src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Wed, 08 Jun 2011 15:31:51 -0400

author
tonyp
date
Wed, 08 Jun 2011 15:31:51 -0400
changeset 2961
053d84a76d3d
parent 2712
5c0b591e1074
child 2962
ae5b2f1dcf12
permissions
-rw-r--r--

7032531: G1: enhance GC logging to include more accurate eden / survivor size transitions
Summary: This changeset extends the logging information generated by +PrintGCDetails to also print out separate size transitions for the eden, survivors, and old regions.
Reviewed-by: ysr, brutisso

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    27 #include "gc_implementation/g1/concurrentMark.hpp"
    28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    32 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    33 #include "runtime/arguments.hpp"
    34 #include "runtime/java.hpp"
    35 #include "runtime/mutexLocker.hpp"
    36 #include "utilities/debug.hpp"
    38 #define PREDICTIONS_VERBOSE 0
    40 // <NEW PREDICTION>
    42 // Different defaults for different number of GC threads
    43 // They were chosen by running GCOld and SPECjbb on debris with different
    44 //   numbers of GC threads and choosing them based on the results
    46 // all the same
    47 static double rs_length_diff_defaults[] = {
    48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    49 };
    51 static double cost_per_card_ms_defaults[] = {
    52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    53 };
    55 // all the same
    56 static double fully_young_cards_per_entry_ratio_defaults[] = {
    57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    58 };
    60 static double cost_per_entry_ms_defaults[] = {
    61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    62 };
    64 static double cost_per_byte_ms_defaults[] = {
    65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    66 };
    68 // these should be pretty consistent
    69 static double constant_other_time_ms_defaults[] = {
    70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    71 };
    74 static double young_other_cost_per_region_ms_defaults[] = {
    75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    76 };
    78 static double non_young_other_cost_per_region_ms_defaults[] = {
    79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    80 };
    82 // </NEW PREDICTION>
    84 // Help class for avoiding interleaved logging
    85 class LineBuffer: public StackObj {
    87 private:
    88   static const int BUFFER_LEN = 1024;
    89   static const int INDENT_CHARS = 3;
    90   char _buffer[BUFFER_LEN];
    91   int _indent_level;
    92   int _cur;
    94   void vappend(const char* format, va_list ap) {
    95     int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap);
    96     if (res != -1) {
    97       _cur += res;
    98     } else {
    99       DEBUG_ONLY(warning("buffer too small in LineBuffer");)
   100       _buffer[BUFFER_LEN -1] = 0;
   101       _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again
   102     }
   103   }
   105 public:
   106   explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) {
   107     for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) {
   108       _buffer[_cur] = ' ';
   109     }
   110   }
   112 #ifndef PRODUCT
   113   ~LineBuffer() {
   114     assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?");
   115   }
   116 #endif
   118   void append(const char* format, ...) {
   119     va_list ap;
   120     va_start(ap, format);
   121     vappend(format, ap);
   122     va_end(ap);
   123   }
   125   void append_and_print_cr(const char* format, ...) {
   126     va_list ap;
   127     va_start(ap, format);
   128     vappend(format, ap);
   129     va_end(ap);
   130     gclog_or_tty->print_cr("%s", _buffer);
   131     _cur = _indent_level * INDENT_CHARS;
   132   }
   133 };
   135 G1CollectorPolicy::G1CollectorPolicy() :
   136   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
   137     ? ParallelGCThreads : 1),
   140   _n_pauses(0),
   141   _recent_CH_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   142   _recent_G1_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   143   _recent_evac_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   144   _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   145   _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
   146   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   147   _all_pause_times_ms(new NumberSeq()),
   148   _stop_world_start(0.0),
   149   _all_stop_world_times_ms(new NumberSeq()),
   150   _all_yield_times_ms(new NumberSeq()),
   152   _all_mod_union_times_ms(new NumberSeq()),
   154   _summary(new Summary()),
   156 #ifndef PRODUCT
   157   _cur_clear_ct_time_ms(0.0),
   158   _min_clear_cc_time_ms(-1.0),
   159   _max_clear_cc_time_ms(-1.0),
   160   _cur_clear_cc_time_ms(0.0),
   161   _cum_clear_cc_time_ms(0.0),
   162   _num_cc_clears(0L),
   163 #endif
   165   _region_num_young(0),
   166   _region_num_tenured(0),
   167   _prev_region_num_young(0),
   168   _prev_region_num_tenured(0),
   170   _aux_num(10),
   171   _all_aux_times_ms(new NumberSeq[_aux_num]),
   172   _cur_aux_start_times_ms(new double[_aux_num]),
   173   _cur_aux_times_ms(new double[_aux_num]),
   174   _cur_aux_times_set(new bool[_aux_num]),
   176   _concurrent_mark_init_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   177   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   178   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   180   // <NEW PREDICTION>
   182   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   183   _prev_collection_pause_end_ms(0.0),
   184   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   185   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   186   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   187   _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   188   _partially_young_cards_per_entry_ratio_seq(
   189                                          new TruncatedSeq(TruncatedSeqLength)),
   190   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   191   _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   192   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   193   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   194   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   195   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   196   _non_young_other_cost_per_region_ms_seq(
   197                                          new TruncatedSeq(TruncatedSeqLength)),
   199   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   200   _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   201   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   203   _pause_time_target_ms((double) MaxGCPauseMillis),
   205   // </NEW PREDICTION>
   207   _in_young_gc_mode(false),
   208   _full_young_gcs(true),
   209   _full_young_pause_num(0),
   210   _partial_young_pause_num(0),
   212   _during_marking(false),
   213   _in_marking_window(false),
   214   _in_marking_window_im(false),
   216   _known_garbage_ratio(0.0),
   217   _known_garbage_bytes(0),
   219   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
   221    _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
   223   _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
   224   _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),
   226   _recent_avg_pause_time_ratio(0.0),
   227   _num_markings(0),
   228   _n_marks(0),
   229   _n_pauses_at_mark_end(0),
   231   _all_full_gc_times_ms(new NumberSeq()),
   233   // G1PausesBtwnConcMark defaults to -1
   234   // so the hack is to do the cast  QQQ FIXME
   235   _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
   236   _n_marks_since_last_pause(0),
   237   _initiate_conc_mark_if_possible(false),
   238   _during_initial_mark_pause(false),
   239   _should_revert_to_full_young_gcs(false),
   240   _last_full_young_gc(false),
   242   _eden_bytes_before_gc(0),
   243   _survivor_bytes_before_gc(0),
   244   _capacity_before_gc(0),
   246   _prev_collection_pause_used_at_end_bytes(0),
   248   _collection_set(NULL),
   249   _collection_set_size(0),
   250   _collection_set_bytes_used_before(0),
   252   // Incremental CSet attributes
   253   _inc_cset_build_state(Inactive),
   254   _inc_cset_head(NULL),
   255   _inc_cset_tail(NULL),
   256   _inc_cset_size(0),
   257   _inc_cset_young_index(0),
   258   _inc_cset_bytes_used_before(0),
   259   _inc_cset_max_finger(NULL),
   260   _inc_cset_recorded_young_bytes(0),
   261   _inc_cset_recorded_rs_lengths(0),
   262   _inc_cset_predicted_elapsed_time_ms(0.0),
   263   _inc_cset_predicted_bytes_to_copy(0),
   265 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   266 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   267 #endif // _MSC_VER
   269   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   270                                                  G1YoungSurvRateNumRegionsSummary)),
   271   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   272                                               G1YoungSurvRateNumRegionsSummary)),
   273   // add here any more surv rate groups
   274   _recorded_survivor_regions(0),
   275   _recorded_survivor_head(NULL),
   276   _recorded_survivor_tail(NULL),
   277   _survivors_age_table(true),
   279   _gc_overhead_perc(0.0)
   281 {
   282   // Set up the region size and associated fields. Given that the
   283   // policy is created before the heap, we have to set this up here,
   284   // so it's done as soon as possible.
   285   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   286   HeapRegionRemSet::setup_remset_size();
   288   // Verify PLAB sizes
   289   const uint region_size = HeapRegion::GrainWords;
   290   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   291     char buffer[128];
   292     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most %u",
   293                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   294     vm_exit_during_initialization(buffer);
   295   }
   297   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   298   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   300   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
   301   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
   302   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
   304   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
   305   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
   307   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
   309   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
   311   _par_last_termination_times_ms = new double[_parallel_gc_threads];
   312   _par_last_termination_attempts = new double[_parallel_gc_threads];
   313   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
   314   _par_last_gc_worker_times_ms = new double[_parallel_gc_threads];
   316   // start conservatively
   317   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
   319   // <NEW PREDICTION>
   321   int index;
   322   if (ParallelGCThreads == 0)
   323     index = 0;
   324   else if (ParallelGCThreads > 8)
   325     index = 7;
   326   else
   327     index = ParallelGCThreads - 1;
   329   _pending_card_diff_seq->add(0.0);
   330   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   331   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   332   _fully_young_cards_per_entry_ratio_seq->add(
   333                             fully_young_cards_per_entry_ratio_defaults[index]);
   334   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   335   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   336   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   337   _young_other_cost_per_region_ms_seq->add(
   338                                young_other_cost_per_region_ms_defaults[index]);
   339   _non_young_other_cost_per_region_ms_seq->add(
   340                            non_young_other_cost_per_region_ms_defaults[index]);
   342   // </NEW PREDICTION>
   344   // Below, we might need to calculate the pause time target based on
   345   // the pause interval. When we do so we are going to give G1 maximum
   346   // flexibility and allow it to do pauses when it needs to. So, we'll
   347   // arrange that the pause interval to be pause time target + 1 to
   348   // ensure that a) the pause time target is maximized with respect to
   349   // the pause interval and b) we maintain the invariant that pause
   350   // time target < pause interval. If the user does not want this
   351   // maximum flexibility, they will have to set the pause interval
   352   // explicitly.
   354   // First make sure that, if either parameter is set, its value is
   355   // reasonable.
   356   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   357     if (MaxGCPauseMillis < 1) {
   358       vm_exit_during_initialization("MaxGCPauseMillis should be "
   359                                     "greater than 0");
   360     }
   361   }
   362   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   363     if (GCPauseIntervalMillis < 1) {
   364       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   365                                     "greater than 0");
   366     }
   367   }
   369   // Then, if the pause time target parameter was not set, set it to
   370   // the default value.
   371   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   372     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   373       // The default pause time target in G1 is 200ms
   374       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   375     } else {
   376       // We do not allow the pause interval to be set without the
   377       // pause time target
   378       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   379                                     "without setting MaxGCPauseMillis");
   380     }
   381   }
   383   // Then, if the interval parameter was not set, set it according to
   384   // the pause time target (this will also deal with the case when the
   385   // pause time target is the default value).
   386   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   387     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   388   }
   390   // Finally, make sure that the two parameters are consistent.
   391   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   392     char buffer[256];
   393     jio_snprintf(buffer, 256,
   394                  "MaxGCPauseMillis (%u) should be less than "
   395                  "GCPauseIntervalMillis (%u)",
   396                  MaxGCPauseMillis, GCPauseIntervalMillis);
   397     vm_exit_during_initialization(buffer);
   398   }
   400   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   401   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   402   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   403   _sigma = (double) G1ConfidencePercent / 100.0;
   405   // start conservatively (around 50ms is about right)
   406   _concurrent_mark_init_times_ms->add(0.05);
   407   _concurrent_mark_remark_times_ms->add(0.05);
   408   _concurrent_mark_cleanup_times_ms->add(0.20);
   409   _tenuring_threshold = MaxTenuringThreshold;
   411   // if G1FixedSurvivorSpaceSize is 0 which means the size is not
   412   // fixed, then _max_survivor_regions will be calculated at
   413   // calculate_young_list_target_length during initialization
   414   _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
   416   assert(GCTimeRatio > 0,
   417          "we should have set it to a default value set_g1_gc_flags() "
   418          "if a user set it to 0");
   419   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   421   initialize_all();
   422 }
   424 // Increment "i", mod "len"
   425 static void inc_mod(int& i, int len) {
   426   i++; if (i == len) i = 0;
   427 }
   429 void G1CollectorPolicy::initialize_flags() {
   430   set_min_alignment(HeapRegion::GrainBytes);
   431   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   432   if (SurvivorRatio < 1) {
   433     vm_exit_during_initialization("Invalid survivor ratio specified");
   434   }
   435   CollectorPolicy::initialize_flags();
   436 }
   438 // The easiest way to deal with the parsing of the NewSize /
   439 // MaxNewSize / etc. parameteres is to re-use the code in the
   440 // TwoGenerationCollectorPolicy class. This is similar to what
   441 // ParallelScavenge does with its GenerationSizer class (see
   442 // ParallelScavengeHeap::initialize()). We might change this in the
   443 // future, but it's a good start.
   444 class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
   445   size_t size_to_region_num(size_t byte_size) {
   446     return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
   447   }
   449 public:
   450   G1YoungGenSizer() {
   451     initialize_flags();
   452     initialize_size_info();
   453   }
   455   size_t min_young_region_num() {
   456     return size_to_region_num(_min_gen0_size);
   457   }
   458   size_t initial_young_region_num() {
   459     return size_to_region_num(_initial_gen0_size);
   460   }
   461   size_t max_young_region_num() {
   462     return size_to_region_num(_max_gen0_size);
   463   }
   464 };
   466 void G1CollectorPolicy::init() {
   467   // Set aside an initial future to_space.
