src/share/vm/memory/space.cpp

Thu, 17 Jan 2013 19:04:48 -0800

author
jmasa
date
Thu, 17 Jan 2013 19:04:48 -0800
changeset 4457
59a58e20dc60
parent 4384
b735136e0d82
child 4542
db9981fd3124
permissions
-rw-r--r--

8006537: Assert when dumping archive with default methods
Reviewed-by: coleenp

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "gc_implementation/shared/liveRange.hpp"
    29 #include "gc_implementation/shared/markSweep.hpp"
    30 #include "gc_implementation/shared/spaceDecorator.hpp"
    31 #include "memory/blockOffsetTable.inline.hpp"
    32 #include "memory/defNewGeneration.hpp"
    33 #include "memory/genCollectedHeap.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/space.inline.hpp"
    36 #include "memory/universe.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "oops/oop.inline2.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/safepoint.hpp"
    41 #include "utilities/copy.hpp"
    42 #include "utilities/globalDefinitions.hpp"
    44 void SpaceMemRegionOopsIterClosure::do_oop(oop* p)       { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    45 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    47 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
    48                                                 HeapWord* top_obj) {
    49   if (top_obj != NULL) {
    50     if (_sp->block_is_obj(top_obj)) {
    51       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
    52         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
    53           // An arrayOop is starting on the dirty card - since we do exact
    54           // store checks for objArrays we are done.
    55         } else {
    56           // Otherwise, it is possible that the object starting on the dirty
    57           // card spans the entire card, and that the store happened on a
    58           // later card.  Figure out where the object ends.
    59           // Use the block_size() method of the space over which
    60           // the iteration is being done.  That space (e.g. CMS) may have
    61           // specific requirements on object sizes which will
    62           // be reflected in the block_size() method.
    63           top = top_obj + oop(top_obj)->size();
    64         }
    65       }
    66     } else {
    67       top = top_obj;
    68     }
    69   } else {
    70     assert(top == _sp->end(), "only case where top_obj == NULL");
    71   }
    72   return top;
    73 }
    75 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
    76                                             HeapWord* bottom,
    77                                             HeapWord* top) {
    78   // 1. Blocks may or may not be objects.
    79   // 2. Even when a block_is_obj(), it may not entirely
    80   //    occupy the block if the block quantum is larger than
    81   //    the object size.
    82   // We can and should try to optimize by calling the non-MemRegion
    83   // version of oop_iterate() for all but the extremal objects
    84   // (for which we need to call the MemRegion version of
    85   // oop_iterate()) To be done post-beta XXX
    86   for (; bottom < top; bottom += _sp->block_size(bottom)) {
    87     // As in the case of contiguous space above, we'd like to
    88     // just use the value returned by oop_iterate to increment the
    89     // current pointer; unfortunately, that won't work in CMS because
    90     // we'd need an interface change (it seems) to have the space
    91     // "adjust the object size" (for instance pad it up to its
    92     // block alignment or minimum block size restrictions. XXX
    93     if (_sp->block_is_obj(bottom) &&
    94         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
    95       oop(bottom)->oop_iterate(_cl, mr);
    96     }
    97   }
    98 }
   100 // We get called with "mr" representing the dirty region
   101 // that we want to process. Because of imprecise marking,
   102 // we may need to extend the incoming "mr" to the right,
   103 // and scan more. However, because we may already have
   104 // scanned some of that extended region, we may need to
   105 // trim its right-end back some so we do not scan what
   106 // we (or another worker thread) may already have scanned
   107 // or planning to scan.
   108 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
   110   // Some collectors need to do special things whenever their dirty
   111   // cards are processed. For instance, CMS must remember mutator updates
   112   // (i.e. dirty cards) so as to re-scan mutated objects.
   113   // Such work can be piggy-backed here on dirty card scanning, so as to make
   114   // it slightly more efficient than doing a complete non-detructive pre-scan
   115   // of the card table.
