src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Wed, 23 Sep 2009 23:56:15 -0700

author
jrose
date
Wed, 23 Sep 2009 23:56:15 -0700
changeset 1428
54b3b351d6f9
parent 1424
148e5441d916
parent 1377
2c79770d1f6e
child 1454
035d2e036a9b
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectedHeap.cpp.incl"
    28 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    30 // turn it on so that the contents of the young list (scan-only /
    31 // to-be-collected) are printed at "strategic" points before / during
    32 // / after the collection --- this is useful for debugging
    33 #define SCAN_ONLY_VERBOSE 0
    34 // CURRENT STATUS
    35 // This file is under construction.  Search for "FIXME".
    37 // INVARIANTS/NOTES
    38 //
    39 // All allocation activity covered by the G1CollectedHeap interface is
    40 //   serialized by acquiring the HeapLock.  This happens in
    41 //   mem_allocate_work, which all such allocation functions call.
    42 //   (Note that this does not apply to TLAB allocation, which is not part
    43 //   of this interface: it is done by clients of this interface.)
    45 // Local to this file.
    47 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    48   SuspendibleThreadSet* _sts;
    49   G1RemSet* _g1rs;
    50   ConcurrentG1Refine* _cg1r;
    51   bool _concurrent;
    52 public:
    53   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    54                               G1RemSet* g1rs,
    55                               ConcurrentG1Refine* cg1r) :
    56     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    57   {}
    58   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    59     _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
    60     if (_concurrent && _sts->should_yield()) {
    61       // Caller will actually yield.
    62       return false;
    63     }
    64     // Otherwise, we finished successfully; return true.
    65     return true;
    66   }
    67   void set_concurrent(bool b) { _concurrent = b; }
    68 };
    71 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    72   int _calls;
    73   G1CollectedHeap* _g1h;
    74   CardTableModRefBS* _ctbs;
    75   int _histo[256];
    76 public:
    77   ClearLoggedCardTableEntryClosure() :
    78     _calls(0)
    79   {
    80     _g1h = G1CollectedHeap::heap();
    81     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    82     for (int i = 0; i < 256; i++) _histo[i] = 0;
    83   }
    84   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    85     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
    86       _calls++;
    87       unsigned char* ujb = (unsigned char*)card_ptr;
    88       int ind = (int)(*ujb);
    89       _histo[ind]++;
    90       *card_ptr = -1;
    91     }
    92     return true;
    93   }
    94   int calls() { return _calls; }
    95   void print_histo() {
    96     gclog_or_tty->print_cr("Card table value histogram:");
    97     for (int i = 0; i < 256; i++) {
    98       if (_histo[i] != 0) {
    99         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   100       }
   101     }
   102   }
   103 };
   105 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   106   int _calls;
   107   G1CollectedHeap* _g1h;
   108   CardTableModRefBS* _ctbs;
   109 public:
   110   RedirtyLoggedCardTableEntryClosure() :
   111     _calls(0)
   112   {
   113     _g1h = G1CollectedHeap::heap();
   114     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   115   }
   116   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   117     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   118       _calls++;
   119       *card_ptr = 0;
   120     }
   121     return true;
   122   }
   123   int calls() { return _calls; }
   124 };
   126 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   127 public:
   128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   129     *card_ptr = CardTableModRefBS::dirty_card_val();
   130     return true;
   131   }
   132 };
   134 YoungList::YoungList(G1CollectedHeap* g1h)
   135   : _g1h(g1h), _head(NULL),
   136     _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
   137     _length(0), _scan_only_length(0),
   138     _last_sampled_rs_lengths(0),
   139     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   140 {
   141   guarantee( check_list_empty(false), "just making sure..." );
   142 }
   144 void YoungList::push_region(HeapRegion *hr) {
   145   assert(!hr->is_young(), "should not already be young");
   146   assert(hr->get_next_young_region() == NULL, "cause it should!");
   148   hr->set_next_young_region(_head);
   149   _head = hr;
   151   hr->set_young();
   152   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   153   ++_length;
   154 }
   156 void YoungList::add_survivor_region(HeapRegion* hr) {
   157   assert(hr->is_survivor(), "should be flagged as survivor region");
   158   assert(hr->get_next_young_region() == NULL, "cause it should!");
   160   hr->set_next_young_region(_survivor_head);
   161   if (_survivor_head == NULL) {
   162     _survivor_tail = hr;
   163   }
   164   _survivor_head = hr;
   166   ++_survivor_length;
   167 }
   169 HeapRegion* YoungList::pop_region() {
   170   while (_head != NULL) {
   171     assert( length() > 0, "list should not be empty" );
   172     HeapRegion* ret = _head;
   173     _head = ret->get_next_young_region();
   174     ret->set_next_young_region(NULL);
   175     --_length;
   176     assert(ret->is_young(), "region should be very young");
   178     // Replace 'Survivor' region type with 'Young'. So the region will
   179     // be treated as a young region and will not be 'confused' with
   180     // newly created survivor regions.
   181     if (ret->is_survivor()) {
   182       ret->set_young();
   183     }
   185     if (!ret->is_scan_only()) {
   186       return ret;
   187     }
   189     // scan-only, we'll add it to the scan-only list
   190     if (_scan_only_tail == NULL) {
   191       guarantee( _scan_only_head == NULL, "invariant" );
   193       _scan_only_head = ret;
   194       _curr_scan_only = ret;
   195     } else {
   196       guarantee( _scan_only_head != NULL, "invariant" );
   197       _scan_only_tail->set_next_young_region(ret);
   198     }
   199     guarantee( ret->get_next_young_region() == NULL, "invariant" );
   200     _scan_only_tail = ret;
   202     // no need to be tagged as scan-only any more
   203     ret->set_young();
   205     ++_scan_only_length;
   206   }
   207   assert( length() == 0, "list should be empty" );
   208   return NULL;
   209 }
   211 void YoungList::empty_list(HeapRegion* list) {
   212   while (list != NULL) {
   213     HeapRegion* next = list->get_next_young_region();
   214     list->set_next_young_region(NULL);
   215     list->uninstall_surv_rate_group();
   216     list->set_not_young();
   217     list = next;
   218   }
   219 }
   221 void YoungList::empty_list() {
   222   assert(check_list_well_formed(), "young list should be well formed");
   224   empty_list(_head);
   225   _head = NULL;
   226   _length = 0;
   228   empty_list(_scan_only_head);
   229   _scan_only_head = NULL;
   230   _scan_only_tail = NULL;
   231   _scan_only_length = 0;
   232   _curr_scan_only = NULL;
   234   empty_list(_survivor_head);
   235   _survivor_head = NULL;
   236   _survivor_tail = NULL;
   237   _survivor_length = 0;
   239   _last_sampled_rs_lengths = 0;
   241   assert(check_list_empty(false), "just making sure...");
   242 }
   244 bool YoungList::check_list_well_formed() {
   245   bool ret = true;
   247   size_t length = 0;
   248   HeapRegion* curr = _head;
   249   HeapRegion* last = NULL;
   250   while (curr != NULL) {
   251     if (!curr->is_young() || curr->is_scan_only()) {
   252       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   253                              "incorrectly tagged (%d, %d)",
   254                              curr->bottom(), curr->end(),
   255                              curr->is_young(), curr->is_scan_only());
   256       ret = false;
   257     }
   258     ++length;
   259     last = curr;
   260     curr = curr->get_next_young_region();
   261   }
   262   ret = ret && (length == _length);
   264   if (!ret) {
   265     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   266     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   267                            length, _length);
   268   }
   270   bool scan_only_ret = true;
   271   length = 0;
   272   curr = _scan_only_head;
   273   last = NULL;
   274   while (curr != NULL) {
   275     if (!curr->is_young() || curr->is_scan_only()) {
   276       gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
   277                              "incorrectly tagged (%d, %d)",
   278                              curr->bottom(), curr->end(),
   279                              curr->is_young(), curr->is_scan_only());
   280       scan_only_ret = false;
   281     }
   282     ++length;
   283     last = curr;
   284     curr = curr->get_next_young_region();
   285   }
   286   scan_only_ret = scan_only_ret && (length == _scan_only_length);
   288   if ( (last != _scan_only_tail) ||
   289        (_scan_only_head == NULL && _scan_only_tail != NULL) ||
   290        (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
   291      gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
   292      scan_only_ret = false;
   293   }
   295   if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
   296     gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
   297     scan_only_ret = false;
   298    }
   300   if (!scan_only_ret) {
   301     gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
   302     gclog_or_tty->print_cr("###   list has %d entries, _scan_only_length is %d",
   303                   length, _scan_only_length);
   304   }
   306   return ret && scan_only_ret;
   307 }
   309 bool YoungList::check_list_empty(bool ignore_scan_only_list,
   310                                  bool check_sample) {
   311   bool ret = true;
   313   if (_length != 0) {
   314     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   315                   _length);
   316     ret = false;
   317   }
   318   if (check_sample && _last_sampled_rs_lengths != 0) {
   319     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   320     ret = false;
   321   }
   322   if (_head != NULL) {
   323     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   324     ret = false;
   325   }
   326   if (!ret) {
   327     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   328   }
   330   if (ignore_scan_only_list)
   331     return ret;
   333   bool scan_only_ret = true;
   334   if (_scan_only_length != 0) {
   335     gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
   336                   _scan_only_length);
   337     scan_only_ret = false;
   338   }
   339   if (_scan_only_head != NULL) {
   340     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
   341      scan_only_ret = false;
   342   }
   343   if (_scan_only_tail != NULL) {
   344     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
   345     scan_only_ret = false;
   346   }
   347   if (!scan_only_ret) {
   348     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
   349   }
   351   return ret && scan_only_ret;
   352 }
   354 void
   355 YoungList::rs_length_sampling_init() {
   356   _sampled_rs_lengths = 0;
   357   _curr               = _head;
   358 }
   360 bool
   361 YoungList::rs_length_sampling_more() {
   362   return _curr != NULL;
   363 }
   365 void
   366 YoungList::rs_length_sampling_next() {
   367   assert( _curr != NULL, "invariant" );
   368   _sampled_rs_lengths += _curr->rem_set()->occupied();
   369   _curr = _curr->get_next_young_region();
   370   if (_curr == NULL) {
   371     _last_sampled_rs_lengths = _sampled_rs_lengths;
   372     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   373   }
   374 }
   376 void
   377 YoungList::reset_auxilary_lists() {
   378   // We could have just "moved" the scan-only list to the young list.
