src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Wed, 23 Mar 2011 14:12:51 +0100

author
brutisso
date
Wed, 23 Mar 2011 14:12:51 +0100
changeset 2712
5c0b591e1074
parent 2645
c93aa6caa02f
child 2961
053d84a76d3d
permissions
-rw-r--r--

6948149: G1: Imbalance in termination times
Summary: Changed default value of WorkStealingYieldsBeforeSleep from 1000 to 5000. Added more information to G1 pause logging.
Reviewed-by: jwilhelm, tonyp, jmasa

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    32 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    33 #include "runtime/arguments.hpp"
    34 #include "runtime/java.hpp"
    35 #include "runtime/mutexLocker.hpp"
    36 #include "utilities/debug.hpp"
    38 #define PREDICTIONS_VERBOSE 0
    40 // <NEW PREDICTION>
    42 // Different defaults for different number of GC threads
    43 // They were chosen by running GCOld and SPECjbb on debris with different
    44 //   numbers of GC threads and choosing them based on the results
    46 // all the same
    47 static double rs_length_diff_defaults[] = {
    48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    49 };
    51 static double cost_per_card_ms_defaults[] = {
    52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    53 };
    55 // all the same
    56 static double fully_young_cards_per_entry_ratio_defaults[] = {
    57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    58 };
    60 static double cost_per_entry_ms_defaults[] = {
    61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    62 };
    64 static double cost_per_byte_ms_defaults[] = {
    65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    66 };
    68 // these should be pretty consistent
    69 static double constant_other_time_ms_defaults[] = {
    70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    71 };
    74 static double young_other_cost_per_region_ms_defaults[] = {
    75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    76 };
    78 static double non_young_other_cost_per_region_ms_defaults[] = {
    79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    80 };
    82 // </NEW PREDICTION>
    84 // Help class for avoiding interleaved logging
    85 class LineBuffer: public StackObj {
    87 private:
    88   static const int BUFFER_LEN = 1024;
    89   static const int INDENT_CHARS = 3;
    90   char _buffer[BUFFER_LEN];
    91   int _indent_level;
    92   int _cur;
    94   void vappend(const char* format, va_list ap) {
    95     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    96     if (res != -1) {
    97       _cur += res;
    98     } else {
    99       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
   100       _buffer[BUFFER_LEN -1] = 0;
   101       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
   102     }
   103   }
   105 public:
   106   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
   107     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
   108       _buffer[_cur] = ' ';
   109     }
   110   }
   112 #ifndef PRODUCT
   113   ~LineBuffer() {
   114     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
   115   }
   116 #endif
   118   void append(const char* format, ...) {
   119     va_list ap;
   120     va_start(ap, format);
   121     vappend(format, ap);
   122     va_end(ap);
   123   }
   125   void append_and_print_cr(const char* format, ...) {
   126     va_list ap;
   127     va_start(ap, format);
   128     vappend(format, ap);
   129     va_end(ap);
   130     gclog_or_tty->print_cr("%s", _buffer);
   131     _cur = _indent_level * INDENT_CHARS;
   132   }
   133 };
   135 G1CollectorPolicy::G1CollectorPolicy() :
   136   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
   137     ? ParallelGCThreads : 1),
   140   _n_pauses(0),
   141   _recent_CH_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   142   _recent_G1_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   143   _recent_evac_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   144   _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   145   _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
   146   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   147   _all_pause_times_ms(new NumberSeq()),
   148   _stop_world_start(0.0),
   149   _all_stop_world_times_ms(new NumberSeq()),
   150   _all_yield_times_ms(new NumberSeq()),
   152   _all_mod_union_times_ms(new NumberSeq()),
   154   _summary(new Summary()),
   156 #ifndef PRODUCT
   157   _cur_clear_ct_time_ms(0.0),
   158   _min_clear_cc_time_ms(-1.0),
   159   _max_clear_cc_time_ms(-1.0),
   160   _cur_clear_cc_time_ms(0.0),
   161   _cum_clear_cc_time_ms(0.0),
   162   _num_cc_clears(0L),
   163 #endif
   165   _region_num_young(0),
   166   _region_num_tenured(0),
   167   _prev_region_num_young(0),
   168   _prev_region_num_tenured(0),
   170   _aux_num(10),
   171   _all_aux_times_ms(new NumberSeq[_aux_num]),
   172   _cur_aux_start_times_ms(new double[_aux_num]),
   173   _cur_aux_times_ms(new double[_aux_num]),
   174   _cur_aux_times_set(new bool[_aux_num]),
   176   _concurrent_mark_init_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   177   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   178   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   180   // <NEW PREDICTION>
   182   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   183   _prev_collection_pause_end_ms(0.0),
   184   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   185   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   186   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   187   _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   188   _partially_young_cards_per_entry_ratio_seq(
   189                                          new TruncatedSeq(TruncatedSeqLength)),
   190   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   191   _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   192   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   193   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   194   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   195   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   196   _non_young_other_cost_per_region_ms_seq(
   197                                          new TruncatedSeq(TruncatedSeqLength)),
   199   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   200   _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   201   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   203   _pause_time_target_ms((double) MaxGCPauseMillis),
   205   // </NEW PREDICTION>
   207   _in_young_gc_mode(false),
   208   _full_young_gcs(true),
   209   _full_young_pause_num(0),
   210   _partial_young_pause_num(0),
   212   _during_marking(false),
   213   _in_marking_window(false),
   214   _in_marking_window_im(false),
   216   _known_garbage_ratio(0.0),
   217   _known_garbage_bytes(0),
   219   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
   221    _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
   223   _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
   224   _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),
   226   _recent_avg_pause_time_ratio(0.0),
   227   _num_markings(0),
   228   _n_marks(0),
   229   _n_pauses_at_mark_end(0),
   231   _all_full_gc_times_ms(new NumberSeq()),
   233   // G1PausesBtwnConcMark defaults to -1
   234   // so the hack is to do the cast  QQQ FIXME
   235   _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
   236   _n_marks_since_last_pause(0),
   237   _initiate_conc_mark_if_possible(false),
   238   _during_initial_mark_pause(false),
   239   _should_revert_to_full_young_gcs(false),
   240   _last_full_young_gc(false),
   242   _prev_collection_pause_used_at_end_bytes(0),
   244   _collection_set(NULL),
   245   _collection_set_size(0),
   246   _collection_set_bytes_used_before(0),
   248   // Incremental CSet attributes
   249   _inc_cset_build_state(Inactive),
   250   _inc_cset_head(NULL),
   251   _inc_cset_tail(NULL),
   252   _inc_cset_size(0),
   253   _inc_cset_young_index(0),
   254   _inc_cset_bytes_used_before(0),
   255   _inc_cset_max_finger(NULL),
   256   _inc_cset_recorded_young_bytes(0),
   257   _inc_cset_recorded_rs_lengths(0),
   258   _inc_cset_predicted_elapsed_time_ms(0.0),
   259   _inc_cset_predicted_bytes_to_copy(0),
   261 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   262 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   263 #endif // _MSC_VER
   265   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   266                                                  G1YoungSurvRateNumRegionsSummary)),
   267   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   268                                               G1YoungSurvRateNumRegionsSummary)),
   269   // add here any more surv rate groups
   270   _recorded_survivor_regions(0),
   271   _recorded_survivor_head(NULL),
   272   _recorded_survivor_tail(NULL),
   273   _survivors_age_table(true),
   275   _gc_overhead_perc(0.0)
   277 {
   278   // Set up the region size and associated fields. Given that the
   279   // policy is created before the heap, we have to set this up here,
   280   // so it's done as soon as possible.
   281   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   282   HeapRegionRemSet::setup_remset_size();
   284   // Verify PLAB sizes
   285   const uint region_size = HeapRegion::GrainWords;
   286   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   287     char buffer[128];
   288     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most %u",
   289                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   290     vm_exit_during_initialization(buffer);
   291   }
   293   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   294   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   296   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
   297   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
   298   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
   300   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
   301   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
   303   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
   305   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
   307   _par_last_termination_times_ms = new double[_parallel_gc_threads];
   308   _par_last_termination_attempts = new double[_parallel_gc_threads];
   309   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
   310   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
   312   // start conservatively
   313   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
   315   // <NEW PREDICTION>
   317   int index;
   318   if (ParallelGCThreads == 0)
   319     index = 0;
   320   else if (ParallelGCThreads > 8)
   321     index = 7;
   322   else
   323     index = ParallelGCThreads - 1;
   325   _pending_card_diff_seq->add(0.0);
   326   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   327   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   328   _fully_young_cards_per_entry_ratio_seq->add(
   329                             fully_young_cards_per_entry_ratio_defaults[index]);
   330   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   331   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   332   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   333   _young_other_cost_per_region_ms_seq->add(
   334                                young_other_cost_per_region_ms_defaults[index]);
   335   _non_young_other_cost_per_region_ms_seq->add(
   336                            non_young_other_cost_per_region_ms_defaults[index]);
   338   // </NEW PREDICTION>
   340   // Below, we might need to calculate the pause time target based on
   341   // the pause interval. When we do so we are going to give G1 maximum
   342   // flexibility and allow it to do pauses when it needs to. So, we'll
   343   // arrange that the pause interval to be pause time target + 1 to
   344   // ensure that a) the pause time target is maximized with respect to
   345   // the pause interval and b) we maintain the invariant that pause
   346   // time target < pause interval. If the user does not want this
   347   // maximum flexibility, they will have to set the pause interval
   348   // explicitly.
   350   // First make sure that, if either parameter is set, its value is
   351   // reasonable.
   352   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   353     if (MaxGCPauseMillis < 1) {
   354       vm_exit_during_initialization("MaxGCPauseMillis should be "
   355                                     "greater than 0");
   356     }
   357   }
   358   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   359     if (GCPauseIntervalMillis < 1) {
   360       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   361                                     "greater than 0");
   362     }
   363   }
   365   // Then, if the pause time target parameter was not set, set it to
   366   // the default value.
   367   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   368     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   369       // The default pause time target in G1 is 200ms
   370       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   371     } else {
   372       // We do not allow the pause interval to be set without the
   373       // pause time target
   374       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   375                                     "without setting MaxGCPauseMillis");
   376     }
   377   }
   379   // Then, if the interval parameter was not set, set it according to
   380   // the pause time target (this will also deal with the case when the
   381   // pause time target is the default value).
   382   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   383     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   384   }
   386   // Finally, make sure that the two parameters are consistent.
   387   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   388     char buffer[256];
   389     jio_snprintf(buffer, 256,
   390                  "MaxGCPauseMillis (%u) should be less than "
   391                  "GCPauseIntervalMillis (%u)",
   392                  MaxGCPauseMillis, GCPauseIntervalMillis);
   393     vm_exit_during_initialization(buffer);
   394   }
   396   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   397   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   398   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   399   _sigma = (double) G1ConfidencePercent / 100.0;
   401   // start conservatively (around 50ms is about right)
   402   _concurrent_mark_init_times_ms->add(0.05);
   403   _concurrent_mark_remark_times_ms->add(0.05);
   404   _concurrent_mark_cleanup_times_ms->add(0.20);
   405   _tenuring_threshold = MaxTenuringThreshold;
   407   // if G1FixedSurvivorSpaceSize is 0 which means the size is not
   408   // fixed, then _max_survivor_regions will be calculated at
   409   // calculate_young_list_target_length during initialization
   410   _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
   412   assert(GCTimeRatio > 0,
   413          "we should have set it to a default value set_g1_gc_flags() "
   414          "if a user set it to 0");
   415   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   417   initialize_all();
   418 }
   420 // Increment "i", mod "len"
   421 static void inc_mod(int& i, int len) {
   422   i++; if (i == len) i = 0;
   423 }
   425 void G1CollectorPolicy::initialize_flags() {
   426   set_min_alignment(HeapRegion::GrainBytes);
   427   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   428   if (SurvivorRatio < 1) {
   429     vm_exit_during_initialization("Invalid survivor ratio specified");
   430   }
   431   CollectorPolicy::initialize_flags();
   432 }
   434 // The easiest way to deal with the parsing of the NewSize /
   435 // MaxNewSize / etc. parameteres is to re-use the code in the
   436 // TwoGenerationCollectorPolicy class. This is similar to what
   437 // ParallelScavenge does with its GenerationSizer class (see
   438 // ParallelScavengeHeap::initialize()). We might change this in the
   439 // future, but it's a good start.
   440 class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
   441   size_t size_to_region_num(size_t byte_size) {
   442     return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
   443   }
   445 public:
   446   G1YoungGenSizer() {
   447     initialize_flags();
   448     initialize_size_info();
   449   }
   451   size_t min_young_region_num() {
   452     return size_to_region_num(_min_gen0_size);
   453   }
   454   size_t initial_young_region_num() {
   455     return size_to_region_num(_initial_gen0_size);
   456   }
   457   size_t max_young_region_num() {
   458     return size_to_region_num(_max_gen0_size);
   459   }
   460 };
   462 void G1CollectorPolicy::init() {
   463   // Set aside an initial future to_space.