   116   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
   117   if (pCl != NULL) {
   118     pCl->do_MemRegion(mr);
   119   }
   121   HeapWord* bottom = mr.start();
   122   HeapWord* last = mr.last();
   123   HeapWord* top = mr.end();
   124   HeapWord* bottom_obj;
   125   HeapWord* top_obj;
   127   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
   128          _precision == CardTableModRefBS::Precise,
   129          "Only ones we deal with for now.");
   131   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   132          _cl->idempotent() || _last_bottom == NULL ||
   133          top <= _last_bottom,
   134          "Not decreasing");
   135   NOT_PRODUCT(_last_bottom = mr.start());
   137   bottom_obj = _sp->block_start(bottom);
   138   top_obj    = _sp->block_start(last);
   140   assert(bottom_obj <= bottom, "just checking");
   141   assert(top_obj    <= top,    "just checking");
   143   // Given what we think is the top of the memory region and
   144   // the start of the object at the top, get the actual
   145   // value of the top.
   146   top = get_actual_top(top, top_obj);
   148   // If the previous call did some part of this region, don't redo.
   149   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
   150       _min_done != NULL &&
   151       _min_done < top) {
   152     top = _min_done;
   153   }
   155   // Top may have been reset, and in fact may be below bottom,
   156   // e.g. the dirty card region is entirely in a now free object
   157   // -- something that could happen with a concurrent sweeper.
   158   bottom = MIN2(bottom, top);
   159   MemRegion extended_mr = MemRegion(bottom, top);
   160   assert(bottom <= top &&
   161          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   162           _min_done == NULL ||
   163           top <= _min_done),
   164          "overlap!");
   166   // Walk the region if it is not empty; otherwise there is nothing to do.
   167   if (!extended_mr.is_empty()) {
   168     walk_mem_region(extended_mr, bottom_obj, top);
   169   }
   171   // An idempotent closure might be applied in any order, so we don't
   172   // record a _min_done for it.
   173   if (!_cl->idempotent()) {
   174     _min_done = bottom;
   175   } else {
   176     assert(_min_done == _last_explicit_min_done,
   177            "Don't update _min_done for idempotent cl");
   178   }
   179 }
   181 DirtyCardToOopClosure* Space::new_dcto_cl(ExtendedOopClosure* cl,
   182                                           CardTableModRefBS::PrecisionStyle precision,
   183                                           HeapWord* boundary) {
   184   return new DirtyCardToOopClosure(this, cl, precision, boundary);
   185 }
   187 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
   188                                                HeapWord* top_obj) {
   189   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
   190     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
   191       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   192         // An arrayOop is starting on the dirty card - since we do exact
   193         // store checks for objArrays we are done.
   194       } else {
   195         // Otherwise, it is possible that the object starting on the dirty
   196         // card spans the entire card, and that the store happened on a
   197         // later card.  Figure out where the object ends.
   198         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
   199           "Block size and object size mismatch");
   200         top = top_obj + oop(top_obj)->size();
   201       }
   202     }
   203   } else {
   204     top = (_sp->toContiguousSpace())->top();
   205   }
   206   return top;
   207 }
   209 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
   210                                       HeapWord* bottom,
   211                                       HeapWord* top) {
   212   // Note that this assumption won't hold if we have a concurrent
   213   // collector in this space, which may have freed up objects after
   214   // they were dirtied and before the stop-the-world GC that is
   215   // examining cards here.
   216   assert(bottom < top, "ought to be at least one obj on a dirty card.");
   218   if (_boundary != NULL) {
   219     // We have a boundary outside of which we don't want to look
   220     // at objects, so create a filtering closure around the
   221     // oop closure before walking the region.
   222     FilteringClosure filter(_boundary, _cl);
   223     walk_mem_region_with_cl(mr, bottom, top, &filter);
   224   } else {
   225     // No boundary, simply walk the heap with the oop closure.
   226     walk_mem_region_with_cl(mr, bottom, top, _cl);
   227   }
   229 }
   231 // We must replicate this so that the static type of "FilteringClosure"
   232 // (see above) is apparent at the oop_iterate calls.
   233 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
   234 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
   235                                                    HeapWord* bottom,    \
   236                                                    HeapWord* top,       \
   237                                                    ClosureType* cl) {   \
   238   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
   239   if (bottom < top) {                                                   \
   240     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
   241     while (next_obj < top) {                                            \
   242       /* Bottom lies entirely below top, so we can call the */          \
   243       /* non-memRegion version of oop_iterate below. */                 \
   244       oop(bottom)->oop_iterate(cl);                                     \
   245       bottom = next_obj;                                                \
   246       next_obj = bottom + oop(bottom)->size();                          \
   247     }                                                                   \
   248     /* Last object. */                                                  \
   249     oop(bottom)->oop_iterate(cl, mr);                                   \
   250   }                                                                     \
   251 }
   253 // (There are only two of these, rather than N, because the split is due
   254 // only to the introduction of the FilteringClosure, a local part of the
   255 // impl of this abstraction.)