   468   _g1 = G1CollectedHeap::heap();
   470   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   472   initialize_gc_policy_counters();
   474   if (G1Gen) {
   475     _in_young_gc_mode = true;
   477     G1YoungGenSizer sizer;
   478     size_t initial_region_num = sizer.initial_young_region_num();
   480     if (UseAdaptiveSizePolicy) {
   481       set_adaptive_young_list_length(true);
   482       _young_list_fixed_length = 0;
   483     } else {
   484       set_adaptive_young_list_length(false);
   485       _young_list_fixed_length = initial_region_num;
   486     }
   487     _free_regions_at_end_of_collection = _g1->free_regions();
   488     calculate_young_list_min_length();
   489     guarantee( _young_list_min_length == 0, "invariant, not enough info" );
   490     calculate_young_list_target_length();
   491   } else {
   492      _young_list_fixed_length = 0;
   493     _in_young_gc_mode = false;
   494   }
   496   // We may immediately start allocating regions and placing them on the
   497   // collection set list. Initialize the per-collection set info
   498   start_incremental_cset_building();
   499 }
   501 // Create the jstat counters for the policy.
   502 void G1CollectorPolicy::initialize_gc_policy_counters()
   503 {
   504   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 2 + G1Gen);
   505 }
   507 void G1CollectorPolicy::calculate_young_list_min_length() {
   508   _young_list_min_length = 0;
   510   if (!adaptive_young_list_length())
   511     return;
   513   if (_alloc_rate_ms_seq->num() > 3) {
   514     double now_sec = os::elapsedTime();
   515     double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   516     double alloc_rate_ms = predict_alloc_rate_ms();
   517     size_t min_regions = (size_t) ceil(alloc_rate_ms * when_ms);
   518     size_t current_region_num = _g1->young_list()->length();
   519     _young_list_min_length = min_regions + current_region_num;
   520   }
   521 }
   523 void G1CollectorPolicy::calculate_young_list_target_length() {
   524   if (adaptive_young_list_length()) {
   525     size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   526     calculate_young_list_target_length(rs_lengths);
   527   } else {
   528     if (full_young_gcs())
   529       _young_list_target_length = _young_list_fixed_length;
   530     else
   531       _young_list_target_length = _young_list_fixed_length / 2;
   532   }
   534   // Make sure we allow the application to allocate at least one
   535   // region before we need to do a collection again.
   536   size_t min_length = _g1->young_list()->length() + 1;
   537   _young_list_target_length = MAX2(_young_list_target_length, min_length);
   538   calculate_max_gc_locker_expansion();
   539   calculate_survivors_policy();
   540 }
   542 void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
   543   guarantee( adaptive_young_list_length(), "pre-condition" );
   544   guarantee( !_in_marking_window || !_last_full_young_gc, "invariant" );
   546   double start_time_sec = os::elapsedTime();
   547   size_t min_reserve_perc = MAX2((size_t)2, (size_t)G1ReservePercent);
   548   min_reserve_perc = MIN2((size_t) 50, min_reserve_perc);
   549   size_t reserve_regions =
   550     (size_t) ((double) min_reserve_perc * (double) _g1->n_regions() / 100.0);
   552   if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
   553     // we are in fully-young mode and there are free regions in the heap
   555     double survivor_regions_evac_time =
   556         predict_survivor_regions_evac_time();
   558     double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   559     size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   560     size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   561     size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   562     double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
   563                           + survivor_regions_evac_time;
   565     // the result
   566     size_t final_young_length = 0;
   568     size_t init_free_regions =
   569       MAX2((size_t)0, _free_regions_at_end_of_collection - reserve_regions);
   571     // if we're still under the pause target...
   572     if (base_time_ms <= target_pause_time_ms) {
   573       // We make sure that the shortest young length that makes sense
   574       // fits within the target pause time.
   575       size_t min_young_length = 1;
   577       if (predict_will_fit(min_young_length, base_time_ms,
   578                                      init_free_regions, target_pause_time_ms)) {
   579         // The shortest young length will fit within the target pause time;
   580         // we'll now check whether the absolute maximum number of young
   581         // regions will fit in the target pause time. If not, we'll do
   582         // a binary search between min_young_length and max_young_length
   583         size_t abs_max_young_length = _free_regions_at_end_of_collection - 1;
   584         size_t max_young_length = abs_max_young_length;
   586         if (max_young_length > min_young_length) {
   587           // Let's check if the initial max young length will fit within the
   588           // target pause. If so then there is no need to search for a maximal
   589           // young length - we'll return the initial maximum
   591           if (predict_will_fit(max_young_length, base_time_ms,
   592                                 init_free_regions, target_pause_time_ms)) {
   593             // The maximum young length will satisfy the target pause time.
   594             // We are done so set min young length to this maximum length.
   595             // The code after the loop will then set final_young_length using
   596             // the value cached in the minimum length.
   597             min_young_length = max_young_length;
   598           } else {
   599             // The maximum possible number of young regions will not fit within
   600             // the target pause time so let's search....
   602             size_t diff = (max_young_length - min_young_length) / 2;
   603             max_young_length = min_young_length + diff;
   605             while (max_young_length > min_young_length) {
   606               if (predict_will_fit(max_young_length, base_time_ms,
   607                                         init_free_regions, target_pause_time_ms)) {
   609                 // The current max young length will fit within the target
   610                 // pause time. Note we do not exit the loop here. By setting
   611                 // min = max, and then increasing the max below means that
   612                 // we will continue searching for an upper bound in the
   613                 // range [max..max+diff]
   614                 min_young_length = max_young_length;
   615               }
   616               diff = (max_young_length - min_young_length) / 2;
   617               max_young_length = min_young_length + diff;
   618             }
   619             // the above loop found a maximal young length that will fit
   620             // within the target pause time.
   621           }
   622           assert(min_young_length <= abs_max_young_length, "just checking");
   623         }
   624         final_young_length = min_young_length;
   625       }
   626     }
   627     // and we're done!
   629     // we should have at least one region in the target young length
   630     _young_list_target_length =
   631                               final_young_length + _recorded_survivor_regions;
   633     // let's keep an eye of how long we spend on this calculation
   634     // right now, I assume that we'll print it when we need it; we
   635     // should really adde it to the breakdown of a pause
   636     double end_time_sec = os::elapsedTime();
   637     double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;
   639 #ifdef TRACE_CALC_YOUNG_LENGTH
   640     // leave this in for debugging, just in case
   641     gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT ", "
   642                            "elapsed %1.2lf ms, (%s%s) " SIZE_FORMAT SIZE_FORMAT,
   643                            target_pause_time_ms,
   644                            _young_list_target_length
   645                            elapsed_time_ms,
   646                            full_young_gcs() ? "full" : "partial",
   647                            during_initial_mark_pause() ? " i-m" : "",
   648                            _in_marking_window,
   649                            _in_marking_window_im);
   650 #endif // TRACE_CALC_YOUNG_LENGTH
   652     if (_young_list_target_length < _young_list_min_length) {
   653       // bummer; this means that, if we do a pause when the maximal
   654       // length dictates, we'll violate the pause spacing target (the
   655       // min length was calculate based on the application's current
   656       // alloc rate);
   658       // so, we have to bite the bullet, and allocate the minimum
   659       // number. We'll violate our target, but we just can't meet it.
   661 #ifdef TRACE_CALC_YOUNG_LENGTH
   662       // leave this in for debugging, just in case
   663       gclog_or_tty->print_cr("adjusted target length from "
   664                              SIZE_FORMAT " to " SIZE_FORMAT,
   665                              _young_list_target_length, _young_list_min_length);
   666 #endif // TRACE_CALC_YOUNG_LENGTH
   668       _young_list_target_length = _young_list_min_length;
   669     }
   670   } else {
   671     // we are in a partially-young mode or we've run out of regions (due
   672     // to evacuation failure)
   674 #ifdef TRACE_CALC_YOUNG_LENGTH
   675     // leave this in for debugging, just in case
   676     gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
   677                            _young_list_min_length);
   678 #endif // TRACE_CALC_YOUNG_LENGTH
   679     // we'll do the pause as soon as possible by choosing the minimum
   680     _young_list_target_length = _young_list_min_length;
   681   }
   683   _rs_lengths_prediction = rs_lengths;
   684 }
   686 // This is used by: calculate_young_list_target_length(rs_length). It
   687 // returns true iff:
   688 //   the predicted pause time for the given young list will not overflow
   689 //   the target pause time
   690 // and:
   691 //   the predicted amount of surviving data will not overflow the
   692 //   the amount of free space available for survivor regions.
   693 //
   694 bool
   695 G1CollectorPolicy::predict_will_fit(size_t young_length,
   696                                     double base_time_ms,
   697                                     size_t init_free_regions,
   698                                     double target_pause_time_ms) {
   700   if (young_length >= init_free_regions)
   701     // end condition 1: not enough space for the young regions
   702     return false;
   704   double accum_surv_rate_adj = 0.0;
   705   double accum_surv_rate =
   706     accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;
   708   size_t bytes_to_copy =
   709     (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   711   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   713   double young_other_time_ms =
   714                        predict_young_other_time_ms(young_length);
   716   double pause_time_ms =
   717                    base_time_ms + copy_time_ms + young_other_time_ms;
   719   if (pause_time_ms > target_pause_time_ms)
   720     // end condition 2: over the target pause time
   721     return false;
   723   size_t free_bytes =
   724                  (init_free_regions - young_length) * HeapRegion::GrainBytes;
   726   if ((2.0 + sigma()) * (double) bytes_to_copy > (double) free_bytes)
   727     // end condition 3: out of to-space (conservatively)
   728     return false;
   730   // success!
   731   return true;
   732 }
   734 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   735   double survivor_regions_evac_time = 0.0;
   736   for (HeapRegion * r = _recorded_survivor_head;
   737        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   738        r = r->get_next_young_region()) {
   739     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
   740   }
   741   return survivor_regions_evac_time;
   742 }
   744 void G1CollectorPolicy::check_prediction_validity() {
   745   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   747   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   748   if (rs_lengths > _rs_lengths_prediction) {
   749     // add 10% to avoid having to recalculate often
   750     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   751     calculate_young_list_target_length(rs_lengths_prediction);
   752   }
   753 }
   755 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   756                                                bool is_tlab,
   757                                                bool* gc_overhead_limit_was_exceeded) {
   758   guarantee(false, "Not using this policy feature yet.");
   759   return NULL;
   760 }
   762 // This method controls how a collector handles one or more
   763 // of its generations being fully allocated.
   764 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   765                                                        bool is_tlab) {
   766   guarantee(false, "Not using this policy feature yet.");
   767   return NULL;
   768 }
   771 #ifndef PRODUCT
   772 bool G1CollectorPolicy::verify_young_ages() {
   773   HeapRegion* head = _g1->young_list()->first_region();
   774   return
   775     verify_young_ages(head, _short_lived_surv_rate_group);
   776   // also call verify_young_ages on any additional surv rate groups
   777 }
   779 bool
   780 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   781                                      SurvRateGroup *surv_rate_group) {
   782   guarantee( surv_rate_group != NULL, "pre-condition" );
   784   const char* name = surv_rate_group->name();
   785   bool ret = true;
   786   int prev_age = -1;
   788   for (HeapRegion* curr = head;
   789        curr != NULL;
   790        curr = curr->get_next_young_region()) {
   791     SurvRateGroup* group = curr->surv_rate_group();
   792     if (group == NULL && !curr->is_survivor()) {
   793       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   794       ret = false;
   795     }
   797     if (surv_rate_group == group) {
   798       int age = curr->age_in_surv_rate_group();
   800       if (age < 0) {
   801         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   802         ret = false;
   803       }
   805       if (age <= prev_age) {
   806         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   807                                "(%d, %d)", name, age, prev_age);
   808         ret = false;
   809       }
   810       prev_age = age;
   811     }
   812   }
   814   return ret;
   815 }
   816 #endif // PRODUCT
   818 void G1CollectorPolicy::record_full_collection_start() {
   819   _cur_collection_start_sec = os::elapsedTime();
   820   // Release the future to-space so that it is available for compaction into.
   821   _g1->set_full_collection();
   822 }
   824 void G1CollectorPolicy::record_full_collection_end() {
   825   // Consider this like a collection pause for the purposes of allocation
   826   // since last pause.
   827   double end_sec = os::elapsedTime();
   828   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
   829   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   831   _all_full_gc_times_ms->add(full_gc_time_ms);
   833   update_recent_gc_times(end_sec, full_gc_time_ms);
   835   _g1->clear_full_collection();
   837   // "Nuke" the heuristics that control the fully/partially young GC
   838   // transitions and make sure we start with fully young GCs after the
   839   // Full GC.
