438            } else {
  2439               __ move(T9, value);
  2440               __ sw(T9, AT, disp);
  2442         } else {
  2443            if (value == 0) {
  2444               __ move(T9, disp);
  2445               __ addu(AT, AT, T9); 
  2446               __ sw(R0, AT, 0);
  2447            } else {
  2448               __ move(T9, disp);
  2449               __ addu(AT, AT, T9); 
  2450               __ move(T9, value);
  2451               __ sw(T9, AT, 0);
  2454      } else {
  2455         if( Assembler::is_simm16(disp) ) { 
  2456            if (value == 0) {
  2457               __ sw(R0, as_Register(base), disp);
  2458            } else {
  2459               __ move(AT, value);
  2460               __ sw(AT, as_Register(base), disp);
  2462         } else {
  2463            if (value == 0) {
  2464               __ move(T9, disp);   
  2465               __ addu(AT, as_Register(base), T9); 
  2466               __ sw(R0, AT, 0);
  2467            } else {
  2468               __ move(T9, disp);   
  2469               __ addu(AT, as_Register(base), T9); 
  2470               __ move(T9, value);
  2471               __ sw(T9, AT, 0);
  2475   %}
  2477   enc_class load_N_enc (mRegN dst, memory mem) %{
  2478      MacroAssembler _masm(&cbuf);
  2479      int  dst = $dst$$reg;
  2480      int  base = $mem$$base;
  2481      int  index = $mem$$index;
  2482      int  scale = $mem$$scale;
  2483      int  disp = $mem$$disp;
  2484 	 relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2485 	 assert(disp_reloc == relocInfo::none, "cannot have disp");
  2487      if( index != 0 ) {
  2488         if (scale == 0) {
  2489            __ daddu(AT, as_Register(base), as_Register(index));
  2490         } else {
  2491            __ dsll(AT, as_Register(index), scale);
  2492            __ daddu(AT, as_Register(base), AT);
  2494         if( Assembler::is_simm16(disp) ) { 
  2495            __ lwu(as_Register(dst), AT, disp);
  2496         } else {
  2497            __ li(T9, disp);
  2498            __ daddu(AT, AT, T9);
  2499            __ lwu(as_Register(dst), AT, 0);
  2501      } else {
  2502         if( Assembler::is_simm16(disp) ) { 
  2503            __ lwu(as_Register(dst), as_Register(base), disp);
  2504         } else {
  2505            __ li(T9, disp);   
  2506            __ daddu(AT, as_Register(base), T9);
  2507            __ lwu(as_Register(dst), AT, 0);
  2511   %}
  2514   enc_class load_P_enc (mRegP dst, memory mem) %{
  2515      MacroAssembler _masm(&cbuf);
  2516      int  dst = $dst$$reg;
  2517      int  base = $mem$$base;
  2518      int  index = $mem$$index;
  2519      int  scale = $mem$$scale;
  2520      int  disp = $mem$$disp;
  2521 	 relocInfo::relocType disp_reloc = $mem->disp_reloc();
  2522 	 assert(disp_reloc == relocInfo::none, "cannot have disp");
  2524      if( index != 0 ) {
  2525         if (scale == 0) {
  2526            __ daddu(AT, as_Register(base), as_Register(index));
  2527         } else {
  2528            __ dsll(AT, as_Register(index), scale);
  2529            __ daddu(AT, as_Register(base), AT);
  2531         if( Assembler::is_simm16(disp) ) { 
  2532            __ ld(as_Register(dst), AT, disp);
  2533         } else {
  2534            __ li(T9, disp);
  2535            __ daddu(AT, AT, T9);
  2536            __ ld(as_Register(dst), AT, 0);
  2538      } else {
  2539         if( Assembler::is_simm16(disp) ) { 
  2540            __ ld(as_Register(dst), as_Register(base), disp);
  2541         } else {
  2542            __ li(T9, disp);   
  2543            __ daddu(AT, as_Register(base), T9);
  2544            __ ld(as_Register(dst), AT, 0);
  2547 //     if( disp_reloc != relocInfo::none) __ ld(as_Register(dst), as_Register(dst), 0);
  2548   %}
  2550   enc_class store_P_reg_enc (memory mem, mRegP src) %{
  2551      MacroAssembler _masm(&cbuf);
  2552      int  src = $src$$reg;
  2553      int  base = $mem$$base;
  2554      int  index = $mem$$index;
  2555      int  scale = $mem$$scale;
  2556      int  disp = $mem$$disp;
  2558      if( index != 0 ) {
  2559         if (scale == 0) {
  2560            __ daddu(AT, as_Register(base), as_Register(index));
  2561         } else {
  2562            __ dsll(AT, as_Register(index), scale);
  2563            __ daddu(AT, as_Register(base), AT);
  2565         if( Assembler::is_simm16(disp) ) { 
  2566            __ sd(as_Register(src), AT, disp);
  2567         } else {
  2568            __ move(T9, disp);
  2569            __ daddu(AT, AT, T9); 
  2570            __ sd(as_Register(src), AT, 0);
  2572      } else {
  2573         if( Assembler::is_simm16(disp) ) { 
  2574            __ sd(as_Register(src), as_Register(base), disp);
  2575         } else {
  2576            __ move(T9, disp);   
  2577            __ daddu(AT, as_Register(base), T9); 
  2578            __ sd(as_Register(src), AT, 0);
  2581   %}
  2583   enc_class store_N_reg_enc (memory mem, mRegN src) %{
  2584      MacroAssembler _masm(&cbuf);
  2585      int  src = $src$$reg;
  2586      int  base = $mem$$base;
  2587      int  index = $mem$$index;
  2588      int  scale = $mem$$scale;
  2589      int  disp = $mem$$disp;
  2591      if( index != 0 ) {
  2592         if (scale == 0) {
  2593            __ daddu(AT, as_Register(base), as_Register(index));
  2594         } else {
  2595            __ dsll(AT, as_Register(index), scale);
  2596            __ daddu(AT, as_Register(base), AT);
  2598         if( Assembler::is_simm16(disp) ) { 
  2599            __ sw(as_Register(src), AT, disp);
  2600         } else {
  2601            __ move(T9, disp);
  2602            __ addu(AT, AT, T9); 
  2603            __ sw(as_Register(src), AT, 0);
  2605      } else {
  2606         if( Assembler::is_simm16(disp) ) { 
  2607            __ sw(as_Register(src), as_Register(base), disp);
  2608         } else {
  2609            __ move(T9, disp);   
  2610            __ addu(AT, as_Register(base), T9); 
  2611            __ sw(as_Register(src), AT, 0);
  2614   %}
  2616   enc_class store_P_immP_enc (memory mem, immP31 src) %{
  2617      MacroAssembler _masm(&cbuf);
  2618      int  base = $mem$$base;
  2619      int  index = $mem$$index;
  2620      int  scale = $mem$$scale;
  2621      int  disp = $mem$$disp;
  2622      long value = $src$$constant;
  2624      if( index != 0 ) {
  2625         if (scale == 0) {
  2626            __ daddu(AT, as_Register(base), as_Register(index));
  2627         } else {
  2628            __ dsll(AT, as_Register(index), scale);
  2629            __ daddu(AT, as_Register(base), AT);
  2631         if( Assembler::is_simm16(disp) ) { 
  2632            if (value == 0) {
  2633               __ sd(R0, AT, disp);
  2634            } else {
  2635               __ move(T9, value);
  2636               __ sd(T9, AT, disp);
  2638         } else {
  2639            if (value == 0) {
  2640               __ move(T9, disp);
  2641               __ daddu(AT, AT, T9); 
  2642               __ sd(R0, AT, 0);
  2643            } else {
  2644               __ move(T9, disp);
  2645               __ daddu(AT, AT, T9); 
  2646               __ move(T9, value);
  2647               __ sd(T9, AT, 0);
  2650      } else {
  2651         if( Assembler::is_simm16(disp) ) { 
  2652            if (value == 0) {
  2653               __ sd(R0, as_Register(base), disp);
  2654            } else {
  2655               __ move(AT, value);
  2656               __ sd(AT, as_Register(base), disp);
  2658         } else {
  2659            if (value == 0) {
  2660               __ move(T9, disp);   
  2661               __ daddu(AT, as_Register(base), T9); 
  2662               __ sd(R0, AT, 0);
  2663            } else {
  2664               __ move(T9, disp);   
  2665               __ daddu(AT, as_Register(base), T9); 
  2666               __ move(T9, value);
  2667               __ sd(T9, AT, 0);
  2671   %}
  2673 /*
  2674  * 1d4     storeImmN    [S0 + #16 (8-bit)], narrowoop: spec/benchmarks/_213_javac/Identifier:exact *   
  2675  *                      # compressed ptr ! Field: spec/benchmarks/_213_javac/Identifier.value
  2676  *  0x00000055648065d4: daddu at, s0, zero
  2677  *  0x00000055648065d8: lui t9, 0x0       ;   {oop(a 'spec/benchmarks/_213_javac/Identifier')}
  2678  *  0x00000055648065dc: ori t9, t9, 0xfffff610
  2679  *  0x00000055648065e0: dsll t9, t9, 16
  2680  *  0x00000055648065e4: ori t9, t9, 0xffffc628
  2681  *  0x00000055648065e8: sw t9, 0x10(at)
  2682  */
  2683   enc_class storeImmN_enc (memory mem, immN src) %{
  2684      MacroAssembler _masm(&cbuf);
  2685      int  base = $mem$$base;
  2686      int  index = $mem$$index;
  2687      int  scale = $mem$$scale;
  2688      int  disp = $mem$$disp;
  2689      long * value = (long *)$src$$constant;
  2691      if (value == NULL) {
  2692          guarantee(Assembler::is_simm16(disp), "FIXME: disp is not simm16!");
  2693          if (index == 0) {
  2694              __ sw(R0, as_Register(base), disp);
  2695          } else {
  2696              if (scale == 0) {
  2697                 __ daddu(AT, as_Register(base), as_Register(index));
  2698              } else {
  2699                 __ dsll(AT, as_Register(index), scale);
  2700                 __ daddu(AT, as_Register(base), AT);
  2702              __ sw(R0, AT, disp);
  2705          return;
  2708      int oop_index = __ oop_recorder()->find_index((jobject)value);
  2709      RelocationHolder rspec = oop_Relocation::spec(oop_index);
  2711      guarantee(scale == 0, "FIXME: scale is not zero !");
  2712      guarantee(value != 0, "FIXME: value is zero !");
  2714     if (index != 0) {
  2715          if (scale == 0) {
  2716             __ daddu(AT, as_Register(base), as_Register(index));
  2717          } else {
  2718             __ dsll(AT, as_Register(index), scale);
  2719             __ daddu(AT, as_Register(base), AT);
  2721 	 if( Assembler::is_simm16(disp) ) { 
  2722 		 if(rspec.type() != relocInfo::none) {
  2723 			 __ relocate(rspec, Assembler::narrow_oop_operand);
  2724 			 __ li48(T9, oop_index);
  2725 		 } else {
  2726 			 __ set64(T9, oop_index);
  2728 		 __ sw(T9, AT, disp);
  2729 	 } else {
  2730 		 __ move(T9, disp);
  2731 		 __ addu(AT, AT, T9); 
  2733 		 if(rspec.type() != relocInfo::none) {
  2734 			 __ relocate(rspec, Assembler::narrow_oop_operand);
  2735 			 __ li48(T9, oop_index);
  2736 		 } else {
  2737 			 __ set64(T9, oop_index);
  2739 		 __ sw(T9, AT, 0);
  2742      else {
  2743          if( Assembler::is_simm16(disp) ) { 
  2744 		 if($src->constant_reloc() != relocInfo::none) {
  2745 			 __ relocate(rspec, Assembler::narrow_oop_operand);
  2746 			 __ li48(T9, oop_index);
  2747 		 } else {
  2748                          __ set64(T9, oop_index);
  2750 	         __ sw(T9, as_Register(base), disp);
  2751 	 } else {
  2752 		 __ move(T9, disp);
  2753 		 __ daddu(AT, as_Register(base), T9);  
  2755 		 if($src->constant_reloc() != relocInfo::none){
  2756 			 __ relocate(rspec, Assembler::narrow_oop_operand);
  2757 			 __ li48(T9, oop_index);
  2758 		 } else {
  2759 			 __ set64(T9, oop_index);
  2761 		 __ sw(T9, AT, 0);
  2764   %}
  2766   enc_class storeImmNKlass_enc (memory mem, immNKlass src) %{
  2767      MacroAssembler _masm(&cbuf);
  2769      assert (UseCompressedOops, "should only be used for compressed headers");
  2770      assert (__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  2772      int  base = $mem$$base;
  2773      int  index = $mem$$index;
  2774      int  scale = $mem$$scale;
  2775      int  disp = $mem$$disp;
  2776      long value = $src$$constant;
  2778 	 int klass_index = __ oop_recorder()->find_index((Klass*)value);
  2779 	 RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  2780 	 long narrowp = Klass::encode_klass((Klass*)value);
  2782 	 if(index!=0){
  2783                  if (scale == 0) {
  2784                     __ daddu(AT, as_Register(base), as_Register(index));
  2785                  } else {
  2786                     __ dsll(AT, as_Register(index), scale);
  2787                     __ daddu(AT, as_Register(base), AT);
  2790 		 if( Assembler::is_simm16(disp) ) { 
  2791 			 if(rspec.type() != relocInfo::none){
  2792 				 __ relocate(rspec, Assembler::narrow_oop_operand);
  2793 				 __ li48(T9, narrowp);
  2794 			 } else {
  2795 				 __ set64(T9, narrowp);
  2797 			 __ sw(T9, AT, disp);
  2798 		 } else {
  2799 			 __ move(T9, disp);
  2800 			 __ daddu(AT, AT, T9); 
  2802 			 if(rspec.type() != relocInfo::none){
  2803 				 __ relocate(rspec, Assembler::narrow_oop_operand);
  2804 				 __ li48(T9, narrowp);
  2805 			 } else {
  2806 				 __ set64(T9, narrowp);
  2809 			 __ sw(T9, AT, 0);
  2811 	 } else {
  2812 		 if( Assembler::is_simm16(disp) ) { 
  2813 			 if(rspec.type() != relocInfo::none){
  2814 				 __ relocate(rspec, Assembler::narrow_oop_operand);
  2815 				 __ li48(T9, narrowp);
  2817 			 else {
  2818 				 __ set64(T9, narrowp);
  2820 			 __ sw(T9, as_Register(base), disp);
  2821 		 } else {
  2822 			 __ move(T9, disp);
  2823 			 __ daddu(AT, as_Register(base), T9); 
  2825 			 if(rspec.type() != relocInfo::none){
  2826 				 __ relocate(rspec, Assembler::narrow_oop_operand);
  2827 				 __ li48(T9, narrowp);
  2828 			 } else {
  2829 				 __ set64(T9, narrowp);
  2831 			 __ sw(T9, AT, 0);
  2834   %}
  2836   enc_class storeImmN0_enc(memory mem, ImmN0 src) %{
  2837      MacroAssembler _masm(&cbuf);
  2838      int  base = $mem$$base;
  2839      int  index = $mem$$index;
  2840      int  scale = $mem$$scale;
  2841      int  disp = $mem$$disp;
  2843 	 if(index!=0){
  2844                  if (scale == 0) {
  2845                     __ daddu(AT, as_Register(base), as_Register(index));
  2846                  } else {
  2847                     __ dsll(AT, as_Register(index), scale);
  2848                     __ daddu(AT, as_Register(base), AT);
  2851 		 if( Assembler::is_simm16(disp) ) { 
  2852 			 __ sw(R0, AT, disp);
  2853 		 } else {
  2854 			 __ move(T9, disp);
  2855 			 __ daddu(AT, AT, T9); 
  2856 			 __ sw(R0, AT, 0);
  2859      else {
  2860 		 if( Assembler::is_simm16(disp) ) { 
  2861 			 __ sw(R0, as_Register(base), disp);
  2862 		 } else {
  2863 			 __ move(T9, disp);
  2864 			 __ daddu(AT, as_Register(base), T9); 
  2865 			 __ sw(R0, AT, 0);
  2868   %} 
  2870   enc_class load_L_enc (mRegL dst, memory mem) %{
  2871      MacroAssembler _masm(&cbuf);
  2872      int  base = $mem$$base;
  2873      int  index = $mem$$index;
  2874      int  scale = $mem$$scale;
  2875      int  disp = $mem$$disp;
  2876      Register  dst_reg = as_Register($dst$$reg);
  2878      /*********************2013/03/27**************************
  2879       * Jin: $base may contain a null object.
  2880       * Server JIT force the exception_offset to be the pos of 
  2881       * the first instruction.
  2882       * I insert such a 'null_check' at the beginning.
  2883       *******************************************************/
  2885      __ lw(AT, as_Register(base), 0);
  2887      /*********************2012/10/04**************************
  2888       * Error case found in SortTest
  2889       * 337   b   java.util.Arrays::sort1 (401 bytes)
  2890       * B73:
  2891       *       d34     lw    T4.lo, [T4 + #16]   #@loadL-lo
  2892       *               lw    T4.hi, [T4 + #16]+4 #@loadL-hi
  2894       * The original instructions generated here are :
  2895       *       __ lw(dst_lo, as_Register(base), disp);
  2896       *       __ lw(dst_hi, as_Register(base), disp + 4);
  2897       *******************************************************/
  2899      if( index != 0 ) {
  2900         if (scale == 0) {
  2901            __ daddu(AT, as_Register(base), as_Register(index));
  2902         } else {
  2903            __ dsll(AT, as_Register(index), scale);
  2904            __ daddu(AT, as_Register(base), AT);
  2906         if( Assembler::is_simm16(disp) ) { 
  2907            __ ld(dst_reg, AT, disp);
  2908         } else {
  2909            __ move(T9, disp);
  2910            __ daddu(AT, AT, T9); 
  2911            __ ld(dst_reg, AT, 0);
  2913      } else {
  2914         if( Assembler::is_simm16(disp) ) { 
  2915            __ move(AT, as_Register(base));
  2916            __ ld(dst_reg, AT, disp);
  2917         } else {
  2918            __ move(T9, disp);   
  2919            __ daddu(AT, as_Register(base), T9); 
  2920            __ ld(dst_reg, AT, 0);
  2923   %}
  2925   enc_class store_L_reg_enc (memory mem, mRegL src) %{
  2926      MacroAssembler _masm(&cbuf);
  2927      int  base = $mem$$base;
  2928      int  index = $mem$$index;
  2929      int  scale = $mem$$scale;
  2930      int  disp = $mem$$disp;
  2931      Register  src_reg = as_Register($src$$reg);
  2933      if( index != 0 ) {
  2934         if (scale == 0) {
  2935            __ daddu(AT, as_Register(base), as_Register(index));
  2936         } else {
  2937            __ dsll(AT, as_Register(index), scale);
  2938            __ daddu(AT, as_Register(base), AT);
  2940         if( Assembler::is_simm16(disp) ) { 
  2941            __ sd(src_reg, AT, disp);
  2942         } else {
  2943            __ move(T9, disp);
  2944            __ daddu(AT, AT, T9); 
  2945            __ sd(src_reg, AT, 0);
  2947      } else {
  2948         if( Assembler::is_simm16(disp) ) { 
  2949            __ move(AT, as_Register(base));
  2950            __ sd(src_reg, AT, disp);
  2951         } else {
  2952            __ move(T9, disp);   
  2953            __ daddu(AT, as_Register(base), T9); 
  2954            __ sd(src_reg, AT, 0);
  2957   %}
  2959   enc_class store_L_immL0_enc (memory mem, immL0 src) %{
  2960      MacroAssembler _masm(&cbuf);
  2961      int  base = $mem$$base;
  2962      int  index = $mem$$index;
  2963      int  scale = $mem$$scale;
  2964      int  disp = $mem$$disp;
  2966      if( index != 0 ) {
  2967         if (scale == 0) {
  2968            __ daddu(AT, as_Register(base), as_Register(index));
  2969         } else {
  2970            __ dsll(AT, as_Register(index), scale);
  2971            __ daddu(AT, as_Register(base), AT);
  2973         if( Assembler::is_simm16(disp) ) { 
  2974            __ sd(R0, AT, disp);
  2975         } else {
  2976            __ move(T9, disp);
  2977            __ addu(AT, AT, T9); 
  2978            __ sd(R0, AT, 0);
  2980      } else {
  2981         if( Assembler::is_simm16(disp) ) { 
  2982            __ move(AT, as_Register(base));
  2983            __ sd(R0, AT, disp);
  2984         } else {
  2985            __ move(T9, disp);   
  2986            __ addu(AT, as_Register(base), T9); 
  2987            __ sd(R0, AT, 0);
  2990   %}
  2992   enc_class store_L_immL_enc (memory mem, immL src) %{
  2993      MacroAssembler _masm(&cbuf);
  2994      int  base = $mem$$base;
  2995      int  index = $mem$$index;
  2996      int  scale = $mem$$scale;
  2997      int  disp = $mem$$disp;
  2998      long  imm = $src$$constant; 
  3000      if( index != 0 ) {
  3001         if (scale == 0) {
  3002            __ daddu(AT, as_Register(base), as_Register(index));
  3003         } else {
  3004            __ dsll(AT, as_Register(index), scale);
  3005            __ daddu(AT, as_Register(base), AT);
  3007         if( Assembler::is_simm16(disp) ) { 
  3008            __ li(T9, imm);
  3009            __ sd(T9, AT, disp);
  3010         } else {
  3011            __ move(T9, disp);
  3012            __ addu(AT, AT, T9); 
  3013            __ li(T9, imm);
  3014            __ sd(T9, AT, 0);
  3016      } else {
  3017         if( Assembler::is_simm16(disp) ) { 
  3018            __ move(AT, as_Register(base));
  3019            __ li(T9, imm);
  3020            __ sd(T9, AT, disp);
  3021         } else {
  3022            __ move(T9, disp);   
  3023            __ addu(AT, as_Register(base), T9); 
  3024            __ li(T9, imm);
  3025            __ sd(T9, AT, 0);
  3028   %}
  3030   enc_class load_F_enc (regF dst, memory mem) %{
  3031      MacroAssembler _masm(&cbuf);
  3032      int  base = $mem$$base;
  3033      int  index = $mem$$index;
  3034      int  scale = $mem$$scale;
  3035      int  disp = $mem$$disp;
  3036      FloatRegister dst = $dst$$FloatRegister;
  3038      if( index != 0 ) {
  3039         if( Assembler::is_simm16(disp) ) { 
  3040            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3041               if (scale == 0) {
  3042                  __ gslwxc1(dst, as_Register(base), as_Register(index), disp);
  3043               } else {
  3044                  __ dsll(AT, as_Register(index), scale);
  3045                  __ gslwxc1(dst, as_Register(base), AT, disp);
  3047            } else {
  3048               if (scale == 0) {
  3049                  __ daddu(AT, as_Register(base), as_Register(index));
  3050               } else {
  3051                  __ dsll(AT, as_Register(index), scale);
  3052                  __ daddu(AT, as_Register(base), AT);
  3054               __ lwc1(dst, AT, disp);
  3056         } else {
  3057            if (scale == 0) {
  3058               __ daddu(AT, as_Register(base), as_Register(index));
  3059            } else {
  3060               __ dsll(AT, as_Register(index), scale);
  3061               __ daddu(AT, as_Register(base), AT);
  3063            __ move(T9, disp);
  3064            if( UseLoongsonISA ) {
  3065               __ gslwxc1(dst, AT, T9, 0);
  3066            } else {
  3067               __ daddu(AT, AT, T9); 
  3068               __ lwc1(dst, AT, 0);
  3071      } else {
  3072         if( Assembler::is_simm16(disp) ) { 
  3073            __ lwc1(dst, as_Register(base), disp);
  3074         } else {
  3075            __ move(T9, disp);   
  3076            if( UseLoongsonISA ) {
  3077               __ gslwxc1(dst, as_Register(base), T9, 0);
  3078            } else {
  3079               __ daddu(AT, as_Register(base), T9); 
  3080               __ lwc1(dst, AT, 0);
  3084   %}
  3086   enc_class store_F_reg_enc (memory mem, regF src) %{
  3087      MacroAssembler _masm(&cbuf);
  3088      int  base = $mem$$base;
  3089      int  index = $mem$$index;
  3090      int  scale = $mem$$scale;
  3091      int  disp = $mem$$disp;
  3092      FloatRegister src = $src$$FloatRegister;
  3094      if( index != 0 ) {
  3095         if( Assembler::is_simm16(disp) ) { 
  3096            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3097               if (scale == 0) {
  3098                  __ gsswxc1(src, as_Register(base), as_Register(index), disp);
  3099               } else {
  3100                  __ dsll(AT, as_Register(index), scale);
  3101                  __ gsswxc1(src, as_Register(base), AT, disp);
  3103            } else {
  3104               if (scale == 0) {
  3105                  __ daddu(AT, as_Register(base), as_Register(index));
  3106               } else {
  3107                  __ dsll(AT, as_Register(index), scale);
  3108                  __ daddu(AT, as_Register(base), AT);
  3110               __ swc1(src, AT, disp);
  3112         } else {
  3113            if (scale == 0) {
  3114               __ daddu(AT, as_Register(base), as_Register(index));
  3115            } else {
  3116               __ dsll(AT, as_Register(index), scale);
  3117               __ daddu(AT, as_Register(base), AT);
  3119            __ move(T9, disp);
  3120            if( UseLoongsonISA ) {
  3121               __ gsswxc1(src, AT, T9, 0);
  3122            } else {
  3123               __ daddu(AT, AT, T9); 
  3124               __ swc1(src, AT, 0);
  3127      } else {
  3128         if( Assembler::is_simm16(disp) ) { 
  3129            __ swc1(src, as_Register(base), disp);
  3130         } else {
  3131            __ move(T9, disp);   
  3132            if( UseLoongsonISA ) {
  3133               __ gslwxc1(src, as_Register(base), T9, 0);
  3134            } else {
  3135               __ daddu(AT, as_Register(base), T9); 
  3136               __ swc1(src, AT, 0);
  3140   %}
  3142   enc_class load_D_enc (regD dst, memory mem) %{
  3143      MacroAssembler _masm(&cbuf);
  3144      int  base = $mem$$base;
  3145      int  index = $mem$$index;
  3146      int  scale = $mem$$scale;
  3147      int  disp = $mem$$disp;
  3148      FloatRegister dst_reg = as_FloatRegister($dst$$reg);
  3150      if( index != 0 ) {
  3151         if( Assembler::is_simm16(disp) ) { 
  3152            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3153               if (scale == 0) {
  3154                  __ gsldxc1(dst_reg, as_Register(base), as_Register(index), disp);
  3155               } else {
  3156                  __ dsll(AT, as_Register(index), scale);
  3157                  __ gsldxc1(dst_reg, as_Register(base), AT, disp);
  3159            } else {
  3160               if (scale == 0) {
  3161                  __ daddu(AT, as_Register(base), as_Register(index));
  3162               } else {
  3163                  __ dsll(AT, as_Register(index), scale);
  3164                  __ daddu(AT, as_Register(base), AT);
  3166               __ ldc1(dst_reg, AT, disp);
  3168         } else {
  3169            if (scale == 0) {
  3170               __ daddu(AT, as_Register(base), as_Register(index));
  3171            } else {
  3172               __ dsll(AT, as_Register(index), scale);
  3173               __ daddu(AT, as_Register(base), AT);
  3175            __ move(T9, disp);
  3176            if( UseLoongsonISA ) {
  3177               __ gsldxc1(dst_reg, AT, T9, 0);
  3178            } else {
  3179               __ addu(AT, AT, T9); 
  3180               __ ldc1(dst_reg, AT, 0);
  3183      } else {
  3184         if( Assembler::is_simm16(disp) ) { 
  3185            __ ldc1(dst_reg, as_Register(base), disp);
  3186         } else {
  3187            __ move(T9, disp);   
  3188            if( UseLoongsonISA ) {
  3189               __ gsldxc1(dst_reg, as_Register(base), T9, 0);
  3190            } else {
  3191               __ addu(AT, as_Register(base), T9); 
  3192               __ ldc1(dst_reg, AT, 0);
  3196   %}
  3198   enc_class store_D_reg_enc (memory mem, regD src) %{
  3199      MacroAssembler _masm(&cbuf);
  3200      int  base = $mem$$base;
  3201      int  index = $mem$$index;
  3202      int  scale = $mem$$scale;
  3203      int  disp = $mem$$disp;
  3204      FloatRegister src_reg = as_FloatRegister($src$$reg);
  3206      if( index != 0 ) {
  3207         if( Assembler::is_simm16(disp) ) { 
  3208            if( UseLoongsonISA && Assembler::is_simm(disp, 8) ) {
  3209               if (scale == 0) {
  3210                  __ gssdxc1(src_reg, as_Register(base), as_Register(index), disp);
  3211               } else {
  3212                  __ dsll(AT, as_Register(index), scale);
  3213                  __ gssdxc1(src_reg, as_Register(base), AT, disp);
  3215            } else {
  3216               if (scale == 0) {
  3217                  __ daddu(AT, as_Register(base), as_Register(index));
  3218               } else {
  3219                  __ dsll(AT, as_Register(index), scale);
  3220                  __ daddu(AT, as_Register(base), AT);
  3222               __ sdc1(src_reg, AT, disp);
  3224         } else {
  3225            if (scale == 0) {
  3226               __ daddu(AT, as_Register(base), as_Register(index));
  3227            } else {
  3228               __ dsll(AT, as_Register(index), scale);
  3229               __ daddu(AT, as_Register(base), AT);
  3231            __ move(T9, disp);
  3232            if( UseLoongsonISA ) {
  3233               __ gssdxc1(src_reg, AT, T9, 0);
  3234            } else {
  3235               __ addu(AT, AT, T9); 
  3236               __ sdc1(src_reg, AT, 0);
  3239      } else {
  3240         if( Assembler::is_simm16(disp) ) { 
  3241            __ sdc1(src_reg, as_Register(base), disp);
  3242         } else {
  3243            __ move(T9, disp);   
  3244            if( UseLoongsonISA ) {
  3245               __ gssdxc1(src_reg, as_Register(base), T9, 0);
  3246            } else {
  3247               __ addu(AT, as_Register(base), T9); 
  3248               __ sdc1(src_reg, AT, 0);
  3252   %}
  3254   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  3255       MacroAssembler _masm(&cbuf);
  3256     // This is the instruction starting address for relocation info.
  3257     __ block_comment("Java_To_Runtime");
  3258     cbuf.set_insts_mark();
  3259     __ relocate(relocInfo::runtime_call_type);
  3261     __ li48(T9, (long)$meth$$method);
  3262     __ jalr(T9);
  3263     __ nop();
  3264     %}
  3266   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  3267     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  3268     // who we intended to call.
  3269     MacroAssembler _masm(&cbuf);
  3270     cbuf.set_insts_mark();
  3272     if ( !_method ) {
  3273       __ relocate(relocInfo::runtime_call_type);
  3274       //emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  3275       //               runtime_call_Relocation::spec(), RELOC_IMM32 );
  3276     } else if(_optimized_virtual) {
  3277       __ relocate(relocInfo::opt_virtual_call_type);
  3278       //emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  3279       //               opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  3280     } else {
  3281       __ relocate(relocInfo::static_call_type);
  3282       //emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  3283       //               static_call_Relocation::spec(), RELOC_IMM32 );
  3286     __ li(T9, $meth$$method);
  3287     __ jalr(T9);
  3288     __ nop();
  3289     if( _method ) {  // Emit stub for static call
  3290       emit_java_to_interp(cbuf);
  3292   %}
  3295 /*
  3296  * [Ref: LIR_Assembler::ic_call() ]
  3297  */
  3298 enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  3299     MacroAssembler _masm(&cbuf);
  3300 	__ block_comment("Java_Dynamic_Call");
  3301 	__ ic_call((address)$meth$$method);
  3302   %}
  3305   enc_class Set_Flags_After_Fast_Lock_Unlock(FlagsReg cr) %{
  3306     Register flags = $cr$$Register;
  3307     Label  L;
  3309     MacroAssembler _masm(&cbuf);
  3311     __ addu(flags, R0, R0);    
  3312     __ beq(AT, R0, L);
  3313     __ delayed()->nop();
  3314     __ move(flags, 0xFFFFFFFF);
  3315     __ bind(L);
  3316   %}
  3318   enc_class enc_PartialSubtypeCheck(mRegP result, mRegP sub, mRegP super, mRegI tmp) %{
  3319     Register result = $result$$Register;
  3320     Register sub    = $sub$$Register;
  3321     Register super  = $super$$Register;
  3322     Register length = $tmp$$Register;
  3323     Register tmp    = T9;
  3324     Label miss;
  3326     /* 2012/9/28 Jin: result may be the same as sub
  3327      *    47c   B40: #    B21 B41 <- B20  Freq: 0.155379
  3328      *    47c     partialSubtypeCheck result=S1, sub=S1, super=S3, length=S0
  3329      *    4bc     mov   S2, NULL #@loadConP
  3330      *    4c0     beq   S1, S2, B21 #@branchConP  P=0.999999 C=-1.000000
  3331     */
  3332     MacroAssembler _masm(&cbuf);
  3333     Label done;
  3334     __ check_klass_subtype_slow_path(sub, super, length, tmp,
  3335                                      NULL, &miss,
  3336                                      /*set_cond_codes:*/ true);
  3337     /* 2013/7/22 Jin: Refer to X86_64's RDI */
  3338     __ move(result, 0);
  3339     __ b(done);
  3340     __ nop();
  3342     __ bind(miss);
  3343     __ move(result, 1);
  3344     __ bind(done);
  3345   %}
  3347 %}
  3350 //---------MIPS FRAME--------------------------------------------------------------
  3351 // Definition of frame structure and management information.
  3352 //
  3353 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3354 //                             |   (to get allocators register number
  3355 //  G  Owned by    |        |  v    add SharedInfo::stack0)
  3356 //  r   CALLER     |        |
  3357 //  o     |        +--------+      pad to even-align allocators stack-slot 
  3358 //  w     V        |  pad0  |        numbers; owned by CALLER
  3359 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3360 //  h     ^        |   in   |  5   
  3361 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3362 //  |     |    old |        |  3
  3363 //  |     |     SP-+--------+----> Matcher::_old_SP, even aligned
  3364 //  v     |        |  ret   |  3   return address
  3365 //     Owned by    +--------+
  3366 //      Self       |  pad2  |  2   pad to align old SP
  3367 //        |        +--------+  1
  3368 //        |        | locks  |  0
  3369 //        |        +--------+----> SharedInfo::stack0, even aligned  
  3370 //        |        |  pad1  | 11   pad to align new SP
  3371 //        |        +--------+
  3372 //        |        |        | 10
  3373 //        |        | spills |  9   spills
  3374 //        V        |        |  8   (pad0 slot for callee)
  3375 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3376 //        ^        |  out   |  7   
  3377 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3378 //   Owned by  new |				|
  3379 //		Callee    SP-+--------+----> Matcher::_new_SP, even aligned
  3380 //           			 |        |
  3381 //
  3382 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is 
  3383 //         known from SELF's arguments and the Java calling convention.
  3384 //         Region 6-7 is determined per call site.
  3385 // Note 2: If the calling convention leaves holes in the incoming argument 
  3386 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3387 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3388 //         incoming area, as the Java calling convention is completely under
  3389 //         the control of the AD file.  Doubles can be sorted and packed to
  3390 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3391 //         varargs C calling conventions.
  3392 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is 
  3393 //         even aligned with pad0 as needed.
  3394 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3395 //         region 6-11 is even aligned; it may be padded out more so that
  3396 //         the region from SP to FP meets the minimum stack alignment.
  3397 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
  3398 //         alignment.  Region 11, pad1, may be dynamically extended so that
  3399 //         SP meets the minimum alignment.
  3402 frame %{
  3404   stack_direction(TOWARDS_LOW);
  3406   // These two registers define part of the calling convention 
  3407   // between compiled code and the interpreter.
  3408 	// SEE StartI2CNode::calling_convention & StartC2INode::calling_convention & StartOSRNode::calling_convention 
  3409 	// for more information. by yjl 3/16/2006
  3411   inline_cache_reg(T1);                // Inline Cache Register
  3412   interpreter_method_oop_reg(S3);      // Method Oop Register when calling interpreter
  3413  /*
  3414   inline_cache_reg(T1);          // Inline Cache Register or methodOop for I2C
  3415   interpreter_arg_ptr_reg(A0);         // Argument pointer for I2C adapters
  3416 */
  3418   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3419   cisc_spilling_operand_name(indOffset32);  
  3421   // Number of stack slots consumed by locking an object
  3422 	// generate Compile::sync_stack_slots
  3423 #ifdef _LP64
  3424   sync_stack_slots(2);
  3425 #else
  3426   sync_stack_slots(1);
  3427 #endif
  3429   frame_pointer(SP);
  3431   // Interpreter stores its frame pointer in a register which is 
  3432   // stored to the stack by I2CAdaptors.
  3433   // I2CAdaptors convert from interpreted java to compiled java.
  3435   interpreter_frame_pointer(FP);
  3437 	// generate Matcher::stack_alignment
  3438   stack_alignment(StackAlignmentInBytes);  //wordSize = sizeof(char*);            
  3440   // Number of stack slots between incoming argument block and the start of 
  3441   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3442   // EPILOG must remove this many slots.  Intel needs one slot for
  3443   // return address.
  3444 	// generate Matcher::in_preserve_stack_slots
  3445   //in_preserve_stack_slots(VerifyStackAtCalls + 2);  //Now VerifyStackAtCalls is defined as false ! Leave one stack slot for ra and fp
  3446   in_preserve_stack_slots(4);  //Now VerifyStackAtCalls is defined as false ! Leave two stack slots for ra and fp
  3448   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3449   // for calls to C.  Supports the var-args backing area for register parms.
  3450   varargs_C_out_slots_killed(0);
  3452   // The after-PROLOG location of the return address.  Location of
  3453   // return address specifies a type (REG or STACK) and a number
  3454   // representing the register number (i.e. - use a register name) or
  3455   // stack slot.
  3456   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  3457   // Otherwise, it is above the locks and verification slot and alignment word
  3458   //return_addr(STACK -1+ round_to(1+VerifyStackAtCalls+Compile::current()->sync()*Compile::current()->sync_stack_slots(),WordsPerLong));
  3459   return_addr(REG RA);
  3461   // Body of function which returns an integer array locating
  3462   // arguments either in registers or in stack slots.  Passed an array
  3463   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3464   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3465   // arguments for a CALLEE.  Incoming stack arguments are
  3466   // automatically biased by the preserve_stack_slots field above.
  3469 	// will generated to Matcher::calling_convention(OptoRegPair *sig, uint length, bool is_outgoing)
  3470 	// StartNode::calling_convention call this. by yjl 3/16/2006
  3471   calling_convention %{           
  3472     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3473   %}
  3478   // Body of function which returns an integer array locating
  3479   // arguments either in registers or in stack slots.  Passed an array
  3480   // of ideal registers called "sig" and a "length" count.  Stack-slot
  3481   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3482   // arguments for a CALLEE.  Incoming stack arguments are
  3483   // automatically biased by the preserve_stack_slots field above.
  3486 	// SEE CallRuntimeNode::calling_convention for more information. by yjl 3/16/2006
  3487   c_calling_convention %{          
  3488    (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3489   %}
  3492   // Location of C & interpreter return values
  3493 	// register(s) contain(s) return value for Op_StartI2C and Op_StartOSR. 
  3494 	// SEE Matcher::match. by yjl 3/16/2006
  3495   c_return_value %{
  3496     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3497                                /* -- , -- , Op_RegN, Op_RegI, Op_RegP, Op_RegF, Op_RegD, Op_RegL */
  3498     static int lo[Op_RegL+1] = { 0, 0, V0_num,       V0_num,       V0_num,       F0_num,       F0_num,    V0_num };
  3499     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, V0_H_num,     OptoReg::Bad, F0_H_num,  V0_H_num };
  3500     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3501   %}
  3503   // Location of return values
  3504 	// register(s) contain(s) return value for Op_StartC2I and Op_Start. 
  3505 	// SEE Matcher::match. by yjl 3/16/2006
  3507   return_value %{
  3508     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3509                                /* -- , -- , Op_RegN, Op_RegI, Op_RegP, Op_RegF, Op_RegD, Op_RegL */
  3510     static int lo[Op_RegL+1] = { 0, 0, V0_num,       V0_num,       V0_num,       F0_num,       F0_num,     V0_num };
  3511     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, V0_H_num,     OptoReg::Bad, F0_H_num,   V0_H_num};
  3512     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  3513   %}
  3515 %}
  3517 //----------ATTRIBUTES---------------------------------------------------------
  3518 //----------Operand Attributes-------------------------------------------------
  3519 op_attrib op_cost(0);        // Required cost attribute
  3521 //----------Instruction Attributes---------------------------------------------
  3522 ins_attrib ins_cost(100);       // Required cost attribute
  3523 ins_attrib ins_size(32);         // Required size attribute (in bits)
  3524 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  3525 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3526                                 // non-matching short branch variant of some
  3527                                                             // long branch?
  3528 ins_attrib ins_alignment(4);    // Required alignment attribute (must be a power of 2)
  3529                                 // specifies the alignment that some part of the instruction (not
  3530                                 // necessarily the start) requires.  If > 1, a compute_padding()
  3531                                 // function must be provided for the instruction
  3533 //----------OPERANDS-----------------------------------------------------------
  3534 // Operand definitions must precede instruction definitions for correct parsing
  3535 // in the ADLC because operands constitute user defined types which are used in
  3536 // instruction definitions.
  3538 // Vectors
  3539 operand vecD() %{
  3540   constraint(ALLOC_IN_RC(dbl_reg));
  3541   match(VecD);
  3543   format %{ %}
  3544   interface(REG_INTER);
  3545 %}
  3547 // Flags register, used as output of compare instructions
  3548 operand FlagsReg() %{
  3549   constraint(ALLOC_IN_RC(mips_flags));
  3550   match(RegFlags);
  3552   format %{ "EFLAGS" %}
  3553   interface(REG_INTER);
  3554 %}
  3556 //----------Simple Operands----------------------------------------------------
  3557 //TODO: Should we need to define some more special immediate number ?
  3558 // Immediate Operands
  3559 // Integer Immediate
  3560 operand immI() %{
  3561   match(ConI);
  3562   //TODO: should not match immI8 here LEE
  3563   match(immI8);
  3565   op_cost(20);
  3566   format %{ %}
  3567   interface(CONST_INTER);
  3568 %}
  3570 // Long Immediate 8-bit
  3571 operand immL8()
  3572 %{
  3573   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
  3574   match(ConL);
  3576   op_cost(5);
  3577   format %{ %}
  3578   interface(CONST_INTER);
  3579 %}
  3581 // Constant for test vs zero
  3582 operand immI0() %{
  3583   predicate(n->get_int() == 0);
  3584   match(ConI);
  3586   op_cost(0);
  3587   format %{ %}
  3588   interface(CONST_INTER);
  3589 %}
  3591 // Constant for increment
  3592 operand immI1() %{
  3593   predicate(n->get_int() == 1);
  3594   match(ConI);
  3596   op_cost(0);
  3597   format %{ %}
  3598   interface(CONST_INTER);
  3599 %}
  3601 // Constant for decrement
  3602 operand immI_M1() %{
  3603   predicate(n->get_int() == -1);
  3604   match(ConI);
  3606   op_cost(0);
  3607   format %{ %}
  3608   interface(CONST_INTER);
  3609 %}
  3611 // Valid scale values for addressing modes
  3612 operand immI2() %{
  3613   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  3614   match(ConI);
  3616   format %{ %}
  3617   interface(CONST_INTER);
  3618 %}
  3620 operand immI8() %{
  3621   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  3622   match(ConI);
  3624   op_cost(5);
  3625   format %{ %}
  3626   interface(CONST_INTER);
  3627 %}
  3629 operand immI16() %{
  3630   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  3631   match(ConI);
  3633   op_cost(10);
  3634   format %{ %}
  3635   interface(CONST_INTER);
  3636 %}
  3638 // Constant for long shifts
  3639 operand immI_32() %{
  3640   predicate( n->get_int() == 32 );
  3641   match(ConI);
  3643   op_cost(0);
  3644   format %{ %}
  3645   interface(CONST_INTER);
  3646 %}
  3648 operand immI_63() %{
  3649   predicate( n->get_int() == 63 );
  3650   match(ConI);
  3652   op_cost(0);
  3653   format %{ %}
  3654   interface(CONST_INTER);
  3655 %}
  3657 operand immI_0_31() %{
  3658   predicate( n->get_int() >= 0 && n->get_int() <= 31 );
  3659   match(ConI);
  3661   op_cost(0);
  3662   format %{ %}
  3663   interface(CONST_INTER);
  3664 %}
  3666 // Operand for non-negtive integer mask
  3667 operand immI_nonneg_mask() %{
  3668   predicate( (n->get_int() >= 0) && (Assembler::is_int_mask(n->get_int()) != -1) );
  3669   match(ConI);
  3671   op_cost(0);
  3672   format %{ %}
  3673   interface(CONST_INTER);
  3674 %}
  3676 operand immI_32_63() %{
  3677   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  3678   match(ConI);
  3679   op_cost(0);
  3681   format %{ %}
  3682   interface(CONST_INTER);
  3683 %}
  3685 operand immI16_sub() %{
  3686   predicate((-32767 <= n->get_int()) && (n->get_int() <= 32768));
  3687   match(ConI);
  3689   op_cost(10);
  3690   format %{ %}
  3691   interface(CONST_INTER);
  3692 %}
  3694 operand immI_0_32767() %{
  3695   predicate( n->get_int() >= 0 && n->get_int() <= 32767 );
  3696   match(ConI);
  3697   op_cost(0);
  3699   format %{ %}
  3700   interface(CONST_INTER);
  3701 %}
  3703 operand immI_0_65535() %{
  3704   predicate( n->get_int() >= 0 && n->get_int() <= 65535 );
  3705   match(ConI);
  3706   op_cost(0);
  3708   format %{ %}
  3709   interface(CONST_INTER);
  3710 %}
  3712 operand immI_1() %{
  3713   predicate( n->get_int() == 1 );
  3714   match(ConI);
  3716   op_cost(0);
  3717   format %{ %}
  3718   interface(CONST_INTER);
  3719 %}
  3721 operand immI_2() %{
  3722   predicate( n->get_int() == 2 );
  3723   match(ConI);
  3725   op_cost(0);
  3726   format %{ %}
  3727   interface(CONST_INTER);
  3728 %}
  3730 operand immI_3() %{
  3731   predicate( n->get_int() == 3 );
  3732   match(ConI);
  3734   op_cost(0);
  3735   format %{ %}
  3736   interface(CONST_INTER);
  3737 %}
  3739 operand immI_7() %{
  3740   predicate( n->get_int() == 7 );
  3741   match(ConI);
  3743   format %{ %}
  3744   interface(CONST_INTER);
  3745 %}
  3747 // Immediates for special shifts (sign extend)
  3749 // Constants for increment
  3750 operand immI_16() %{
  3751   predicate( n->get_int() == 16 );
  3752   match(ConI);
  3754   format %{ %}
  3755   interface(CONST_INTER);
  3756 %}
  3758 operand immI_24() %{
  3759   predicate( n->get_int() == 24 );
  3760   match(ConI);
  3762   format %{ %}
  3763   interface(CONST_INTER);
  3764 %}
  3766 // Constant for byte-wide masking
  3767 operand immI_255() %{
  3768   predicate( n->get_int() == 255 );
  3769   match(ConI);
  3771   op_cost(0);
  3772   format %{ %}
  3773   interface(CONST_INTER);
  3774 %}
  3776 operand immI_65535() %{
  3777   predicate( n->get_int() == 65535 );
  3778   match(ConI);
  3780   op_cost(5);
  3781   format %{ %}
  3782   interface(CONST_INTER);
  3783 %}
  3785 operand immI_65536() %{
  3786   predicate( n->get_int() == 65536 );
  3787   match(ConI);
  3789   op_cost(5);
  3790   format %{ %}
  3791   interface(CONST_INTER);
  3792 %}
  3794 // Pointer Immediate
  3795 operand immP() %{
  3796   match(ConP);
  3798   op_cost(10);
  3799   format %{ %}
  3800   interface(CONST_INTER);
  3801 %}
  3803 operand immP31()
  3804 %{
  3805   predicate(n->as_Type()->type()->reloc() == relocInfo::none
  3806             && (n->get_ptr() >> 31) == 0);
  3807   match(ConP);
  3809   op_cost(5);
  3810   format %{ %} 
  3811   interface(CONST_INTER);
  3812 %}
  3814 // NULL Pointer Immediate
  3815 operand immP0() %{
  3816   predicate( n->get_ptr() == 0 );
  3817   match(ConP);
  3818   op_cost(0);
  3820   format %{ %}
  3821   interface(CONST_INTER);
  3822 %}
  3824 // Pointer Immediate: 64-bit
  3825 operand immP_set() %{
  3826   match(ConP);
  3828   op_cost(5);
  3829   // formats are generated automatically for constants and base registers
  3830   format %{ %}
  3831   interface(CONST_INTER);
  3832 %}
  3834 // Pointer Immediate: 64-bit
  3835 operand immP_load() %{
  3836   predicate(n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set64(n->get_ptr()) > 3));
  3837   match(ConP);
  3839   op_cost(5);
  3840   // formats are generated automatically for constants and base registers
  3841   format %{ %}
  3842   interface(CONST_INTER);
  3843 %}
  3845 // Pointer Immediate: 64-bit
  3846 operand immP_no_oop_cheap() %{
  3847   predicate(!n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set64(n->get_ptr()) <= 3));
  3848   match(ConP);
  3850   op_cost(5);
  3851   // formats are generated automatically for constants and base registers
  3852   format %{ %}
  3853   interface(CONST_INTER);
  3854 %}
  3856 // Pointer for polling page 
  3857 operand immP_poll() %{
  3858   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3859   match(ConP);
  3860   op_cost(5);
  3862   format %{ %}
  3863   interface(CONST_INTER);
  3864 %}
  3866 // Pointer Immediate
  3867 operand immN() %{
  3868   match(ConN);
  3870   op_cost(10);
  3871   format %{ %}
  3872   interface(CONST_INTER);
  3873 %}
  3875 operand immNKlass() %{
  3876   match(ConNKlass);
  3878   op_cost(10);
  3879   format %{ %}
  3880   interface(CONST_INTER);
  3881 %}
  3883 // NULL Pointer Immediate
  3884 operand immN0() %{
  3885   predicate(n->get_narrowcon() == 0);
  3886   match(ConN);
  3888   op_cost(5);
  3889   format %{ %}
  3890   interface(CONST_INTER);
  3891 %}
  3893 // Long Immediate
  3894 operand immL() %{
  3895   match(ConL);
  3897   op_cost(20);
  3898   format %{ %}
  3899   interface(CONST_INTER);
  3900 %}
  3902 // Long Immediate zero
  3903 operand immL0() %{
  3904   predicate( n->get_long() == 0L );
  3905   match(ConL);
  3906   op_cost(0);
  3908   format %{ %}
  3909   interface(CONST_INTER);
  3910 %}
  3912 operand immL7() %{
  3913   predicate( n->get_long() == 7L );
  3914   match(ConL);
  3915   op_cost(0);
  3917   format %{ %}
  3918   interface(CONST_INTER);
  3919 %}
  3921 operand immL_M1() %{
  3922   predicate( n->get_long() == -1L );
  3923   match(ConL);
  3924   op_cost(0);
  3926   format %{ %}
  3927   interface(CONST_INTER);
  3928 %}
  3930 // bit 0..2 zero
  3931 operand immL_M8() %{
  3932   predicate( n->get_long() == -8L );
  3933   match(ConL);
  3934   op_cost(0);
  3936   format %{ %}
  3937   interface(CONST_INTER);
  3938 %}
  3940 // bit 2 zero
  3941 operand immL_M5() %{
  3942   predicate( n->get_long() == -5L );
  3943   match(ConL);
  3944   op_cost(0);
  3946   format %{ %}
  3947   interface(CONST_INTER);
  3948 %}
  3950 // bit 1..2 zero
  3951 operand immL_M7() %{
  3952   predicate( n->get_long() == -7L );
  3953   match(ConL);
  3954   op_cost(0);
  3956   format %{ %}
  3957   interface(CONST_INTER);
  3958 %}
  3960 // bit 0..1 zero
  3961 operand immL_M4() %{
  3962   predicate( n->get_long() == -4L );
  3963   match(ConL);
  3964   op_cost(0);
  3966   format %{ %}
  3967   interface(CONST_INTER);
  3968 %}
  3970 // bit 3..6 zero
  3971 operand immL_M121() %{
  3972   predicate( n->get_long() == -121L );
  3973   match(ConL);
  3974   op_cost(0);
  3976   format %{ %}
  3977   interface(CONST_INTER);
  3978 %}
  3980 // Long immediate from 0 to 127.