   256 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ExtendedOopClosure)
   257 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
   259 DirtyCardToOopClosure*
   260 ContiguousSpace::new_dcto_cl(ExtendedOopClosure* cl,
   261                              CardTableModRefBS::PrecisionStyle precision,
   262                              HeapWord* boundary) {
   263   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
   264 }
   266 void Space::initialize(MemRegion mr,
   267                        bool clear_space,
   268                        bool mangle_space) {
   269   HeapWord* bottom = mr.start();
   270   HeapWord* end    = mr.end();
   271   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
   272          "invalid space boundaries");
   273   set_bottom(bottom);
   274   set_end(end);
   275   if (clear_space) clear(mangle_space);
   276 }
   278 void Space::clear(bool mangle_space) {
   279   if (ZapUnusedHeapArea && mangle_space) {
   280     mangle_unused_area();
   281   }
   282 }
   284 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
   285     _concurrent_iteration_safe_limit(NULL) {
   286   _mangler = new GenSpaceMangler(this);
   287 }
   289 ContiguousSpace::~ContiguousSpace() {
   290   delete _mangler;
   291 }
   293 void ContiguousSpace::initialize(MemRegion mr,
   294                                  bool clear_space,
   295                                  bool mangle_space)
   296 {
   297   CompactibleSpace::initialize(mr, clear_space, mangle_space);
   298   set_concurrent_iteration_safe_limit(top());
   299 }
   301 void ContiguousSpace::clear(bool mangle_space) {
   302   set_top(bottom());
   303   set_saved_mark();
   304   CompactibleSpace::clear(mangle_space);
   305 }
   307 bool ContiguousSpace::is_in(const void* p) const {
   308   return _bottom <= p && p < _top;
   309 }
   311 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
   312   return p >= _top;
   313 }
   315 void OffsetTableContigSpace::clear(bool mangle_space) {
   316   ContiguousSpace::clear(mangle_space);
   317   _offsets.initialize_threshold();
   318 }
   320 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   321   Space::set_bottom(new_bottom);
   322   _offsets.set_bottom(new_bottom);
   323 }
   325 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
   326   // Space should not advertize an increase in size
   327   // until after the underlying offest table has been enlarged.
   328   _offsets.resize(pointer_delta(new_end, bottom()));
   329   Space::set_end(new_end);
   330 }
   332 #ifndef PRODUCT
   334 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
   335   mangler()->set_top_for_allocations(v);
   336 }
   337 void ContiguousSpace::set_top_for_allocations() {
   338   mangler()->set_top_for_allocations(top());
   339 }
   340 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
   341   mangler()->check_mangled_unused_area(limit);
   342 }
   344 void ContiguousSpace::check_mangled_unused_area_complete() {
   345   mangler()->check_mangled_unused_area_complete();
   346 }
   348 // Mangled only the unused space that has not previously
   349 // been mangled and that has not been allocated since being
   350 // mangled.
   351 void ContiguousSpace::mangle_unused_area() {
   352   mangler()->mangle_unused_area();
   353 }
   354 void ContiguousSpace::mangle_unused_area_complete() {
   355   mangler()->mangle_unused_area_complete();
   356 }
   357 void ContiguousSpace::mangle_region(MemRegion mr) {
   358   // Although this method uses SpaceMangler::mangle_region() which
   359   // is not specific to a space, the when the ContiguousSpace version
   360   // is called, it is always with regard to a space and this
   361   // bounds checking is appropriate.