   840   set_full_young_gcs(true);
   841   _last_full_young_gc = false;
   842   _should_revert_to_full_young_gcs = false;
   843   clear_initiate_conc_mark_if_possible();
   844   clear_during_initial_mark_pause();
   845   _known_garbage_bytes = 0;
   846   _known_garbage_ratio = 0.0;
   847   _in_marking_window = false;
   848   _in_marking_window_im = false;
   850   _short_lived_surv_rate_group->start_adding_regions();
   851   // also call this on any additional surv rate groups
   853   record_survivor_regions(0, NULL, NULL);
   855   _prev_region_num_young   = _region_num_young;
   856   _prev_region_num_tenured = _region_num_tenured;
   858   _free_regions_at_end_of_collection = _g1->free_regions();
   859   // Reset survivors SurvRateGroup.
   860   _survivor_surv_rate_group->reset();
   861   calculate_young_list_min_length();
   862   calculate_young_list_target_length();
   863 }
   865 void G1CollectorPolicy::record_before_bytes(size_t bytes) {
   866   _bytes_in_to_space_before_gc += bytes;
   867 }
   869 void G1CollectorPolicy::record_after_bytes(size_t bytes) {
   870   _bytes_in_to_space_after_gc += bytes;
   871 }
   873 void G1CollectorPolicy::record_stop_world_start() {
   874   _stop_world_start = os::elapsedTime();
   875 }
   877 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   878                                                       size_t start_used) {
   879   if (PrintGCDetails) {
   880     gclog_or_tty->stamp(PrintGCTimeStamps);
   881     gclog_or_tty->print("[GC pause");
   882     if (in_young_gc_mode())
   883       gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
   884   }
   886   assert(_g1->used() == _g1->recalculate_used(),
   887          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
   888                  _g1->used(), _g1->recalculate_used()));
   890   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   891   _all_stop_world_times_ms->add(s_w_t_ms);
   892   _stop_world_start = 0.0;
   894   _cur_collection_start_sec = start_time_sec;
   895   _cur_collection_pause_used_at_start_bytes = start_used;
   896   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   897   _pending_cards = _g1->pending_card_num();
   898   _max_pending_cards = _g1->max_pending_card_num();
   900   _bytes_in_to_space_before_gc = 0;
   901   _bytes_in_to_space_after_gc = 0;
   902   _bytes_in_collection_set_before_gc = 0;
   904   YoungList* young_list = _g1->young_list();
   905   _eden_bytes_before_gc = young_list->eden_used_bytes();
   906   _survivor_bytes_before_gc = young_list->survivor_used_bytes();
   907   _capacity_before_gc = _g1->capacity();
   909 #ifdef DEBUG
   910   // initialise these to something well known so that we can spot
   911   // if they are not set properly
   913   for (int i = 0; i < _parallel_gc_threads; ++i) {
   914     _par_last_gc_worker_start_times_ms[i] = -1234.0;
   915     _par_last_ext_root_scan_times_ms[i] = -1234.0;
   916     _par_last_mark_stack_scan_times_ms[i] = -1234.0;
   917     _par_last_update_rs_times_ms[i] = -1234.0;
   918     _par_last_update_rs_processed_buffers[i] = -1234.0;
   919     _par_last_scan_rs_times_ms[i] = -1234.0;
   920     _par_last_obj_copy_times_ms[i] = -1234.0;
   921     _par_last_termination_times_ms[i] = -1234.0;
   922     _par_last_termination_attempts[i] = -1234.0;
   923     _par_last_gc_worker_end_times_ms[i] = -1234.0;
   924     _par_last_gc_worker_times_ms[i] = -1234.0;
   925   }
   926 #endif
   928   for (int i = 0; i < _aux_num; ++i) {
   929     _cur_aux_times_ms[i] = 0.0;
   930     _cur_aux_times_set[i] = false;
   931   }
   933   _satb_drain_time_set = false;
   934   _last_satb_drain_processed_buffers = -1;
   936   if (in_young_gc_mode())
   937     _last_young_gc_full = false;
   939   // do that for any other surv rate groups
   940   _short_lived_surv_rate_group->stop_adding_regions();
   941   _survivors_age_table.clear();
   943   assert( verify_young_ages(), "region age verification" );
   944 }
   946 void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
   947   _mark_closure_time_ms = mark_closure_time_ms;
   948 }
   950 void G1CollectorPolicy::record_concurrent_mark_init_start() {
   951   _mark_init_start_sec = os::elapsedTime();
   952   guarantee(!in_young_gc_mode(), "should not do be here in young GC mode");
   953 }
   955 void G1CollectorPolicy::record_concurrent_mark_init_end_pre(double
   956                                                    mark_init_elapsed_time_ms) {
   957   _during_marking = true;
   958   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   959   clear_during_initial_mark_pause();
   960   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   961 }
   963 void G1CollectorPolicy::record_concurrent_mark_init_end() {
   964   double end_time_sec = os::elapsedTime();
   965   double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
   966   _concurrent_mark_init_times_ms->add(elapsed_time_ms);
   967   record_concurrent_mark_init_end_pre(elapsed_time_ms);
   969   _mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
   970 }
   972 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   973   _mark_remark_start_sec = os::elapsedTime();
   974   _during_marking = false;
   975 }
   977 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   978   double end_time_sec = os::elapsedTime();
   979   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   980   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   981   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   982   _prev_collection_pause_end_ms += elapsed_time_ms;
   984   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   985 }
   987 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   988   _mark_cleanup_start_sec = os::elapsedTime();
   989 }
   991 void
   992 G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
   993                                                       size_t max_live_bytes) {
   994   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
   995   record_concurrent_mark_cleanup_end_work2();
   996 }
   998 void
   999 G1CollectorPolicy::
  1000 record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
  1001                                          size_t max_live_bytes) {
  1002   if (_n_marks < 2) _n_marks++;
  1003   if (G1PolicyVerbose > 0)
  1004     gclog_or_tty->print_cr("At end of marking, max_live is " SIZE_FORMAT " MB "
  1005                            " (of " SIZE_FORMAT " MB heap).",
  1006                            max_live_bytes/M, _g1->capacity()/M);
  1009 // The important thing about this is that it includes "os::elapsedTime".
  1010 void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
  1011   double end_time_sec = os::elapsedTime();
  1012   double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
  1013   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  1014   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1015   _prev_collection_pause_end_ms += elapsed_time_ms;
  1017   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);
  1019   _num_markings++;
  1021   // We did a marking, so reset the "since_last_mark" variables.
  1022   double considerConcMarkCost = 1.0;
  1023   // If there are available processors, concurrent activity is free...
  1024   if (Threads::number_of_non_daemon_threads() * 2 <
  1025       os::active_processor_count()) {
  1026     considerConcMarkCost = 0.0;
  1028   _n_pauses_at_mark_end = _n_pauses;
  1029   _n_marks_since_last_pause++;
  1032 void
  1033 G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
  1034   if (in_young_gc_mode()) {
  1035     _should_revert_to_full_young_gcs = false;
  1036     _last_full_young_gc = true;
  1037     _in_marking_window = false;
  1038     if (adaptive_young_list_length())
  1039       calculate_young_list_target_length();
  1043 void G1CollectorPolicy::record_concurrent_pause() {
  1044   if (_stop_world_start > 0.0) {
  1045     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
  1046     _all_yield_times_ms->add(yield_ms);
  1050 void G1CollectorPolicy::record_concurrent_pause_end() {
  1053 void G1CollectorPolicy::record_collection_pause_end_CH_strong_roots() {
  1054   _cur_CH_strong_roots_end_sec = os::elapsedTime();
  1055   _cur_CH_strong_roots_dur_ms =
  1056     (_cur_CH_strong_roots_end_sec - _cur_collection_start_sec) * 1000.0;
  1059 void G1CollectorPolicy::record_collection_pause_end_G1_strong_roots() {
  1060   _cur_G1_strong_roots_end_sec = os::elapsedTime();
  1061   _cur_G1_strong_roots_dur_ms =
  1062     (_cur_G1_strong_roots_end_sec - _cur_CH_strong_roots_end_sec) * 1000.0;
  1065 template<class T>
  1066 T sum_of(T* sum_arr, int start, int n, int N) {
  1067   T sum = (T)0;
  1068   for (int i = 0; i < n; i++) {
  1069     int j = (start + i) % N;
  1070     sum += sum_arr[j];
  1072   return sum;
  1075 void G1CollectorPolicy::print_par_stats(int level,
  1076                                         const char* str,
  1077                                         double* data) {
  1078   double min = data[0], max = data[0];
  1079   double total = 0.0;
  1080   LineBuffer buf(level);
  1081   buf.append("[%s (ms):", str);
  1082   for (uint i = 0; i < ParallelGCThreads; ++i) {
  1083     double val = data[i];
  1084     if (val < min)
  1085       min = val;
  1086     if (val > max)
  1087       max = val;
  1088     total += val;
  1089     buf.append("  %3.1lf", val);
  1091   buf.append_and_print_cr("");
  1092   double avg = total / (double) ParallelGCThreads;
  1093   buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
  1094     avg, min, max, max - min);
  1097 void G1CollectorPolicy::print_par_sizes(int level,
  1098                                         const char* str,
  1099                                         double* data) {
  1100   double min = data[0], max = data[0];
  1101   double total = 0.0;
  1102   LineBuffer buf(level);
  1103   buf.append("[%s :", str);
  1104   for (uint i = 0; i < ParallelGCThreads; ++i) {
  1105     double val = data[i];
  1106     if (val < min)
  1107       min = val;
  1108     if (val > max)
  1109       max = val;
  1110     total += val;
  1111     buf.append(" %d", (int) val);
  1113   buf.append_and_print_cr("");
  1114   double avg = total / (double) ParallelGCThreads;
  1115   buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
  1116     (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
  1119 void G1CollectorPolicy::print_stats (int level,
  1120                                      const char* str,
  1121                                      double value) {
  1122   LineBuffer(level).append_and_print_cr("[%s: %5.1lf ms]", str, value);
  1125 void G1CollectorPolicy::print_stats (int level,
  1126                                      const char* str,
  1127                                      int value) {
  1128   LineBuffer(level).append_and_print_cr("[%s: %d]", str, value);
  1131 double G1CollectorPolicy::avg_value (double* data) {
  1132   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1133     double ret = 0.0;
  1134     for (uint i = 0; i < ParallelGCThreads; ++i)
  1135       ret += data[i];
  1136     return ret / (double) ParallelGCThreads;
  1137   } else {
  1138     return data[0];
  1142 double G1CollectorPolicy::max_value (double* data) {
  1143   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1144     double ret = data[0];
  1145     for (uint i = 1; i < ParallelGCThreads; ++i)
  1146       if (data[i] > ret)
  1147         ret = data[i];
  1148     return ret;
  1149   } else {
  1150     return data[0];
  1154 double G1CollectorPolicy::sum_of_values (double* data) {
  1155   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1156     double sum = 0.0;
  1157     for (uint i = 0; i < ParallelGCThreads; i++)
  1158       sum += data[i];
  1159     return sum;
  1160   } else {
  1161     return data[0];
  1165 double G1CollectorPolicy::max_sum (double* data1,
  1166                                    double* data2) {
  1167   double ret = data1[0] + data2[0];
  1169   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1170     for (uint i = 1; i < ParallelGCThreads; ++i) {
  1171       double data = data1[i] + data2[i];
  1172       if (data > ret)
  1173         ret = data;
  1176   return ret;
  1179 // Anything below that is considered to be zero
  1180 #define MIN_TIMER_GRANULARITY 0.0000001
  1182 void G1CollectorPolicy::record_collection_pause_end() {
  1183   double end_time_sec = os::elapsedTime();
  1184   double elapsed_ms = _last_pause_time_ms;
  1185   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  1186   double evac_ms = (end_time_sec - _cur_G1_strong_roots_end_sec) * 1000.0;
  1187   size_t rs_size =
  1188     _cur_collection_pause_used_regions_at_start - collection_set_size();
  1189   size_t cur_used_bytes = _g1->used();
  1190   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  1191   bool last_pause_included_initial_mark = false;
  1192   bool update_stats = !_g1->evacuation_failed();
  1194 #ifndef PRODUCT
  1195   if (G1YoungSurvRateVerbose) {
  1196     gclog_or_tty->print_cr("");
  1197     _short_lived_surv_rate_group->print();
  1198     // do that for any other surv rate groups too
  1200 #endif // PRODUCT
  1202   if (in_young_gc_mode()) {
  1203     last_pause_included_initial_mark = during_initial_mark_pause();
  1204     if (last_pause_included_initial_mark)
  1205       record_concurrent_mark_init_end_pre(0.0);
  1207     size_t min_used_targ =
  1208       (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  1211     if (!_g1->mark_in_progress() && !_last_full_young_gc) {
  1212       assert(!last_pause_included_initial_mark, "invariant");
  1213       if (cur_used_bytes > min_used_targ &&
  1214           cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
  1215         assert(!during_initial_mark_pause(), "we should not see this here");
  1217         // Note: this might have already been set, if during the last
  1218         // pause we decided to start a cycle but at the beginning of
  1219         // this pause we decided to postpone it. That's OK.
  1220         set_initiate_conc_mark_if_possible();
  1224     _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
  1227   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
  1228                           end_time_sec, false);
  1230   guarantee(_cur_collection_pause_used_regions_at_start >=
  1231             collection_set_size(),
  1232             "Negative RS size?");
  1234   // This assert is exempted when we're doing parallel collection pauses,
  1235   // because the fragmentation caused by the parallel GC allocation buffers
  1236   // can lead to more memory being used during collection than was used
  1237   // before. Best leave this out until the fragmentation problem is fixed.