   464   _g1 = G1CollectedHeap::heap();
   466   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   468   initialize_gc_policy_counters();
   470   if (G1Gen) {
   471     _in_young_gc_mode = true;
   473     G1YoungGenSizer sizer;
   474     size_t initial_region_num = sizer.initial_young_region_num();
   476     if (UseAdaptiveSizePolicy) {
   477       set_adaptive_young_list_length(true);
   478       _young_list_fixed_length = 0;
   479     } else {
   480       set_adaptive_young_list_length(false);
   481       _young_list_fixed_length = initial_region_num;
   482     }
   483     _free_regions_at_end_of_collection = _g1->free_regions();
   484     calculate_young_list_min_length();
   485     guarantee( _young_list_min_length == 0, "invariant, not enough info" );
   486     calculate_young_list_target_length();
   487   } else {
   488      _young_list_fixed_length = 0;
   489     _in_young_gc_mode = false;
   490   }
   492   // We may immediately start allocating regions and placing them on the
   493   // collection set list. Initialize the per-collection set info
   494   start_incremental_cset_building();
   495 }
   497 // Create the jstat counters for the policy.
   498 void G1CollectorPolicy::initialize_gc_policy_counters()
   499 {
   500   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 2 + G1Gen);
   501 }
   503 void G1CollectorPolicy::calculate_young_list_min_length() {
   504   _young_list_min_length = 0;
   506   if (!adaptive_young_list_length())
   507     return;
   509   if (_alloc_rate_ms_seq->num() > 3) {
   510     double now_sec = os::elapsedTime();
   511     double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   512     double alloc_rate_ms = predict_alloc_rate_ms();
   513     size_t min_regions = (size_t) ceil(alloc_rate_ms * when_ms);
   514     size_t current_region_num = _g1->young_list()->length();
   515     _young_list_min_length = min_regions + current_region_num;
   516   }
   517 }
   519 void G1CollectorPolicy::calculate_young_list_target_length() {
   520   if (adaptive_young_list_length()) {
   521     size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   522     calculate_young_list_target_length(rs_lengths);
   523   } else {
   524     if (full_young_gcs())
   525       _young_list_target_length = _young_list_fixed_length;
   526     else
   527       _young_list_target_length = _young_list_fixed_length / 2;
   528   }
   530   // Make sure we allow the application to allocate at least one
   531   // region before we need to do a collection again.
   532   size_t min_length = _g1->young_list()->length() + 1;
   533   _young_list_target_length = MAX2(_young_list_target_length, min_length);
   534   calculate_max_gc_locker_expansion();
   535   calculate_survivors_policy();
   536 }
   538 void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
   539   guarantee( adaptive_young_list_length(), "pre-condition" );
   540   guarantee( !_in_marking_window || !_last_full_young_gc, "invariant" );
   542   double start_time_sec = os::elapsedTime();
   543   size_t min_reserve_perc = MAX2((size_t)2, (size_t)G1ReservePercent);
   544   min_reserve_perc = MIN2((size_t) 50, min_reserve_perc);
   545   size_t reserve_regions =
   546     (size_t) ((double) min_reserve_perc * (double) _g1->n_regions() / 100.0);
   548   if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
   549     // we are in fully-young mode and there are free regions in the heap
   551     double survivor_regions_evac_time =
   552         predict_survivor_regions_evac_time();
   554     double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   555     size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   556     size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   557     size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   558     double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
   559                           + survivor_regions_evac_time;
   561     // the result
   562     size_t final_young_length = 0;
   564     size_t init_free_regions =
   565       MAX2((size_t)0, _free_regions_at_end_of_collection - reserve_regions);
   567     // if we're still under the pause target...
   568     if (base_time_ms <= target_pause_time_ms) {
   569       // We make sure that the shortest young length that makes sense
   570       // fits within the target pause time.
   571       size_t min_young_length = 1;
   573       if (predict_will_fit(min_young_length, base_time_ms,
   574                                      init_free_regions, target_pause_time_ms)) {
   575         // The shortest young length will fit within the target pause time;
   576         // we'll now check whether the absolute maximum number of young
   577         // regions will fit in the target pause time. If not, we'll do
   578         // a binary search between min_young_length and max_young_length
   579         size_t abs_max_young_length = _free_regions_at_end_of_collection - 1;
   580         size_t max_young_length = abs_max_young_length;
   582         if (max_young_length > min_young_length) {
   583           // Let's check if the initial max young length will fit within the
   584           // target pause. If so then there is no need to search for a maximal
   585           // young length - we'll return the initial maximum
   587           if (predict_will_fit(max_young_length, base_time_ms,
   588                                 init_free_regions, target_pause_time_ms)) {
   589             // The maximum young length will satisfy the target pause time.
   590             // We are done so set min young length to this maximum length.
   591             // The code after the loop will then set final_young_length using
   592             // the value cached in the minimum length.
   593             min_young_length = max_young_length;
   594           } else {
   595             // The maximum possible number of young regions will not fit within
   596             // the target pause time so let's search....
   598             size_t diff = (max_young_length - min_young_length) / 2;
   599             max_young_length = min_young_length + diff;
   601             while (max_young_length > min_young_length) {
   602               if (predict_will_fit(max_young_length, base_time_ms,
   603                                         init_free_regions, target_pause_time_ms)) {
   605                 // The current max young length will fit within the target
   606                 // pause time. Note we do not exit the loop here. By setting
   607                 // min = max, and then increasing the max below means that
   608                 // we will continue searching for an upper bound in the
   609                 // range [max..max+diff]
   610                 min_young_length = max_young_length;
   611               }
   612               diff = (max_young_length - min_young_length) / 2;
   613               max_young_length = min_young_length + diff;
   614             }
   615             // the above loop found a maximal young length that will fit
   616             // within the target pause time.
   617           }
   618           assert(min_young_length <= abs_max_young_length, "just checking");
   619         }
   620         final_young_length = min_young_length;
   621       }
   622     }
   623     // and we're done!
   625     // we should have at least one region in the target young length
   626     _young_list_target_length =
   627                               final_young_length + _recorded_survivor_regions;
   629     // let's keep an eye of how long we spend on this calculation
   630     // right now, I assume that we'll print it when we need it; we
   631     // should really adde it to the breakdown of a pause
   632     double end_time_sec = os::elapsedTime();
   633     double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;
   635 #ifdef TRACE_CALC_YOUNG_LENGTH
   636     // leave this in for debugging, just in case
   637     gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT ", "
   638                            "elapsed %1.2lf ms, (%s%s) " SIZE_FORMAT SIZE_FORMAT,
   639                            target_pause_time_ms,
   640                            _young_list_target_length
   641                            elapsed_time_ms,
   642                            full_young_gcs() ? "full" : "partial",
   643                            during_initial_mark_pause() ? " i-m" : "",
   644                            _in_marking_window,
   645                            _in_marking_window_im);
   646 #endif // TRACE_CALC_YOUNG_LENGTH
   648     if (_young_list_target_length < _young_list_min_length) {
   649       // bummer; this means that, if we do a pause when the maximal
   650       // length dictates, we'll violate the pause spacing target (the
   651       // min length was calculate based on the application's current
   652       // alloc rate);
   654       // so, we have to bite the bullet, and allocate the minimum
   655       // number. We'll violate our target, but we just can't meet it.
   657 #ifdef TRACE_CALC_YOUNG_LENGTH
   658       // leave this in for debugging, just in case
   659       gclog_or_tty->print_cr("adjusted target length from "
   660                              SIZE_FORMAT " to " SIZE_FORMAT,
   661                              _young_list_target_length, _young_list_min_length);
   662 #endif // TRACE_CALC_YOUNG_LENGTH
   664       _young_list_target_length = _young_list_min_length;
   665     }
   666   } else {
   667     // we are in a partially-young mode or we've run out of regions (due
   668     // to evacuation failure)
   670 #ifdef TRACE_CALC_YOUNG_LENGTH
   671     // leave this in for debugging, just in case
   672     gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
   673                            _young_list_min_length);
   674 #endif // TRACE_CALC_YOUNG_LENGTH
   675     // we'll do the pause as soon as possible by choosing the minimum
   676     _young_list_target_length = _young_list_min_length;
   677   }
   679   _rs_lengths_prediction = rs_lengths;
   680 }
   682 // This is used by: calculate_young_list_target_length(rs_length). It
   683 // returns true iff:
   684 //   the predicted pause time for the given young list will not overflow
   685 //   the target pause time
   686 // and:
   687 //   the predicted amount of surviving data will not overflow the
   688 //   the amount of free space available for survivor regions.
   689 //
   690 bool
   691 G1CollectorPolicy::predict_will_fit(size_t young_length,
   692                                     double base_time_ms,
   693                                     size_t init_free_regions,
   694                                     double target_pause_time_ms) {
   696   if (young_length >= init_free_regions)
   697     // end condition 1: not enough space for the young regions
   698     return false;
   700   double accum_surv_rate_adj = 0.0;
   701   double accum_surv_rate =
   702     accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;
   704   size_t bytes_to_copy =
   705     (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   707   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   709   double young_other_time_ms =
   710                        predict_young_other_time_ms(young_length);
   712   double pause_time_ms =
   713                    base_time_ms + copy_time_ms + young_other_time_ms;
   715   if (pause_time_ms > target_pause_time_ms)
   716     // end condition 2: over the target pause time
   717     return false;
   719   size_t free_bytes =
   720                  (init_free_regions - young_length) * HeapRegion::GrainBytes;
   722   if ((2.0 + sigma()) * (double) bytes_to_copy > (double) free_bytes)
   723     // end condition 3: out of to-space (conservatively)
   724     return false;
   726   // success!
   727   return true;
   728 }
   730 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   731   double survivor_regions_evac_time = 0.0;
   732   for (HeapRegion * r = _recorded_survivor_head;
   733        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   734        r = r->get_next_young_region()) {
   735     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
   736   }
   737   return survivor_regions_evac_time;
   738 }
   740 void G1CollectorPolicy::check_prediction_validity() {
   741   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   743   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   744   if (rs_lengths > _rs_lengths_prediction) {
   745     // add 10% to avoid having to recalculate often
   746     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   747     calculate_young_list_target_length(rs_lengths_prediction);
   748   }
   749 }
   751 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   752                                                bool is_tlab,
   753                                                bool* gc_overhead_limit_was_exceeded) {
   754   guarantee(false, "Not using this policy feature yet.");
   755   return NULL;
   756 }
   758 // This method controls how a collector handles one or more
   759 // of its generations being fully allocated.
   760 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   761                                                        bool is_tlab) {
   762   guarantee(false, "Not using this policy feature yet.");
   763   return NULL;
   764 }
   767 #ifndef PRODUCT
   768 bool G1CollectorPolicy::verify_young_ages() {
   769   HeapRegion* head = _g1->young_list()->first_region();
   770   return
   771     verify_young_ages(head, _short_lived_surv_rate_group);
   772   // also call verify_young_ages on any additional surv rate groups
   773 }
   775 bool
   776 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   777                                      SurvRateGroup *surv_rate_group) {
   778   guarantee( surv_rate_group != NULL, "pre-condition" );
   780   const char* name = surv_rate_group->name();
   781   bool ret = true;
   782   int prev_age = -1;
   784   for (HeapRegion* curr = head;
   785        curr != NULL;
   786        curr = curr->get_next_young_region()) {
   787     SurvRateGroup* group = curr->surv_rate_group();
   788     if (group == NULL && !curr->is_survivor()) {
   789       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   790       ret = false;
   791     }
   793     if (surv_rate_group == group) {
   794       int age = curr->age_in_surv_rate_group();
   796       if (age < 0) {
   797         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   798         ret = false;
   799       }
   801       if (age <= prev_age) {
   802         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   803                                "(%d, %d)", name, age, prev_age);
   804         ret = false;
   805       }
   806       prev_age = age;
   807     }
   808   }
   810   return ret;
   811 }
   812 #endif // PRODUCT
   814 void G1CollectorPolicy::record_full_collection_start() {
   815   _cur_collection_start_sec = os::elapsedTime();
   816   // Release the future to-space so that it is available for compaction into.
   817   _g1->set_full_collection();
   818 }
   820 void G1CollectorPolicy::record_full_collection_end() {
   821   // Consider this like a collection pause for the purposes of allocation
   822   // since last pause.
   823   double end_sec = os::elapsedTime();
   824   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
   825   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   827   _all_full_gc_times_ms->add(full_gc_time_ms);
   829   update_recent_gc_times(end_sec, full_gc_time_ms);
   831   _g1->clear_full_collection();
   833   // "Nuke" the heuristics that control the fully/partially young GC
   834   // transitions and make sure we start with fully young GCs after the
   835   // Full GC.