   362   MemRegion space_mr(bottom(), end());
   363   assert(space_mr.contains(mr), "Mangling outside space");
   364   SpaceMangler::mangle_region(mr);
   365 }
   366 #endif  // NOT_PRODUCT
   368 void CompactibleSpace::initialize(MemRegion mr,
   369                                   bool clear_space,
   370                                   bool mangle_space) {
   371   Space::initialize(mr, clear_space, mangle_space);
   372   set_compaction_top(bottom());
   373   _next_compaction_space = NULL;
   374 }
   376 void CompactibleSpace::clear(bool mangle_space) {
   377   Space::clear(mangle_space);
   378   _compaction_top = bottom();
   379 }
   381 HeapWord* CompactibleSpace::forward(oop q, size_t size,
   382                                     CompactPoint* cp, HeapWord* compact_top) {
   383   // q is alive
   384   // First check if we should switch compaction space
   385   assert(this == cp->space, "'this' should be current compaction space.");
   386   size_t compaction_max_size = pointer_delta(end(), compact_top);
   387   while (size > compaction_max_size) {
   388     // switch to next compaction space
   389     cp->space->set_compaction_top(compact_top);
   390     cp->space = cp->space->next_compaction_space();
   391     if (cp->space == NULL) {
   392       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
   393       assert(cp->gen != NULL, "compaction must succeed");
   394       cp->space = cp->gen->first_compaction_space();
   395       assert(cp->space != NULL, "generation must have a first compaction space");
   396     }
   397     compact_top = cp->space->bottom();
   398     cp->space->set_compaction_top(compact_top);
   399     cp->threshold = cp->space->initialize_threshold();
   400     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
   401   }
   403   // store the forwarding pointer into the mark word
   404   if ((HeapWord*)q != compact_top) {
   405     q->forward_to(oop(compact_top));
   406     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
   407   } else {
   408     // if the object isn't moving we can just set the mark to the default
   409     // mark and handle it specially later on.
   410     q->init_mark();
   411     assert(q->forwardee() == NULL, "should be forwarded to NULL");
   412   }
   414   compact_top += size;
   416   // we need to update the offset table so that the beginnings of objects can be
   417   // found during scavenge.  Note that we are updating the offset table based on
   418   // where the object will be once the compaction phase finishes.
   419   if (compact_top > cp->threshold)
   420     cp->threshold =
   421       cp->space->cross_threshold(compact_top - size, compact_top);
   422   return compact_top;
   423 }
   426 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
   427                                         HeapWord* q, size_t deadlength) {
   428   if (allowed_deadspace_words >= deadlength) {
   429     allowed_deadspace_words -= deadlength;
   430     CollectedHeap::fill_with_object(q, deadlength);
   431     oop(q)->set_mark(oop(q)->mark()->set_marked());
   432     assert((int) deadlength == oop(q)->size(), "bad filler object size");
   433     // Recall that we required "q == compaction_top".
   434     return true;
   435   } else {
   436     allowed_deadspace_words = 0;
   437     return false;
   438   }
   439 }
   441 #define block_is_always_obj(q) true
   442 #define obj_size(q) oop(q)->size()
   443 #define adjust_obj_size(s) s
   445 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
   446   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
   447 }
   449 // Faster object search.
   450 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
   451   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
   452 }
   454 void Space::adjust_pointers() {
   455   // adjust all the interior pointers to point at the new locations of objects
   456   // Used by MarkSweep::mark_sweep_phase3()
   458   // First check to see if there is any work to be done.
   459   if (used() == 0) {
   460     return;  // Nothing to do.
   461   }
   463   // Otherwise...
   464   HeapWord* q = bottom();
   465   HeapWord* t = end();
   467   debug_only(HeapWord* prev_q = NULL);
   468   while (q < t) {
   469     if (oop(q)->is_gc_marked()) {
   470       // q is alive
   472       // point all the oops to the new location
   473       size_t size = oop(q)->adjust_pointers();
   475       debug_only(prev_q = q);
   477       q += size;
   478     } else {
   479       // q is not a live object.  But we're not in a compactible space,
   480       // So we don't have live ranges.
   481       debug_only(prev_q = q);
   482       q += block_size(q);
   483       assert(q > prev_q, "we should be moving forward through memory");
   484     }
   485   }
   486   assert(q == t, "just checking");
   487 }
   489 void CompactibleSpace::adjust_pointers() {
   490   // Check first is there is any work to do.
   491   if (used() == 0) {
   492     return;   // Nothing to do.