  1238   // Pauses in which evacuation failed can also lead to negative
  1239   // collections, since no space is reclaimed from a region containing an
  1240   // object whose evacuation failed.
  1241   // Further, we're now always doing parallel collection.  But I'm still
  1242   // leaving this here as a placeholder for a more precise assertion later.
  1243   // (DLD, 10/05.)
  1244   assert((true || parallel) // Always using GC LABs now.
  1245          || _g1->evacuation_failed()
  1246          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
  1247          "Negative collection");
  1249   size_t freed_bytes =
  1250     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  1251   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
  1253   double survival_fraction =
  1254     (double)surviving_bytes/
  1255     (double)_collection_set_bytes_used_before;
  1257   _n_pauses++;
  1259   if (update_stats) {
  1260     _recent_CH_strong_roots_times_ms->add(_cur_CH_strong_roots_dur_ms);
  1261     _recent_G1_strong_roots_times_ms->add(_cur_G1_strong_roots_dur_ms);
  1262     _recent_evac_times_ms->add(evac_ms);
  1263     _recent_pause_times_ms->add(elapsed_ms);
  1265     _recent_rs_sizes->add(rs_size);
  1267     // We exempt parallel collection from this check because Alloc Buffer
  1268     // fragmentation can produce negative collections.  Same with evac
  1269     // failure.
  1270     // Further, we're now always doing parallel collection.  But I'm still
  1271     // leaving this here as a placeholder for a more precise assertion later.
  1272     // (DLD, 10/05.
  1273     assert((true || parallel)
  1274            || _g1->evacuation_failed()
  1275            || surviving_bytes <= _collection_set_bytes_used_before,
  1276            "Or else negative collection!");
  1277     _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
  1278     _recent_CS_bytes_surviving->add(surviving_bytes);
  1280     // this is where we update the allocation rate of the application
  1281     double app_time_ms =
  1282       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
  1283     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1284       // This usually happens due to the timer not having the required
  1285       // granularity. Some Linuxes are the usual culprits.
  1286       // We'll just set it to something (arbitrarily) small.
  1287       app_time_ms = 1.0;
  1289     size_t regions_allocated =
  1290       (_region_num_young - _prev_region_num_young) +
  1291       (_region_num_tenured - _prev_region_num_tenured);
  1292     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1293     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1294     _prev_region_num_young   = _region_num_young;
  1295     _prev_region_num_tenured = _region_num_tenured;
  1297     double interval_ms =
  1298       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1299     update_recent_gc_times(end_time_sec, elapsed_ms);
  1300     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1301     if (recent_avg_pause_time_ratio() < 0.0 ||
  1302         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
  1303 #ifndef PRODUCT
  1304       // Dump info to allow post-facto debugging
  1305       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
  1306       gclog_or_tty->print_cr("-------------------------------------------");
  1307       gclog_or_tty->print_cr("Recent GC Times (ms):");
  1308       _recent_gc_times_ms->dump();
  1309       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
  1310       _recent_prev_end_times_for_all_gcs_sec->dump();
  1311       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
  1312                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
  1313       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1314       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1315 #endif  // !PRODUCT
  1316       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1317       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1318       if (_recent_avg_pause_time_ratio < 0.0) {
  1319         _recent_avg_pause_time_ratio = 0.0;
  1320       } else {
  1321         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1322         _recent_avg_pause_time_ratio = 1.0;
  1327   if (G1PolicyVerbose > 1) {
  1328     gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
  1331   PauseSummary* summary = _summary;
  1333   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  1334   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
  1335   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  1336   double update_rs_processed_buffers =
  1337     sum_of_values(_par_last_update_rs_processed_buffers);
  1338   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  1339   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  1340   double termination_time = avg_value(_par_last_termination_times_ms);
  1342   double parallel_other_time = _cur_collection_par_time_ms -
  1343     (update_rs_time + ext_root_scan_time + mark_stack_scan_time +
  1344      scan_rs_time + obj_copy_time + termination_time);
  1345   if (update_stats) {
  1346     MainBodySummary* body_summary = summary->main_body_summary();
  1347     guarantee(body_summary != NULL, "should not be null!");
  1349     if (_satb_drain_time_set)
  1350       body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
  1351     else
  1352       body_summary->record_satb_drain_time_ms(0.0);
  1353     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
  1354     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
  1355     body_summary->record_update_rs_time_ms(update_rs_time);
  1356     body_summary->record_scan_rs_time_ms(scan_rs_time);
  1357     body_summary->record_obj_copy_time_ms(obj_copy_time);
  1358     if (parallel) {
  1359       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
  1360       body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
  1361       body_summary->record_termination_time_ms(termination_time);
  1362       body_summary->record_parallel_other_time_ms(parallel_other_time);
  1364     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
  1367   if (G1PolicyVerbose > 1) {
  1368     gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
  1369                            "        CH Strong: %10.6f ms    (avg: %10.6f ms)\n"
  1370                            "        G1 Strong: %10.6f ms    (avg: %10.6f ms)\n"
  1371                            "        Evac:      %10.6f ms    (avg: %10.6f ms)\n"
  1372                            "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
  1373                            "      |RS|: " SIZE_FORMAT,
  1374                            elapsed_ms, recent_avg_time_for_pauses_ms(),
  1375                            _cur_CH_strong_roots_dur_ms, recent_avg_time_for_CH_strong_ms(),
  1376                            _cur_G1_strong_roots_dur_ms, recent_avg_time_for_G1_strong_ms(),
  1377                            evac_ms, recent_avg_time_for_evac_ms(),
  1378                            scan_rs_time,
  1379                            recent_avg_time_for_pauses_ms() -
  1380                            recent_avg_time_for_G1_strong_ms(),
  1381                            rs_size);
  1383     gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
  1384                            "       At end " SIZE_FORMAT "K\n"
  1385                            "       garbage      : " SIZE_FORMAT "K"
  1386                            "       of     " SIZE_FORMAT "K\n"
  1387                            "       survival     : %6.2f%%  (%6.2f%% avg)",
  1388                            _cur_collection_pause_used_at_start_bytes/K,
  1389                            _g1->used()/K, freed_bytes/K,
  1390                            _collection_set_bytes_used_before/K,
  1391                            survival_fraction*100.0,
  1392                            recent_avg_survival_fraction()*100.0);
  1393     gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
  1394                            recent_avg_pause_time_ratio() * 100.0);
  1397   double other_time_ms = elapsed_ms;
  1399   if (_satb_drain_time_set) {
  1400     other_time_ms -= _cur_satb_drain_time_ms;
  1403   if (parallel) {
  1404     other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
  1405   } else {
  1406     other_time_ms -=
  1407       update_rs_time +
  1408       ext_root_scan_time + mark_stack_scan_time +
  1409       scan_rs_time + obj_copy_time;
  1412   if (PrintGCDetails) {
  1413     gclog_or_tty->print_cr("%s, %1.8lf secs]",
  1414                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
  1415                            elapsed_ms / 1000.0);
  1417     if (_satb_drain_time_set) {
  1418       print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
  1420     if (_last_satb_drain_processed_buffers >= 0) {
  1421       print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
  1423     if (parallel) {
  1424       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
  1425       print_par_stats(2, "GC Worker Start Time", _par_last_gc_worker_start_times_ms);
  1426       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
  1427       print_par_sizes(3, "Processed Buffers", _par_last_update_rs_processed_buffers);
  1428       print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms);
  1429       print_par_stats(2, "Mark Stack Scanning", _par_last_mark_stack_scan_times_ms);
  1430       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
  1431       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
  1432       print_par_stats(2, "Termination", _par_last_termination_times_ms);
  1433       print_par_sizes(3, "Termination Attempts", _par_last_termination_attempts);
  1434       print_par_stats(2, "GC Worker End Time", _par_last_gc_worker_end_times_ms);
  1436       for (int i = 0; i < _parallel_gc_threads; i++) {
  1437         _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i];
  1439       print_par_stats(2, "GC Worker Times", _par_last_gc_worker_times_ms);
  1441       print_stats(2, "Other", parallel_other_time);
  1442       print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
  1443     } else {
  1444       print_stats(1, "Update RS", update_rs_time);
  1445       print_stats(2, "Processed Buffers",
  1446                   (int)update_rs_processed_buffers);
  1447       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
  1448       print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
  1449       print_stats(1, "Scan RS", scan_rs_time);
  1450       print_stats(1, "Object Copying", obj_copy_time);
  1452 #ifndef PRODUCT
  1453     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
  1454     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
  1455     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
  1456     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
  1457     if (_num_cc_clears > 0) {
  1458       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
  1460 #endif
  1461     print_stats(1, "Other", other_time_ms);
  1462     print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
  1464     for (int i = 0; i < _aux_num; ++i) {
  1465       if (_cur_aux_times_set[i]) {
  1466         char buffer[96];
  1467         sprintf(buffer, "Aux%d", i);
  1468         print_stats(1, buffer, _cur_aux_times_ms[i]);
  1473   _all_pause_times_ms->add(elapsed_ms);
  1474   if (update_stats) {
  1475     summary->record_total_time_ms(elapsed_ms);
  1476     summary->record_other_time_ms(other_time_ms);
  1478   for (int i = 0; i < _aux_num; ++i)
  1479     if (_cur_aux_times_set[i])
  1480       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
  1482   // Reset marks-between-pauses counter.
  1483   _n_marks_since_last_pause = 0;
  1485   // Update the efficiency-since-mark vars.
  1486   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  1487   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
  1488     // This usually happens due to the timer not having the required
  1489     // granularity. Some Linuxes are the usual culprits.
  1490     // We'll just set it to something (arbitrarily) small.