   379   // However, the scan-only list is ordered according to the region
   380   // age in descending order, so, by moving one entry at a time, we
   381   // ensure that it is recreated in ascending order.
   383   guarantee( is_empty(), "young list should be empty" );
   384   assert(check_list_well_formed(), "young list should be well formed");
   386   // Add survivor regions to SurvRateGroup.
   387   _g1h->g1_policy()->note_start_adding_survivor_regions();
   388   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   389   for (HeapRegion* curr = _survivor_head;
   390        curr != NULL;
   391        curr = curr->get_next_young_region()) {
   392     _g1h->g1_policy()->set_region_survivors(curr);
   393   }
   394   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   396   if (_survivor_head != NULL) {
   397     _head           = _survivor_head;
   398     _length         = _survivor_length + _scan_only_length;
   399     _survivor_tail->set_next_young_region(_scan_only_head);
   400   } else {
   401     _head           = _scan_only_head;
   402     _length         = _scan_only_length;
   403   }
   405   for (HeapRegion* curr = _scan_only_head;
   406        curr != NULL;
   407        curr = curr->get_next_young_region()) {
   408     curr->recalculate_age_in_surv_rate_group();
   409   }
   410   _scan_only_head   = NULL;
   411   _scan_only_tail   = NULL;
   412   _scan_only_length = 0;
   413   _curr_scan_only   = NULL;
   415   _survivor_head    = NULL;
   416   _survivor_tail   = NULL;
   417   _survivor_length  = 0;
   418   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   420   assert(check_list_well_formed(), "young list should be well formed");
   421 }
   423 void YoungList::print() {
   424   HeapRegion* lists[] = {_head,   _scan_only_head, _survivor_head};
   425   const char* names[] = {"YOUNG", "SCAN-ONLY",     "SURVIVOR"};
   427   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   428     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   429     HeapRegion *curr = lists[list];
   430     if (curr == NULL)
   431       gclog_or_tty->print_cr("  empty");
   432     while (curr != NULL) {
   433       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   434                              "age: %4d, y: %d, s-o: %d, surv: %d",
   435                              curr->bottom(), curr->end(),
   436                              curr->top(),
   437                              curr->prev_top_at_mark_start(),
   438                              curr->next_top_at_mark_start(),
   439                              curr->top_at_conc_mark_count(),
   440                              curr->age_in_surv_rate_group_cond(),
   441                              curr->is_young(),
   442                              curr->is_scan_only(),
   443                              curr->is_survivor());
   444       curr = curr->get_next_young_region();
   445     }
   446   }
   448   gclog_or_tty->print_cr("");
   449 }
   451 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   452 {
   453   // Claim the right to put the region on the dirty cards region list
   454   // by installing a self pointer.
   455   HeapRegion* next = hr->get_next_dirty_cards_region();
   456   if (next == NULL) {
   457     HeapRegion* res = (HeapRegion*)
   458       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   459                           NULL);
   460     if (res == NULL) {
   461       HeapRegion* head;
   462       do {
   463         // Put the region to the dirty cards region list.
   464         head = _dirty_cards_region_list;
   465         next = (HeapRegion*)
   466           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   467         if (next == head) {
   468           assert(hr->get_next_dirty_cards_region() == hr,
   469                  "hr->get_next_dirty_cards_region() != hr");
   470           if (next == NULL) {
   471             // The last region in the list points to itself.
   472             hr->set_next_dirty_cards_region(hr);
   473           } else {
   474             hr->set_next_dirty_cards_region(next);
   475           }
   476         }
   477       } while (next != head);
   478     }
   479   }
   480 }
   482 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   483 {
   484   HeapRegion* head;
   485   HeapRegion* hr;
   486   do {
   487     head = _dirty_cards_region_list;
   488     if (head == NULL) {
   489       return NULL;
   490     }
   491     HeapRegion* new_head = head->get_next_dirty_cards_region();
   492     if (head == new_head) {
   493       // The last region.
   494       new_head = NULL;
   495     }
   496     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   497                                           head);
   498   } while (hr != head);
   499   assert(hr != NULL, "invariant");
   500   hr->set_next_dirty_cards_region(NULL);
   501   return hr;
   502 }
   504 void G1CollectedHeap::stop_conc_gc_threads() {
   505   _cg1r->stop();
   506   _czft->stop();
   507   _cmThread->stop();
   508 }
   511 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   512   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   513   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   515   // Count the dirty cards at the start.
   516   CountNonCleanMemRegionClosure count1(this);
   517   ct_bs->mod_card_iterate(&count1);
   518   int orig_count = count1.n();
   520   // First clear the logged cards.
   521   ClearLoggedCardTableEntryClosure clear;
   522   dcqs.set_closure(&clear);
   523   dcqs.apply_closure_to_all_completed_buffers();
   524   dcqs.iterate_closure_all_threads(false);
   525   clear.print_histo();
   527   // Now ensure that there's no dirty cards.
   528   CountNonCleanMemRegionClosure count2(this);
   529   ct_bs->mod_card_iterate(&count2);
   530   if (count2.n() != 0) {
   531     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   532                            count2.n(), orig_count);
   533   }
   534   guarantee(count2.n() == 0, "Card table should be clean.");
   536   RedirtyLoggedCardTableEntryClosure redirty;
   537   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   538   dcqs.apply_closure_to_all_completed_buffers();
   539   dcqs.iterate_closure_all_threads(false);
   540   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   541                          clear.calls(), orig_count);
   542   guarantee(redirty.calls() == clear.calls(),
   543             "Or else mechanism is broken.");
   545   CountNonCleanMemRegionClosure count3(this);
   546   ct_bs->mod_card_iterate(&count3);
   547   if (count3.n() != orig_count) {
   548     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   549                            orig_count, count3.n());
   550     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   551   }
   553   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   554 }
   556 // Private class members.
   558 G1CollectedHeap* G1CollectedHeap::_g1h;
   560 // Private methods.
   562 // Finds a HeapRegion that can be used to allocate a given size of block.
   565 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
   566                                                  bool do_expand,
   567                                                  bool zero_filled) {
   568   ConcurrentZFThread::note_region_alloc();
   569   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
   570   if (res == NULL && do_expand) {
   571     expand(word_size * HeapWordSize);
   572     res = alloc_free_region_from_lists(zero_filled);
   573     assert(res == NULL ||
   574            (!res->isHumongous() &&
   575             (!zero_filled ||
   576              res->zero_fill_state() == HeapRegion::Allocated)),
   577            "Alloc Regions must be zero filled (and non-H)");
   578   }
   579   if (res != NULL && res->is_empty()) _free_regions--;
   580   assert(res == NULL ||
   581          (!res->isHumongous() &&
   582           (!zero_filled ||
   583            res->zero_fill_state() == HeapRegion::Allocated)),
   584          "Non-young alloc Regions must be zero filled (and non-H)");
   586   if (G1PrintRegions) {
   587     if (res != NULL) {
   588       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
   589                              "top "PTR_FORMAT,
   590                              res->hrs_index(), res->bottom(), res->end(), res->top());
   591     }
   592   }
   594   return res;
   595 }
   597 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
   598                                                          size_t word_size,
   599                                                          bool zero_filled) {
   600   HeapRegion* alloc_region = NULL;
   601   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   602     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
   603     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   604       alloc_region->set_survivor();
   605     }
   606     ++_gc_alloc_region_counts[purpose];
   607   } else {
   608     g1_policy()->note_alloc_region_limit_reached(purpose);
   609   }
   610   return alloc_region;
   611 }
   613 // If could fit into free regions w/o expansion, try.
   614 // Otherwise, if can expand, do so.
   615 // Otherwise, if using ex regions might help, try with ex given back.
   616 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
   617   assert(regions_accounted_for(), "Region leakage!");
   619   // We can't allocate H regions while cleanupComplete is running, since
   620   // some of the regions we find to be empty might not yet be added to the
   621   // unclean list.  (If we're already at a safepoint, this call is
   622   // unnecessary, not to mention wrong.)
   623   if (!SafepointSynchronize::is_at_safepoint())
   624     wait_for_cleanup_complete();
   626   size_t num_regions =
   627     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   629   // Special case if < one region???
   631   // Remember the ft size.
   632   size_t x_size = expansion_regions();
   634   HeapWord* res = NULL;
   635   bool eliminated_allocated_from_lists = false;
   637   // Can the allocation potentially fit in the free regions?
   638   if (free_regions() >= num_regions) {
   639     res = _hrs->obj_allocate(word_size);
   640   }
   641   if (res == NULL) {
   642     // Try expansion.
   643     size_t fs = _hrs->free_suffix();
   644     if (fs + x_size >= num_regions) {
   645       expand((num_regions - fs) * HeapRegion::GrainBytes);
   646       res = _hrs->obj_allocate(word_size);
   647       assert(res != NULL, "This should have worked.");
   648     } else {
   649       // Expansion won't help.  Are there enough free regions if we get rid
   650       // of reservations?
   651       size_t avail = free_regions();
   652       if (avail >= num_regions) {
   653         res = _hrs->obj_allocate(word_size);
   654         if (res != NULL) {
   655           remove_allocated_regions_from_lists();
   656           eliminated_allocated_from_lists = true;
   657         }
   658       }
   659     }
   660   }
   661   if (res != NULL) {
   662     // Increment by the number of regions allocated.
   663     // FIXME: Assumes regions all of size GrainBytes.
   664 #ifndef PRODUCT
   665     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
   666                                            HeapRegion::GrainWords));
   667 #endif
   668     if (!eliminated_allocated_from_lists)
   669       remove_allocated_regions_from_lists();
   670     _summary_bytes_used += word_size * HeapWordSize;
   671     _free_regions -= num_regions;
   672     _num_humongous_regions += (int) num_regions;
   673   }
   674   assert(regions_accounted_for(), "Region Leakage");
   675   return res;
   676 }
   678 HeapWord*
   679 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   680                                          bool permit_collection_pause) {
   681   HeapWord* res = NULL;
   682   HeapRegion* allocated_young_region = NULL;
   684   assert( SafepointSynchronize::is_at_safepoint() ||
   685           Heap_lock->owned_by_self(), "pre condition of the call" );
   687   if (isHumongous(word_size)) {
   688     // Allocation of a humongous object can, in a sense, complete a
   689     // partial region, if the previous alloc was also humongous, and
   690     // caused the test below to succeed.