  3981 // Used for a shorter form of long mul by 10.
  3982 operand immL_127() %{
  3983   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  3984   match(ConL);
  3985   op_cost(0);
  3987   format %{ %}
  3988   interface(CONST_INTER);
  3989 %}
  3991 operand immL_0_65535() %{
  3992   predicate( n->get_long() >= 0 && n->get_long() <= 65535 );
  3993   match(ConL);
  3994   op_cost(0);
  3996   format %{ %}
  3997   interface(CONST_INTER);
  3998 %}
  4000 // Long Immediate: cheap (materialize in <= 3 instructions)
  4001 operand immL_cheap() %{
  4002   predicate(MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  4003   match(ConL);
  4004   op_cost(0);
  4006   format %{ %}
  4007   interface(CONST_INTER);
  4008 %}
  4010 // Long Immediate: expensive (materialize in > 3 instructions)
  4011 operand immL_expensive() %{
  4012   predicate(MacroAssembler::insts_for_set64(n->get_long()) > 3);
  4013   match(ConL);
  4014   op_cost(0);
  4016   format %{ %}
  4017   interface(CONST_INTER);
  4018 %}
  4020 operand immL16() %{
  4021   predicate((-32768 <= n->get_long()) && (n->get_long() <= 32767));
  4022   match(ConL);
  4024   op_cost(10);
  4025   format %{ %}
  4026   interface(CONST_INTER);
  4027 %}
  4029 operand immL16_sub() %{
  4030   predicate((-32767 <= n->get_long()) && (n->get_long() <= 32768));
  4031   match(ConL);
  4033   op_cost(10);
  4034   format %{ %}
  4035   interface(CONST_INTER);
  4036 %}
  4038 // Long Immediate: low 32-bit mask
  4039 operand immL_32bits() %{
  4040   predicate(n->get_long() == 0xFFFFFFFFL);
  4041   match(ConL);
  4042   op_cost(20);
  4044   format %{ %}
  4045   interface(CONST_INTER);
  4046 %}
  4048 // Long Immediate 32-bit signed
  4049 operand immL32()
  4050 %{
  4051   predicate(n->get_long() == (int) (n->get_long()));
  4052   match(ConL);
  4054   op_cost(15);
  4055   format %{ %}
  4056   interface(CONST_INTER);
  4057 %}
  4060 //single-precision floating-point zero
  4061 operand immF0() %{
  4062   predicate(jint_cast(n->getf()) == 0);
  4063   match(ConF);
  4065   op_cost(5);
  4066   format %{ %}
  4067   interface(CONST_INTER);
  4068 %}
  4070 //single-precision floating-point immediate
  4071 operand immF() %{
  4072   match(ConF);
  4074   op_cost(20);
  4075   format %{ %}
  4076   interface(CONST_INTER);
  4077 %}
  4079 //double-precision floating-point zero 
  4080 operand immD0() %{
  4081   predicate(jlong_cast(n->getd()) == 0);
  4082   match(ConD);
  4084   op_cost(5);
  4085   format %{ %}
  4086   interface(CONST_INTER);
  4087 %}
  4089 //double-precision floating-point immediate
  4090 operand immD() %{
  4091   match(ConD);
  4093   op_cost(20);
  4094   format %{ %}
  4095   interface(CONST_INTER);
  4096 %}
  4098 // Register Operands
  4099 // Integer Register
  4100 operand mRegI() %{
  4101   constraint(ALLOC_IN_RC(int_reg));
  4102   match(RegI);
  4104   format %{ %}
  4105   interface(REG_INTER);
  4106 %}
  4108 operand no_Ax_mRegI() %{
  4109   constraint(ALLOC_IN_RC(no_Ax_int_reg));
  4110   match(RegI);
  4111   match(mRegI);
  4113   format %{  %}
  4114   interface(REG_INTER);
  4115 %} 
  4117 operand mS0RegI() %{
  4118   constraint(ALLOC_IN_RC(s0_reg));
  4119   match(RegI);
  4120   match(mRegI);
  4122   format %{ "S0" %}
  4123   interface(REG_INTER);
  4124 %}
  4126 operand mS1RegI() %{
  4127   constraint(ALLOC_IN_RC(s1_reg));
  4128   match(RegI);
  4129   match(mRegI);
  4131   format %{ "S1" %}
  4132   interface(REG_INTER);
  4133 %}
  4135 operand mS2RegI() %{
  4136   constraint(ALLOC_IN_RC(s2_reg));
  4137   match(RegI);
  4138   match(mRegI);
  4140   format %{ "S2" %}
  4141   interface(REG_INTER);
  4142 %}
  4144 operand mS3RegI() %{
  4145   constraint(ALLOC_IN_RC(s3_reg));
  4146   match(RegI);
  4147   match(mRegI);
  4149   format %{ "S3" %}
  4150   interface(REG_INTER);
  4151 %}
  4153 operand mS4RegI() %{
  4154   constraint(ALLOC_IN_RC(s4_reg));
  4155   match(RegI);
  4156   match(mRegI);
  4158   format %{ "S4" %}
  4159   interface(REG_INTER);
  4160 %}
  4162 operand mS5RegI() %{
  4163   constraint(ALLOC_IN_RC(s5_reg));
  4164   match(RegI);
  4165   match(mRegI);
  4167   format %{ "S5" %}
  4168   interface(REG_INTER);
  4169 %}
  4171 operand mS6RegI() %{
  4172   constraint(ALLOC_IN_RC(s6_reg));
  4173   match(RegI);
  4174   match(mRegI);
  4176   format %{ "S6" %}
  4177   interface(REG_INTER);
  4178 %}
  4180 operand mS7RegI() %{
  4181   constraint(ALLOC_IN_RC(s7_reg));
  4182   match(RegI);
  4183   match(mRegI);
  4185   format %{ "S7" %}
  4186   interface(REG_INTER);
  4187 %}
  4190 operand mT0RegI() %{
  4191   constraint(ALLOC_IN_RC(t0_reg));
  4192   match(RegI);
  4193   match(mRegI);
  4195   format %{ "T0" %}
  4196   interface(REG_INTER);
  4197 %}
  4199 operand mT1RegI() %{
  4200   constraint(ALLOC_IN_RC(t1_reg));
  4201   match(RegI);
  4202   match(mRegI);
  4204   format %{ "T1" %}
  4205   interface(REG_INTER);
  4206 %}
  4208 operand mT2RegI() %{
  4209   constraint(ALLOC_IN_RC(t2_reg));
  4210   match(RegI);
  4211   match(mRegI);
  4213   format %{ "T2" %}
  4214   interface(REG_INTER);
  4215 %}
  4217 operand mT3RegI() %{
  4218   constraint(ALLOC_IN_RC(t3_reg));
  4219   match(RegI);
  4220   match(mRegI);
  4222   format %{ "T3" %}
  4223   interface(REG_INTER);
  4224 %}
  4226 operand mT8RegI() %{
  4227   constraint(ALLOC_IN_RC(t8_reg));
  4228   match(RegI);
  4229   match(mRegI);
  4231   format %{ "T8" %}
  4232   interface(REG_INTER);
  4233 %}
  4235 operand mT9RegI() %{
  4236   constraint(ALLOC_IN_RC(t9_reg));
  4237   match(RegI);
  4238   match(mRegI);
  4240   format %{ "T9" %}
  4241   interface(REG_INTER);
  4242 %}
  4244 operand mA0RegI() %{
  4245   constraint(ALLOC_IN_RC(a0_reg));
  4246   match(RegI);
  4247   match(mRegI);
  4249   format %{ "A0" %}
  4250   interface(REG_INTER);
  4251 %}
  4253 operand mA1RegI() %{
  4254   constraint(ALLOC_IN_RC(a1_reg));
  4255   match(RegI);
  4256   match(mRegI);
  4258   format %{ "A1" %}
  4259   interface(REG_INTER);
  4260 %}
  4262 operand mA2RegI() %{
  4263   constraint(ALLOC_IN_RC(a2_reg));
  4264   match(RegI);
  4265   match(mRegI);
  4267   format %{ "A2" %}
  4268   interface(REG_INTER);
  4269 %}
  4271 operand mA3RegI() %{
  4272   constraint(ALLOC_IN_RC(a3_reg));
  4273   match(RegI);
  4274   match(mRegI);
  4276   format %{ "A3" %}
  4277   interface(REG_INTER);
  4278 %}
  4280 operand mA4RegI() %{
  4281   constraint(ALLOC_IN_RC(a4_reg));
  4282   match(RegI);
  4283   match(mRegI);
  4285   format %{ "A4" %}
  4286   interface(REG_INTER);
  4287 %}
  4289 operand mA5RegI() %{
  4290   constraint(ALLOC_IN_RC(a5_reg));
  4291   match(RegI);
  4292   match(mRegI);
  4294   format %{ "A5" %}
  4295   interface(REG_INTER);
  4296 %}
  4298 operand mA6RegI() %{
  4299   constraint(ALLOC_IN_RC(a6_reg));
  4300   match(RegI);
  4301   match(mRegI);
  4303   format %{ "A6" %}
  4304   interface(REG_INTER);
  4305 %}
  4307 operand mA7RegI() %{
  4308   constraint(ALLOC_IN_RC(a7_reg));
  4309   match(RegI);
  4310   match(mRegI);
  4312   format %{ "A7" %}
  4313   interface(REG_INTER);
  4314 %}
  4316 operand mV0RegI() %{
  4317   constraint(ALLOC_IN_RC(v0_reg));
  4318   match(RegI);
  4319   match(mRegI);
  4321   format %{ "V0" %}
  4322   interface(REG_INTER);
  4323 %}
  4325 operand mV1RegI() %{
  4326   constraint(ALLOC_IN_RC(v1_reg));
  4327   match(RegI);
  4328   match(mRegI);
  4330   format %{ "V1" %}
  4331   interface(REG_INTER);
  4332 %}
  4334 operand mRegN() %{
  4335   constraint(ALLOC_IN_RC(int_reg));
  4336   match(RegN);
  4338   format %{ %}
  4339   interface(REG_INTER);
  4340 %}
  4342 operand t0_RegN() %{
  4343   constraint(ALLOC_IN_RC(t0_reg));
  4344   match(RegN);
  4345   match(mRegN);
  4347   format %{ %}
  4348   interface(REG_INTER);
  4349 %}
  4351 operand t1_RegN() %{
  4352   constraint(ALLOC_IN_RC(t1_reg));
  4353   match(RegN);
  4354   match(mRegN);
  4356   format %{ %}
  4357   interface(REG_INTER);
  4358 %}
  4360 operand t2_RegN() %{
  4361   constraint(ALLOC_IN_RC(t2_reg));
  4362   match(RegN);
  4363   match(mRegN);
  4365   format %{ %}
  4366   interface(REG_INTER);
  4367 %}
  4369 operand t3_RegN() %{
  4370   constraint(ALLOC_IN_RC(t3_reg));
  4371   match(RegN);
  4372   match(mRegN);
  4374   format %{ %}
  4375   interface(REG_INTER);
  4376 %}
  4378 operand t8_RegN() %{
  4379   constraint(ALLOC_IN_RC(t8_reg));
  4380   match(RegN);
  4381   match(mRegN);
  4383   format %{ %}
  4384   interface(REG_INTER);
  4385 %}
  4387 operand t9_RegN() %{
  4388   constraint(ALLOC_IN_RC(t9_reg));
  4389   match(RegN);
  4390   match(mRegN);
  4392   format %{ %}
  4393   interface(REG_INTER);
  4394 %}
  4396 operand a0_RegN() %{
  4397   constraint(ALLOC_IN_RC(a0_reg));
  4398   match(RegN);
  4399   match(mRegN);
  4401   format %{ %}
  4402   interface(REG_INTER);
  4403 %}
  4405 operand a1_RegN() %{
  4406   constraint(ALLOC_IN_RC(a1_reg));
  4407   match(RegN);
  4408   match(mRegN);
  4410   format %{ %}
  4411   interface(REG_INTER);
  4412 %}
  4414 operand a2_RegN() %{
  4415   constraint(ALLOC_IN_RC(a2_reg));
  4416   match(RegN);
  4417   match(mRegN);
  4419   format %{ %}
  4420   interface(REG_INTER);
  4421 %}
  4423 operand a3_RegN() %{
  4424   constraint(ALLOC_IN_RC(a3_reg));
  4425   match(RegN);
  4426   match(mRegN);
  4428   format %{ %}
  4429   interface(REG_INTER);
  4430 %}
  4432 operand a4_RegN() %{
  4433   constraint(ALLOC_IN_RC(a4_reg));
  4434   match(RegN);
  4435   match(mRegN);
  4437   format %{ %}
  4438   interface(REG_INTER);
  4439 %}
  4441 operand a5_RegN() %{
  4442   constraint(ALLOC_IN_RC(a5_reg));
  4443   match(RegN);
  4444   match(mRegN);
  4446   format %{ %}
  4447   interface(REG_INTER);
  4448 %}
  4450 operand a6_RegN() %{
  4451   constraint(ALLOC_IN_RC(a6_reg));
  4452   match(RegN);
  4453   match(mRegN);
  4455   format %{ %}
  4456   interface(REG_INTER);
  4457 %}
  4459 operand a7_RegN() %{
  4460   constraint(ALLOC_IN_RC(a7_reg));
  4461   match(RegN);
  4462   match(mRegN);
  4464   format %{ %}
  4465   interface(REG_INTER);
  4466 %}
  4468 operand s0_RegN() %{
  4469   constraint(ALLOC_IN_RC(s0_reg));
  4470   match(RegN);
  4471   match(mRegN);
  4473   format %{ %}
  4474   interface(REG_INTER);
  4475 %}
  4477 operand s1_RegN() %{
  4478   constraint(ALLOC_IN_RC(s1_reg));
  4479   match(RegN);
  4480   match(mRegN);
  4482   format %{ %}
  4483   interface(REG_INTER);
  4484 %}
  4486 operand s2_RegN() %{
  4487   constraint(ALLOC_IN_RC(s2_reg));
  4488   match(RegN);
  4489   match(mRegN);
  4491   format %{ %}
  4492   interface(REG_INTER);
  4493 %}
  4495 operand s3_RegN() %{
  4496   constraint(ALLOC_IN_RC(s3_reg));
  4497   match(RegN);
  4498   match(mRegN);
  4500   format %{ %}
  4501   interface(REG_INTER);
  4502 %}
  4504 operand s4_RegN() %{
  4505   constraint(ALLOC_IN_RC(s4_reg));
  4506   match(RegN);
  4507   match(mRegN);
  4509   format %{ %}
  4510   interface(REG_INTER);
  4511 %}
  4513 operand s5_RegN() %{
  4514   constraint(ALLOC_IN_RC(s5_reg));
  4515   match(RegN);
  4516   match(mRegN);
  4518   format %{ %}
  4519   interface(REG_INTER);
  4520 %}
  4522 operand s6_RegN() %{
  4523   constraint(ALLOC_IN_RC(s6_reg));
  4524   match(RegN);
  4525   match(mRegN);
  4527   format %{ %}
  4528   interface(REG_INTER);
  4529 %}
  4531 operand s7_RegN() %{
  4532   constraint(ALLOC_IN_RC(s7_reg));
  4533   match(RegN);
  4534   match(mRegN);
  4536   format %{ %}
  4537   interface(REG_INTER);
  4538 %}
  4540 operand v0_RegN() %{
  4541   constraint(ALLOC_IN_RC(v0_reg));
  4542   match(RegN);
  4543   match(mRegN);
  4545   format %{ %}
  4546   interface(REG_INTER);
  4547 %}
  4549 operand v1_RegN() %{
  4550   constraint(ALLOC_IN_RC(v1_reg));
  4551   match(RegN);
  4552   match(mRegN);
  4554   format %{ %}
  4555   interface(REG_INTER);
  4556 %}
  4558 // Pointer Register
  4559 operand mRegP() %{
  4560   constraint(ALLOC_IN_RC(p_reg));
  4561   match(RegP);
  4563   format %{  %}
  4564   interface(REG_INTER);
  4565 %} 
  4567 operand no_T8_mRegP() %{
  4568   constraint(ALLOC_IN_RC(no_T8_p_reg));
  4569   match(RegP);
  4570   match(mRegP);
  4572   format %{  %}
  4573   interface(REG_INTER);
  4574 %} 
  4576 operand s0_RegP()
  4577 %{
  4578   constraint(ALLOC_IN_RC(s0_long_reg));
  4579   match(RegP);
  4580   match(mRegP);
  4581   match(no_T8_mRegP);
  4583   format %{ %}
  4584   interface(REG_INTER);
  4585 %}
  4587 operand s1_RegP()
  4588 %{
  4589   constraint(ALLOC_IN_RC(s1_long_reg));
  4590   match(RegP);
  4591   match(mRegP);
  4592   match(no_T8_mRegP);
  4594   format %{ %}
  4595   interface(REG_INTER);
  4596 %}
  4598 operand s2_RegP()
  4599 %{
  4600   constraint(ALLOC_IN_RC(s2_long_reg));
  4601   match(RegP);
  4602   match(mRegP);
  4603   match(no_T8_mRegP);
  4605   format %{ %}
  4606   interface(REG_INTER);
  4607 %}
  4609 operand s3_RegP()
  4610 %{
  4611   constraint(ALLOC_IN_RC(s3_long_reg));
  4612   match(RegP);
  4613   match(mRegP);
  4614   match(no_T8_mRegP);
  4616   format %{ %}
  4617   interface(REG_INTER);
  4618 %}
  4620 operand s4_RegP()
  4621 %{
  4622   constraint(ALLOC_IN_RC(s4_long_reg));
  4623   match(RegP);
  4624   match(mRegP);
  4625   match(no_T8_mRegP);
  4627   format %{ %}
  4628   interface(REG_INTER);
  4629 %}
  4631 operand s5_RegP()
  4632 %{
  4633   constraint(ALLOC_IN_RC(s5_long_reg));
  4634   match(RegP);
  4635   match(mRegP);
  4636   match(no_T8_mRegP);
  4638   format %{ %}
  4639   interface(REG_INTER);
  4640 %}
  4642 operand s6_RegP()
  4643 %{
  4644   constraint(ALLOC_IN_RC(s6_long_reg));
  4645   match(RegP);
  4646   match(mRegP);
  4647   match(no_T8_mRegP);
  4649   format %{ %}
  4650   interface(REG_INTER);
  4651 %}
  4653 operand s7_RegP()
  4654 %{
  4655   constraint(ALLOC_IN_RC(s7_long_reg));
  4656   match(RegP);
  4657   match(mRegP);
  4658   match(no_T8_mRegP);
  4660   format %{ %}
  4661   interface(REG_INTER);
  4662 %}
  4664 operand t0_RegP()
  4665 %{
  4666   constraint(ALLOC_IN_RC(t0_long_reg));
  4667   match(RegP);
  4668   match(mRegP);
  4669   match(no_T8_mRegP);
  4671   format %{ %}
  4672   interface(REG_INTER);
  4673 %}
  4675 operand t1_RegP()
  4676 %{
  4677   constraint(ALLOC_IN_RC(t1_long_reg));
  4678   match(RegP);
  4679   match(mRegP);
  4680   match(no_T8_mRegP);
  4682   format %{ %}
  4683   interface(REG_INTER);
  4684 %}
  4686 operand t2_RegP()
  4687 %{
  4688   constraint(ALLOC_IN_RC(t2_long_reg));
  4689   match(RegP);
  4690   match(mRegP);
  4691   match(no_T8_mRegP);
  4693   format %{ %}
  4694   interface(REG_INTER);
  4695 %}
  4697 operand t3_RegP()
  4698 %{
  4699   constraint(ALLOC_IN_RC(t3_long_reg));
  4700   match(RegP);
  4701   match(mRegP);
  4702   match(no_T8_mRegP);
  4704   format %{ %}
  4705   interface(REG_INTER);
  4706 %}
  4708 operand t8_RegP()
  4709 %{
  4710   constraint(ALLOC_IN_RC(t8_long_reg));
  4711   match(RegP);
  4712   match(mRegP);
  4714   format %{ %}
  4715   interface(REG_INTER);
  4716 %}
  4718 operand t9_RegP()
  4719 %{
  4720   constraint(ALLOC_IN_RC(t9_long_reg));
  4721   match(RegP);
  4722   match(mRegP);
  4723   match(no_T8_mRegP);
  4725   format %{ %}
  4726   interface(REG_INTER);
  4727 %}
  4729 operand a0_RegP()
  4730 %{
  4731   constraint(ALLOC_IN_RC(a0_long_reg));
  4732   match(RegP);
  4733   match(mRegP);
  4734   match(no_T8_mRegP);
  4736   format %{ %}
  4737   interface(REG_INTER);
  4738 %}
  4740 operand a1_RegP()
  4741 %{
  4742   constraint(ALLOC_IN_RC(a1_long_reg));
  4743   match(RegP);
  4744   match(mRegP);
  4745   match(no_T8_mRegP);
  4747   format %{ %}
  4748   interface(REG_INTER);
  4749 %}
  4751 operand a2_RegP()
  4752 %{
  4753   constraint(ALLOC_IN_RC(a2_long_reg));
  4754   match(RegP);
  4755   match(mRegP);
  4756   match(no_T8_mRegP);
  4758   format %{ %}
  4759   interface(REG_INTER);
  4760 %}
  4762 operand a3_RegP()
  4763 %{
  4764   constraint(ALLOC_IN_RC(a3_long_reg));
  4765   match(RegP);
  4766   match(mRegP);
  4767   match(no_T8_mRegP);
  4769   format %{ %}
  4770   interface(REG_INTER);
  4771 %}
  4773 operand a4_RegP()
  4774 %{
  4775   constraint(ALLOC_IN_RC(a4_long_reg));
  4776   match(RegP);
  4777   match(mRegP);
  4778   match(no_T8_mRegP);
  4780   format %{ %}
  4781   interface(REG_INTER);
  4782 %}
  4785 operand a5_RegP()
  4786 %{
  4787   constraint(ALLOC_IN_RC(a5_long_reg));
  4788   match(RegP);
  4789   match(mRegP);
  4790   match(no_T8_mRegP);
  4792   format %{ %}
  4793   interface(REG_INTER);
  4794 %}
  4796 operand a6_RegP()
  4797 %{
  4798   constraint(ALLOC_IN_RC(a6_long_reg));
  4799   match(RegP);
  4800   match(mRegP);
  4801   match(no_T8_mRegP);
  4803   format %{ %}
  4804   interface(REG_INTER);
  4805 %}
  4807 operand a7_RegP()
  4808 %{
  4809   constraint(ALLOC_IN_RC(a7_long_reg));
  4810   match(RegP);
  4811   match(mRegP);
  4812   match(no_T8_mRegP);
  4814   format %{ %}
  4815   interface(REG_INTER);
  4816 %}
  4818 operand v0_RegP()
  4819 %{
  4820   constraint(ALLOC_IN_RC(v0_long_reg));
  4821   match(RegP);
  4822   match(mRegP);
  4823   match(no_T8_mRegP);
  4825   format %{ %}
  4826   interface(REG_INTER);
  4827 %}
  4829 operand v1_RegP()
  4830 %{
  4831   constraint(ALLOC_IN_RC(v1_long_reg));
  4832   match(RegP);
  4833   match(mRegP);
  4834   match(no_T8_mRegP);
  4836   format %{ %}
  4837   interface(REG_INTER);
  4838 %}
  4840 /*
  4841 operand mSPRegP(mRegP reg) %{
  4842   constraint(ALLOC_IN_RC(sp_reg));
  4843   match(reg);
  4845   format %{ "SP"  %}
  4846   interface(REG_INTER);
  4847 %}
  4849 operand mFPRegP(mRegP reg) %{
  4850   constraint(ALLOC_IN_RC(fp_reg));
  4851   match(reg);
  4853   format %{ "FP"  %}
  4854   interface(REG_INTER);
  4855 %}
  4856 */
  4858 operand mRegL() %{
  4859   constraint(ALLOC_IN_RC(long_reg));
  4860   match(RegL);
  4862   format %{ %}
  4863   interface(REG_INTER);
  4864 %}
  4866 operand v0RegL() %{
  4867   constraint(ALLOC_IN_RC(v0_long_reg));
  4868   match(RegL);
  4869   match(mRegL);
  4871   format %{ %}
  4872   interface(REG_INTER);
  4873 %}
  4875 operand v1RegL() %{
  4876   constraint(ALLOC_IN_RC(v1_long_reg));
  4877   match(RegL);
  4878   match(mRegL);
  4880   format %{ %}
  4881   interface(REG_INTER);
  4882 %}
  4884 operand a0RegL() %{
  4885   constraint(ALLOC_IN_RC(a0_long_reg));
  4886   match(RegL);
  4887   match(mRegL);
  4889   format %{ "A0" %}
  4890   interface(REG_INTER);
  4891 %}
  4893 operand a1RegL() %{
  4894   constraint(ALLOC_IN_RC(a1_long_reg));
  4895   match(RegL);
  4896   match(mRegL);
  4898   format %{ %}
  4899   interface(REG_INTER);
  4900 %}
  4902 operand a2RegL() %{
  4903   constraint(ALLOC_IN_RC(a2_long_reg));
  4904   match(RegL);
  4905   match(mRegL);
  4907   format %{ %}
  4908   interface(REG_INTER);
  4909 %}
  4911 operand a3RegL() %{
  4912   constraint(ALLOC_IN_RC(a3_long_reg));
  4913   match(RegL);
  4914   match(mRegL);
  4916   format %{ %}
  4917   interface(REG_INTER);
  4918 %}
  4920 operand t0RegL() %{
  4921   constraint(ALLOC_IN_RC(t0_long_reg));
  4922   match(RegL);
  4923   match(mRegL);
  4925   format %{ %}
  4926   interface(REG_INTER);
  4927 %}
  4929 operand t1RegL() %{
  4930   constraint(ALLOC_IN_RC(t1_long_reg));
  4931   match(RegL);
  4932   match(mRegL);
  4934   format %{ %}
  4935   interface(REG_INTER);
  4936 %}
  4938 operand t2RegL() %{
  4939   constraint(ALLOC_IN_RC(t2_long_reg));
  4940   match(RegL);
  4941   match(mRegL);
  4943   format %{ %}
  4944   interface(REG_INTER);
  4945 %}
  4947 operand t3RegL() %{
  4948   constraint(ALLOC_IN_RC(t3_long_reg));
  4949   match(RegL);
  4950   match(mRegL);
  4952   format %{ %}
  4953   interface(REG_INTER);
  4954 %}
  4956 operand t8RegL() %{
  4957   constraint(ALLOC_IN_RC(t8_long_reg));
  4958   match(RegL);
  4959   match(mRegL);
  4961   format %{ %}
  4962   interface(REG_INTER);
  4963 %}
  4965 operand a4RegL() %{
  4966   constraint(ALLOC_IN_RC(a4_long_reg));
  4967   match(RegL);
  4968   match(mRegL);
  4970   format %{ %}
  4971   interface(REG_INTER);
  4972 %}
  4974 operand a5RegL() %{
  4975   constraint(ALLOC_IN_RC(a5_long_reg));
  4976   match(RegL);
  4977   match(mRegL);
  4979   format %{ %}
  4980   interface(REG_INTER);
  4981 %}
  4983 operand a6RegL() %{
  4984   constraint(ALLOC_IN_RC(a6_long_reg));
  4985   match(RegL);
  4986   match(mRegL);
  4988   format %{ %}
  4989   interface(REG_INTER);
  4990 %}
  4992 operand a7RegL() %{
  4993   constraint(ALLOC_IN_RC(a7_long_reg));
  4994   match(RegL);
  4995   match(mRegL);
  4997   format %{ %}
  4998   interface(REG_INTER);
  4999 %}
  5001 operand s0RegL() %{
  5002   constraint(ALLOC_IN_RC(s0_long_reg));
  5003   match(RegL);
  5004   match(mRegL);
  5006   format %{ %}
  5007   interface(REG_INTER);
  5008 %}
  5010 operand s1RegL() %{
  5011   constraint(ALLOC_IN_RC(s1_long_reg));
  5012   match(RegL);
  5013   match(mRegL);
  5015   format %{ %}
  5016   interface(REG_INTER);
  5017 %}
  5019 operand s2RegL() %{
  5020   constraint(ALLOC_IN_RC(s2_long_reg));
  5021   match(RegL);
  5022   match(mRegL);
  5024   format %{ %}
  5025   interface(REG_INTER);
  5026 %}
  5028 operand s3RegL() %{
  5029   constraint(ALLOC_IN_RC(s3_long_reg));
  5030   match(RegL);
  5031   match(mRegL);
  5033   format %{ %}
  5034   interface(REG_INTER);
  5035 %}
  5037 operand s4RegL() %{
  5038   constraint(ALLOC_IN_RC(s4_long_reg));
  5039   match(RegL);
  5040   match(mRegL);
  5042   format %{ %}
  5043   interface(REG_INTER);
  5044 %}
  5046 operand s7RegL() %{
  5047   constraint(ALLOC_IN_RC(s7_long_reg));
  5048   match(RegL);
  5049   match(mRegL);
  5051   format %{ %}
  5052   interface(REG_INTER);
  5053 %}
  5055 // Floating register operands
  5056 operand regF() %{
  5057   constraint(ALLOC_IN_RC(flt_reg));
  5058   match(RegF);
  5060   format %{ %}
  5061   interface(REG_INTER);
  5062 %}
  5064 //Double Precision Floating register operands
  5065 operand regD() %{
  5066   constraint(ALLOC_IN_RC(dbl_reg));
  5067   match(RegD);
  5069   format %{ %}
  5070   interface(REG_INTER);
  5071 %}
  5073 //----------Memory Operands----------------------------------------------------
  5074 // Indirect Memory Operand
  5075 operand indirect(mRegP reg) %{
  5076   constraint(ALLOC_IN_RC(p_reg));
  5077   match(reg);
  5079   format %{ "[$reg] @ indirect" %}
  5080   interface(MEMORY_INTER) %{
  5081     base($reg);
  5082     index(0x0);	/* NO_INDEX */
  5083     scale(0x0);
  5084     disp(0x0);
  5085   %}
  5086 %}
  5088 // Indirect Memory Plus Short Offset Operand
  5089 operand indOffset8(mRegP reg, immL8 off)
  5090 %{
  5091   constraint(ALLOC_IN_RC(p_reg));
  5092   match(AddP reg off);
  5094   format %{ "[$reg + $off (8-bit)] @ indOffset8" %}
  5095   interface(MEMORY_INTER) %{
  5096     base($reg);
  5097     index(0x0); /* NO_INDEX */
  5098     scale(0x0);
  5099     disp($off);
  5100   %}
  5101 %}
  5103 // Indirect Memory Times Scale Plus Index Register
  5104 operand indIndexScale(mRegP reg, mRegL lreg, immI2 scale)
  5105 %{
  5106   constraint(ALLOC_IN_RC(p_reg));
  5107   match(AddP reg (LShiftL lreg scale));
  5109   op_cost(10);
  5110   format %{"[$reg + $lreg << $scale] @ indIndexScale" %}
  5111   interface(MEMORY_INTER) %{
  5112     base($reg);
  5113     index($lreg);
  5114     scale($scale);
  5115     disp(0x0);
  5116   %}
  5117 %}
  5120 // [base + index + offset] 
  5121 operand baseIndexOffset8(mRegP base, mRegL index, immL8 off)
  5122 %{
  5123   constraint(ALLOC_IN_RC(p_reg));
  5124   op_cost(5);
  5125   match(AddP (AddP base index) off);
  5127   format %{ "[$base + $index + $off (8-bit)] @ baseIndexOffset8" %}
  5128   interface(MEMORY_INTER) %{
  5129     base($base);
  5130     index($index);
  5131     scale(0x0);
  5132     disp($off);
  5133   %}
  5134 %}
  5136 // [base + index + offset] 
  5137 operand baseIndexOffset8_convI2L(mRegP base, mRegI index, immL8 off)
  5138 %{
  5139   constraint(ALLOC_IN_RC(p_reg));
  5140   op_cost(5);
  5141   match(AddP (AddP base (ConvI2L index)) off);
  5143   format %{ "[$base + $index + $off (8-bit)] @ baseIndexOffset8_convI2L" %}
  5144   interface(MEMORY_INTER) %{
  5145     base($base);
  5146     index($index);
  5147     scale(0x0);
  5148     disp($off);
  5149   %}
  5150 %}
  5152 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5153 operand indIndexScaleOffset8(mRegP reg, immL8 off, mRegL lreg, immI2 scale)
  5154 %{
  5155   constraint(ALLOC_IN_RC(p_reg));
  5156   match(AddP (AddP reg (LShiftL lreg scale)) off);
  5158   op_cost(10);
  5159   format %{"[$reg + $off + $lreg << $scale] @ indIndexScaleOffset8" %}
  5160   interface(MEMORY_INTER) %{
  5161     base($reg);
  5162     index($lreg);
  5163     scale($scale);
  5164     disp($off);
  5165   %}
  5166 %}
  5168 operand indIndexScaleOffset8_convI2L(mRegP reg, immL8 off, mRegI ireg, immI2 scale)
  5169 %{
  5170   constraint(ALLOC_IN_RC(p_reg));
  5171   match(AddP (AddP reg (LShiftL (ConvI2L ireg) scale)) off);
  5173   op_cost(10);
  5174   format %{"[$reg + $off + $ireg << $scale] @ indIndexScaleOffset8_convI2L" %}
  5175   interface(MEMORY_INTER) %{
  5176     base($reg);
  5177     index($ireg);
  5178     scale($scale);
  5179     disp($off);
  5180   %}
  5181 %}
  5183 // [base + index<<scale + offset] 
  5184 operand basePosIndexScaleOffset8(mRegP base, mRegI index, immL8 off, immI_0_31 scale)
  5185 %{
  5186   constraint(ALLOC_IN_RC(p_reg));
  5187   //predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5188   op_cost(10);
  5189   match(AddP (AddP base (LShiftL (ConvI2L index) scale)) off);
  5191   format %{ "[$base + $index << $scale + $off (8-bit)] @ basePosIndexScaleOffset8" %}
  5192   interface(MEMORY_INTER) %{
  5193     base($base);
  5194     index($index);
  5195     scale($scale);
  5196     disp($off);
  5197   %}
  5198 %}
  5200 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5201 operand indIndexScaleOffsetNarrow(mRegN reg, immL8 off, mRegL lreg, immI2 scale)
  5202 %{
  5203   predicate(Universe::narrow_oop_shift() == 0);
  5204   constraint(ALLOC_IN_RC(p_reg));
  5205   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
  5207   op_cost(10);
  5208   format %{"[$reg + $off + $lreg << $scale] @ indIndexScaleOffsetNarrow" %}
  5209   interface(MEMORY_INTER) %{
  5210     base($reg);
  5211     index($lreg);
  5212     scale($scale);
  5213     disp($off);
  5214   %}
  5215 %}
  5217 // [base + index<<scale + offset] for compressd Oops
  5218 operand indPosIndexI2LScaleOffset8Narrow(mRegN base, mRegI index, immL8 off, immI_0_31 scale)
  5219 %{
  5220   constraint(ALLOC_IN_RC(p_reg));
  5221   //predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5222   predicate(Universe::narrow_oop_shift() == 0);
  5223   op_cost(10);
  5224   match(AddP (AddP (DecodeN base) (LShiftL (ConvI2L index) scale)) off);
  5226   format %{ "[$base + $index << $scale + $off (8-bit)] @ indPosIndexI2LScaleOffset8Narrow" %}
  5227   interface(MEMORY_INTER) %{
  5228     base($base);
  5229     index($index);
  5230     scale($scale);
  5231     disp($off);
  5232   %}
  5233 %}
  5235 //FIXME: I think it's better to limit the immI to be 16-bit at most!
  5236 // Indirect Memory Plus Long Offset Operand
  5237 operand indOffset32(mRegP reg, immL32 off) %{
  5238   constraint(ALLOC_IN_RC(p_reg));
  5239   op_cost(20);
  5240   match(AddP reg off);
  5242   format %{ "[$reg + $off (32-bit)] @ indOffset32" %}
  5243   interface(MEMORY_INTER) %{
  5244     base($reg);
  5245     index(0x0); 	/* NO_INDEX */
  5246     scale(0x0);
  5247     disp($off);
  5248   %}
  5249 %}
  5251 // Indirect Memory Plus Index Register 
  5252 operand indIndex(mRegP addr, mRegL index) %{
  5253   constraint(ALLOC_IN_RC(p_reg));
  5254   match(AddP addr index);
  5256   op_cost(20);
  5257   format %{"[$addr + $index] @ indIndex" %}
  5258   interface(MEMORY_INTER) %{
  5259     base($addr);
  5260     index($index);
  5261     scale(0x0);
  5262     disp(0x0);
  5263   %}
  5264 %}
  5266 operand indirectNarrowKlass(mRegN reg)
  5267 %{
  5268   predicate(Universe::narrow_klass_shift() == 0);
  5269   constraint(ALLOC_IN_RC(p_reg));
  5270   op_cost(10);
  5271   match(DecodeNKlass reg);
  5273   format %{ "[$reg] @ indirectNarrowKlass" %}
  5274   interface(MEMORY_INTER) %{
  5275     base($reg);
  5276     index(0x0);
  5277     scale(0x0);
  5278     disp(0x0);
  5279   %}
  5280 %}
  5282 operand indOffset8NarrowKlass(mRegN reg, immL8 off)
  5283 %{
  5284   predicate(Universe::narrow_klass_shift() == 0);
  5285   constraint(ALLOC_IN_RC(p_reg));
  5286   op_cost(10);
  5287   match(AddP (DecodeNKlass reg) off);
  5289   format %{ "[$reg + $off (8-bit)] @ indOffset8NarrowKlass" %}
  5290   interface(MEMORY_INTER) %{
  5291     base($reg);
  5292     index(0x0);
  5293     scale(0x0);
  5294     disp($off);
  5295   %}
  5296 %}
  5298 operand indOffset32NarrowKlass(mRegN reg, immL32 off)
  5299 %{
  5300   predicate(Universe::narrow_klass_shift() == 0);
  5301   constraint(ALLOC_IN_RC(p_reg));
  5302   op_cost(10);
  5303   match(AddP (DecodeNKlass reg) off);
  5305   format %{ "[$reg + $off (32-bit)] @ indOffset32NarrowKlass" %}
  5306   interface(MEMORY_INTER) %{
  5307     base($reg);
  5308     index(0x0);
  5309     scale(0x0);
  5310     disp($off);
  5311   %}
  5312 %}
  5314 operand indIndexOffsetNarrowKlass(mRegN reg, mRegL lreg, immL32 off)
  5315 %{
  5316   predicate(Universe::narrow_klass_shift() == 0);
  5317   constraint(ALLOC_IN_RC(p_reg));
  5318   match(AddP (AddP (DecodeNKlass reg) lreg) off);
  5320   op_cost(10);
  5321   format %{"[$reg + $off + $lreg] @ indIndexOffsetNarrowKlass" %}
  5322   interface(MEMORY_INTER) %{
  5323     base($reg);
  5324     index($lreg);
  5325     scale(0x0);
  5326     disp($off);
  5327   %}
  5328 %}
  5330 operand indIndexNarrowKlass(mRegN reg, mRegL lreg)
  5331 %{
  5332   predicate(Universe::narrow_klass_shift() == 0);
  5333   constraint(ALLOC_IN_RC(p_reg));
  5334   match(AddP (DecodeNKlass reg) lreg);
  5336   op_cost(10);
  5337   format %{"[$reg + $lreg] @ indIndexNarrowKlass" %}
  5338   interface(MEMORY_INTER) %{
  5339     base($reg);
  5340     index($lreg);
  5341     scale(0x0);
  5342     disp(0x0);
  5343   %}
  5344 %}
  5346 // Indirect Memory Operand
  5347 operand indirectNarrow(mRegN reg)
  5348 %{
  5349   predicate(Universe::narrow_oop_shift() == 0);
  5350   constraint(ALLOC_IN_RC(p_reg));
  5351   op_cost(10);
  5352   match(DecodeN reg);
  5354   format %{ "[$reg] @ indirectNarrow" %}
  5355   interface(MEMORY_INTER) %{
  5356     base($reg);
  5357     index(0x0);
  5358     scale(0x0);
  5359     disp(0x0);
  5360   %}
  5361 %}
  5363 // Indirect Memory Plus Short Offset Operand
  5364 operand indOffset8Narrow(mRegN reg, immL8 off)
  5365 %{
  5366   predicate(Universe::narrow_oop_shift() == 0);
  5367   constraint(ALLOC_IN_RC(p_reg));
  5368   op_cost(10);
  5369   match(AddP (DecodeN reg) off);
  5371   format %{ "[$reg + $off (8-bit)] @ indOffset8Narrow" %}
  5372   interface(MEMORY_INTER) %{
  5373     base($reg);
  5374     index(0x0);
  5375     scale(0x0);
  5376     disp($off);
  5377   %}
  5378 %}
  5380 // Indirect Memory Plus Index Register Plus Offset Operand
  5381 operand indIndexOffset8Narrow(mRegN reg, mRegL lreg, immL8 off)
  5382 %{
  5383   predicate(Universe::narrow_oop_shift() == 0);
  5384   constraint(ALLOC_IN_RC(p_reg));
  5385   match(AddP (AddP (DecodeN reg) lreg) off);
  5387   op_cost(10);
  5388   format %{"[$reg + $off + $lreg] @ indIndexOffset8Narrow" %}
  5389   interface(MEMORY_INTER) %{
  5390     base($reg);
  5391     index($lreg);
  5392     scale(0x0);
  5393     disp($off);
  5394   %}
  5395 %}
  5397 //----------Load Long Memory Operands------------------------------------------
  5398 // The load-long idiom will use it's address expression again after loading
  5399 // the first word of the long.  If the load-long destination overlaps with
  5400 // registers used in the addressing expression, the 2nd half will be loaded
  5401 // from a clobbered address.  Fix this by requiring that load-long use
  5402 // address registers that do not overlap with the load-long target.
  5404 // load-long support
  5405 operand load_long_RegP() %{
  5406   constraint(ALLOC_IN_RC(p_reg));
  5407   match(RegP);
  5408   match(mRegP);
  5409   op_cost(100);
  5410   format %{  %}
  5411   interface(REG_INTER);
  5412 %}
  5414 // Indirect Memory Operand Long
  5415 operand load_long_indirect(load_long_RegP reg) %{
  5416   constraint(ALLOC_IN_RC(p_reg));
  5417   match(reg);
  5419   format %{ "[$reg]" %}
  5420   interface(MEMORY_INTER) %{
  5421     base($reg);
  5422     index(0x0);
  5423     scale(0x0);
  5424     disp(0x0);
  5425   %}
  5426 %}
  5428 // Indirect Memory Plus Long Offset Operand
  5429 operand load_long_indOffset32(load_long_RegP reg, immL32 off) %{
  5430   match(AddP reg off);
  5432   format %{ "[$reg + $off]" %}
  5433   interface(MEMORY_INTER) %{
  5434     base($reg);
  5435     index(0x0);
  5436     scale(0x0);
  5437     disp($off);
  5438   %}
  5439 %}
  5441 //----------Conditional Branch Operands----------------------------------------
  5442 // Comparison Op  - This is the operation of the comparison, and is limited to
  5443 //                  the following set of codes:
  5444 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5445 //
  5446 // Other attributes of the comparison, such as unsignedness, are specified
  5447 // by the comparison instruction that sets a condition code flags register.