  1491     proc_ms = 1.0;
  1493   double cur_efficiency = (double) freed_bytes / proc_ms;
  1495   bool new_in_marking_window = _in_marking_window;
  1496   bool new_in_marking_window_im = false;
  1497   if (during_initial_mark_pause()) {
  1498     new_in_marking_window = true;
  1499     new_in_marking_window_im = true;
  1502   if (in_young_gc_mode()) {
  1503     if (_last_full_young_gc) {
  1504       set_full_young_gcs(false);
  1505       _last_full_young_gc = false;
  1508     if ( !_last_young_gc_full ) {
  1509       if ( _should_revert_to_full_young_gcs ||
  1510            _known_garbage_ratio < 0.05 ||
  1511            (adaptive_young_list_length() &&
  1512            (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) ) {
  1513         set_full_young_gcs(true);
  1516     _should_revert_to_full_young_gcs = false;
  1518     if (_last_young_gc_full && !_during_marking)
  1519       _young_gc_eff_seq->add(cur_efficiency);
  1522   _short_lived_surv_rate_group->start_adding_regions();
  1523   // do that for any other surv rate groupsx
  1525   // <NEW PREDICTION>
  1527   if (update_stats) {
  1528     double pause_time_ms = elapsed_ms;
  1530     size_t diff = 0;
  1531     if (_max_pending_cards >= _pending_cards)
  1532       diff = _max_pending_cards - _pending_cards;
  1533     _pending_card_diff_seq->add((double) diff);
  1535     double cost_per_card_ms = 0.0;
  1536     if (_pending_cards > 0) {
  1537       cost_per_card_ms = update_rs_time / (double) _pending_cards;
  1538       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1541     size_t cards_scanned = _g1->cards_scanned();
  1543     double cost_per_entry_ms = 0.0;
  1544     if (cards_scanned > 10) {
  1545       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
  1546       if (_last_young_gc_full)
  1547         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1548       else
  1549         _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1552     if (_max_rs_lengths > 0) {
  1553       double cards_per_entry_ratio =
  1554         (double) cards_scanned / (double) _max_rs_lengths;
  1555       if (_last_young_gc_full)
  1556         _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1557       else
  1558         _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1561     size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1562     if (rs_length_diff >= 0)
  1563       _rs_length_diff_seq->add((double) rs_length_diff);
  1565     size_t copied_bytes = surviving_bytes;
  1566     double cost_per_byte_ms = 0.0;
  1567     if (copied_bytes > 0) {
  1568       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
  1569       if (_in_marking_window)
  1570         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1571       else
  1572         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1575     double all_other_time_ms = pause_time_ms -
  1576       (update_rs_time + scan_rs_time + obj_copy_time +
  1577        _mark_closure_time_ms + termination_time);
  1579     double young_other_time_ms = 0.0;
  1580     if (_recorded_young_regions > 0) {
  1581       young_other_time_ms =
  1582         _recorded_young_cset_choice_time_ms +
  1583         _recorded_young_free_cset_time_ms;
  1584       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1585                                              (double) _recorded_young_regions);
  1587     double non_young_other_time_ms = 0.0;
  1588     if (_recorded_non_young_regions > 0) {
  1589       non_young_other_time_ms =
  1590         _recorded_non_young_cset_choice_time_ms +
  1591         _recorded_non_young_free_cset_time_ms;
  1593       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1594                                          (double) _recorded_non_young_regions);
  1597     double constant_other_time_ms = all_other_time_ms -
  1598       (young_other_time_ms + non_young_other_time_ms);
  1599     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1601     double survival_ratio = 0.0;
  1602     if (_bytes_in_collection_set_before_gc > 0) {
  1603       survival_ratio = (double) bytes_in_to_space_during_gc() /
  1604         (double) _bytes_in_collection_set_before_gc;
  1607     _pending_cards_seq->add((double) _pending_cards);
  1608     _scanned_cards_seq->add((double) cards_scanned);
  1609     _rs_lengths_seq->add((double) _max_rs_lengths);
  1611     double expensive_region_limit_ms =
  1612       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
  1613     if (expensive_region_limit_ms < 0.0) {
  1614       // this means that the other time was predicted to be longer than
  1615       // than the max pause time
  1616       expensive_region_limit_ms = (double) MaxGCPauseMillis;
  1618     _expensive_region_limit_ms = expensive_region_limit_ms;
  1620     if (PREDICTIONS_VERBOSE) {
  1621       gclog_or_tty->print_cr("");
  1622       gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
  1623                     "REGIONS %d %d %d "
  1624                     "PENDING_CARDS %d %d "
  1625                     "CARDS_SCANNED %d %d "
  1626                     "RS_LENGTHS %d %d "
  1627                     "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
  1628                     "SURVIVAL_RATIO %1.6lf %1.6lf "
  1629                     "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
  1630                     "OTHER_YOUNG %1.6lf %1.6lf "
  1631                     "OTHER_NON_YOUNG %1.6lf %1.6lf "
  1632                     "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
  1633                     "ELAPSED %1.6lf %1.6lf ",
  1634                     _cur_collection_start_sec,
  1635                     (!_last_young_gc_full) ? 2 :
  1636                     (last_pause_included_initial_mark) ? 1 : 0,
  1637                     _recorded_region_num,
  1638                     _recorded_young_regions,
  1639                     _recorded_non_young_regions,
  1640                     _predicted_pending_cards, _pending_cards,
  1641                     _predicted_cards_scanned, cards_scanned,
  1642                     _predicted_rs_lengths, _max_rs_lengths,
  1643                     _predicted_rs_update_time_ms, update_rs_time,
  1644                     _predicted_rs_scan_time_ms, scan_rs_time,
  1645                     _predicted_survival_ratio, survival_ratio,
  1646                     _predicted_object_copy_time_ms, obj_copy_time,
  1647                     _predicted_constant_other_time_ms, constant_other_time_ms,
  1648                     _predicted_young_other_time_ms, young_other_time_ms,
  1649                     _predicted_non_young_other_time_ms,
  1650                     non_young_other_time_ms,
  1651                     _vtime_diff_ms, termination_time,
  1652                     _predicted_pause_time_ms, elapsed_ms);
  1655     if (G1PolicyVerbose > 0) {
  1656       gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
  1657                     _predicted_pause_time_ms,
  1658                     (_within_target) ? "within" : "outside",
  1659                     elapsed_ms);
  1664   _in_marking_window = new_in_marking_window;
  1665   _in_marking_window_im = new_in_marking_window_im;
  1666   _free_regions_at_end_of_collection = _g1->free_regions();
  1667   calculate_young_list_min_length();
  1668   calculate_young_list_target_length();
  1670   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1671   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1672   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
  1673   // </NEW PREDICTION>
  1676 #define EXT_SIZE_FORMAT "%d%s"
  1677 #define EXT_SIZE_PARAMS(bytes)                                  \
  1678   byte_size_in_proper_unit((bytes)),                            \
  1679   proper_unit_for_byte_size((bytes))
  1681 void G1CollectorPolicy::print_heap_transition() {
  1682   if (PrintGCDetails) {
  1683     YoungList* young_list = _g1->young_list();
  1684     size_t eden_bytes = young_list->eden_used_bytes();
  1685     size_t survivor_bytes = young_list->survivor_used_bytes();
  1686     size_t used_before_gc = _cur_collection_pause_used_at_start_bytes;
  1687     size_t used = _g1->used();
  1688     size_t capacity = _g1->capacity();
  1690     gclog_or_tty->print_cr(
  1691          "   [Eden: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1692              "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
  1693              "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
  1694                      EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
  1695              EXT_SIZE_PARAMS(_eden_bytes_before_gc),
  1696                EXT_SIZE_PARAMS(eden_bytes),
  1697              EXT_SIZE_PARAMS(_survivor_bytes_before_gc),
  1698                EXT_SIZE_PARAMS(survivor_bytes),
  1699              EXT_SIZE_PARAMS(used_before_gc),
  1700              EXT_SIZE_PARAMS(_capacity_before_gc),
  1701                EXT_SIZE_PARAMS(used),
  1702                EXT_SIZE_PARAMS(capacity));
  1703   } else if (PrintGC) {
  1704     _g1->print_size_transition(gclog_or_tty,
  1705                                _cur_collection_pause_used_at_start_bytes,
  1706                                _g1->used(), _g1->capacity());
  1710 // <NEW PREDICTION>
  1712 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1713                                                      double update_rs_processed_buffers,
  1714                                                      double goal_ms) {
  1715   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1716   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1718   if (G1UseAdaptiveConcRefinement) {
  1719     const int k_gy = 3, k_gr = 6;
  1720     const double inc_k = 1.1, dec_k = 0.9;
  1722     int g = cg1r->green_zone();
  1723     if (update_rs_time > goal_ms) {
  1724       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1725     } else {
  1726       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1727         g = (int)MAX2(g * inc_k, g + 1.0);
  1730     // Change the refinement threads params
  1731     cg1r->set_green_zone(g);
  1732     cg1r->set_yellow_zone(g * k_gy);
  1733     cg1r->set_red_zone(g * k_gr);
  1734     cg1r->reinitialize_threads();
  1736     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1737     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1738                                     cg1r->yellow_zone());
  1739     // Change the barrier params
  1740     dcqs.set_process_completed_threshold(processing_threshold);
  1741     dcqs.set_max_completed_queue(cg1r->red_zone());
  1744   int curr_queue_size = dcqs.completed_buffers_num();
  1745   if (curr_queue_size >= cg1r->yellow_zone()) {
  1746     dcqs.set_completed_queue_padding(curr_queue_size);
  1747   } else {
  1748     dcqs.set_completed_queue_padding(0);
  1750   dcqs.notify_if_necessary();
  1753 double
  1754 G1CollectorPolicy::
  1755 predict_young_collection_elapsed_time_ms(size_t adjustment) {
  1756   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
  1758   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1759   size_t young_num = g1h->young_list()->length();
  1760   if (young_num == 0)
  1761     return 0.0;
  1763   young_num += adjustment;
  1764   size_t pending_cards = predict_pending_cards();
  1765   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
  1766                       predict_rs_length_diff();
  1767   size_t card_num;
  1768   if (full_young_gcs())
  1769     card_num = predict_young_card_num(rs_lengths);
  1770   else
  1771     card_num = predict_non_young_card_num(rs_lengths);
  1772   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  1773   double accum_yg_surv_rate =
  1774     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
  1776   size_t bytes_to_copy =
  1777     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
  1779   return
  1780     predict_rs_update_time_ms(pending_cards) +
  1781     predict_rs_scan_time_ms(card_num) +
  1782     predict_object_copy_time_ms(bytes_to_copy) +
  1783     predict_young_other_time_ms(young_num) +
  1784     predict_constant_other_time_ms();
  1787 double
  1788 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1789   size_t rs_length = predict_rs_length_diff();
  1790   size_t card_num;
  1791   if (full_young_gcs())
  1792     card_num = predict_young_card_num(rs_length);
  1793   else
  1794     card_num = predict_non_young_card_num(rs_length);
  1795   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1798 double
  1799 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1800                                                 size_t scanned_cards) {
  1801   return
  1802     predict_rs_update_time_ms(pending_cards) +
  1803     predict_rs_scan_time_ms(scanned_cards) +
  1804     predict_constant_other_time_ms();
  1807 double
  1808 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1809                                                   bool young) {
  1810   size_t rs_length = hr->rem_set()->occupied();
  1811   size_t card_num;
  1812   if (full_young_gcs())
  1813     card_num = predict_young_card_num(rs_length);
  1814   else
  1815     card_num = predict_non_young_card_num(rs_length);
  1816   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1818   double region_elapsed_time_ms =
  1819     predict_rs_scan_time_ms(card_num) +
  1820     predict_object_copy_time_ms(bytes_to_copy);
  1822   if (young)
  1823     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1824   else
  1825     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1827   return region_elapsed_time_ms;
  1830 size_t
  1831 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1832   size_t bytes_to_copy;
  1833   if (hr->is_marked())
  1834     bytes_to_copy = hr->max_live_bytes();
  1835   else {
  1836     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
  1837                "invariant" );
  1838     int age = hr->age_in_surv_rate_group();
  1839     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1840     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1843   return bytes_to_copy;
  1846 void
  1847 G1CollectorPolicy::start_recording_regions() {
  1848   _recorded_rs_lengths            = 0;
  1849   _recorded_young_regions         = 0;
  1850   _recorded_non_young_regions     = 0;
  1852 #if PREDICTIONS_VERBOSE
  1853   _recorded_marked_bytes          = 0;
  1854   _recorded_young_bytes           = 0;
  1855   _predicted_bytes_to_copy        = 0;
  1856   _predicted_rs_lengths           = 0;
  1857   _predicted_cards_scanned        = 0;
  1858 #endif // PREDICTIONS_VERBOSE
  1861 void
  1862 G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
  1863 #if PREDICTIONS_VERBOSE
  1864   if (!young) {
  1865     _recorded_marked_bytes += hr->max_live_bytes();
  1867   _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
  1868 #endif // PREDICTIONS_VERBOSE
  1870   size_t rs_length = hr->rem_set()->occupied();
  1871   _recorded_rs_lengths += rs_length;
  1874 void
  1875 G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
  1876   assert(!hr->is_young(), "should not call this");
  1877   ++_recorded_non_young_regions;
  1878   record_cset_region_info(hr, false);
  1881 void
  1882 G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
  1883   _recorded_young_regions = n_regions;
  1886 void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
  1887 #if PREDICTIONS_VERBOSE
  1888   _recorded_young_bytes = bytes;
  1889 #endif // PREDICTIONS_VERBOSE
  1892 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1893   _recorded_rs_lengths = rs_lengths;
  1896 void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
  1897   _predicted_bytes_to_copy = bytes;
  1900 void
  1901 G1CollectorPolicy::end_recording_regions() {
  1902   // The _predicted_pause_time_ms field is referenced in code
  1903   // not under PREDICTIONS_VERBOSE. Let's initialize it.
  1904   _predicted_pause_time_ms = -1.0;
  1906 #if PREDICTIONS_VERBOSE
  1907   _predicted_pending_cards = predict_pending_cards();
  1908   _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
  1909   if (full_young_gcs())
  1910     _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
  1911   else
  1912     _predicted_cards_scanned +=
  1913       predict_non_young_card_num(_predicted_rs_lengths);
  1914   _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;
  1916   _predicted_rs_update_time_ms =
  1917     predict_rs_update_time_ms(_g1->pending_card_num());
  1918   _predicted_rs_scan_time_ms =
  1919     predict_rs_scan_time_ms(_predicted_cards_scanned);
  1920   _predicted_object_copy_time_ms =
  1921     predict_object_copy_time_ms(_predicted_bytes_to_copy);
  1922   _predicted_constant_other_time_ms =
  1923     predict_constant_other_time_ms();
  1924   _predicted_young_other_time_ms =
  1925     predict_young_other_time_ms(_recorded_young_regions);
  1926   _predicted_non_young_other_time_ms =
  1927     predict_non_young_other_time_ms(_recorded_non_young_regions);
  1929   _predicted_pause_time_ms =
  1930     _predicted_rs_update_time_ms +
  1931     _predicted_rs_scan_time_ms +
  1932     _predicted_object_copy_time_ms +
  1933     _predicted_constant_other_time_ms +
  1934     _predicted_young_other_time_ms +
  1935     _predicted_non_young_other_time_ms;
  1936 #endif // PREDICTIONS_VERBOSE
  1939 void G1CollectorPolicy::check_if_region_is_too_expensive(double
  1940                                                            predicted_time_ms) {
  1941   // I don't think we need to do this when in young GC mode since
  1942   // marking will be initiated next time we hit the soft limit anyway...