   836   set_full_young_gcs(true);
   837   _last_full_young_gc = false;
   838   _should_revert_to_full_young_gcs = false;
   839   clear_initiate_conc_mark_if_possible();
   840   clear_during_initial_mark_pause();
   841   _known_garbage_bytes = 0;
   842   _known_garbage_ratio = 0.0;
   843   _in_marking_window = false;
   844   _in_marking_window_im = false;
   846   _short_lived_surv_rate_group->start_adding_regions();
   847   // also call this on any additional surv rate groups
   849   record_survivor_regions(0, NULL, NULL);
   851   _prev_region_num_young   = _region_num_young;
   852   _prev_region_num_tenured = _region_num_tenured;
   854   _free_regions_at_end_of_collection = _g1->free_regions();
   855   // Reset survivors SurvRateGroup.
   856   _survivor_surv_rate_group->reset();
   857   calculate_young_list_min_length();
   858   calculate_young_list_target_length();
   859 }
   861 void G1CollectorPolicy::record_before_bytes(size_t bytes) {
   862   _bytes_in_to_space_before_gc += bytes;
   863 }
   865 void G1CollectorPolicy::record_after_bytes(size_t bytes) {
   866   _bytes_in_to_space_after_gc += bytes;
   867 }
   869 void G1CollectorPolicy::record_stop_world_start() {
   870   _stop_world_start = os::elapsedTime();
   871 }
   873 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   874                                                       size_t start_used) {
   875   if (PrintGCDetails) {
   876     gclog_or_tty->stamp(PrintGCTimeStamps);
   877     gclog_or_tty->print("[GC pause");
   878     if (in_young_gc_mode())
   879       gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
   880   }
   882   assert(_g1->used() == _g1->recalculate_used(),
   883          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   884                  _g1->used(), _g1->recalculate_used()));
   886   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   887   _all_stop_world_times_ms->add(s_w_t_ms);
   888   _stop_world_start = 0.0;
   890   _cur_collection_start_sec = start_time_sec;
   891   _cur_collection_pause_used_at_start_bytes = start_used;
   892   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   893   _pending_cards = _g1->pending_card_num();
   894   _max_pending_cards = _g1->max_pending_card_num();
   896   _bytes_in_to_space_before_gc = 0;
   897   _bytes_in_to_space_after_gc = 0;
   898   _bytes_in_collection_set_before_gc = 0;
   900 #ifdef DEBUG
   901   // initialise these to something well known so that we can spot
   902   // if they are not set properly
   904   for (int i = 0; i < _parallel_gc_threads; ++i) {
   905     _par_last_gc_worker_start_times_ms[i] = -1234.0;
   906     _par_last_ext_root_scan_times_ms[i] = -1234.0;
   907     _par_last_mark_stack_scan_times_ms[i] = -1234.0;
   908     _par_last_update_rs_times_ms[i] = -1234.0;
   909     _par_last_update_rs_processed_buffers[i] = -1234.0;
   910     _par_last_scan_rs_times_ms[i] = -1234.0;
   911     _par_last_obj_copy_times_ms[i] = -1234.0;
   912     _par_last_termination_times_ms[i] = -1234.0;
   913     _par_last_termination_attempts[i] = -1234.0;
   914     _par_last_gc_worker_end_times_ms[i] = -1234.0;
   915     _par_last_gc_worker_times_ms[i] = -1234.0;
   916   }
   917 #endif
   919   for (int i = 0; i < _aux_num; ++i) {
   920     _cur_aux_times_ms[i] = 0.0;
   921     _cur_aux_times_set[i] = false;
   922   }
   924   _satb_drain_time_set = false;
   925   _last_satb_drain_processed_buffers = -1;
   927   if (in_young_gc_mode())
   928     _last_young_gc_full = false;
   930   // do that for any other surv rate groups
   931   _short_lived_surv_rate_group->stop_adding_regions();
   932   _survivors_age_table.clear();
   934   assert( verify_young_ages(), "region age verification" );
   935 }
   937 void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
   938   _mark_closure_time_ms = mark_closure_time_ms;
   939 }
   941 void G1CollectorPolicy::record_concurrent_mark_init_start() {
   942   _mark_init_start_sec = os::elapsedTime();
   943   guarantee(!in_young_gc_mode(), "should not do be here in young GC mode");
   944 }
   946 void G1CollectorPolicy::record_concurrent_mark_init_end_pre(double
   947                                                    mark_init_elapsed_time_ms) {
   948   _during_marking = true;
   949   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   950   clear_during_initial_mark_pause();
   951   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   952 }
   954 void G1CollectorPolicy::record_concurrent_mark_init_end() {
   955   double end_time_sec = os::elapsedTime();
   956   double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
   957   _concurrent_mark_init_times_ms->add(elapsed_time_ms);
   958   record_concurrent_mark_init_end_pre(elapsed_time_ms);
   960   _mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
   961 }
   963 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   964   _mark_remark_start_sec = os::elapsedTime();
   965   _during_marking = false;
   966 }
   968 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   969   double end_time_sec = os::elapsedTime();
   970   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   971   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   972   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   973   _prev_collection_pause_end_ms += elapsed_time_ms;
   975   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   976 }
   978 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   979   _mark_cleanup_start_sec = os::elapsedTime();
   980 }
   982 void
   983 G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
   984                                                       size_t max_live_bytes) {
   985   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
   986   record_concurrent_mark_cleanup_end_work2();
   987 }
   989 void
   990 G1CollectorPolicy::
   991 record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   992                                          size_t max_live_bytes) {
   993   if (_n_marks < 2) _n_marks++;
   994   if (G1PolicyVerbose > 0)
   995     gclog_or_tty->print_cr("At end of marking, max_live is " SIZE_FORMAT " MB "
   996                            " (of " SIZE_FORMAT " MB heap).",
   997                            max_live_bytes/M, _g1->capacity()/M);
   998 }
  1000 // The important thing about this is that it includes "os::elapsedTime".
  1001 void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
  1002   double end_time_sec = os::elapsedTime();
  1003   double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
  1004   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  1005   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1006   _prev_collection_pause_end_ms += elapsed_time_ms;
  1008   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);
  1010   _num_markings++;
  1012   // We did a marking, so reset the "since_last_mark" variables.
  1013   double considerConcMarkCost = 1.0;
  1014   // If there are available processors, concurrent activity is free...
  1015   if (Threads::number_of_non_daemon_threads() * 2 <
  1016       os::active_processor_count()) {
  1017     considerConcMarkCost = 0.0;
  1019   _n_pauses_at_mark_end = _n_pauses;
  1020   _n_marks_since_last_pause++;
  1023 void
  1024 G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
  1025   if (in_young_gc_mode()) {
  1026     _should_revert_to_full_young_gcs = false;
  1027     _last_full_young_gc = true;
  1028     _in_marking_window = false;
  1029     if (adaptive_young_list_length())
  1030       calculate_young_list_target_length();
  1034 void G1CollectorPolicy::record_concurrent_pause() {
  1035   if (_stop_world_start > 0.0) {
  1036     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
  1037     _all_yield_times_ms->add(yield_ms);
  1041 void G1CollectorPolicy::record_concurrent_pause_end() {
  1044 void G1CollectorPolicy::record_collection_pause_end_CH_strong_roots() {
  1045   _cur_CH_strong_roots_end_sec = os::elapsedTime();
  1046   _cur_CH_strong_roots_dur_ms =
  1047     (_cur_CH_strong_roots_end_sec - _cur_collection_start_sec) * 1000.0;
  1050 void G1CollectorPolicy::record_collection_pause_end_G1_strong_roots() {
  1051   _cur_G1_strong_roots_end_sec = os::elapsedTime();
  1052   _cur_G1_strong_roots_dur_ms =
  1053     (_cur_G1_strong_roots_end_sec - _cur_CH_strong_roots_end_sec) * 1000.0;
  1056 template<class T>
  1057 T sum_of(T* sum_arr, int start, int n, int N) {
  1058   T sum = (T)0;
  1059   for (int i = 0; i < n; i++) {
  1060     int j = (start + i) % N;
  1061     sum += sum_arr[j];
  1063   return sum;
  1066 void G1CollectorPolicy::print_par_stats(int level,
  1067                                         const char* str,
  1068                                         double* data) {
  1069   double min = data[0], max = data[0];
  1070   double total = 0.0;
  1071   LineBuffer buf(level);
  1072   buf.append("[%s (ms):", str);
  1073   for (uint i = 0; i < ParallelGCThreads; ++i) {
  1074     double val = data[i];
  1075     if (val < min)
  1076       min = val;
  1077     if (val > max)
  1078       max = val;
  1079     total += val;
  1080     buf.append("  %3.1lf", val);
  1082   buf.append_and_print_cr("");
  1083   double avg = total / (double) ParallelGCThreads;
  1084   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
  1085     avg, min, max, max - min);
  1088 void G1CollectorPolicy::print_par_sizes(int level,
  1089                                         const char* str,
  1090                                         double* data) {
  1091   double min = data[0], max = data[0];
  1092   double total = 0.0;
  1093   LineBuffer buf(level);
  1094   buf.append("[%s :", str);
  1095   for (uint i = 0; i < ParallelGCThreads; ++i) {
  1096     double val = data[i];
  1097     if (val < min)
  1098       min = val;
  1099     if (val > max)
  1100       max = val;
  1101     total += val;
  1102     buf.append(" %d", (int) val);
  1104   buf.append_and_print_cr("");
  1105   double avg = total / (double) ParallelGCThreads;
  1106   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
  1107     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
  1110 void G1CollectorPolicy::print_stats (int level,
  1111                                      const char* str,
  1112                                      double value) {
  1113   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
  1116 void G1CollectorPolicy::print_stats (int level,
  1117                                      const char* str,
  1118                                      int value) {
  1119   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
  1122 double G1CollectorPolicy::avg_value (double* data) {
  1123   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1124     double ret = 0.0;
  1125     for (uint i = 0; i < ParallelGCThreads; ++i)
  1126       ret += data[i];
  1127     return ret / (double) ParallelGCThreads;
  1128   } else {
  1129     return data[0];
  1133 double G1CollectorPolicy::max_value (double* data) {
  1134   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1135     double ret = data[0];
  1136     for (uint i = 1; i < ParallelGCThreads; ++i)
  1137       if (data[i] > ret)
  1138         ret = data[i];
  1139     return ret;
  1140   } else {
  1141     return data[0];
  1145 double G1CollectorPolicy::sum_of_values (double* data) {
  1146   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1147     double sum = 0.0;
  1148     for (uint i = 0; i < ParallelGCThreads; i++)
  1149       sum += data[i];
  1150     return sum;
  1151   } else {
  1152     return data[0];
  1156 double G1CollectorPolicy::max_sum (double* data1,
  1157                                    double* data2) {
  1158   double ret = data1[0] + data2[0];
  1160   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1161     for (uint i = 1; i < ParallelGCThreads; ++i) {
  1162       double data = data1[i] + data2[i];
  1163       if (data > ret)
  1164         ret = data;
  1167   return ret;
  1170 // Anything below that is considered to be zero
  1171 #define MIN_TIMER_GRANULARITY 0.0000001
  1173 void G1CollectorPolicy::record_collection_pause_end() {
  1174   double end_time_sec = os::elapsedTime();
  1175   double elapsed_ms = _last_pause_time_ms;
  1176   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1177   double evac_ms = (end_time_sec - _cur_G1_strong_roots_end_sec) * 1000.0;
  1178   size_t rs_size =
  1179     _cur_collection_pause_used_regions_at_start - collection_set_size();
  1180   size_t cur_used_bytes = _g1->used();
  1181   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  1182   bool last_pause_included_initial_mark = false;
  1183   bool update_stats = !_g1->evacuation_failed();
  1185 #ifndef PRODUCT
  1186   if (G1YoungSurvRateVerbose) {
  1187     gclog_or_tty->print_cr("");
  1188     _short_lived_surv_rate_group->print();
  1189     // do that for any other surv rate groups too
  1191 #endif // PRODUCT
  1193   if (in_young_gc_mode()) {
  1194     last_pause_included_initial_mark = during_initial_mark_pause();
  1195     if (last_pause_included_initial_mark)
  1196       record_concurrent_mark_init_end_pre(0.0);
  1198     size_t min_used_targ =
  1199       (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  1202     if (!_g1->mark_in_progress() && !_last_full_young_gc) {
  1203       assert(!last_pause_included_initial_mark, "invariant");
  1204       if (cur_used_bytes > min_used_targ &&
  1205           cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
  1206         assert(!during_initial_mark_pause(), "we should not see this here");
  1208         // Note: this might have already been set, if during the last
  1209         // pause we decided to start a cycle but at the beginning of
  1210         // this pause we decided to postpone it. That's OK.
  1211         set_initiate_conc_mark_if_possible();
  1215     _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
  1218   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
  1219                           end_time_sec, false);
  1221   guarantee(_cur_collection_pause_used_regions_at_start >=
  1222             collection_set_size(),
  1223             "Negative RS size?");
  1225   // This assert is exempted when we're doing parallel collection pauses,
  1226   // because the fragmentation caused by the parallel GC allocation buffers
  1227   // can lead to more memory being used during collection than was used
  1228   // before. Best leave this out until the fragmentation problem is fixed.