   691     if (permit_collection_pause)
   692       do_collection_pause_if_appropriate(word_size);
   693     res = humongousObjAllocate(word_size);
   694     assert(_cur_alloc_region == NULL
   695            || !_cur_alloc_region->isHumongous(),
   696            "Prevent a regression of this bug.");
   698   } else {
   699     // We may have concurrent cleanup working at the time. Wait for it
   700     // to complete. In the future we would probably want to make the
   701     // concurrent cleanup truly concurrent by decoupling it from the
   702     // allocation.
   703     if (!SafepointSynchronize::is_at_safepoint())
   704       wait_for_cleanup_complete();
   705     // If we do a collection pause, this will be reset to a non-NULL
   706     // value.  If we don't, nulling here ensures that we allocate a new
   707     // region below.
   708     if (_cur_alloc_region != NULL) {
   709       // We're finished with the _cur_alloc_region.
   710       _summary_bytes_used += _cur_alloc_region->used();
   711       _cur_alloc_region = NULL;
   712     }
   713     assert(_cur_alloc_region == NULL, "Invariant.");
   714     // Completion of a heap region is perhaps a good point at which to do
   715     // a collection pause.
   716     if (permit_collection_pause)
   717       do_collection_pause_if_appropriate(word_size);
   718     // Make sure we have an allocation region available.
   719     if (_cur_alloc_region == NULL) {
   720       if (!SafepointSynchronize::is_at_safepoint())
   721         wait_for_cleanup_complete();
   722       bool next_is_young = should_set_young_locked();
   723       // If the next region is not young, make sure it's zero-filled.
   724       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
   725       if (_cur_alloc_region != NULL) {
   726         _summary_bytes_used -= _cur_alloc_region->used();
   727         if (next_is_young) {
   728           set_region_short_lived_locked(_cur_alloc_region);
   729           allocated_young_region = _cur_alloc_region;
   730         }
   731       }
   732     }
   733     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
   734            "Prevent a regression of this bug.");
   736     // Now retry the allocation.
   737     if (_cur_alloc_region != NULL) {
   738       res = _cur_alloc_region->allocate(word_size);
   739     }
   740   }
   742   // NOTE: fails frequently in PRT
   743   assert(regions_accounted_for(), "Region leakage!");
   745   if (res != NULL) {
   746     if (!SafepointSynchronize::is_at_safepoint()) {
   747       assert( permit_collection_pause, "invariant" );
   748       assert( Heap_lock->owned_by_self(), "invariant" );
   749       Heap_lock->unlock();
   750     }
   752     if (allocated_young_region != NULL) {
   753       HeapRegion* hr = allocated_young_region;
   754       HeapWord* bottom = hr->bottom();
   755       HeapWord* end = hr->end();
   756       MemRegion mr(bottom, end);
   757       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
   758     }
   759   }
   761   assert( SafepointSynchronize::is_at_safepoint() ||
   762           (res == NULL && Heap_lock->owned_by_self()) ||
   763           (res != NULL && !Heap_lock->owned_by_self()),
   764           "post condition of the call" );
   766   return res;
   767 }
   769 HeapWord*
   770 G1CollectedHeap::mem_allocate(size_t word_size,
   771                               bool   is_noref,
   772                               bool   is_tlab,
   773                               bool* gc_overhead_limit_was_exceeded) {
   774   debug_only(check_for_valid_allocation_state());
   775   assert(no_gc_in_progress(), "Allocation during gc not allowed");
   776   HeapWord* result = NULL;
   778   // Loop until the allocation is satisified,
   779   // or unsatisfied after GC.
   780   for (int try_count = 1; /* return or throw */; try_count += 1) {
   781     int gc_count_before;
   782     {
   783       Heap_lock->lock();
   784       result = attempt_allocation(word_size);
   785       if (result != NULL) {
   786         // attempt_allocation should have unlocked the heap lock
   787         assert(is_in(result), "result not in heap");
   788         return result;
   789       }
   790       // Read the gc count while the heap lock is held.
   791       gc_count_before = SharedHeap::heap()->total_collections();
   792       Heap_lock->unlock();
   793     }
   795     // Create the garbage collection operation...
   796     VM_G1CollectForAllocation op(word_size,
   797                                  gc_count_before);
   799     // ...and get the VM thread to execute it.
   800     VMThread::execute(&op);
   801     if (op.prologue_succeeded()) {
   802       result = op.result();
   803       assert(result == NULL || is_in(result), "result not in heap");
   804       return result;
   805     }
   807     // Give a warning if we seem to be looping forever.
   808     if ((QueuedAllocationWarningCount > 0) &&
   809         (try_count % QueuedAllocationWarningCount == 0)) {
   810       warning("G1CollectedHeap::mem_allocate_work retries %d times",
   811               try_count);
   812     }
   813   }
   814 }
   816 void G1CollectedHeap::abandon_cur_alloc_region() {
   817   if (_cur_alloc_region != NULL) {
   818     // We're finished with the _cur_alloc_region.
   819     if (_cur_alloc_region->is_empty()) {
   820       _free_regions++;
   821       free_region(_cur_alloc_region);
   822     } else {
   823       _summary_bytes_used += _cur_alloc_region->used();
   824     }
   825     _cur_alloc_region = NULL;
   826   }
   827 }
   829 void G1CollectedHeap::abandon_gc_alloc_regions() {
   830   // first, make sure that the GC alloc region list is empty (it should!)
   831   assert(_gc_alloc_region_list == NULL, "invariant");
   832   release_gc_alloc_regions(true /* totally */);
   833 }
   835 class PostMCRemSetClearClosure: public HeapRegionClosure {
   836   ModRefBarrierSet* _mr_bs;
   837 public:
   838   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   839   bool doHeapRegion(HeapRegion* r) {
   840     r->reset_gc_time_stamp();
   841     if (r->continuesHumongous())
   842       return false;
   843     HeapRegionRemSet* hrrs = r->rem_set();
   844     if (hrrs != NULL) hrrs->clear();
   845     // You might think here that we could clear just the cards
   846     // corresponding to the used region.  But no: if we leave a dirty card
   847     // in a region we might allocate into, then it would prevent that card
   848     // from being enqueued, and cause it to be missed.
   849     // Re: the performance cost: we shouldn't be doing full GC anyway!
   850     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
   851     return false;
   852   }
   853 };
   856 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
   857   ModRefBarrierSet* _mr_bs;
   858 public:
   859   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   860   bool doHeapRegion(HeapRegion* r) {
   861     if (r->continuesHumongous()) return false;
   862     if (r->used_region().word_size() != 0) {
   863       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
   864     }
   865     return false;
   866   }
   867 };
   869 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
   870   G1CollectedHeap*   _g1h;
   871   UpdateRSOopClosure _cl;
   872   int                _worker_i;
   873 public:
   874   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
   875     _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
   876     _worker_i(worker_i),
   877     _g1h(g1)
   878   { }
   879   bool doHeapRegion(HeapRegion* r) {
   880     if (!r->continuesHumongous()) {
   881       _cl.set_from(r);
   882       r->oop_iterate(&_cl);
   883     }
   884     return false;
   885   }
   886 };
   888 class ParRebuildRSTask: public AbstractGangTask {
   889   G1CollectedHeap* _g1;
   890 public:
   891   ParRebuildRSTask(G1CollectedHeap* g1)
   892     : AbstractGangTask("ParRebuildRSTask"),
   893       _g1(g1)
   894   { }
   896   void work(int i) {
   897     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
   898     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
   899                                          HeapRegion::RebuildRSClaimValue);
   900   }
   901 };
   903 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
   904                                     size_t word_size) {
   905   ResourceMark rm;
   907   if (PrintHeapAtGC) {
   908     Universe::print_heap_before_gc();
   909   }
   911   if (full && DisableExplicitGC) {
   912     gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
   913     return;
   914   }
   916   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   917   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
   919   if (GC_locker::is_active()) {
   920     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   921   }
   923   {
   924     IsGCActiveMark x;
   926     // Timing
   927     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   928     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   929     TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
   931     double start = os::elapsedTime();
   932     g1_policy()->record_full_collection_start();
   934     gc_prologue(true);
   935     increment_total_collections(true /* full gc */);
   937     size_t g1h_prev_used = used();
   938     assert(used() == recalculate_used(), "Should be equal");
   940     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
   941       HandleMark hm;  // Discard invalid handles created during verification
   942       prepare_for_verify();
   943       gclog_or_tty->print(" VerifyBeforeGC:");
   944       Universe::verify(true);
   945     }
   946     assert(regions_accounted_for(), "Region leakage!");
   948     COMPILER2_PRESENT(DerivedPointerTable::clear());
   950     // We want to discover references, but not process them yet.
   951     // This mode is disabled in
   952     // instanceRefKlass::process_discovered_references if the
   953     // generation does some collection work, or
   954     // instanceRefKlass::enqueue_discovered_references if the
   955     // generation returns without doing any work.
   956     ref_processor()->disable_discovery();
   957     ref_processor()->abandon_partial_discovery();
   958     ref_processor()->verify_no_references_recorded();
   960     // Abandon current iterations of concurrent marking and concurrent
   961     // refinement, if any are in progress.
   962     concurrent_mark()->abort();
   964     // Make sure we'll choose a new allocation region afterwards.
   965     abandon_cur_alloc_region();
   966     abandon_gc_alloc_regions();
   967     assert(_cur_alloc_region == NULL, "Invariant.");
   968     g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
   969     tear_down_region_lists();
   970     set_used_regions_to_need_zero_fill();
   971     if (g1_policy()->in_young_gc_mode()) {
   972       empty_young_list();
   973       g1_policy()->set_full_young_gcs(true);
   974     }
   976     // Temporarily make reference _discovery_ single threaded (non-MT).
   977     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
   979     // Temporarily make refs discovery atomic
   980     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
   982     // Temporarily clear _is_alive_non_header
   983     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
   985     ref_processor()->enable_discovery();
   986     ref_processor()->setup_policy(clear_all_soft_refs);
   988     // Do collection work
   989     {
   990       HandleMark hm;  // Discard invalid handles created during gc
   991       G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
   992     }
   993     // Because freeing humongous regions may have added some unclean
   994     // regions, it is necessary to tear down again before rebuilding.