  5448 // That result is represented by a flags operand whose subtype is appropriate
  5449 // to the unsignedness (etc.) of the comparison.
  5450 //
  5451 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5452 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5453 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5455 // Comparision Code
  5456 operand cmpOp() %{
  5457   match(Bool);
  5459   format %{ "" %}
  5460   interface(COND_INTER) %{
  5461     equal(0x01);
  5462     not_equal(0x02);
  5463     greater(0x03);
  5464     greater_equal(0x04);
  5465     less(0x05);
  5466     less_equal(0x06);
  5467     overflow(0x7);
  5468     no_overflow(0x8);
  5469   %}
  5470 %}
  5473 // Comparision Code
  5474 // Comparison Code, unsigned compare.  Used by FP also, with
  5475 // C2 (unordered) turned into GT or LT already.  The other bits
  5476 // C0 and C3 are turned into Carry & Zero flags.
  5477 operand cmpOpU() %{
  5478   match(Bool);
  5480   format %{ "" %}
  5481   interface(COND_INTER) %{
  5482     equal(0x01);
  5483     not_equal(0x02);
  5484     greater(0x03);
  5485     greater_equal(0x04);
  5486     less(0x05);
  5487     less_equal(0x06);
  5488     overflow(0x7);
  5489     no_overflow(0x8);
  5490   %}
  5491 %}
  5493 /*
  5494 // Comparison Code, unsigned compare.  Used by FP also, with
  5495 // C2 (unordered) turned into GT or LT already.  The other bits
  5496 // C0 and C3 are turned into Carry & Zero flags.
  5497 operand cmpOpU() %{
  5498   match(Bool);
  5500   format %{ "" %}
  5501   interface(COND_INTER) %{
  5502     equal(0x4);
  5503     not_equal(0x5);
  5504     less(0x2);
  5505     greater_equal(0x3);
  5506     less_equal(0x6);
  5507     greater(0x7);
  5508   %}
  5509 %}
  5510 */
  5511 /*
  5512 // Comparison Code for FP conditional move
  5513 operand cmpOp_fcmov() %{
  5514   match(Bool);
  5516   format %{ "" %}
  5517   interface(COND_INTER) %{
  5518     equal        (0x01);
  5519     not_equal    (0x02);
  5520     greater      (0x03);
  5521     greater_equal(0x04);
  5522     less         (0x05);
  5523     less_equal   (0x06);
  5524   %}
  5525 %}
  5527 // Comparision Code used in long compares
  5528 operand cmpOp_commute() %{
  5529   match(Bool);
  5531   format %{ "" %}
  5532   interface(COND_INTER) %{
  5533     equal(0x4);
  5534     not_equal(0x5);
  5535     less(0xF);
  5536     greater_equal(0xE);
  5537     less_equal(0xD);
  5538     greater(0xC);
  5539   %}
  5540 %}
  5541 */
  5543 //----------Special Memory Operands--------------------------------------------
  5544 // Stack Slot Operand - This operand is used for loading and storing temporary
  5545 //                      values on the stack where a match requires a value to
  5546 //                      flow through memory.
  5547 operand stackSlotP(sRegP reg) %{
  5548   constraint(ALLOC_IN_RC(stack_slots));
  5549   // No match rule because this operand is only generated in matching
  5550   op_cost(50);
  5551   format %{ "[$reg]" %}
  5552   interface(MEMORY_INTER) %{
  5553     base(0x1d);  // SP
  5554     index(0x0);  // No Index
  5555     scale(0x0);  // No Scale
  5556     disp($reg);  // Stack Offset
  5557   %}
  5558 %}
  5560 operand stackSlotI(sRegI reg) %{
  5561   constraint(ALLOC_IN_RC(stack_slots));
  5562   // No match rule because this operand is only generated in matching
  5563   op_cost(50);
  5564   format %{ "[$reg]" %}
  5565   interface(MEMORY_INTER) %{
  5566     base(0x1d);  // SP
  5567     index(0x0);  // No Index
  5568     scale(0x0);  // No Scale
  5569     disp($reg);  // Stack Offset
  5570   %}
  5571 %}
  5573 operand stackSlotF(sRegF reg) %{
  5574   constraint(ALLOC_IN_RC(stack_slots));
  5575   // No match rule because this operand is only generated in matching
  5576   op_cost(50);
  5577   format %{ "[$reg]" %}
  5578   interface(MEMORY_INTER) %{
  5579     base(0x1d);  // SP
  5580     index(0x0);  // No Index
  5581     scale(0x0);  // No Scale
  5582     disp($reg);  // Stack Offset
  5583   %}
  5584 %}
  5586 operand stackSlotD(sRegD reg) %{
  5587   constraint(ALLOC_IN_RC(stack_slots));
  5588   // No match rule because this operand is only generated in matching
  5589   op_cost(50);
  5590   format %{ "[$reg]" %}
  5591   interface(MEMORY_INTER) %{
  5592     base(0x1d);  // SP
  5593     index(0x0);  // No Index
  5594     scale(0x0);  // No Scale
  5595     disp($reg);  // Stack Offset
  5596   %}
  5597 %}
  5599 operand stackSlotL(sRegL reg) %{
  5600   constraint(ALLOC_IN_RC(stack_slots));
  5601   // No match rule because this operand is only generated in matching
  5602   op_cost(50);
  5603   format %{ "[$reg]" %}
  5604   interface(MEMORY_INTER) %{
  5605     base(0x1d);  // SP
  5606     index(0x0);  // No Index
  5607     scale(0x0);  // No Scale
  5608     disp($reg);  // Stack Offset
  5609   %}
  5610 %}
  5613 //------------------------OPERAND CLASSES--------------------------------------
  5614 //opclass memory( direct, indirect, indOffset16, indOffset32, indOffset32X, indIndexOffset );
  5615 opclass memory( indirect, indirectNarrow, indOffset8, indOffset32, indIndex, indIndexScale, load_long_indirect, load_long_indOffset32, baseIndexOffset8, baseIndexOffset8_convI2L, indIndexScaleOffset8, indIndexScaleOffset8_convI2L, basePosIndexScaleOffset8, indIndexScaleOffsetNarrow, indPosIndexI2LScaleOffset8Narrow, indOffset8Narrow, indIndexOffset8Narrow); 
  5618 //----------PIPELINE-----------------------------------------------------------
  5619 // Rules which define the behavior of the target architectures pipeline.
  5621 pipeline %{
  5623 //----------ATTRIBUTES---------------------------------------------------------
  5624 attributes %{
  5625  	fixed_size_instructions;        	// Fixed size instructions
  5626  	branch_has_delay_slot;			// branch have delay slot in gs2
  5627  	max_instructions_per_bundle = 1;   	// 1 instruction per bundle
  5628  	max_bundles_per_cycle = 4;       	// Up to 4 bundles per cycle
  5629         bundle_unit_size=4;
  5630  	instruction_unit_size = 4;         	// An instruction is 4 bytes long
  5631  	instruction_fetch_unit_size = 16;  	// The processor fetches one line
  5632  	instruction_fetch_units = 1;       	// of 16 bytes
  5634  	// List of nop instructions
  5635  	nops( MachNop );
  5636  %}
  5638  //----------RESOURCES----------------------------------------------------------
  5639  // Resources are the functional units available to the machine
  5641  resources(D1, D2, D3, D4, DECODE = D1 | D2 | D3| D4,  ALU1, ALU2,  ALU = ALU1 | ALU2,  FPU1, FPU2, FPU = FPU1 | FPU2,  MEM,  BR); 
  5643  //----------PIPELINE DESCRIPTION-----------------------------------------------
  5644  // Pipeline Description specifies the stages in the machine's pipeline
  5646  // IF: fetch
  5647  // ID: decode
  5648  // RD: read 
  5649  // CA: caculate 
  5650  // WB: write back 
  5651  // CM: commit 
  5653  pipe_desc(IF, ID, RD, CA, WB, CM);
  5656  //----------PIPELINE CLASSES---------------------------------------------------
  5657  // Pipeline Classes describe the stages in which input and output are
  5658  // referenced by the hardware pipeline.
  5660  //No.1 Integer ALU reg-reg operation : dst <-- reg1 op reg2  
  5661  pipe_class ialu_regI_regI(mRegI dst, mRegI src1, mRegI src2) %{
  5662         single_instruction;
  5663  	src1   : RD(read);
  5664  	src2   : RD(read);
  5665         dst    : WB(write)+1;
  5666         DECODE : ID;
  5667  	ALU    : CA;
  5668  %}
  5670  //No.19 Integer mult operation : dst <-- reg1 mult reg2  
  5671  pipe_class ialu_mult(mRegI dst, mRegI src1, mRegI src2) %{
  5672  	src1   : RD(read);
  5673  	src2   : RD(read);
  5674         dst    : WB(write)+5;
  5675         DECODE : ID;
  5676  	ALU2   : CA;
  5677  %}
  5679  pipe_class mulL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
  5680  	src1   : RD(read);
  5681  	src2   : RD(read);
  5682         dst    : WB(write)+10;
  5683         DECODE : ID;
  5684  	ALU2   : CA;
  5685  %}
  5687  //No.19 Integer div operation : dst <-- reg1 div reg2  
  5688  pipe_class ialu_div(mRegI dst, mRegI src1, mRegI src2) %{
  5689  	src1   : RD(read);
  5690  	src2   : RD(read);
  5691         dst    : WB(write)+10;
  5692         DECODE : ID;
  5693  	ALU2   : CA;
  5694  %}
  5696  //No.19 Integer mod operation : dst <-- reg1 mod reg2  
  5697  pipe_class ialu_mod(mRegI dst, mRegI src1, mRegI src2) %{
  5698         instruction_count(2);
  5699  	src1   : RD(read);
  5700  	src2   : RD(read);
  5701         dst    : WB(write)+10;
  5702         DECODE : ID;
  5703  	ALU2   : CA;
  5704  %}
  5706  //No.15 Long ALU reg-reg operation : dst <-- reg1 op reg2  
  5707  pipe_class ialu_regL_regL(mRegL dst, mRegL src1, mRegL src2) %{
  5708         instruction_count(2);
  5709  	src1   : RD(read);
  5710  	src2   : RD(read);
  5711         dst    : WB(write);
  5712         DECODE : ID;
  5713  	ALU    : CA;
  5714  %}
  5716  //No.18 Long ALU reg-imm16 operation : dst <-- reg1 op imm16 
  5717  pipe_class ialu_regL_imm16(mRegL dst, mRegL src) %{
  5718         instruction_count(2);
  5719  	src    : RD(read);
  5720         dst    : WB(write);
  5721         DECODE : ID;
  5722  	ALU    : CA;
  5723  %}
  5725  //no.16 load Long from memory :                     
  5726  pipe_class ialu_loadL(mRegL dst, memory mem) %{
  5727  	instruction_count(2);
  5728  	mem    : RD(read);
  5729  	dst    : WB(write)+5;
  5730         DECODE : ID;
  5731  	MEM    : RD;
  5732  %}
  5734  //No.17 Store Long to Memory :                     
  5735  pipe_class ialu_storeL(mRegL src, memory mem) %{
  5736  	instruction_count(2);
  5737  	mem    : RD(read);
  5738  	src    : RD(read);
  5739         DECODE : ID;
  5740  	MEM    : RD;
  5741  %}
  5743  //No.2 Integer ALU reg-imm16 operation : dst <-- reg1 op imm16  
  5744  pipe_class ialu_regI_imm16(mRegI dst, mRegI src) %{
  5745         single_instruction;
  5746  	src    : RD(read);
  5747         dst    : WB(write);
  5748         DECODE : ID;
  5749  	ALU    : CA;
  5750  %}
  5752  //No.3 Integer move operation : dst <-- reg  
  5753  pipe_class ialu_regI_mov(mRegI dst, mRegI src) %{
  5754  	src    : RD(read);
  5755         dst    : WB(write);
  5756         DECODE : ID;
  5757  	ALU    : CA;
  5758  %}
  5760  //No.4 No instructions : do nothing 
  5761  pipe_class empty( ) %{
  5762         instruction_count(0);
  5763  %}
  5765  //No.5 UnConditional branch :
  5766  pipe_class pipe_jump( label labl ) %{
  5767         multiple_bundles;
  5768         DECODE : ID;
  5769 	BR     : RD;
  5770  %}
  5772  //No.6 ALU Conditional branch :
  5773  pipe_class pipe_alu_branch(mRegI src1, mRegI src2, label labl ) %{
  5774         multiple_bundles;
  5775         src1   : RD(read);
  5776         src2   : RD(read);
  5777         DECODE : ID;
  5778 	BR     : RD;
  5779  %}
  5781  //no.7 load integer from memory :                     
  5782  pipe_class ialu_loadI(mRegI dst, memory mem) %{
  5783  	mem    : RD(read);
  5784  	dst    : WB(write)+3;
  5785         DECODE : ID;
  5786  	MEM    : RD;
  5787  %}
  5789  //No.8 Store Integer to Memory :                     
  5790  pipe_class ialu_storeI(mRegI src, memory mem) %{
  5791  	mem    : RD(read);
  5792  	src    : RD(read);
  5793         DECODE : ID;
  5794  	MEM    : RD;
  5795  %}
  5798  //No.10 Floating FPU reg-reg operation : dst <-- reg1 op reg2  
  5799  pipe_class fpu_regF_regF(regF dst, regF src1, regF src2) %{
  5800  	src1   : RD(read);
  5801  	src2   : RD(read);
  5802         dst    : WB(write);
  5803         DECODE : ID;
  5804  	FPU    : CA;
  5805  %}
  5807  //No.22 Floating div operation : dst <-- reg1 div reg2  
  5808  pipe_class fpu_div(regF dst, regF src1, regF src2) %{
  5809  	src1   : RD(read);
  5810  	src2   : RD(read);
  5811         dst    : WB(write);
  5812         DECODE : ID;
  5813  	FPU2   : CA;
  5814  %}
  5816  pipe_class fcvt_I2D(regD dst, mRegI src) %{
  5817  	src    : RD(read);
  5818         dst    : WB(write);
  5819         DECODE : ID;
  5820  	FPU1   : CA;
  5821  %}
  5823  pipe_class fcvt_D2I(mRegI dst, regD src) %{
  5824  	src    : RD(read);
  5825         dst    : WB(write);
  5826         DECODE : ID;
  5827  	FPU1   : CA;
  5828  %}
  5830  pipe_class pipe_mfc1(mRegI dst, regD src) %{
  5831  	src    : RD(read);
  5832         dst    : WB(write);
  5833         DECODE : ID;
  5834  	MEM    : RD;
  5835  %}
  5837  pipe_class pipe_mtc1(regD dst, mRegI src) %{
  5838  	src    : RD(read);
  5839         dst    : WB(write);
  5840         DECODE : ID;
  5841  	MEM    : RD(5);
  5842  %}
  5844  //No.23 Floating sqrt operation : dst <-- reg1 sqrt reg2  
  5845  pipe_class fpu_sqrt(regF dst, regF src1, regF src2) %{
  5846         multiple_bundles;
  5847  	src1   : RD(read);
  5848  	src2   : RD(read);
  5849         dst    : WB(write);
  5850         DECODE : ID;
  5851  	FPU2   : CA;
  5852  %}
  5854  //No.11 Load Floating from Memory :                     
  5855  pipe_class fpu_loadF(regF dst, memory mem) %{
  5856         instruction_count(1);
  5857  	mem    : RD(read);
  5858  	dst    : WB(write)+3;
  5859         DECODE : ID;
  5860  	MEM    : RD;
  5861  %}
  5863  //No.12 Store Floating to Memory :                     
  5864  pipe_class fpu_storeF(regF src, memory mem) %{
  5865         instruction_count(1);
  5866  	mem    : RD(read);
  5867  	src    : RD(read);
  5868         DECODE : ID;
  5869  	MEM    : RD;
  5870  %}
  5872  //No.13 FPU Conditional branch :
  5873  pipe_class pipe_fpu_branch(regF src1, regF src2, label labl ) %{
  5874         multiple_bundles;
  5875         src1   : RD(read);
  5876         src2   : RD(read);
  5877         DECODE : ID;
  5878 	BR     : RD;
  5879  %}
  5881 //No.14 Floating FPU reg operation : dst <-- op reg  
  5882  pipe_class fpu1_regF(regF dst, regF src) %{
  5883  	src    : RD(read);
  5884         dst    : WB(write);
  5885         DECODE : ID;
  5886  	FPU    : CA;
  5887  %}
  5889  pipe_class long_memory_op() %{
  5890 	instruction_count(10); multiple_bundles; force_serialization;
  5891 	fixed_latency(30);
  5892  %}
  5894  pipe_class simple_call() %{
  5895 	instruction_count(10); multiple_bundles; force_serialization;
  5896 	fixed_latency(200);
  5897 	BR     : RD;
  5898  %}
  5900  pipe_class call() %{
  5901 	instruction_count(10); multiple_bundles; force_serialization;
  5902 	fixed_latency(200);
  5903  %}
  5905  //FIXME:
  5906  //No.9 Piple slow : for multi-instructions 
  5907  pipe_class pipe_slow(  ) %{
  5908 	instruction_count(20);
  5909         force_serialization;
  5910         multiple_bundles;
  5911 	fixed_latency(50);
  5912  %}
  5914 %}
  5918 //----------INSTRUCTIONS-------------------------------------------------------
  5919 // 
  5920 // match      -- States which machine-independent subtree may be replaced 
  5921 //               by this instruction.
  5922 // ins_cost   -- The estimated cost of this instruction is used by instruction
  5923 //               selection to identify a minimum cost tree of machine 
  5924 //               instructions that matches a tree of machine-independent 
  5925 //               instructions.
  5926 // format     -- A string providing the disassembly for this instruction.
  5927 //               The value of an instruction's operand may be inserted 
  5928 //               by referring to it with a '$' prefix.
  5929 // opcode     -- Three instruction opcodes may be provided.  These are referred 
  5930 //               to within an encode class as $primary, $secondary, and $tertiary
  5931 //               respectively.  The primary opcode is commonly used to 
  5932 //               indicate the type of machine instruction, while secondary 
  5933 //               and tertiary are often used for prefix options or addressing 
  5934 //               modes.
  5935 // ins_encode -- A list of encode classes with parameters. The encode class
  5936 //               name must have been defined in an 'enc_class' specification
  5937 //               in the encode section of the architecture description.
  5940 // Load Integer
  5941 instruct loadI(mRegI dst, memory mem) %{
  5942   match(Set dst (LoadI mem));
  5944   ins_cost(125);
  5945   format %{ "lw    $dst, $mem 	#@loadI" %}
  5946   ins_encode (load_I_enc(dst, mem));
  5947   ins_pipe( ialu_loadI );
  5948 %}
  5950 instruct loadI_convI2L(mRegL dst, memory mem) %{
  5951   match(Set dst (ConvI2L (LoadI mem)));
  5953   ins_cost(125);
  5954   format %{ "lw    $dst, $mem 	#@loadI_convI2L" %}
  5955   ins_encode (load_I_enc(dst, mem));
  5956   ins_pipe( ialu_loadI );
  5957 %}
  5959 // Load Integer (32 bit signed) to Byte (8 bit signed)
  5960 instruct loadI2B(mRegI dst, memory mem, immI_24 twentyfour) %{
  5961   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5963   ins_cost(125);
  5964   format %{ "lb  $dst, $mem\t# int -> byte #@loadI2B" %}
  5965   ins_encode(load_B_enc(dst, mem));
  5966   ins_pipe(ialu_loadI);
  5967 %}
  5969 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  5970 instruct loadI2UB(mRegI dst, memory mem, immI_255 mask) %{
  5971   match(Set dst (AndI (LoadI mem) mask));
  5973   ins_cost(125);
  5974   format %{ "lbu  $dst, $mem\t# int -> ubyte #@loadI2UB" %}
  5975   ins_encode(load_UB_enc(dst, mem));
  5976   ins_pipe(ialu_loadI);
  5977 %}
  5979 // Load Integer (32 bit signed) to Short (16 bit signed)
  5980 instruct loadI2S(mRegI dst, memory mem, immI_16 sixteen) %{
  5981   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5983   ins_cost(125);
  5984   format %{ "lh  $dst, $mem\t# int -> short #@loadI2S" %}
  5985   ins_encode(load_S_enc(dst, mem));
  5986   ins_pipe(ialu_loadI);
  5987 %}
  5989 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  5990 instruct loadI2US(mRegI dst, memory mem, immI_65535 mask) %{
  5991   match(Set dst (AndI (LoadI mem) mask));
  5993   ins_cost(125);
  5994   format %{ "lhu  $dst, $mem\t# int -> ushort/char #@loadI2US" %}
  5995   ins_encode(load_C_enc(dst, mem));
  5996   ins_pipe(ialu_loadI);
  5997 %}
  5999 // Load Long.
  6000 instruct loadL(mRegL dst, memory mem) %{
  6001 //  predicate(!((LoadLNode*)n)->require_atomic_access());
  6002   match(Set dst (LoadL mem));
  6004   ins_cost(250);
  6005   format %{ "ld    $dst, $mem   #@loadL" %}
  6006   ins_encode(load_L_enc(dst, mem));
  6007   ins_pipe( ialu_loadL );
  6008 %}
  6010 // Load Long - UNaligned
  6011 instruct loadL_unaligned(mRegL dst, memory mem) %{
  6012   match(Set dst (LoadL_unaligned mem));
  6014   // FIXME: Jin: Need more effective ldl/ldr
  6015   ins_cost(450);
  6016   format %{ "ld    $dst, $mem   #@loadL_unaligned\n\t" %}
  6017   ins_encode(load_L_enc(dst, mem));
  6018   ins_pipe( ialu_loadL );
  6019 %}
  6021 // Store Long
  6022 instruct storeL_reg(memory mem, mRegL src) %{
  6023   predicate(!((StoreLNode*)n)->require_atomic_access());
  6024   match(Set mem (StoreL mem src));
  6026   ins_cost(200);
  6027   format %{ "sd    $mem,   $src #@storeL_reg\n" %}
  6028   ins_encode(store_L_reg_enc(mem, src));
  6029   ins_pipe( ialu_storeL );
  6030 %}
  6032 //FIXME:volatile! atomic!
  6033 // Volatile Store Long.  Must be atomic, so move it into
  6034 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  6035 // target address before the store (for null-ptr checks)
  6036 // so the memory operand is used twice in the encoding.
  6037 instruct storeL_reg_atomic(memory mem, mRegL src) %{
  6038   predicate(((StoreLNode*)n)->require_atomic_access());
  6039   match(Set mem (StoreL mem src));
  6041   ins_cost(200);
  6042   format %{ "sw    $mem,   $src #@storeL_reg_atomic\n" %}
  6043   ins_encode %{
  6044     Register src = as_Register($src$$reg);
  6046     int      base = $mem$$base;
  6047     int     index = $mem$$index;
  6048     int     scale = $mem$$scale;
  6049     int      disp = $mem$$disp;
  6051     if( index != 0 ) {
  6052        if( Assembler::is_simm16(disp) ) { 
  6053           if (scale == 0) {
  6054              __ addu(AT, as_Register(base), as_Register(index));
  6055           } else {
  6056              __ dsll(AT, as_Register(index), scale);
  6057              __ addu(AT, as_Register(base), AT);
  6059           __ sd(src, AT, disp);
  6060        } else {
  6061           if (scale == 0) {
  6062              __ addu(AT, as_Register(base), as_Register(index));
  6063           } else {
  6064              __ dsll(AT, as_Register(index), scale);
  6065              __ addu(AT, as_Register(base), AT);
  6067           __ move(T9, disp);
  6068           __ addu(AT, AT, T9);
  6069           __ sd(src, AT, 0);
  6071     } else {
  6072        if( Assembler::is_simm16(disp) ) { 
  6073           __ move(AT, as_Register(base));
  6074           __ sd(src, AT, disp);
  6075        } else {
  6076           __ move(AT, as_Register(base));
  6077           __ move(T9, disp);
  6078           __ addu(AT, AT, T9);
  6079           __ sd(src, AT, 0);
  6083   %}
  6084   ins_pipe( ialu_storeL );
  6085 %}
  6087 instruct storeL_immL0(memory mem, immL0 zero) %{
  6088   match(Set mem (StoreL mem zero));
  6090   ins_cost(180);
  6091   format %{ "sd    $mem,   zero #@storeL_immL0" %}
  6092   ins_encode(store_L_immL0_enc(mem, zero));
  6093   ins_pipe( ialu_storeL );
  6094 %}
  6096 instruct storeL_imm(memory mem, immL src) %{
  6097   match(Set mem (StoreL mem src));
  6099   ins_cost(200);
  6100   format %{ "sw    $mem,   $src #@storeL_imm" %}
  6101   ins_encode(store_L_immL_enc(mem, src));
  6102   ins_pipe( ialu_storeL );
  6103 %}
  6105 // Load Compressed Pointer
  6106 instruct loadN(mRegN dst, memory mem)
  6107 %{
  6108    match(Set dst (LoadN mem));
  6110    ins_cost(125); // XXX
  6111    format %{ "lwu    $dst, $mem\t# compressed ptr @ loadN" %}
  6112 //TODO: Address should be implemented
  6113 /*
  6114    ins_encode %{
  6115      __ lwu($dst$$Register, $mem$$Address);
  6116    %}
  6117 */
  6118   ins_encode (load_N_enc(dst, mem));
  6119    ins_pipe( ialu_loadI ); // XXX
  6120 %}
  6122 // Load Pointer
  6123 instruct loadP(mRegP dst, memory mem) %{
  6124   match(Set dst (LoadP mem));
  6126   ins_cost(125);
  6127   format %{ "ld    $dst, $mem #@loadP" %}
  6128   ins_encode (load_P_enc(dst, mem));
  6129   ins_pipe( ialu_loadI );
  6130 %}
  6132 // Load Klass Pointer
  6133 instruct loadKlass(mRegP dst, memory mem) %{
  6134   match(Set dst (LoadKlass mem));
  6136   ins_cost(125);
  6137   format %{ "MOV    $dst,$mem @ loadKlass" %}
  6138   ins_encode (load_P_enc(dst, mem));
  6139   ins_pipe( ialu_loadI );
  6140 %}
  6142 // Load narrow Klass Pointer
  6143 instruct loadNKlass(mRegN dst, memory mem)
  6144 %{
  6145   match(Set dst (LoadNKlass mem));
  6147   ins_cost(125); // XXX
  6148   format %{ "lwu    $dst, $mem\t# compressed klass ptr @ loadNKlass" %}
  6149   ins_encode (load_N_enc(dst, mem));
  6150 /*
  6151   ins_encode %{
  6152     __ lwu($dst$$Register, $mem$$Address);
  6153   %}
  6154 */
  6155   ins_pipe( ialu_loadI ); // XXX
  6156 %}
  6158 // Load Constant
  6159 instruct loadConI(mRegI dst, immI src) %{
  6160   match(Set dst src);
  6162   ins_cost(150);
  6163   format %{ "mov    $dst, $src #@loadConI" %}
  6164   ins_encode %{
  6165     Register dst = $dst$$Register;
  6166     int    value = $src$$constant;
  6167     __ move(dst, value);
  6168   %}
  6169   ins_pipe( ialu_regI_regI );
  6170 %}
  6172 // Load Constant 65536
  6173 instruct loadConI_65536(mRegI dst, immI_65536 src) %{
  6174   match(Set dst src);
  6176   ins_cost(100);
  6177   format %{ "mov    $dst, 65536 #@loadConI_65536" %}
  6178   ins_encode %{
  6179     Register dst = $dst$$Register;
  6181     __ lui(dst, 1);
  6182   %}
  6183   ins_pipe( ialu_regI_regI );
  6184 %}
  6186 instruct loadConL_set64(mRegL dst, immL src) %{
  6187   match(Set dst src);
  6188   ins_cost(120);
  6189   format %{ "li   $dst, $src @ loadConL_set64" %}
  6190   ins_encode %{
  6191     __ set64($dst$$Register, $src$$constant);
  6192   %}
  6193   ins_pipe(ialu_regL_regL);
  6194 %}
  6196 /*
  6197 // Load long value from constant table (predicated by immL_expensive).
  6198 instruct loadConL_load(mRegL dst, immL_expensive src) %{
  6199   match(Set dst src);
  6200   ins_cost(150);
  6201   format %{ "ld  $dst, $constantoffset[$constanttablebase] # load long $src from table @ loadConL_ldx" %}
  6202   ins_encode %{
  6203     int con_offset = $constantoffset($src);
  6205     if (Assembler::is_simm16(con_offset)) {
  6206        __ ld($dst$$Register, $constanttablebase, con_offset);
  6207     } else {
  6208        __ set64(AT, con_offset);
  6209        if (UseLoongsonISA) {
  6210           __ gsldx($dst$$Register, $constanttablebase, AT, 0);
  6211        } else {
  6212           __ daddu(AT, $constanttablebase, AT);
  6213           __ ld($dst$$Register, AT, 0);
  6216   %}
  6217   ins_pipe(ialu_loadI);
  6218 %}
  6219 */
  6221 instruct loadConL16(mRegL dst, immL16 src) %{
  6222   match(Set dst src);
  6223   ins_cost(105);
  6224   format %{ "mov    $dst, $src #@loadConL16" %}
  6225   ins_encode %{
  6226     Register dst_reg = as_Register($dst$$reg);
  6227     int      value   = $src$$constant;
  6228     __ daddiu(dst_reg, R0, value);
  6229   %}
  6230   ins_pipe( ialu_regL_regL );
  6231 %}
  6234 instruct loadConL0(mRegL dst, immL0 src) %{
  6235   match(Set dst src);
  6236   ins_cost(100);
  6237   format %{ "mov    $dst, zero #@loadConL0" %}
  6238   ins_encode %{
  6239     Register dst_reg = as_Register($dst$$reg);
  6240     __ daddu(dst_reg, R0, R0);
  6241   %}
  6242   ins_pipe( ialu_regL_regL );
  6243 %}
  6245 // Load Range
  6246 instruct loadRange(mRegI dst, memory mem) %{
  6247   match(Set dst (LoadRange mem));
  6249   ins_cost(125);
  6250   format %{ "MOV    $dst,$mem @ loadRange" %}
  6251   ins_encode(load_I_enc(dst, mem));
  6252   ins_pipe( ialu_loadI );
  6253 %}
  6256 instruct storeP(memory mem, mRegP src ) %{
  6257   match(Set mem (StoreP mem src));
  6259   ins_cost(125);
  6260   format %{ "sd    $src, $mem #@storeP" %}
  6261   ins_encode(store_P_reg_enc(mem, src));
  6262   ins_pipe( ialu_storeI );
  6263 %}
  6265 /*
  6266 [Ref: loadConP]
  6268 Error:
  6269   0x2d4b6d40: lui t9, 0x4f			<--- handle
  6270   0x2d4b6d44: addiu t9, t9, 0xffff808c
  6271   0x2d4b6d48: sw t9, 0x4(s2)
  6273 OK:
  6274   0x2cc5ed40: lui t9, 0x336a 			<--- klass
  6275   0x2cc5ed44: addiu t9, t9, 0x5a10 
  6276   0x2cc5ed48: sw t9, 0x4(s2)
  6277 */
  6278 // Store Pointer Immediate; null pointers or constant oops that do not
  6279 // need card-mark barriers.
  6281 // Store NULL Pointer, mark word, or other simple pointer constant.
  6282 instruct storeImmP(memory mem, immP31 src) %{
  6283   match(Set mem (StoreP mem src));
  6285   ins_cost(150);
  6286   format %{ "mov    $mem, $src #@storeImmP" %}
  6287   ins_encode(store_P_immP_enc(mem, src));
  6288   ins_pipe( ialu_storeI );
  6289 %}
  6291 // Store Byte Immediate
  6292 instruct storeImmB(memory mem, immI8 src) %{
  6293   match(Set mem (StoreB mem src));
  6295   ins_cost(150);
  6296   format %{ "movb   $mem, $src #@storeImmB" %}
  6297   ins_encode(store_B_immI_enc(mem, src));
  6298   ins_pipe( ialu_storeI );
  6299 %}
  6301 // Store Compressed Pointer
  6302 instruct storeN(memory mem, mRegN src)
  6303 %{
  6304   match(Set mem (StoreN mem src));
  6306   ins_cost(125); // XXX
  6307   format %{ "sw    $mem, $src\t# compressed ptr @ storeN" %}
  6308   ins_encode(store_N_reg_enc(mem, src)); 
  6309   ins_pipe( ialu_storeI );
  6310 %}
  6312 instruct storeNKlass(memory mem, mRegN src)
  6313 %{
  6314   match(Set mem (StoreNKlass mem src));
  6316   ins_cost(125); // XXX
  6317   format %{ "sw    $mem, $src\t# compressed klass ptr @ storeNKlass" %}
  6318   ins_encode(store_N_reg_enc(mem, src));
  6319   ins_pipe( ialu_storeI );
  6320 %}
  6322 instruct storeImmN0(memory mem, immN0 zero)
  6323 %{
  6324   predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_klass_base() == NULL);
  6325   match(Set mem (StoreN mem zero));
  6327   ins_cost(125); // XXX
  6328   format %{ "storeN0    $mem, R12\t# compressed ptr" %}
  6329   ins_encode(storeImmN0_enc(mem, zero));
  6330   ins_pipe( ialu_storeI );
  6331 %}
  6333 instruct storeImmN(memory mem, immN src)
  6334 %{
  6335   match(Set mem (StoreN mem src));
  6337   ins_cost(150); // XXX
  6338   format %{ "storeImmN    $mem, $src\t# compressed ptr @ storeImmN" %}
  6339   ins_encode(storeImmN_enc(mem, src));
  6340   ins_pipe( ialu_storeI );
  6341 %}
  6343 instruct storeImmNKlass(memory mem, immNKlass src)
  6344 %{
  6345   match(Set mem (StoreNKlass mem src));
  6347   ins_cost(150); // XXX
  6348   format %{ "sw    $mem, $src\t# compressed klass ptr @ storeImmNKlass" %}
  6349   ins_encode(storeImmNKlass_enc(mem, src));
  6350   ins_pipe( ialu_storeI );
  6351 %}
  6353 // Store Byte
  6354 instruct storeB(memory mem, mRegI src) %{
  6355   match(Set mem (StoreB mem src));
  6357   ins_cost(125);
  6358   format %{ "sb    $src, $mem #@storeB" %}
  6359   ins_encode(store_B_reg_enc(mem, src));
  6360   ins_pipe( ialu_storeI );
  6361 %}
  6363 // Load Byte (8bit signed)
  6364 instruct loadB(mRegI dst, memory mem) %{
  6365   match(Set dst (LoadB mem));
  6367   ins_cost(125);
  6368   format %{ "lb   $dst, $mem #@loadB" %}
  6369   ins_encode(load_B_enc(dst, mem));
  6370   ins_pipe( ialu_loadI );
  6371 %}
  6373 instruct loadB_convI2L(mRegL dst, memory mem) %{
  6374   match(Set dst (ConvI2L (LoadB mem)));
  6376   ins_cost(125);
  6377   format %{ "lb   $dst, $mem #@loadB_convI2L" %}
  6378   ins_encode(load_B_enc(dst, mem));
  6379   ins_pipe( ialu_loadI );
  6380 %}
  6382 // Load Byte (8bit UNsigned)
  6383 instruct loadUB(mRegI dst, memory mem) %{
  6384   match(Set dst (LoadUB mem));
  6386   ins_cost(125);
  6387   format %{ "lbu   $dst, $mem #@loadUB" %}
  6388   ins_encode(load_UB_enc(dst, mem));
  6389   ins_pipe( ialu_loadI );
  6390 %}
  6392 instruct loadUB_convI2L(mRegL dst, memory mem) %{
  6393   match(Set dst (ConvI2L (LoadUB mem)));
  6395   ins_cost(125);
  6396   format %{ "lbu   $dst, $mem #@loadUB_convI2L" %}
  6397   ins_encode(load_UB_enc(dst, mem));
  6398   ins_pipe( ialu_loadI );
  6399 %}
  6401 // Load Short (16bit signed)
  6402 instruct loadS(mRegI dst, memory mem) %{
  6403   match(Set dst (LoadS mem));
  6405   ins_cost(125);
  6406   format %{ "lh   $dst, $mem #@loadS" %}
  6407   ins_encode(load_S_enc(dst, mem));
  6408   ins_pipe( ialu_loadI );
  6409 %}
  6411 // Load Short (16 bit signed) to Byte (8 bit signed)
  6412 instruct loadS2B(mRegI dst, memory mem, immI_24 twentyfour) %{
  6413   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6415   ins_cost(125);
  6416   format %{ "lb $dst, $mem\t# short -> byte #@loadS2B" %}
  6417   ins_encode(load_B_enc(dst, mem));
  6418   ins_pipe(ialu_loadI);
  6419 %}
  6421 instruct loadS_convI2L(mRegL dst, memory mem) %{
  6422   match(Set dst (ConvI2L (LoadS mem)));
  6424   ins_cost(125);
  6425   format %{ "lh   $dst, $mem #@loadS_convI2L" %}
  6426   ins_encode(load_S_enc(dst, mem));
  6427   ins_pipe( ialu_loadI );
  6428 %}
  6430 // Store Integer Immediate
  6431 instruct storeImmI(memory mem, immI src) %{
  6432   match(Set mem (StoreI mem src));
  6434   ins_cost(150);
  6435   format %{ "mov    $mem, $src #@storeImmI" %}
  6436   ins_encode(store_I_immI_enc(mem, src));
  6437   ins_pipe( ialu_storeI );
  6438 %}
  6440 // Store Integer
  6441 instruct storeI(memory mem, mRegI src) %{
  6442   match(Set mem (StoreI mem src));
  6444   ins_cost(125);
  6445   format %{ "sw    $mem, $src #@storeI" %}
  6446   ins_encode(store_I_reg_enc(mem, src));
  6447   ins_pipe( ialu_storeI );
  6448 %}
  6450 instruct storeI_convL2I(memory mem, mRegL src) %{
  6451   match(Set mem (StoreI mem (ConvL2I src)));
  6453   ins_cost(125);
  6454   format %{ "sw    $mem, $src #@storeI_convL2I" %}
  6455   ins_encode(store_I_reg_enc(mem, src));
  6456   ins_pipe( ialu_storeI );
  6457 %}
  6459 // Load Float
  6460 instruct loadF(regF dst, memory mem) %{
  6461   match(Set dst (LoadF mem));
  6463   ins_cost(150);
  6464   format %{ "loadF $dst, $mem #@loadF" %}
  6465   ins_encode(load_F_enc(dst, mem));
  6466   ins_pipe( ialu_loadI );
  6467 %}
  6469 instruct loadConP_general(mRegP dst, immP src) %{
  6470   match(Set dst src);
  6472   ins_cost(120);
  6473   format %{ "li   $dst, $src #@loadConP_general" %}
  6475   ins_encode %{
  6476     Register dst = $dst$$Register;
  6477 	long* value = (long*)$src$$constant;
  6478 	bool is_need_reloc = $src->constant_reloc() != relocInfo::none;
  6480     /* During GC, klassOop may be moved to new position in the heap.
  6481      * It must be relocated.
  6482      * Refer: [c1_LIRAssembler_mips.cpp] jobject2reg()
  6483      */
  6484     if (is_need_reloc) {
  6485 		if($src->constant_reloc() == relocInfo::metadata_type){
  6486 			int klass_index = __ oop_recorder()->find_index((Klass*)value);
  6487 			RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6489 			__ relocate(rspec);
  6490 			__ li48(dst, (long)value);
  6493 		if($src->constant_reloc() == relocInfo::oop_type){
  6494 			int oop_index = __ oop_recorder()->find_index((jobject)value);
  6495 			RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6497 			__ relocate(rspec);
  6498 			__ li48(dst, (long)value);
  6500     } else {
  6501                 __ set64(dst, (long)value);
  6503   %}
  6505   ins_pipe( ialu_regI_regI );
  6506 %}
  6508 /*
  6509 instruct loadConP_load(mRegP dst, immP_load src) %{
  6510   match(Set dst src);
  6512   ins_cost(100);
  6513   format %{ "ld     $dst, [$constanttablebase + $constantoffset] load from constant table: ptr=$src @ loadConP_load" %}
  6515   ins_encode %{
  6517     int con_offset = $constantoffset($src);
  6519     if (Assembler::is_simm16(con_offset)) {
  6520        __ ld($dst$$Register, $constanttablebase, con_offset);
  6521     } else {
  6522        __ set64(AT, con_offset);
  6523        if (UseLoongsonISA) {
  6524           __ gsldx($dst$$Register, $constanttablebase, AT, 0);
  6525        } else {
  6526           __ daddu(AT, $constanttablebase, AT);
  6527           __ ld($dst$$Register, AT, 0);
  6530   %}
  6532   ins_pipe(ialu_loadI);
  6533 %}
  6534 */
  6536 instruct loadConP_no_oop_cheap(mRegP dst, immP_no_oop_cheap src) %{
  6537   match(Set dst src);
  6539   ins_cost(80);
  6540   format %{ "li    $dst, $src @ loadConP_no_oop_cheap" %}
  6542   ins_encode %{
  6543     __ set64($dst$$Register, $src$$constant);
  6544   %}
  6546   ins_pipe(ialu_regI_regI);
  6547 %}
  6550 instruct loadConP_poll(mRegP dst, immP_poll src) %{
  6551   match(Set dst src);
  6553   ins_cost(50);
  6554   format %{ "li   $dst, $src #@loadConP_poll" %}
  6556   ins_encode %{
  6557     Register dst = $dst$$Register;
  6558     intptr_t value = (intptr_t)$src$$constant;
  6560     __ set64(dst, (jlong)value);
  6561   %}
  6563   ins_pipe( ialu_regI_regI );
  6564 %}
  6566 instruct loadConP0(mRegP dst, immP0 src)
  6567 %{
  6568   match(Set dst src); 
  6570   ins_cost(50);
  6571   format %{ "mov    $dst, R0\t# ptr" %}
  6572   ins_encode %{
  6573      Register dst_reg = $dst$$Register;
  6574      __ daddu(dst_reg, R0, R0);
  6575   %}
  6576   ins_pipe( ialu_regI_regI );
  6577 %}
  6579 instruct loadConN0(mRegN dst, immN0 src) %{
  6580   match(Set dst src);
  6581   format %{ "move    $dst, R0\t# compressed NULL ptr" %}
  6582   ins_encode %{
  6583     __ move($dst$$Register, R0);
  6584   %}
  6585   ins_pipe( ialu_regI_regI );
  6586 %}
  6588 instruct loadConN(mRegN dst, immN src) %{
  6589   match(Set dst src);
  6591   ins_cost(125);
  6592   format %{ "li    $dst, $src\t# compressed ptr @ loadConN" %}
  6593   ins_encode %{
  6594     address con = (address)$src$$constant;
  6595     if (con == NULL) {
  6596       ShouldNotReachHere();
  6597     } else {
  6598 		assert (UseCompressedOops, "should only be used for compressed headers");
  6599 		assert (Universe::heap() != NULL, "java heap should be initialized");
  6600 		assert (__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6602 		Register dst = $dst$$Register;
  6603 		long*   value = (long*)$src$$constant;
  6604 		int oop_index = __ oop_recorder()->find_index((jobject)value);
  6605 		RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6606 		if(rspec.type()!=relocInfo::none){
  6607 			__ relocate(rspec, Assembler::narrow_oop_operand);
  6608 			__ li48(dst, oop_index);
  6609 		} else {
  6610 			__ set64(dst, oop_index);
  6613   %}
  6614   ins_pipe( ialu_regI_regI ); // XXX
  6615 %}
  6617 instruct loadConNKlass(mRegN dst, immNKlass src) %{
  6618   match(Set dst src);
  6620   ins_cost(125);
  6621   format %{ "li    $dst, $src\t# compressed klass ptr @ loadConNKlass" %}
  6622   ins_encode %{
  6623     address con = (address)$src$$constant;
  6624     if (con == NULL) {
  6625       ShouldNotReachHere();
  6626     } else {
  6627 		Register dst = $dst$$Register;
  6628 		long*   value = (long*)$src$$constant;
  6630 		int klass_index = __ oop_recorder()->find_index((Klass*)value);
  6631 		RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6632 		long narrowp = (long)Klass::encode_klass((Klass*)value);
  6634 		if(rspec.type()!=relocInfo::none){
  6635 			__ relocate(rspec, Assembler::narrow_oop_operand);
  6636 			__ li48(dst, narrowp);
  6637 		} else {
  6638 			__ set64(dst, narrowp);
  6641   %}
  6642   ins_pipe( ialu_regI_regI ); // XXX
  6643 %}
  6645 //FIXME
  6646 // Tail Call; Jump from runtime stub to Java code.
  6647 // Also known as an 'interprocedural jump'.
  6648 // Target of jump will eventually return to caller.
  6649 // TailJump below removes the return address.
  6650 instruct TailCalljmpInd(mRegP jump_target, mRegP method_oop) %{
  6651   match(TailCall jump_target method_oop );
  6652   ins_cost(300);
  6653   format %{ "JMP    $jump_target \t# @TailCalljmpInd" %}
  6655   ins_encode %{
  6656     Register target = $jump_target$$Register;
  6657     Register    oop = $method_oop$$Register;
  6659     /* 2012/10/12 Jin: RA will be used in generate_forward_exception() */
  6660     __ push(RA);
  6662     __ move(S3, oop);
  6663     __ jr(target);
  6664     __ nop();
  6665   %}
  6667   ins_pipe( pipe_jump );
  6668 %}
  6670 // Create exception oop: created by stack-crawling runtime code.
  6671 // Created exception is now available to this handler, and is setup
  6672 // just prior to jumping to this handler.  No code emitted.
  6673 instruct CreateException( a0_RegP ex_oop )
  6674 %{
  6675   match(Set ex_oop (CreateEx));
  6677   // use the following format syntax
  6678   format %{ "# exception oop is in A0; no code emitted @CreateException" %}
  6679   ins_encode %{
  6680     /* Jin: X86 leaves this function empty */
  6681     __ block_comment("CreateException is empty in X86/MIPS");
  6682   %}
  6683   ins_pipe( empty );
  6684 //  ins_pipe( pipe_jump );
  6685 %}
  6688 /* 2012/9/14 Jin: The mechanism of exception handling is clear now.