  1229   // Pauses in which evacuation failed can also lead to negative
  1230   // collections, since no space is reclaimed from a region containing an
  1231   // object whose evacuation failed.
  1232   // Further, we're now always doing parallel collection.  But I'm still
  1233   // leaving this here as a placeholder for a more precise assertion later.
  1234   // (DLD, 10/05.)
  1235   assert((true || parallel) // Always using GC LABs now.
  1236          || _g1->evacuation_failed()
  1237          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
  1238          "Negative collection");
  1240   size_t freed_bytes =
  1241     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  1242   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
  1244   double survival_fraction =
  1245     (double)surviving_bytes/
  1246     (double)_collection_set_bytes_used_before;
  1248   _n_pauses++;
  1250   if (update_stats) {
  1251     _recent_CH_strong_roots_times_ms->add(_cur_CH_strong_roots_dur_ms);
  1252     _recent_G1_strong_roots_times_ms->add(_cur_G1_strong_roots_dur_ms);
  1253     _recent_evac_times_ms->add(evac_ms);
  1254     _recent_pause_times_ms->add(elapsed_ms);
  1256     _recent_rs_sizes->add(rs_size);
  1258     // We exempt parallel collection from this check because Alloc Buffer
  1259     // fragmentation can produce negative collections.  Same with evac
  1260     // failure.
  1261     // Further, we're now always doing parallel collection.  But I'm still
  1262     // leaving this here as a placeholder for a more precise assertion later.
  1263     // (DLD, 10/05.
  1264     assert((true || parallel)
  1265            || _g1->evacuation_failed()
  1266            || surviving_bytes <= _collection_set_bytes_used_before,
  1267            "Or else negative collection!");
  1268     _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
  1269     _recent_CS_bytes_surviving->add(surviving_bytes);
  1271     // this is where we update the allocation rate of the application
  1272     double app_time_ms =
  1273       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
  1274     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1275       // This usually happens due to the timer not having the required
  1276       // granularity. Some Linuxes are the usual culprits.
  1277       // We'll just set it to something (arbitrarily) small.
  1278       app_time_ms = 1.0;
  1280     size_t regions_allocated =
  1281       (_region_num_young - _prev_region_num_young) +
  1282       (_region_num_tenured - _prev_region_num_tenured);
  1283     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1284     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1285     _prev_region_num_young   = _region_num_young;
  1286     _prev_region_num_tenured = _region_num_tenured;
  1288     double interval_ms =
  1289       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1290     update_recent_gc_times(end_time_sec, elapsed_ms);
  1291     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1292     if (recent_avg_pause_time_ratio() < 0.0 ||
  1293         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
  1294 #ifndef PRODUCT
  1295       // Dump info to allow post-facto debugging
  1296       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
  1297       gclog_or_tty->print_cr("-------------------------------------------");
  1298       gclog_or_tty->print_cr("Recent GC Times (ms):");
  1299       _recent_gc_times_ms->dump();
  1300       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
  1301       _recent_prev_end_times_for_all_gcs_sec->dump();
  1302       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
  1303                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
  1304       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1305       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1306 #endif  // !PRODUCT
  1307       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1308       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1309       if (_recent_avg_pause_time_ratio < 0.0) {
  1310         _recent_avg_pause_time_ratio = 0.0;
  1311       } else {
  1312         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1313         _recent_avg_pause_time_ratio = 1.0;
  1318   if (G1PolicyVerbose > 1) {
  1319     gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
  1322   PauseSummary* summary = _summary;
  1324   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  1325   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
  1326   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  1327   double update_rs_processed_buffers =
  1328     sum_of_values(_par_last_update_rs_processed_buffers);
  1329   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  1330   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  1331   double termination_time = avg_value(_par_last_termination_times_ms);
  1333   double parallel_other_time = _cur_collection_par_time_ms -
  1334     (update_rs_time + ext_root_scan_time + mark_stack_scan_time +
  1335      scan_rs_time + obj_copy_time + termination_time);
  1336   if (update_stats) {
  1337     MainBodySummary* body_summary = summary->main_body_summary();
  1338     guarantee(body_summary != NULL, "should not be null!");
  1340     if (_satb_drain_time_set)
  1341       body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
  1342     else
  1343       body_summary->record_satb_drain_time_ms(0.0);
  1344     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
  1345     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
  1346     body_summary->record_update_rs_time_ms(update_rs_time);
  1347     body_summary->record_scan_rs_time_ms(scan_rs_time);
  1348     body_summary->record_obj_copy_time_ms(obj_copy_time);
  1349     if (parallel) {
  1350       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
  1351       body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
  1352       body_summary->record_termination_time_ms(termination_time);
  1353       body_summary->record_parallel_other_time_ms(parallel_other_time);
  1355     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
  1358   if (G1PolicyVerbose > 1) {
  1359     gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
  1360                            "        CH Strong: %10.6f ms    (avg: %10.6f ms)\n"
  1361                            "        G1 Strong: %10.6f ms    (avg: %10.6f ms)\n"
  1362                            "        Evac:      %10.6f ms    (avg: %10.6f ms)\n"
  1363                            "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
  1364                            "      |RS|: " SIZE_FORMAT,
  1365                            elapsed_ms, recent_avg_time_for_pauses_ms(),
  1366                            _cur_CH_strong_roots_dur_ms, recent_avg_time_for_CH_strong_ms(),
  1367                            _cur_G1_strong_roots_dur_ms, recent_avg_time_for_G1_strong_ms(),
  1368                            evac_ms, recent_avg_time_for_evac_ms(),
  1369                            scan_rs_time,
  1370                            recent_avg_time_for_pauses_ms() -
  1371                            recent_avg_time_for_G1_strong_ms(),
  1372                            rs_size);
  1374     gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
  1375                            "       At end " SIZE_FORMAT "K\n"
  1376                            "       garbage      : " SIZE_FORMAT "K"
  1377                            "       of     " SIZE_FORMAT "K\n"
  1378                            "       survival     : %6.2f%%  (%6.2f%% avg)",
  1379                            _cur_collection_pause_used_at_start_bytes/K,
  1380                            _g1->used()/K, freed_bytes/K,
  1381                            _collection_set_bytes_used_before/K,
  1382                            survival_fraction*100.0,
  1383                            recent_avg_survival_fraction()*100.0);
  1384     gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
  1385                            recent_avg_pause_time_ratio() * 100.0);
  1388   double other_time_ms = elapsed_ms;
  1390   if (_satb_drain_time_set) {
  1391     other_time_ms -= _cur_satb_drain_time_ms;
  1394   if (parallel) {
  1395     other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
  1396   } else {
  1397     other_time_ms -=
  1398       update_rs_time +
  1399       ext_root_scan_time + mark_stack_scan_time +
  1400       scan_rs_time + obj_copy_time;
  1403   if (PrintGCDetails) {
  1404     gclog_or_tty->print_cr("%s, %1.8lf secs]",
  1405                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
  1406                            elapsed_ms / 1000.0);
  1408     if (_satb_drain_time_set) {
  1409       print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
  1411     if (_last_satb_drain_processed_buffers >= 0) {
  1412       print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
  1414     if (parallel) {
  1415       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
  1416       print_par_stats(2, "GC Worker Start Time", _par_last_gc_worker_start_times_ms);
  1417       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
  1418       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
  1419       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
  1420       print_par_stats(2, "Mark Stack Scanning", _par_last_mark_stack_scan_times_ms);
  1421       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
  1422       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
  1423       print_par_stats(2, "Termination", _par_last_termination_times_ms);
  1424       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
  1425       print_par_stats(2, "GC Worker End Time", _par_last_gc_worker_end_times_ms);
  1427       for (int i = 0; i < _parallel_gc_threads; i++) {
  1428         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
  1430       print_par_stats(2, "GC Worker Times", _par_last_gc_worker_times_ms);
  1432       print_stats(2, "Other", parallel_other_time);
  1433       print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
  1434     } else {
  1435       print_stats(1, "Update RS", update_rs_time);
  1436       print_stats(2, "Processed Buffers",
  1437                   (int)update_rs_processed_buffers);
  1438       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
  1439       print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
  1440       print_stats(1, "Scan RS", scan_rs_time);
  1441       print_stats(1, "Object Copying", obj_copy_time);
  1443 #ifndef PRODUCT
  1444     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
  1445     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
  1446     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
  1447     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
  1448     if (_num_cc_clears > 0) {
  1449       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
  1451 #endif
  1452     print_stats(1, "Other", other_time_ms);
  1453     print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
  1455     for (int i = 0; i < _aux_num; ++i) {
  1456       if (_cur_aux_times_set[i]) {
  1457         char buffer[96];
  1458         sprintf(buffer, "Aux%d", i);
  1459         print_stats(1, buffer, _cur_aux_times_ms[i]);
  1463   if (PrintGCDetails)
  1464     gclog_or_tty->print("   [");
  1465   if (PrintGC || PrintGCDetails)
  1466     _g1->print_size_transition(gclog_or_tty,
  1467                                _cur_collection_pause_used_at_start_bytes,
  1468                                _g1->used(), _g1->capacity());
  1469   if (PrintGCDetails)
  1470     gclog_or_tty->print_cr("]");
  1472   _all_pause_times_ms->add(elapsed_ms);
  1473   if (update_stats) {
  1474     summary->record_total_time_ms(elapsed_ms);
  1475     summary->record_other_time_ms(other_time_ms);
  1477   for (int i = 0; i < _aux_num; ++i)
  1478     if (_cur_aux_times_set[i])
  1479       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
  1481   // Reset marks-between-pauses counter.
  1482   _n_marks_since_last_pause = 0;
  1484   // Update the efficiency-since-mark vars.
  1485   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  1486   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
  1487     // This usually happens due to the timer not having the required
  1488     // granularity. Some Linuxes are the usual culprits.
  1489     // We'll just set it to something (arbitrarily) small.