   493   }
   495   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
   496 }
   498 void CompactibleSpace::compact() {
   499   SCAN_AND_COMPACT(obj_size);
   500 }
   502 void Space::print_short() const { print_short_on(tty); }
   504 void Space::print_short_on(outputStream* st) const {
   505   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
   506               (int) ((double) used() * 100 / capacity()));
   507 }
   509 void Space::print() const { print_on(tty); }
   511 void Space::print_on(outputStream* st) const {
   512   print_short_on(st);
   513   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   514                 bottom(), end());
   515 }
   517 void ContiguousSpace::print_on(outputStream* st) const {
   518   print_short_on(st);
   519   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   520                 bottom(), top(), end());
   521 }
   523 void OffsetTableContigSpace::print_on(outputStream* st) const {
   524   print_short_on(st);
   525   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   526                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   527               bottom(), top(), _offsets.threshold(), end());
   528 }
   530 void ContiguousSpace::verify() const {
   531   HeapWord* p = bottom();
   532   HeapWord* t = top();
   533   HeapWord* prev_p = NULL;
   534   while (p < t) {
   535     oop(p)->verify();
   536     prev_p = p;
   537     p += oop(p)->size();
   538   }
   539   guarantee(p == top(), "end of last object must match end of space");
   540   if (top() != end()) {
   541     guarantee(top() == block_start_const(end()-1) &&
   542               top() == block_start_const(top()),
   543               "top should be start of unallocated block, if it exists");
   544   }
   545 }
   547 void Space::oop_iterate(ExtendedOopClosure* blk) {
   548   ObjectToOopClosure blk2(blk);
   549   object_iterate(&blk2);
   550 }
   552 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
   553   guarantee(false, "NYI");
   554   return bottom();
   555 }
   557 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
   558                                           ObjectClosureCareful* cl) {
   559   guarantee(false, "NYI");
   560   return bottom();
   561 }
   564 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   565   assert(!mr.is_empty(), "Should be non-empty");
   566   // We use MemRegion(bottom(), end()) rather than used_region() below
   567   // because the two are not necessarily equal for some kinds of
   568   // spaces, in particular, certain kinds of free list spaces.
   569   // We could use the more complicated but more precise:
   570   // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
   571   // but the slight imprecision seems acceptable in the assertion check.
   572   assert(MemRegion(bottom(), end()).contains(mr),
   573          "Should be within used space");
   574   HeapWord* prev = cl->previous();   // max address from last time
   575   if (prev >= mr.end()) { // nothing to do
   576     return;
   577   }
   578   // This assert will not work when we go from cms space to perm
   579   // space, and use same closure. Easy fix deferred for later. XXX YSR
   580   // assert(prev == NULL || contains(prev), "Should be within space");
   582   bool last_was_obj_array = false;
   583   HeapWord *blk_start_addr, *region_start_addr;
   584   if (prev > mr.start()) {
   585     region_start_addr = prev;
   586     blk_start_addr    = prev;
   587     // The previous invocation may have pushed "prev" beyond the
   588     // last allocated block yet there may be still be blocks
   589     // in this region due to a particular coalescing policy.
   590     // Relax the assertion so that the case where the unallocated
   591     // block is maintained and "prev" is beyond the unallocated
   592     // block does not cause the assertion to fire.
   593     assert((BlockOffsetArrayUseUnallocatedBlock &&
   594             (!is_in(prev))) ||
   595            (blk_start_addr == block_start(region_start_addr)), "invariant");
   596   } else {
   597     region_start_addr = mr.start();
   598     blk_start_addr    = block_start(region_start_addr);
   599   }
   600   HeapWord* region_end_addr = mr.end();
   601   MemRegion derived_mr(region_start_addr, region_end_addr);
   602   while (blk_start_addr < region_end_addr) {
   603     const size_t size = block_size(blk_start_addr);
   604     if (block_is_obj(blk_start_addr)) {
   605       last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
   606     } else {
   607       last_was_obj_array = false;
   608     }
   609     blk_start_addr += size;
   610   }
   611   if (!last_was_obj_array) {
   612     assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
   613            "Should be within (closed) used space");
   614     assert(blk_start_addr > prev, "Invariant");
   615     cl->set_previous(blk_start_addr); // min address for next time
   616   }
   617 }
   619 bool Space::obj_is_alive(const HeapWord* p) const {
   620   assert (block_is_obj(p), "The address should point to an object");
   621   return true;
   622 }
   624 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   625   assert(!mr.is_empty(), "Should be non-empty");
   626   assert(used_region().contains(mr), "Should be within used space");
   627   HeapWord* prev = cl->previous();   // max address from last time
   628   if (prev >= mr.end()) { // nothing to do
   629     return;
   630   }
   631   // See comment above (in more general method above) in case you
   632   // happen to use this method.