  6690 - Common try/catch:
  6691  2012/9/14 Jin: [stubGenerator_mips.cpp] generate_forward_exception()
  6692                     |- V0, V1 are created
  6693                     |- T9 <= SharedRuntime::exception_handler_for_return_address
  6694                     `- jr T9
  6695                          `- the caller's exception_handler
  6696                                `- jr OptoRuntime::exception_blob
  6697                                       `- here
  6698 - Rethrow(e.g. 'unwind'):
  6699   * The callee:
  6700      |- an exception is triggered during execution
  6701      `- exits the callee method through RethrowException node
  6702           |- The callee pushes exception_oop(T0) and exception_pc(RA)
  6703           `- The callee jumps to OptoRuntime::rethrow_stub()
  6704   * In OptoRuntime::rethrow_stub:
  6705      |- The VM calls _rethrow_Java to determine the return address in the caller method
  6706      `- exits the stub with tailjmpInd
  6707           |- pops exception_oop(V0) and exception_pc(V1)
  6708           `- jumps to the return address(usually an exception_handler)
  6709   * The caller:
  6710      `- continues processing the exception_blob with V0/V1
  6711 */
  6713 /*
  6714 Disassembling OptoRuntime::rethrow_stub()
  6716 ; locals
  6717    0x2d3bf320: addiu sp, sp, 0xfffffff8
  6718    0x2d3bf324: sw ra, 0x4(sp)
  6719    0x2d3bf328: sw fp, 0x0(sp)
  6720    0x2d3bf32c: addu fp, sp, zero
  6721    0x2d3bf330: addiu sp, sp, 0xfffffff0
  6722    0x2d3bf334: sw ra, 0x8(sp)
  6723    0x2d3bf338: sw t0, 0x4(sp)
  6724    0x2d3bf33c: sw sp, 0x0(sp)
  6726 ; get_thread(S2)
  6727    0x2d3bf340: addu s2, sp, zero
  6728    0x2d3bf344: srl s2, s2, 12
  6729    0x2d3bf348: sll s2, s2, 2
  6730    0x2d3bf34c: lui at, 0x2c85
  6731    0x2d3bf350: addu at, at, s2
  6732    0x2d3bf354: lw s2, 0xffffcc80(at)
  6734    0x2d3bf358: lw s0, 0x0(sp)
  6735    0x2d3bf35c: sw s0, 0x118(s2)		// last_sp -> threa
  6736    0x2d3bf360: sw s2, 0xc(sp)
  6738 ; OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc)
  6739    0x2d3bf364: lw a0, 0x4(sp)
  6740    0x2d3bf368: lw a1, 0xc(sp)
  6741    0x2d3bf36c: lw a2, 0x8(sp)
  6742   ;; Java_To_Runtime
  6743    0x2d3bf370: lui t9, 0x2c34
  6744    0x2d3bf374: addiu t9, t9, 0xffff8a48
  6745    0x2d3bf378: jalr t9
  6746    0x2d3bf37c: nop
  6748    0x2d3bf380: addu s3, v0, zero		 ; S3: SharedRuntime::raw_exception_handler_for_return_address()
  6750    0x2d3bf384: lw s0, 0xc(sp)
  6751    0x2d3bf388: sw zero, 0x118(s0)
  6752    0x2d3bf38c: sw zero, 0x11c(s0)
  6753    0x2d3bf390: lw s1, 0x144(s0)			; ex_oop: S1
  6754    0x2d3bf394: addu s2, s0, zero
  6755    0x2d3bf398: sw zero, 0x144(s2)
  6756    0x2d3bf39c: lw s0, 0x4(s2)
  6757    0x2d3bf3a0: addiu s4, zero, 0x0
  6758    0x2d3bf3a4: bne s0, s4, 0x2d3bf3d4
  6759    0x2d3bf3a8: nop
  6760    0x2d3bf3ac: addiu sp, sp, 0x10
  6761    0x2d3bf3b0: addiu sp, sp, 0x8
  6762    0x2d3bf3b4: lw ra, 0xfffffffc(sp)
  6763    0x2d3bf3b8: lw fp, 0xfffffff8(sp)
  6764    0x2d3bf3bc: lui at, 0x2b48
  6765    0x2d3bf3c0: lw at, 0x100(at)
  6767 ; tailjmpInd: Restores exception_oop & exception_pc
  6768    0x2d3bf3c4: addu v1, ra, zero
  6769    0x2d3bf3c8: addu v0, s1, zero
  6770    0x2d3bf3cc: jr s3
  6771    0x2d3bf3d0: nop
  6772 ; Exception:
  6773    0x2d3bf3d4: lui s1, 0x2cc8		; generate_forward_exception()
  6774    0x2d3bf3d8: addiu s1, s1, 0x40
  6775    0x2d3bf3dc: addiu s2, zero, 0x0
  6776    0x2d3bf3e0: addiu sp, sp, 0x10
  6777    0x2d3bf3e4: addiu sp, sp, 0x8
  6778    0x2d3bf3e8: lw ra, 0xfffffffc(sp)
  6779    0x2d3bf3ec: lw fp, 0xfffffff8(sp)
  6780    0x2d3bf3f0: lui at, 0x2b48
  6781    0x2d3bf3f4: lw at, 0x100(at)
  6782 ; TailCalljmpInd 
  6783               __ push(RA);		; to be used in generate_forward_exception()
  6784    0x2d3bf3f8: addu t7, s2, zero
  6785    0x2d3bf3fc: jr s1
  6786    0x2d3bf400: nop
  6787 */
  6788 // Rethrow exception:
  6789 // The exception oop will come in the first argument position.
  6790 // Then JUMP (not call) to the rethrow stub code.
  6791 instruct RethrowException()
  6792 %{
  6793   match(Rethrow);
  6795   // use the following format syntax
  6796   format %{ "JMP    rethrow_stub #@RethrowException" %}
  6797   ins_encode %{
  6798     __ block_comment("@ RethrowException");
  6800     cbuf.set_insts_mark();
  6801     cbuf.relocate(cbuf.insts_mark(), runtime_call_Relocation::spec());
  6803     // call OptoRuntime::rethrow_stub to get the exception handler in parent method
  6804     __ li(T9, OptoRuntime::rethrow_stub());
  6805     __ jr(T9);
  6806     __ nop();
  6807   %}
  6808   ins_pipe( pipe_jump );
  6809 %}
  6811 instruct branchConP_zero(cmpOpU cmp, mRegP op1, immP0 zero, label labl) %{
  6812   match(If cmp (CmpP op1 zero));
  6813   effect(USE labl);
  6815   ins_cost(180);
  6816   format %{ "b$cmp   $op1, R0, $labl #@branchConP_zero" %}
  6818   ins_encode %{
  6819     Register op1 = $op1$$Register;
  6820     Register op2 = R0;
  6821     Label    &L  = *($labl$$label);
  6822     int     flag = $cmp$$cmpcode;
  6824     switch(flag)
  6826       case 0x01: //equal
  6827 	if (&L)
  6828         	__ beq(op1, op2, L); 
  6829 	else 
  6830         	__ beq(op1, op2, (int)0); 
  6831         break;
  6832       case 0x02: //not_equal
  6833 	if (&L)
  6834         	__ bne(op1, op2, L); 
  6835 	else
  6836         	__ bne(op1, op2, (int)0); 
  6837         break;
  6838 /*
  6839       case 0x03: //above
  6840         __ sltu(AT, op2, op1);
  6841         if(&L)
  6842         	__ bne(R0, AT, L); 
  6843         else
  6844                 __ bne(R0, AT, (int)0);
  6845         break;
  6846       case 0x04: //above_equal
  6847         __ sltu(AT, op1, op2);
  6848         if(&L)
  6849        	        __ beq(AT, R0, L);
  6850         else
  6851        	        __ beq(AT, R0, (int)0);
  6852         break;
  6853       case 0x05: //below
  6854         __ sltu(AT, op1, op2);
  6855         if(&L)
  6856       		 __ bne(R0, AT, L); 
  6857         else
  6858         	 __ bne(R0, AT, (int)0);
  6859         break;
  6860       case 0x06: //below_equal
  6861         __ sltu(AT, op2, op1);
  6862         if(&L)
  6863         	__ beq(AT, R0, L);
  6864         else
  6865         	__ beq(AT, R0, (int)0);
  6866        break;
  6867 */
  6868       default:
  6869           Unimplemented();
  6871     __ nop();
  6872   %}
  6874   ins_pc_relative(1);
  6875   ins_pipe( pipe_alu_branch );
  6876 %}
  6879 instruct branchConP(cmpOpU cmp, mRegP op1, mRegP op2, label labl) %{
  6880   match(If cmp (CmpP op1 op2));
  6881 //  predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  6882   effect(USE labl);
  6884   ins_cost(200);
  6885   format %{ "b$cmp   $op1, $op2, $labl #@branchConP" %}
  6887   ins_encode %{
  6888     Register op1 = $op1$$Register;
  6889     Register op2 = $op2$$Register;
  6890     Label    &L  = *($labl$$label);
  6891     int     flag = $cmp$$cmpcode;
  6893     switch(flag)
  6895       case 0x01: //equal
  6896 	if (&L)
  6897         	__ beq(op1, op2, L); 
  6898 	else 
  6899         	__ beq(op1, op2, (int)0); 
  6900         break;
  6901       case 0x02: //not_equal
  6902 	if (&L)
  6903         	__ bne(op1, op2, L); 
  6904 	else
  6905         	__ bne(op1, op2, (int)0); 
  6906         break;
  6907       case 0x03: //above
  6908         __ sltu(AT, op2, op1);
  6909         if(&L)
  6910         	__ bne(R0, AT, L); 
  6911         else
  6912                 __ bne(R0, AT, (int)0);
  6913         break;
  6914       case 0x04: //above_equal
  6915         __ sltu(AT, op1, op2);
  6916         if(&L)
  6917        	        __ beq(AT, R0, L);
  6918         else
  6919        	        __ beq(AT, R0, (int)0);
  6920         break;
  6921       case 0x05: //below
  6922         __ sltu(AT, op1, op2);
  6923         if(&L)
  6924       		 __ bne(R0, AT, L); 
  6925         else
  6926         	 __ bne(R0, AT, (int)0);
  6927         break;
  6928       case 0x06: //below_equal
  6929         __ sltu(AT, op2, op1);
  6930         if(&L)
  6931         	__ beq(AT, R0, L);
  6932         else
  6933         	__ beq(AT, R0, (int)0);
  6934        break;
  6935       default:
  6936           Unimplemented();
  6938     __ nop();
  6939   %}
  6941   ins_pc_relative(1);
  6942   ins_pipe( pipe_alu_branch );
  6943 %}
  6945 instruct cmpN_null_branch(cmpOp cmp, mRegN op1, immN0 null, label labl) %{
  6946   match(If cmp (CmpN op1 null));
  6947   effect(USE labl);
  6949   ins_cost(180);
  6950   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
  6951             "BP$cmp   $labl @ cmpN_null_branch" %}
  6952   ins_encode %{
  6953     Register op1 = $op1$$Register;
  6954     Register op2 = R0;
  6955     Label    &L  = *($labl$$label);
  6956     int     flag = $cmp$$cmpcode;
  6958     switch(flag)
  6960 		case 0x01: //equal
  6961 			if (&L)
  6962 				__ beq(op1, op2, L); 
  6963 			else 
  6964 				__ beq(op1, op2, (int)0); 
  6965 			break;
  6966 		case 0x02: //not_equal
  6967 			if (&L)
  6968 				__ bne(op1, op2, L); 
  6969 			else
  6970 				__ bne(op1, op2, (int)0); 
  6971 			break;
  6972 		default:
  6973           Unimplemented();
  6975     __ nop();
  6976   %}
  6977 //TODO: pipe_branchP or create pipe_branchN LEE
  6978   ins_pc_relative(1);
  6979   ins_pipe( pipe_alu_branch );
  6980 %}
  6982 instruct cmpN_reg_branch(cmpOp cmp, mRegN op1, mRegN op2, label labl) %{
  6983   match(If cmp (CmpN op1 op2));
  6984   effect(USE labl);
  6986   ins_cost(180);
  6987   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
  6988             "BP$cmp   $labl" %}
  6989   ins_encode %{
  6990     Register op1_reg = $op1$$Register;
  6991     Register op2_reg = $op2$$Register;
  6992     Label    &L  = *($labl$$label);
  6993     int     flag = $cmp$$cmpcode;
  6995     switch(flag)
  6997 		case 0x01: //equal
  6998 			if (&L)
  6999 				__ beq(op1_reg, op2_reg, L); 
  7000 			else 
  7001 				__ beq(op1_reg, op2_reg, (int)0); 
  7002 			break;
  7003 		case 0x02: //not_equal
  7004 			if (&L)
  7005 				__ bne(op1_reg, op2_reg, L); 
  7006 			else
  7007 				__ bne(op1_reg, op2_reg, (int)0); 
  7008 			break;
  7009 		case 0x03: //above
  7010 			__ sltu(AT, op2_reg, op1_reg);
  7011 			if(&L)
  7012 				__ bne(R0, AT, L); 
  7013 			else
  7014 				__ bne(R0, AT, (int)0);
  7015 			break;
  7016 		case 0x04: //above_equal
  7017 			__ sltu(AT, op1_reg, op2_reg);
  7018 			if(&L)
  7019 				__ beq(AT, R0, L);
  7020 			else
  7021 				__ beq(AT, R0, (int)0);
  7022 			break;
  7023 		case 0x05: //below
  7024 			__ sltu(AT, op1_reg, op2_reg);
  7025 			if(&L)
  7026 				__ bne(R0, AT, L); 
  7027 			else
  7028 				__ bne(R0, AT, (int)0);
  7029 			break;
  7030 		case 0x06: //below_equal
  7031 			__ sltu(AT, op2_reg, op1_reg);
  7032 			if(&L)
  7033 				__ beq(AT, R0, L);
  7034 			else
  7035 				__ beq(AT, R0, (int)0);
  7036 			break;
  7037 		default:
  7038           Unimplemented();
  7040     __ nop();
  7041   %}
  7042   ins_pc_relative(1);
  7043   ins_pipe( pipe_alu_branch );
  7044 %}
  7046 instruct branchConIU_reg_reg(cmpOpU cmp, mRegI src1, mRegI src2, label labl) %{
  7047   match( If cmp (CmpU src1 src2) );
  7048   effect(USE labl);
  7049   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_reg" %}
  7051   ins_encode %{
  7052     Register op1 = $src1$$Register;
  7053     Register op2 = $src2$$Register;
  7054     Label     &L = *($labl$$label);
  7055     int     flag = $cmp$$cmpcode;
  7057     switch(flag)
  7059       case 0x01: //equal
  7060 	if (&L)
  7061         	__ beq(op1, op2, L); 
  7062 	else 
  7063         	__ beq(op1, op2, (int)0); 
  7064         break;
  7065       case 0x02: //not_equal
  7066 	if (&L)
  7067         	__ bne(op1, op2, L); 
  7068 	else
  7069         	__ bne(op1, op2, (int)0); 
  7070         break;
  7071       case 0x03: //above
  7072         __ sltu(AT, op2, op1);
  7073         if(&L)
  7074         	__ bne(AT, R0, L); 
  7075         else
  7076                 __ bne(AT, R0, (int)0);
  7077         break;
  7078       case 0x04: //above_equal
  7079         __ sltu(AT, op1, op2);
  7080         if(&L)
  7081         	__ beq(AT, R0, L);
  7082         else
  7083                 __ beq(AT, R0, (int)0);
  7084         break;
  7085       case 0x05: //below
  7086         __ sltu(AT, op1, op2);
  7087         if(&L)
  7088       		 __ bne(AT, R0, L); 
  7089         else
  7090         	 __ bne(AT, R0, (int)0);
  7091         break;
  7092       case 0x06: //below_equal
  7093         __ sltu(AT, op2, op1);
  7094         if(&L)
  7095         	__ beq(AT, R0, L);
  7096         else
  7097         	__ beq(AT, R0, (int)0);
  7098         break;
  7099       default:
  7100           Unimplemented();
  7102     __ nop();
  7103   %}
  7105   ins_pc_relative(1);
  7106   ins_pipe( pipe_alu_branch );
  7107 %}
  7110 instruct branchConIU_reg_imm(cmpOpU cmp, mRegI src1, immI src2, label labl) %{
  7111   match( If cmp (CmpU src1 src2) );
  7112   effect(USE labl);
  7113   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_imm" %}
  7115   ins_encode %{
  7116     Register op1 = $src1$$Register;
  7117     int      val = $src2$$constant;
  7118     Label     &L = *($labl$$label);
  7119     int     flag = $cmp$$cmpcode;
  7121     __ move(AT, val);
  7122     switch(flag)
  7124       case 0x01: //equal
  7125 	if (&L)
  7126         	__ beq(op1, AT, L); 
  7127 	else 
  7128         	__ beq(op1, AT, (int)0); 
  7129         break;
  7130       case 0x02: //not_equal
  7131 	if (&L)
  7132         	__ bne(op1, AT, L); 
  7133 	else
  7134         	__ bne(op1, AT, (int)0); 
  7135         break;
  7136       case 0x03: //above
  7137         __ sltu(AT, AT, op1);
  7138         if(&L)
  7139         	__ bne(R0, AT, L); 
  7140         else
  7141                 __ bne(R0, AT, (int)0);
  7142         break;
  7143       case 0x04: //above_equal
  7144         __ sltu(AT, op1, AT);
  7145         if(&L)
  7146         	__ beq(AT, R0, L);
  7147         else
  7148                 __ beq(AT, R0, (int)0);
  7149         break;
  7150       case 0x05: //below
  7151         __ sltu(AT, op1, AT);
  7152         if(&L)
  7153       		 __ bne(R0, AT, L); 
  7154         else
  7155         	 __ bne(R0, AT, (int)0);
  7156         break;
  7157       case 0x06: //below_equal
  7158         __ sltu(AT, AT, op1);
  7159         if(&L)
  7160         	__ beq(AT, R0, L);
  7161         else
  7162         	__ beq(AT, R0, (int)0);
  7163        break;
  7164       default:
  7165           Unimplemented();
  7167     __ nop();
  7168   %}
  7170   ins_pc_relative(1);
  7171   ins_pipe( pipe_alu_branch );
  7172 %}
  7174 instruct branchConI_reg_reg(cmpOp cmp, mRegI src1, mRegI src2, label labl) %{
  7175   match( If cmp (CmpI src1 src2) );
  7176   effect(USE labl);
  7177   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_reg" %}
  7179   ins_encode %{
  7180     Register op1 = $src1$$Register;
  7181     Register op2 = $src2$$Register;
  7182     Label     &L = *($labl$$label);
  7183     int     flag = $cmp$$cmpcode;
  7185     switch(flag)
  7187       case 0x01: //equal
  7188 	if (&L)
  7189         	__ beq(op1, op2, L); 
  7190 	else 
  7191         	__ beq(op1, op2, (int)0); 
  7192         break;
  7193       case 0x02: //not_equal
  7194 	if (&L)
  7195         	__ bne(op1, op2, L); 
  7196 	else
  7197         	__ bne(op1, op2, (int)0); 
  7198         break;
  7199       case 0x03: //above
  7200         __ slt(AT, op2, op1);
  7201         if(&L)
  7202         	__ bne(R0, AT, L); 
  7203         else
  7204                 __ bne(R0, AT, (int)0);
  7205         break;
  7206       case 0x04: //above_equal
  7207         __ slt(AT, op1, op2);
  7208         if(&L)
  7209         	__ beq(AT, R0, L);
  7210         else
  7211                 __ beq(AT, R0, (int)0);
  7212         break;
  7213       case 0x05: //below
  7214         __ slt(AT, op1, op2);
  7215         if(&L)
  7216       		 __ bne(R0, AT, L); 
  7217         else
  7218         	 __ bne(R0, AT, (int)0);
  7219         break;
  7220       case 0x06: //below_equal
  7221         __ slt(AT, op2, op1);
  7222         if(&L)
  7223         	__ beq(AT, R0, L);
  7224         else
  7225         	__ beq(AT, R0, (int)0);
  7226        break;
  7227       default:
  7228           Unimplemented();
  7230     __ nop();
  7231   %}
  7233   ins_pc_relative(1);
  7234   ins_pipe( pipe_alu_branch );
  7235 %}
  7237 instruct branchConI_reg_imm0(cmpOp cmp, mRegI src1, immI0 src2, label labl) %{
  7238   match( If cmp (CmpI src1 src2) );
  7239   effect(USE labl);
  7240   ins_cost(170);
  7241   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm0" %}
  7243   ins_encode %{
  7244     Register op1 = $src1$$Register;
  7245 //    int      val = $src2$$constant;
  7246     Label     &L =  *($labl$$label);
  7247     int     flag = $cmp$$cmpcode;
  7249     //__ move(AT, val);
  7250     switch(flag)
  7252       case 0x01: //equal
  7253 	if (&L)
  7254         	__ beq(op1, R0, L); 
  7255 	else 
  7256         	__ beq(op1, R0, (int)0); 
  7257         break;
  7258       case 0x02: //not_equal
  7259 	if (&L)
  7260         	__ bne(op1, R0, L); 
  7261 	else
  7262         	__ bne(op1, R0, (int)0); 
  7263         break;
  7264       case 0x03: //greater
  7265         if(&L)
  7266                __ bgtz(op1, L);
  7267         else
  7268                __ bgtz(op1, (int)0);
  7269         break;
  7270       case 0x04: //greater_equal
  7271         if(&L)
  7272                __ bgez(op1, L);
  7273         else
  7274                __ bgez(op1, (int)0);
  7275         break;
  7276       case 0x05: //less
  7277         if(&L)
  7278                 __ bltz(op1, L);
  7279         else
  7280                 __ bltz(op1, (int)0);
  7281         break;
  7282       case 0x06: //less_equal
  7283         if(&L)
  7284                __ blez(op1, L);
  7285         else
  7286                __ blez(op1, (int)0);
  7287        break;
  7288       default:
  7289           Unimplemented();
  7291     __ nop();
  7292   %}
  7294   ins_pc_relative(1);
  7295   ins_pipe( pipe_alu_branch );
  7296 %}
  7299 instruct branchConI_reg_imm(cmpOp cmp, mRegI src1, immI src2, label labl) %{
  7300   match( If cmp (CmpI src1 src2) );
  7301   effect(USE labl);
  7302   ins_cost(200);
  7303   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm" %}
  7305   ins_encode %{
  7306     Register op1 = $src1$$Register;
  7307     int      val = $src2$$constant;
  7308     Label     &L =  *($labl$$label);
  7309     int     flag = $cmp$$cmpcode;
  7311     __ move(AT, val);
  7312     switch(flag)
  7314       case 0x01: //equal
  7315 	if (&L)
  7316         	__ beq(op1, AT, L); 
  7317 	else 
  7318         	__ beq(op1, AT, (int)0); 
  7319         break;
  7320       case 0x02: //not_equal
  7321 	if (&L)
  7322         	__ bne(op1, AT, L); 
  7323 	else
  7324         	__ bne(op1, AT, (int)0); 
  7325         break;
  7326       case 0x03: //greater
  7327         __ slt(AT, AT, op1);
  7328         if(&L)
  7329         	__ bne(R0, AT, L); 
  7330         else
  7331                 __ bne(R0, AT, (int)0);
  7332         break;
  7333       case 0x04: //greater_equal
  7334         __ slt(AT, op1, AT);
  7335         if(&L)
  7336         	__ beq(AT, R0, L);
  7337         else
  7338                 __ beq(AT, R0, (int)0);
  7339         break;
  7340       case 0x05: //less
  7341         __ slt(AT, op1, AT);
  7342         if(&L)
  7343       		 __ bne(R0, AT, L); 
  7344         else
  7345         	 __ bne(R0, AT, (int)0);
  7346         break;
  7347       case 0x06: //less_equal
  7348         __ slt(AT, AT, op1);
  7349         if(&L)
  7350         	__ beq(AT, R0, L);
  7351         else
  7352         	__ beq(AT, R0, (int)0);
  7353        break;
  7354       default:
  7355           Unimplemented();
  7357     __ nop();
  7358   %}
  7360   ins_pc_relative(1);
  7361   ins_pipe( pipe_alu_branch );
  7362 %}
  7364 instruct branchConIU_reg_imm0(cmpOpU cmp, mRegI src1, immI0 zero, label labl) %{
  7365   match( If cmp (CmpU src1 zero) );
  7366   effect(USE labl);
  7367   format %{ "BR$cmp   $src1, zero, $labl #@branchConIU_reg_imm0" %}
  7369   ins_encode %{
  7370     Register op1 = $src1$$Register;
  7371     Label     &L = *($labl$$label);
  7372     int     flag = $cmp$$cmpcode;
  7374     switch(flag)
  7376       case 0x01: //equal
  7377        if (&L)
  7378                __ beq(op1, R0, L); 
  7379        else 
  7380                __ beq(op1, R0, (int)0); 
  7381         break;
  7382       case 0x02: //not_equal
  7383        if (&L)
  7384                __ bne(op1, R0, L); 
  7385        else
  7386                __ bne(op1, R0, (int)0); 
  7387         break;
  7388       case 0x03: //above
  7389         if(&L)
  7390                __ bne(R0, op1, L); 
  7391         else
  7392                 __ bne(R0, op1, (int)0);
  7393         break;
  7394       case 0x04: //above_equal
  7395         if(&L)
  7396                __ beq(R0, R0, L);
  7397         else
  7398                 __ beq(R0, R0, (int)0);
  7399         break;
  7400       case 0x05: //below
  7401         return;
  7402         break;
  7403       case 0x06: //below_equal
  7404         if(&L)
  7405                __ beq(op1, R0, L);
  7406         else
  7407                __ beq(op1, R0, (int)0);
  7408        break;
  7409       default:
  7410           Unimplemented();
  7412     __ nop();
  7413   %}
  7415   ins_pc_relative(1);
  7416   ins_pipe( pipe_alu_branch );
  7417 %}
  7420 instruct branchConIU_reg_immI16(cmpOpU cmp, mRegI src1, immI16 src2, label labl) %{
  7421   match( If cmp (CmpU src1 src2) );
  7422   effect(USE labl);
  7423   ins_cost(180);
  7424   format %{ "BR$cmp   $src1, $src2, $labl #@branchConIU_reg_immI16" %}
  7426   ins_encode %{
  7427     Register op1 = $src1$$Register;
  7428     int      val = $src2$$constant;
  7429     Label     &L = *($labl$$label);
  7430     int     flag = $cmp$$cmpcode;
  7432     switch(flag)
  7434       case 0x01: //equal
  7435         __ move(AT, val);
  7436        if (&L)
  7437                __ beq(op1, AT, L); 
  7438        else 
  7439                __ beq(op1, AT, (int)0); 
  7440         break;
  7441       case 0x02: //not_equal
  7442         __ move(AT, val);
  7443        if (&L)
  7444                __ bne(op1, AT, L); 
  7445        else
  7446                __ bne(op1, AT, (int)0); 
  7447         break;
  7448       case 0x03: //above
  7449         __ move(AT, val);
  7450         __ sltu(AT, AT, op1);
  7451         if(&L)
  7452                __ bne(R0, AT, L); 
  7453         else
  7454                 __ bne(R0, AT, (int)0);
  7455         break;
  7456       case 0x04: //above_equal
  7457         __ sltiu(AT, op1, val);
  7458         if(&L)
  7459                __ beq(AT, R0, L);
  7460         else
  7461                 __ beq(AT, R0, (int)0);
  7462         break;
  7463       case 0x05: //below
  7464         __ sltiu(AT, op1, val);
  7465         if(&L)
  7466                 __ bne(R0, AT, L); 
  7467         else
  7468                 __ bne(R0, AT, (int)0);
  7469         break;
  7470       case 0x06: //below_equal
  7471         __ move(AT, val);
  7472         __ sltu(AT, AT, op1);
  7473         if(&L)
  7474                __ beq(AT, R0, L);
  7475         else
  7476                __ beq(AT, R0, (int)0);
  7477        break;
  7478       default:
  7479           Unimplemented();
  7481     __ nop();
  7482   %}
  7484   ins_pc_relative(1);
  7485   ins_pipe( pipe_alu_branch );
  7486 %}
  7489 instruct branchConL_regL_regL(cmpOp cmp, mRegL src1, mRegL src2, label labl) %{
  7490   match( If cmp (CmpL src1 src2) );
  7491   effect(USE labl);
  7492   format %{ "BR$cmp   $src1, $src2, $labl #@branchConL_regL_regL" %}
  7493   ins_cost(250);
  7495   ins_encode %{
  7496     Register opr1_reg = as_Register($src1$$reg);
  7497     Register opr2_reg = as_Register($src2$$reg);
  7499     Label   &target = *($labl$$label);
  7500     int     flag = $cmp$$cmpcode;
  7502     switch(flag)
  7504       case 0x01: //equal
  7505         if (&target) 
  7506 			__ beq(opr1_reg, opr2_reg, target);
  7507         else
  7508 			__ beq(opr1_reg, opr2_reg, (int)0);
  7509         __ delayed()->nop();
  7510         break;
  7512       case 0x02: //not_equal
  7513         if(&target)
  7514            __ bne(opr1_reg, opr2_reg, target);
  7515         else
  7516            __ bne(opr1_reg, opr2_reg, (int)0);
  7517         __ delayed()->nop();
  7518         break;
  7520       case 0x03: //greater
  7521         __ slt(AT, opr2_reg, opr1_reg);
  7522         if(&target)
  7523            __ bne(AT, R0, target);
  7524         else
  7525            __ bne(AT, R0, (int)0);
  7526         __ delayed()->nop();
  7527         break;
  7529       case 0x04: //greater_equal
  7530         __ slt(AT, opr1_reg, opr2_reg);
  7531         if(&target)
  7532            __ beq(AT, R0, target);
  7533         else
  7534            __ beq(AT, R0, (int)0);
  7535         __ delayed()->nop();
  7537         break;
  7539       case 0x05: //less
  7540         __ slt(AT, opr1_reg, opr2_reg);
  7541         if(&target)
  7542            __ bne(AT, R0, target);
  7543         else
  7544            __ bne(AT, R0, (int)0);
  7545         __ delayed()->nop();
  7547         break;
  7549       case 0x06: //less_equal
  7550        __ slt(AT, opr2_reg, opr1_reg);
  7552        if(&target)
  7553           __ beq(AT, R0, target);
  7554        else
  7555           __ beq(AT, R0, (int)0);
  7556        __ delayed()->nop();
  7558        break;
  7560       default:
  7561           Unimplemented();
  7563   %}
  7566   ins_pc_relative(1);
  7567   ins_pipe( pipe_alu_branch );
  7568 %}
  7570 instruct branchConL_reg_immL16_sub(cmpOp cmp, mRegL src1, immL16_sub src2, label labl) %{
  7571   match( If cmp (CmpL src1 src2) );
  7572   effect(USE labl);
  7573   ins_cost(180);
  7574   format %{ "BR$cmp   $src1, $src2, $labl #@branchConL_reg_immL16_sub" %}
  7576   ins_encode %{
  7577     Register op1 = $src1$$Register;
  7578     int      val = $src2$$constant;
  7579     Label     &L =  *($labl$$label);
  7580     int     flag = $cmp$$cmpcode;
  7582     __ daddiu(AT, op1, -1 * val);
  7583     switch(flag)
  7585       case 0x01: //equal
  7586        if (&L)
  7587                __ beq(R0, AT, L); 
  7588        else 
  7589                __ beq(R0, AT, (int)0); 
  7590         break;
  7591       case 0x02: //not_equal
  7592        if (&L)
  7593                __ bne(R0, AT, L); 
  7594        else
  7595                __ bne(R0, AT, (int)0); 
  7596         break;
  7597       case 0x03: //greater
  7598         if(&L)
  7599                __ bgtz(AT, L); 
  7600         else
  7601                 __ bgtz(AT, (int)0);
  7602         break;
  7603       case 0x04: //greater_equal
  7604         if(&L)
  7605                __ bgez(AT, L);
  7606         else
  7607                 __ bgez(AT, (int)0);
  7608         break;
  7609       case 0x05: //less
  7610         if(&L)
  7611                 __ bltz(AT, L); 
  7612         else
  7613                 __ bltz(AT, (int)0);
  7614         break;
  7615       case 0x06: //less_equal
  7616         if(&L)
  7617                __ blez(AT, L);
  7618         else
  7619                __ blez(AT, (int)0);
  7620        break;
  7621       default:
  7622           Unimplemented();
  7624     __ nop();
  7625   %}
  7627   ins_pc_relative(1);
  7628   ins_pipe( pipe_alu_branch );
  7629 %}
  7632 instruct branchConI_reg_imm16_sub(cmpOp cmp, mRegI src1, immI16_sub src2, label labl) %{
  7633   match( If cmp (CmpI src1 src2) );
  7634   effect(USE labl);
  7635   ins_cost(180);
  7636   format %{ "BR$cmp   $src1, $src2, $labl #@branchConI_reg_imm16_sub" %}
  7638   ins_encode %{
  7639     Register op1 = $src1$$Register;
  7640     int      val = $src2$$constant;
  7641     Label     &L =  *($labl$$label);
  7642     int     flag = $cmp$$cmpcode;
  7644     __ addiu32(AT, op1, -1 * val);
  7645     switch(flag)
  7647       case 0x01: //equal
  7648        if (&L)
  7649                __ beq(R0, AT, L); 
  7650        else 
  7651                __ beq(R0, AT, (int)0); 
  7652         break;
  7653       case 0x02: //not_equal
  7654        if (&L)
  7655                __ bne(R0, AT, L); 
  7656        else
  7657                __ bne(R0, AT, (int)0); 
  7658         break;
  7659       case 0x03: //greater
  7660         if(&L)
  7661                __ bgtz(AT, L); 
  7662         else
  7663                 __ bgtz(AT, (int)0);
  7664         break;
  7665       case 0x04: //greater_equal
  7666         if(&L)
  7667                __ bgez(AT, L);
  7668         else
  7669                 __ bgez(AT, (int)0);
  7670         break;
  7671       case 0x05: //less
  7672         if(&L)
  7673                 __ bltz(AT, L); 
  7674         else
  7675                 __ bltz(AT, (int)0);
  7676         break;
  7677       case 0x06: //less_equal
  7678         if(&L)
  7679                __ blez(AT, L);
  7680         else
  7681                __ blez(AT, (int)0);
  7682        break;
  7683       default:
  7684           Unimplemented();
  7686     __ nop();
  7687   %}
  7689   ins_pc_relative(1);
  7690   ins_pipe( pipe_alu_branch );
  7691 %}
  7693 instruct branchConL_regL_immL0(cmpOp cmp, mRegL src1, immL0 zero, label labl) %{
  7694   match( If cmp (CmpL src1 zero) );
  7695   effect(USE labl);
  7696   format %{ "BR$cmp   $src1, zero, $labl #@branchConL_regL_immL0" %}
  7697   ins_cost(150);
  7699   ins_encode %{
  7700     Register opr1_reg = as_Register($src1$$reg);
  7701     Label   &target = *($labl$$label);
  7702     int     flag = $cmp$$cmpcode;
  7704     switch(flag)
  7706       case 0x01: //equal
  7707         if (&target) 
  7708            __ beq(opr1_reg, R0, target);
  7709         else
  7710            __ beq(opr1_reg, R0, int(0));
  7711         break;
  7713       case 0x02: //not_equal
  7714         if(&target)
  7715            __ bne(opr1_reg, R0, target);
  7716         else
  7717            __ bne(opr1_reg, R0, (int)0);
  7718         break;
  7720       case 0x03: //greater
  7721         if(&target)
  7722            __ bgtz(opr1_reg, target);
  7723         else
  7724            __ bgtz(opr1_reg, (int)0);
  7725        break;
  7727       case 0x04: //greater_equal
  7728         if(&target)
  7729            __ bgez(opr1_reg, target);
  7730         else
  7731            __ bgez(opr1_reg, (int)0);
  7732         break;
  7734       case 0x05: //less
  7735         __ slt(AT, opr1_reg, R0);
  7736         if(&target)
  7737            __ bne(AT, R0, target);
  7738         else
  7739            __ bne(AT, R0, (int)0);
  7740         break;
  7742       case 0x06: //less_equal
  7743         if (&target) 
  7744            __ blez(opr1_reg, target);
  7745         else
  7746            __ blez(opr1_reg, int(0));
  7747         break;
  7749       default:
  7750           Unimplemented();
  7752 	__ delayed()->nop();
  7753   %}
  7756   ins_pc_relative(1);
  7757   ins_pipe( pipe_alu_branch );
  7758 %}
  7760 /*
  7761 // Conditional Direct Branch
  7762 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  7763   match(If cmp icc);
  7764   effect(USE labl);
  7766   size(8);
  7767   ins_cost(BRANCH_COST);
  7768   format %{ "BP$cmp   $icc,$labl" %}
  7769   // Prim = bits 24-22, Secnd = bits 31-30
  7770   ins_encode( enc_bp( labl, cmp, icc ) );
  7771   ins_pc_relative(1);
  7772   ins_pipe(br_cc);
  7773 %}
  7774 */
  7776 //FIXME
  7777 instruct branchConF_reg_reg(cmpOp cmp, regF src1, regF src2, label labl) %{
  7778   match( If cmp (CmpF src1 src2) );
  7779   effect(USE labl);
  7780   format %{ "BR$cmp   $src1, $src2, $labl #@branchConF_reg_reg" %}
  7782   ins_encode %{
  7783     FloatRegister reg_op1 = $src1$$FloatRegister;
  7784     FloatRegister reg_op2 = $src2$$FloatRegister;
  7785     Label     &L =  *($labl$$label);
  7786     int     flag = $cmp$$cmpcode;
  7788     switch(flag)
  7790       case 0x01: //equal
  7791         __ c_eq_s(reg_op1, reg_op2);
  7792 	if (&L)
  7793                 __ bc1t(L);
  7794 	else 
  7795                 __ bc1t((int)0);
  7796         break;
  7797       case 0x02: //not_equal
  7798         __ c_eq_s(reg_op1, reg_op2);
  7799 	if (&L)
  7800                 __ bc1f(L);
  7801 	else
  7802                 __ bc1f((int)0);
  7803         break;
  7804       case 0x03: //greater
  7805         __ c_ule_s(reg_op1, reg_op2);
  7806         if(&L)
  7807                 __ bc1f(L);
  7808         else
  7809                 __ bc1f((int)0);
  7810         break;
  7811       case 0x04: //greater_equal
  7812         __ c_ult_s(reg_op1, reg_op2);
  7813         if(&L)
  7814                 __ bc1f(L);
  7815         else
  7816                 __ bc1f((int)0);
  7817         break;
  7818       case 0x05: //less
  7819         __ c_ult_s(reg_op1, reg_op2);
  7820         if(&L)
  7821                 __ bc1t(L);
  7822         else
  7823                 __ bc1t((int)0);
  7824         break;
  7825       case 0x06: //less_equal
  7826         __ c_ule_s(reg_op1, reg_op2);
  7827         if(&L)
  7828                 __ bc1t(L);
  7829         else
  7830                 __ bc1t((int)0);
  7831        break;
  7832       default:
  7833           Unimplemented();
  7835     __ nop();
  7836   %}
  7838   ins_pc_relative(1);
  7839   ins_pipe(pipe_slow);
  7840 %}
  7842 instruct branchConD_reg_reg(cmpOp cmp, regD src1, regD src2, label labl) %{
  7843   match( If cmp (CmpD src1 src2) );
  7844   effect(USE labl);
  7845   format %{ "BR$cmp   $src1, $src2, $labl #@branchConD_reg_reg" %}
  7847   ins_encode %{
  7848     FloatRegister reg_op1 = $src1$$FloatRegister;
  7849     FloatRegister reg_op2 = $src2$$FloatRegister;
  7850     Label     &L =  *($labl$$label);
  7851     int     flag = $cmp$$cmpcode;
  7853     switch(flag)
  7855       case 0x01: //equal
  7856         __ c_eq_d(reg_op1, reg_op2);
  7857 	if (&L)
  7858                 __ bc1t(L);
  7859 	else 
  7860                 __ bc1t((int)0);
  7861         break;
  7862       case 0x02: //not_equal
  7863 //2016/4/19 aoqi: c_ueq_d cannot distinguish NaN from equal. Double.isNaN(Double) is implemented by 'f != f', so the use of c_ueq_d causes bugs.