  1490     proc_ms = 1.0;
  1492   double cur_efficiency = (double) freed_bytes / proc_ms;
  1494   bool new_in_marking_window = _in_marking_window;
  1495   bool new_in_marking_window_im = false;
  1496   if (during_initial_mark_pause()) {
  1497     new_in_marking_window = true;
  1498     new_in_marking_window_im = true;
  1501   if (in_young_gc_mode()) {
  1502     if (_last_full_young_gc) {
  1503       set_full_young_gcs(false);
  1504       _last_full_young_gc = false;
  1507     if ( !_last_young_gc_full ) {
  1508       if ( _should_revert_to_full_young_gcs ||
  1509            _known_garbage_ratio < 0.05 ||
  1510            (adaptive_young_list_length() &&
  1511            (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) ) {
  1512         set_full_young_gcs(true);
  1515     _should_revert_to_full_young_gcs = false;
  1517     if (_last_young_gc_full && !_during_marking)
  1518       _young_gc_eff_seq->add(cur_efficiency);
  1521   _short_lived_surv_rate_group->start_adding_regions();
  1522   // do that for any other surv rate groupsx
  1524   // <NEW PREDICTION>
  1526   if (update_stats) {
  1527     double pause_time_ms = elapsed_ms;
  1529     size_t diff = 0;
  1530     if (_max_pending_cards >= _pending_cards)
  1531       diff = _max_pending_cards - _pending_cards;
  1532     _pending_card_diff_seq->add((double) diff);
  1534     double cost_per_card_ms = 0.0;
  1535     if (_pending_cards > 0) {
  1536       cost_per_card_ms = update_rs_time / (double) _pending_cards;
  1537       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1540     size_t cards_scanned = _g1->cards_scanned();
  1542     double cost_per_entry_ms = 0.0;
  1543     if (cards_scanned > 10) {
  1544       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
  1545       if (_last_young_gc_full)
  1546         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1547       else
  1548         _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1551     if (_max_rs_lengths > 0) {
  1552       double cards_per_entry_ratio =
  1553         (double) cards_scanned / (double) _max_rs_lengths;
  1554       if (_last_young_gc_full)
  1555         _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1556       else
  1557         _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1560     size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1561     if (rs_length_diff >= 0)
  1562       _rs_length_diff_seq->add((double) rs_length_diff);
  1564     size_t copied_bytes = surviving_bytes;
  1565     double cost_per_byte_ms = 0.0;
  1566     if (copied_bytes > 0) {
  1567       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
  1568       if (_in_marking_window)
  1569         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1570       else
  1571         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1574     double all_other_time_ms = pause_time_ms -
  1575       (update_rs_time + scan_rs_time + obj_copy_time +
  1576        _mark_closure_time_ms + termination_time);
  1578     double young_other_time_ms = 0.0;
  1579     if (_recorded_young_regions > 0) {
  1580       young_other_time_ms =
  1581         _recorded_young_cset_choice_time_ms +
  1582         _recorded_young_free_cset_time_ms;
  1583       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1584                                              (double) _recorded_young_regions);
  1586     double non_young_other_time_ms = 0.0;
  1587     if (_recorded_non_young_regions > 0) {
  1588       non_young_other_time_ms =
  1589         _recorded_non_young_cset_choice_time_ms +
  1590         _recorded_non_young_free_cset_time_ms;
  1592       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1593                                          (double) _recorded_non_young_regions);
  1596     double constant_other_time_ms = all_other_time_ms -
  1597       (young_other_time_ms + non_young_other_time_ms);
  1598     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1600     double survival_ratio = 0.0;
  1601     if (_bytes_in_collection_set_before_gc > 0) {
  1602       survival_ratio = (double) bytes_in_to_space_during_gc() /
  1603         (double) _bytes_in_collection_set_before_gc;
  1606     _pending_cards_seq->add((double) _pending_cards);
  1607     _scanned_cards_seq->add((double) cards_scanned);
  1608     _rs_lengths_seq->add((double) _max_rs_lengths);
  1610     double expensive_region_limit_ms =
  1611       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
  1612     if (expensive_region_limit_ms < 0.0) {
  1613       // this means that the other time was predicted to be longer than
  1614       // than the max pause time
  1615       expensive_region_limit_ms = (double) MaxGCPauseMillis;
  1617     _expensive_region_limit_ms = expensive_region_limit_ms;
  1619     if (PREDICTIONS_VERBOSE) {
  1620       gclog_or_tty->print_cr("");
  1621       gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
  1622                     "REGIONS %d %d %d "
  1623                     "PENDING_CARDS %d %d "
  1624                     "CARDS_SCANNED %d %d "
  1625                     "RS_LENGTHS %d %d "
  1626                     "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
  1627                     "SURVIVAL_RATIO %1.6lf %1.6lf "
  1628                     "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
  1629                     "OTHER_YOUNG %1.6lf %1.6lf "
  1630                     "OTHER_NON_YOUNG %1.6lf %1.6lf "
  1631                     "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
  1632                     "ELAPSED %1.6lf %1.6lf ",
  1633                     _cur_collection_start_sec,
  1634                     (!_last_young_gc_full) ? 2 :
  1635                     (last_pause_included_initial_mark) ? 1 : 0,
  1636                     _recorded_region_num,
  1637                     _recorded_young_regions,
  1638                     _recorded_non_young_regions,
  1639                     _predicted_pending_cards, _pending_cards,
  1640                     _predicted_cards_scanned, cards_scanned,
  1641                     _predicted_rs_lengths, _max_rs_lengths,
  1642                     _predicted_rs_update_time_ms, update_rs_time,
  1643                     _predicted_rs_scan_time_ms, scan_rs_time,
  1644                     _predicted_survival_ratio, survival_ratio,
  1645                     _predicted_object_copy_time_ms, obj_copy_time,
  1646                     _predicted_constant_other_time_ms, constant_other_time_ms,
  1647                     _predicted_young_other_time_ms, young_other_time_ms,
  1648                     _predicted_non_young_other_time_ms,
  1649                     non_young_other_time_ms,
  1650                     _vtime_diff_ms, termination_time,
  1651                     _predicted_pause_time_ms, elapsed_ms);
  1654     if (G1PolicyVerbose > 0) {
  1655       gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
  1656                     _predicted_pause_time_ms,
  1657                     (_within_target) ? "within" : "outside",
  1658                     elapsed_ms);
  1663   _in_marking_window = new_in_marking_window;
  1664   _in_marking_window_im = new_in_marking_window_im;
  1665   _free_regions_at_end_of_collection = _g1->free_regions();
  1666   calculate_young_list_min_length();
  1667   calculate_young_list_target_length();
  1669   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1670   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1671   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
  1672   // </NEW PREDICTION>
  1675 // <NEW PREDICTION>
  1677 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1678                                                      double update_rs_processed_buffers,
  1679                                                      double goal_ms) {
  1680   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1681   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1683   if (G1UseAdaptiveConcRefinement) {
  1684     const int k_gy = 3, k_gr = 6;
  1685     const double inc_k = 1.1, dec_k = 0.9;
  1687     int g = cg1r->green_zone();
  1688     if (update_rs_time > goal_ms) {
  1689       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1690     } else {
  1691       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1692         g = (int)MAX2(g * inc_k, g + 1.0);
  1695     // Change the refinement threads params
  1696     cg1r->set_green_zone(g);
  1697     cg1r->set_yellow_zone(g * k_gy);
  1698     cg1r->set_red_zone(g * k_gr);
  1699     cg1r->reinitialize_threads();
  1701     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1702     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1703                                     cg1r->yellow_zone());
  1704     // Change the barrier params
  1705     dcqs.set_process_completed_threshold(processing_threshold);
  1706     dcqs.set_max_completed_queue(cg1r->red_zone());
  1709   int curr_queue_size = dcqs.completed_buffers_num();
  1710   if (curr_queue_size >= cg1r->yellow_zone()) {
  1711     dcqs.set_completed_queue_padding(curr_queue_size);
  1712   } else {
  1713     dcqs.set_completed_queue_padding(0);
  1715   dcqs.notify_if_necessary();
  1718 double
  1719 G1CollectorPolicy::
  1720 predict_young_collection_elapsed_time_ms(size_t adjustment) {
  1721   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
  1723   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1724   size_t young_num = g1h->young_list()->length();
  1725   if (young_num == 0)
  1726     return 0.0;
  1728   young_num += adjustment;
  1729   size_t pending_cards = predict_pending_cards();
  1730   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
  1731                       predict_rs_length_diff();
  1732   size_t card_num;
  1733   if (full_young_gcs())
  1734     card_num = predict_young_card_num(rs_lengths);
  1735   else
  1736     card_num = predict_non_young_card_num(rs_lengths);
  1737   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  1738   double accum_yg_surv_rate =
  1739     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
  1741   size_t bytes_to_copy =
  1742     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
  1744   return
  1745     predict_rs_update_time_ms(pending_cards) +
  1746     predict_rs_scan_time_ms(card_num) +
  1747     predict_object_copy_time_ms(bytes_to_copy) +
  1748     predict_young_other_time_ms(young_num) +
  1749     predict_constant_other_time_ms();
  1752 double
  1753 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1754   size_t rs_length = predict_rs_length_diff();
  1755   size_t card_num;
  1756   if (full_young_gcs())
  1757     card_num = predict_young_card_num(rs_length);
  1758   else
  1759     card_num = predict_non_young_card_num(rs_length);
  1760   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1763 double
  1764 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1765                                                 size_t scanned_cards) {
  1766   return
  1767     predict_rs_update_time_ms(pending_cards) +
  1768     predict_rs_scan_time_ms(scanned_cards) +
  1769     predict_constant_other_time_ms();
  1772 double
  1773 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1774                                                   bool young) {
  1775   size_t rs_length = hr->rem_set()->occupied();
  1776   size_t card_num;
  1777   if (full_young_gcs())
  1778     card_num = predict_young_card_num(rs_length);
  1779   else
  1780     card_num = predict_non_young_card_num(rs_length);
  1781   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1783   double region_elapsed_time_ms =
  1784     predict_rs_scan_time_ms(card_num) +
  1785     predict_object_copy_time_ms(bytes_to_copy);
  1787   if (young)
  1788     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1789   else
  1790     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1792   return region_elapsed_time_ms;
  1795 size_t
  1796 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1797   size_t bytes_to_copy;
  1798   if (hr->is_marked())
  1799     bytes_to_copy = hr->max_live_bytes();
  1800   else {
  1801     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
  1802                "invariant" );
  1803     int age = hr->age_in_surv_rate_group();
  1804     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1805     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1808   return bytes_to_copy;
  1811 void
  1812 G1CollectorPolicy::start_recording_regions() {
  1813   _recorded_rs_lengths            = 0;
  1814   _recorded_young_regions         = 0;
  1815   _recorded_non_young_regions     = 0;
  1817 #if PREDICTIONS_VERBOSE
  1818   _recorded_marked_bytes          = 0;
  1819   _recorded_young_bytes           = 0;
  1820   _predicted_bytes_to_copy        = 0;
  1821   _predicted_rs_lengths           = 0;
  1822   _predicted_cards_scanned        = 0;
  1823 #endif // PREDICTIONS_VERBOSE
  1826 void
  1827 G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
  1828 #if PREDICTIONS_VERBOSE
  1829   if (!young) {
  1830     _recorded_marked_bytes += hr->max_live_bytes();
  1832   _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
  1833 #endif // PREDICTIONS_VERBOSE
  1835   size_t rs_length = hr->rem_set()->occupied();
  1836   _recorded_rs_lengths += rs_length;
  1839 void
  1840 G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
  1841   assert(!hr->is_young(), "should not call this");
  1842   ++_recorded_non_young_regions;
  1843   record_cset_region_info(hr, false);
  1846 void
  1847 G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
  1848   _recorded_young_regions = n_regions;
  1851 void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
  1852 #if PREDICTIONS_VERBOSE
  1853   _recorded_young_bytes = bytes;
  1854 #endif // PREDICTIONS_VERBOSE
  1857 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1858   _recorded_rs_lengths = rs_lengths;
  1861 void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
  1862   _predicted_bytes_to_copy = bytes;
  1865 void
  1866 G1CollectorPolicy::end_recording_regions() {
  1867   // The _predicted_pause_time_ms field is referenced in code
  1868   // not under PREDICTIONS_VERBOSE. Let's initialize it.
  1869   _predicted_pause_time_ms = -1.0;
  1871 #if PREDICTIONS_VERBOSE
  1872   _predicted_pending_cards = predict_pending_cards();
  1873   _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
  1874   if (full_young_gcs())
  1875     _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
  1876   else
  1877     _predicted_cards_scanned +=
  1878       predict_non_young_card_num(_predicted_rs_lengths);
  1879   _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;
  1881   _predicted_rs_update_time_ms =
  1882     predict_rs_update_time_ms(_g1->pending_card_num());
  1883   _predicted_rs_scan_time_ms =
  1884     predict_rs_scan_time_ms(_predicted_cards_scanned);
  1885   _predicted_object_copy_time_ms =
  1886     predict_object_copy_time_ms(_predicted_bytes_to_copy);
  1887   _predicted_constant_other_time_ms =
  1888     predict_constant_other_time_ms();
  1889   _predicted_young_other_time_ms =
  1890     predict_young_other_time_ms(_recorded_young_regions);
  1891   _predicted_non_young_other_time_ms =
  1892     predict_non_young_other_time_ms(_recorded_non_young_regions);
  1894   _predicted_pause_time_ms =
  1895     _predicted_rs_update_time_ms +
  1896     _predicted_rs_scan_time_ms +
  1897     _predicted_object_copy_time_ms +
  1898     _predicted_constant_other_time_ms +
  1899     _predicted_young_other_time_ms +
  1900     _predicted_non_young_other_time_ms;
  1901 #endif // PREDICTIONS_VERBOSE
  1904 void G1CollectorPolicy::check_if_region_is_too_expensive(double
  1905                                                            predicted_time_ms) {
  1906   // I don't think we need to do this when in young GC mode since
  1907   // marking will be initiated next time we hit the soft limit anyway...
  1908   if (predicted_time_ms > _expensive_region_limit_ms) {
  1909     if (!in_young_gc_mode()) {
  1910         set_full_young_gcs(true);
  1911         // We might want to do something different here. However,
  1912         // right now we don't support the non-generational G1 mode
  1913         // (and in fact we are planning to remove the associated code,
  1914         // see CR 6814390). So, let's leave it as is and this will be
  1915         // removed some time in the future
  1916         ShouldNotReachHere();
  1917         set_during_initial_mark_pause();
  1918     } else
  1919       // no point in doing another partial one
  1920       _should_revert_to_full_young_gcs = true;
  1924 // </NEW PREDICTION>
  1927 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1928                                                double elapsed_ms) {
  1929   _recent_gc_times_ms->add(elapsed_ms);
  1930   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1931   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1934 double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
  1935   if (_recent_pause_times_ms->num() == 0) return (double) MaxGCPauseMillis;
  1936   else return _recent_pause_times_ms->avg();
  1939 double G1CollectorPolicy::recent_avg_time_for_CH_strong_ms() {
  1940   if (_recent_CH_strong_roots_times_ms->num() == 0)
  1941     return (double)MaxGCPauseMillis/3.0;
  1942   else return _recent_CH_strong_roots_times_ms->avg();
  1945 double G1CollectorPolicy::recent_avg_time_for_G1_strong_ms() {
  1946   if (_recent_G1_strong_roots_times_ms->num() == 0)
  1947     return (double)MaxGCPauseMillis/3.0;
  1948   else return _recent_G1_strong_roots_times_ms->avg();
  1951 double G1CollectorPolicy::recent_avg_time_for_evac_ms() {
  1952   if (_recent_evac_times_ms->num() == 0) return (double)MaxGCPauseMillis/3.0;
  1953   else return _recent_evac_times_ms->avg();
  1956 int G1CollectorPolicy::number_of_recent_gcs() {
  1957   assert(_recent_CH_strong_roots_times_ms->num() ==
  1958          _recent_G1_strong_roots_times_ms->num(), "Sequence out of sync");
  1959   assert(_recent_G1_strong_roots_times_ms->num() ==
  1960          _recent_evac_times_ms->num(), "Sequence out of sync");
  1961   assert(_recent_evac_times_ms->num() ==
  1962          _recent_pause_times_ms->num(), "Sequence out of sync");
  1963   assert(_recent_pause_times_ms->num() ==
  1964          _recent_CS_bytes_used_before->num(), "Sequence out of sync");
  1965   assert(_recent_CS_bytes_used_before->num() ==
  1966          _recent_CS_bytes_surviving->num(), "Sequence out of sync");
  1967   return _recent_pause_times_ms->num();
  1970 double G1CollectorPolicy::recent_avg_survival_fraction() {
  1971   return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
  1972                                            _recent_CS_bytes_used_before);
  1975 double G1CollectorPolicy::last_survival_fraction() {
  1976   return last_survival_fraction_work(_recent_CS_bytes_surviving,
  1977                                      _recent_CS_bytes_used_before);
  1980 double
  1981 G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
  1982                                                      TruncatedSeq* before) {
  1983   assert(surviving->num() == before->num(), "Sequence out of sync");
  1984   if (before->sum() > 0.0) {
  1985       double recent_survival_rate = surviving->sum() / before->sum();
  1986       // We exempt parallel collection from this check because Alloc Buffer
  1987       // fragmentation can produce negative collections.