   995     tear_down_region_lists();
   996     rebuild_region_lists();
   998     _summary_bytes_used = recalculate_used();
  1000     ref_processor()->enqueue_discovered_references();
  1002     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1004     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1005       HandleMark hm;  // Discard invalid handles created during verification
  1006       gclog_or_tty->print(" VerifyAfterGC:");
  1007       prepare_for_verify();
  1008       Universe::verify(false);
  1010     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  1012     reset_gc_time_stamp();
  1013     // Since everything potentially moved, we will clear all remembered
  1014     // sets, and clear all cards.  Later we will rebuild remebered
  1015     // sets. We will also reset the GC time stamps of the regions.
  1016     PostMCRemSetClearClosure rs_clear(mr_bs());
  1017     heap_region_iterate(&rs_clear);
  1019     // Resize the heap if necessary.
  1020     resize_if_necessary_after_full_collection(full ? 0 : word_size);
  1022     if (_cg1r->use_cache()) {
  1023       _cg1r->clear_and_record_card_counts();
  1024       _cg1r->clear_hot_cache();
  1027     // Rebuild remembered sets of all regions.
  1028     if (ParallelGCThreads > 0) {
  1029       ParRebuildRSTask rebuild_rs_task(this);
  1030       assert(check_heap_region_claim_values(
  1031              HeapRegion::InitialClaimValue), "sanity check");
  1032       set_par_threads(workers()->total_workers());
  1033       workers()->run_task(&rebuild_rs_task);
  1034       set_par_threads(0);
  1035       assert(check_heap_region_claim_values(
  1036              HeapRegion::RebuildRSClaimValue), "sanity check");
  1037       reset_heap_region_claim_values();
  1038     } else {
  1039       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1040       heap_region_iterate(&rebuild_rs);
  1043     if (PrintGC) {
  1044       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1047     if (true) { // FIXME
  1048       // Ask the permanent generation to adjust size for full collections
  1049       perm()->compute_new_size();
  1052     double end = os::elapsedTime();
  1053     g1_policy()->record_full_collection_end();
  1055 #ifdef TRACESPINNING
  1056     ParallelTaskTerminator::print_termination_counts();
  1057 #endif
  1059     gc_epilogue(true);
  1061     // Discard all rset updates
  1062     JavaThread::dirty_card_queue_set().abandon_logs();
  1063     assert(!G1DeferredRSUpdate
  1064            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1065     assert(regions_accounted_for(), "Region leakage!");
  1068   if (g1_policy()->in_young_gc_mode()) {
  1069     _young_list->reset_sampled_info();
  1070     assert( check_young_list_empty(false, false),
  1071             "young list should be empty at this point");
  1074   if (PrintHeapAtGC) {
  1075     Universe::print_heap_after_gc();
  1079 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1080   do_collection(true, clear_all_soft_refs, 0);
  1083 // This code is mostly copied from TenuredGeneration.
  1084 void
  1085 G1CollectedHeap::
  1086 resize_if_necessary_after_full_collection(size_t word_size) {
  1087   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1089   // Include the current allocation, if any, and bytes that will be
  1090   // pre-allocated to support collections, as "used".
  1091   const size_t used_after_gc = used();
  1092   const size_t capacity_after_gc = capacity();
  1093   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1095   // We don't have floating point command-line arguments
  1096   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
  1097   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1098   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
  1099   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1101   size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
  1102   size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
  1104   // Don't shrink less than the initial size.
  1105   minimum_desired_capacity =
  1106     MAX2(minimum_desired_capacity,
  1107          collector_policy()->initial_heap_byte_size());
  1108   maximum_desired_capacity =
  1109     MAX2(maximum_desired_capacity,
  1110          collector_policy()->initial_heap_byte_size());
  1112   // We are failing here because minimum_desired_capacity is
  1113   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
  1114   assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
  1116   if (PrintGC && Verbose) {
  1117     const double free_percentage = ((double)free_after_gc) / capacity();
  1118     gclog_or_tty->print_cr("Computing new size after full GC ");
  1119     gclog_or_tty->print_cr("  "
  1120                            "  minimum_free_percentage: %6.2f",
  1121                            minimum_free_percentage);
  1122     gclog_or_tty->print_cr("  "
  1123                            "  maximum_free_percentage: %6.2f",
  1124                            maximum_free_percentage);
  1125     gclog_or_tty->print_cr("  "
  1126                            "  capacity: %6.1fK"
  1127                            "  minimum_desired_capacity: %6.1fK"
  1128                            "  maximum_desired_capacity: %6.1fK",
  1129                            capacity() / (double) K,
  1130                            minimum_desired_capacity / (double) K,
  1131                            maximum_desired_capacity / (double) K);
  1132     gclog_or_tty->print_cr("  "
  1133                            "   free_after_gc   : %6.1fK"
  1134                            "   used_after_gc   : %6.1fK",
  1135                            free_after_gc / (double) K,
  1136                            used_after_gc / (double) K);
  1137     gclog_or_tty->print_cr("  "
  1138                            "   free_percentage: %6.2f",
  1139                            free_percentage);
  1141   if (capacity() < minimum_desired_capacity) {
  1142     // Don't expand unless it's significant
  1143     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1144     expand(expand_bytes);
  1145     if (PrintGC && Verbose) {
  1146       gclog_or_tty->print_cr("    expanding:"
  1147                              "  minimum_desired_capacity: %6.1fK"
  1148                              "  expand_bytes: %6.1fK",
  1149                              minimum_desired_capacity / (double) K,
  1150                              expand_bytes / (double) K);
  1153     // No expansion, now see if we want to shrink
  1154   } else if (capacity() > maximum_desired_capacity) {
  1155     // Capacity too large, compute shrinking size
  1156     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1157     shrink(shrink_bytes);
  1158     if (PrintGC && Verbose) {
  1159       gclog_or_tty->print_cr("  "
  1160                              "  shrinking:"
  1161                              "  initSize: %.1fK"
  1162                              "  maximum_desired_capacity: %.1fK",
  1163                              collector_policy()->initial_heap_byte_size() / (double) K,
  1164                              maximum_desired_capacity / (double) K);
  1165       gclog_or_tty->print_cr("  "
  1166                              "  shrink_bytes: %.1fK",
  1167                              shrink_bytes / (double) K);
  1173 HeapWord*
  1174 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
  1175   HeapWord* result = NULL;
  1177   // In a G1 heap, we're supposed to keep allocation from failing by
  1178   // incremental pauses.  Therefore, at least for now, we'll favor
  1179   // expansion over collection.  (This might change in the future if we can
  1180   // do something smarter than full collection to satisfy a failed alloc.)
  1182   result = expand_and_allocate(word_size);
  1183   if (result != NULL) {
  1184     assert(is_in(result), "result not in heap");
  1185     return result;
  1188   // OK, I guess we have to try collection.
  1190   do_collection(false, false, word_size);
  1192   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1194   if (result != NULL) {
  1195     assert(is_in(result), "result not in heap");
  1196     return result;
  1199   // Try collecting soft references.
  1200   do_collection(false, true, word_size);
  1201   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1202   if (result != NULL) {
  1203     assert(is_in(result), "result not in heap");
  1204     return result;
  1207   // What else?  We might try synchronous finalization later.  If the total
  1208   // space available is large enough for the allocation, then a more
  1209   // complete compaction phase than we've tried so far might be
  1210   // appropriate.
  1211   return NULL;
  1214 // Attempting to expand the heap sufficiently
  1215 // to support an allocation of the given "word_size".  If
  1216 // successful, perform the allocation and return the address of the
  1217 // allocated block, or else "NULL".
  1219 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1220   size_t expand_bytes = word_size * HeapWordSize;
  1221   if (expand_bytes < MinHeapDeltaBytes) {
  1222     expand_bytes = MinHeapDeltaBytes;
  1224   expand(expand_bytes);
  1225   assert(regions_accounted_for(), "Region leakage!");
  1226   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
  1227   return result;
  1230 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  1231   size_t pre_used = 0;
  1232   size_t cleared_h_regions = 0;
  1233   size_t freed_regions = 0;
  1234   UncleanRegionList local_list;
  1235   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
  1236                                     freed_regions, &local_list);
  1238   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  1239                           &local_list);
  1240   return pre_used;
  1243 void
  1244 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
  1245                                                    size_t& pre_used,
  1246                                                    size_t& cleared_h,
  1247                                                    size_t& freed_regions,
  1248                                                    UncleanRegionList* list,
  1249                                                    bool par) {
  1250   assert(!hr->continuesHumongous(), "should have filtered these out");
  1251   size_t res = 0;
  1252   if (hr->used() > 0 && hr->garbage_bytes() == hr->used() &&
  1253       !hr->is_young()) {
  1254     if (G1PolicyVerbose > 0)
  1255       gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
  1256                                                                                " during cleanup", hr, hr->used());
  1257     free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
  1261 // FIXME: both this and shrink could probably be more efficient by
  1262 // doing one "VirtualSpace::expand_by" call rather than several.
  1263 void G1CollectedHeap::expand(size_t expand_bytes) {
  1264   size_t old_mem_size = _g1_storage.committed_size();
  1265   // We expand by a minimum of 1K.
  1266   expand_bytes = MAX2(expand_bytes, (size_t)K);
  1267   size_t aligned_expand_bytes =
  1268     ReservedSpace::page_align_size_up(expand_bytes);
  1269   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1270                                        HeapRegion::GrainBytes);
  1271   expand_bytes = aligned_expand_bytes;
  1272   while (expand_bytes > 0) {
  1273     HeapWord* base = (HeapWord*)_g1_storage.high();
  1274     // Commit more storage.
  1275     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
  1276     if (!successful) {
  1277         expand_bytes = 0;
  1278     } else {
  1279       expand_bytes -= HeapRegion::GrainBytes;
  1280       // Expand the committed region.
  1281       HeapWord* high = (HeapWord*) _g1_storage.high();
  1282       _g1_committed.set_end(high);
  1283       // Create a new HeapRegion.
  1284       MemRegion mr(base, high);
  1285       bool is_zeroed = !_g1_max_committed.contains(base);
  1286       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1288       // Now update max_committed if necessary.