   633   assert(prev == NULL || is_in_reserved(prev), "Should be within space");
   635   bool last_was_obj_array = false;
   636   HeapWord *obj_start_addr, *region_start_addr;
   637   if (prev > mr.start()) {
   638     region_start_addr = prev;
   639     obj_start_addr    = prev;
   640     assert(obj_start_addr == block_start(region_start_addr), "invariant");
   641   } else {
   642     region_start_addr = mr.start();
   643     obj_start_addr    = block_start(region_start_addr);
   644   }
   645   HeapWord* region_end_addr = mr.end();
   646   MemRegion derived_mr(region_start_addr, region_end_addr);
   647   while (obj_start_addr < region_end_addr) {
   648     oop obj = oop(obj_start_addr);
   649     const size_t size = obj->size();
   650     last_was_obj_array = cl->do_object_bm(obj, derived_mr);
   651     obj_start_addr += size;
   652   }
   653   if (!last_was_obj_array) {
   654     assert((bottom() <= obj_start_addr)  && (obj_start_addr <= end()),
   655            "Should be within (closed) used space");
   656     assert(obj_start_addr > prev, "Invariant");
   657     cl->set_previous(obj_start_addr); // min address for next time
   658   }
   659 }
   661 #ifndef SERIALGC
   662 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
   663                                                                             \
   664   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
   665     HeapWord* obj_addr = mr.start();                                        \
   666     HeapWord* t = mr.end();                                                 \
   667     while (obj_addr < t) {                                                  \
   668       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
   669       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
   670     }                                                                       \
   671   }
   673   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
   675 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
   676 #endif // SERIALGC
   678 void ContiguousSpace::oop_iterate(ExtendedOopClosure* blk) {
   679   if (is_empty()) return;
   680   HeapWord* obj_addr = bottom();
   681   HeapWord* t = top();
   682   // Could call objects iterate, but this is easier.
   683   while (obj_addr < t) {
   684     obj_addr += oop(obj_addr)->oop_iterate(blk);
   685   }
   686 }
   688 void ContiguousSpace::oop_iterate(MemRegion mr, ExtendedOopClosure* blk) {
   689   if (is_empty()) {
   690     return;
   691   }
   692   MemRegion cur = MemRegion(bottom(), top());
   693   mr = mr.intersection(cur);
   694   if (mr.is_empty()) {
   695     return;
   696   }
   697   if (mr.equals(cur)) {
   698     oop_iterate(blk);
   699     return;
   700   }
   701   assert(mr.end() <= top(), "just took an intersection above");
   702   HeapWord* obj_addr = block_start(mr.start());
   703   HeapWord* t = mr.end();
   705   // Handle first object specially.
   706   oop obj = oop(obj_addr);
   707   SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
   708   obj_addr += obj->oop_iterate(&smr_blk);
   709   while (obj_addr < t) {
   710     oop obj = oop(obj_addr);
   711     assert(obj->is_oop(), "expected an oop");
   712     obj_addr += obj->size();
   713     // If "obj_addr" is not greater than top, then the
   714     // entire object "obj" is within the region.
   715     if (obj_addr <= t) {
   716       obj->oop_iterate(blk);
   717     } else {
   718       // "obj" extends beyond end of region
   719       obj->oop_iterate(&smr_blk);
   720       break;
   721     }
   722   };
   723 }
   725 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
   726   if (is_empty()) return;
   727   WaterMark bm = bottom_mark();
   728   object_iterate_from(bm, blk);
   729 }
   731 // For a continguous space object_iterate() and safe_object_iterate()
   732 // are the same.