  1943   if (predicted_time_ms > _expensive_region_limit_ms) {
  1944     if (!in_young_gc_mode()) {
  1945         set_full_young_gcs(true);
  1946         // We might want to do something different here. However,
  1947         // right now we don't support the non-generational G1 mode
  1948         // (and in fact we are planning to remove the associated code,
  1949         // see CR 6814390). So, let's leave it as is and this will be
  1950         // removed some time in the future
  1951         ShouldNotReachHere();
  1952         set_during_initial_mark_pause();
  1953     } else
  1954       // no point in doing another partial one
  1955       _should_revert_to_full_young_gcs = true;
  1959 // </NEW PREDICTION>
  1962 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1963                                                double elapsed_ms) {
  1964   _recent_gc_times_ms->add(elapsed_ms);
  1965   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1966   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1969 double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
  1970   if (_recent_pause_times_ms->num() == 0) return (double) MaxGCPauseMillis;
  1971   else return _recent_pause_times_ms->avg();
  1974 double G1CollectorPolicy::recent_avg_time_for_CH_strong_ms() {
  1975   if (_recent_CH_strong_roots_times_ms->num() == 0)
  1976     return (double)MaxGCPauseMillis/3.0;
  1977   else return _recent_CH_strong_roots_times_ms->avg();
  1980 double G1CollectorPolicy::recent_avg_time_for_G1_strong_ms() {
  1981   if (_recent_G1_strong_roots_times_ms->num() == 0)
  1982     return (double)MaxGCPauseMillis/3.0;
  1983   else return _recent_G1_strong_roots_times_ms->avg();
  1986 double G1CollectorPolicy::recent_avg_time_for_evac_ms() {
  1987   if (_recent_evac_times_ms->num() == 0) return (double)MaxGCPauseMillis/3.0;
  1988   else return _recent_evac_times_ms->avg();
  1991 int G1CollectorPolicy::number_of_recent_gcs() {
  1992   assert(_recent_CH_strong_roots_times_ms->num() ==
  1993          _recent_G1_strong_roots_times_ms->num(), "Sequence out of sync");
  1994   assert(_recent_G1_strong_roots_times_ms->num() ==
  1995          _recent_evac_times_ms->num(), "Sequence out of sync");
  1996   assert(_recent_evac_times_ms->num() ==
  1997          _recent_pause_times_ms->num(), "Sequence out of sync");
  1998   assert(_recent_pause_times_ms->num() ==
  1999          _recent_CS_bytes_used_before->num(), "Sequence out of sync");
  2000   assert(_recent_CS_bytes_used_before->num() ==
  2001          _recent_CS_bytes_surviving->num(), "Sequence out of sync");
  2002   return _recent_pause_times_ms->num();
  2005 double G1CollectorPolicy::recent_avg_survival_fraction() {
  2006   return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
  2007                                            _recent_CS_bytes_used_before);
  2010 double G1CollectorPolicy::last_survival_fraction() {
  2011   return last_survival_fraction_work(_recent_CS_bytes_surviving,
  2012                                      _recent_CS_bytes_used_before);
  2015 double
  2016 G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
  2017                                                      TruncatedSeq* before) {
  2018   assert(surviving->num() == before->num(), "Sequence out of sync");
  2019   if (before->sum() > 0.0) {
  2020       double recent_survival_rate = surviving->sum() / before->sum();
  2021       // We exempt parallel collection from this check because Alloc Buffer
  2022       // fragmentation can produce negative collections.
  2023       // Further, we're now always doing parallel collection.  But I'm still
  2024       // leaving this here as a placeholder for a more precise assertion later.
  2025       // (DLD, 10/05.)
  2026       assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
  2027              _g1->evacuation_failed() ||
  2028              recent_survival_rate <= 1.0, "Or bad frac");
  2029       return recent_survival_rate;
  2030   } else {
  2031     return 1.0; // Be conservative.
  2035 double
  2036 G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
  2037                                                TruncatedSeq* before) {
  2038   assert(surviving->num() == before->num(), "Sequence out of sync");
  2039   if (surviving->num() > 0 && before->last() > 0.0) {
  2040     double last_survival_rate = surviving->last() / before->last();
  2041     // We exempt parallel collection from this check because Alloc Buffer
  2042     // fragmentation can produce negative collections.
  2043     // Further, we're now always doing parallel collection.  But I'm still
  2044     // leaving this here as a placeholder for a more precise assertion later.
  2045     // (DLD, 10/05.)
  2046     assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
  2047            last_survival_rate <= 1.0, "Or bad frac");
  2048     return last_survival_rate;
  2049   } else {
  2050     return 1.0;
  2054 static const int survival_min_obs = 5;
  2055 static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
  2056 static const double min_survival_rate = 0.1;
  2058 double
  2059 G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
  2060                                                            double latest) {
  2061   double res = avg;
  2062   if (number_of_recent_gcs() < survival_min_obs) {
  2063     res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
  2065   res = MAX2(res, latest);
  2066   res = MAX2(res, min_survival_rate);
  2067   // In the parallel case, LAB fragmentation can produce "negative
  2068   // collections"; so can evac failure.  Cap at 1.0
  2069   res = MIN2(res, 1.0);
  2070   return res;
  2073 size_t G1CollectorPolicy::expansion_amount() {
  2074   if ((recent_avg_pause_time_ratio() * 100.0) > _gc_overhead_perc) {
  2075     // We will double the existing space, or take
  2076     // G1ExpandByPercentOfAvailable % of the available expansion
  2077     // space, whichever is smaller, bounded below by a minimum
  2078     // expansion (unless that's all that's left.)
  2079     const size_t min_expand_bytes = 1*M;
  2080     size_t reserved_bytes = _g1->max_capacity();
  2081     size_t committed_bytes = _g1->capacity();
  2082     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  2083     size_t expand_bytes;
  2084     size_t expand_bytes_via_pct =
  2085       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  2086     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  2087     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  2088     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  2089     if (G1PolicyVerbose > 1) {
  2090       gclog_or_tty->print("Decided to expand: ratio = %5.2f, "
  2091                  "committed = %d%s, uncommited = %d%s, via pct = %d%s.\n"
  2092                  "                   Answer = %d.\n",
  2093                  recent_avg_pause_time_ratio(),
  2094                  byte_size_in_proper_unit(committed_bytes),
  2095                  proper_unit_for_byte_size(committed_bytes),
  2096                  byte_size_in_proper_unit(uncommitted_bytes),
  2097                  proper_unit_for_byte_size(uncommitted_bytes),
  2098                  byte_size_in_proper_unit(expand_bytes_via_pct),
  2099                  proper_unit_for_byte_size(expand_bytes_via_pct),
  2100                  byte_size_in_proper_unit(expand_bytes),
  2101                  proper_unit_for_byte_size(expand_bytes));
  2103     return expand_bytes;
  2104   } else {
  2105     return 0;
  2109 void G1CollectorPolicy::note_start_of_mark_thread() {
  2110   _mark_thread_startup_sec = os::elapsedTime();
  2113 class CountCSClosure: public HeapRegionClosure {
  2114   G1CollectorPolicy* _g1_policy;
  2115 public:
  2116   CountCSClosure(G1CollectorPolicy* g1_policy) :
  2117     _g1_policy(g1_policy) {}
  2118   bool doHeapRegion(HeapRegion* r) {
  2119     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
  2120     return false;
  2122 };
  2124 void G1CollectorPolicy::count_CS_bytes_used() {
  2125   CountCSClosure cs_closure(this);
  2126   _g1->collection_set_iterate(&cs_closure);
  2129 void G1CollectorPolicy::print_summary (int level,
  2130                                        const char* str,
  2131                                        NumberSeq* seq) const {
  2132   double sum = seq->sum();
  2133   LineBuffer(level + 1).append_and_print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
  2134                 str, sum / 1000.0, seq->avg());
  2137 void G1CollectorPolicy::print_summary_sd (int level,
  2138                                           const char* str,
  2139                                           NumberSeq* seq) const {
  2140   print_summary(level, str, seq);
  2141   LineBuffer(level + 6).append_and_print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2142                 seq->num(), seq->sd(), seq->maximum());
  2145 void G1CollectorPolicy::check_other_times(int level,
  2146                                         NumberSeq* other_times_ms,
  2147                                         NumberSeq* calc_other_times_ms) const {
  2148   bool should_print = false;
  2149   LineBuffer buf(level + 2);
  2151   double max_sum = MAX2(fabs(other_times_ms->sum()),
  2152                         fabs(calc_other_times_ms->sum()));
  2153   double min_sum = MIN2(fabs(other_times_ms->sum()),
  2154                         fabs(calc_other_times_ms->sum()));
  2155   double sum_ratio = max_sum / min_sum;
  2156   if (sum_ratio > 1.1) {
  2157     should_print = true;
  2158     buf.append_and_print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  2161   double max_avg = MAX2(fabs(other_times_ms->avg()),
  2162                         fabs(calc_other_times_ms->avg()));
  2163   double min_avg = MIN2(fabs(other_times_ms->avg()),
  2164                         fabs(calc_other_times_ms->avg()));
  2165   double avg_ratio = max_avg / min_avg;
  2166   if (avg_ratio > 1.1) {
  2167     should_print = true;
  2168     buf.append_and_print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  2171   if (other_times_ms->sum() < -0.01) {
  2172     buf.append_and_print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  2175   if (other_times_ms->avg() < -0.01) {
  2176     buf.append_and_print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  2179   if (calc_other_times_ms->sum() < -0.01) {
  2180     should_print = true;
  2181     buf.append_and_print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  2184   if (calc_other_times_ms->avg() < -0.01) {
  2185     should_print = true;
  2186     buf.append_and_print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  2189   if (should_print)
  2190     print_summary(level, "Other(Calc)", calc_other_times_ms);
  2193 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  2194   bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  2195   MainBodySummary*    body_summary = summary->main_body_summary();
  2196   if (summary->get_total_seq()->num() > 0) {
  2197     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
  2198     if (body_summary != NULL) {
  2199       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
  2200       if (parallel) {
  2201         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
  2202         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
  2203         print_summary(2, "Ext Root Scanning",
  2204                       body_summary->get_ext_root_scan_seq());
  2205         print_summary(2, "Mark Stack Scanning",
  2206                       body_summary->get_mark_stack_scan_seq());
  2207         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
  2208         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
  2209         print_summary(2, "Termination", body_summary->get_termination_seq());
  2210         print_summary(2, "Other", body_summary->get_parallel_other_seq());
  2212           NumberSeq* other_parts[] = {
  2213             body_summary->get_update_rs_seq(),
  2214             body_summary->get_ext_root_scan_seq(),
  2215             body_summary->get_mark_stack_scan_seq(),
  2216             body_summary->get_scan_rs_seq(),
  2217             body_summary->get_obj_copy_seq(),
  2218             body_summary->get_termination_seq()
  2219           };
  2220           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
  2221                                         6, other_parts);
  2222           check_other_times(2, body_summary->get_parallel_other_seq(),
  2223                             &calc_other_times_ms);
  2225         print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
  2226         print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
  2227       } else {
  2228         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
  2229         print_summary(1, "Ext Root Scanning",
  2230                       body_summary->get_ext_root_scan_seq());
  2231         print_summary(1, "Mark Stack Scanning",
  2232                       body_summary->get_mark_stack_scan_seq());
  2233         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
  2234         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
  2237     print_summary(1, "Other", summary->get_other_seq());
  2239       if (body_summary != NULL) {
  2240         NumberSeq calc_other_times_ms;
  2241         if (parallel) {
  2242           // parallel
  2243           NumberSeq* other_parts[] = {
  2244             body_summary->get_satb_drain_seq(),
  2245             body_summary->get_parallel_seq(),
  2246             body_summary->get_clear_ct_seq()
  2247           };
  2248           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2249                                                 3, other_parts);
  2250         } else {
  2251           // serial
  2252           NumberSeq* other_parts[] = {
  2253             body_summary->get_satb_drain_seq(),
  2254             body_summary->get_update_rs_seq(),
  2255             body_summary->get_ext_root_scan_seq(),
  2256             body_summary->get_mark_stack_scan_seq(),
  2257             body_summary->get_scan_rs_seq(),
  2258             body_summary->get_obj_copy_seq()
  2259           };
  2260           calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2261                                                 6, other_parts);
  2263         check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
  2266   } else {
  2267     LineBuffer(1).append_and_print_cr("none");
  2269   LineBuffer(0).append_and_print_cr("");
  2272 void G1CollectorPolicy::print_tracing_info() const {
  2273   if (TraceGen0Time) {
  2274     gclog_or_tty->print_cr("ALL PAUSES");
  2275     print_summary_sd(0, "Total", _all_pause_times_ms);
  2276     gclog_or_tty->print_cr("");
  2277     gclog_or_tty->print_cr("");
  2278     gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
  2279     gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
  2280     gclog_or_tty->print_cr("");
  2282     gclog_or_tty->print_cr("EVACUATION PAUSES");
  2283     print_summary(_summary);
  2285     gclog_or_tty->print_cr("MISC");
  2286     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
  2287     print_summary_sd(0, "Yields", _all_yield_times_ms);
  2288     for (int i = 0; i < _aux_num; ++i) {
  2289       if (_all_aux_times_ms[i].num() > 0) {
  2290         char buffer[96];
  2291         sprintf(buffer, "Aux%d", i);
  2292         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
  2296     size_t all_region_num = _region_num_young + _region_num_tenured;
  2297     gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
  2298                "Tenured %8d (%6.2lf%%)",
  2299                all_region_num,
  2300                _region_num_young,
  2301                (double) _region_num_young / (double) all_region_num * 100.0,
  2302                _region_num_tenured,
  2303                (double) _region_num_tenured / (double) all_region_num * 100.0);
  2305   if (TraceGen1Time) {
  2306     if (_all_full_gc_times_ms->num() > 0) {
  2307       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2308                  _all_full_gc_times_ms->num(),
  2309                  _all_full_gc_times_ms->sum() / 1000.0);
  2310       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
  2311       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2312                     _all_full_gc_times_ms->sd(),
  2313                     _all_full_gc_times_ms->maximum());
  2318 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  2319 #ifndef PRODUCT
  2320   _short_lived_surv_rate_group->print_surv_rate_summary();
  2321   // add this call for any other surv rate groups
  2322 #endif // PRODUCT
  2325 void
  2326 G1CollectorPolicy::update_region_num(bool young) {
  2327   if (young) {
  2328     ++_region_num_young;
  2329   } else {
  2330     ++_region_num_tenured;
  2334 #ifndef PRODUCT
  2335 // for debugging, bit of a hack...