  1289       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
  1291       // Add it to the HeapRegionSeq.
  1292       _hrs->insert(hr);
  1293       // Set the zero-fill state, according to whether it's already
  1294       // zeroed.
  1296         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  1297         if (is_zeroed) {
  1298           hr->set_zero_fill_complete();
  1299           put_free_region_on_list_locked(hr);
  1300         } else {
  1301           hr->set_zero_fill_needed();
  1302           put_region_on_unclean_list_locked(hr);
  1305       _free_regions++;
  1306       // And we used up an expansion region to create it.
  1307       _expansion_regions--;
  1308       // Tell the cardtable about it.
  1309       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1310       // And the offset table as well.
  1311       _bot_shared->resize(_g1_committed.word_size());
  1314   if (Verbose && PrintGC) {
  1315     size_t new_mem_size = _g1_storage.committed_size();
  1316     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
  1317                            old_mem_size/K, aligned_expand_bytes/K,
  1318                            new_mem_size/K);
  1322 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1324   size_t old_mem_size = _g1_storage.committed_size();
  1325   size_t aligned_shrink_bytes =
  1326     ReservedSpace::page_align_size_down(shrink_bytes);
  1327   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1328                                          HeapRegion::GrainBytes);
  1329   size_t num_regions_deleted = 0;
  1330   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1332   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1333   if (mr.byte_size() > 0)
  1334     _g1_storage.shrink_by(mr.byte_size());
  1335   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1337   _g1_committed.set_end(mr.start());
  1338   _free_regions -= num_regions_deleted;
  1339   _expansion_regions += num_regions_deleted;
  1341   // Tell the cardtable about it.
  1342   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1344   // And the offset table as well.
  1345   _bot_shared->resize(_g1_committed.word_size());
  1347   HeapRegionRemSet::shrink_heap(n_regions());
  1349   if (Verbose && PrintGC) {
  1350     size_t new_mem_size = _g1_storage.committed_size();
  1351     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1352                            old_mem_size/K, aligned_shrink_bytes/K,
  1353                            new_mem_size/K);
  1357 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1358   release_gc_alloc_regions(true /* totally */);
  1359   tear_down_region_lists();  // We will rebuild them in a moment.
  1360   shrink_helper(shrink_bytes);
  1361   rebuild_region_lists();
  1364 // Public methods.
  1366 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1367 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1368 #endif // _MSC_VER
  1371 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1372   SharedHeap(policy_),
  1373   _g1_policy(policy_),
  1374   _ref_processor(NULL),
  1375   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1376   _bot_shared(NULL),
  1377   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  1378   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1379   _evac_failure_scan_stack(NULL) ,
  1380   _mark_in_progress(false),
  1381   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  1382   _cur_alloc_region(NULL),
  1383   _refine_cte_cl(NULL),
  1384   _free_region_list(NULL), _free_region_list_size(0),
  1385   _free_regions(0),
  1386   _full_collection(false),
  1387   _unclean_region_list(),
  1388   _unclean_regions_coming(false),
  1389   _young_list(new YoungList(this)),
  1390   _gc_time_stamp(0),
  1391   _surviving_young_words(NULL),
  1392   _in_cset_fast_test(NULL),
  1393   _in_cset_fast_test_base(NULL),
  1394   _dirty_cards_region_list(NULL) {
  1395   _g1h = this; // To catch bugs.
  1396   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1397     vm_exit_during_initialization("Failed necessary allocation.");
  1400   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1402   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1403   _task_queues = new RefToScanQueueSet(n_queues);
  1405   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1406   assert(n_rem_sets > 0, "Invariant.");
  1408   HeapRegionRemSetIterator** iter_arr =
  1409     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1410   for (int i = 0; i < n_queues; i++) {
  1411     iter_arr[i] = new HeapRegionRemSetIterator();
  1413   _rem_set_iterator = iter_arr;
  1415   for (int i = 0; i < n_queues; i++) {
  1416     RefToScanQueue* q = new RefToScanQueue();
  1417     q->initialize();
  1418     _task_queues->register_queue(i, q);
  1421   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1422     _gc_alloc_regions[ap]          = NULL;
  1423     _gc_alloc_region_counts[ap]    = 0;
  1424     _retained_gc_alloc_regions[ap] = NULL;
  1425     // by default, we do not retain a GC alloc region for each ap;
  1426     // we'll override this, when appropriate, below
  1427     _retain_gc_alloc_region[ap]    = false;
  1430   // We will try to remember the last half-full tenured region we
  1431   // allocated to at the end of a collection so that we can re-use it
  1432   // during the next collection.
  1433   _retain_gc_alloc_region[GCAllocForTenured]  = true;
  1435   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1438 jint G1CollectedHeap::initialize() {
  1439   os::enable_vtime();
  1441   // Necessary to satisfy locking discipline assertions.
  1443   MutexLocker x(Heap_lock);
  1445   // While there are no constraints in the GC code that HeapWordSize
  1446   // be any particular value, there are multiple other areas in the
  1447   // system which believe this to be true (e.g. oop->object_size in some
  1448   // cases incorrectly returns the size in wordSize units rather than
  1449   // HeapWordSize).
  1450   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1452   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1453   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1455   // Ensure that the sizes are properly aligned.
  1456   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1457   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1459   // We allocate this in any case, but only do no work if the command line
  1460   // param is off.
  1461   _cg1r = new ConcurrentG1Refine();
  1463   // Reserve the maximum.
  1464   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1465   // Includes the perm-gen.
  1467   const size_t total_reserved = max_byte_size + pgs->max_size();
  1468   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1470   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  1471                         HeapRegion::GrainBytes,
  1472                         false /*ism*/, addr);
  1474   if (UseCompressedOops) {
  1475     if (addr != NULL && !heap_rs.is_reserved()) {
  1476       // Failed to reserve at specified address - the requested memory
  1477       // region is taken already, for example, by 'java' launcher.
  1478       // Try again to reserver heap higher.
  1479       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1480       ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1481                              false /*ism*/, addr);
  1482       if (addr != NULL && !heap_rs0.is_reserved()) {
  1483         // Failed to reserve at specified address again - give up.
  1484         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1485         assert(addr == NULL, "");
  1486         ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1487                                false /*ism*/, addr);
  1488         heap_rs = heap_rs1;
  1489       } else {
  1490         heap_rs = heap_rs0;
  1495   if (!heap_rs.is_reserved()) {
  1496     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1497     return JNI_ENOMEM;
  1500   // It is important to do this in a way such that concurrent readers can't
  1501   // temporarily think somethings in the heap.  (I've actually seen this
  1502   // happen in asserts: DLD.)
  1503   _reserved.set_word_size(0);
  1504   _reserved.set_start((HeapWord*)heap_rs.base());
  1505   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1507   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1509   _num_humongous_regions = 0;
  1511   // Create the gen rem set (and barrier set) for the entire reserved region.
  1512   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1513   set_barrier_set(rem_set()->bs());
  1514   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1515     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1516   } else {
  1517     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1518     return JNI_ENOMEM;
  1521   // Also create a G1 rem set.
  1522   if (G1UseHRIntoRS) {
  1523     if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1524       _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1525     } else {
  1526       vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1527       return JNI_ENOMEM;
  1529   } else {
  1530     _g1_rem_set = new StupidG1RemSet(this);
  1533   // Carve out the G1 part of the heap.
  1535   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1536   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1537                            g1_rs.size()/HeapWordSize);
  1538   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1540   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1542   _g1_storage.initialize(g1_rs, 0);
  1543   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1544   _g1_max_committed = _g1_committed;
  1545   _hrs = new HeapRegionSeq(_expansion_regions);
  1546   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  1547   guarantee(_cur_alloc_region == NULL, "from constructor");
  1549   // 6843694 - ensure that the maximum region index can fit
  1550   // in the remembered set structures.
  1551   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  1552   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  1554   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  1555   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  1556   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
  1557             "too many cards per region");
  1559   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1560                                              heap_word_size(init_byte_size));
  1562   _g1h = this;
  1564   // Create the ConcurrentMark data structure and thread.
  1565   // (Must do this late, so that "max_regions" is defined.)
  1566   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1567   _cmThread = _cm->cmThread();
  1569   // ...and the concurrent zero-fill thread, if necessary.
  1570   if (G1ConcZeroFill) {
  1571     _czft = new ConcurrentZFThread();
  1574   // Initialize the from_card cache structure of HeapRegionRemSet.
  1575   HeapRegionRemSet::init_heap(max_regions());
  1577   // Now expand into the initial heap size.
  1578   expand(init_byte_size);
  1580   // Perform any initialization actions delegated to the policy.
  1581   g1_policy()->init();
  1583   g1_policy()->note_start_of_mark_thread();
  1585   _refine_cte_cl =
  1586     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  1587                                     g1_rem_set(),
  1588                                     concurrent_g1_refine());
  1589   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  1591   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  1592                                                SATB_Q_FL_lock,
  1593                                                0,
  1594                                                Shared_SATB_Q_lock);
  1596   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1597                                                 DirtyCardQ_FL_lock,
  1598                                                 G1UpdateBufferQueueMaxLength,
  1599                                                 Shared_DirtyCardQ_lock);
  1601   if (G1DeferredRSUpdate) {
  1602     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1603                                       DirtyCardQ_FL_lock,
  1604                                       0,
  1605                                       Shared_DirtyCardQ_lock,
  1606                                       &JavaThread::dirty_card_queue_set());
  1608   // In case we're keeping closure specialization stats, initialize those
  1609   // counts and that mechanism.
  1610   SpecializationStats::clear();
  1612   _gc_alloc_region_list = NULL;
  1614   // Do later initialization work for concurrent refinement.
  1615   _cg1r->init();
  1617   return JNI_OK;
  1620 void G1CollectedHeap::ref_processing_init() {
  1621   SharedHeap::ref_processing_init();
  1622   MemRegion mr = reserved_region();
  1623   _ref_processor = ReferenceProcessor::create_ref_processor(
  1624                                          mr,    // span
  1625                                          false, // Reference discovery is not atomic
  1626                                                 // (though it shouldn't matter here.)