  1988       // Further, we're now always doing parallel collection.  But I'm still
  1989       // leaving this here as a placeholder for a more precise assertion later.
  1990       // (DLD, 10/05.)
  1991       assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
  1992              _g1->evacuation_failed() ||
  1993              recent_survival_rate <= 1.0, "Or bad frac");
  1994       return recent_survival_rate;
  1995   } else {
  1996     return 1.0; // Be conservative.
  2000 double
  2001 G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
  2002                                                TruncatedSeq* before) {
  2003   assert(surviving->num() == before->num(), "Sequence out of sync");
  2004   if (surviving->num() > 0 && before->last() > 0.0) {
  2005     double last_survival_rate = surviving->last() / before->last();
  2006     // We exempt parallel collection from this check because Alloc Buffer
  2007     // fragmentation can produce negative collections.
  2008     // Further, we're now always doing parallel collection.  But I'm still
  2009     // leaving this here as a placeholder for a more precise assertion later.
  2010     // (DLD, 10/05.)
  2011     assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
  2012            last_survival_rate <= 1.0, "Or bad frac");
  2013     return last_survival_rate;
  2014   } else {
  2015     return 1.0;
  2019 static const int survival_min_obs = 5;
  2020 static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
  2021 static const double min_survival_rate = 0.1;
  2023 double
  2024 G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
  2025                                                            double latest) {
  2026   double res = avg;
  2027   if (number_of_recent_gcs() < survival_min_obs) {
  2028     res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
  2030   res = MAX2(res, latest);
  2031   res = MAX2(res, min_survival_rate);
  2032   // In the parallel case, LAB fragmentation can produce "negative
  2033   // collections"; so can evac failure.  Cap at 1.0
  2034   res = MIN2(res, 1.0);
  2035   return res;
  2038 size_t G1CollectorPolicy::expansion_amount() {
  2039   if ((recent_avg_pause_time_ratio() * 100.0) > _gc_overhead_perc) {
  2040     // We will double the existing space, or take
  2041     // G1ExpandByPercentOfAvailable % of the available expansion
  2042     // space, whichever is smaller, bounded below by a minimum
  2043     // expansion (unless that's all that's left.)
  2044     const size_t min_expand_bytes = 1*M;
  2045     size_t reserved_bytes = _g1->max_capacity();
  2046     size_t committed_bytes = _g1->capacity();
  2047     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  2048     size_t expand_bytes;
  2049     size_t expand_bytes_via_pct =
  2050       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  2051     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  2052     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  2053     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  2054     if (G1PolicyVerbose > 1) {
  2055       gclog_or_tty->print("Decided to expand: ratio = %5.2f, "
  2056                  "committed = %d%s, uncommited = %d%s, via pct = %d%s.\n"
  2057                  "                   Answer = %d.\n",
  2058                  recent_avg_pause_time_ratio(),
  2059                  byte_size_in_proper_unit(committed_bytes),
  2060                  proper_unit_for_byte_size(committed_bytes),
  2061                  byte_size_in_proper_unit(uncommitted_bytes),
  2062                  proper_unit_for_byte_size(uncommitted_bytes),
  2063                  byte_size_in_proper_unit(expand_bytes_via_pct),
  2064                  proper_unit_for_byte_size(expand_bytes_via_pct),
  2065                  byte_size_in_proper_unit(expand_bytes),
  2066                  proper_unit_for_byte_size(expand_bytes));
  2068     return expand_bytes;
  2069   } else {
  2070     return 0;
  2074 void G1CollectorPolicy::note_start_of_mark_thread() {
  2075   _mark_thread_startup_sec = os::elapsedTime();
  2078 class CountCSClosure: public HeapRegionClosure {
  2079   G1CollectorPolicy* _g1_policy;
  2080 public:
  2081   CountCSClosure(G1CollectorPolicy* g1_policy) :
  2082     _g1_policy(g1_policy) {}
  2083   bool doHeapRegion(HeapRegion* r) {
  2084     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
  2085     return false;
  2087 };
  2089 void G1CollectorPolicy::count_CS_bytes_used() {
  2090   CountCSClosure cs_closure(this);
  2091   _g1->collection_set_iterate(&cs_closure);
  2094 void G1CollectorPolicy::print_summary (int level,
  2095                                        const char* str,
  2096                                        NumberSeq* seq) const {
  2097   double sum = seq->sum();
  2098   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
  2099                 str, sum / 1000.0, seq->avg());
  2102 void G1CollectorPolicy::print_summary_sd (int level,
  2103                                           const char* str,
  2104                                           NumberSeq* seq) const {
  2105   print_summary(level, str, seq);
  2106   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2107                 seq->num(), seq->sd(), seq->maximum());
  2110 void G1CollectorPolicy::check_other_times(int level,
  2111                                         NumberSeq* other_times_ms,
  2112                                         NumberSeq* calc_other_times_ms) const {
  2113   bool should_print = false;
  2114   LineBuffer buf(level + 2);
  2116   double max_sum = MAX2(fabs(other_times_ms->sum()),
  2117                         fabs(calc_other_times_ms->sum()));
  2118   double min_sum = MIN2(fabs(other_times_ms->sum()),
  2119                         fabs(calc_other_times_ms->sum()));
  2120   double sum_ratio = max_sum / min_sum;
  2121   if (sum_ratio > 1.1) {
  2122     should_print = true;
  2123     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  2126   double max_avg = MAX2(fabs(other_times_ms->avg()),
  2127                         fabs(calc_other_times_ms->avg()));
  2128   double min_avg = MIN2(fabs(other_times_ms->avg()),
  2129                         fabs(calc_other_times_ms->avg()));
  2130   double avg_ratio = max_avg / min_avg;
  2131   if (avg_ratio > 1.1) {
  2132     should_print = true;
  2133     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  2136   if (other_times_ms->sum() < -0.01) {
  2137     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  2140   if (other_times_ms->avg() < -0.01) {
  2141     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  2144   if (calc_other_times_ms->sum() < -0.01) {
  2145     should_print = true;
  2146     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  2149   if (calc_other_times_ms->avg() < -0.01) {
  2150     should_print = true;
  2151     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  2154   if (should_print)
  2155     print_summary(level, "Other(Calc)", calc_other_times_ms);
  2158 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  2159   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  2160   MainBodySummary*    body_summary = summary->main_body_summary();
  2161   if (summary->get_total_seq()->num() > 0) {
  2162     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
  2163     if (body_summary != NULL) {
  2164       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
  2165       if (parallel) {
  2166         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
  2167         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
  2168         print_summary(2, "Ext Root Scanning",
  2169                       body_summary->get_ext_root_scan_seq());
  2170         print_summary(2, "Mark Stack Scanning",
  2171                       body_summary->get_mark_stack_scan_seq());
  2172         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
  2173         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
  2174         print_summary(2, "Termination", body_summary->get_termination_seq());
  2175         print_summary(2, "Other", body_summary->get_parallel_other_seq());
  2177           NumberSeq* other_parts[] = {
  2178             body_summary->get_update_rs_seq(),
  2179             body_summary->get_ext_root_scan_seq(),
  2180             body_summary->get_mark_stack_scan_seq(),
  2181             body_summary->get_scan_rs_seq(),
  2182             body_summary->get_obj_copy_seq(),
  2183             body_summary->get_termination_seq()
  2184           };
  2185           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
  2186                                         6, other_parts);
  2187           check_other_times(2, body_summary->get_parallel_other_seq(),
  2188                             &calc_other_times_ms);
  2190         print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
  2191         print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
  2192       } else {
  2193         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
  2194         print_summary(1, "Ext Root Scanning",
  2195                       body_summary->get_ext_root_scan_seq());
  2196         print_summary(1, "Mark Stack Scanning",
  2197                       body_summary->get_mark_stack_scan_seq());
  2198         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
  2199         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
  2202     print_summary(1, "Other", summary->get_other_seq());
  2204       if (body_summary != NULL) {
  2205         NumberSeq calc_other_times_ms;
  2206         if (parallel) {
  2207           // parallel
  2208           NumberSeq* other_parts[] = {
  2209             body_summary->get_satb_drain_seq(),
  2210             body_summary->get_parallel_seq(),
  2211             body_summary->get_clear_ct_seq()
  2212           };
  2213           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2214                                                 3, other_parts);
  2215         } else {
  2216           // serial
  2217           NumberSeq* other_parts[] = {
  2218             body_summary->get_satb_drain_seq(),
  2219             body_summary->get_update_rs_seq(),
  2220             body_summary->get_ext_root_scan_seq(),
  2221             body_summary->get_mark_stack_scan_seq(),
  2222             body_summary->get_scan_rs_seq(),
  2223             body_summary->get_obj_copy_seq()
  2224           };
  2225           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2226                                                 6, other_parts);
  2228         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
  2231   } else {
  2232     LineBuffer(1).append_and_print_cr("none");
  2234   LineBuffer(0).append_and_print_cr("");
  2237 void G1CollectorPolicy::print_tracing_info() const {
  2238   if (TraceGen0Time) {
  2239     gclog_or_tty->print_cr("ALL PAUSES");
  2240     print_summary_sd(0, "Total", _all_pause_times_ms);
  2241     gclog_or_tty->print_cr("");
  2242     gclog_or_tty->print_cr("");
  2243     gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
  2244     gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
  2245     gclog_or_tty->print_cr("");
  2247     gclog_or_tty->print_cr("EVACUATION PAUSES");
  2248     print_summary(_summary);
  2250     gclog_or_tty->print_cr("MISC");
  2251     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
  2252     print_summary_sd(0, "Yields", _all_yield_times_ms);
  2253     for (int i = 0; i < _aux_num; ++i) {
  2254       if (_all_aux_times_ms[i].num() > 0) {
  2255         char buffer[96];
  2256         sprintf(buffer, "Aux%d", i);
  2257         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
  2261     size_t all_region_num = _region_num_young + _region_num_tenured;
  2262     gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
  2263                "Tenured %8d (%6.2lf%%)",
  2264                all_region_num,
  2265                _region_num_young,
  2266                (double) _region_num_young / (double) all_region_num * 100.0,
  2267                _region_num_tenured,
  2268                (double) _region_num_tenured / (double) all_region_num * 100.0);
  2270   if (TraceGen1Time) {
  2271     if (_all_full_gc_times_ms->num() > 0) {
  2272       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2273                  _all_full_gc_times_ms->num(),
  2274                  _all_full_gc_times_ms->sum() / 1000.0);
  2275       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
  2276       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2277                     _all_full_gc_times_ms->sd(),
  2278                     _all_full_gc_times_ms->maximum());
  2283 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  2284 #ifndef PRODUCT
  2285   _short_lived_surv_rate_group->print_surv_rate_summary();
  2286   // add this call for any other surv rate groups
  2287 #endif // PRODUCT
  2290 void
  2291 G1CollectorPolicy::update_region_num(bool young) {
  2292   if (young) {
  2293     ++_region_num_young;
  2294   } else {
  2295     ++_region_num_tenured;
  2299 #ifndef PRODUCT
  2300 // for debugging, bit of a hack...