  2336 static char*
  2337 region_num_to_mbs(int length) {
  2338   static char buffer[64];
  2339   double bytes = (double) (length * HeapRegion::GrainBytes);
  2340   double mbs = bytes / (double) (1024 * 1024);
  2341   sprintf(buffer, "%7.2lfMB", mbs);
  2342   return buffer;
  2344 #endif // PRODUCT
  2346 size_t G1CollectorPolicy::max_regions(int purpose) {
  2347   switch (purpose) {
  2348     case GCAllocForSurvived:
  2349       return _max_survivor_regions;
  2350     case GCAllocForTenured:
  2351       return REGIONS_UNLIMITED;
  2352     default:
  2353       ShouldNotReachHere();
  2354       return REGIONS_UNLIMITED;
  2355   };
  2358 void G1CollectorPolicy::calculate_max_gc_locker_expansion() {
  2359   size_t expansion_region_num = 0;
  2360   if (GCLockerEdenExpansionPercent > 0) {
  2361     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  2362     double expansion_region_num_d = perc * (double) _young_list_target_length;
  2363     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  2364     // less than 1.0) we'll get 1.
  2365     expansion_region_num = (size_t) ceil(expansion_region_num_d);
  2366   } else {
  2367     assert(expansion_region_num == 0, "sanity");
  2369   _young_list_max_length = _young_list_target_length + expansion_region_num;
  2370   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  2373 // Calculates survivor space parameters.
  2374 void G1CollectorPolicy::calculate_survivors_policy()
  2376   if (G1FixedSurvivorSpaceSize == 0) {
  2377     _max_survivor_regions = _young_list_target_length / SurvivorRatio;
  2378   } else {
  2379     _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
  2382   if (G1FixedTenuringThreshold) {
  2383     _tenuring_threshold = MaxTenuringThreshold;
  2384   } else {
  2385     _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  2386         HeapRegion::GrainWords * _max_survivor_regions);
  2390 #ifndef PRODUCT
  2391 class HRSortIndexIsOKClosure: public HeapRegionClosure {
  2392   CollectionSetChooser* _chooser;
  2393 public:
  2394   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
  2395     _chooser(chooser) {}
  2397   bool doHeapRegion(HeapRegion* r) {
  2398     if (!r->continuesHumongous()) {
  2399       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
  2401     return false;
  2403 };
  2405 bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() {
  2406   HRSortIndexIsOKClosure cl(_collectionSetChooser);
  2407   _g1->heap_region_iterate(&cl);
  2408   return true;
  2410 #endif
  2412 bool
  2413 G1CollectorPolicy::force_initial_mark_if_outside_cycle() {
  2414   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2415   if (!during_cycle) {
  2416     set_initiate_conc_mark_if_possible();
  2417     return true;
  2418   } else {
  2419     return false;
  2423 void
  2424 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  2425   // We are about to decide on whether this pause will be an
  2426   // initial-mark pause.
  2428   // First, during_initial_mark_pause() should not be already set. We
  2429   // will set it here if we have to. However, it should be cleared by
  2430   // the end of the pause (it's only set for the duration of an
  2431   // initial-mark pause).
  2432   assert(!during_initial_mark_pause(), "pre-condition");
  2434   if (initiate_conc_mark_if_possible()) {
  2435     // We had noticed on a previous pause that the heap occupancy has
  2436     // gone over the initiating threshold and we should start a
  2437     // concurrent marking cycle. So we might initiate one.
  2439     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2440     if (!during_cycle) {
  2441       // The concurrent marking thread is not "during a cycle", i.e.,
  2442       // it has completed the last one. So we can go ahead and
  2443       // initiate a new cycle.
  2445       set_during_initial_mark_pause();
  2447       // And we can now clear initiate_conc_mark_if_possible() as
  2448       // we've already acted on it.
  2449       clear_initiate_conc_mark_if_possible();
  2450     } else {
  2451       // The concurrent marking thread is still finishing up the
  2452       // previous cycle. If we start one right now the two cycles
  2453       // overlap. In particular, the concurrent marking thread might
  2454       // be in the process of clearing the next marking bitmap (which
  2455       // we will use for the next cycle if we start one). Starting a
  2456       // cycle now will be bad given that parts of the marking
  2457       // information might get cleared by the marking thread. And we
  2458       // cannot wait for the marking thread to finish the cycle as it
  2459       // periodically yields while clearing the next marking bitmap
  2460       // and, if it's in a yield point, it's waiting for us to
  2461       // finish. So, at this point we will not start a cycle and we'll
  2462       // let the concurrent marking thread complete the last one.
  2467 void
  2468 G1CollectorPolicy_BestRegionsFirst::
  2469 record_collection_pause_start(double start_time_sec, size_t start_used) {
  2470   G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
  2473 class NextNonCSElemFinder: public HeapRegionClosure {
  2474   HeapRegion* _res;
  2475 public:
  2476   NextNonCSElemFinder(): _res(NULL) {}
  2477   bool doHeapRegion(HeapRegion* r) {
  2478     if (!r->in_collection_set()) {
  2479       _res = r;
  2480       return true;
  2481     } else {
  2482       return false;
  2485   HeapRegion* res() { return _res; }
  2486 };
  2488 class KnownGarbageClosure: public HeapRegionClosure {
  2489   CollectionSetChooser* _hrSorted;
  2491 public:
  2492   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  2493     _hrSorted(hrSorted)
  2494   {}
  2496   bool doHeapRegion(HeapRegion* r) {
  2497     // We only include humongous regions in collection
  2498     // sets when concurrent mark shows that their contained object is
  2499     // unreachable.
  2501     // Do we have any marking information for this region?
  2502     if (r->is_marked()) {
  2503       // We don't include humongous regions in collection
  2504       // sets because we collect them immediately at the end of a marking
  2505       // cycle.  We also don't include young regions because we *must*
  2506       // include them in the next collection pause.
  2507       if (!r->isHumongous() && !r->is_young()) {
  2508         _hrSorted->addMarkedHeapRegion(r);
  2511     return false;
  2513 };
  2515 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  2516   CollectionSetChooser* _hrSorted;
  2517   jint _marked_regions_added;
  2518   jint _chunk_size;
  2519   jint _cur_chunk_idx;
  2520   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  2521   int _worker;
  2522   int _invokes;
  2524   void get_new_chunk() {
  2525     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
  2526     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  2528   void add_region(HeapRegion* r) {
  2529     if (_cur_chunk_idx == _cur_chunk_end) {
  2530       get_new_chunk();
  2532     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
  2533     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
  2534     _marked_regions_added++;
  2535     _cur_chunk_idx++;
  2538 public:
  2539   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  2540                            jint chunk_size,
  2541                            int worker) :
  2542     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
  2543     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
  2544     _invokes(0)
  2545   {}
  2547   bool doHeapRegion(HeapRegion* r) {
  2548     // We only include humongous regions in collection
  2549     // sets when concurrent mark shows that their contained object is
  2550     // unreachable.
  2551     _invokes++;
  2553     // Do we have any marking information for this region?
  2554     if (r->is_marked()) {
  2555       // We don't include humongous regions in collection
  2556       // sets because we collect them immediately at the end of a marking
  2557       // cycle.
  2558       // We also do not include young regions in collection sets
  2559       if (!r->isHumongous() && !r->is_young()) {
  2560         add_region(r);
  2563     return false;
  2565   jint marked_regions_added() { return _marked_regions_added; }
  2566   int invokes() { return _invokes; }
  2567 };
  2569 class ParKnownGarbageTask: public AbstractGangTask {
  2570   CollectionSetChooser* _hrSorted;
  2571   jint _chunk_size;
  2572   G1CollectedHeap* _g1;
  2573 public:
  2574   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
  2575     AbstractGangTask("ParKnownGarbageTask"),
  2576     _hrSorted(hrSorted), _chunk_size(chunk_size),
  2577     _g1(G1CollectedHeap::heap())
  2578   {}
  2580   void work(int i) {
  2581     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
  2582     // Back to zero for the claim value.
  2583     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
  2584                                          HeapRegion::InitialClaimValue);
  2585     jint regions_added = parKnownGarbageCl.marked_regions_added();
  2586     _hrSorted->incNumMarkedHeapRegions(regions_added);
  2587     if (G1PrintParCleanupStats) {
  2588       gclog_or_tty->print_cr("     Thread %d called %d times, added %d regions to list.",
  2589                  i, parKnownGarbageCl.invokes(), regions_added);
  2592 };
  2594 void
  2595 G1CollectorPolicy_BestRegionsFirst::
  2596 record_concurrent_mark_cleanup_end(size_t freed_bytes,
  2597                                    size_t max_live_bytes) {
  2598   double start;
  2599   if (G1PrintParCleanupStats) start = os::elapsedTime();
  2600   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
  2602   _collectionSetChooser->clearMarkedHeapRegions();
  2603   double clear_marked_end;
  2604   if (G1PrintParCleanupStats) {
  2605     clear_marked_end = os::elapsedTime();
  2606     gclog_or_tty->print_cr("  clear marked regions + work1: %8.3f ms.",
  2607                   (clear_marked_end - start)*1000.0);
  2609   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2610     const size_t OverpartitionFactor = 4;
  2611     const size_t MinWorkUnit = 8;
  2612     const size_t WorkUnit =
  2613       MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
  2614            MinWorkUnit);
  2615     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
  2616                                                              WorkUnit);
  2617     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  2618                                             (int) WorkUnit);
  2619     _g1->workers()->run_task(&parKnownGarbageTask);
  2621     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2622            "sanity check");
  2623   } else {
  2624     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  2625     _g1->heap_region_iterate(&knownGarbagecl);
  2627   double known_garbage_end;
  2628   if (G1PrintParCleanupStats) {
  2629     known_garbage_end = os::elapsedTime();
  2630     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
  2631                   (known_garbage_end - clear_marked_end)*1000.0);
  2633   _collectionSetChooser->sortMarkedHeapRegions();
  2634   double sort_end;
  2635   if (G1PrintParCleanupStats) {
  2636     sort_end = os::elapsedTime();
  2637     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
  2638                   (sort_end - known_garbage_end)*1000.0);
  2641   record_concurrent_mark_cleanup_end_work2();
  2642   double work2_end;
  2643   if (G1PrintParCleanupStats) {
  2644     work2_end = os::elapsedTime();
  2645     gclog_or_tty->print_cr("  work2: %8.3f ms.",
  2646                   (work2_end - sort_end)*1000.0);
  2650 // Add the heap region at the head of the non-incremental collection set
  2651 void G1CollectorPolicy::
  2652 add_to_collection_set(HeapRegion* hr) {
  2653   assert(_inc_cset_build_state == Active, "Precondition");
  2654   assert(!hr->is_young(), "non-incremental add of young region");
  2656   if (G1PrintHeapRegions) {
  2657     gclog_or_tty->print_cr("added region to cset "
  2658                            "%d:["PTR_FORMAT", "PTR_FORMAT"], "
  2659                            "top "PTR_FORMAT", %s",
  2660                            hr->hrs_index(), hr->bottom(), hr->end(),
  2661                            hr->top(), hr->is_young() ? "YOUNG" : "NOT_YOUNG");
  2664   if (_g1->mark_in_progress())
  2665     _g1->concurrent_mark()->registerCSetRegion(hr);
  2667   assert(!hr->in_collection_set(), "should not already be in the CSet");
  2668   hr->set_in_collection_set(true);
  2669   hr->set_next_in_collection_set(_collection_set);
  2670   _collection_set = hr;
  2671   _collection_set_size++;
  2672   _collection_set_bytes_used_before += hr->used();
  2673   _g1->register_region_with_in_cset_fast_test(hr);
  2676 // Initialize the per-collection-set information
  2677 void G1CollectorPolicy::start_incremental_cset_building() {
  2678   assert(_inc_cset_build_state == Inactive, "Precondition");
  2680   _inc_cset_head = NULL;
  2681   _inc_cset_tail = NULL;
  2682   _inc_cset_size = 0;
  2683   _inc_cset_bytes_used_before = 0;
  2685   if (in_young_gc_mode()) {
  2686     _inc_cset_young_index = 0;
  2689   _inc_cset_max_finger = 0;
  2690   _inc_cset_recorded_young_bytes = 0;
  2691   _inc_cset_recorded_rs_lengths = 0;
  2692   _inc_cset_predicted_elapsed_time_ms = 0;
  2693   _inc_cset_predicted_bytes_to_copy = 0;
  2694   _inc_cset_build_state = Active;
  2697 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  2698   // This routine is used when:
  2699   // * adding survivor regions to the incremental cset at the end of an
  2700   //   evacuation pause,
  2701   // * adding the current allocation region to the incremental cset
  2702   //   when it is retired, and
  2703   // * updating existing policy information for a region in the
  2704   //   incremental cset via young list RSet sampling.