  1627                                          true,  // mt_discovery
  1628                                          NULL,  // is alive closure: need to fill this in for efficiency
  1629                                          ParallelGCThreads,
  1630                                          ParallelRefProcEnabled,
  1631                                          true); // Setting next fields of discovered
  1632                                                 // lists requires a barrier.
  1635 size_t G1CollectedHeap::capacity() const {
  1636   return _g1_committed.byte_size();
  1639 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
  1640                                                  int worker_i) {
  1641   // Clean cards in the hot card cache
  1642   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set());
  1644   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1645   int n_completed_buffers = 0;
  1646   while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
  1647     n_completed_buffers++;
  1649   g1_policy()->record_update_rs_processed_buffers(worker_i,
  1650                                                   (double) n_completed_buffers);
  1651   dcqs.clear_n_completed_buffers();
  1652   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  1656 // Computes the sum of the storage used by the various regions.
  1658 size_t G1CollectedHeap::used() const {
  1659   assert(Heap_lock->owner() != NULL,
  1660          "Should be owned on this thread's behalf.");
  1661   size_t result = _summary_bytes_used;
  1662   // Read only once in case it is set to NULL concurrently
  1663   HeapRegion* hr = _cur_alloc_region;
  1664   if (hr != NULL)
  1665     result += hr->used();
  1666   return result;
  1669 size_t G1CollectedHeap::used_unlocked() const {
  1670   size_t result = _summary_bytes_used;
  1671   return result;
  1674 class SumUsedClosure: public HeapRegionClosure {
  1675   size_t _used;
  1676 public:
  1677   SumUsedClosure() : _used(0) {}
  1678   bool doHeapRegion(HeapRegion* r) {
  1679     if (!r->continuesHumongous()) {
  1680       _used += r->used();
  1682     return false;
  1684   size_t result() { return _used; }
  1685 };
  1687 size_t G1CollectedHeap::recalculate_used() const {
  1688   SumUsedClosure blk;
  1689   _hrs->iterate(&blk);
  1690   return blk.result();
  1693 #ifndef PRODUCT
  1694 class SumUsedRegionsClosure: public HeapRegionClosure {
  1695   size_t _num;
  1696 public:
  1697   SumUsedRegionsClosure() : _num(0) {}
  1698   bool doHeapRegion(HeapRegion* r) {
  1699     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  1700       _num += 1;
  1702     return false;
  1704   size_t result() { return _num; }
  1705 };
  1707 size_t G1CollectedHeap::recalculate_used_regions() const {
  1708   SumUsedRegionsClosure blk;
  1709   _hrs->iterate(&blk);
  1710   return blk.result();
  1712 #endif // PRODUCT
  1714 size_t G1CollectedHeap::unsafe_max_alloc() {
  1715   if (_free_regions > 0) return HeapRegion::GrainBytes;
  1716   // otherwise, is there space in the current allocation region?
  1718   // We need to store the current allocation region in a local variable
  1719   // here. The problem is that this method doesn't take any locks and
  1720   // there may be other threads which overwrite the current allocation
  1721   // region field. attempt_allocation(), for example, sets it to NULL
  1722   // and this can happen *after* the NULL check here but before the call
  1723   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  1724   // to be a problem in the optimized build, since the two loads of the
  1725   // current allocation region field are optimized away.
  1726   HeapRegion* car = _cur_alloc_region;
  1728   // FIXME: should iterate over all regions?
  1729   if (car == NULL) {
  1730     return 0;
  1732   return car->free();
  1735 void G1CollectedHeap::collect(GCCause::Cause cause) {
  1736   // The caller doesn't have the Heap_lock
  1737   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  1738   MutexLocker ml(Heap_lock);
  1739   collect_locked(cause);
  1742 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  1743   assert(Thread::current()->is_VM_thread(), "Precondition#1");
  1744   assert(Heap_lock->is_locked(), "Precondition#2");
  1745   GCCauseSetter gcs(this, cause);
  1746   switch (cause) {
  1747     case GCCause::_heap_inspection:
  1748     case GCCause::_heap_dump: {
  1749       HandleMark hm;
  1750       do_full_collection(false);         // don't clear all soft refs
  1751       break;
  1753     default: // XXX FIX ME
  1754       ShouldNotReachHere(); // Unexpected use of this function
  1759 void G1CollectedHeap::collect_locked(GCCause::Cause cause) {
  1760   // Don't want to do a GC until cleanup is completed.
  1761   wait_for_cleanup_complete();
  1763   // Read the GC count while holding the Heap_lock
  1764   int gc_count_before = SharedHeap::heap()->total_collections();
  1766     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  1767     VM_G1CollectFull op(gc_count_before, cause);
  1768     VMThread::execute(&op);
  1772 bool G1CollectedHeap::is_in(const void* p) const {
  1773   if (_g1_committed.contains(p)) {
  1774     HeapRegion* hr = _hrs->addr_to_region(p);
  1775     return hr->is_in(p);
  1776   } else {
  1777     return _perm_gen->as_gen()->is_in(p);
  1781 // Iteration functions.
  1783 // Iterates an OopClosure over all ref-containing fields of objects
  1784 // within a HeapRegion.
  1786 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  1787   MemRegion _mr;
  1788   OopClosure* _cl;
  1789 public:
  1790   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  1791     : _mr(mr), _cl(cl) {}
  1792   bool doHeapRegion(HeapRegion* r) {
  1793     if (! r->continuesHumongous()) {
  1794       r->oop_iterate(_cl);
  1796     return false;
  1798 };
  1800 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  1801   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  1802   _hrs->iterate(&blk);
  1803   if (do_perm) {
  1804     perm_gen()->oop_iterate(cl);
  1808 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  1809   IterateOopClosureRegionClosure blk(mr, cl);
  1810   _hrs->iterate(&blk);
  1811   if (do_perm) {
  1812     perm_gen()->oop_iterate(cl);
  1816 // Iterates an ObjectClosure over all objects within a HeapRegion.
  1818 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  1819   ObjectClosure* _cl;
  1820 public:
  1821   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  1822   bool doHeapRegion(HeapRegion* r) {
  1823     if (! r->continuesHumongous()) {
  1824       r->object_iterate(_cl);
  1826     return false;
  1828 };
  1830 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  1831   IterateObjectClosureRegionClosure blk(cl);
  1832   _hrs->iterate(&blk);
  1833   if (do_perm) {
  1834     perm_gen()->object_iterate(cl);
  1838 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1839   // FIXME: is this right?
  1840   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  1843 // Calls a SpaceClosure on a HeapRegion.
  1845 class SpaceClosureRegionClosure: public HeapRegionClosure {
  1846   SpaceClosure* _cl;
  1847 public:
  1848   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  1849   bool doHeapRegion(HeapRegion* r) {
  1850     _cl->do_space(r);
  1851     return false;
  1853 };
  1855 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  1856   SpaceClosureRegionClosure blk(cl);
  1857   _hrs->iterate(&blk);
  1860 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  1861   _hrs->iterate(cl);
  1864 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  1865                                                HeapRegionClosure* cl) {
  1866   _hrs->iterate_from(r, cl);
  1869 void
  1870 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  1871   _hrs->iterate_from(idx, cl);
  1874 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  1876 void
  1877 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1878                                                  int worker,
  1879                                                  jint claim_value) {
  1880   const size_t regions = n_regions();
  1881   const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
  1882   // try to spread out the starting points of the workers
  1883   const size_t start_index = regions / worker_num * (size_t) worker;
  1885   // each worker will actually look at all regions
  1886   for (size_t count = 0; count < regions; ++count) {
  1887     const size_t index = (start_index + count) % regions;
  1888     assert(0 <= index && index < regions, "sanity");
  1889     HeapRegion* r = region_at(index);
  1890     // we'll ignore "continues humongous" regions (we'll process them
  1891     // when we come across their corresponding "start humongous"
  1892     // region) and regions already claimed
  1893     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  1894       continue;
  1896     // OK, try to claim it
  1897     if (r->claimHeapRegion(claim_value)) {
  1898       // success!
  1899       assert(!r->continuesHumongous(), "sanity");
  1900       if (r->startsHumongous()) {
  1901         // If the region is "starts humongous" we'll iterate over its
  1902         // "continues humongous" first; in fact we'll do them
  1903         // first. The order is important. In on case, calling the
  1904         // closure on the "starts humongous" region might de-allocate
  1905         // and clear all its "continues humongous" regions and, as a
  1906         // result, we might end up processing them twice. So, we'll do
  1907         // them first (notice: most closures will ignore them anyway) and
  1908         // then we'll do the "starts humongous" region.
  1909         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  1910           HeapRegion* chr = region_at(ch_index);
  1912           // if the region has already been claimed or it's not
  1913           // "continues humongous" we're done
  1914           if (chr->claim_value() == claim_value ||
  1915               !chr->continuesHumongous()) {
  1916             break;
  1919           // Noone should have claimed it directly. We can given
  1920           // that we claimed its "starts humongous" region.
  1921           assert(chr->claim_value() != claim_value, "sanity");
  1922           assert(chr->humongous_start_region() == r, "sanity");
  1924           if (chr->claimHeapRegion(claim_value)) {
  1925             // we should always be able to claim it; noone else should
  1926             // be trying to claim this region
  1928             bool res2 = cl->doHeapRegion(chr);
  1929             assert(!res2, "Should not abort");
  1931             // Right now, this holds (i.e., no closure that actually
  1932             // does something with "continues humongous" regions
  1933             // clears them). We might have to weaken it in the future,
  1934             // but let's leave these two asserts here for extra safety.
  1935             assert(chr->continuesHumongous(), "should still be the case");
  1936             assert(chr->humongous_start_region() == r, "sanity");
  1937           } else {
  1938             guarantee(false, "we should not reach here");
  1943       assert(!r->continuesHumongous(), "sanity");
  1944       bool res = cl->doHeapRegion(r);
  1945       assert(!res, "Should not abort");
  1950 class ResetClaimValuesClosure: public HeapRegionClosure {
  1951 public:
  1952   bool doHeapRegion(HeapRegion* r) {
  1953     r->set_claim_value(HeapRegion::InitialClaimValue);
  1954     return false;
  1956 };
  1958 void
  1959 G1CollectedHeap::reset_heap_region_claim_values() {
  1960   ResetClaimValuesClosure blk;
  1961   heap_region_iterate(&blk);
  1964 #ifdef ASSERT
  1965 // This checks whether all regions in the heap have the correct claim
  1966 // value. I also piggy-backed on this a check to ensure that the
  1967 // humongous_start_region() information on "continues humongous"
  1968 // regions is correct.