  2301 static char*
  2302 region_num_to_mbs(int length) {
  2303   static char buffer[64];
  2304   double bytes = (double) (length * HeapRegion::GrainBytes);
  2305   double mbs = bytes / (double) (1024 * 1024);
  2306   sprintf(buffer, "%7.2lfMB", mbs);
  2307   return buffer;
  2309 #endif // PRODUCT
  2311 size_t G1CollectorPolicy::max_regions(int purpose) {
  2312   switch (purpose) {
  2313     case GCAllocForSurvived:
  2314       return _max_survivor_regions;
  2315     case GCAllocForTenured:
  2316       return REGIONS_UNLIMITED;
  2317     default:
  2318       ShouldNotReachHere();
  2319       return REGIONS_UNLIMITED;
  2320   };
  2323 void G1CollectorPolicy::calculate_max_gc_locker_expansion() {
  2324   size_t expansion_region_num = 0;
  2325   if (GCLockerEdenExpansionPercent > 0) {
  2326     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  2327     double expansion_region_num_d = perc * (double) _young_list_target_length;
  2328     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  2329     // less than 1.0) we'll get 1.
  2330     expansion_region_num = (size_t) ceil(expansion_region_num_d);
  2331   } else {
  2332     assert(expansion_region_num == 0, "sanity");
  2334   _young_list_max_length = _young_list_target_length + expansion_region_num;
  2335   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  2338 // Calculates survivor space parameters.
  2339 void G1CollectorPolicy::calculate_survivors_policy()
  2341   if (G1FixedSurvivorSpaceSize == 0) {
  2342     _max_survivor_regions = _young_list_target_length / SurvivorRatio;
  2343   } else {
  2344     _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
  2347   if (G1FixedTenuringThreshold) {
  2348     _tenuring_threshold = MaxTenuringThreshold;
  2349   } else {
  2350     _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  2351         HeapRegion::GrainWords * _max_survivor_regions);
  2355 #ifndef PRODUCT
  2356 class HRSortIndexIsOKClosure: public HeapRegionClosure {
  2357   CollectionSetChooser* _chooser;
  2358 public:
  2359   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
  2360     _chooser(chooser) {}
  2362   bool doHeapRegion(HeapRegion* r) {
  2363     if (!r->continuesHumongous()) {
  2364       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
  2366     return false;
  2368 };
  2370 bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() {
  2371   HRSortIndexIsOKClosure cl(_collectionSetChooser);
  2372   _g1->heap_region_iterate(&cl);
  2373   return true;
  2375 #endif
  2377 bool
  2378 G1CollectorPolicy::force_initial_mark_if_outside_cycle() {
  2379   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2380   if (!during_cycle) {
  2381     set_initiate_conc_mark_if_possible();
  2382     return true;
  2383   } else {
  2384     return false;
  2388 void
  2389 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  2390   // We are about to decide on whether this pause will be an
  2391   // initial-mark pause.
  2393   // First, during_initial_mark_pause() should not be already set. We
  2394   // will set it here if we have to. However, it should be cleared by
  2395   // the end of the pause (it's only set for the duration of an
  2396   // initial-mark pause).
  2397   assert(!during_initial_mark_pause(), "pre-condition");
  2399   if (initiate_conc_mark_if_possible()) {
  2400     // We had noticed on a previous pause that the heap occupancy has
  2401     // gone over the initiating threshold and we should start a
  2402     // concurrent marking cycle. So we might initiate one.
  2404     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2405     if (!during_cycle) {
  2406       // The concurrent marking thread is not "during a cycle", i.e.,
  2407       // it has completed the last one. So we can go ahead and
  2408       // initiate a new cycle.
  2410       set_during_initial_mark_pause();
  2412       // And we can now clear initiate_conc_mark_if_possible() as
  2413       // we've already acted on it.
  2414       clear_initiate_conc_mark_if_possible();
  2415     } else {
  2416       // The concurrent marking thread is still finishing up the
  2417       // previous cycle. If we start one right now the two cycles
  2418       // overlap. In particular, the concurrent marking thread might
  2419       // be in the process of clearing the next marking bitmap (which
  2420       // we will use for the next cycle if we start one). Starting a
  2421       // cycle now will be bad given that parts of the marking
  2422       // information might get cleared by the marking thread. And we
  2423       // cannot wait for the marking thread to finish the cycle as it
  2424       // periodically yields while clearing the next marking bitmap
  2425       // and, if it's in a yield point, it's waiting for us to
  2426       // finish. So, at this point we will not start a cycle and we'll
  2427       // let the concurrent marking thread complete the last one.
  2432 void
  2433 G1CollectorPolicy_BestRegionsFirst::
  2434 record_collection_pause_start(double start_time_sec, size_t start_used) {
  2435   G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
  2438 class NextNonCSElemFinder: public HeapRegionClosure {
  2439   HeapRegion* _res;
  2440 public:
  2441   NextNonCSElemFinder(): _res(NULL) {}
  2442   bool doHeapRegion(HeapRegion* r) {
  2443     if (!r->in_collection_set()) {
  2444       _res = r;
  2445       return true;
  2446     } else {
  2447       return false;
  2450   HeapRegion* res() { return _res; }
  2451 };
  2453 class KnownGarbageClosure: public HeapRegionClosure {
  2454   CollectionSetChooser* _hrSorted;
  2456 public:
  2457   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  2458     _hrSorted(hrSorted)
  2459   {}
  2461   bool doHeapRegion(HeapRegion* r) {
  2462     // We only include humongous regions in collection
  2463     // sets when concurrent mark shows that their contained object is
  2464     // unreachable.
  2466     // Do we have any marking information for this region?
  2467     if (r->is_marked()) {
  2468       // We don't include humongous regions in collection
  2469       // sets because we collect them immediately at the end of a marking
  2470       // cycle.  We also don't include young regions because we *must*
  2471       // include them in the next collection pause.
  2472       if (!r->isHumongous() && !r->is_young()) {
  2473         _hrSorted->addMarkedHeapRegion(r);
  2476     return false;
  2478 };
  2480 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  2481   CollectionSetChooser* _hrSorted;
  2482   jint _marked_regions_added;
  2483   jint _chunk_size;
  2484   jint _cur_chunk_idx;
  2485   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  2486   int _worker;
  2487   int _invokes;
  2489   void get_new_chunk() {
  2490     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
  2491     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  2493   void add_region(HeapRegion* r) {
  2494     if (_cur_chunk_idx == _cur_chunk_end) {
  2495       get_new_chunk();
  2497     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
  2498     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
  2499     _marked_regions_added++;
  2500     _cur_chunk_idx++;
  2503 public:
  2504   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  2505                            jint chunk_size,
  2506                            int worker) :
  2507     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
  2508     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
  2509     _invokes(0)
  2510   {}
  2512   bool doHeapRegion(HeapRegion* r) {
  2513     // We only include humongous regions in collection
  2514     // sets when concurrent mark shows that their contained object is
  2515     // unreachable.
  2516     _invokes++;
  2518     // Do we have any marking information for this region?
  2519     if (r->is_marked()) {
  2520       // We don't include humongous regions in collection
  2521       // sets because we collect them immediately at the end of a marking
  2522       // cycle.
  2523       // We also do not include young regions in collection sets
  2524       if (!r->isHumongous() && !r->is_young()) {
  2525         add_region(r);
  2528     return false;
  2530   jint marked_regions_added() { return _marked_regions_added; }
  2531   int invokes() { return _invokes; }
  2532 };
  2534 class ParKnownGarbageTask: public AbstractGangTask {
  2535   CollectionSetChooser* _hrSorted;
  2536   jint _chunk_size;
  2537   G1CollectedHeap* _g1;
  2538 public:
  2539   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
  2540     AbstractGangTask("ParKnownGarbageTask"),
  2541     _hrSorted(hrSorted), _chunk_size(chunk_size),
  2542     _g1(G1CollectedHeap::heap())
  2543   {}
  2545   void work(int i) {
  2546     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
  2547     // Back to zero for the claim value.
  2548     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
  2549                                          HeapRegion::InitialClaimValue);
  2550     jint regions_added = parKnownGarbageCl.marked_regions_added();
  2551     _hrSorted->incNumMarkedHeapRegions(regions_added);
  2552     if (G1PrintParCleanupStats) {
  2553       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
  2554                  i, parKnownGarbageCl.invokes(), regions_added);
  2557 };
  2559 void
  2560 G1CollectorPolicy_BestRegionsFirst::
  2561 record_concurrent_mark_cleanup_end(size_t freed_bytes,
  2562                                    size_t max_live_bytes) {
  2563   double start;
  2564   if (G1PrintParCleanupStats) start = os::elapsedTime();
  2565   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
  2567   _collectionSetChooser->clearMarkedHeapRegions();
  2568   double clear_marked_end;
  2569   if (G1PrintParCleanupStats) {
  2570     clear_marked_end = os::elapsedTime();
  2571     gclog_or_tty->print_cr("  clear marked regions + work1: %8.3f ms.",
  2572                   (clear_marked_end - start)*1000.0);
  2574   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2575     const size_t OverpartitionFactor = 4;
  2576     const size_t MinWorkUnit = 8;
  2577     const size_t WorkUnit =
  2578       MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
  2579            MinWorkUnit);
  2580     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
  2581                                                              WorkUnit);
  2582     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  2583                                             (int) WorkUnit);
  2584     _g1->workers()->run_task(&parKnownGarbageTask);
  2586     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2587            "sanity check");
  2588   } else {
  2589     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  2590     _g1->heap_region_iterate(&knownGarbagecl);
  2592   double known_garbage_end;
  2593   if (G1PrintParCleanupStats) {
  2594     known_garbage_end = os::elapsedTime();
  2595     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
  2596                   (known_garbage_end - clear_marked_end)*1000.0);
  2598   _collectionSetChooser->sortMarkedHeapRegions();
  2599   double sort_end;
  2600   if (G1PrintParCleanupStats) {
  2601     sort_end = os::elapsedTime();
  2602     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
  2603                   (sort_end - known_garbage_end)*1000.0);
  2606   record_concurrent_mark_cleanup_end_work2();
  2607   double work2_end;
  2608   if (G1PrintParCleanupStats) {
  2609     work2_end = os::elapsedTime();
  2610     gclog_or_tty->print_cr("  work2: %8.3f ms.",
  2611                   (work2_end - sort_end)*1000.0);
  2615 // Add the heap region at the head of the non-incremental collection set
  2616 void G1CollectorPolicy::
  2617 add_to_collection_set(HeapRegion* hr) {
  2618   assert(_inc_cset_build_state == Active, "Precondition");
  2619   assert(!hr->is_young(), "non-incremental add of young region");
  2621   if (G1PrintHeapRegions) {
  2622     gclog_or_tty->print_cr("added region to cset "
  2623                            "%d:["PTR_FORMAT", "PTR_FORMAT"], "
  2624                            "top "PTR_FORMAT", %s",
  2625                            hr->hrs_index(), hr->bottom(), hr->end(),
  2626                            hr->top(), hr->is_young() ? "YOUNG" : "NOT_YOUNG");
  2629   if (_g1->mark_in_progress())
  2630     _g1->concurrent_mark()->registerCSetRegion(hr);
  2632   assert(!hr->in_collection_set(), "should not already be in the CSet");
  2633   hr->set_in_collection_set(true);
  2634   hr->set_next_in_collection_set(_collection_set);
  2635   _collection_set = hr;
  2636   _collection_set_size++;
  2637   _collection_set_bytes_used_before += hr->used();
  2638   _g1->register_region_with_in_cset_fast_test(hr);
  2641 // Initialize the per-collection-set information
  2642 void G1CollectorPolicy::start_incremental_cset_building() {
  2643   assert(_inc_cset_build_state == Inactive, "Precondition");
  2645   _inc_cset_head = NULL;
  2646   _inc_cset_tail = NULL;
  2647   _inc_cset_size = 0;
  2648   _inc_cset_bytes_used_before = 0;
  2650   if (in_young_gc_mode()) {
  2651     _inc_cset_young_index = 0;
  2654   _inc_cset_max_finger = 0;
  2655   _inc_cset_recorded_young_bytes = 0;
  2656   _inc_cset_recorded_rs_lengths = 0;
  2657   _inc_cset_predicted_elapsed_time_ms = 0;
  2658   _inc_cset_predicted_bytes_to_copy = 0;
  2659   _inc_cset_build_state = Active;
  2662 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  2663   // This routine is used when:
  2664   // * adding survivor regions to the incremental cset at the end of an
  2665   //   evacuation pause,
  2666   // * adding the current allocation region to the incremental cset
  2667   //   when it is retired, and
  2668   // * updating existing policy information for a region in the
  2669   //   incremental cset via young list RSet sampling.
  2670   // Therefore this routine may be called at a safepoint by the
  2671   // VM thread, or in-between safepoints by mutator threads (when
  2672   // retiring the current allocation region) or a concurrent
  2673   // refine thread (RSet sampling).