  2705   // Therefore this routine may be called at a safepoint by the
  2706   // VM thread, or in-between safepoints by mutator threads (when
  2707   // retiring the current allocation region) or a concurrent
  2708   // refine thread (RSet sampling).
  2710   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2711   size_t used_bytes = hr->used();
  2713   _inc_cset_recorded_rs_lengths += rs_length;
  2714   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  2716   _inc_cset_bytes_used_before += used_bytes;
  2718   // Cache the values we have added to the aggregated informtion
  2719   // in the heap region in case we have to remove this region from
  2720   // the incremental collection set, or it is updated by the
  2721   // rset sampling code
  2722   hr->set_recorded_rs_length(rs_length);
  2723   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  2725 #if PREDICTIONS_VERBOSE
  2726   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  2727   _inc_cset_predicted_bytes_to_copy += bytes_to_copy;
  2729   // Record the number of bytes used in this region
  2730   _inc_cset_recorded_young_bytes += used_bytes;
  2732   // Cache the values we have added to the aggregated informtion
  2733   // in the heap region in case we have to remove this region from
  2734   // the incremental collection set, or it is updated by the
  2735   // rset sampling code
  2736   hr->set_predicted_bytes_to_copy(bytes_to_copy);
  2737 #endif // PREDICTIONS_VERBOSE
  2740 void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
  2741   // This routine is currently only called as part of the updating of
  2742   // existing policy information for regions in the incremental cset that
  2743   // is performed by the concurrent refine thread(s) as part of young list
  2744   // RSet sampling. Therefore we should not be at a safepoint.
  2746   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
  2747   assert(hr->is_young(), "it should be");
  2749   size_t used_bytes = hr->used();
  2750   size_t old_rs_length = hr->recorded_rs_length();
  2751   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  2753   // Subtract the old recorded/predicted policy information for
  2754   // the given heap region from the collection set info.
  2755   _inc_cset_recorded_rs_lengths -= old_rs_length;
  2756   _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;
  2758   _inc_cset_bytes_used_before -= used_bytes;
  2760   // Clear the values cached in the heap region
  2761   hr->set_recorded_rs_length(0);
  2762   hr->set_predicted_elapsed_time_ms(0);
  2764 #if PREDICTIONS_VERBOSE
  2765   size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
  2766   _inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;
  2768   // Subtract the number of bytes used in this region
  2769   _inc_cset_recorded_young_bytes -= used_bytes;
  2771   // Clear the values cached in the heap region
  2772   hr->set_predicted_bytes_to_copy(0);
  2773 #endif // PREDICTIONS_VERBOSE
  2776 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
  2777   // Update the collection set information that is dependent on the new RS length
  2778   assert(hr->is_young(), "Precondition");
  2780   remove_from_incremental_cset_info(hr);
  2781   add_to_incremental_cset_info(hr, new_rs_length);
  2784 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  2785   assert( hr->is_young(), "invariant");
  2786   assert( hr->young_index_in_cset() == -1, "invariant" );
  2787   assert(_inc_cset_build_state == Active, "Precondition");
  2789   // We need to clear and set the cached recorded/cached collection set
  2790   // information in the heap region here (before the region gets added
  2791   // to the collection set). An individual heap region's cached values
  2792   // are calculated, aggregated with the policy collection set info,
  2793   // and cached in the heap region here (initially) and (subsequently)
  2794   // by the Young List sampling code.
  2796   size_t rs_length = hr->rem_set()->occupied();
  2797   add_to_incremental_cset_info(hr, rs_length);
  2799   HeapWord* hr_end = hr->end();
  2800   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  2802   assert(!hr->in_collection_set(), "invariant");
  2803   hr->set_in_collection_set(true);
  2804   assert( hr->next_in_collection_set() == NULL, "invariant");
  2806   _inc_cset_size++;
  2807   _g1->register_region_with_in_cset_fast_test(hr);
  2809   hr->set_young_index_in_cset((int) _inc_cset_young_index);
  2810   ++_inc_cset_young_index;
  2813 // Add the region at the RHS of the incremental cset
  2814 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  2815   // We should only ever be appending survivors at the end of a pause
  2816   assert( hr->is_survivor(), "Logic");
  2818   // Do the 'common' stuff
  2819   add_region_to_incremental_cset_common(hr);
  2821   // Now add the region at the right hand side
  2822   if (_inc_cset_tail == NULL) {
  2823     assert(_inc_cset_head == NULL, "invariant");
  2824     _inc_cset_head = hr;
  2825   } else {
  2826     _inc_cset_tail->set_next_in_collection_set(hr);
  2828   _inc_cset_tail = hr;
  2830   if (G1PrintHeapRegions) {
  2831     gclog_or_tty->print_cr(" added region to incremental cset (RHS) "
  2832                   "%d:["PTR_FORMAT", "PTR_FORMAT"], "
  2833                   "top "PTR_FORMAT", young %s",
  2834                   hr->hrs_index(), hr->bottom(), hr->end(),
  2835                   hr->top(), (hr->is_young()) ? "YES" : "NO");
  2839 // Add the region to the LHS of the incremental cset
  2840 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  2841   // Survivors should be added to the RHS at the end of a pause
  2842   assert(!hr->is_survivor(), "Logic");
  2844   // Do the 'common' stuff
  2845   add_region_to_incremental_cset_common(hr);
  2847   // Add the region at the left hand side
  2848   hr->set_next_in_collection_set(_inc_cset_head);
  2849   if (_inc_cset_head == NULL) {
  2850     assert(_inc_cset_tail == NULL, "Invariant");
  2851     _inc_cset_tail = hr;
  2853   _inc_cset_head = hr;
  2855   if (G1PrintHeapRegions) {
  2856     gclog_or_tty->print_cr(" added region to incremental cset (LHS) "
  2857                   "%d:["PTR_FORMAT", "PTR_FORMAT"], "
  2858                   "top "PTR_FORMAT", young %s",
  2859                   hr->hrs_index(), hr->bottom(), hr->end(),
  2860                   hr->top(), (hr->is_young()) ? "YES" : "NO");
  2864 #ifndef PRODUCT
  2865 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  2866   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  2868   st->print_cr("\nCollection_set:");
  2869   HeapRegion* csr = list_head;
  2870   while (csr != NULL) {
  2871     HeapRegion* next = csr->next_in_collection_set();
  2872     assert(csr->in_collection_set(), "bad CS");
  2873     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
  2874                  "age: %4d, y: %d, surv: %d",
  2875                         csr->bottom(), csr->end(),
  2876                         csr->top(),
  2877                         csr->prev_top_at_mark_start(),
  2878                         csr->next_top_at_mark_start(),
  2879                         csr->top_at_conc_mark_count(),
  2880                         csr->age_in_surv_rate_group_cond(),
  2881                         csr->is_young(),
  2882                         csr->is_survivor());
  2883     csr = next;
  2886 #endif // !PRODUCT
  2888 void
  2889 G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
  2890                                                   double target_pause_time_ms) {
  2891   // Set this here - in case we're not doing young collections.
  2892   double non_young_start_time_sec = os::elapsedTime();
  2894   start_recording_regions();
  2896   guarantee(target_pause_time_ms > 0.0,
  2897             err_msg("target_pause_time_ms = %1.6lf should be positive",
  2898                     target_pause_time_ms));
  2899   guarantee(_collection_set == NULL, "Precondition");
  2901   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  2902   double predicted_pause_time_ms = base_time_ms;
  2904   double time_remaining_ms = target_pause_time_ms - base_time_ms;
  2906   // the 10% and 50% values are arbitrary...
  2907   if (time_remaining_ms < 0.10 * target_pause_time_ms) {
  2908     time_remaining_ms = 0.50 * target_pause_time_ms;
  2909     _within_target = false;
  2910   } else {
  2911     _within_target = true;
  2914   // We figure out the number of bytes available for future to-space.
  2915   // For new regions without marking information, we must assume the
  2916   // worst-case of complete survival.  If we have marking information for a
  2917   // region, we can bound the amount of live data.  We can add a number of
  2918   // such regions, as long as the sum of the live data bounds does not
  2919   // exceed the available evacuation space.
  2920   size_t max_live_bytes = _g1->free_regions() * HeapRegion::GrainBytes;
  2922   size_t expansion_bytes =
  2923     _g1->expansion_regions() * HeapRegion::GrainBytes;
  2925   _collection_set_bytes_used_before = 0;
  2926   _collection_set_size = 0;
  2928   // Adjust for expansion and slop.
  2929   max_live_bytes = max_live_bytes + expansion_bytes;
  2931   HeapRegion* hr;
  2932   if (in_young_gc_mode()) {
  2933     double young_start_time_sec = os::elapsedTime();
  2935     if (G1PolicyVerbose > 0) {
  2936       gclog_or_tty->print_cr("Adding %d young regions to the CSet",
  2937                     _g1->young_list()->length());
  2940     _young_cset_length  = 0;
  2941     _last_young_gc_full = full_young_gcs() ? true : false;
  2943     if (_last_young_gc_full)
  2944       ++_full_young_pause_num;
  2945     else
  2946       ++_partial_young_pause_num;
  2948     // The young list is laid with the survivor regions from the previous
  2949     // pause are appended to the RHS of the young list, i.e.
  2950     //   [Newly Young Regions ++ Survivors from last pause].
  2952     hr = _g1->young_list()->first_survivor_region();
  2953     while (hr != NULL) {
  2954       assert(hr->is_survivor(), "badly formed young list");
  2955       hr->set_young();
  2956       hr = hr->get_next_young_region();
  2959     // Clear the fields that point to the survivor list - they are
  2960     // all young now.
  2961     _g1->young_list()->clear_survivors();
  2963     if (_g1->mark_in_progress())
  2964       _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
  2966     _young_cset_length = _inc_cset_young_index;
  2967     _collection_set = _inc_cset_head;
  2968     _collection_set_size = _inc_cset_size;
  2969     _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  2971     // For young regions in the collection set, we assume the worst
  2972     // case of complete survival
  2973     max_live_bytes -= _inc_cset_size * HeapRegion::GrainBytes;
  2975     time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  2976     predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  2978     // The number of recorded young regions is the incremental
  2979     // collection set's current size
  2980     set_recorded_young_regions(_inc_cset_size);
  2981     set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  2982     set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
  2983 #if PREDICTIONS_VERBOSE
  2984     set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
  2985 #endif // PREDICTIONS_VERBOSE
  2987     if (G1PolicyVerbose > 0) {
  2988       gclog_or_tty->print_cr("  Added " PTR_FORMAT " Young Regions to CS.",
  2989                              _inc_cset_size);
  2990       gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
  2991                             max_live_bytes/K);
  2994     assert(_inc_cset_size == _g1->young_list()->length(), "Invariant");
  2996     double young_end_time_sec = os::elapsedTime();
  2997     _recorded_young_cset_choice_time_ms =
  2998       (young_end_time_sec - young_start_time_sec) * 1000.0;
  3000     // We are doing young collections so reset this.
  3001     non_young_start_time_sec = young_end_time_sec;
  3003     // Note we can use either _collection_set_size or
  3004     // _young_cset_length here
  3005     if (_collection_set_size > 0 && _last_young_gc_full) {
  3006       // don't bother adding more regions...
  3007       goto choose_collection_set_end;
  3011   if (!in_young_gc_mode() || !full_young_gcs()) {
  3012     bool should_continue = true;
  3013     NumberSeq seq;
  3014     double avg_prediction = 100000000000000000.0; // something very large
  3016     do {
  3017       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
  3018                                                       avg_prediction);
  3019       if (hr != NULL) {
  3020         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
  3021         time_remaining_ms -= predicted_time_ms;
  3022         predicted_pause_time_ms += predicted_time_ms;
  3023         add_to_collection_set(hr);
  3024         record_non_young_cset_region(hr);
  3025         max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
  3026         if (G1PolicyVerbose > 0) {
  3027           gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
  3028                         max_live_bytes/K);
  3030         seq.add(predicted_time_ms);
  3031         avg_prediction = seq.avg() + seq.sd();
  3033       should_continue =
  3034         ( hr != NULL) &&
  3035         ( (adaptive_young_list_length()) ? time_remaining_ms > 0.0
  3036           : _collection_set_size < _young_list_fixed_length );
  3037     } while (should_continue);
  3039     if (!adaptive_young_list_length() &&
  3040         _collection_set_size < _young_list_fixed_length)
  3041       _should_revert_to_full_young_gcs  = true;
  3044 choose_collection_set_end:
  3045   stop_incremental_cset_building();
  3047   count_CS_bytes_used();
  3049   end_recording_regions();
  3051   double non_young_end_time_sec = os::elapsedTime();
  3052   _recorded_non_young_cset_choice_time_ms =
  3053     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
  3056 void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
  3057   G1CollectorPolicy::record_full_collection_end();
  3058   _collectionSetChooser->updateAfterFullCollection();
  3061 void G1CollectorPolicy_BestRegionsFirst::
  3062 expand_if_possible(size_t numRegions) {
  3063   size_t expansion_bytes = numRegions * HeapRegion::GrainBytes;
  3064   _g1->expand(expansion_bytes);
  3067 void G1CollectorPolicy_BestRegionsFirst::
  3068 record_collection_pause_end() {
  3069   G1CollectorPolicy::record_collection_pause_end();
  3070   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");

mercurial