  1970 class CheckClaimValuesClosure : public HeapRegionClosure {
  1971 private:
  1972   jint _claim_value;
  1973   size_t _failures;
  1974   HeapRegion* _sh_region;
  1975 public:
  1976   CheckClaimValuesClosure(jint claim_value) :
  1977     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  1978   bool doHeapRegion(HeapRegion* r) {
  1979     if (r->claim_value() != _claim_value) {
  1980       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1981                              "claim value = %d, should be %d",
  1982                              r->bottom(), r->end(), r->claim_value(),
  1983                              _claim_value);
  1984       ++_failures;
  1986     if (!r->isHumongous()) {
  1987       _sh_region = NULL;
  1988     } else if (r->startsHumongous()) {
  1989       _sh_region = r;
  1990     } else if (r->continuesHumongous()) {
  1991       if (r->humongous_start_region() != _sh_region) {
  1992         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1993                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  1994                                r->bottom(), r->end(),
  1995                                r->humongous_start_region(),
  1996                                _sh_region);
  1997         ++_failures;
  2000     return false;
  2002   size_t failures() {
  2003     return _failures;
  2005 };
  2007 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2008   CheckClaimValuesClosure cl(claim_value);
  2009   heap_region_iterate(&cl);
  2010   return cl.failures() == 0;
  2012 #endif // ASSERT
  2014 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2015   HeapRegion* r = g1_policy()->collection_set();
  2016   while (r != NULL) {
  2017     HeapRegion* next = r->next_in_collection_set();
  2018     if (cl->doHeapRegion(r)) {
  2019       cl->incomplete();
  2020       return;
  2022     r = next;
  2026 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2027                                                   HeapRegionClosure *cl) {
  2028   assert(r->in_collection_set(),
  2029          "Start region must be a member of the collection set.");
  2030   HeapRegion* cur = r;
  2031   while (cur != NULL) {
  2032     HeapRegion* next = cur->next_in_collection_set();
  2033     if (cl->doHeapRegion(cur) && false) {
  2034       cl->incomplete();
  2035       return;
  2037     cur = next;
  2039   cur = g1_policy()->collection_set();
  2040   while (cur != r) {
  2041     HeapRegion* next = cur->next_in_collection_set();
  2042     if (cl->doHeapRegion(cur) && false) {
  2043       cl->incomplete();
  2044       return;
  2046     cur = next;
  2050 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2051   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  2055 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2056   Space* res = heap_region_containing(addr);
  2057   if (res == NULL)
  2058     res = perm_gen()->space_containing(addr);
  2059   return res;
  2062 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2063   Space* sp = space_containing(addr);
  2064   if (sp != NULL) {
  2065     return sp->block_start(addr);
  2067   return NULL;
  2070 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2071   Space* sp = space_containing(addr);
  2072   assert(sp != NULL, "block_size of address outside of heap");
  2073   return sp->block_size(addr);
  2076 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2077   Space* sp = space_containing(addr);
  2078   return sp->block_is_obj(addr);
  2081 bool G1CollectedHeap::supports_tlab_allocation() const {
  2082   return true;
  2085 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2086   return HeapRegion::GrainBytes;
  2089 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2090   // Return the remaining space in the cur alloc region, but not less than
  2091   // the min TLAB size.
  2092   // Also, no more than half the region size, since we can't allow tlabs to
  2093   // grow big enough to accomodate humongous objects.
  2095   // We need to story it locally, since it might change between when we
  2096   // test for NULL and when we use it later.
  2097   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
  2098   if (cur_alloc_space == NULL) {
  2099     return HeapRegion::GrainBytes/2;
  2100   } else {
  2101     return MAX2(MIN2(cur_alloc_space->free(),
  2102                      (size_t)(HeapRegion::GrainBytes/2)),
  2103                 (size_t)MinTLABSize);
  2107 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
  2108   bool dummy;
  2109   return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
  2112 bool G1CollectedHeap::allocs_are_zero_filled() {
  2113   return false;
  2116 size_t G1CollectedHeap::large_typearray_limit() {
  2117   // FIXME
  2118   return HeapRegion::GrainBytes/HeapWordSize;
  2121 size_t G1CollectedHeap::max_capacity() const {
  2122   return _g1_committed.byte_size();
  2125 jlong G1CollectedHeap::millis_since_last_gc() {
  2126   // assert(false, "NYI");
  2127   return 0;
  2131 void G1CollectedHeap::prepare_for_verify() {
  2132   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2133     ensure_parsability(false);
  2135   g1_rem_set()->prepare_for_verify();
  2138 class VerifyLivenessOopClosure: public OopClosure {
  2139   G1CollectedHeap* g1h;
  2140 public:
  2141   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2142     g1h = _g1h;
  2144   void do_oop(narrowOop *p) { do_oop_work(p); }
  2145   void do_oop(      oop *p) { do_oop_work(p); }
  2147   template <class T> void do_oop_work(T *p) {
  2148     oop obj = oopDesc::load_decode_heap_oop(p);
  2149     guarantee(obj == NULL || !g1h->is_obj_dead(obj),
  2150               "Dead object referenced by a not dead object");
  2152 };
  2154 class VerifyObjsInRegionClosure: public ObjectClosure {
  2155 private:
  2156   G1CollectedHeap* _g1h;
  2157   size_t _live_bytes;
  2158   HeapRegion *_hr;
  2159   bool _use_prev_marking;
  2160 public:
  2161   // use_prev_marking == true  -> use "prev" marking information,
  2162   // use_prev_marking == false -> use "next" marking information
  2163   VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
  2164     : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
  2165     _g1h = G1CollectedHeap::heap();
  2167   void do_object(oop o) {
  2168     VerifyLivenessOopClosure isLive(_g1h);
  2169     assert(o != NULL, "Huh?");
  2170     if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
  2171       o->oop_iterate(&isLive);
  2172       if (!_hr->obj_allocated_since_prev_marking(o))
  2173         _live_bytes += (o->size() * HeapWordSize);
  2176   size_t live_bytes() { return _live_bytes; }
  2177 };
  2179 class PrintObjsInRegionClosure : public ObjectClosure {
  2180   HeapRegion *_hr;
  2181   G1CollectedHeap *_g1;
  2182 public:
  2183   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2184     _g1 = G1CollectedHeap::heap();
  2185   };
  2187   void do_object(oop o) {
  2188     if (o != NULL) {
  2189       HeapWord *start = (HeapWord *) o;
  2190       size_t word_sz = o->size();
  2191       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2192                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2193                           (void*) o, word_sz,
  2194                           _g1->isMarkedPrev(o),
  2195                           _g1->isMarkedNext(o),
  2196                           _hr->obj_allocated_since_prev_marking(o));
  2197       HeapWord *end = start + word_sz;
  2198       HeapWord *cur;
  2199       int *val;
  2200       for (cur = start; cur < end; cur++) {
  2201         val = (int *) cur;
  2202         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2206 };
  2208 class VerifyRegionClosure: public HeapRegionClosure {
  2209 private:
  2210   bool _allow_dirty;
  2211   bool _par;
  2212   bool _use_prev_marking;
  2213 public:
  2214   // use_prev_marking == true  -> use "prev" marking information,
  2215   // use_prev_marking == false -> use "next" marking information
  2216   VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
  2217     : _allow_dirty(allow_dirty),
  2218       _par(par),
  2219       _use_prev_marking(use_prev_marking) {}
  2221   bool doHeapRegion(HeapRegion* r) {
  2222     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2223               "Should be unclaimed at verify points.");
  2224     if (!r->continuesHumongous()) {
  2225       VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
  2226       r->verify(_allow_dirty, _use_prev_marking);
  2227       r->object_iterate(&not_dead_yet_cl);
  2228       guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
  2229                 "More live objects than counted in last complete marking.");
  2231     return false;
  2233 };
  2235 class VerifyRootsClosure: public OopsInGenClosure {
  2236 private:
  2237   G1CollectedHeap* _g1h;
  2238   bool             _failures;
  2239   bool             _use_prev_marking;
  2240 public:
  2241   // use_prev_marking == true  -> use "prev" marking information,
  2242   // use_prev_marking == false -> use "next" marking information
  2243   VerifyRootsClosure(bool use_prev_marking) :
  2244     _g1h(G1CollectedHeap::heap()),
  2245     _failures(false),
  2246     _use_prev_marking(use_prev_marking) { }
  2248   bool failures() { return _failures; }
  2250   template <class T> void do_oop_nv(T* p) {
  2251     T heap_oop = oopDesc::load_heap_oop(p);
  2252     if (!oopDesc::is_null(heap_oop)) {
  2253       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2254       if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
  2255         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2256                                "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2257         obj->print_on(gclog_or_tty);
  2258         _failures = true;
  2263   void do_oop(oop* p)       { do_oop_nv(p); }
  2264   void do_oop(narrowOop* p) { do_oop_nv(p); }
  2265 };
  2267 // This is the task used for parallel heap verification.