  7864         __ c_eq_d(reg_op1, reg_op2);
  7865 	if (&L)
  7866                 __ bc1f(L);
  7867 	else
  7868                 __ bc1f((int)0);
  7869         break;
  7870       case 0x03: //greater
  7871         __ c_ule_d(reg_op1, reg_op2);
  7872         if(&L)
  7873                 __ bc1f(L);
  7874         else
  7875                 __ bc1f((int)0);
  7876         break;
  7877       case 0x04: //greater_equal
  7878         __ c_ult_d(reg_op1, reg_op2);
  7879         if(&L)
  7880                 __ bc1f(L);
  7881         else
  7882                 __ bc1f((int)0);
  7883         break;
  7884       case 0x05: //less
  7885         __ c_ult_d(reg_op1, reg_op2);
  7886         if(&L)
  7887                 __ bc1t(L);
  7888         else
  7889                 __ bc1t((int)0);
  7890         break;
  7891       case 0x06: //less_equal
  7892         __ c_ule_d(reg_op1, reg_op2);
  7893         if(&L)
  7894                 __ bc1t(L);
  7895         else
  7896                 __ bc1t((int)0);
  7897        break;
  7898       default:
  7899           Unimplemented();
  7901     __ nop();
  7902   %}
  7904   ins_pc_relative(1);
  7905   ins_pipe(pipe_slow);
  7906 %}
  7909 // Call Runtime Instruction
  7910 instruct CallRuntimeDirect(method meth) %{
  7911   match(CallRuntime );
  7912   effect(USE meth);
  7914   ins_cost(300);
  7915   format %{ "CALL,runtime #@CallRuntimeDirect" %}
  7916   ins_encode( Java_To_Runtime( meth ) );
  7917   ins_pipe( pipe_slow );
  7918   ins_alignment(16);
  7919 %}
  7923 //------------------------MemBar Instructions-------------------------------
  7924 //Memory barrier flavors
  7926 instruct membar_acquire() %{
  7927   match(MemBarAcquire);
  7928   ins_cost(0);
  7930   size(0);
  7931   format %{ "MEMBAR-acquire (empty) @ membar_acquire" %}
  7932   ins_encode();
  7933   ins_pipe(empty);
  7934 %}
  7936 instruct load_fence() %{
  7937   match(LoadFence);
  7938   ins_cost(400);
  7940   format %{ "MEMBAR @ load_fence" %}
  7941   ins_encode %{
  7942     __ sync(); 
  7943   %}
  7944   ins_pipe(pipe_slow);
  7945 %}
  7947 instruct membar_acquire_lock()
  7948 %{
  7949   match(MemBarAcquireLock);
  7950   ins_cost(0);
  7952   size(0);
  7953   format %{ "MEMBAR-acquire (acquire as part of CAS in prior FastLock so empty encoding) @ membar_acquire_lock" %}
  7954   ins_encode();
  7955   ins_pipe(empty);
  7956 %}
  7958 instruct membar_release() %{
  7959   match(MemBarRelease);
  7960   ins_cost(0);
  7962   size(0);
  7963   format %{ "MEMBAR-release (empty) @ membar_release" %}
  7964   ins_encode();
  7965   ins_pipe(empty);
  7966 %}
  7968 instruct store_fence() %{
  7969   match(StoreFence);
  7970   ins_cost(400);
  7972   format %{ "MEMBAR @ store_fence" %}
  7974   ins_encode %{
  7975     __ sync(); 
  7976   %}
  7978   ins_pipe(pipe_slow);
  7979 %}
  7981 instruct membar_release_lock()
  7982 %{
  7983   match(MemBarReleaseLock);
  7984   ins_cost(0);
  7986   size(0);
  7987   format %{ "MEMBAR-release-lock (release in FastUnlock so empty) @ membar_release_lock" %}
  7988   ins_encode();
  7989   ins_pipe(empty);
  7990 %}
  7993 instruct membar_volatile() %{
  7994   match(MemBarVolatile);
  7995   ins_cost(400);
  7997   format %{ "MEMBAR-volatile" %}
  7998   ins_encode %{
  7999     if( !os::is_MP() ) return;     // Not needed on single CPU
  8000     __ sync();
  8002   %}
  8003   ins_pipe(pipe_slow);
  8004 %}
  8006 instruct unnecessary_membar_volatile() %{
  8007   match(MemBarVolatile);
  8008   predicate(Matcher::post_store_load_barrier(n));
  8009   ins_cost(0);
  8011   size(0);
  8012   format %{ "MEMBAR-volatile (unnecessary so empty encoding) @ unnecessary_membar_volatile" %}
  8013   ins_encode( );
  8014   ins_pipe(empty);
  8015 %}
  8017 instruct membar_storestore() %{
  8018   match(MemBarStoreStore);
  8020   ins_cost(0);
  8021   size(0);
  8022   format %{ "MEMBAR-storestore (empty encoding) @ membar_storestore" %}
  8023   ins_encode( );
  8024   ins_pipe(empty);
  8025 %}
  8027 //----------Move Instructions--------------------------------------------------
  8028 instruct castX2P(mRegP dst, mRegL src) %{
  8029   match(Set dst (CastX2P src));
  8030   format %{ "castX2P  $dst, $src @ castX2P" %}
  8031   ins_encode %{
  8032     Register src = $src$$Register;
  8033     Register dst = $dst$$Register;
  8035 	if(src != dst)
  8036 		__ move(dst, src);
  8037   %}
  8038   ins_cost(10);
  8039   ins_pipe( ialu_regI_mov );
  8040 %}
  8042 instruct castP2X(mRegL dst, mRegP src ) %{
  8043   match(Set dst (CastP2X src));
  8045   format %{ "mov    $dst, $src\t  #@castP2X" %}
  8046   ins_encode %{
  8047     Register src = $src$$Register;
  8048     Register dst = $dst$$Register;
  8050 	if(src != dst)
  8051 		__ move(dst, src);    
  8052   %}
  8053   ins_pipe( ialu_regI_mov );
  8054 %}
  8056 instruct MoveF2I_reg_reg(mRegI dst, regF src) %{
  8057   match(Set dst (MoveF2I src));
  8058   effect(DEF dst, USE src);
  8059   ins_cost(85);
  8060   format %{ "MoveF2I   $dst, $src @ MoveF2I_reg_reg" %}
  8061   ins_encode %{
  8062     Register dst = as_Register($dst$$reg);
  8063     FloatRegister src = as_FloatRegister($src$$reg);
  8065     __ mfc1(dst, src);
  8066   %}
  8067   ins_pipe( pipe_slow );
  8068 %}
  8070 instruct MoveI2F_reg_reg(regF dst, mRegI src) %{
  8071   match(Set dst (MoveI2F src));
  8072   effect(DEF dst, USE src);
  8073   ins_cost(85);
  8074   format %{ "MoveI2F   $dst, $src @ MoveI2F_reg_reg" %}
  8075   ins_encode %{
  8076     Register src = as_Register($src$$reg);
  8077     FloatRegister dst = as_FloatRegister($dst$$reg);
  8079     __ mtc1(src, dst);
  8080   %}
  8081   ins_pipe( pipe_slow );
  8082 %}
  8084 instruct MoveD2L_reg_reg(mRegL dst, regD src) %{
  8085   match(Set dst (MoveD2L src));
  8086   effect(DEF dst, USE src);
  8087   ins_cost(85);
  8088   format %{ "MoveD2L   $dst, $src @ MoveD2L_reg_reg" %}
  8089   ins_encode %{
  8090     Register dst = as_Register($dst$$reg);
  8091     FloatRegister src = as_FloatRegister($src$$reg);
  8093     __ dmfc1(dst, src);
  8094   %}
  8095   ins_pipe( pipe_slow );
  8096 %}
  8098 instruct MoveL2D_reg_reg(regD dst, mRegL src) %{
  8099   match(Set dst (MoveL2D src));
  8100   effect(DEF dst, USE src);
  8101   ins_cost(85);
  8102   format %{ "MoveL2D   $dst, $src @ MoveL2D_reg_reg" %}
  8103   ins_encode %{
  8104     FloatRegister dst = as_FloatRegister($dst$$reg);
  8105     Register src = as_Register($src$$reg);
  8107     __ dmtc1(src, dst);
  8108   %}
  8109   ins_pipe( pipe_slow );
  8110 %}
  8112 //----------Conditional Move---------------------------------------------------
  8113 // Conditional move
  8114 instruct cmovI_cmpI_reg_reg(mRegI dst, mRegI src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8115   match(Set dst (CMoveI (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8116   ins_cost(80);
  8117   format %{
  8118              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpI_reg_reg\n"
  8119              "\tCMOV  $dst,$src \t @cmovI_cmpI_reg_reg"
  8120          %}
  8122   ins_encode %{
  8123     Register op1 = $tmp1$$Register;
  8124     Register op2 = $tmp2$$Register;
  8125     Register dst = $dst$$Register;
  8126     Register src = $src$$Register;
  8127     int     flag = $cop$$cmpcode;
  8129     switch(flag)
  8131       case 0x01: //equal
  8132         __ subu32(AT, op1, op2);
  8133         __ movz(dst, src, AT);
  8134         break;
  8136       case 0x02: //not_equal
  8137         __ subu32(AT, op1, op2);
  8138         __ movn(dst, src, AT);
  8139         break;
  8141       case 0x03: //great
  8142         __ slt(AT, op2, op1);
  8143         __ movn(dst, src, AT);
  8144         break;
  8146       case 0x04: //great_equal
  8147         __ slt(AT, op1, op2);
  8148         __ movz(dst, src, AT);
  8149         break;
  8151       case 0x05: //less
  8152         __ slt(AT, op1, op2);
  8153         __ movn(dst, src, AT);
  8154         break;
  8156       case 0x06: //less_equal
  8157         __ slt(AT, op2, op1);
  8158         __ movz(dst, src, AT);
  8159        break;
  8161       default:
  8162           Unimplemented();
  8164   %}
  8166   ins_pipe( pipe_slow );
  8167 %}
  8169 instruct cmovI_cmpP_reg_reg(mRegI dst, mRegI src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8170   match(Set dst (CMoveI (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8171   ins_cost(80);
  8172   format %{
  8173              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpP_reg_reg\n\t"
  8174              "CMOV $dst,$src\t @cmovI_cmpP_reg_reg"
  8175          %}
  8176   ins_encode %{
  8177     Register op1 = $tmp1$$Register;
  8178     Register op2 = $tmp2$$Register;
  8179     Register dst = $dst$$Register;
  8180     Register src = $src$$Register;
  8181     int     flag = $cop$$cmpcode;
  8183     switch(flag)
  8185       case 0x01: //equal
  8186         __ subu(AT, op1, op2);
  8187         __ movz(dst, src, AT);
  8188         break;
  8190       case 0x02: //not_equal
  8191         __ subu(AT, op1, op2);
  8192         __ movn(dst, src, AT);
  8193         break;
  8195       case 0x03: //above
  8196         __ sltu(AT, op2, op1);
  8197         __ movn(dst, src, AT);
  8198         break;
  8200       case 0x04: //above_equal
  8201         __ sltu(AT, op1, op2);
  8202         __ movz(dst, src, AT);
  8203         break;
  8205       case 0x05: //below
  8206         __ sltu(AT, op1, op2);
  8207         __ movn(dst, src, AT);
  8208         break;
  8210       case 0x06: //below_equal
  8211         __ sltu(AT, op2, op1);
  8212         __ movz(dst, src, AT);
  8213        break;
  8215       default:
  8216           Unimplemented();
  8218   %}
  8220   ins_pipe( pipe_slow );
  8221 %}
  8223 instruct cmovI_cmpN_reg_reg(mRegI dst, mRegI src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8224   match(Set dst (CMoveI (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8225   ins_cost(80);
  8226   format %{
  8227              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpN_reg_reg\n\t"
  8228              "CMOV $dst,$src\t @cmovI_cmpN_reg_reg"
  8229          %}
  8230   ins_encode %{
  8231     Register op1 = $tmp1$$Register;
  8232     Register op2 = $tmp2$$Register;
  8233     Register dst = $dst$$Register;
  8234     Register src = $src$$Register;
  8235     int     flag = $cop$$cmpcode;
  8237     switch(flag)
  8239       case 0x01: //equal
  8240         __ subu32(AT, op1, op2);
  8241         __ movz(dst, src, AT);
  8242         break;
  8244       case 0x02: //not_equal
  8245         __ subu32(AT, op1, op2);
  8246         __ movn(dst, src, AT);
  8247         break;
  8249       case 0x03: //above
  8250         __ sltu(AT, op2, op1);
  8251         __ movn(dst, src, AT);
  8252         break;
  8254       case 0x04: //above_equal
  8255         __ sltu(AT, op1, op2);
  8256         __ movz(dst, src, AT);
  8257         break;
  8259       case 0x05: //below
  8260         __ sltu(AT, op1, op2);
  8261         __ movn(dst, src, AT);
  8262         break;
  8264       case 0x06: //below_equal
  8265         __ sltu(AT, op2, op1);
  8266         __ movz(dst, src, AT);
  8267        break;
  8269       default:
  8270           Unimplemented();
  8272   %}
  8274   ins_pipe( pipe_slow );
  8275 %}
  8277 instruct cmovP_cmpN_reg_reg(mRegP dst, mRegP src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8278   match(Set dst (CMoveP (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8279   ins_cost(80);
  8280   format %{
  8281              "CMPU$cop $tmp1,$tmp2\t @cmovP_cmpN_reg_reg\n\t"
  8282              "CMOV $dst,$src\t @cmovP_cmpN_reg_reg"
  8283          %}
  8284   ins_encode %{
  8285     Register op1 = $tmp1$$Register;
  8286     Register op2 = $tmp2$$Register;
  8287     Register dst = $dst$$Register;
  8288     Register src = $src$$Register;
  8289     int     flag = $cop$$cmpcode;
  8291     switch(flag)
  8293       case 0x01: //equal
  8294         __ subu32(AT, op1, op2);
  8295         __ movz(dst, src, AT);
  8296         break;
  8298       case 0x02: //not_equal
  8299         __ subu32(AT, op1, op2);
  8300         __ movn(dst, src, AT);
  8301         break;
  8303       case 0x03: //above
  8304         __ sltu(AT, op2, op1);
  8305         __ movn(dst, src, AT);
  8306         break;
  8308       case 0x04: //above_equal
  8309         __ sltu(AT, op1, op2);
  8310         __ movz(dst, src, AT);
  8311         break;
  8313       case 0x05: //below
  8314         __ sltu(AT, op1, op2);
  8315         __ movn(dst, src, AT);
  8316         break;
  8318       case 0x06: //below_equal
  8319         __ sltu(AT, op2, op1);
  8320         __ movz(dst, src, AT);
  8321        break;
  8323       default:
  8324           Unimplemented();
  8326   %}
  8328   ins_pipe( pipe_slow );
  8329 %}
  8331 instruct cmovN_cmpP_reg_reg(mRegN dst, mRegN src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8332   match(Set dst (CMoveN (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8333   ins_cost(80);
  8334   format %{
  8335              "CMPU$cop $tmp1,$tmp2\t @cmovN_cmpP_reg_reg\n\t"
  8336              "CMOV $dst,$src\t @cmovN_cmpP_reg_reg"
  8337          %}
  8338   ins_encode %{
  8339     Register op1 = $tmp1$$Register;
  8340     Register op2 = $tmp2$$Register;
  8341     Register dst = $dst$$Register;
  8342     Register src = $src$$Register;
  8343     int     flag = $cop$$cmpcode;
  8345     switch(flag)
  8347       case 0x01: //equal
  8348         __ subu(AT, op1, op2);
  8349         __ movz(dst, src, AT);
  8350         break;
  8352       case 0x02: //not_equal
  8353         __ subu(AT, op1, op2);
  8354         __ movn(dst, src, AT);
  8355         break;
  8357       case 0x03: //above
  8358         __ sltu(AT, op2, op1);
  8359         __ movn(dst, src, AT);
  8360         break;
  8362       case 0x04: //above_equal
  8363         __ sltu(AT, op1, op2);
  8364         __ movz(dst, src, AT);
  8365         break;
  8367       case 0x05: //below
  8368         __ sltu(AT, op1, op2);
  8369         __ movn(dst, src, AT);
  8370         break;
  8372       case 0x06: //below_equal
  8373         __ sltu(AT, op2, op1);
  8374         __ movz(dst, src, AT);
  8375        break;
  8377       default:
  8378           Unimplemented();
  8380   %}
  8382   ins_pipe( pipe_slow );
  8383 %}
  8385 instruct cmovP_cmpD_reg_reg(mRegP dst, mRegP src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8386   match(Set dst (CMoveP (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8387   ins_cost(80);
  8388   format %{
  8389              "CMP$cop  $tmp1, $tmp2\t  @cmovP_cmpD_reg_reg\n"
  8390              "\tCMOV  $dst,$src \t @cmovP_cmpD_reg_reg"
  8391          %}
  8392   ins_encode %{
  8393     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8394     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8395     Register dst = as_Register($dst$$reg);
  8396     Register src = as_Register($src$$reg);
  8398     int     flag = $cop$$cmpcode;
  8400     switch(flag)
  8402       case 0x01: //equal
  8403         __ c_eq_d(reg_op1, reg_op2);
  8404         __ movt(dst, src);
  8405         break;
  8406       case 0x02: //not_equal
  8407         __ c_eq_d(reg_op1, reg_op2);
  8408         __ movf(dst, src);
  8409         break;
  8410       case 0x03: //greater
  8411         __ c_ole_d(reg_op1, reg_op2);
  8412         __ movf(dst, src);
  8413         break;
  8414       case 0x04: //greater_equal
  8415         __ c_olt_d(reg_op1, reg_op2);
  8416         __ movf(dst, src);
  8417         break;
  8418       case 0x05: //less
  8419         __ c_ult_d(reg_op1, reg_op2);
  8420         __ movt(dst, src);
  8421         break;
  8422       case 0x06: //less_equal
  8423         __ c_ule_d(reg_op1, reg_op2);
  8424         __ movt(dst, src);
  8425         break;
  8426       default:
  8427           Unimplemented();
  8429   %}
  8431   ins_pipe( pipe_slow );
  8432 %}
  8435 instruct cmovN_cmpN_reg_reg(mRegN dst, mRegN src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8436   match(Set dst (CMoveN (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8437   ins_cost(80);
  8438   format %{
  8439              "CMPU$cop $tmp1,$tmp2\t @cmovN_cmpN_reg_reg\n\t"
  8440              "CMOV $dst,$src\t @cmovN_cmpN_reg_reg"
  8441          %}
  8442   ins_encode %{
  8443     Register op1 = $tmp1$$Register;
  8444     Register op2 = $tmp2$$Register;
  8445     Register dst = $dst$$Register;
  8446     Register src = $src$$Register;
  8447     int     flag = $cop$$cmpcode;
  8449     switch(flag)
  8451       case 0x01: //equal
  8452         __ subu32(AT, op1, op2);
  8453         __ movz(dst, src, AT);
  8454         break;
  8456       case 0x02: //not_equal
  8457         __ subu32(AT, op1, op2);
  8458         __ movn(dst, src, AT);
  8459         break;
  8461       case 0x03: //above
  8462         __ sltu(AT, op2, op1);
  8463         __ movn(dst, src, AT);
  8464         break;
  8466       case 0x04: //above_equal
  8467         __ sltu(AT, op1, op2);
  8468         __ movz(dst, src, AT);
  8469         break;
  8471       case 0x05: //below
  8472         __ sltu(AT, op1, op2);
  8473         __ movn(dst, src, AT);
  8474         break;
  8476       case 0x06: //below_equal
  8477         __ sltu(AT, op2, op1);
  8478         __ movz(dst, src, AT);
  8479        break;
  8481       default:
  8482           Unimplemented();
  8484   %}
  8486   ins_pipe( pipe_slow );
  8487 %}
  8490 instruct cmovI_cmpU_reg_reg(mRegI dst, mRegI src, mRegI tmp1, mRegI tmp2, cmpOpU cop ) %{
  8491   match(Set dst (CMoveI (Binary cop (CmpU tmp1 tmp2)) (Binary dst src)));
  8492   ins_cost(80);
  8493   format %{
  8494              "CMPU$cop $tmp1,$tmp2\t @cmovI_cmpU_reg_reg\n\t"
  8495              "CMOV $dst,$src\t @cmovI_cmpU_reg_reg"
  8496          %}
  8497   ins_encode %{
  8498     Register op1 = $tmp1$$Register;
  8499     Register op2 = $tmp2$$Register;
  8500     Register dst = $dst$$Register;
  8501     Register src = $src$$Register;
  8502     int     flag = $cop$$cmpcode;
  8504     switch(flag)
  8506       case 0x01: //equal
  8507         __ subu(AT, op1, op2);
  8508         __ movz(dst, src, AT);
  8509         break;
  8511       case 0x02: //not_equal
  8512         __ subu(AT, op1, op2);
  8513         __ movn(dst, src, AT);
  8514         break;
  8516       case 0x03: //above
  8517         __ sltu(AT, op2, op1);
  8518         __ movn(dst, src, AT);
  8519         break;
  8521       case 0x04: //above_equal
  8522         __ sltu(AT, op1, op2);
  8523         __ movz(dst, src, AT);
  8524         break;
  8526       case 0x05: //below
  8527         __ sltu(AT, op1, op2);
  8528         __ movn(dst, src, AT);
  8529         break;
  8531       case 0x06: //below_equal
  8532         __ sltu(AT, op2, op1);
  8533         __ movz(dst, src, AT);
  8534        break;
  8536       default:
  8537           Unimplemented();
  8539   %}
  8541   ins_pipe( pipe_slow );
  8542 %}
  8544 instruct cmovI_cmpL_reg_reg(mRegI dst, mRegI src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8545   match(Set dst (CMoveI (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8546   ins_cost(80);
  8547   format %{
  8548              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpL_reg_reg\n"
  8549              "\tCMOV  $dst,$src \t @cmovI_cmpL_reg_reg"
  8550          %}
  8551   ins_encode %{
  8552     Register opr1 = as_Register($tmp1$$reg);
  8553     Register opr2 = as_Register($tmp2$$reg);
  8554     Register dst     = $dst$$Register;
  8555     Register src     = $src$$Register;
  8556     int     flag = $cop$$cmpcode;
  8558     switch(flag)
  8560       case 0x01: //equal
  8561         __ subu(AT, opr1, opr2);
  8562         __ movz(dst, src, AT);
  8563         break;
  8565       case 0x02: //not_equal
  8566         __ subu(AT, opr1, opr2);
  8567         __ movn(dst, src, AT);
  8568         break;
  8570       case 0x03: //greater
  8571 	__ slt(AT, opr2, opr1);
  8572         __ movn(dst, src, AT);
  8573         break;
  8575       case 0x04: //greater_equal
  8576         __ slt(AT, opr1, opr2);
  8577         __ movz(dst, src, AT);
  8578         break;
  8580       case 0x05: //less
  8581         __ slt(AT, opr1, opr2);
  8582         __ movn(dst, src, AT);
  8583         break;
  8585       case 0x06: //less_equal
  8586         __ slt(AT, opr2, opr1);
  8587         __ movz(dst, src, AT);
  8588         break;
  8590       default:
  8591           Unimplemented();
  8593   %}
  8595   ins_pipe( pipe_slow );
  8596 %}
  8598 instruct cmovP_cmpL_reg_reg(mRegP dst, mRegP src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8599   match(Set dst (CMoveP (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8600   ins_cost(80);
  8601   format %{
  8602              "CMP$cop  $tmp1, $tmp2\t  @cmovP_cmpL_reg_reg\n"
  8603              "\tCMOV  $dst,$src \t @cmovP_cmpL_reg_reg"
  8604          %}
  8605   ins_encode %{
  8606     Register opr1 = as_Register($tmp1$$reg);
  8607     Register opr2 = as_Register($tmp2$$reg);
  8608     Register dst     = $dst$$Register;
  8609     Register src     = $src$$Register;
  8610     int     flag = $cop$$cmpcode;
  8612     switch(flag)
  8614       case 0x01: //equal
  8615         __ subu(AT, opr1, opr2);
  8616         __ movz(dst, src, AT);
  8617         break;
  8619       case 0x02: //not_equal
  8620         __ subu(AT, opr1, opr2);
  8621         __ movn(dst, src, AT);
  8622         break;
  8624       case 0x03: //greater
  8625         __ slt(AT, opr2, opr1);
  8626         __ movn(dst, src, AT);
  8627         break;
  8629       case 0x04: //greater_equal
  8630         __ slt(AT, opr1, opr2);
  8631         __ movz(dst, src, AT);
  8632         break;
  8634       case 0x05: //less
  8635         __ slt(AT, opr1, opr2);
  8636         __ movn(dst, src, AT);
  8637         break;
  8639       case 0x06: //less_equal
  8640         __ slt(AT, opr2, opr1);
  8641         __ movz(dst, src, AT);
  8642         break;
  8644       default:
  8645           Unimplemented();
  8647   %}
  8649   ins_pipe( pipe_slow );
  8650 %}
  8652 instruct cmovI_cmpD_reg_reg(mRegI dst, mRegI src, regD tmp1, regD tmp2, cmpOp cop ) %{
  8653   match(Set dst (CMoveI (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  8654   ins_cost(80);
  8655   format %{
  8656              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpD_reg_reg\n"
  8657              "\tCMOV  $dst,$src \t @cmovI_cmpD_reg_reg"
  8658          %}
  8659   ins_encode %{
  8660     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  8661     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  8662     Register dst = as_Register($dst$$reg);
  8663     Register src = as_Register($src$$reg);
  8665     int     flag = $cop$$cmpcode;
  8667     switch(flag)
  8669       case 0x01: //equal
  8670         __ c_eq_d(reg_op1, reg_op2);
  8671         __ movt(dst, src);
  8672         break;
  8673       case 0x02: //not_equal
  8674 //2016/4/19 aoqi: See instruct branchConD_reg_reg. The change in branchConD_reg_reg fixed a bug. It seems similar here, so I made thesame change.
  8675         __ c_eq_d(reg_op1, reg_op2);
  8676         __ movf(dst, src);
  8677         break;
  8678       case 0x03: //greater
  8679         __ c_ole_d(reg_op1, reg_op2);
  8680         __ movf(dst, src);
  8681         break;
  8682       case 0x04: //greater_equal
  8683         __ c_olt_d(reg_op1, reg_op2);
  8684         __ movf(dst, src);
  8685         break;
  8686       case 0x05: //less
  8687         __ c_ult_d(reg_op1, reg_op2);
  8688         __ movt(dst, src);
  8689         break;
  8690       case 0x06: //less_equal
  8691         __ c_ule_d(reg_op1, reg_op2);
  8692         __ movt(dst, src);
  8693         break;
  8694       default:
  8695           Unimplemented();
  8697   %}
  8699   ins_pipe( pipe_slow );
  8700 %}
  8703 instruct cmovP_cmpP_reg_reg(mRegP dst, mRegP src, mRegP tmp1, mRegP tmp2, cmpOpU cop ) %{
  8704   match(Set dst (CMoveP (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  8705   ins_cost(80);
  8706   format %{
  8707              "CMPU$cop $tmp1,$tmp2\t @cmovP_cmpP_reg_reg\n\t"
  8708              "CMOV $dst,$src\t @cmovP_cmpP_reg_reg"
  8709          %}
  8710   ins_encode %{
  8711     Register op1 = $tmp1$$Register;
  8712     Register op2 = $tmp2$$Register;
  8713     Register dst = $dst$$Register;
  8714     Register src = $src$$Register;
  8715     int     flag = $cop$$cmpcode;
  8717     switch(flag)
  8719       case 0x01: //equal
  8720         __ subu(AT, op1, op2);
  8721         __ movz(dst, src, AT);
  8722         break;
  8724       case 0x02: //not_equal
  8725         __ subu(AT, op1, op2);
  8726         __ movn(dst, src, AT);
  8727         break;
  8729       case 0x03: //above
  8730         __ sltu(AT, op2, op1);
  8731         __ movn(dst, src, AT);
  8732         break;
  8734       case 0x04: //above_equal
  8735         __ sltu(AT, op1, op2);
  8736         __ movz(dst, src, AT);
  8737         break;
  8739       case 0x05: //below
  8740         __ sltu(AT, op1, op2);
  8741         __ movn(dst, src, AT);
  8742         break;
  8744       case 0x06: //below_equal
  8745         __ sltu(AT, op2, op1);
  8746         __ movz(dst, src, AT);
  8747        break;
  8749       default:
  8750           Unimplemented();
  8752   %}
  8754   ins_pipe( pipe_slow );
  8755 %}
  8757 instruct cmovP_cmpI_reg_reg(mRegP dst, mRegP src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8758   match(Set dst (CMoveP (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8759   ins_cost(80);
  8760   format %{
  8761              "CMP$cop $tmp1,$tmp2\t @cmovP_cmpI_reg_reg\n\t"
  8762              "CMOV $dst,$src\t @cmovP_cmpI_reg_reg"
  8763          %}
  8764   ins_encode %{
  8765     Register op1 = $tmp1$$Register;
  8766     Register op2 = $tmp2$$Register;
  8767     Register dst = $dst$$Register;
  8768     Register src = $src$$Register;
  8769     int     flag = $cop$$cmpcode;
  8771     switch(flag)
  8773       case 0x01: //equal
  8774         __ subu32(AT, op1, op2);
  8775         __ movz(dst, src, AT);
  8776         break;
  8778       case 0x02: //not_equal
  8779         __ subu32(AT, op1, op2);
  8780         __ movn(dst, src, AT);
  8781         break;
  8783       case 0x03: //above
  8784         __ slt(AT, op2, op1);
  8785         __ movn(dst, src, AT);
  8786         break;
  8788       case 0x04: //above_equal
  8789         __ slt(AT, op1, op2);
  8790         __ movz(dst, src, AT);
  8791         break;
  8793       case 0x05: //below
  8794         __ slt(AT, op1, op2);
  8795         __ movn(dst, src, AT);
  8796         break;
  8798       case 0x06: //below_equal
  8799         __ slt(AT, op2, op1);
  8800         __ movz(dst, src, AT);
  8801        break;
  8803       default:
  8804           Unimplemented();
  8806   %}
  8808   ins_pipe( pipe_slow );
  8809 %}
  8811 instruct cmovN_cmpI_reg_reg(mRegN dst, mRegN src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8812   match(Set dst (CMoveN (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8813   ins_cost(80);
  8814   format %{
  8815              "CMP$cop $tmp1,$tmp2\t @cmovN_cmpI_reg_reg\n\t"
  8816              "CMOV $dst,$src\t @cmovN_cmpI_reg_reg"
  8817          %}
  8818   ins_encode %{
  8819     Register op1 = $tmp1$$Register;
  8820     Register op2 = $tmp2$$Register;
  8821     Register dst = $dst$$Register;
  8822     Register src = $src$$Register;
  8823     int     flag = $cop$$cmpcode;
  8825     switch(flag)
  8827       case 0x01: //equal
  8828         __ subu32(AT, op1, op2);
  8829         __ movz(dst, src, AT);
  8830         break;
  8832       case 0x02: //not_equal
  8833         __ subu32(AT, op1, op2);
  8834         __ movn(dst, src, AT);
  8835         break;
  8837       case 0x03: //above
  8838         __ slt(AT, op2, op1);
  8839         __ movn(dst, src, AT);
  8840         break;
  8842       case 0x04: //above_equal
  8843         __ slt(AT, op1, op2);
  8844         __ movz(dst, src, AT);
  8845         break;
  8847       case 0x05: //below
  8848         __ slt(AT, op1, op2);
  8849         __ movn(dst, src, AT);
  8850         break;
  8852       case 0x06: //below_equal
  8853         __ slt(AT, op2, op1);
  8854         __ movz(dst, src, AT);
  8855        break;
  8857       default:
  8858           Unimplemented();
  8860   %}
  8862   ins_pipe( pipe_slow );
  8863 %}
  8866 instruct cmovL_cmpI_reg_reg(mRegL dst, mRegL src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  8867   match(Set dst (CMoveL (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  8868   ins_cost(80);
  8869   format %{
  8870              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpI_reg_reg\n"
  8871              "\tCMOV  $dst,$src \t @cmovL_cmpI_reg_reg"
  8872          %}
  8874   ins_encode %{
  8875     Register op1 = $tmp1$$Register;
  8876     Register op2 = $tmp2$$Register;
  8877     Register dst = as_Register($dst$$reg);
  8878     Register src = as_Register($src$$reg);
  8879     int     flag = $cop$$cmpcode;
  8881     switch(flag)
  8883       case 0x01: //equal
  8884         __ subu32(AT, op1, op2);
  8885         __ movz(dst, src, AT);
  8886         break;
  8888       case 0x02: //not_equal
  8889         __ subu32(AT, op1, op2);
  8890         __ movn(dst, src, AT);
  8891         break;
  8893       case 0x03: //great
  8894         __ slt(AT, op2, op1);
  8895         __ movn(dst, src, AT);
  8896         break;
  8898       case 0x04: //great_equal
  8899         __ slt(AT, op1, op2);
  8900         __ movz(dst, src, AT);
  8901         break;
  8903       case 0x05: //less
  8904         __ slt(AT, op1, op2);
  8905         __ movn(dst, src, AT);
  8906         break;
  8908       case 0x06: //less_equal
  8909         __ slt(AT, op2, op1);
  8910         __ movz(dst, src, AT);
  8911        break;
  8913       default:
  8914           Unimplemented();
  8916   %}
  8918   ins_pipe( pipe_slow );
  8919 %}
  8921 instruct cmovL_cmpL_reg_reg(mRegL dst, mRegL src, mRegL tmp1, mRegL tmp2, cmpOp cop ) %{
  8922   match(Set dst (CMoveL (Binary cop (CmpL tmp1 tmp2)) (Binary dst src)));
  8923   ins_cost(80);
  8924   format %{
  8925              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpL_reg_reg\n"
  8926              "\tCMOV  $dst,$src \t @cmovL_cmpL_reg_reg"
  8927          %}
  8928   ins_encode %{
  8929     Register opr1 = as_Register($tmp1$$reg);
  8930     Register opr2 = as_Register($tmp2$$reg);
  8931     Register dst  = as_Register($dst$$reg);
  8932     Register src  = as_Register($src$$reg);
  8933     int     flag = $cop$$cmpcode;
  8935     switch(flag)
  8937       case 0x01: //equal
  8938         __ subu(AT, opr1, opr2);
  8939         __ movz(dst, src, AT);
  8940         break;
  8942       case 0x02: //not_equal
  8943         __ subu(AT, opr1, opr2);
  8944         __ movn(dst, src, AT);
  8945         break;
  8947       case 0x03: //greater
  8948         __ slt(AT, opr2, opr1);
  8949         __ movn(dst, src, AT);
  8950         break;
  8952       case 0x04: //greater_equal
  8953         __ slt(AT, opr1, opr2);
  8954         __ movz(dst, src, AT);
  8955         break;
  8957       case 0x05: //less
  8958         __ slt(AT, opr1, opr2);
  8959         __ movn(dst, src, AT);
  8960         break;
  8962       case 0x06: //less_equal
  8963        __ slt(AT, opr2, opr1);
  8964        __ movz(dst, src, AT);
  8965        break;
  8967       default:
  8968           Unimplemented();
  8970   %}
  8972   ins_pipe( pipe_slow );
  8973 %}
  8975 instruct cmovL_cmpN_reg_reg(mRegL dst, mRegL src, mRegN tmp1, mRegN tmp2, cmpOpU cop ) %{
  8976   match(Set dst (CMoveL (Binary cop (CmpN tmp1 tmp2)) (Binary dst src)));
  8977   ins_cost(80);
  8978   format %{
  8979              "CMPU$cop $tmp1,$tmp2\t @cmovL_cmpN_reg_reg\n\t"
  8980              "CMOV $dst,$src\t @cmovL_cmpN_reg_reg"
  8981          %}
  8982   ins_encode %{
  8983     Register op1 = $tmp1$$Register;
  8984     Register op2 = $tmp2$$Register;
  8985     Register dst = $dst$$Register;
  8986     Register src = $src$$Register;
  8987     int     flag = $cop$$cmpcode;
  8989     switch(flag)
  8991       case 0x01: //equal
  8992         __ subu32(AT, op1, op2);
  8993         __ movz(dst, src, AT);
  8994         break;
  8996       case 0x02: //not_equal
  8997         __ subu32(AT, op1, op2);
  8998         __ movn(dst, src, AT);
  8999         break;
  9001       case 0x03: //above
  9002         __ sltu(AT, op2, op1);
  9003         __ movn(dst, src, AT);
  9004         break;
  9006       case 0x04: //above_equal
  9007         __ sltu(AT, op1, op2);
  9008         __ movz(dst, src, AT);
  9009         break;
  9011       case 0x05: //below
  9012         __ sltu(AT, op1, op2);
  9013         __ movn(dst, src, AT);
  9014         break;
  9016       case 0x06: //below_equal
  9017         __ sltu(AT, op2, op1);
  9018         __ movz(dst, src, AT);
  9019         break;
  9021       default:
  9022           Unimplemented();
  9024   %}
  9026   ins_pipe( pipe_slow );
  9027 %}
  9030 instruct cmovL_cmpD_reg_reg(mRegL dst, mRegL src, regD tmp1, regD tmp2, cmpOp cop ) %{
  9031   match(Set dst (CMoveL (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  9032   ins_cost(80);
  9033   format %{
  9034              "CMP$cop  $tmp1, $tmp2\t  @cmovL_cmpD_reg_reg\n"
  9035              "\tCMOV  $dst,$src \t @cmovL_cmpD_reg_reg"
  9036          %}
  9037   ins_encode %{
  9038     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  9039     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  9040     Register dst = as_Register($dst$$reg);
  9041     Register src = as_Register($src$$reg);
  9043     int     flag = $cop$$cmpcode;
  9045     switch(flag)
  9047       case 0x01: //equal
  9048         __ c_eq_d(reg_op1, reg_op2);
  9049         __ movt(dst, src);
  9050         break;
  9051       case 0x02: //not_equal
  9052         __ c_eq_d(reg_op1, reg_op2);
  9053         __ movf(dst, src);
  9054         break;
  9055       case 0x03: //greater
  9056         __ c_ole_d(reg_op1, reg_op2);
  9057         __ movf(dst, src);
  9058         break;
  9059       case 0x04: //greater_equal
  9060         __ c_olt_d(reg_op1, reg_op2);
  9061         __ movf(dst, src);
  9062         break;
  9063       case 0x05: //less
  9064         __ c_ult_d(reg_op1, reg_op2);
  9065         __ movt(dst, src);
  9066         break;
  9067       case 0x06: //less_equal
  9068         __ c_ule_d(reg_op1, reg_op2);
  9069         __ movt(dst, src);
  9070         break;
  9071       default:
  9072           Unimplemented();
  9074   %}
  9076   ins_pipe( pipe_slow );
  9077 %}
  9079 instruct cmovD_cmpD_reg_reg(regD dst, regD src, regD tmp1, regD tmp2, cmpOp cop ) %{
  9080   match(Set dst (CMoveD (Binary cop (CmpD tmp1 tmp2)) (Binary dst src)));
  9081   ins_cost(200);
  9082   format %{
  9083              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpD_reg_reg\n"
  9084              "\tCMOV  $dst,$src \t @cmovD_cmpD_reg_reg"
  9085          %}
  9086   ins_encode %{
  9087     FloatRegister reg_op1 = as_FloatRegister($tmp1$$reg);
  9088     FloatRegister reg_op2 = as_FloatRegister($tmp2$$reg);
  9089     FloatRegister dst = as_FloatRegister($dst$$reg);
  9090     FloatRegister src = as_FloatRegister($src$$reg);
  9092     int     flag = $cop$$cmpcode;
  9094     Label L;
  9096     switch(flag)
  9098       case 0x01: //equal
  9099         __ c_eq_d(reg_op1, reg_op2);
  9100         __ bc1f(L);
  9101         __ nop();
  9102         __ mov_d(dst, src);
  9103         __ bind(L); 
  9104         break;
  9105       case 0x02: //not_equal
  9106 //2016/4/19 aoqi: See instruct branchConD_reg_reg. The change in branchConD_reg_reg fixed a bug. It seems similar here, so I made thesame change.
  9107         __ c_eq_d(reg_op1, reg_op2);
  9108         __ bc1t(L);
  9109         __ nop();
  9110         __ mov_d(dst, src);
  9111         __ bind(L); 
  9112         break;
  9113       case 0x03: //greater
  9114         __ c_ole_d(reg_op1, reg_op2);
  9115         __ bc1t(L);
  9116         __ nop();
  9117         __ mov_d(dst, src);
  9118         __ bind(L); 
  9119         break;
  9120       case 0x04: //greater_equal
  9121         __ c_olt_d(reg_op1, reg_op2);
  9122         __ bc1t(L);
  9123         __ nop();
  9124         __ mov_d(dst, src);
  9125         __ bind(L); 
  9126         break;
  9127       case 0x05: //less
  9128         __ c_ult_d(reg_op1, reg_op2);
  9129         __ bc1f(L);
  9130         __ nop();
  9131         __ mov_d(dst, src);
  9132         __ bind(L); 
  9133         break;
  9134       case 0x06: //less_equal
  9135         __ c_ule_d(reg_op1, reg_op2);
  9136         __ bc1f(L);
  9137         __ nop();
  9138         __ mov_d(dst, src);
  9139         __ bind(L); 
  9140         break;
  9141       default:
  9142           Unimplemented();
  9144   %}
  9146   ins_pipe( pipe_slow );
  9147 %}
  9149 instruct cmovF_cmpI_reg_reg(regF dst, regF src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  9150   match(Set dst (CMoveF (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  9151   ins_cost(200);
  9152   format %{
  9153              "CMP$cop  $tmp1, $tmp2\t  @cmovF_cmpI_reg_reg\n"
  9154              "\tCMOV  $dst, $src \t @cmovF_cmpI_reg_reg"
  9155          %}
  9157   ins_encode %{
  9158     Register op1 = $tmp1$$Register;
  9159     Register op2 = $tmp2$$Register;
  9160     FloatRegister dst = as_FloatRegister($dst$$reg);
  9161     FloatRegister src = as_FloatRegister($src$$reg);
  9162     int     flag = $cop$$cmpcode;
  9163     Label      L; 
  9165     switch(flag)
  9167       case 0x01: //equal
  9168        	__ bne(op1, op2, L); 
  9169         __ nop();
  9170         __ mov_s(dst, src);
  9171         __ bind(L);
  9172         break;
  9173       case 0x02: //not_equal
  9174        	__ beq(op1, op2, L); 
  9175         __ nop();
  9176         __ mov_s(dst, src);
  9177         __ bind(L);
  9178         break;
  9179       case 0x03: //great
  9180         __ slt(AT, op2, op1);
  9181        	__ beq(AT, R0, L);
  9182         __ nop();
  9183         __ mov_s(dst, src);
  9184         __ bind(L);
  9185         break;
  9186       case 0x04: //great_equal
  9187         __ slt(AT, op1, op2);
  9188         __ bne(AT, R0, L); 
  9189         __ nop();
  9190         __ mov_s(dst, src);
  9191         __ bind(L);
  9192         break;
  9193       case 0x05: //less
  9194         __ slt(AT, op1, op2);
  9195        	__ beq(AT, R0, L);
  9196         __ nop();
  9197         __ mov_s(dst, src);
  9198         __ bind(L);
  9199         break;
  9200       case 0x06: //less_equal
  9201         __ slt(AT, op2, op1);
  9202        	__ bne(AT, R0, L); 
  9203         __ nop();
  9204         __ mov_s(dst, src);
  9205         __ bind(L);
  9206        break;
  9207       default:
  9208           Unimplemented();
  9210   %}
  9212   ins_pipe( pipe_slow );
  9213 %}
  9215 instruct cmovD_cmpI_reg_reg(regD dst, regD src, mRegI tmp1, mRegI tmp2, cmpOp cop ) %{
  9216   match(Set dst (CMoveD (Binary cop (CmpI tmp1 tmp2)) (Binary dst src)));
  9217   ins_cost(200);
  9218   format %{
  9219              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpI_reg_reg\n"
  9220              "\tCMOV  $dst, $src \t @cmovD_cmpI_reg_reg"
  9221          %}
  9223   ins_encode %{
  9224     Register op1 = $tmp1$$Register;
  9225     Register op2 = $tmp2$$Register;
  9226     FloatRegister dst = as_FloatRegister($dst$$reg);
  9227     FloatRegister src = as_FloatRegister($src$$reg);
  9228     int     flag = $cop$$cmpcode;
  9229     Label      L; 
  9231     switch(flag)
  9233       case 0x01: //equal
  9234        	__ bne(op1, op2, L); 
  9235         __ nop();
  9236         __ mov_d(dst, src);
  9237         __ bind(L);
  9238         break;
  9239       case 0x02: //not_equal
  9240        	__ beq(op1, op2, L); 
  9241         __ nop();
  9242         __ mov_d(dst, src);
  9243         __ bind(L);
  9244         break;
  9245       case 0x03: //great
  9246         __ slt(AT, op2, op1);
  9247        	__ beq(AT, R0, L);
  9248         __ nop();
  9249         __ mov_d(dst, src);
  9250         __ bind(L);
  9251         break;
  9252       case 0x04: //great_equal
  9253         __ slt(AT, op1, op2);
  9254         __ bne(AT, R0, L); 
  9255         __ nop();
  9256         __ mov_d(dst, src);
  9257         __ bind(L);
  9258         break;
  9259       case 0x05: //less
  9260         __ slt(AT, op1, op2);
  9261        	__ beq(AT, R0, L);
  9262         __ nop();
  9263         __ mov_d(dst, src);
  9264         __ bind(L);
  9265         break;
  9266       case 0x06: //less_equal
  9267         __ slt(AT, op2, op1);
  9268        	__ bne(AT, R0, L); 
  9269         __ nop();
  9270         __ mov_d(dst, src);
  9271         __ bind(L);
  9272        break;
  9273       default:
  9274           Unimplemented();
  9276   %}
  9278   ins_pipe( pipe_slow );
  9279 %}
  9281 instruct cmovD_cmpP_reg_reg(regD dst, regD src, mRegP tmp1, mRegP tmp2, cmpOp cop ) %{
  9282   match(Set dst (CMoveD (Binary cop (CmpP tmp1 tmp2)) (Binary dst src)));
  9283   ins_cost(200);
  9284   format %{
  9285              "CMP$cop  $tmp1, $tmp2\t  @cmovD_cmpP_reg_reg\n"
  9286              "\tCMOV  $dst, $src \t @cmovD_cmpP_reg_reg"
  9287          %}
  9289   ins_encode %{
  9290     Register op1 = $tmp1$$Register;
  9291     Register op2 = $tmp2$$Register;
  9292     FloatRegister dst = as_FloatRegister($dst$$reg);
  9293     FloatRegister src = as_FloatRegister($src$$reg);
  9294     int     flag = $cop$$cmpcode;
  9295     Label      L; 
  9297     switch(flag)
  9299       case 0x01: //equal
  9300        	__ bne(op1, op2, L); 
  9301         __ nop();
  9302         __ mov_d(dst, src);
  9303         __ bind(L);
  9304         break;
  9305       case 0x02: //not_equal
  9306        	__ beq(op1, op2, L); 
  9307         __ nop();
  9308         __ mov_d(dst, src);
  9309         __ bind(L);
  9310         break;
  9311       case 0x03: //great
  9312         __ slt(AT, op2, op1);
  9313        	__ beq(AT, R0, L);
  9314         __ nop();
  9315         __ mov_d(dst, src);
  9316         __ bind(L);
  9317         break;
  9318       case 0x04: //great_equal
  9319         __ slt(AT, op1, op2);
  9320         __ bne(AT, R0, L); 
  9321         __ nop();
  9322         __ mov_d(dst, src);
  9323         __ bind(L);
  9324         break;
  9325       case 0x05: //less
  9326         __ slt(AT, op1, op2);
  9327        	__ beq(AT, R0, L);
  9328         __ nop();
  9329         __ mov_d(dst, src);
  9330         __ bind(L);
  9331         break;
  9332       case 0x06: //less_equal
  9333         __ slt(AT, op2, op1);
  9334        	__ bne(AT, R0, L); 
  9335         __ nop();
  9336         __ mov_d(dst, src);
  9337         __ bind(L);
  9338        break;
  9339       default:
  9340           Unimplemented();
  9342   %}
  9344   ins_pipe( pipe_slow );
  9345 %}
  9347 //FIXME
  9348 instruct cmovI_cmpF_reg_reg(mRegI dst, mRegI src, regF tmp1, regF tmp2, cmpOp cop ) %{
  9349   match(Set dst (CMoveI (Binary cop (CmpF tmp1 tmp2)) (Binary dst src)));
  9350   ins_cost(80);
  9351   format %{
  9352              "CMP$cop  $tmp1, $tmp2\t  @cmovI_cmpF_reg_reg\n"
  9353              "\tCMOV  $dst,$src \t @cmovI_cmpF_reg_reg"
  9354          %}
  9356   ins_encode %{
  9357     FloatRegister reg_op1 = $tmp1$$FloatRegister;
  9358     FloatRegister reg_op2 = $tmp2$$FloatRegister;
  9359     Register dst = $dst$$Register;
  9360     Register src = $src$$Register;
  9361     int     flag = $cop$$cmpcode;
  9363     switch(flag)
  9365       case 0x01: //equal
  9366         __ c_eq_s(reg_op1, reg_op2);
  9367         __ movt(dst, src);
  9368         break;
  9369       case 0x02: //not_equal
  9370         __ c_eq_s(reg_op1, reg_op2);
  9371         __ movf(dst, src);
  9372         break;
  9373       case 0x03: //greater
  9374         __ c_ole_s(reg_op1, reg_op2);
  9375         __ movf(dst, src);
  9376         break;
  9377       case 0x04: //greater_equal
  9378         __ c_olt_s(reg_op1, reg_op2);
  9379         __ movf(dst, src);
  9380         break;
  9381       case 0x05: //less
  9382         __ c_ult_s(reg_op1, reg_op2);
  9383         __ movt(dst, src);
  9384         break;
  9385       case 0x06: //less_equal
  9386         __ c_ule_s(reg_op1, reg_op2);
  9387         __ movt(dst, src);
  9388        break;
  9389       default:
  9390           Unimplemented();
  9392   %}
  9393   ins_pipe( pipe_slow );
  9394 %}
  9396 instruct cmovF_cmpF_reg_reg(regF dst, regF src, regF tmp1, regF tmp2, cmpOp cop ) %{
  9397   match(Set dst (CMoveF (Binary cop (CmpF tmp1 tmp2)) (Binary dst src)));
  9398   ins_cost(200);
  9399   format %{
  9400              "CMP$cop  $tmp1, $tmp2\t  @cmovF_cmpF_reg_reg\n"
  9401              "\tCMOV  $dst,$src \t @cmovF_cmpF_reg_reg"
  9402          %}
  9404   ins_encode %{
  9405     FloatRegister reg_op1 = $tmp1$$FloatRegister;
  9406     FloatRegister reg_op2 = $tmp2$$FloatRegister;
  9407     FloatRegister dst = $dst$$FloatRegister;
  9408     FloatRegister src = $src$$FloatRegister;
  9409     Label  L;
  9410     int    flag = $cop$$cmpcode;
  9412     switch(flag)
  9414       case 0x01: //equal
  9415         __ c_eq_s(reg_op1, reg_op2);
  9416         __ bc1f(L);
  9417         __ nop();
  9418         __ mov_s(dst, src);
  9419         __ bind(L);
  9420         break;
  9421       case 0x02: //not_equal
  9422         __ c_eq_s(reg_op1, reg_op2);
  9423         __ bc1t(L);
  9424         __ nop();
  9425         __ mov_s(dst, src);
  9426         __ bind(L);
  9427         break;
  9428       case 0x03: //greater
  9429         __ c_ole_s(reg_op1, reg_op2);
  9430         __ bc1t(L);
  9431         __ nop();
  9432         __ mov_s(dst, src);
  9433         __ bind(L);
  9434         break;
  9435       case 0x04: //greater_equal
  9436         __ c_olt_s(reg_op1, reg_op2);
  9437         __ bc1t(L);
  9438         __ nop();
  9439         __ mov_s(dst, src);
  9440         __ bind(L);
  9441         break;
  9442       case 0x05: //less
  9443         __ c_ult_s(reg_op1, reg_op2);
  9444         __ bc1f(L);
  9445         __ nop();
  9446         __ mov_s(dst, src);
  9447         __ bind(L);
  9448         break;
  9449       case 0x06: //less_equal
  9450         __ c_ule_s(reg_op1, reg_op2);
  9451         __ bc1f(L);
  9452         __ nop();
  9453         __ mov_s(dst, src);
  9454         __ bind(L);
  9455        break;
  9456       default:
  9457           Unimplemented();
  9459   %}
  9460   ins_pipe( pipe_slow );
  9461 %}
  9463 // Manifest a CmpL result in an integer register.  Very painful.
  9464 // This is the test to avoid.
  9465 instruct cmpL3_reg_reg(mRegI dst, mRegL src1, mRegL src2) %{
  9466   match(Set dst (CmpL3 src1 src2));
  9467   ins_cost(1000);
  9468   format %{ "cmpL3  $dst, $src1, $src2 @ cmpL3_reg_reg" %}
  9469   ins_encode %{
  9470     Register opr1 = as_Register($src1$$reg);
  9471     Register opr2 = as_Register($src2$$reg);
  9472     Register dst  = as_Register($dst$$reg);
  9474     Label p_one,  done;
  9476     __ subu(dst, opr1, opr2);
  9478     __ beq(dst, R0, done);
  9479     __ nop();
  9481     __ bgtz(dst, done);
  9482     __ delayed()->addiu32(dst, R0, 1);
  9484     __ addiu32(dst, R0, -1);
  9486     __ bind(done);
  9487   %}
  9488   ins_pipe( pipe_slow );
  9489 %}
  9491 //
  9492 // less_rsult     = -1 
  9493 // greater_result =  1
  9494 // equal_result   =  0 
  9495 // nan_result     = -1
  9496 //
  9497 instruct cmpF3_reg_reg(mRegI dst, regF src1, regF src2) %{
  9498   match(Set dst (CmpF3 src1 src2));
  9499   ins_cost(1000);
  9500   format %{ "cmpF3  $dst, $src1, $src2 @ cmpF3_reg_reg" %}
  9501   ins_encode %{
  9502     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9503     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9504     Register dst = as_Register($dst$$reg);
  9506     Label EQU, LESS, DONE;
  9508     __ move(dst, 1);
  9509     __ c_eq_s(src1, src2);
  9510     __ bc1t(EQU);
  9511     __ nop();
  9512     __ c_ult_s(src1, src2);
  9513     __ bc1t(LESS);
  9514     __ nop();
  9515     __ beq(R0, R0, DONE);
  9516     __ nop();
  9517     __ bind(EQU);
  9518     __ move(dst, 0);
  9519     __ beq(R0, R0, DONE);
  9520     __ nop();
  9521     __ bind(LESS);
  9522     __ move(dst, -1);
  9523     __ bind(DONE);
  9524   %}
  9525   ins_pipe( pipe_slow );
  9526 %}
  9528 instruct cmpD3_reg_reg(mRegI dst, regD src1, regD src2) %{
  9529   match(Set dst (CmpD3 src1 src2));
  9530   ins_cost(1000);
  9531   format %{ "cmpD3  $dst, $src1, $src2 @ cmpD3_reg_reg" %}
  9532   ins_encode %{
  9533     FloatRegister src1 = as_FloatRegister($src1$$reg);
  9534     FloatRegister src2 = as_FloatRegister($src2$$reg);
  9535     Register dst = as_Register($dst$$reg);
  9537     Label EQU, LESS, DONE;
  9539     __ move(dst, 1);
  9540     __ c_eq_d(src1, src2);
  9541     __ bc1t(EQU);
  9542     __ nop();
  9543     __ c_ult_d(src1, src2);
  9544     __ bc1t(LESS);
  9545     __ nop();
  9546     __ beq(R0, R0, DONE);
  9547     __ nop();
  9548     __ bind(EQU);
  9549     __ move(dst, 0);
  9550     __ beq(R0, R0, DONE);
  9551     __ nop();
  9552     __ bind(LESS);
  9553     __ move(dst, -1);
  9554     __ bind(DONE);
  9555   %}
  9556   ins_pipe( pipe_slow );
  9557 %}
  9559 instruct clear_array(mRegL cnt, mRegP base, Universe dummy) %{
  9560   match(Set dummy (ClearArray cnt base));
  9561   format %{ "CLEAR_ARRAY base = $base, cnt = $cnt # Clear doublewords" %}
  9562   ins_encode %{
  9563     //Assume cnt is the number of bytes in an array to be cleared,
  9564     //and base points to the starting address of the array.