  2675   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2676   size_t used_bytes = hr->used();
  2678   _inc_cset_recorded_rs_lengths += rs_length;
  2679   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  2681   _inc_cset_bytes_used_before += used_bytes;
  2683   // Cache the values we have added to the aggregated informtion
  2684   // in the heap region in case we have to remove this region from
  2685   // the incremental collection set, or it is updated by the
  2686   // rset sampling code
  2687   hr->set_recorded_rs_length(rs_length);
  2688   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  2690 #if PREDICTIONS_VERBOSE
  2691   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  2692   _inc_cset_predicted_bytes_to_copy += bytes_to_copy;
  2694   // Record the number of bytes used in this region
  2695   _inc_cset_recorded_young_bytes += used_bytes;
  2697   // Cache the values we have added to the aggregated informtion
  2698   // in the heap region in case we have to remove this region from
  2699   // the incremental collection set, or it is updated by the
  2700   // rset sampling code
  2701   hr->set_predicted_bytes_to_copy(bytes_to_copy);
  2702 #endif // PREDICTIONS_VERBOSE
  2705 void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
  2706   // This routine is currently only called as part of the updating of
  2707   // existing policy information for regions in the incremental cset that
  2708   // is performed by the concurrent refine thread(s) as part of young list
  2709   // RSet sampling. Therefore we should not be at a safepoint.
  2711   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
  2712   assert(hr->is_young(), "it should be");
  2714   size_t used_bytes = hr->used();
  2715   size_t old_rs_length = hr->recorded_rs_length();
  2716   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  2718   // Subtract the old recorded/predicted policy information for
  2719   // the given heap region from the collection set info.
  2720   _inc_cset_recorded_rs_lengths -= old_rs_length;
  2721   _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;
  2723   _inc_cset_bytes_used_before -= used_bytes;
  2725   // Clear the values cached in the heap region
  2726   hr->set_recorded_rs_length(0);
  2727   hr->set_predicted_elapsed_time_ms(0);
  2729 #if PREDICTIONS_VERBOSE
  2730   size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
  2731   _inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;
  2733   // Subtract the number of bytes used in this region
  2734   _inc_cset_recorded_young_bytes -= used_bytes;
  2736   // Clear the values cached in the heap region
  2737   hr->set_predicted_bytes_to_copy(0);
  2738 #endif // PREDICTIONS_VERBOSE
  2741 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
  2742   // Update the collection set information that is dependent on the new RS length
  2743   assert(hr->is_young(), "Precondition");
  2745   remove_from_incremental_cset_info(hr);
  2746   add_to_incremental_cset_info(hr, new_rs_length);
  2749 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  2750   assert( hr->is_young(), "invariant");
  2751   assert( hr->young_index_in_cset() == -1, "invariant" );
  2752   assert(_inc_cset_build_state == Active, "Precondition");
  2754   // We need to clear and set the cached recorded/cached collection set
  2755   // information in the heap region here (before the region gets added
  2756   // to the collection set). An individual heap region's cached values
  2757   // are calculated, aggregated with the policy collection set info,
  2758   // and cached in the heap region here (initially) and (subsequently)
  2759   // by the Young List sampling code.
  2761   size_t rs_length = hr->rem_set()->occupied();
  2762   add_to_incremental_cset_info(hr, rs_length);
  2764   HeapWord* hr_end = hr->end();
  2765   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  2767   assert(!hr->in_collection_set(), "invariant");
  2768   hr->set_in_collection_set(true);
  2769   assert( hr->next_in_collection_set() == NULL, "invariant");
  2771   _inc_cset_size++;
  2772   _g1->register_region_with_in_cset_fast_test(hr);
  2774   hr->set_young_index_in_cset((int) _inc_cset_young_index);
  2775   ++_inc_cset_young_index;
  2778 // Add the region at the RHS of the incremental cset
  2779 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  2780   // We should only ever be appending survivors at the end of a pause
  2781   assert( hr->is_survivor(), "Logic");
  2783   // Do the 'common' stuff
  2784   add_region_to_incremental_cset_common(hr);
  2786   // Now add the region at the right hand side
  2787   if (_inc_cset_tail == NULL) {
  2788     assert(_inc_cset_head == NULL, "invariant");
  2789     _inc_cset_head = hr;
  2790   } else {
  2791     _inc_cset_tail->set_next_in_collection_set(hr);
  2793   _inc_cset_tail = hr;
  2795   if (G1PrintHeapRegions) {
  2796     gclog_or_tty->print_cr(" added region to incremental cset (RHS) "
  2797                   "%d:["PTR_FORMAT", "PTR_FORMAT"], "
  2798                   "top "PTR_FORMAT", young %s",
  2799                   hr->hrs_index(), hr->bottom(), hr->end(),
  2800                   hr->top(), (hr->is_young()) ? "YES" : "NO");
  2804 // Add the region to the LHS of the incremental cset
  2805 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  2806   // Survivors should be added to the RHS at the end of a pause
  2807   assert(!hr->is_survivor(), "Logic");
  2809   // Do the 'common' stuff
  2810   add_region_to_incremental_cset_common(hr);
  2812   // Add the region at the left hand side
  2813   hr->set_next_in_collection_set(_inc_cset_head);
  2814   if (_inc_cset_head == NULL) {
  2815     assert(_inc_cset_tail == NULL, "Invariant");
  2816     _inc_cset_tail = hr;
  2818   _inc_cset_head = hr;
  2820   if (G1PrintHeapRegions) {
  2821     gclog_or_tty->print_cr(" added region to incremental cset (LHS) "
  2822                   "%d:["PTR_FORMAT", "PTR_FORMAT"], "
  2823                   "top "PTR_FORMAT", young %s",
  2824                   hr->hrs_index(), hr->bottom(), hr->end(),
  2825                   hr->top(), (hr->is_young()) ? "YES" : "NO");
  2829 #ifndef PRODUCT
  2830 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  2831   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  2833   st->print_cr("\nCollection_set:");
  2834   HeapRegion* csr = list_head;
  2835   while (csr != NULL) {
  2836     HeapRegion* next = csr->next_in_collection_set();
  2837     assert(csr->in_collection_set(), "bad CS");
  2838     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
  2839                  "age: %4d, y: %d, surv: %d",
  2840                         csr->bottom(), csr->end(),
  2841                         csr->top(),
  2842                         csr->prev_top_at_mark_start(),
  2843                         csr->next_top_at_mark_start(),
  2844                         csr->top_at_conc_mark_count(),
  2845                         csr->age_in_surv_rate_group_cond(),
  2846                         csr->is_young(),
  2847                         csr->is_survivor());
  2848     csr = next;
  2851 #endif // !PRODUCT
  2853 void
  2854 G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
  2855                                                   double target_pause_time_ms) {
  2856   // Set this here - in case we're not doing young collections.
  2857   double non_young_start_time_sec = os::elapsedTime();
  2859   start_recording_regions();
  2861   guarantee(target_pause_time_ms > 0.0,
  2862             err_msg("target_pause_time_ms = %1.6lf should be positive",
  2863                     target_pause_time_ms));
  2864   guarantee(_collection_set == NULL, "Precondition");
  2866   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  2867   double predicted_pause_time_ms = base_time_ms;
  2869   double time_remaining_ms = target_pause_time_ms - base_time_ms;
  2871   // the 10% and 50% values are arbitrary...
  2872   if (time_remaining_ms < 0.10 * target_pause_time_ms) {
  2873     time_remaining_ms = 0.50 * target_pause_time_ms;
  2874     _within_target = false;
  2875   } else {
  2876     _within_target = true;
  2879   // We figure out the number of bytes available for future to-space.
  2880   // For new regions without marking information, we must assume the
  2881   // worst-case of complete survival.  If we have marking information for a
  2882   // region, we can bound the amount of live data.  We can add a number of
  2883   // such regions, as long as the sum of the live data bounds does not
  2884   // exceed the available evacuation space.
  2885   size_t max_live_bytes = _g1->free_regions() * HeapRegion::GrainBytes;
  2887   size_t expansion_bytes =
  2888     _g1->expansion_regions() * HeapRegion::GrainBytes;
  2890   _collection_set_bytes_used_before = 0;
  2891   _collection_set_size = 0;
  2893   // Adjust for expansion and slop.
  2894   max_live_bytes = max_live_bytes + expansion_bytes;
  2896   HeapRegion* hr;
  2897   if (in_young_gc_mode()) {
  2898     double young_start_time_sec = os::elapsedTime();
  2900     if (G1PolicyVerbose > 0) {
  2901       gclog_or_tty->print_cr("Adding %d young regions to the CSet",
  2902                     _g1->young_list()->length());
  2905     _young_cset_length  = 0;
  2906     _last_young_gc_full = full_young_gcs() ? true : false;
  2908     if (_last_young_gc_full)
  2909       ++_full_young_pause_num;
  2910     else
  2911       ++_partial_young_pause_num;
  2913     // The young list is laid with the survivor regions from the previous
  2914     // pause are appended to the RHS of the young list, i.e.
  2915     //   [Newly Young Regions ++ Survivors from last pause].
  2917     hr = _g1->young_list()->first_survivor_region();
  2918     while (hr != NULL) {
  2919       assert(hr->is_survivor(), "badly formed young list");
  2920       hr->set_young();
  2921       hr = hr->get_next_young_region();
  2924     // Clear the fields that point to the survivor list - they are
  2925     // all young now.
  2926     _g1->young_list()->clear_survivors();
  2928     if (_g1->mark_in_progress())
  2929       _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
  2931     _young_cset_length = _inc_cset_young_index;
  2932     _collection_set = _inc_cset_head;
  2933     _collection_set_size = _inc_cset_size;
  2934     _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  2936     // For young regions in the collection set, we assume the worst
  2937     // case of complete survival
  2938     max_live_bytes -= _inc_cset_size * HeapRegion::GrainBytes;
  2940     time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  2941     predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  2943     // The number of recorded young regions is the incremental
  2944     // collection set's current size
  2945     set_recorded_young_regions(_inc_cset_size);
  2946     set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  2947     set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
  2948 #if PREDICTIONS_VERBOSE
  2949     set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
  2950 #endif // PREDICTIONS_VERBOSE
  2952     if (G1PolicyVerbose > 0) {
  2953       gclog_or_tty->print_cr("  Added " PTR_FORMAT " Young Regions to CS.",
  2954                              _inc_cset_size);
  2955       gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
  2956                             max_live_bytes/K);
  2959     assert(_inc_cset_size == _g1->young_list()->length(), "Invariant");
  2961     double young_end_time_sec = os::elapsedTime();
  2962     _recorded_young_cset_choice_time_ms =
  2963       (young_end_time_sec - young_start_time_sec) * 1000.0;
  2965     // We are doing young collections so reset this.
  2966     non_young_start_time_sec = young_end_time_sec;
  2968     // Note we can use either _collection_set_size or
  2969     // _young_cset_length here
  2970     if (_collection_set_size > 0 && _last_young_gc_full) {
  2971       // don't bother adding more regions...
  2972       goto choose_collection_set_end;
  2976   if (!in_young_gc_mode() || !full_young_gcs()) {
  2977     bool should_continue = true;
  2978     NumberSeq seq;
  2979     double avg_prediction = 100000000000000000.0; // something very large
  2981     do {
  2982       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
  2983                                                       avg_prediction);
  2984       if (hr != NULL) {
  2985         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
  2986         time_remaining_ms -= predicted_time_ms;
  2987         predicted_pause_time_ms += predicted_time_ms;
  2988         add_to_collection_set(hr);
  2989         record_non_young_cset_region(hr);
  2990         max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
  2991         if (G1PolicyVerbose > 0) {
  2992           gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
  2993                         max_live_bytes/K);
  2995         seq.add(predicted_time_ms);
  2996         avg_prediction = seq.avg() + seq.sd();
  2998       should_continue =
  2999         ( hr != NULL) &&
  3000         ( (adaptive_young_list_length()) ? time_remaining_ms > 0.0
  3001           : _collection_set_size < _young_list_fixed_length );
  3002     } while (should_continue);
  3004     if (!adaptive_young_list_length() &&
  3005         _collection_set_size < _young_list_fixed_length)
  3006       _should_revert_to_full_young_gcs  = true;
  3009 choose_collection_set_end:
  3010   stop_incremental_cset_building();
  3012   count_CS_bytes_used();
  3014   end_recording_regions();
  3016   double non_young_end_time_sec = os::elapsedTime();
  3017   _recorded_non_young_cset_choice_time_ms =
  3018     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
  3021 void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
  3022   G1CollectorPolicy::record_full_collection_end();
  3023   _collectionSetChooser->updateAfterFullCollection();
  3026 void G1CollectorPolicy_BestRegionsFirst::
  3027 expand_if_possible(size_t numRegions) {
  3028   size_t expansion_bytes = numRegions * HeapRegion::GrainBytes;
  3029   _g1->expand(expansion_bytes);
  3032 void G1CollectorPolicy_BestRegionsFirst::
  3033 record_collection_pause_end() {
  3034   G1CollectorPolicy::record_collection_pause_end();
  3035   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");

mercurial