   733 void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
   734   object_iterate(blk);
   735 }
   737 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
   738   assert(mark.space() == this, "Mark does not match space");
   739   HeapWord* p = mark.point();
   740   while (p < top()) {
   741     blk->do_object(oop(p));
   742     p += oop(p)->size();
   743   }
   744 }
   746 HeapWord*
   747 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
   748   HeapWord * limit = concurrent_iteration_safe_limit();
   749   assert(limit <= top(), "sanity check");
   750   for (HeapWord* p = bottom(); p < limit;) {
   751     size_t size = blk->do_object_careful(oop(p));
   752     if (size == 0) {
   753       return p;  // failed at p
   754     } else {
   755       p += size;
   756     }
   757   }
   758   return NULL; // all done
   759 }
   761 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
   762                                                                           \
   763 void ContiguousSpace::                                                    \
   764 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
   765   HeapWord* t;                                                            \
   766   HeapWord* p = saved_mark_word();                                        \
   767   assert(p != NULL, "expected saved mark");                               \
   768                                                                           \
   769   const intx interval = PrefetchScanIntervalInBytes;                      \
   770   do {                                                                    \
   771     t = top();                                                            \
   772     while (p < t) {                                                       \
   773       Prefetch::write(p, interval);                                       \
   774       debug_only(HeapWord* prev = p);                                     \
   775       oop m = oop(p);                                                     \
   776       p += m->oop_iterate(blk);                                           \
   777     }                                                                     \
   778   } while (t < top());                                                    \
   779                                                                           \
   780   set_saved_mark_word(p);                                                 \
   781 }
   783 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
   785 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
   787 // Very general, slow implementation.
   788 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
   789   assert(MemRegion(bottom(), end()).contains(p),
   790          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
   791                   p, bottom(), end()));
   792   if (p >= top()) {
   793     return top();
   794   } else {
   795     HeapWord* last = bottom();
   796     HeapWord* cur = last;
   797     while (cur <= p) {
   798       last = cur;
   799       cur += oop(cur)->size();
   800     }
   801     assert(oop(last)->is_oop(),
   802            err_msg(PTR_FORMAT " should be an object start", last));
   803     return last;
   804   }
   805 }
   807 size_t ContiguousSpace::block_size(const HeapWord* p) const {
   808   assert(MemRegion(bottom(), end()).contains(p),
   809          err_msg("p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
   810                   p, bottom(), end()));
   811   HeapWord* current_top = top();
   812   assert(p <= current_top,
   813          err_msg("p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
   814                   p, current_top));
   815   assert(p == current_top || oop(p)->is_oop(),
   816          err_msg("p (" PTR_FORMAT ") is not a block start - "
   817                  "current_top: " PTR_FORMAT ", is_oop: %s",
   818                  p, current_top, BOOL_TO_STR(oop(p)->is_oop())));
   819   if (p < current_top) {
   820     return oop(p)->size();
   821   } else {
   822     assert(p == current_top, "just checking");
   823     return pointer_delta(end(), (HeapWord*) p);
   824   }
   825 }
   827 // This version requires locking.
   828 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
   829                                                 HeapWord* const end_value) {
   830   // In G1 there are places where a GC worker can allocates into a
   831   // region using this serial allocation code without being prone to a
   832   // race with other GC workers (we ensure that no other GC worker can
   833   // access the same region at the same time). So the assert below is
   834   // too strong in the case of G1.
   835   assert(Heap_lock->owned_by_self() ||
   836          (SafepointSynchronize::is_at_safepoint() &&
   837                                (Thread::current()->is_VM_thread() || UseG1GC)),
   838          "not locked");
   839   HeapWord* obj = top();
   840   if (pointer_delta(end_value, obj) >= size) {
   841     HeapWord* new_top = obj + size;
   842     set_top(new_top);
   843     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   844     return obj;
   845   } else {
   846     return NULL;
   847   }
   848 }
   850 // This version is lock-free.
   851 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
   852                                                     HeapWord* const end_value) {
   853   do {
   854     HeapWord* obj = top();
   855     if (pointer_delta(end_value, obj) >= size) {
   856       HeapWord* new_top = obj + size;
   857       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   858       // result can be one of two:
   859       //  the old top value: the exchange succeeded
   860       //  otherwise: the new value of the top is returned.
   861       if (result == obj) {
   862         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   863         return obj;
   864       }
   865     } else {
   866       return NULL;
   867     }
   868   } while (true);
   869 }
   871 // Requires locking.
   872 HeapWord* ContiguousSpace::allocate(size_t size) {
   873   return allocate_impl(size, end());
   874 }
   876 // Lock-free.