  9565     Register base = $base$$Register;
  9566     Register num  = $cnt$$Register;
  9567     Label Loop, done;
  9569     /* 2012/9/21 Jin: according to X86, $cnt is caculated by doublewords(8 bytes) */
  9570     __ move(T9, num);	/* T9 = words */
  9571     __ beq(T9, R0, done);
  9572     __ nop();
  9573     __ move(AT, base);
  9575     __ bind(Loop);
  9576     __ sd(R0, Address(AT, 0));
  9577     __ daddi(AT, AT, wordSize);
  9578     __ daddi(T9, T9, -1);
  9579     __ bne(T9, R0, Loop);
  9580     __ delayed()->nop();
  9581     __ bind(done);
  9582   %}
  9583   ins_pipe( pipe_slow );
  9584 %}
  9586 instruct string_compare(a4_RegP str1, mA5RegI cnt1, a6_RegP str2,  mA7RegI cnt2, no_Ax_mRegI result) %{
  9587   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9588   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2);
  9590   format %{ "String Compare $str1[len: $cnt1], $str2[len: $cnt2] -> $result @ string_compare" %}
  9591   ins_encode %{
  9592     // Get the first character position in both strings
  9593     //         [8] char array, [12] offset, [16] count 
  9594     Register str1   = $str1$$Register;
  9595     Register str2   = $str2$$Register;
  9596     Register cnt1   = $cnt1$$Register;
  9597     Register cnt2   = $cnt2$$Register;
  9598     Register result = $result$$Register;
  9600     Label L, Loop, haveResult, done;
  9602    // compute the and difference of lengths (in result)
  9603    __ subu(result, cnt1, cnt2); // result holds the difference of two lengths
  9605    // compute the shorter length (in cnt1)
  9606    __ slt(AT, cnt2, cnt1);
  9607    __ movn(cnt1, cnt2, AT);
  9609    // Now the shorter length is in cnt1 and cnt2 can be used as a tmp register 
  9610    __ bind(Loop);                        // Loop begin
  9611    __ beq(cnt1, R0, done);
  9612    __ delayed()->lhu(AT, str1, 0);;
  9614    // compare current character
  9615    __ lhu(cnt2, str2, 0);
  9616    __ bne(AT, cnt2, haveResult);
  9617    __ delayed()->addi(str1, str1, 2);
  9618    __ addi(str2, str2, 2);
  9619    __ b(Loop);
  9620    __ delayed()->addi(cnt1, cnt1, -1);   // Loop end
  9622    __ bind(haveResult);
  9623    __ subu(result, AT, cnt2);
  9625    __ bind(done);
  9626   %}
  9628   ins_pipe( pipe_slow );
  9629 %}
  9631 // intrinsic optimization
  9632 instruct string_equals(a4_RegP str1, a5_RegP str2, mA6RegI cnt, mA7RegI temp, no_Ax_mRegI result) %{
  9633   match(Set result (StrEquals (Binary str1 str2) cnt));
  9634   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL temp);
  9636   format %{ "String Equal $str1, $str2, len:$cnt  tmp:$temp -> $result @ string_equals" %}
  9637   ins_encode %{
  9638     // Get the first character position in both strings
  9639     //         [8] char array, [12] offset, [16] count 
  9640     Register str1   = $str1$$Register;
  9641     Register str2   = $str2$$Register;
  9642     Register cnt    = $cnt$$Register;
  9643     Register tmp    = $temp$$Register;
  9644     Register result = $result$$Register;
  9646     Label    Loop, done;
  9649    __ beq(str1, str2, done);  // same char[] ?
  9650    __ daddiu(result, R0, 1);
  9652    __ bind(Loop);             // Loop begin
  9653    __ beq(cnt, R0, done);
  9654    __ daddiu(result, R0, 1); // count == 0
  9656    // compare current character
  9657    __ lhu(AT, str1, 0);;
  9658    __ lhu(tmp, str2, 0);
  9659    __ bne(AT, tmp, done);
  9660    __ delayed()->daddi(result, R0, 0);
  9661    __ addi(str1, str1, 2);
  9662    __ addi(str2, str2, 2);
  9663    __ b(Loop);
  9664    __ delayed()->addi(cnt, cnt, -1);  // Loop end
  9666    __ bind(done);
  9667   %}
  9669   ins_pipe( pipe_slow );
  9670 %}
  9672 //----------Arithmetic Instructions-------------------------------------------
  9673 //----------Addition Instructions---------------------------------------------
  9674 instruct addI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9675   match(Set dst (AddI src1 src2));
  9677   format %{ "add   $dst, $src1, $src2 #@addI_Reg_Reg" %}
  9678   ins_encode %{
  9679     Register  dst = $dst$$Register;
  9680     Register src1 = $src1$$Register;
  9681     Register src2 = $src2$$Register;
  9682     __ addu32(dst, src1, src2);
  9683   %}
  9684   ins_pipe( ialu_regI_regI );
  9685 %}
  9687 instruct addI_Reg_imm(mRegI dst, mRegI src1,  immI src2) %{
  9688   match(Set dst (AddI src1 src2));
  9690   format %{ "add    $dst, $src1, $src2 #@addI_Reg_imm" %}
  9691   ins_encode %{
  9692     Register  dst = $dst$$Register;
  9693     Register src1 = $src1$$Register;
  9694     int       imm = $src2$$constant;
  9696     if(Assembler::is_simm16(imm)) {
  9697        __ addiu32(dst, src1, imm);
  9698     } else {
  9699        __ move(AT, imm);
  9700        __ addu32(dst, src1, AT);
  9702   %}
  9703   ins_pipe( ialu_regI_regI );
  9704 %}
  9706 instruct addP_reg_reg(mRegP dst, mRegP src1, mRegL src2) %{
  9707   match(Set dst (AddP src1 src2));
  9709   format %{ "dadd    $dst, $src1, $src2 #@addP_reg_reg" %}
  9711   ins_encode %{
  9712     Register  dst = $dst$$Register;
  9713     Register src1 = $src1$$Register;
  9714     Register src2 = $src2$$Register;
  9715     __ daddu(dst, src1, src2);  
  9716   %}
  9718   ins_pipe( ialu_regI_regI );
  9719 %}
  9721 instruct addP_reg_reg_convI2L(mRegP dst, mRegP src1, mRegI src2) %{
  9722   match(Set dst (AddP src1 (ConvI2L src2)));
  9724   format %{ "dadd    $dst, $src1, $src2 #@addP_reg_reg_convI2L" %}
  9726   ins_encode %{
  9727     Register  dst = $dst$$Register;
  9728     Register src1 = $src1$$Register;
  9729     Register src2 = $src2$$Register;
  9730     __ daddu(dst, src1, src2);  
  9731   %}
  9733   ins_pipe( ialu_regI_regI );
  9734 %}
  9736 instruct addP_reg_imm(mRegP dst, mRegP src1,  immL32 src2) %{
  9737   match(Set dst (AddP src1 src2));
  9738 //  effect(KILL cr);
  9740   format %{ "daddi   $dst, $src1, $src2 #@addP_reg_imm" %}
  9741   ins_encode %{
  9742     Register src1 = $src1$$Register;
  9743     long      src2 = $src2$$constant;
  9744     Register  dst = $dst$$Register;
  9746     if(Assembler::is_simm16(src2)) {
  9747        __ daddiu(dst, src1, src2);
  9748     } else {
  9749        __ li(AT, src2);
  9750        __ daddu(dst, src1, AT);
  9752   %}
  9753   ins_pipe( ialu_regI_imm16 );
  9754 %}
  9756 // Add Long Register with Register
  9757 instruct addL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
  9758   match(Set dst (AddL src1 src2));
  9759   ins_cost(200);
  9760   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_Reg\t" %}
  9762   ins_encode %{
  9763     Register dst_reg = as_Register($dst$$reg);
  9764     Register src1_reg = as_Register($src1$$reg);
  9765     Register src2_reg = as_Register($src2$$reg);
  9767     __ daddu(dst_reg, src1_reg, src2_reg);
  9768   %}
  9770   ins_pipe( ialu_regL_regL );
  9771 %}
  9773 instruct addL_Reg_imm(mRegL dst, mRegL src1, immL16 src2)
  9774 %{
  9775   match(Set dst (AddL src1 src2));
  9777   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_imm " %}
  9778   ins_encode %{
  9779     Register dst_reg  = as_Register($dst$$reg);
  9780     Register src1_reg = as_Register($src1$$reg);
  9781     int      src2_imm = $src2$$constant;
  9783     __ daddiu(dst_reg, src1_reg, src2_imm);
  9784   %}
  9786   ins_pipe( ialu_regL_regL );
  9787 %}
  9789 instruct addL_RegI2L_imm(mRegL dst, mRegI src1, immL16 src2)
  9790 %{
  9791   match(Set dst (AddL (ConvI2L src1) src2));
  9793   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_imm " %}
  9794   ins_encode %{
  9795     Register dst_reg  = as_Register($dst$$reg);
  9796     Register src1_reg = as_Register($src1$$reg);
  9797     int      src2_imm = $src2$$constant;
  9799     __ daddiu(dst_reg, src1_reg, src2_imm);
  9800   %}
  9802   ins_pipe( ialu_regL_regL );
  9803 %}
  9805 instruct addL_RegI2L_Reg(mRegL dst, mRegI src1, mRegL src2) %{
  9806   match(Set dst (AddL (ConvI2L src1) src2));
  9807   ins_cost(200);
  9808   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_Reg\t" %}
  9810   ins_encode %{
  9811     Register dst_reg = as_Register($dst$$reg);
  9812     Register src1_reg = as_Register($src1$$reg);
  9813     Register src2_reg = as_Register($src2$$reg);
  9815     __ daddu(dst_reg, src1_reg, src2_reg);
  9816   %}
  9818   ins_pipe( ialu_regL_regL );
  9819 %}
  9821 instruct addL_RegI2L_RegI2L(mRegL dst, mRegI src1, mRegI src2) %{
  9822   match(Set dst (AddL (ConvI2L src1) (ConvI2L src2)));
  9823   ins_cost(200);
  9824   format %{ "ADD    $dst, $src1, $src2 #@addL_RegI2L_RegI2L\t" %}
  9826   ins_encode %{
  9827     Register dst_reg = as_Register($dst$$reg);
  9828     Register src1_reg = as_Register($src1$$reg);
  9829     Register src2_reg = as_Register($src2$$reg);
  9831     __ daddu(dst_reg, src1_reg, src2_reg);
  9832   %}
  9834   ins_pipe( ialu_regL_regL );
  9835 %}
  9837 instruct addL_Reg_RegI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9838   match(Set dst (AddL src1 (ConvI2L src2)));
  9839   ins_cost(200);
  9840   format %{ "ADD    $dst, $src1, $src2 #@addL_Reg_RegI2L\t" %}
  9842   ins_encode %{
  9843     Register dst_reg = as_Register($dst$$reg);
  9844     Register src1_reg = as_Register($src1$$reg);
  9845     Register src2_reg = as_Register($src2$$reg);
  9847     __ daddu(dst_reg, src1_reg, src2_reg);
  9848   %}
  9850   ins_pipe( ialu_regL_regL );
  9851 %}
  9853 //----------Subtraction Instructions-------------------------------------------
  9854 // Integer Subtraction Instructions
  9855 instruct subI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9856   match(Set dst (SubI src1 src2));
  9857   ins_cost(100);
  9859   format %{ "sub    $dst, $src1, $src2 #@subI_Reg_Reg" %}
  9860   ins_encode %{
  9861     Register  dst = $dst$$Register;
  9862     Register src1 = $src1$$Register;
  9863     Register src2 = $src2$$Register;
  9864     __ subu32(dst, src1, src2);
  9865   %}
  9866   ins_pipe( ialu_regI_regI );
  9867 %}
  9869 instruct subI_Reg_immI16_sub(mRegI dst, mRegI src1,  immI16_sub src2) %{
  9870   match(Set dst (SubI src1 src2));
  9871   ins_cost(80);
  9873   format %{ "sub    $dst, $src1, $src2 #@subI_Reg_immI16_sub" %}
  9874   ins_encode %{
  9875     Register  dst = $dst$$Register;
  9876     Register src1 = $src1$$Register;
  9877     __ addiu32(dst, src1, -1 * $src2$$constant);
  9878   %}
  9879   ins_pipe( ialu_regI_regI );
  9880 %}
  9882 instruct negI_Reg(mRegI dst, immI0 zero,  mRegI src) %{
  9883   match(Set dst (SubI zero src));
  9884   ins_cost(80);
  9886   format %{ "neg    $dst, $src #@negI_Reg" %}
  9887   ins_encode %{
  9888     Register  dst = $dst$$Register;
  9889     Register  src = $src$$Register;
  9890     __ subu32(dst, R0, src);
  9891   %}
  9892   ins_pipe( ialu_regI_regI );
  9893 %}
  9895 instruct negL_Reg(mRegL dst, immL0 zero,  mRegL src) %{
  9896   match(Set dst (SubL zero src));
  9897   ins_cost(80);
  9899   format %{ "neg    $dst, $src #@negL_Reg" %}
  9900   ins_encode %{
  9901     Register  dst = $dst$$Register;
  9902     Register  src = $src$$Register;
  9903     __ subu(dst, R0, src);
  9904   %}
  9905   ins_pipe( ialu_regI_regI );
  9906 %}
  9908 instruct subL_Reg_immL16_sub(mRegL dst, mRegL src1,  immL16_sub src2) %{
  9909   match(Set dst (SubL src1 src2));
  9910   ins_cost(80);
  9912   format %{ "sub    $dst, $src1, $src2 #@subL_Reg_immL16_sub" %}
  9913   ins_encode %{
  9914     Register  dst = $dst$$Register;
  9915     Register src1 = $src1$$Register;
  9916     __ daddiu(dst, src1, -1 * $src2$$constant);
  9917   %}
  9918   ins_pipe( ialu_regI_regI );
  9919 %}
  9921 // Subtract Long Register with Register.
  9922 instruct subL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
  9923   match(Set dst (SubL src1 src2));
  9924   ins_cost(100);
  9925   format %{ "SubL    $dst, $src1, $src2 @ subL_Reg_Reg" %}
  9926   ins_encode %{
  9927     Register dst  = as_Register($dst$$reg);
  9928     Register src1 = as_Register($src1$$reg);
  9929     Register src2 = as_Register($src2$$reg);
  9931     __ subu(dst, src1, src2);
  9932   %}
  9933   ins_pipe( ialu_regL_regL );
  9934 %}
  9936 instruct subL_Reg_RegI2L(mRegL dst, mRegL src1, mRegI src2) %{
  9937   match(Set dst (SubL src1 (ConvI2L src2)));
  9938   ins_cost(100);
  9939   format %{ "SubL    $dst, $src1, $src2 @ subL_Reg_RegI2L" %}
  9940   ins_encode %{
  9941     Register dst  = as_Register($dst$$reg);
  9942     Register src1 = as_Register($src1$$reg);
  9943     Register src2 = as_Register($src2$$reg);
  9945     __ subu(dst, src1, src2);
  9946   %}
  9947   ins_pipe( ialu_regL_regL );
  9948 %}
  9950 instruct subL_RegI2L_Reg(mRegL dst, mRegI src1, mRegL src2) %{
  9951   match(Set dst (SubL (ConvI2L src1) src2));
  9952   ins_cost(200);
  9953   format %{ "SubL    $dst, $src1, $src2 @ subL_RegI2L_Reg" %}
  9954   ins_encode %{
  9955     Register dst  = as_Register($dst$$reg);
  9956     Register src1 = as_Register($src1$$reg);
  9957     Register src2 = as_Register($src2$$reg);
  9959     __ subu(dst, src1, src2);
  9960   %}
  9961   ins_pipe( ialu_regL_regL );
  9962 %}
  9964 instruct subL_RegI2L_RegI2L(mRegL dst, mRegI src1, mRegI src2) %{
  9965   match(Set dst (SubL (ConvI2L src1) (ConvI2L src2)));
  9966   ins_cost(200);
  9967   format %{ "SubL    $dst, $src1, $src2 @ subL_RegI2L_RegI2L" %}
  9968   ins_encode %{
  9969     Register dst  = as_Register($dst$$reg);
  9970     Register src1 = as_Register($src1$$reg);
  9971     Register src2 = as_Register($src2$$reg);
  9973     __ subu(dst, src1, src2);
  9974   %}
  9975   ins_pipe( ialu_regL_regL );
  9976 %}
  9978 // Integer MOD with Register
  9979 instruct modI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
  9980   match(Set dst (ModI src1 src2));
  9981   ins_cost(300);
  9982   format %{ "modi   $dst, $src1, $src2 @ modI_Reg_Reg" %}
  9983   ins_encode %{
  9984     Register  dst = $dst$$Register;
  9985     Register src1 = $src1$$Register;
  9986     Register src2 = $src2$$Register;
  9988     //if (UseLoongsonISA) {
  9989     if (0) {
  9990       // 2016.08.10 
  9991       // Experiments show that gsmod is slower that div+mfhi.
  9992       // So I just disable it here.
  9993       __ gsmod(dst, src1, src2);
  9994     } else {
  9995       __ div(src1, src2); 
  9996       __ mfhi(dst);  
  9998   %}
 10000   //ins_pipe( ialu_mod );
 10001   ins_pipe( ialu_regI_regI );
 10002 %}
 10004 instruct modL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10005   match(Set dst (ModL src1 src2));
 10006   format %{ "modL  $dst, $src1, $src2 @modL_reg_reg" %}
 10008   ins_encode %{
 10009     Register dst = as_Register($dst$$reg);
 10010     Register op1 = as_Register($src1$$reg);
 10011     Register op2 = as_Register($src2$$reg);
 10013     if (UseLoongsonISA) {
 10014       __ gsdmod(dst, op1, op2);
 10015     } else {
 10016       __ ddiv(op1, op2);
 10017       __ mfhi(dst);
 10019   %}
 10020   ins_pipe( pipe_slow );
 10021 %}
 10023 instruct mulI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 10024   match(Set dst (MulI src1 src2));
 10026   ins_cost(300);
 10027   format %{ "mul   $dst, $src1, $src2 @ mulI_Reg_Reg" %}
 10028   ins_encode %{
 10029      Register src1 = $src1$$Register;
 10030      Register src2 = $src2$$Register;
 10031      Register dst  = $dst$$Register;
 10033      __ mul(dst, src1, src2);
 10034   %}
 10035   ins_pipe( ialu_mult );
 10036 %}
 10038 instruct maddI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2, mRegI src3) %{
 10039   match(Set dst (AddI (MulI src1 src2) src3));
 10041   ins_cost(999);
 10042   format %{ "madd   $dst, $src1 * $src2 + $src3 #@maddI_Reg_Reg" %}
 10043   ins_encode %{
 10044      Register src1 = $src1$$Register;
 10045      Register src2 = $src2$$Register;
 10046      Register src3 = $src3$$Register;
 10047      Register dst  = $dst$$Register;
 10049      __ mtlo(src3);
 10050      __ madd(src1, src2);
 10051      __ mflo(dst);
 10052   %}
 10053   ins_pipe( ialu_mult );
 10054 %}
 10056 instruct divI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 10057   match(Set dst (DivI src1 src2));
 10059   ins_cost(300);
 10060   format %{ "div   $dst, $src1, $src2 @ divI_Reg_Reg" %}
 10061   ins_encode %{
 10062      Register src1 = $src1$$Register;
 10063      Register src2 = $src2$$Register;
 10064      Register dst  = $dst$$Register;
 10066     /* 2012/4/21 Jin: In MIPS, div does not cause exception.
 10067        We must trap an exception manually. */   
 10068     __ teq(R0, src2, 0x7);
 10070     if (UseLoongsonISA) {
 10071       __ gsdiv(dst, src1, src2);
 10072     } else {
 10073       __ div(src1, src2);
 10075       __ nop();
 10076       __ nop();
 10077       __ mflo(dst);
 10079   %}
 10080   ins_pipe( ialu_mod );
 10081 %}
 10083 instruct divF_Reg_Reg(regF dst, regF src1, regF src2) %{
 10084   match(Set dst (DivF src1 src2));
 10086   ins_cost(300);
 10087   format %{ "divF   $dst, $src1, $src2 @ divF_Reg_Reg" %}
 10088   ins_encode %{
 10089      FloatRegister src1 = $src1$$FloatRegister;
 10090      FloatRegister src2 = $src2$$FloatRegister;
 10091      FloatRegister dst  = $dst$$FloatRegister;
 10093     /* Here do we need to trap an exception manually ? */   
 10094     __ div_s(dst, src1, src2);
 10095   %}
 10096   ins_pipe( pipe_slow );
 10097 %}
 10099 instruct divD_Reg_Reg(regD dst, regD src1, regD src2) %{
 10100   match(Set dst (DivD src1 src2));
 10102   ins_cost(300);
 10103   format %{ "divD   $dst, $src1, $src2 @ divD_Reg_Reg" %}
 10104   ins_encode %{
 10105      FloatRegister src1 = $src1$$FloatRegister;
 10106      FloatRegister src2 = $src2$$FloatRegister;
 10107      FloatRegister dst  = $dst$$FloatRegister;
 10109     /* Here do we need to trap an exception manually ? */   
 10110     __ div_d(dst, src1, src2);
 10111   %}
 10112   ins_pipe( pipe_slow );
 10113 %}
 10115 instruct mulL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10116   match(Set dst (MulL src1 src2));
 10117   format %{ "mulL  $dst, $src1, $src2 @mulL_reg_reg" %}
 10118   ins_encode %{
 10119     Register dst = as_Register($dst$$reg);
 10120     Register op1 = as_Register($src1$$reg);
 10121     Register op2 = as_Register($src2$$reg);
 10123     if (UseLoongsonISA) {
 10124       __ gsdmult(dst, op1, op2);
 10125     } else {
 10126       __ dmult(op1, op2);
 10127       __ mflo(dst);
 10129   %}
 10130   ins_pipe( pipe_slow );
 10131 %}
 10133 instruct divL_reg_reg(mRegL dst, mRegL src1, mRegL src2) %{
 10134   match(Set dst (DivL src1 src2));
 10135   format %{ "divL  $dst, $src1, $src2 @divL_reg_reg" %}
 10137   ins_encode %{
 10138     Register dst = as_Register($dst$$reg);
 10139     Register op1 = as_Register($src1$$reg);
 10140     Register op2 = as_Register($src2$$reg);
 10142     if (UseLoongsonISA) {
 10143       __ gsddiv(dst, op1, op2);
 10144     } else {
 10145       __ ddiv(op1, op2);
 10146       __ mflo(dst);
 10148   %}
 10149   ins_pipe( pipe_slow );
 10150 %}
 10152 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
 10153   match(Set dst (AddF src1 src2));
 10154   format %{ "AddF  $dst, $src1, $src2 @addF_reg_reg" %}
 10155   ins_encode %{
 10156     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10157     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10158     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10160     __ add_s(dst, src1, src2);  
 10161   %}
 10162   ins_pipe( fpu_regF_regF );
 10163 %}
 10165 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
 10166   match(Set dst (SubF src1 src2));
 10167   format %{ "SubF  $dst, $src1, $src2 @subF_reg_reg" %}
 10168   ins_encode %{
 10169     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10170     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10171     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10173     __ sub_s(dst, src1, src2);  
 10174   %}
 10175   ins_pipe( fpu_regF_regF );
 10176 %}
 10177 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
 10178   match(Set dst (AddD src1 src2));
 10179   format %{ "AddD  $dst, $src1, $src2 @addD_reg_reg" %}
 10180   ins_encode %{
 10181     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10182     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10183     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10185     __ add_d(dst, src1, src2);  
 10186   %}
 10187   ins_pipe( fpu_regF_regF );
 10188 %}
 10190 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
 10191   match(Set dst (SubD src1 src2));
 10192   format %{ "SubD  $dst, $src1, $src2 @subD_reg_reg" %}
 10193   ins_encode %{
 10194     FloatRegister src1 = as_FloatRegister($src1$$reg);
 10195     FloatRegister src2 = as_FloatRegister($src2$$reg);
 10196     FloatRegister dst  = as_FloatRegister($dst$$reg);
 10198     __ sub_d(dst, src1, src2);  
 10199   %}
 10200   ins_pipe( fpu_regF_regF );
 10201 %}
 10203 instruct negF_reg(regF dst, regF src) %{
 10204   match(Set dst (NegF src));
 10205   format %{ "negF  $dst, $src @negF_reg" %}
 10206   ins_encode %{
 10207     FloatRegister src = as_FloatRegister($src$$reg);
 10208     FloatRegister dst = as_FloatRegister($dst$$reg);
 10210     __ neg_s(dst, src);
 10211   %}
 10212   ins_pipe( fpu_regF_regF );
 10213 %}
 10215 instruct negD_reg(regD dst, regD src) %{
 10216   match(Set dst (NegD src));
 10217   format %{ "negD  $dst, $src @negD_reg" %}
 10218   ins_encode %{
 10219     FloatRegister src = as_FloatRegister($src$$reg);
 10220     FloatRegister dst = as_FloatRegister($dst$$reg);
 10222     __ neg_d(dst, src);  
 10223   %}
 10224   ins_pipe( fpu_regF_regF );
 10225 %}
 10228 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
 10229   match(Set dst (MulF src1 src2));
 10230   format %{ "MULF  $dst, $src1, $src2 @mulF_reg_reg" %}
 10231   ins_encode %{
 10232     FloatRegister src1 = $src1$$FloatRegister;
 10233     FloatRegister src2 = $src2$$FloatRegister;
 10234     FloatRegister dst  = $dst$$FloatRegister;
 10236     __ mul_s(dst, src1, src2);  
 10237   %}
 10238   ins_pipe( fpu_regF_regF );
 10239 %}
 10241 instruct maddF_reg_reg(regF dst, regF src1, regF src2, regF src3) %{
 10242   match(Set dst (AddF (MulF src1 src2) src3));
 10243   // For compatibility reason (e.g. on the Loongson platform), disable this guy.
 10244   ins_cost(44444);
 10245   format %{ "maddF  $dst, $src1, $src2, $src3 @maddF_reg_reg" %}
 10246   ins_encode %{
 10247     FloatRegister src1 = $src1$$FloatRegister;
 10248     FloatRegister src2 = $src2$$FloatRegister;
 10249     FloatRegister src3 = $src3$$FloatRegister;
 10250     FloatRegister dst  = $dst$$FloatRegister;
 10252     __ madd_s(dst, src1, src2, src3);  
 10253   %}
 10254   ins_pipe( fpu_regF_regF );
 10255 %}
 10257 // Mul two double precision floating piont number
 10258 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
 10259   match(Set dst (MulD src1 src2));
 10260   format %{ "MULD  $dst, $src1, $src2 @mulD_reg_reg" %}
 10261   ins_encode %{
 10262     FloatRegister src1 = $src1$$FloatRegister;
 10263     FloatRegister src2 = $src2$$FloatRegister;
 10264     FloatRegister dst  = $dst$$FloatRegister;
 10266     __ mul_d(dst, src1, src2);  
 10267   %}
 10268   ins_pipe( fpu_regF_regF );
 10269 %}
 10271 instruct maddD_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
 10272   match(Set dst (AddD (MulD src1 src2) src3));
 10273   // For compatibility reason (e.g. on the Loongson platform), disable this guy.
 10274   ins_cost(44444);
 10275   format %{ "maddD  $dst, $src1, $src2, $src3 @maddD_reg_reg" %}
 10276   ins_encode %{
 10277     FloatRegister src1 = $src1$$FloatRegister;
 10278     FloatRegister src2 = $src2$$FloatRegister;
 10279     FloatRegister src3 = $src3$$FloatRegister;
 10280     FloatRegister dst  = $dst$$FloatRegister;
 10282     __ madd_d(dst, src1, src2, src3);  
 10283   %}
 10284   ins_pipe( fpu_regF_regF );
 10285 %}
 10287 instruct absF_reg(regF dst, regF src) %{
 10288   match(Set dst (AbsF src));
 10289   ins_cost(100);
 10290   format %{ "absF  $dst, $src @absF_reg" %}
 10291   ins_encode %{
 10292     FloatRegister src = as_FloatRegister($src$$reg);
 10293     FloatRegister dst = as_FloatRegister($dst$$reg);
 10295     __ abs_s(dst, src);  
 10296   %}
 10297   ins_pipe( fpu_regF_regF );
 10298 %}
 10301 // intrinsics for math_native.
 10302 // AbsD  SqrtD  CosD  SinD  TanD  LogD  Log10D
 10304 instruct absD_reg(regD dst, regD src) %{
 10305   match(Set dst (AbsD src));
 10306   ins_cost(100);
 10307   format %{ "absD  $dst, $src @absD_reg" %}
 10308   ins_encode %{
 10309     FloatRegister src = as_FloatRegister($src$$reg);
 10310     FloatRegister dst = as_FloatRegister($dst$$reg);
 10312     __ abs_d(dst, src);  
 10313   %}
 10314   ins_pipe( fpu_regF_regF );
 10315 %}
 10317 instruct sqrtD_reg(regD dst, regD src) %{
 10318   match(Set dst (SqrtD src));
 10319   ins_cost(100);
 10320   format %{ "SqrtD  $dst, $src @sqrtD_reg" %}
 10321   ins_encode %{
 10322     FloatRegister src = as_FloatRegister($src$$reg);
 10323     FloatRegister dst = as_FloatRegister($dst$$reg);
 10325     __ sqrt_d(dst, src);  
 10326   %}
 10327   ins_pipe( fpu_regF_regF );
 10328 %}
 10330 instruct sqrtF_reg(regF dst, regF src) %{
 10331   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10332   ins_cost(100);
 10333   format %{ "SqrtF  $dst, $src @sqrtF_reg" %}
 10334   ins_encode %{
 10335     FloatRegister src = as_FloatRegister($src$$reg);
 10336     FloatRegister dst = as_FloatRegister($dst$$reg);
 10338     __ sqrt_s(dst, src);
 10339   %}
 10340   ins_pipe( fpu_regF_regF );
 10341 %}
 10342 //----------------------------------Logical Instructions----------------------
 10343 //__________________________________Integer Logical Instructions-------------
 10345 //And Instuctions
 10346 // And Register with Immediate
 10347 instruct andI_Reg_imm(mRegI dst, mRegI src1,  immI src2) %{
 10348   match(Set dst (AndI src1 src2));
 10350   format %{ "and  $dst, $src1, $src2 #@andI_Reg_imm" %}
 10351   ins_encode %{
 10352     Register dst = $dst$$Register;
 10353     Register src = $src1$$Register;
 10354     int      val = $src2$$constant;
 10356        __ move(AT, val);
 10357        __ andr(dst, src, AT);
 10358   %}
 10359   ins_pipe( ialu_regI_regI );
 10360 %}
 10362 instruct andI_Reg_imm_0_65535(mRegI dst, mRegI src1,  immI_0_65535 src2) %{
 10363   match(Set dst (AndI src1 src2));
 10364   ins_cost(60);
 10366   format %{ "and  $dst, $src1, $src2 #@andI_Reg_imm_0_65535" %}
 10367   ins_encode %{
 10368     Register dst = $dst$$Register;
 10369     Register src = $src1$$Register;
 10370     int      val = $src2$$constant;
 10372        __ andi(dst, src, val);
 10373   %}
 10374   ins_pipe( ialu_regI_regI );
 10375 %}
 10377 instruct andI_Reg_immI_nonneg_mask(mRegI dst, mRegI src1,  immI_nonneg_mask mask) %{
 10378   match(Set dst (AndI src1 mask));
 10379   ins_cost(60);
 10381   format %{ "and  $dst, $src1, $mask #@andI_Reg_immI_nonneg_mask" %}
 10382   ins_encode %{
 10383     Register dst = $dst$$Register;
 10384     Register src = $src1$$Register;
 10385     int     size = Assembler::is_int_mask($mask$$constant);
 10387     __ ext(dst, src, 0, size);
 10388   %}
 10389   ins_pipe( ialu_regI_regI );
 10390 %}
 10392 instruct xorI_Reg_imm_0_65535(mRegI dst, mRegI src1,  immI_0_65535 src2) %{
 10393   match(Set dst (XorI src1 src2));
 10394   ins_cost(60);
 10396   format %{ "xori  $dst, $src1, $src2 #@xorI_Reg_imm_0_65535" %}
 10397   ins_encode %{
 10398     Register dst = $dst$$Register;
 10399     Register src = $src1$$Register;
 10400     int      val = $src2$$constant;
 10402        __ xori(dst, src, val);
 10403   %}
 10404   ins_pipe( ialu_regI_regI );
 10405 %}
 10407 instruct xorI_Reg_immI_M1(mRegI dst, mRegI src1,  immI_M1 M1) %{
 10408   match(Set dst (XorI src1 M1));
 10409   predicate(UseLoongsonISA);
 10410   ins_cost(60);
 10412   format %{ "xor  $dst, $src1, $M1 #@xorI_Reg_immI_M1" %}
 10413   ins_encode %{
 10414     Register dst = $dst$$Register;
 10415     Register src = $src1$$Register;
 10417        __ gsorn(dst, R0, src);
 10418   %}
 10419   ins_pipe( ialu_regI_regI );
 10420 %}
 10422 instruct xorL_Reg_imm_0_65535(mRegL dst, mRegL src1,  immL_0_65535 src2) %{
 10423   match(Set dst (XorL src1 src2));
 10424   ins_cost(60);
 10426   format %{ "xori  $dst, $src1, $src2 #@xorL_Reg_imm_0_65535" %}
 10427   ins_encode %{
 10428     Register dst = $dst$$Register;
 10429     Register src = $src1$$Register;
 10430     int      val = $src2$$constant;
 10432        __ xori(dst, src, val);
 10433   %}
 10434   ins_pipe( ialu_regI_regI );
 10435 %}
 10437 /*
 10438 instruct xorL_Reg_immL_M1(mRegL dst, mRegL src1,  immL_M1 M1) %{
 10439   match(Set dst (XorL src1 M1));
 10440   predicate(UseLoongsonISA);
 10441   ins_cost(60);
 10443   format %{ "xor  $dst, $src1, $M1 #@xorL_Reg_immL_M1" %}
 10444   ins_encode %{
 10445     Register dst = $dst$$Register;
 10446     Register src = $src1$$Register;
 10448        __ gsorn(dst, R0, src);
 10449   %}
 10450   ins_pipe( ialu_regI_regI );
 10451 %}
 10452 */
 10454 instruct lbu_and_lmask(mRegI dst, memory mem,  immI_255 mask) %{
 10455   match(Set dst (AndI mask (LoadB mem)));
 10456   ins_cost(60);
 10458   format %{ "lhu  $dst, $mem #@lbu_and_lmask" %}
 10459   ins_encode(load_UB_enc(dst, mem));
 10460   ins_pipe( ialu_loadI );
 10461 %}
 10463 instruct lbu_and_rmask(mRegI dst, memory mem,  immI_255 mask) %{
 10464   match(Set dst (AndI (LoadB mem) mask));
 10465   ins_cost(60);
 10467   format %{ "lhu  $dst, $mem #@lbu_and_rmask" %}
 10468   ins_encode(load_UB_enc(dst, mem));
 10469   ins_pipe( ialu_loadI );
 10470 %}
 10472 instruct andI_Reg_Reg(mRegI dst, mRegI src1,  mRegI src2) %{
 10473   match(Set dst (AndI src1 src2));
 10475   format %{ "and    $dst, $src1, $src2 #@andI_Reg_Reg" %}
 10476   ins_encode %{
 10477     Register dst = $dst$$Register;
 10478     Register src1 = $src1$$Register;
 10479     Register src2 = $src2$$Register;
 10480     __ andr(dst, src1, src2);
 10481   %}
 10482   ins_pipe( ialu_regI_regI );
 10483 %}
 10485 instruct andnI_Reg_nReg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10486   match(Set dst (AndI src1 (XorI src2 M1)));
 10487   predicate(UseLoongsonISA);
 10489   format %{ "andn   $dst, $src1, $src2 #@andnI_Reg_nReg" %}
 10490   ins_encode %{
 10491     Register dst = $dst$$Register;
 10492     Register src1 = $src1$$Register;
 10493     Register src2 = $src2$$Register;
 10495     __ gsandn(dst, src1, src2);
 10496   %}
 10497   ins_pipe( ialu_regI_regI );
 10498 %}
 10500 instruct ornI_Reg_nReg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10501   match(Set dst (OrI src1 (XorI src2 M1)));
 10502   predicate(UseLoongsonISA);
 10504   format %{ "orn    $dst, $src1, $src2 #@ornI_Reg_nReg" %}
 10505   ins_encode %{
 10506     Register dst = $dst$$Register;
 10507     Register src1 = $src1$$Register;
 10508     Register src2 = $src2$$Register;
 10510     __ gsorn(dst, src1, src2);
 10511   %}
 10512   ins_pipe( ialu_regI_regI );
 10513 %}
 10515 instruct andnI_nReg_Reg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10516   match(Set dst (AndI (XorI src1 M1) src2));
 10517   predicate(UseLoongsonISA);
 10519   format %{ "andn   $dst, $src2, $src1 #@andnI_nReg_Reg" %}
 10520   ins_encode %{
 10521     Register dst = $dst$$Register;
 10522     Register src1 = $src1$$Register;
 10523     Register src2 = $src2$$Register;
 10525     __ gsandn(dst, src2, src1);
 10526   %}
 10527   ins_pipe( ialu_regI_regI );
 10528 %}
 10530 instruct ornI_nReg_Reg(mRegI dst, mRegI src1,  mRegI src2, immI_M1 M1) %{
 10531   match(Set dst (OrI (XorI src1 M1) src2));
 10532   predicate(UseLoongsonISA);
 10534   format %{ "orn    $dst, $src2, $src1 #@ornI_nReg_Reg" %}
 10535   ins_encode %{
 10536     Register dst = $dst$$Register;
 10537     Register src1 = $src1$$Register;
 10538     Register src2 = $src2$$Register;
 10540     __ gsorn(dst, src2, src1);
 10541   %}
 10542   ins_pipe( ialu_regI_regI );
 10543 %}
 10545 // And Long Register with Register
 10546 instruct andL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10547   match(Set dst (AndL src1 src2));
 10548   format %{ "AND    $dst, $src1, $src2 @ andL_Reg_Reg\n\t" %}
 10549   ins_encode %{
 10550     Register dst_reg = as_Register($dst$$reg);
 10551     Register src1_reg = as_Register($src1$$reg);
 10552     Register src2_reg = as_Register($src2$$reg);
 10554     __ andr(dst_reg, src1_reg, src2_reg);
 10555   %}
 10556   ins_pipe( ialu_regL_regL );
 10557 %}
 10559 instruct andL_Reg_Reg_convI2L(mRegL dst, mRegL src1, mRegI src2) %{
 10560   match(Set dst (AndL src1 (ConvI2L src2)));
 10561   format %{ "AND    $dst, $src1, $src2 @ andL_Reg_Reg_convI2L\n\t" %}
 10562   ins_encode %{
 10563     Register dst_reg = as_Register($dst$$reg);
 10564     Register src1_reg = as_Register($src1$$reg);
 10565     Register src2_reg = as_Register($src2$$reg);
 10567     __ andr(dst_reg, src1_reg, src2_reg);
 10568   %}
 10569   ins_pipe( ialu_regL_regL );
 10570 %}
 10572 instruct andL_Reg_imm_0_65535(mRegL dst, mRegL src1,  immL_0_65535 src2) %{
 10573   match(Set dst (AndL src1 src2));
 10574   ins_cost(60);
 10576   format %{ "and  $dst, $src1, $src2 #@andL_Reg_imm_0_65535" %}
 10577   ins_encode %{
 10578     Register dst = $dst$$Register;
 10579     Register src = $src1$$Register;
 10580     long     val = $src2$$constant;
 10582        __ andi(dst, src, val);
 10583   %}
 10584   ins_pipe( ialu_regI_regI );
 10585 %}
 10587 /*
 10588 instruct andnL_Reg_nReg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10589   match(Set dst (AndL src1 (XorL src2 M1)));
 10590   predicate(UseLoongsonISA);
 10592   format %{ "andn   $dst, $src1, $src2 #@andnL_Reg_nReg" %}
 10593   ins_encode %{
 10594     Register dst = $dst$$Register;
 10595     Register src1 = $src1$$Register;
 10596     Register src2 = $src2$$Register;
 10598     __ gsandn(dst, src1, src2);
 10599   %}
 10600   ins_pipe( ialu_regI_regI );
 10601 %}
 10602 */
 10604 /*
 10605 instruct ornL_Reg_nReg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10606   match(Set dst (OrL src1 (XorL src2 M1)));
 10607   predicate(UseLoongsonISA);
 10609   format %{ "orn    $dst, $src1, $src2 #@ornL_Reg_nReg" %}
 10610   ins_encode %{
 10611     Register dst = $dst$$Register;
 10612     Register src1 = $src1$$Register;
 10613     Register src2 = $src2$$Register;
 10615     __ gsorn(dst, src1, src2);
 10616   %}
 10617   ins_pipe( ialu_regI_regI );
 10618 %}
 10619 */
 10621 /*
 10622 instruct andnL_nReg_Reg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10623   match(Set dst (AndL (XorL src1 M1) src2));
 10624   predicate(UseLoongsonISA);
 10626   format %{ "andn   $dst, $src2, $src1 #@andnL_nReg_Reg" %}
 10627   ins_encode %{
 10628     Register dst = $dst$$Register;
 10629     Register src1 = $src1$$Register;
 10630     Register src2 = $src2$$Register;
 10632     __ gsandn(dst, src2, src1);
 10633   %}
 10634   ins_pipe( ialu_regI_regI );
 10635 %}
 10636 */
 10638 /*
 10639 instruct ornL_nReg_Reg(mRegL dst, mRegL src1,  mRegL src2, immL_M1 M1) %{
 10640   match(Set dst (OrL (XorL src1 M1) src2));
 10641   predicate(UseLoongsonISA);
 10643   format %{ "orn    $dst, $src2, $src1 #@ornL_nReg_Reg" %}
 10644   ins_encode %{
 10645     Register dst = $dst$$Register;
 10646     Register src1 = $src1$$Register;
 10647     Register src2 = $src2$$Register;
 10649     __ gsorn(dst, src2, src1);
 10650   %}
 10651   ins_pipe( ialu_regI_regI );
 10652 %}
 10653 */
 10655 instruct andL_Reg_immL_M8(mRegL dst,  immL_M8 M8) %{
 10656   match(Set dst (AndL dst M8));
 10657   ins_cost(60);
 10659   format %{ "and  $dst, $dst, $M8 #@andL_Reg_immL_M8" %}
 10660   ins_encode %{
 10661     Register dst = $dst$$Register;
 10663     __ dins(dst, R0, 0, 3);
 10664   %}
 10665   ins_pipe( ialu_regI_regI );
 10666 %}
 10668 instruct andL_Reg_immL_M5(mRegL dst,  immL_M5 M5) %{
 10669   match(Set dst (AndL dst M5));
 10670   ins_cost(60);
 10672   format %{ "and  $dst, $dst, $M5 #@andL_Reg_immL_M5" %}
 10673   ins_encode %{
 10674     Register dst = $dst$$Register;
 10676     __ dins(dst, R0, 2, 1);
 10677   %}
 10678   ins_pipe( ialu_regI_regI );
 10679 %}
 10681 instruct andL_Reg_immL_M7(mRegL dst,  immL_M7 M7) %{
 10682   match(Set dst (AndL dst M7));
 10683   ins_cost(60);
 10685   format %{ "and  $dst, $dst, $M7 #@andL_Reg_immL_M7" %}
 10686   ins_encode %{
 10687     Register dst = $dst$$Register;
 10689     __ dins(dst, R0, 1, 2);
 10690   %}
 10691   ins_pipe( ialu_regI_regI );
 10692 %}
 10694 instruct andL_Reg_immL_M4(mRegL dst,  immL_M4 M4) %{
 10695   match(Set dst (AndL dst M4));
 10696   ins_cost(60);
 10698   format %{ "and  $dst, $dst, $M4 #@andL_Reg_immL_M4" %}
 10699   ins_encode %{
 10700     Register dst = $dst$$Register;
 10702     __ dins(dst, R0, 0, 2);
 10703   %}
 10704   ins_pipe( ialu_regI_regI );
 10705 %}
 10707 instruct andL_Reg_immL_M121(mRegL dst,  immL_M121 M121) %{
 10708   match(Set dst (AndL dst M121));
 10709   ins_cost(60);
 10711   format %{ "and  $dst, $dst, $M121 #@andL_Reg_immL_M121" %}
 10712   ins_encode %{
 10713     Register dst = $dst$$Register;
 10715     __ dins(dst, R0, 3, 4);
 10716   %}
 10717   ins_pipe( ialu_regI_regI );
 10718 %}
 10720 // Or Long Register with Register
 10721 instruct orL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10722   match(Set dst (OrL src1 src2));
 10723   format %{ "OR    $dst, $src1, $src2 @ orL_Reg_Reg\t" %}
 10724   ins_encode %{
 10725     Register dst_reg  = $dst$$Register;
 10726     Register src1_reg = $src1$$Register;
 10727     Register src2_reg = $src2$$Register;
 10729     __ orr(dst_reg, src1_reg, src2_reg);
 10730   %}
 10731   ins_pipe( ialu_regL_regL );
 10732 %}
 10734 instruct orL_Reg_P2XReg(mRegL dst, mRegP src1, mRegL src2) %{
 10735   match(Set dst (OrL (CastP2X src1) src2));
 10736   format %{ "OR    $dst, $src1, $src2 @ orL_Reg_P2XReg\t" %}
 10737   ins_encode %{
 10738     Register dst_reg  = $dst$$Register;
 10739     Register src1_reg = $src1$$Register;
 10740     Register src2_reg = $src2$$Register;
 10742     __ orr(dst_reg, src1_reg, src2_reg);
 10743   %}
 10744   ins_pipe( ialu_regL_regL );
 10745 %}
 10747 // Xor Long Register with Register
 10748 instruct xorL_Reg_Reg(mRegL dst, mRegL src1, mRegL src2) %{
 10749   match(Set dst (XorL src1 src2));
 10750   format %{ "XOR    $dst, $src1, $src2 @ xorL_Reg_Reg\t" %}
 10751   ins_encode %{
 10752     Register dst_reg = as_Register($dst$$reg);
 10753     Register src1_reg = as_Register($src1$$reg);
 10754     Register src2_reg = as_Register($src2$$reg);
 10756     __ xorr(dst_reg, src1_reg, src2_reg);
 10757   %}
 10758   ins_pipe( ialu_regL_regL );
 10759 %}
 10761 // Shift Left by 8-bit immediate
 10762 instruct salI_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 10763   match(Set dst (LShiftI src shift));
 10765   format %{ "SHL    $dst, $src, $shift #@salI_Reg_imm" %}
 10766   ins_encode %{
 10767     Register src = $src$$Register;
 10768     Register dst = $dst$$Register;
 10769     int    shamt = $shift$$constant;
 10771 /*
 10772      094     SHL    S0, S0, #-7 #@salI_Reg_imm    
 10773      static int insn_RRSO(int rt, int rd, int sa,   int op) { return (rt<<16) | (rd<<11) | (sa<<6)   | op; }
 10774      void sll  (Register rd, Register rt ,  int sa) { 
 10775          emit_long(insn_RRSO((int)rt->encoding(), (int)rd->encoding(), sa, sll_op));
 10777 */
 10779     if(0 <= shamt && shamt < 32) __ sll(dst, src, shamt);
 10780     else {
 10781        __ move(AT, shamt);
 10782        __ sllv(dst, src, AT);
 10784   %}
 10785   ins_pipe( ialu_regI_regI );
 10786 %}
 10788 instruct land7_2_s(mRegI dst, mRegL src, immL7 seven, immI_16 sixteen)
 10789 %{
 10790   match(Set dst (RShiftI (LShiftI (ConvL2I (AndL src seven)) sixteen) sixteen));
 10792   format %{ "andi  $dst, $src, 7\t# @land7_2_s" %}
 10793   ins_encode %{
 10794     Register src = $src$$Register;
 10795     Register dst = $dst$$Register;
 10797     __ andi(dst, src, 7);
 10798   %}
 10799   ins_pipe(ialu_regI_regI);
 10800 %}
 10802 instruct ori2s(mRegI dst, mRegI src1, immI_0_32767 src2, immI_16 sixteen)
 10803 %{
 10804   match(Set dst (RShiftI (LShiftI (OrI src1 src2) sixteen) sixteen));
 10806   format %{ "ori  $dst, $src1, $src2\t# @ori2s" %}
 10807   ins_encode %{
 10808     Register src = $src1$$Register;
 10809     int      val = $src2$$constant;
 10810     Register dst = $dst$$Register;
 10812     __ ori(dst, src, val);
 10813   %}
 10814   ins_pipe(ialu_regI_regI);
 10815 %}
 10817 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
 10818 // This idiom is used by the compiler the i2s bytecode.
 10819 instruct i2s(mRegI dst, mRegI src, immI_16 sixteen)
 10820 %{
 10821   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
 10823   format %{ "i2s  $dst, $src\t# @i2s" %}
 10824   ins_encode %{
 10825     Register src = $src$$Register;
 10826     Register dst = $dst$$Register;
 10828     __ seh(dst, src);
 10829   %}
 10830   ins_pipe(ialu_regI_regI);
 10831 %}
 10833 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
 10834 // This idiom is used by the compiler for the i2b bytecode.
 10835 instruct i2b(mRegI dst, mRegI src, immI_24 twentyfour)
 10836 %{
 10837   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
 10839   format %{ "i2b  $dst, $src\t# @i2b" %}
 10840   ins_encode %{
 10841     Register src = $src$$Register;
 10842     Register dst = $dst$$Register;
 10844     __ seb(dst, src);
 10845   %}
 10846   ins_pipe(ialu_regI_regI);
 10847 %}
 10850 instruct salI_RegL2I_imm(mRegI dst, mRegL src, immI8 shift) %{
 10851   match(Set dst (LShiftI (ConvL2I src) shift));
 10853   format %{ "SHL    $dst, $src, $shift #@salI_RegL2I_imm" %}
 10854   ins_encode %{
 10855     Register src = $src$$Register;
 10856     Register dst = $dst$$Register;
 10857     int    shamt = $shift$$constant;
 10859     if(0 <= shamt && shamt < 32) __ sll(dst, src, shamt);
 10860     else {
 10861        __ move(AT, shamt);
 10862        __ sllv(dst, src, AT);
 10864   %}
 10865   ins_pipe( ialu_regI_regI );
 10866 %}
 10868 // Shift Left by 8-bit immediate
 10869 instruct salI_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 10870   match(Set dst (LShiftI src shift));
 10872   format %{ "SHL    $dst, $src, $shift #@salI_Reg_Reg" %}
 10873   ins_encode %{
 10874     Register src = $src$$Register;
 10875     Register dst = $dst$$Register;
 10876     Register shamt = $shift$$Register;
 10877     __ sllv(dst, src, shamt);
 10878   %}
 10879   ins_pipe( ialu_regI_regI );
 10880 %}
 10883 // Shift Left Long 
 10884 instruct salL_Reg_imm(mRegL dst, mRegL src, immI8 shift) %{
 10885   //predicate(UseNewLongLShift);
 10886   match(Set dst (LShiftL src shift));
 10887   ins_cost(100);
 10888   format %{ "salL    $dst, $src, $shift @ salL_Reg_imm" %}
 10889   ins_encode %{
 10890     Register src_reg = as_Register($src$$reg);
 10891     Register dst_reg = as_Register($dst$$reg);
 10892     int      shamt = $shift$$constant;
 10894     if (__ is_simm(shamt, 5))
 10895         __ dsll(dst_reg, src_reg, shamt);
 10896     else
 10898        __ move(AT, shamt);
 10899        __ dsllv(dst_reg, src_reg, AT);
 10901   %}
 10902   ins_pipe( ialu_regL_regL );
 10903 %}
 10905 instruct salL_RegI2L_imm(mRegL dst, mRegI src, immI8 shift) %{
 10906   //predicate(UseNewLongLShift);
 10907   match(Set dst (LShiftL (ConvI2L src) shift));
 10908   ins_cost(100);
 10909   format %{ "salL    $dst, $src, $shift @ salL_RegI2L_imm" %}
 10910   ins_encode %{
 10911     Register src_reg = as_Register($src$$reg);
 10912     Register dst_reg = as_Register($dst$$reg);
 10913     int      shamt = $shift$$constant;
 10915     if (__ is_simm(shamt, 5))
 10916         __ dsll(dst_reg, src_reg, shamt);
 10917     else
 10919        __ move(AT, shamt);
 10920        __ dsllv(dst_reg, src_reg, AT);
 10922   %}
 10923   ins_pipe( ialu_regL_regL );
 10924 %}
 10926 // Shift Left Long 
 10927 instruct salL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 10928   //predicate(UseNewLongLShift);
 10929   match(Set dst (LShiftL src shift));
 10930   ins_cost(100);
 10931   format %{ "salL    $dst, $src, $shift @ salL_Reg_Reg" %}
 10932   ins_encode %{
 10933     Register creg = T9;
 10934     Register src_reg = as_Register($src$$reg);
 10935     Register dst_reg = as_Register($dst$$reg);
 10937     __ move(creg, $shift$$Register);
 10938     __ andi(creg, creg, 0x3f);
 10939 	__ dsllv(dst_reg, src_reg, creg);
 10940   %}
 10941   ins_pipe( ialu_regL_regL );
 10942 %}
 10944 instruct salL_convI2L_Reg_imm(mRegL dst, mRegI src, immI8 shift) %{
 10945   match(Set dst (LShiftL (ConvI2L src) shift));
 10946   ins_cost(100);
 10947   format %{ "salL    $dst, $src, $shift @ salL_convI2L_Reg_imm" %}
 10948   ins_encode %{
 10949     Register src_reg = as_Register($src$$reg);
 10950     Register dst_reg = as_Register($dst$$reg);
 10951     int      shamt = $shift$$constant;
 10953     if (__ is_simm(shamt, 5)) {
 10954         __ dsll(dst_reg, src_reg, shamt);
 10955     } else {
 10956        __ move(AT, shamt);
 10957        __ dsllv(dst_reg, src_reg, AT);
 10959   %}
 10960   ins_pipe( ialu_regL_regL );
 10961 %}
 10963 // Shift Right Long 
 10964 instruct sarL_Reg_imm(mRegL dst, mRegL src, immI8 shift) %{
 10965   //predicate(UseNewLongLShift);
 10966   match(Set dst (RShiftL src shift));
 10967   ins_cost(100);
 10968   format %{ "sarL    $dst, $src, $shift @ sarL_Reg_imm" %}
 10969   ins_encode %{
 10970     Register src_reg = as_Register($src$$reg);
 10971     Register dst_reg = as_Register($dst$$reg);
 10972     int      shamt = ($shift$$constant & 0x3f);
 10973     if (__  is_simm(shamt, 5))
 10974 	__ dsra(dst_reg, src_reg, shamt);
 10975     else
 10977 	__ move(AT, shamt);
 10978 	__ dsrav(dst_reg, src_reg, AT);
 10980   %}
 10981   ins_pipe( ialu_regL_regL );
 10982 %}
 10984 // Shift Right Long arithmetically
 10985 instruct sarL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 10986   //predicate(UseNewLongLShift);
 10987   match(Set dst (RShiftL src shift));
 10988   ins_cost(100);
 10989   format %{ "sarL    $dst, $src, $shift @ sarL_Reg_Reg" %}
 10990   ins_encode %{
 10991     Register creg = T9;
 10992     Register src_reg = as_Register($src$$reg);
 10993     Register dst_reg = as_Register($dst$$reg);
 10995     __ move(creg, $shift$$Register);
 10996     __ andi(creg, creg, 0x3f);
 10997 	__ dsrav(dst_reg, src_reg, creg);
 10998   %}
 10999   ins_pipe( ialu_regL_regL );
 11000 %}
 11002 // Shift Right Long logically
 11003 instruct slrL_Reg_Reg(mRegL dst, mRegL src, mRegI shift) %{
 11004   match(Set dst (URShiftL src shift));
 11005   ins_cost(100);
 11006   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_Reg" %}
 11007   ins_encode %{
 11008     Register creg = T9;
 11009     Register src_reg = as_Register($src$$reg);
 11010     Register dst_reg = as_Register($dst$$reg);
 11012     __ move(creg, $shift$$Register);
 11013     __ andi(creg, creg, 0x3f); 
 11014     __ dsrlv(dst_reg, src_reg, creg);
 11015   %}
 11016   ins_pipe( ialu_regL_regL );
 11017 %}
 11019 instruct slrL_Reg_immI_0_31(mRegL dst, mRegL src, immI_0_31 shift) %{
 11020   match(Set dst (URShiftL src shift));
 11021   ins_cost(80);
 11022   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_0_31" %}
 11023   ins_encode %{
 11024     Register src_reg = as_Register($src$$reg);
 11025     Register dst_reg = as_Register($dst$$reg);
 11026     int        shamt = $shift$$constant;
 11028     __ dsrl(dst_reg, src_reg, shamt);
 11029   %}
 11030   ins_pipe( ialu_regL_regL );
 11031 %}
 11033 instruct slrL_P2XReg_immI_0_31(mRegL dst, mRegP src, immI_0_31 shift) %{
 11034   match(Set dst (URShiftL (CastP2X src) shift));
 11035   ins_cost(80);
 11036   format %{ "slrL    $dst, $src, $shift @ slrL_P2XReg_immI_0_31" %}
 11037   ins_encode %{
 11038     Register src_reg = as_Register($src$$reg);
 11039     Register dst_reg = as_Register($dst$$reg);
 11040     int        shamt = $shift$$constant;
 11042     __ dsrl(dst_reg, src_reg, shamt);
 11043   %}
 11044   ins_pipe( ialu_regL_regL );
 11045 %}
 11047 instruct slrL_Reg_immI_32_63(mRegL dst, mRegL src, immI_32_63 shift) %{
 11048   match(Set dst (URShiftL src shift));
 11049   ins_cost(80);
 11050   format %{ "slrL    $dst, $src, $shift @ slrL_Reg_immI_32_63" %}
 11051   ins_encode %{
 11052     Register src_reg = as_Register($src$$reg);
 11053     Register dst_reg = as_Register($dst$$reg);
 11054     int        shamt = $shift$$constant;
 11056     __ dsrl32(dst_reg, src_reg, shamt - 32);
 11057   %}
 11058   ins_pipe( ialu_regL_regL );
 11059 %}
 11061 instruct slrL_P2XReg_immI_32_63(mRegL dst, mRegP src, immI_32_63 shift) %{
 11062   match(Set dst (URShiftL (CastP2X src) shift));
 11063   ins_cost(80);
 11064   format %{ "slrL    $dst, $src, $shift @ slrL_P2XReg_immI_32_63" %}
 11065   ins_encode %{
 11066     Register src_reg = as_Register($src$$reg);
 11067     Register dst_reg = as_Register($dst$$reg);
 11068     int        shamt = $shift$$constant;
 11070     __ dsrl32(dst_reg, src_reg, shamt - 32);
 11071   %}
 11072   ins_pipe( ialu_regL_regL );
 11073 %}
 11075 // Xor Instructions
 11076 // Xor Register with Register
 11077 instruct xorI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 11078   match(Set dst (XorI src1 src2));
 11080   format %{ "XOR    $dst, $src1, $src2 #@xorI_Reg_Reg" %}
 11082   ins_encode %{
 11083     Register  dst = $dst$$Register;
 11084     Register src1 = $src1$$Register;
 11085     Register src2 = $src2$$Register;
 11086     __ xorr(dst, src1, src2);
 11087     __ sll(dst, dst, 0); /* long -> int */
 11088   %}
 11090   ins_pipe( ialu_regI_regI );
 11091 %}
 11093 // Or Instructions
 11094 // Or Register with Register
 11095 instruct orI_Reg_Reg(mRegI dst, mRegI src1, mRegI src2) %{
 11096   match(Set dst (OrI src1 src2));
 11098   format %{ "OR     $dst, $src1, $src2 #@orI_Reg_Reg" %}
 11099   ins_encode %{
 11100     Register  dst = $dst$$Register;
 11101     Register src1 = $src1$$Register;
 11102     Register src2 = $src2$$Register;
 11103     __ orr(dst, src1, src2);
 11104   %}
 11106   ins_pipe( ialu_regI_regI );
 11107 %}
 11109 instruct orI_Reg_castP2X(mRegL dst, mRegL src1, mRegP src2) %{
 11110   match(Set dst (OrI src1 (CastP2X src2)));
 11112   format %{ "OR     $dst, $src1, $src2 #@orI_Reg_castP2X" %}
 11113   ins_encode %{
 11114     Register  dst = $dst$$Register;
 11115     Register src1 = $src1$$Register;
 11116     Register src2 = $src2$$Register;
 11117     __ orr(dst, src1, src2);
 11118   %}
 11120   ins_pipe( ialu_regI_regI );
 11121 %}
 11123 // Logical Shift Right by 8-bit immediate
 11124 instruct shr_logical_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 11125   match(Set dst (URShiftI src shift));
 11126  // effect(KILL cr);
 11128   format %{ "SRL    $dst, $src, $shift #@shr_logical_Reg_imm" %}
 11129   ins_encode %{
 11130     Register src = $src$$Register;
 11131     Register dst = $dst$$Register;
 11132     int    shift = $shift$$constant;
 11133     if (shift > 0)
 11134       __ srl(dst, src, shift);
 11135     else
 11137       __ move(AT, shift);
 11138       __ srlv(dst, src, AT);
 11140   %}
 11141   ins_pipe( ialu_regI_regI );
 11142 %}
 11144 instruct shr_logical_Reg_imm_nonneg_mask(mRegI dst, mRegI src, immI_0_31 shift, immI_nonneg_mask mask) %{
 11145   match(Set dst (AndI (URShiftI src shift) mask));
 11147   format %{ "ext    $dst, $src, $shift, one-bits($mask) #@shr_logical_Reg_imm_nonneg_mask" %}
 11148   ins_encode %{
 11149     Register src = $src$$Register;
 11150     Register dst = $dst$$Register;
 11151     int      pos = $shift$$constant;
 11152     int     size = Assembler::is_int_mask($mask$$constant);
 11154     __ ext(dst, src, pos, size);
 11155   %}
 11156   ins_pipe( ialu_regI_regI );
 11157 %}
 11159 // Logical Shift Right 
 11160 instruct shr_logical_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 11161   match(Set dst (URShiftI src shift));
 11163   format %{ "SRL    $dst, $src, $shift #@shr_logical_Reg_Reg" %}
 11164   ins_encode %{
 11165     Register src = $src$$Register;
 11166     Register dst = $dst$$Register;
 11167     Register shift = $shift$$Register;
 11168     __ srlv(dst, src, shift);
 11169   %}
 11170   ins_pipe( ialu_regI_regI );
 11171 %}
 11174 instruct shr_arith_Reg_imm(mRegI dst, mRegI src, immI8 shift) %{
 11175   match(Set dst (RShiftI src shift));
 11176  // effect(KILL cr);
 11178   format %{ "SRA    $dst, $src, $shift #@shr_arith_Reg_imm" %}
 11179   ins_encode %{
 11180     Register src = $src$$Register;
 11181     Register dst = $dst$$Register;
 11182     int    shift = $shift$$constant;
 11183     __ sra(dst, src, shift);
 11184   %}
 11185   ins_pipe( ialu_regI_regI );
 11186 %}
 11188 instruct shr_arith_Reg_Reg(mRegI dst, mRegI src, mRegI shift) %{
 11189   match(Set dst (RShiftI src shift));
 11190  // effect(KILL cr);
 11192   format %{ "SRA    $dst, $src, $shift #@shr_arith_Reg_Reg" %}
 11193   ins_encode %{
 11194     Register src = $src$$Register;
 11195     Register dst = $dst$$Register;
 11196     Register shift = $shift$$Register;
 11197     __ srav(dst, src, shift);
 11198   %}
 11199   ins_pipe( ialu_regI_regI );
 11200 %}
 11202 //----------Convert Int to Boolean---------------------------------------------
 11204 instruct convI2B(mRegI dst, mRegI src) %{
 11205   match(Set dst (Conv2B src));
 11207   ins_cost(100);
 11208   format %{ "convI2B    $dst, $src @ convI2B"  %}
 11209   ins_encode %{
 11210     Register dst = as_Register($dst$$reg);
 11211     Register src = as_Register($src$$reg);
 11213     if (dst != src) {
 11214       __ daddiu(dst, R0, 1);
 11215       __ movz(dst, R0, src);
 11216     } else {
 11217       __ move(AT, src);
 11218       __ daddiu(dst, R0, 1);
 11219       __ movz(dst, R0, AT);
 11221   %}
 11223   ins_pipe( ialu_regL_regL );
 11224 %}
 11226 instruct convI2L_reg( mRegL dst, mRegI src) %{
 11227   match(Set dst (ConvI2L src));
 11229   ins_cost(100);
 11230   format %{ "SLL    $dst, $src @ convI2L_reg\t"  %}
 11231   ins_encode %{
 11232     Register dst = as_Register($dst$$reg);
 11233     Register src = as_Register($src$$reg);
 11235     if(dst != src) __ sll(dst, src, 0);
 11236   %}
 11237   ins_pipe( ialu_regL_regL );
 11238 %}
 11241 instruct convL2I_reg( mRegI dst, mRegL src ) %{
 11242   match(Set dst (ConvL2I src));
 11244   format %{ "MOV    $dst, $src @ convL2I_reg" %}
 11245   ins_encode %{
 11246     Register dst = as_Register($dst$$reg);
 11247     Register src = as_Register($src$$reg);
 11249     __ sll(dst, src, 0);
 11250   %}
 11252   ins_pipe( ialu_regI_regI );
 11253 %}
 11255 instruct convL2D_reg( regD dst, mRegL src ) %{
 11256   match(Set dst (ConvL2D src));
 11257   format %{ "convL2D    $dst, $src @ convL2D_reg" %}
 11258   ins_encode %{
 11259     Register src = as_Register($src$$reg);
 11260     FloatRegister dst = as_FloatRegister($dst$$reg);
 11262     __ dmtc1(src, dst);
 11263     __ cvt_d_l(dst, dst);
 11264   %}
 11266   ins_pipe( pipe_slow );
 11267 %}
 11269 instruct convD2L_reg( mRegL dst, regD src ) %{
 11270   match(Set dst (ConvD2L src));
 11271   format %{ "convD2L    $dst, $src @ convD2L_reg" %}
 11272   ins_encode %{
 11273     Register dst = as_Register($dst$$reg);
 11274     FloatRegister src = as_FloatRegister($src$$reg);
 11276     Label L;
 11278     __ c_un_d(src, src);    //NaN?
 11279     __ bc1t(L);
 11280     __ delayed();
 11281     __ move(dst, R0);
 11283     __ trunc_l_d(F30, src);
 11284     __ cfc1(AT, 31);
 11285     __ li(T9, 0x10000);
 11286     __ andr(AT, AT, T9);
 11287     __ beq(AT, R0, L);
 11288     __ delayed()->dmfc1(dst, F30);
 11290     __ mov_d(F12, src);
 11291     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
 11292     __ move(dst, V0);
 11293     __ bind(L);
 11294   %}
 11296   ins_pipe( pipe_slow );
 11297 %}
 11299 instruct convF2I_reg( mRegI dst, regF src ) %{
 11300   match(Set dst (ConvF2I src));
 11301   format %{ "convf2i    $dst, $src @ convF2I_reg" %}
 11302   ins_encode %{
 11303     Register      dreg = $dst$$Register;
 11304     FloatRegister fval = $src$$FloatRegister;
 11305     Label L;
 11307     __ c_un_s(fval, fval);    //NaN?
 11308     __ bc1t(L);
 11309     __ delayed();
 11310     __ move(dreg, R0);
 11312     __ trunc_w_s(F30, fval);
 11314     /* Call SharedRuntime:f2i() to do valid convention */
 11315     __ cfc1(AT, 31);
 11316     __ li(T9, 0x10000);
 11317     __ andr(AT, AT, T9);
 11318     __ beq(AT, R0, L);
 11319     __ delayed()->mfc1(dreg, F30);
 11321     __ mov_s(F12, fval);
 11323     /* 2014/01/08 Fu : This bug was found when running ezDS's control-panel.
 11324      *    J 982 C2 javax.swing.text.BoxView.layoutMajorAxis(II[I[I)V (283 bytes) @ 0x000000555c46aa74
 11326      * An interger array index has been assigned to V0, and then changed from 1 to Integer.MAX_VALUE. 
 11327      * V0 is corrupted during call_VM_leaf(), and should be preserved.
 11328      */
 11329     if(dreg != V0) {
 11330       __ push(V0); 
 11332     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
 11333     if(dreg != V0) {
 11334       __ move(dreg, V0);
 11335       __ pop(V0);
 11337     __ bind(L);
 11338   %}
 11340   ins_pipe( pipe_slow );
 11341 %}
 11343 instruct convF2L_reg( mRegL dst, regF src ) %{
 11344   match(Set dst (ConvF2L src));
 11345   format %{ "convf2l    $dst, $src @ convF2L_reg" %}
 11346   ins_encode %{
 11347     Register dst = as_Register($dst$$reg);
 11348     FloatRegister fval = $src$$FloatRegister;
 11349     Label L;
 11351     __ c_un_s(fval, fval);    //NaN?
 11352     __ bc1t(L);
 11353     __ delayed();
 11354     __ move(dst, R0);
 11356     __ trunc_l_s(F30, fval);
 11357     __ cfc1(AT, 31);
 11358     __ li(T9, 0x10000);
 11359     __ andr(AT, AT, T9);
 11360     __ beq(AT, R0, L);
 11361     __ delayed()->dmfc1(dst, F30);
 11363     __ mov_s(F12, fval);
 11364     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
 11365     __ move(dst, V0);
 11366     __ bind(L);
 11367   %}
 11369   ins_pipe( pipe_slow );
 11370 %}
 11372 instruct convL2F_reg( regF dst, mRegL src ) %{
 11373   match(Set dst (ConvL2F src));
 11374   format %{ "convl2f    $dst, $src @ convL2F_reg" %}
 11375   ins_encode %{
 11376     FloatRegister dst = $dst$$FloatRegister;
 11377     Register src = as_Register($src$$reg);
 11378     Label L;
 11380     __ dmtc1(src, dst);
 11381     __ cvt_s_l(dst, dst);
 11382   %}
 11384   ins_pipe( pipe_slow );
 11385 %}
 11387 instruct convI2F_reg( regF dst, mRegI src ) %{
 11388   match(Set dst (ConvI2F src));
 11389   format %{ "convi2f    $dst, $src @ convI2F_reg" %}
 11390   ins_encode %{
 11391     Register      src = $src$$Register;
 11392     FloatRegister dst = $dst$$FloatRegister;
 11394     __ mtc1(src, dst);
 11395     __ cvt_s_w(dst, dst);
 11396   %}
 11398   ins_pipe( fpu_regF_regF );
 11399 %}
 11401 instruct cmpLTMask_immI0( mRegI dst, mRegI p, immI0 zero ) %{
 11402   match(Set dst (CmpLTMask p zero));
 11403   ins_cost(100);
 11405   format %{ "sra    $dst, $p, 31 @ cmpLTMask_immI0" %}
 11406     ins_encode %{
 11407        Register src = $p$$Register;
 11408        Register dst = $dst$$Register;
 11410        __ sra(dst, src, 31);
 11411     %}
 11412     ins_pipe( pipe_slow );
 11413 %}
 11416 instruct cmpLTMask( mRegI dst, mRegI p, mRegI q ) %{
 11417   match(Set dst (CmpLTMask p q));
 11418   ins_cost(400);
 11420   format %{ "cmpLTMask    $dst, $p, $q @ cmpLTMask" %}
 11421     ins_encode %{
 11422        Register p   = $p$$Register;
 11423        Register q   = $q$$Register;
 11424        Register dst = $dst$$Register;
 11426        __ slt(dst, p, q);
 11427        __ subu(dst, R0, dst);
 11428     %}
 11429     ins_pipe( pipe_slow );
 11430 %}
 11432 instruct convP2B(mRegI dst, mRegP src) %{
 11433   match(Set dst (Conv2B src));
 11435   ins_cost(100);
 11436   format %{ "convP2B    $dst, $src @ convP2B"  %}
 11437   ins_encode %{
 11438     Register dst = as_Register($dst$$reg);
 11439     Register src = as_Register($src$$reg);
 11441     if (dst != src) {
 11442       __ daddiu(dst, R0, 1);
 11443       __ movz(dst, R0, src);
 11444     } else {
 11445       __ move(AT, src);
 11446       __ daddiu(dst, R0, 1);
 11447       __ movz(dst, R0, AT);
 11449   %}
 11451   ins_pipe( ialu_regL_regL );
 11452 %}
 11455 instruct convI2D_reg_reg(regD dst, mRegI src) %{
 11456   match(Set dst (ConvI2D src));
 11457   format %{ "conI2D $dst, $src @convI2D_reg" %}
 11458   ins_encode %{
 11459      Register      src = $src$$Register;
 11460      FloatRegister dst = $dst$$FloatRegister;
 11461      __ mtc1(src, dst);
 11462      __ cvt_d_w(dst, dst);
 11463   %}
 11464   ins_pipe( fpu_regF_regF );
 11465 %}
 11467 instruct convF2I_reg_reg(mRegI dst, regF src) %{
 11468   match(Set dst (ConvF2I src));
 11469   format %{ "convF2I  $dst, $src\t# @convF2D_reg_reg" %}
 11470   ins_encode %{
 11471     FloatRegister dst = $dst$$FloatRegister;
 11472     FloatRegister src = $src$$FloatRegister;
 11474     __ cvt_d_s(dst, src);
 11475   %}
 11476   ins_pipe( fpu_regF_regF );
 11477 %}
 11479 instruct convF2D_reg_reg(regD dst, regF src) %{
 11480   match(Set dst (ConvF2D src));
 11481   format %{ "convF2D  $dst, $src\t# @convF2D_reg_reg" %}
 11482   ins_encode %{
 11483     FloatRegister dst = $dst$$FloatRegister;
 11484     FloatRegister src = $src$$FloatRegister;
 11486     __ cvt_d_s(dst, src);
 11487   %}
 11488   ins_pipe( fpu_regF_regF );
 11489 %}
 11491 instruct convD2F_reg_reg(regF dst, regD src) %{
 11492   match(Set dst (ConvD2F src));
 11493   format %{ "convD2F  $dst, $src\t# @convD2F_reg_reg" %}
 11494   ins_encode %{
 11495     FloatRegister dst = $dst$$FloatRegister;
 11496     FloatRegister src = $src$$FloatRegister;
 11498     __ cvt_s_d(dst, src);
 11499   %}
 11500   ins_pipe( fpu_regF_regF );
 11501 %}
 11503 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11504 instruct convD2I_reg_reg( mRegI dst, regD src ) %{
 11505   match(Set dst (ConvD2I src));
 11506 //  effect( KILL tmp, KILL cr );//after this instruction, it will release register tmp and cr
 11508   format %{ "convD2I $dst, $src\t# @ convD2I_reg_reg \n\t" %}
 11510   ins_encode %{
 11511       FloatRegister src = $src$$FloatRegister;
 11512       Register      dst = $dst$$Register;
 11513       Label L;
 11515       __ trunc_w_d(F30, src);
 11516       __ cfc1(AT, 31);
 11517       __ li(T9, 0x10000);
 11518       __ andr(AT, AT, T9);
 11519       __ beq(AT, R0, L);
 11520       __ delayed()->mfc1(dst, F30);
 11522       __ mov_d(F12, src);
 11523       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
 11524       __ move(dst, V0);
 11525       __ bind(L);
 11527   %}
 11528   ins_pipe( pipe_slow );
 11529 %}
 11531 // Convert oop pointer into compressed form
 11532 instruct encodeHeapOop(mRegN dst, mRegP src) %{
 11533   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
 11534   match(Set dst (EncodeP src));
 11535   format %{ "encode_heap_oop $dst,$src" %}
 11536   ins_encode %{
 11537     Register src = $src$$Register;
 11538     Register dst = $dst$$Register;
 11539     if (src != dst) {
 11540       __ move(dst, src);
 11542     __ encode_heap_oop(dst);
 11543   %}
 11544   ins_pipe( ialu_regL_regL );
 11545 %}
 11547 instruct encodeHeapOop_not_null(mRegN dst, mRegP src) %{
 11548   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
 11549   match(Set dst (EncodeP src));
 11550   format %{ "encode_heap_oop_not_null $dst,$src @ encodeHeapOop_not_null" %}
 11551   ins_encode %{
 11552     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
 11553   %}
 11554   ins_pipe( ialu_regL_regL );
 11555 %}
 11557 instruct decodeHeapOop(mRegP dst, mRegN src) %{
 11558   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
 11559             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
 11560   match(Set dst (DecodeN src));
 11561   format %{ "decode_heap_oop $dst,$src @ decodeHeapOop" %}
 11562   ins_encode %{
 11563     Register s = $src$$Register;
 11564     Register d = $dst$$Register;
 11565     if (s != d) {
 11566       __ move(d, s);
 11568     __ decode_heap_oop(d);
 11569   %}
 11570   ins_pipe( ialu_regL_regL );
 11571 %}
 11573 instruct decodeHeapOop_not_null(mRegP dst, mRegN src) %{
 11574   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
 11575             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
 11576   match(Set dst (DecodeN src));
 11577   format %{ "decode_heap_oop_not_null $dst,$src @ decodeHeapOop_not_null" %}
 11578   ins_encode %{
 11579     Register s = $src$$Register;
 11580     Register d = $dst$$Register;
 11581     if (s != d) {
 11582       __ decode_heap_oop_not_null(d, s);
 11583     } else {
 11584       __ decode_heap_oop_not_null(d);
 11586   %}
 11587   ins_pipe( ialu_regL_regL );
 11588 %}
 11590 instruct encodeKlass_not_null(mRegN dst, mRegP src) %{
 11591   match(Set dst (EncodePKlass src));
 11592   format %{ "encode_heap_oop_not_null $dst,$src @ encodeKlass_not_null" %}
 11593   ins_encode %{
 11594     __ encode_klass_not_null($dst$$Register, $src$$Register);
 11595   %}
 11596   ins_pipe( ialu_regL_regL );
 11597 %}
 11599 instruct decodeKlass_not_null(mRegP dst, mRegN src) %{
 11600   match(Set dst (DecodeNKlass src));
 11601   format %{ "decode_heap_klass_not_null $dst,$src" %}
 11602   ins_encode %{
 11603     Register s = $src$$Register;
 11604     Register d = $dst$$Register;
 11605     if (s != d) {
 11606       __ decode_klass_not_null(d, s);
 11607     } else {
 11608       __ decode_klass_not_null(d);
 11610   %}
 11611   ins_pipe( ialu_regL_regL );
 11612 %}
 11614 //FIXME
 11615 instruct tlsLoadP(mRegP dst) %{
 11616   match(Set dst (ThreadLocal));
 11618   ins_cost(0);
 11619   format %{ " get_thread in $dst #@tlsLoadP" %}
 11620   ins_encode %{
 11621     Register dst = $dst$$Register;
 11622 #ifdef OPT_THREAD
 11623     __ move(dst, TREG);
 11624 #else
 11625     __ get_thread(dst);
 11626 #endif
 11627   %}
 11629   ins_pipe( ialu_loadI );
 11630 %}
 11633 instruct checkCastPP( mRegP dst ) %{
 11634   match(Set dst (CheckCastPP dst));
 11636   format %{ "#checkcastPP of $dst (empty encoding) #@chekCastPP" %}
 11637   ins_encode( /*empty encoding*/ );
 11638   ins_pipe( empty );
 11639 %}
 11641 instruct castPP(mRegP dst)
 11642 %{
 11643   match(Set dst (CastPP dst));
 11645   size(0);
 11646   format %{ "# castPP of $dst" %}
 11647   ins_encode(/* empty encoding */);
 11648   ins_pipe(empty);
 11649 %}
 11651 instruct castII( mRegI dst ) %{
 11652   match(Set dst (CastII dst));
 11653   format %{ "#castII of $dst  empty encoding" %}
 11654   ins_encode( /*empty encoding*/ );
 11655   ins_cost(0);
 11656   ins_pipe( empty );
 11657 %}
 11659 // Return Instruction
 11660 // Remove the return address & jump to it.
 11661 instruct Ret() %{
 11662   match(Return);
 11663   format %{ "RET #@Ret" %}
 11665   ins_encode %{
 11666    __ jr(RA); 
 11667    __ nop();
 11668   %}
 11670   ins_pipe( pipe_jump );
 11671 %}
 11673 /*
 11674 // For Loongson CPUs, jr seems too slow, so this rule shouldn't be imported.
 11675 instruct jumpXtnd(mRegL switch_val) %{
 11676   match(Jump switch_val);
 11678   ins_cost(350);
 11680   format %{  "load   T9 <-- [$constanttablebase, $switch_val, $constantoffset] @ jumpXtnd\n\t"
 11681              "jr     T9\n\t"
 11682              "nop" %}
 11683   ins_encode %{
 11684     Register table_base = $constanttablebase;
 11685     int      con_offset = $constantoffset;
 11686     Register switch_reg = $switch_val$$Register;
 11688     if (UseLoongsonISA) {
 11689        if (Assembler::is_simm(con_offset, 8)) {
 11690          __ gsldx(T9, table_base, switch_reg, con_offset);
 11691        } else if (Assembler::is_simm16(con_offset)) {
 11692          __ daddu(T9, table_base, switch_reg);
 11693          __ ld(T9, T9, con_offset);
 11694        } else {
 11695          __ move(T9, con_offset);
 11696          __ daddu(AT, table_base, switch_reg);
 11697          __ gsldx(T9, AT, T9, 0);
 11699     } else {
 11700        if (Assembler::is_simm16(con_offset)) {
 11701          __ daddu(T9, table_base, switch_reg);
 11702          __ ld(T9, T9, con_offset);
 11703        } else {
 11704          __ move(T9, con_offset);
 11705          __ daddu(AT, table_base, switch_reg);
 11706          __ daddu(AT, T9, AT);
 11707          __ ld(T9, AT, 0);
 11711     __ jr(T9);
 11712     __ nop();
 11714   %}
 11715   ins_pipe(pipe_jump);
 11716 %}
 11717 */
 11719 // Jump Direct - Label defines a relative address from JMP
 11720 instruct jmpDir(label labl) %{
 11721   match(Goto);
 11722   effect(USE labl);
 11724   ins_cost(300);
 11725   format %{ "JMP    $labl #@jmpDir" %}
 11727   ins_encode %{
 11728     Label &L = *($labl$$label);
 11729     if(&L)
 11730     	 __ b(L);
 11731     else
 11732          __ b(int(0));
 11733     __ nop();
 11734   %}
 11736     ins_pipe( pipe_jump );
 11737     ins_pc_relative(1);
 11738 %}
 11742 // Tail Jump; remove the return address; jump to target.
 11743 // TailCall above leaves the return address around.
 11744 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 11745 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 11746 // "restore" before this instruction (in Epilogue), we need to materialize it
 11747 // in %i0.
 11748 //FIXME
 11749 instruct tailjmpInd(mRegP jump_target,mRegP ex_oop) %{
 11750   match( TailJump jump_target ex_oop );
 11751   ins_cost(200);
 11752   format %{ "Jmp     $jump_target  ; ex_oop = $ex_oop #@tailjmpInd" %}
 11753   ins_encode %{
 11754     Register target = $jump_target$$Register;
 11756     /* 2012/9/14 Jin: V0, V1 are indicated in:
 11757      *      [stubGenerator_mips.cpp] generate_forward_exception()
 11758      *      [runtime_mips.cpp] OptoRuntime::generate_exception_blob()
 11759      */
 11760     Register oop  = $ex_oop$$Register;
 11761     Register exception_oop = V0;
 11762     Register exception_pc = V1;
 11764     __ move(exception_pc, RA);
 11765     __ move(exception_oop, oop);
 11767     __ jr(target);  
 11768     __ nop();
 11769   %}
 11770   ins_pipe( pipe_jump ); 
 11771 %}
 11773 // ============================================================================
 11774 // Procedure Call/Return Instructions
 11775 // Call Java Static Instruction
 11776 // Note: If this code changes, the corresponding ret_addr_offset() and
 11777 //       compute_padding() functions will have to be adjusted.
 11778 instruct CallStaticJavaDirect(method meth) %{
 11779   match(CallStaticJava);
 11780   effect(USE meth);
 11782   ins_cost(300);
 11783   format %{ "CALL,static #@CallStaticJavaDirect " %}
 11784   ins_encode( Java_Static_Call( meth ) );
 11785   ins_pipe( pipe_slow );
 11786   ins_pc_relative(1);
 11787   ins_alignment(16);
 11788 %}
 11790 // Call Java Dynamic Instruction
 11791 // Note: If this code changes, the corresponding ret_addr_offset() and
 11792 //       compute_padding() functions will have to be adjusted.
 11793 instruct CallDynamicJavaDirect(method meth) %{
 11794   match(CallDynamicJava);
 11795   effect(USE meth);
 11797   ins_cost(300);
 11798   format %{"MOV IC_Klass, (oop)-1 @ CallDynamicJavaDirect\n\t"
 11799            "CallDynamic @ CallDynamicJavaDirect" %}
 11800   ins_encode( Java_Dynamic_Call( meth ) );
 11801   ins_pipe( pipe_slow );
 11802   ins_pc_relative(1);
 11803   ins_alignment(16);
 11804 %}
 11806 instruct CallLeafNoFPDirect(method meth) %{
 11807   match(CallLeafNoFP);
 11808   effect(USE meth);
 11810   ins_cost(300);
 11811   format %{ "CALL_LEAF_NOFP,runtime " %}
 11812   ins_encode(Java_To_Runtime(meth));
 11813   ins_pipe( pipe_slow );
 11814   ins_pc_relative(1);
 11815   ins_alignment(16);
 11816 %}
 11818 // Prefetch instructions.
 11820 instruct prefetchrNTA( memory mem ) %{
 11821   match(PrefetchRead mem);
 11822   ins_cost(125);
 11824   format %{ "pref $mem\t# Prefetch into non-temporal cache for read @ prefetchrNTA" %}
 11825   ins_encode %{
 11826     int  base = $mem$$base;
 11827     int  index = $mem$$index;
 11828     int  scale = $mem$$scale;
 11829     int  disp = $mem$$disp;
 11831     if( index != 0 ) {
 11832       if (scale == 0) {
 11833         __ daddu(AT, as_Register(base), as_Register(index));
 11834       } else {
 11835         __ dsll(AT, as_Register(index), scale);
 11836         __ daddu(AT, as_Register(base), AT);
 11838     } else {
 11839       __ move(AT, as_Register(base));
 11841     if( Assembler::is_simm16(disp) ) {
 11842       __ daddiu(AT, as_Register(base), disp);
 11843       __ daddiu(AT, AT, disp);
 11844     } else {
 11845       __ move(T9, disp);
 11846       __ daddu(AT, as_Register(base), T9);
 11848     __ pref(0, AT, 0); //hint: 0:load
 11849   %}
 11850   ins_pipe(pipe_slow);
 11851 %}
 11853 instruct prefetchwNTA( memory mem ) %{
 11854   match(PrefetchWrite mem);
 11855   ins_cost(125);
 11856   format %{ "pref $mem\t# Prefetch to non-temporal cache for write @ prefetchwNTA" %}
 11857   ins_encode %{
 11858     int  base = $mem$$base;
 11859     int  index = $mem$$index;
 11860     int  scale = $mem$$scale;
 11861     int  disp = $mem$$disp;
 11863     if( index != 0 ) {
 11864       if (scale == 0) {
 11865         __ daddu(AT, as_Register(base), as_Register(index));
 11866       } else {
 11867         __ dsll(AT, as_Register(index), scale);
 11868         __ daddu(AT, as_Register(base), AT);
 11870     } else {
 11871       __ move(AT, as_Register(base));
 11873     if( Assembler::is_simm16(disp) ) {
 11874       __ daddiu(AT, as_Register(base), disp);
 11875       __ daddiu(AT, AT, disp);
 11876     } else {
 11877       __ move(T9, disp);
 11878       __ daddu(AT, as_Register(base), T9);
 11880      __ pref(1, AT, 0); //hint: 1:store
 11881   %}
 11882   ins_pipe(pipe_slow);
 11883 %}
 11885 // Prefetch instructions for allocation.
 11887 instruct prefetchAllocNTA( memory mem ) %{
 11888   match(PrefetchAllocation mem);
 11889   ins_cost(125);
 11890   format %{ "pref $mem\t# Prefetch allocation @ prefetchAllocNTA" %}
 11891   ins_encode %{
 11892      int  base = $mem$$base;
 11893      int  index = $mem$$index;
 11894      int  scale = $mem$$scale;
 11895      int  disp = $mem$$disp;
 11897      Register dst = R0;
 11899      if( index != 0 ) {
 11900         if( Assembler::is_simm16(disp) ) { 
 11901            if( UseLoongsonISA ) {
 11902               if (scale == 0) {
 11903                  __ gslbx(dst, as_Register(base), as_Register(index), disp);
 11904               } else {
 11905                  __ dsll(AT, as_Register(index), scale);
 11906                  __ gslbx(dst, as_Register(base), AT, disp);
 11908            } else {
 11909               if (scale == 0) {
 11910                  __ addu(AT, as_Register(base), as_Register(index));
 11911               } else {
 11912                  __ dsll(AT, as_Register(index), scale);
 11913                  __ addu(AT, as_Register(base), AT);
 11915               __ lb(dst, AT, disp);
 11917         } else {
 11918            if (scale == 0) {
 11919               __ addu(AT, as_Register(base), as_Register(index));
 11920            } else {
 11921               __ dsll(AT, as_Register(index), scale);
 11922               __ addu(AT, as_Register(base), AT);
 11924            __ move(T9, disp);
 11925            if( UseLoongsonISA ) {
 11926               __ gslbx(dst, AT, T9, 0);
 11927            } else {
 11928               __ addu(AT, AT, T9); 
 11929               __ lb(dst, AT, 0);
 11932      } else {
 11933         if( Assembler::is_simm16(disp) ) { 
 11934            __ lb(dst, as_Register(base), disp);
 11935         } else {
 11936            __ move(T9, disp);   
 11937            if( UseLoongsonISA ) {
 11938               __ gslbx(dst, as_Register(base), T9, 0);
 11939            } else {
 11940               __ addu(AT, as_Register(base), T9); 
 11941               __ lb(dst, AT, 0);
 11945   %}
 11946   ins_pipe(pipe_slow);
 11947 %}
 11950 // Call runtime without safepoint
 11951 instruct CallLeafDirect(method meth) %{
 11952   match(CallLeaf);
 11953   effect(USE meth);
 11955   ins_cost(300);
 11956   format %{ "CALL_LEAF,runtime #@CallLeafDirect " %}
 11957   ins_encode(Java_To_Runtime(meth));
 11958   ins_pipe( pipe_slow );
 11959   ins_pc_relative(1);
 11960   ins_alignment(16);
 11961 %}
 11963 // Load Char (16bit unsigned)
 11964 instruct loadUS(mRegI dst, memory mem) %{
 11965   match(Set dst (LoadUS mem));
 11967   ins_cost(125);
 11968   format %{ "loadUS  $dst,$mem @ loadC" %}
 11969   ins_encode(load_C_enc(dst, mem));
 11970   ins_pipe( ialu_loadI );
 11971 %}
 11973 instruct loadUS_convI2L(mRegL dst, memory mem) %{
 11974   match(Set dst (ConvI2L (LoadUS mem)));
 11976   ins_cost(125);
 11977   format %{ "loadUS  $dst,$mem @ loadUS_convI2L" %}
 11978   ins_encode(load_C_enc(dst, mem));
 11979   ins_pipe( ialu_loadI );
 11980 %}
 11982 // Store Char (16bit unsigned)
 11983 instruct storeC(memory mem, mRegI src) %{
 11984   match(Set mem (StoreC mem src));
 11986   ins_cost(125);
 11987   format %{ "storeC  $src,$mem @ storeC" %}
 11988   ins_encode(store_C_reg_enc(mem, src));
 11989   ins_pipe( ialu_loadI );
 11990 %}
 11993 instruct loadConF0(regF dst, immF0 zero) %{
 11994   match(Set dst zero);
 11995   ins_cost(100);
 11997   format %{ "mov  $dst, zero @ loadConF0\n"%}
 11998   ins_encode %{
 11999     FloatRegister dst = $dst$$FloatRegister;
 12001     __ mtc1(R0, dst);
 12002   %}
 12003   ins_pipe( fpu_loadF );
 12004 %}
 12007 instruct loadConF(regF dst, immF src) %{
 12008   match(Set dst src);
 12009   ins_cost(125);
 12011   format %{ "lwc1  $dst, $constantoffset[$constanttablebase] # load FLOAT $src from table @ loadConF" %}
 12012   ins_encode %{
 12013     int con_offset = $constantoffset($src);
 12015     if (Assembler::is_simm16(con_offset)) {
 12016        __ lwc1($dst$$FloatRegister, $constanttablebase, con_offset);
 12017     } else {
 12018        __ set64(AT, con_offset);
 12019        if (UseLoongsonISA) {
 12020           __ gslwxc1($dst$$FloatRegister, $constanttablebase, AT, 0);
 12021        } else {
 12022           __ daddu(AT, $constanttablebase, AT);
 12023           __ lwc1($dst$$FloatRegister, AT, 0);
 12026   %}
 12027   ins_pipe( fpu_loadF );
 12028 %}
 12031 instruct loadConD0(regD dst, immD0 zero) %{
 12032   match(Set dst zero);
 12033   ins_cost(100);
 12035   format %{ "mov  $dst, zero @ loadConD0"%}
 12036   ins_encode %{
 12037     FloatRegister dst = as_FloatRegister($dst$$reg);
 12039       __ dmtc1(R0, dst);
 12040   %}
 12041   ins_pipe( fpu_loadF );
 12042 %}
 12044 instruct loadConD(regD dst, immD src) %{
 12045   match(Set dst src);
 12046   ins_cost(125);
 12048   format %{ "ldc1  $dst, $constantoffset[$constanttablebase] # load DOUBLE $src from table @ loadConD" %}
 12049   ins_encode %{
 12050     int con_offset = $constantoffset($src);
 12052     if (Assembler::is_simm16(con_offset)) {
 12053        __ ldc1($dst$$FloatRegister, $constanttablebase, con_offset);
 12054     } else {
 12055        __ set64(AT, con_offset);
 12056        if (UseLoongsonISA) {
 12057           __ gsldxc1($dst$$FloatRegister, $constanttablebase, AT, 0);
 12058        } else {
 12059           __ daddu(AT, $constanttablebase, AT);
 12060           __ ldc1($dst$$FloatRegister, AT, 0);
 12063   %}
 12064   ins_pipe( fpu_loadF );
 12065 %}
 12067 // Store register Float value (it is faster than store from FPU register)
 12068 instruct storeF_reg( memory mem, regF src) %{
 12069   match(Set mem (StoreF mem src));
 12071   ins_cost(50);
 12072   format %{ "store   $mem, $src\t# store float @ storeF_reg" %}
 12073   ins_encode(store_F_reg_enc(mem, src));
 12074   ins_pipe( fpu_storeF );
 12075 %}
 12077 instruct storeF_imm0( memory mem, immF0 zero) %{
 12078   match(Set mem (StoreF mem zero));
 12080   ins_cost(40);
 12081   format %{ "store   $mem, zero\t# store float @ storeF_imm0" %}
 12082   ins_encode %{
 12083     int      base = $mem$$base;
 12084     int     index = $mem$$index;
 12085     int     scale = $mem$$scale;
 12086     int      disp = $mem$$disp;
 12088     if( index != 0 ) {
 12089         if(scale != 0) {
 12090            __ dsll(T9, as_Register(index), scale);
 12091            __ addu(AT, as_Register(base), T9);
 12092         } else {
 12093            __ daddu(AT, as_Register(base), as_Register(index));
 12095        if( Assembler::is_simm16(disp) ) { 
 12096           __ sw(R0, AT, disp);
 12097        } else {
 12098           __ move(T9, disp);
 12099           __ addu(AT, AT, T9);
 12100           __ sw(R0, AT, 0);
 12103     } else {
 12104        if( Assembler::is_simm16(disp) ) { 
 12105           __ sw(R0, as_Register(base), disp);
 12106        } else {
 12107           __ move(T9, disp);
 12108           __ addu(AT, as_Register(base), T9);
 12109           __ sw(R0, AT, 0);
 12112   %}
 12113   ins_pipe( ialu_storeI );
 12114 %}
 12116 // Load Double
 12117 instruct loadD(regD dst, memory mem) %{
 12118   match(Set dst (LoadD mem));
 12120   ins_cost(150);
 12121   format %{ "loadD   $dst, $mem #@loadD" %}
 12122   ins_encode(load_D_enc(dst, mem));
 12123   ins_pipe( ialu_loadI );
 12124 %}
 12126 // Load Double - UNaligned
 12127 instruct loadD_unaligned(regD dst, memory mem ) %{
 12128   match(Set dst (LoadD_unaligned mem));
 12129   ins_cost(250);
 12130   // FIXME: Jin: Need more effective ldl/ldr
 12131   format %{ "loadD_unaligned   $dst, $mem #@loadD_unaligned" %}
 12132   ins_encode(load_D_enc(dst, mem));
 12133   ins_pipe( ialu_loadI );
 12134 %}
 12136 instruct storeD_reg( memory mem, regD src) %{
 12137   match(Set mem (StoreD mem src));
 12139   ins_cost(50);
 12140   format %{ "store   $mem, $src\t# store float @ storeD_reg" %}
 12141   ins_encode(store_D_reg_enc(mem, src));
 12142   ins_pipe( fpu_storeF );
 12143 %}
 12145 instruct storeD_imm0( memory mem, immD0 zero) %{
 12146   match(Set mem (StoreD mem zero));
 12148   ins_cost(40);
 12149   format %{ "store   $mem, zero\t# store float @ storeD_imm0" %}
 12150   ins_encode %{
 12151     int      base = $mem$$base;
 12152     int     index = $mem$$index;
 12153     int     scale = $mem$$scale;
 12154     int      disp = $mem$$disp;
 12156     __ mtc1(R0, F30);
 12157     __ cvt_d_w(F30, F30);
 12159     if( index != 0 ) {
 12160         if(scale != 0) {
 12161            __ dsll(T9, as_Register(index), scale);
 12162            __ addu(AT, as_Register(base), T9);
 12163         } else {
 12164            __ daddu(AT, as_Register(base), as_Register(index));
 12166        if( Assembler::is_simm16(disp) ) { 
 12167           __ sdc1(F30, AT, disp);
 12168        } else {
 12169           __ move(T9, disp);
 12170           __ addu(AT, AT, T9);
 12171           __ sdc1(F30, AT, 0);
 12174     } else {
 12175        if( Assembler::is_simm16(disp) ) { 
 12176           __ sdc1(F30, as_Register(base), disp);
 12177        } else {
 12178           __ move(T9, disp);
 12179           __ addu(AT, as_Register(base), T9);
 12180           __ sdc1(F30, AT, 0);
 12183   %}
 12184   ins_pipe( ialu_storeI );
 12185 %}
 12187 instruct loadSSI(mRegI dst, stackSlotI src)
 12188 %{
 12189   match(Set dst src);
 12191   ins_cost(125);
 12192   format %{ "lw    $dst, $src\t# int stk @ loadSSI" %}
 12193   ins_encode %{
 12194     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSI) !");
 12195     __ lw($dst$$Register, SP, $src$$disp);
 12196   %}
 12197   ins_pipe(ialu_loadI);
 12198 %}
 12200 instruct storeSSI(stackSlotI dst, mRegI src)
 12201 %{
 12202   match(Set dst src);
 12204   ins_cost(100);
 12205   format %{ "sw    $dst, $src\t# int stk @ storeSSI" %}
 12206   ins_encode %{
 12207     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSI) !");
 12208     __ sw($src$$Register, SP, $dst$$disp);
 12209   %}
 12210   ins_pipe(ialu_storeI);
 12211 %}
 12213 instruct loadSSL(mRegL dst, stackSlotL src)
 12214 %{
 12215   match(Set dst src);
 12217   ins_cost(125);
 12218   format %{ "ld    $dst, $src\t# long stk @ loadSSL" %}
 12219   ins_encode %{
 12220     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSL) !");
 12221     __ ld($dst$$Register, SP, $src$$disp);
 12222   %}
 12223   ins_pipe(ialu_loadI);
 12224 %}
 12226 instruct storeSSL(stackSlotL dst, mRegL src)
 12227 %{
 12228   match(Set dst src);
 12230   ins_cost(100);
 12231   format %{ "sd    $dst, $src\t# long stk @ storeSSL" %}
 12232   ins_encode %{
 12233     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSL) !");
 12234     __ sd($src$$Register, SP, $dst$$disp);
 12235   %}
 12236   ins_pipe(ialu_storeI);
 12237 %}
 12239 instruct loadSSP(mRegP dst, stackSlotP src)
 12240 %{
 12241   match(Set dst src);
 12243   ins_cost(125);
 12244   format %{ "ld    $dst, $src\t# ptr stk @ loadSSP" %}
 12245   ins_encode %{
 12246     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSP) !");
 12247     __ ld($dst$$Register, SP, $src$$disp);
 12248   %}
 12249   ins_pipe(ialu_loadI);
 12250 %}
 12252 instruct storeSSP(stackSlotP dst, mRegP src)
 12253 %{
 12254   match(Set dst src);
 12256   ins_cost(100);
 12257   format %{ "sd    $dst, $src\t# ptr stk @ storeSSP" %}
 12258   ins_encode %{
 12259     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSP) !");
 12260     __ sd($src$$Register, SP, $dst$$disp);
 12261   %}
 12262   ins_pipe(ialu_storeI);
 12263 %}
 12265 instruct loadSSF(regF dst, stackSlotF src)
 12266 %{
 12267   match(Set dst src);
 12269   ins_cost(125);
 12270   format %{ "lwc1   $dst, $src\t# float stk @ loadSSF" %}
 12271   ins_encode %{
 12272     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSF) !");
 12273     __ lwc1($dst$$FloatRegister, SP, $src$$disp);
 12274   %}
 12275   ins_pipe(ialu_loadI);
 12276 %}
 12278 instruct storeSSF(stackSlotF dst, regF src)
 12279 %{
 12280   match(Set dst src);
 12282   ins_cost(100);
 12283   format %{ "swc1    $dst, $src\t# float stk @ storeSSF" %}
 12284   ins_encode %{
 12285     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSF) !");
 12286     __ swc1($src$$FloatRegister, SP, $dst$$disp);
 12287   %}
 12288   ins_pipe(fpu_storeF);
 12289 %}
 12291 // Use the same format since predicate() can not be used here.