   877 HeapWord* ContiguousSpace::par_allocate(size_t size) {
   878   return par_allocate_impl(size, end());
   879 }
   881 void ContiguousSpace::allocate_temporary_filler(int factor) {
   882   // allocate temporary type array decreasing free size with factor 'factor'
   883   assert(factor >= 0, "just checking");
   884   size_t size = pointer_delta(end(), top());
   886   // if space is full, return
   887   if (size == 0) return;
   889   if (factor > 0) {
   890     size -= size/factor;
   891   }
   892   size = align_object_size(size);
   894   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
   895   if (size >= (size_t)align_object_size(array_header_size)) {
   896     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
   897     // allocate uninitialized int array
   898     typeArrayOop t = (typeArrayOop) allocate(size);
   899     assert(t != NULL, "allocation should succeed");
   900     t->set_mark(markOopDesc::prototype());
   901     t->set_klass(Universe::intArrayKlassObj());
   902     t->set_length((int)length);
   903   } else {
   904     assert(size == CollectedHeap::min_fill_size(),
   905            "size for smallest fake object doesn't match");
   906     instanceOop obj = (instanceOop) allocate(size);
   907     obj->set_mark(markOopDesc::prototype());
   908     obj->set_klass_gap(0);
   909     obj->set_klass(SystemDictionary::Object_klass());
   910   }
   911 }
   913 void EdenSpace::clear(bool mangle_space) {
   914   ContiguousSpace::clear(mangle_space);
   915   set_soft_end(end());
   916 }
   918 // Requires locking.
   919 HeapWord* EdenSpace::allocate(size_t size) {
   920   return allocate_impl(size, soft_end());
   921 }
   923 // Lock-free.
   924 HeapWord* EdenSpace::par_allocate(size_t size) {
   925   return par_allocate_impl(size, soft_end());
   926 }
   928 HeapWord* ConcEdenSpace::par_allocate(size_t size)
   929 {
   930   do {
   931     // The invariant is top() should be read before end() because
   932     // top() can't be greater than end(), so if an update of _soft_end
   933     // occurs between 'end_val = end();' and 'top_val = top();' top()
   934     // also can grow up to the new end() and the condition
   935     // 'top_val > end_val' is true. To ensure the loading order
   936     // OrderAccess::loadload() is required after top() read.
   937     HeapWord* obj = top();
   938     OrderAccess::loadload();
   939     if (pointer_delta(*soft_end_addr(), obj) >= size) {
   940       HeapWord* new_top = obj + size;
   941       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   942       // result can be one of two:
   943       //  the old top value: the exchange succeeded
   944       //  otherwise: the new value of the top is returned.
   945       if (result == obj) {
   946         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   947         return obj;
   948       }
   949     } else {
   950       return NULL;
   951     }
   952   } while (true);
   953 }
   956 HeapWord* OffsetTableContigSpace::initialize_threshold() {
   957   return _offsets.initialize_threshold();
   958 }
   960 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
   961   _offsets.alloc_block(start, end);
   962   return _offsets.threshold();
   963 }
   965 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
   966                                                MemRegion mr) :
   967   _offsets(sharedOffsetArray, mr),
   968   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
   969 {
   970   _offsets.set_contig_space(this);
   971   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   972 }
   974 #define OBJ_SAMPLE_INTERVAL 0
   975 #define BLOCK_SAMPLE_INTERVAL 100
   977 void OffsetTableContigSpace::verify() const {
   978   HeapWord* p = bottom();
   979   HeapWord* prev_p = NULL;
   980   int objs = 0;
   981   int blocks = 0;
   983   if (VerifyObjectStartArray) {
   984     _offsets.verify();
   985   }
   987   while (p < top()) {
   988     size_t size = oop(p)->size();
   989     // For a sampling of objects in the space, find it using the
   990     // block offset table.
   991     if (blocks == BLOCK_SAMPLE_INTERVAL) {
   992       guarantee(p == block_start_const(p + (size/2)),
   993                 "check offset computation");
   994       blocks = 0;
   995     } else {
   996       blocks++;
   997     }
   999     if (objs == OBJ_SAMPLE_INTERVAL) {
  1000       oop(p)->verify();
  1001       objs = 0;
  1002     } else {
  1003       objs++;
  1005     prev_p = p;
  1006     p += size;
  1008   guarantee(p == top(), "end of last object must match end of space");
  1012 size_t TenuredSpace::allowed_dead_ratio() const {
  1013   return MarkSweepDeadRatio;

mercurial