 12292 instruct loadSSD(regD dst, stackSlotD src)
 12293 %{
 12294   match(Set dst src);
 12296   ins_cost(125);
 12297   format %{ "ldc1   $dst, $src\t# double stk @ loadSSD" %}
 12298   ins_encode %{
 12299     guarantee( Assembler::is_simm16($src$$disp), "disp too long (loadSSD) !");
 12300     __ ldc1($dst$$FloatRegister, SP, $src$$disp);
 12301   %}
 12302   ins_pipe(ialu_loadI);
 12303 %}
 12305 instruct storeSSD(stackSlotD dst, regD src)
 12306 %{
 12307   match(Set dst src);
 12309   ins_cost(100);
 12310   format %{ "sdc1    $dst, $src\t# double stk @ storeSSD" %}
 12311   ins_encode %{
 12312     guarantee( Assembler::is_simm16($dst$$disp), "disp too long (storeSSD) !");
 12313     __ sdc1($src$$FloatRegister, SP, $dst$$disp);
 12314   %}
 12315   ins_pipe(fpu_storeF);
 12316 %}
 12318 instruct cmpFastLock( FlagsReg cr, mRegP object, s0_RegP box, mRegI tmp, mRegP scr) %{
 12319   match( Set cr (FastLock object box) );
 12320   effect( TEMP tmp, TEMP scr, USE_KILL box );
 12321   ins_cost(300);
 12322   format %{ "FASTLOCK $cr $object, $box, $tmp #@ cmpFastLock" %}
 12323   ins_encode %{
 12324     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register, $scr$$Register);
 12325   %}
 12327   ins_pipe( pipe_slow );
 12328   ins_pc_relative(1);
 12329 %}
 12331 instruct cmpFastUnlock( FlagsReg cr, mRegP object, s0_RegP box, mRegP tmp ) %{
 12332   match( Set cr (FastUnlock object box) );
 12333   effect( TEMP tmp, USE_KILL box );
 12334   ins_cost(300);
 12335   format %{ "FASTUNLOCK $object, $box, $tmp #@cmpFastUnlock" %}
 12336   ins_encode %{
 12337     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register);
 12338   %}
 12340   ins_pipe( pipe_slow );
 12341   ins_pc_relative(1);
 12342 %}
 12344 // Store CMS card-mark Immediate
 12345 instruct storeImmCM(memory mem, immI8 src) %{
 12346   match(Set mem (StoreCM mem src));
 12348   ins_cost(150);
 12349   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
 12350 //  opcode(0xC6);
 12351   ins_encode(store_B_immI_enc_sync(mem, src));
 12352   ins_pipe( ialu_storeI );
 12353 %}
 12355 // Die now
 12356 instruct ShouldNotReachHere( )
 12357 %{
 12358   match(Halt);
 12359   ins_cost(300);
 12361   // Use the following format syntax
 12362   format %{ "ILLTRAP   ;#@ShouldNotReachHere" %}
 12363   ins_encode %{
 12364     // Here we should emit illtrap !
 12366     __ stop("in ShoudNotReachHere");
 12368   %}
 12369   ins_pipe( pipe_jump );
 12370 %}
 12372 instruct leaP8Narrow(mRegP dst, indOffset8Narrow mem)
 12373 %{
 12374   predicate(Universe::narrow_oop_shift() == 0);
 12375   match(Set dst mem);
 12377   ins_cost(110); 
 12378   format %{ "leaq    $dst, $mem\t# ptr off8narrow @ leaP8Narrow" %}
 12379   ins_encode %{
 12380     Register  dst  = $dst$$Register;
 12381     Register  base = as_Register($mem$$base);
 12382     int       disp = $mem$$disp;
 12384     __ daddiu(dst, base, disp);
 12385   %}
 12386   ins_pipe( ialu_regI_imm16 );
 12387 %}
 12389 instruct leaPPosIdxScaleOff8(mRegP dst, basePosIndexScaleOffset8 mem)
 12390 %{
 12391   match(Set dst mem);
 12393   ins_cost(110);
 12394   format %{ "leaq    $dst, $mem\t# @ PosIdxScaleOff8" %}
 12395   ins_encode %{
 12396     Register  dst   = $dst$$Register;
 12397     Register  base  = as_Register($mem$$base);
 12398     Register  index = as_Register($mem$$index);
 12399     int       scale = $mem$$scale;
 12400     int       disp  = $mem$$disp;
 12402     if (scale == 0) {
 12403        __ daddu(AT, base, index);
 12404        __ daddiu(dst, AT, disp);
 12405     } else {
 12406        __ dsll(AT, index, scale);
 12407        __ daddu(AT, base, AT);
 12408        __ daddiu(dst, AT, disp);
 12410  %}
 12412   ins_pipe( ialu_regI_imm16 );
 12413 %}
 12415 instruct leaPIdxScale(mRegP dst, indIndexScale mem)
 12416 %{
 12417   match(Set dst mem);
 12419   ins_cost(110);
 12420   format %{ "leaq    $dst, $mem\t# @ leaPIdxScale" %}
 12421   ins_encode %{
 12422     Register  dst   = $dst$$Register;
 12423     Register  base  = as_Register($mem$$base);
 12424     Register  index = as_Register($mem$$index);
 12425     int       scale = $mem$$scale;
 12427     if (scale == 0) {
 12428        __ daddu(dst, base, index);
 12429     } else {
 12430        __ dsll(AT, index, scale);
 12431        __ daddu(dst, base, AT);
 12433  %}
 12435   ins_pipe( ialu_regI_imm16 );
 12436 %}
 12438 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12439 instruct  jmpLoopEnd(cmpOp cop, mRegI src1, mRegI src2, label labl) %{
 12440   match(CountedLoopEnd cop (CmpI src1 src2));
 12441   effect(USE labl);
 12443   ins_cost(300);
 12444   format %{ "J$cop  $src1, $src2,  $labl\t# Loop end @ jmpLoopEnd" %}
 12445   ins_encode %{
 12446     Register op1 = $src1$$Register;
 12447     Register op2 = $src2$$Register;
 12448     Label     &L = *($labl$$label);
 12449     int     flag = $cop$$cmpcode;
 12451     switch(flag)
 12453       case 0x01: //equal
 12454 	if (&L)
 12455         	__ beq(op1, op2, L); 
 12456 	else 
 12457         	__ beq(op1, op2, (int)0); 
 12458         break;
 12459       case 0x02: //not_equal
 12460 	if (&L)
 12461         	__ bne(op1, op2, L); 
 12462 	else
 12463         	__ bne(op1, op2, (int)0); 
 12464         break;
 12465       case 0x03: //above
 12466         __ slt(AT, op2, op1);
 12467         if(&L)
 12468         	__ bne(AT, R0, L); 
 12469         else
 12470                 __ bne(AT, R0, (int)0);
 12471         break;
 12472       case 0x04: //above_equal
 12473         __ slt(AT, op1, op2);
 12474         if(&L)
 12475         	__ beq(AT, R0, L);
 12476         else
 12477                 __ beq(AT, R0, (int)0);
 12478         break;
 12479       case 0x05: //below
 12480         __ slt(AT, op1, op2);
 12481         if(&L)
 12482       		 __ bne(AT, R0, L); 
 12483         else
 12484         	 __ bne(AT, R0, (int)0);
 12485         break;
 12486       case 0x06: //below_equal
 12487         __ slt(AT, op2, op1);
 12488         if(&L)
 12489         	__ beq(AT, R0, L);
 12490         else
 12491         	__ beq(AT, R0, (int)0);
 12492        break;
 12493       default:
 12494           Unimplemented();
 12496     __ nop();
 12497   %}
 12498   ins_pipe( pipe_jump );
 12499   ins_pc_relative(1);
 12500 %}
 12503  instruct  jmpLoopEnd_reg_imm16_sub(cmpOp cop, mRegI src1, immI16_sub src2, label labl) %{
 12504   match(CountedLoopEnd cop (CmpI src1 src2));
 12505   effect(USE labl);
 12507   ins_cost(250);
 12508   format %{ "J$cop  $src1, $src2,  $labl\t# Loop end @ jmpLoopEnd_reg_imm16_sub" %}
 12509   ins_encode %{
 12510     Register op1 = $src1$$Register;
 12511     int      op2 = $src2$$constant;
 12512     Label     &L = *($labl$$label);
 12513     int     flag = $cop$$cmpcode;
 12515     __ addiu32(AT, op1, -1 * op2);
 12517     switch(flag)
 12519       case 0x01: //equal
 12520        if (&L)
 12521                __ beq(AT, R0, L); 
 12522        else 
 12523                __ beq(AT, R0, (int)0); 
 12524         break;
 12525       case 0x02: //not_equal
 12526        if (&L)
 12527                __ bne(AT, R0, L); 
 12528        else
 12529                __ bne(AT, R0, (int)0); 
 12530         break;
 12531       case 0x03: //above
 12532         if(&L)
 12533                __ bgtz(AT, L); 
 12534         else
 12535                 __ bgtz(AT, (int)0);
 12536         break;
 12537       case 0x04: //above_equal
 12538         if(&L)
 12539                __ bgez(AT, L);
 12540         else
 12541                 __ bgez(AT,(int)0);
 12542         break;
 12543       case 0x05: //below
 12544         if(&L)
 12545                 __ bltz(AT, L); 
 12546         else
 12547                 __ bltz(AT, (int)0);
 12548         break;
 12549       case 0x06: //below_equal
 12550         if(&L)
 12551                __ blez(AT, L);
 12552         else
 12553                __ blez(AT, (int)0);
 12554        break;
 12555       default:
 12556           Unimplemented();
 12558     __ nop();
 12559   %}
 12560   ins_pipe( pipe_jump );
 12561   ins_pc_relative(1);
 12562 %}
 12565 /*  
 12566 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12567 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12568   match(CountedLoopEnd cop cmp);
 12569   effect(USE labl);
 12571   ins_cost(300);
 12572   format %{ "J$cop,u  $labl\t# Loop end" %}
 12573   size(6);
 12574   opcode(0x0F, 0x80);
 12575   ins_encode( Jcc( cop, labl) );
 12576   ins_pipe( pipe_jump );
 12577   ins_pc_relative(1);
 12578 %}
 12580 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12581   match(CountedLoopEnd cop cmp);
 12582   effect(USE labl);
 12584   ins_cost(200);
 12585   format %{ "J$cop,u  $labl\t# Loop end" %}
 12586   opcode(0x0F, 0x80);
 12587   ins_encode( Jcc( cop, labl) );
 12588   ins_pipe( pipe_jump );
 12589   ins_pc_relative(1);
 12590 %}
 12591 */
 12593 // This match pattern is created for StoreIConditional since I cannot match IfNode without a RegFlags! fujie 2012/07/17
 12594 instruct jmpCon_flags(cmpOp cop, FlagsReg cr, label labl) %{
 12595   match(If cop cr);
 12596   effect(USE labl);
 12598   ins_cost(300);
 12599   format %{ "J$cop    $labl  #mips uses AT as eflag @jmpCon_flags" %}
 12601   ins_encode %{
 12602     Label    &L =  *($labl$$label);
 12603     switch($cop$$cmpcode)
 12605       case 0x01: //equal
 12606 	if (&L)
 12607         	__ bne(AT, R0, L); 
 12608 	else 
 12609         	__ bne(AT, R0, (int)0); 
 12610         break;
 12611       case 0x02: //not equal
 12612 	if (&L)
 12613         	__ beq(AT, R0, L); 
 12614 	else 
 12615         	__ beq(AT, R0, (int)0); 
 12616         break;
 12617       default:
 12618          Unimplemented(); 
 12620     __ nop();
 12621   %}
 12623   ins_pipe( pipe_jump );
 12624   ins_pc_relative(1);
 12625 %}
 12628 // ============================================================================
 12629 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12630 // array for an instance of the superklass.  Set a hidden internal cache on a
 12631 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12632 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12633 instruct partialSubtypeCheck( mRegP result, no_T8_mRegP sub, no_T8_mRegP super, mT8RegI tmp ) %{
 12634   match(Set result (PartialSubtypeCheck sub super));
 12635   effect(KILL tmp);
 12636   ins_cost(1100);  // slightly larger than the next version
 12637   format %{ "partialSubtypeCheck result=$result, sub=$sub, super=$super, tmp=$tmp " %}
 12639   ins_encode( enc_PartialSubtypeCheck(result, sub, super, tmp) );
 12640   ins_pipe( pipe_slow );
 12641 %}
 12644 // Conditional-store of an int value.
 12645 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
 12646 instruct storeIConditional( memory mem, mRegI oldval, mRegI newval, FlagsReg cr ) %{
 12647   match(Set cr (StoreIConditional mem (Binary oldval newval)));
 12648 //  effect(KILL oldval);
 12649   format %{ "CMPXCHG  $newval, $mem, $oldval \t# @storeIConditional" %}
 12651   ins_encode %{
 12652     Register oldval = $oldval$$Register;
 12653     Register newval = $newval$$Register;
 12654     Address  addr(as_Register($mem$$base), $mem$$disp);
 12655     Label    again, failure;
 12657 //    int      base = $mem$$base;
 12658     int     index = $mem$$index;
 12659     int     scale = $mem$$scale;
 12660     int      disp = $mem$$disp;
 12662     guarantee(Assembler::is_simm16(disp), ""); 
 12664     if( index != 0 ) {
 12665        __ stop("in storeIConditional: index != 0");
 12666     } else {
 12667        __ bind(again);
 12668        __ sync();
 12669        __ ll(AT, addr);
 12670        __ bne(AT, oldval, failure);
 12671        __ delayed()->addu(AT, R0, R0);
 12673        __ addu(AT, newval, R0);
 12674        __ sc(AT, addr);
 12675        __ beq(AT, R0, again);
 12676        __ delayed()->addiu(AT, R0, 0xFF);
 12677        __ bind(failure);
 12678        __ sync();
 12680 %}
 12682   ins_pipe( long_memory_op );
 12683 %}
 12685 // Conditional-store of a long value.
 12686 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
 12687 instruct storeLConditional(memory mem, t2RegL oldval, mRegL newval, FlagsReg cr )
 12688 %{
 12689   match(Set cr (StoreLConditional mem (Binary oldval newval)));
 12690   effect(KILL oldval);
 12692   format %{ "cmpxchg $mem, $newval\t# If $oldval == $mem then store $newval into $mem" %}
 12693   ins_encode%{
 12694 		Register oldval = $oldval$$Register;
 12695 		Register newval = $newval$$Register;
 12696 		Address addr((Register)$mem$$base, $mem$$disp);  
 12698 		int     index = $mem$$index;
 12699 		int     scale = $mem$$scale;
 12700 		int      disp = $mem$$disp;
 12702 		guarantee(Assembler::is_simm16(disp), ""); 
 12704 		if( index != 0 ) {
 12705 			__ stop("in storeIConditional: index != 0");
 12706 		} else {
 12707 			__ cmpxchg(newval, addr, oldval);
 12709   %}
 12710   ins_pipe( long_memory_op );
 12711 %}
 12714 instruct compareAndSwapI( mRegI res, mRegP mem_ptr, mS2RegI oldval, mRegI newval) %{
 12715   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
 12716   effect(KILL oldval);
 12717 //  match(CompareAndSwapI mem_ptr (Binary oldval newval));
 12718   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapI\n\t"
 12719             "MOV    $res, 1 @ compareAndSwapI\n\t"
 12720             "BNE    AT, R0 @ compareAndSwapI\n\t"
 12721             "MOV    $res, 0 @ compareAndSwapI\n"
 12722           "L:" %}
 12723   ins_encode %{
 12724     Register newval = $newval$$Register;
 12725     Register oldval = $oldval$$Register;
 12726     Register res    = $res$$Register;
 12727     Address  addr($mem_ptr$$Register, 0);    
 12728     Label L;
 12730     __ cmpxchg32(newval, addr, oldval);
 12731     __ move(res, AT);
 12732   %}
 12733   ins_pipe( long_memory_op );
 12734 %}
 12736 //FIXME:
 12737 instruct compareAndSwapP( mRegI res, mRegP mem_ptr, s2_RegP oldval, mRegP newval) %{
 12738   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
 12739   effect(KILL oldval);
 12740   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapP\n\t"
 12741             "MOV    $res, AT @ compareAndSwapP\n\t"
 12742           "L:" %}
 12743   ins_encode %{
 12744     Register newval = $newval$$Register;
 12745     Register oldval = $oldval$$Register;
 12746     Register res    = $res$$Register;
 12747     Address  addr($mem_ptr$$Register, 0);    
 12748     Label L;
 12750     __ cmpxchg(newval, addr, oldval);
 12751     __ move(res, AT);
 12752   %}
 12753   ins_pipe( long_memory_op );
 12754 %}
 12756 instruct compareAndSwapN( mRegI res, mRegP mem_ptr, t2_RegN oldval, mRegN newval) %{
 12757   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
 12758   effect(KILL oldval);
 12759   format %{ "CMPXCHG $newval, [$mem_ptr], $oldval @ compareAndSwapN\n\t"
 12760             "MOV    $res, AT @ compareAndSwapN\n\t"
 12761           "L:" %}
 12762   ins_encode %{
 12763     Register newval = $newval$$Register;
 12764     Register oldval = $oldval$$Register;
 12765     Register res    = $res$$Register;
 12766     Address  addr($mem_ptr$$Register, 0);    
 12767     Label L;
 12769     /* 2013/7/19 Jin: cmpxchg32 is implemented with ll/sc, which will do sign extension.
 12770      *      Thus, we should extend oldval's sign for correct comparision.
 12771      */
 12772     __ sll(oldval, oldval, 0);
 12774     __ cmpxchg32(newval, addr, oldval);
 12775     __ move(res, AT);
 12776   %}
 12777   ins_pipe( long_memory_op );
 12778 %}
 12780 //----------Max and Min--------------------------------------------------------
 12781 // Min Instructions
 12782 ////
 12783 //   *** Min and Max using the conditional move are slower than the
 12784 //   *** branch version on a Pentium III.
 12785 // // Conditional move for min
 12786 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12787 //  effect( USE_DEF op2, USE op1, USE cr );
 12788 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12789 //  opcode(0x4C,0x0F);
 12790 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12791 //  ins_pipe( pipe_cmov_reg );
 12792 //%}
 12793 //
 12794 //// Min Register with Register (P6 version)
 12795 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12796 //  predicate(VM_Version::supports_cmov() );
 12797 //  match(Set op2 (MinI op1 op2));
 12798 //  ins_cost(200);
 12799 //  expand %{
 12800 //    eFlagsReg cr;
 12801 //    compI_eReg(cr,op1,op2);
 12802 //    cmovI_reg_lt(op2,op1,cr);
 12803 //  %}
 12804 //%}
 12806 // Min Register with Register (generic version)
 12807 instruct minI_Reg_Reg(mRegI dst, mRegI src) %{
 12808   match(Set dst (MinI dst src));
 12809   //effect(KILL flags);
 12810   ins_cost(80);
 12812   format %{ "MIN    $dst, $src @minI_Reg_Reg" %}
 12813   ins_encode %{
 12814     Register dst   = $dst$$Register;
 12815     Register src   = $src$$Register;
 12817     __ slt(AT, src, dst);
 12818     __ movn(dst, src, AT);
 12820   %}
 12822   ins_pipe( pipe_slow );
 12823 %}
 12825 // Max Register with Register
 12826 //   *** Min and Max using the conditional move are slower than the
 12827 //   *** branch version on a Pentium III.
 12828 // // Conditional move for max
 12829 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12830 //  effect( USE_DEF op2, USE op1, USE cr );
 12831 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12832 //  opcode(0x4F,0x0F);
 12833 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12834 //  ins_pipe( pipe_cmov_reg );
 12835 //%}
 12836 //
 12837 // // Max Register with Register (P6 version)
 12838 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12839 //  predicate(VM_Version::supports_cmov() );
 12840 //  match(Set op2 (MaxI op1 op2));
 12841 //  ins_cost(200);
 12842 //  expand %{
 12843 //    eFlagsReg cr;
 12844 //    compI_eReg(cr,op1,op2);
 12845 //    cmovI_reg_gt(op2,op1,cr);
 12846 //  %}
 12847 //%}
 12849 // Max Register with Register (generic version)
 12850 instruct maxI_Reg_Reg(mRegI dst, mRegI src) %{
 12851   match(Set dst (MaxI dst src));
 12852   ins_cost(80);
 12854   format %{ "MAX    $dst, $src @maxI_Reg_Reg" %}
 12856   ins_encode %{
 12857     Register dst   = $dst$$Register;
 12858     Register src   = $src$$Register;
 12860     __ slt(AT, dst, src);
 12861     __ movn(dst, src, AT);
 12863   %}
 12865   ins_pipe( pipe_slow );
 12866 %}
 12868 instruct maxI_Reg_zero(mRegI dst, immI0 zero) %{
 12869   match(Set dst (MaxI dst zero));
 12870   ins_cost(50);
 12872   format %{ "MAX    $dst, 0 @maxI_Reg_zero" %}
 12874   ins_encode %{
 12875     Register dst   = $dst$$Register;
 12877     __ slt(AT, dst, R0);
 12878     __ movn(dst, R0, AT);
 12880   %}
 12882   ins_pipe( pipe_slow );
 12883 %}
 12885 instruct zerox_long_reg_reg(mRegL dst, mRegL src, immL_32bits mask)
 12886 %{
 12887   match(Set dst (AndL src mask));
 12889   format %{ "movl    $dst, $src\t# zero-extend long @ zerox_long_reg_reg" %}
 12890   ins_encode %{
 12891     Register dst = $dst$$Register;
 12892     Register src = $src$$Register;
 12894     __ dsll32(dst, src, 0);
 12895     __ dsrl32(dst, dst, 0);
 12896   %}
 12897   ins_pipe(ialu_regI_regI);
 12898 %}
 12900 // Zero-extend convert int to long
 12901 instruct convI2L_reg_reg_zex(mRegL dst, mRegI src, immL_32bits mask)
 12902 %{
 12903   match(Set dst (AndL (ConvI2L src) mask));
 12905   format %{ "movl    $dst, $src\t# i2l zero-extend @ convI2L_reg_reg_zex" %}
 12906   ins_encode %{
 12907     Register dst = $dst$$Register;
 12908     Register src = $src$$Register;
 12910     __ dsll32(dst, src, 0);
 12911     __ dsrl32(dst, dst, 0);
 12912   %}
 12913   ins_pipe(ialu_regI_regI);
 12914 %}
 12917 // Match loading integer and casting it to unsigned int in long register.
 12918 // LoadI + ConvI2L + AndL 0xffffffff.
 12919 instruct loadUI2L_rmask(mRegL dst, memory mem, immL_32bits mask) %{
 12920   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
 12922   format %{ "lwu     $dst, $mem \t// zero-extend to long @ loadUI2L_rmask" %}
 12923   ins_encode (load_N_enc(dst, mem));
 12924   ins_pipe(ialu_loadI);
 12925 %}
 12927 instruct loadUI2L_lmask(mRegL dst, memory mem, immL_32bits mask) %{
 12928   match(Set dst (AndL mask (ConvI2L (LoadI mem))));
 12930   format %{ "lwu     $dst, $mem \t// zero-extend to long @ loadUI2L_lmask" %}
 12931   ins_encode (load_N_enc(dst, mem));
 12932   ins_pipe(ialu_loadI);
 12933 %}
 12936 // ============================================================================
 12937 // Safepoint Instruction
 12938 instruct safePoint_poll(mRegP poll) %{
 12939   match(SafePoint poll);
 12940   effect(USE poll);
 12942   ins_cost(125);
 12943   format %{ "Safepoint @ [$poll] : poll for GC @ safePoint_poll" %}
 12945   ins_encode %{
 12946     Register poll_reg = $poll$$Register;
 12948     __ block_comment("Safepoint:");
 12949     __ relocate(relocInfo::poll_type);
 12950     __ lw(AT, poll_reg, 0);
 12951   %}
 12953   ins_pipe( ialu_storeI );
 12954 %}
 12956 //----------Arithmetic Conversion Instructions---------------------------------
 12958 instruct roundFloat_nop(regF dst)
 12959 %{
 12960   match(Set dst (RoundFloat dst));
 12962   ins_cost(0);
 12963   ins_encode();
 12964   ins_pipe(empty);
 12965 %}
 12967 instruct roundDouble_nop(regD dst)
 12968 %{
 12969   match(Set dst (RoundDouble dst));
 12971   ins_cost(0);
 12972   ins_encode();
 12973   ins_pipe(empty);
 12974 %}
 12976 //---------- Zeros Count Instructions ------------------------------------------
 12977 // CountLeadingZerosINode CountTrailingZerosINode 
 12978 instruct countLeadingZerosI(mRegI dst, mRegI src) %{
 12979   predicate(UseCountLeadingZerosInstruction);
 12980   match(Set dst (CountLeadingZerosI src));
 12982   format %{ "clz  $dst, $src\t# count leading zeros (int)" %}
 12983   ins_encode %{
 12984     __ clz($dst$$Register, $src$$Register);
 12985   %}
 12986   ins_pipe( ialu_regL_regL );
 12987 %}
 12989 instruct countLeadingZerosL(mRegI dst, mRegL src) %{
 12990   predicate(UseCountLeadingZerosInstruction);
 12991   match(Set dst (CountLeadingZerosL src));
 12993   format %{ "dclz  $dst, $src\t# count leading zeros (long)" %}
 12994   ins_encode %{
 12995     __ dclz($dst$$Register, $src$$Register);
 12996   %}
 12997   ins_pipe( ialu_regL_regL );
 12998 %}
 13000 instruct countTrailingZerosI(mRegI dst, mRegI src) %{
 13001   predicate(UseCountTrailingZerosInstruction);
 13002   match(Set dst (CountTrailingZerosI src));
 13004   format %{ "ctz    $dst, $src\t# count trailing zeros (int)" %}
 13005   ins_encode %{
 13006     // ctz and dctz is gs instructions.
 13007     __ ctz($dst$$Register, $src$$Register);
 13008   %}
 13009   ins_pipe( ialu_regL_regL );
 13010 %}
 13012 instruct countTrailingZerosL(mRegI dst, mRegL src) %{
 13013   predicate(UseCountTrailingZerosInstruction);
 13014   match(Set dst (CountTrailingZerosL src));
 13016   format %{ "dcto    $dst, $src\t# count trailing zeros (long)" %}
 13017   ins_encode %{
 13018     __ dctz($dst$$Register, $src$$Register);
 13019   %}
 13020   ins_pipe( ialu_regL_regL );
 13021 %}
 13023 // ====================VECTOR INSTRUCTIONS=====================================
 13025 // Load vectors (8 bytes long)
 13026 instruct loadV8(vecD dst, memory mem) %{
 13027   predicate(n->as_LoadVector()->memory_size() == 8);
 13028   match(Set dst (LoadVector mem));
 13029   ins_cost(125);
 13030   format %{ "load    $dst, $mem\t! load vector (8 bytes)" %}
 13031   ins_encode(load_D_enc(dst, mem));
 13032   ins_pipe( fpu_loadF );
 13033 %}
 13035 // Store vectors (8 bytes long)
 13036 instruct storeV8(memory mem, vecD src) %{
 13037   predicate(n->as_StoreVector()->memory_size() == 8);
 13038   match(Set mem (StoreVector mem src));
 13039   ins_cost(145);
 13040   format %{ "store    $mem, $src\t! store vector (8 bytes)" %}
 13041   ins_encode(store_D_reg_enc(mem, src));
 13042   ins_pipe( fpu_storeF );
 13043 %}
 13045 instruct Repl8B(vecD dst, mRegI src) %{
 13046   predicate(n->as_Vector()->length() == 8);
 13047   match(Set dst (ReplicateB src));
 13048   format %{ "replv_ob    AT, $src\n\t"
 13049             "dmtc1 AT, $dst\t! replicate8B" %}
 13050   ins_encode %{
 13051     __ replv_ob(AT, $src$$Register);
 13052     __ dmtc1(AT, $dst$$FloatRegister);
 13053   %}
 13054   ins_pipe( pipe_mtc1 );
 13055 %}
 13057 instruct Repl8B_imm(vecD dst, immI con) %{
 13058   predicate(n->as_Vector()->length() == 8);
 13059   match(Set dst (ReplicateB con));
 13060   format %{ "repl_ob    AT, [$con]\n\t"
 13061             "dmtc1 AT, $dst,0x00\t! replicate8B($con)" %}
 13062   ins_encode %{
 13063     int      val = $con$$constant;
 13064     __ repl_ob(AT, val);
 13065     __ dmtc1(AT, $dst$$FloatRegister);
 13066   %}
 13067   ins_pipe( pipe_mtc1 );
 13068 %}
 13070 instruct Repl8B_zero(vecD dst, immI0 zero) %{
 13071   predicate(n->as_Vector()->length() == 8);
 13072   match(Set dst (ReplicateB zero));
 13073   format %{ "dmtc1    R0, $dst\t! replicate8B zero" %}
 13074   ins_encode %{
 13075     __ dmtc1(R0, $dst$$FloatRegister);
 13076   %}
 13077   ins_pipe( pipe_mtc1 );
 13078 %}
 13080 instruct Repl8B_M1(vecD dst, immI_M1 M1) %{
 13081   predicate(n->as_Vector()->length() == 8);
 13082   match(Set dst (ReplicateB M1));
 13083   format %{ "dmtc1    -1, $dst\t! replicate8B -1" %}
 13084   ins_encode %{
 13085     __ nor(AT, R0, R0);
 13086     __ dmtc1(AT, $dst$$FloatRegister);
 13087   %}
 13088   ins_pipe( pipe_mtc1 );
 13089 %}
 13091 instruct Repl4S(vecD dst, mRegI src) %{
 13092   predicate(n->as_Vector()->length() == 4);
 13093   match(Set dst (ReplicateS src));
 13094   format %{ "replv_qh    AT, $src\n\t"
 13095             "dmtc1 AT, $dst\t! replicate4S" %}
 13096   ins_encode %{
 13097     __ replv_qh(AT, $src$$Register);
 13098     __ dmtc1(AT, $dst$$FloatRegister);
 13099   %}
 13100   ins_pipe( pipe_mtc1 );
 13101 %}
 13103 instruct Repl4S_imm(vecD dst, immI con) %{
 13104   predicate(n->as_Vector()->length() == 4);
 13105   match(Set dst (ReplicateS con));
 13106   format %{ "replv_qh    AT, [$con]\n\t"
 13107             "dmtc1 AT, $dst\t! replicate4S($con)" %}
 13108   ins_encode %{
 13109     int      val = $con$$constant;
 13110     if ( Assembler::is_simm(val, 10)) {
 13111       //repl_qh supports 10 bits immediate
 13112       __ repl_qh(AT, val);
 13113     } else {
 13114       __ li32(AT, val);
 13115       __ replv_qh(AT, AT);
 13117     __ dmtc1(R0, $dst$$FloatRegister);
 13118   %}
 13119   ins_pipe( pipe_mtc1 );
 13120 %}
 13122 instruct Repl4S_zero(vecD dst, immI0 zero) %{
 13123   predicate(n->as_Vector()->length() == 4);
 13124   match(Set dst (ReplicateS zero));
 13125   format %{ "dmtc1    R0, $dst\t! replicate4S zero" %}
 13126   ins_encode %{
 13127     __ dmtc1(R0, $dst$$FloatRegister);
 13128   %}
 13129   ins_pipe( pipe_mtc1 );
 13130 %}
 13132 instruct Repl4S_M1(vecD dst, immI_M1 M1) %{
 13133   predicate(n->as_Vector()->length() == 4);
 13134   match(Set dst (ReplicateS M1));
 13135   format %{ "dmtc1    -1, $dst\t! replicate4S -1" %}
 13136   ins_encode %{
 13137     __ nor(AT, R0, R0);
 13138     __ dmtc1(AT, $dst$$FloatRegister);
 13139   %}
 13140   ins_pipe( pipe_mtc1 );
 13141 %}
 13143 // Replicate integer (4 byte) scalar to be vector
 13144 instruct Repl2I(vecD dst, mRegI src) %{
 13145   predicate(n->as_Vector()->length() == 2);
 13146   match(Set dst (ReplicateI src));
 13147   format %{ "dins    AT, $src, 0, 32\n\t"
 13148             "dinsu   AT, $src, 32, 32\n\t"
 13149             "dmtc1   AT, $dst\t! replicate2I" %}
 13150   ins_encode %{
 13151     __ dins(AT, $src$$Register, 0, 32);
 13152     __ dinsu(AT, $src$$Register, 32, 32);
 13153     __ dmtc1(AT, $dst$$FloatRegister);
 13154   %}
 13155   ins_pipe( pipe_mtc1 );
 13156 %}
 13158 // Replicate integer (4 byte) scalar immediate to be vector by loading from const table.
 13159 instruct Repl2I_imm(vecD dst, immI con, mA7RegI tmp) %{
 13160   predicate(n->as_Vector()->length() == 2);
 13161   match(Set dst (ReplicateI con));
 13162   effect(KILL tmp);
 13163   format %{ "li32    AT, [$con], 32\n\t"
 13164             "replv_pw   AT, AT\n\t"
 13165             "dmtc1   AT, $dst\t! replicate2I($con)" %}
 13166   ins_encode %{
 13167     int      val = $con$$constant;
 13168     __ li32(AT, val);
 13169     __ replv_pw(AT, AT);
 13170     __ dmtc1(AT, $dst$$FloatRegister);
 13171   %}
 13172   ins_pipe( pipe_mtc1 );
 13173 %}
 13175 // Replicate integer (4 byte) scalar zero to be vector
 13176 instruct Repl2I_zero(vecD dst, immI0 zero) %{
 13177   predicate(n->as_Vector()->length() == 2);
 13178   match(Set dst (ReplicateI zero));
 13179   format %{ "dmtc1    R0, $dst\t! replicate2I zero" %}
 13180   ins_encode %{
 13181     __ dmtc1(R0, $dst$$FloatRegister);
 13182   %}
 13183   ins_pipe( pipe_mtc1 );
 13184 %}
 13186 // Replicate integer (4 byte) scalar -1 to be vector
 13187 instruct Repl2I_M1(vecD dst, immI_M1 M1) %{
 13188   predicate(n->as_Vector()->length() == 2);
 13189   match(Set dst (ReplicateI M1));
 13190   format %{ "dmtc1    -1, $dst\t! replicate2I -1, use AT" %}
 13191   ins_encode %{
 13192     __ nor(AT, R0, R0);
 13193     __ dmtc1(AT, $dst$$FloatRegister);
 13194   %}
 13195   ins_pipe( pipe_mtc1 );
 13196 %}
 13198 // Replicate float (4 byte) scalar to be vector
 13199 instruct Repl2F(vecD dst, regF src) %{
 13200   predicate(n->as_Vector()->length() == 2);
 13201   match(Set dst (ReplicateF src));
 13202   format %{ "cvt.ps  $dst, $src, $src\t! replicate2F" %}
 13203   ins_encode %{
 13204     __ cvt_ps_s($dst$$FloatRegister, $src$$FloatRegister, $src$$FloatRegister);
 13205   %}
 13206   ins_pipe( pipe_slow );
 13207 %}
 13209 // Replicate float (4 byte) scalar zero to be vector
 13210 instruct Repl2F_zero(vecD dst, immF0 zero) %{
 13211   predicate(n->as_Vector()->length() == 2);
 13212   match(Set dst (ReplicateF zero));
 13213   format %{ "dmtc1   R0, $dst\t! replicate2F zero" %}
 13214   ins_encode %{
 13215     __ dmtc1(R0, $dst$$FloatRegister);
 13216   %}
 13217   ins_pipe( pipe_mtc1 );
 13218 %}
 13221 // ====================VECTOR ARITHMETIC=======================================
 13223 // --------------------------------- ADD --------------------------------------
 13225 // Floats vector add
 13226 instruct vadd2F(vecD dst, vecD src) %{
 13227   predicate(n->as_Vector()->length() == 2);
 13228   match(Set dst (AddVF dst src));
 13229   format %{ "add.ps   $dst,$src\t! add packed2F" %}
 13230   ins_encode %{
 13231     __ add_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13232   %}
 13233   ins_pipe( pipe_slow );
 13234 %}
 13236 instruct vadd2F3(vecD dst, vecD src1, vecD src2) %{
 13237   predicate(n->as_Vector()->length() == 2);
 13238   match(Set dst (AddVF src1 src2));
 13239   format %{ "add.ps   $dst,$src1,$src2\t! add packed2F" %}
 13240   ins_encode %{
 13241     __ add_ps($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 13242   %}
 13243   ins_pipe( fpu_regF_regF );
 13244 %}
 13246 // --------------------------------- SUB --------------------------------------
 13248 // Floats vector sub
 13249 instruct vsub2F(vecD dst, vecD src) %{
 13250   predicate(n->as_Vector()->length() == 2);
 13251   match(Set dst (SubVF dst src));
 13252   format %{ "sub.ps   $dst,$src\t! sub packed2F" %}
 13253   ins_encode %{
 13254     __ sub_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13255   %}
 13256   ins_pipe( fpu_regF_regF );
 13257 %}
 13259 // --------------------------------- MUL --------------------------------------
 13261 // Floats vector mul
 13262 instruct vmul2F(vecD dst, vecD src) %{
 13263   predicate(n->as_Vector()->length() == 2);
 13264   match(Set dst (MulVF dst src));
 13265   format %{ "mul.ps   $dst, $src\t! mul packed2F" %}
 13266   ins_encode %{
 13267     __ mul_ps($dst$$FloatRegister, $dst$$FloatRegister, $src$$FloatRegister);
 13268   %}
 13269   ins_pipe( fpu_regF_regF );
 13270 %}
 13272 instruct vmul2F3(vecD dst, vecD src1, vecD src2) %{
 13273   predicate(n->as_Vector()->length() == 2);
 13274   match(Set dst (MulVF src1 src2));
 13275   format %{ "mul.ps   $dst, $src1, $src2\t! mul packed2F" %}
 13276   ins_encode %{
 13277     __ mul_ps($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 13278   %}
 13279   ins_pipe( fpu_regF_regF );
 13280 %}
 13282 // --------------------------------- DIV --------------------------------------
 13283 // MIPS do not have div.ps
 13286 //----------PEEPHOLE RULES-----------------------------------------------------
 13287 // These must follow all instruction definitions as they use the names
 13288 // defined in the instructions definitions.
 13289 // 
 13290 // peepmatch ( root_instr_name [preceeding_instruction]* );
 13291 //
 13292 // peepconstraint %{
 13293 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13294 //  [, ...] );
 13295 // // instruction numbers are zero-based using left to right order in peepmatch
 13296 //
 13297 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13298 // // provide an instruction_number.operand_name for each operand that appears
 13299 // // in the replacement instruction's match rule
 13300 //
 13301 // ---------VM FLAGS---------------------------------------------------------
 13302 // 
 13303 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13304 // 
 13305 // Each peephole rule is given an identifying number starting with zero and
 13306 // increasing by one in the order seen by the parser.  An individual peephole
 13307 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13308 // on the command-line.
 13309 // 
 13310 // ---------CURRENT LIMITATIONS----------------------------------------------
 13311 // 
 13312 // Only match adjacent instructions in same basic block
 13313 // Only equality constraints
 13314 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13315 // Only one replacement instruction
 13316 //
 13317 // ---------EXAMPLE----------------------------------------------------------
 13318 //
 13319 // // pertinent parts of existing instructions in architecture description
 13320 // instruct movI(eRegI dst, eRegI src) %{
 13321 //   match(Set dst (CopyI src));
 13322 // %}
 13323 // 
 13324 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13325 //   match(Set dst (AddI dst src));
 13326 //   effect(KILL cr);
 13327 // %}
 13328 // 
 13329 // // Change (inc mov) to lea
 13330 // peephole %{
 13331 //   // increment preceeded by register-register move
 13332 //   peepmatch ( incI_eReg movI );
 13333 //   // require that the destination register of the increment 
 13334 //   // match the destination register of the move
 13335 //   peepconstraint ( 0.dst == 1.dst );
 13336 //   // construct a replacement instruction that sets
 13337 //   // the destination to ( move's source register + one )
 13338 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13339 // %}
 13340 // 
 13341 // Implementation no longer uses movX instructions since 
 13342 // machine-independent system no longer uses CopyX nodes.
 13343 // 
 13344 // peephole %{
 13345 //   peepmatch ( incI_eReg movI );
 13346 //   peepconstraint ( 0.dst == 1.dst );
 13347 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13348 // %}
 13349 // 
 13350 // peephole %{
 13351 //   peepmatch ( decI_eReg movI );
 13352 //   peepconstraint ( 0.dst == 1.dst );
 13353 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13354 // %}
 13355 // 
 13356 // peephole %{
 13357 //   peepmatch ( addI_eReg_imm movI );
 13358 //   peepconstraint ( 0.dst == 1.dst );
 13359 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13360 // %}
 13361 // 
 13362 // peephole %{
 13363 //   peepmatch ( addP_eReg_imm movP );
 13364 //   peepconstraint ( 0.dst == 1.dst );
 13365 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13366 // %}
 13368 // // Change load of spilled value to only a spill
 13369 // instruct storeI(memory mem, eRegI src) %{
 13370 //   match(Set mem (StoreI mem src));
 13371 // %}
 13372 // 
 13373 // instruct loadI(eRegI dst, memory mem) %{
 13374 //   match(Set dst (LoadI mem));
 13375 // %}
 13376 // 
 13377 //peephole %{
 13378 //  peepmatch ( loadI storeI );
 13379 //  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13380 //  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13381 //%}
 13383 //----------SMARTSPILL RULES---------------------------------------------------
 13384 // These must follow all instruction definitions as they use the names
 13385 // defined in the instructions definitions.

mercurial