  2269 class G1ParVerifyTask: public AbstractGangTask {
  2270 private:
  2271   G1CollectedHeap* _g1h;
  2272   bool _allow_dirty;
  2273   bool _use_prev_marking;
  2275 public:
  2276   // use_prev_marking == true  -> use "prev" marking information,
  2277   // use_prev_marking == false -> use "next" marking information
  2278   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
  2279                   bool use_prev_marking) :
  2280     AbstractGangTask("Parallel verify task"),
  2281     _g1h(g1h),
  2282     _allow_dirty(allow_dirty),
  2283     _use_prev_marking(use_prev_marking) { }
  2285   void work(int worker_i) {
  2286     HandleMark hm;
  2287     VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
  2288     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2289                                           HeapRegion::ParVerifyClaimValue);
  2291 };
  2293 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2294   verify(allow_dirty, silent, /* use_prev_marking */ true);
  2297 void G1CollectedHeap::verify(bool allow_dirty,
  2298                              bool silent,
  2299                              bool use_prev_marking) {
  2300   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2301     if (!silent) { gclog_or_tty->print("roots "); }
  2302     VerifyRootsClosure rootsCl(use_prev_marking);
  2303     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  2304     process_strong_roots(true,  // activate StrongRootsScope
  2305                          false,
  2306                          SharedHeap::SO_AllClasses,
  2307                          &rootsCl,
  2308                          &blobsCl,
  2309                          &rootsCl);
  2310     rem_set()->invalidate(perm_gen()->used_region(), false);
  2311     if (!silent) { gclog_or_tty->print("heapRegions "); }
  2312     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2313       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2314              "sanity check");
  2316       G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
  2317       int n_workers = workers()->total_workers();
  2318       set_par_threads(n_workers);
  2319       workers()->run_task(&task);
  2320       set_par_threads(0);
  2322       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2323              "sanity check");
  2325       reset_heap_region_claim_values();
  2327       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2328              "sanity check");
  2329     } else {
  2330       VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
  2331       _hrs->iterate(&blk);
  2333     if (!silent) gclog_or_tty->print("remset ");
  2334     rem_set()->verify();
  2335     guarantee(!rootsCl.failures(), "should not have had failures");
  2336   } else {
  2337     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2341 class PrintRegionClosure: public HeapRegionClosure {
  2342   outputStream* _st;
  2343 public:
  2344   PrintRegionClosure(outputStream* st) : _st(st) {}
  2345   bool doHeapRegion(HeapRegion* r) {
  2346     r->print_on(_st);
  2347     return false;
  2349 };
  2351 void G1CollectedHeap::print() const { print_on(tty); }
  2353 void G1CollectedHeap::print_on(outputStream* st) const {
  2354   print_on(st, PrintHeapAtGCExtended);
  2357 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  2358   st->print(" %-20s", "garbage-first heap");
  2359   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  2360             capacity()/K, used_unlocked()/K);
  2361   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  2362             _g1_storage.low_boundary(),
  2363             _g1_storage.high(),
  2364             _g1_storage.high_boundary());
  2365   st->cr();
  2366   st->print("  region size " SIZE_FORMAT "K, ",
  2367             HeapRegion::GrainBytes/K);
  2368   size_t young_regions = _young_list->length();
  2369   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  2370             young_regions, young_regions * HeapRegion::GrainBytes / K);
  2371   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  2372   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  2373             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  2374   st->cr();
  2375   perm()->as_gen()->print_on(st);
  2376   if (extended) {
  2377     print_on_extended(st);
  2381 void G1CollectedHeap::print_on_extended(outputStream* st) const {
  2382   PrintRegionClosure blk(st);
  2383   _hrs->iterate(&blk);
  2386 class PrintOnThreadsClosure : public ThreadClosure {
  2387   outputStream* _st;
  2388 public:
  2389   PrintOnThreadsClosure(outputStream* st) : _st(st) { }
  2390   virtual void do_thread(Thread *t) {
  2391     t->print_on(_st);
  2393 };
  2395 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  2396   if (ParallelGCThreads > 0) {
  2397     workers()->print_worker_threads();
  2399   st->print("\"G1 concurrent mark GC Thread\" ");
  2400   _cmThread->print();
  2401   st->cr();
  2402   st->print("\"G1 concurrent refinement GC Threads\" ");
  2403   PrintOnThreadsClosure p(st);
  2404   _cg1r->threads_do(&p);
  2405   st->cr();
  2406   st->print("\"G1 zero-fill GC Thread\" ");
  2407   _czft->print_on(st);
  2408   st->cr();
  2411 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  2412   if (ParallelGCThreads > 0) {
  2413     workers()->threads_do(tc);
  2415   tc->do_thread(_cmThread);
  2416   _cg1r->threads_do(tc);
  2417   tc->do_thread(_czft);
  2420 void G1CollectedHeap::print_tracing_info() const {
  2421   // We'll overload this to mean "trace GC pause statistics."
  2422   if (TraceGen0Time || TraceGen1Time) {
  2423     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  2424     // to that.
  2425     g1_policy()->print_tracing_info();
  2427   if (G1SummarizeRSetStats) {
  2428     g1_rem_set()->print_summary_info();
  2430   if (G1SummarizeConcurrentMark) {
  2431     concurrent_mark()->print_summary_info();
  2433   if (G1SummarizeZFStats) {
  2434     ConcurrentZFThread::print_summary_info();
  2436   g1_policy()->print_yg_surv_rate_info();
  2438   SpecializationStats::print();
  2442 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  2443   HeapRegion* hr = heap_region_containing(addr);
  2444   if (hr == NULL) {
  2445     return 0;
  2446   } else {
  2447     return 1;
  2451 G1CollectedHeap* G1CollectedHeap::heap() {
  2452   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  2453          "not a garbage-first heap");
  2454   return _g1h;
  2457 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  2458   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  2459   // Call allocation profiler
  2460   AllocationProfiler::iterate_since_last_gc();
  2461   // Fill TLAB's and such
  2462   ensure_parsability(true);
  2465 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  2466   // FIXME: what is this about?
  2467   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  2468   // is set.
  2469   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  2470                         "derived pointer present"));
  2473 void G1CollectedHeap::do_collection_pause() {
  2474   // Read the GC count while holding the Heap_lock
  2475   // we need to do this _before_ wait_for_cleanup_complete(), to
  2476   // ensure that we do not give up the heap lock and potentially
  2477   // pick up the wrong count
  2478   int gc_count_before = SharedHeap::heap()->total_collections();
  2480   // Don't want to do a GC pause while cleanup is being completed!
  2481   wait_for_cleanup_complete();
  2483   g1_policy()->record_stop_world_start();
  2485     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  2486     VM_G1IncCollectionPause op(gc_count_before);
  2487     VMThread::execute(&op);
  2491 void
  2492 G1CollectedHeap::doConcurrentMark() {
  2493   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2494   if (!_cmThread->in_progress()) {
  2495     _cmThread->set_started();
  2496     CGC_lock->notify();
  2500 class VerifyMarkedObjsClosure: public ObjectClosure {
  2501     G1CollectedHeap* _g1h;
  2502     public:
  2503     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  2504     void do_object(oop obj) {
  2505       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  2506              "markandsweep mark should agree with concurrent deadness");
  2508 };
  2510 void
  2511 G1CollectedHeap::checkConcurrentMark() {
  2512     VerifyMarkedObjsClosure verifycl(this);
  2513     //    MutexLockerEx x(getMarkBitMapLock(),
  2514     //              Mutex::_no_safepoint_check_flag);
  2515     object_iterate(&verifycl, false);
  2518 void G1CollectedHeap::do_sync_mark() {
  2519   _cm->checkpointRootsInitial();
  2520   _cm->markFromRoots();
  2521   _cm->checkpointRootsFinal(false);
  2524 // <NEW PREDICTION>
  2526 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  2527                                                        bool young) {
  2528   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  2531 void G1CollectedHeap::check_if_region_is_too_expensive(double
  2532                                                            predicted_time_ms) {
  2533   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  2536 size_t G1CollectedHeap::pending_card_num() {
  2537   size_t extra_cards = 0;
  2538   JavaThread *curr = Threads::first();
  2539   while (curr != NULL) {
  2540     DirtyCardQueue& dcq = curr->dirty_card_queue();
  2541     extra_cards += dcq.size();
  2542     curr = curr->next();
  2544   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2545   size_t buffer_size = dcqs.buffer_size();
  2546   size_t buffer_num = dcqs.completed_buffers_num();
  2547   return buffer_size * buffer_num + extra_cards;
  2550 size_t G1CollectedHeap::max_pending_card_num() {
  2551   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2552   size_t buffer_size = dcqs.buffer_size();
  2553   size_t buffer_num  = dcqs.completed_buffers_num();
  2554   int thread_num  = Threads::number_of_threads();
  2555   return (buffer_num + thread_num) * buffer_size;
  2558 size_t G1CollectedHeap::cards_scanned() {
  2559   HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
  2560   return g1_rset->cardsScanned();
  2563 void
  2564 G1CollectedHeap::setup_surviving_young_words() {
  2565   guarantee( _surviving_young_words == NULL, "pre-condition" );
  2566   size_t array_length = g1_policy()->young_cset_length();
  2567   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  2568   if (_surviving_young_words == NULL) {
  2569     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  2570                           "Not enough space for young surv words summary.");
  2572   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  2573 #ifdef ASSERT
  2574   for (size_t i = 0;  i < array_length; ++i) {
  2575     assert( _surviving_young_words[i] == 0, "memset above" );
  2577 #endif // !ASSERT
  2580 void
  2581 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  2582   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2583   size_t array_length = g1_policy()->young_cset_length();
  2584   for (size_t i = 0; i < array_length; ++i)
  2585     _surviving_young_words[i] += surv_young_words[i];
  2588 void
  2589 G1CollectedHeap::cleanup_surviving_young_words() {
  2590   guarantee( _surviving_young_words != NULL, "pre-condition" );
  2591   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  2592   _surviving_young_words = NULL;
  2595 // </NEW PREDICTION>
  2597 void
  2598 G1CollectedHeap::do_collection_pause_at_safepoint() {
  2599   if (PrintHeapAtGC) {
  2600     Universe::print_heap_before_gc();
  2604     char verbose_str[128];
  2605     sprintf(verbose_str, "GC pause ");
  2606     if (g1_policy()->in_young_gc_mode()) {
  2607       if (g1_policy()->full_young_gcs())
  2608         strcat(verbose_str, "(young)");
  2609       else
  2610         strcat(verbose_str, "(partial)");
  2612     if (g1_policy()->should_initiate_conc_mark())
  2613       strcat(verbose_str, " (initial-mark)");
  2615     GCCauseSetter x(this, GCCause::_g1_inc_collection_pause);
  2617     // if PrintGCDetails is on, we'll print long statistics information
  2618     // in the collector policy code, so let's not print this as the output
  2619     // is messy if we do.
  2620     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2621     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2622     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  2624     ResourceMark rm;
  2625     assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  2626     assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
  2627     guarantee(!is_gc_active(), "collection is not reentrant");
  2628     assert(regions_accounted_for(), "Region leakage!");
  2630     increment_gc_time_stamp();
  2632     if (g1_policy()->in_young_gc_mode()) {
  2633       assert(check_young_list_well_formed(),
  2634              "young list should be well formed");
  2637     if (GC_locker::is_active()) {
  2638       return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  2641     bool abandoned = false;
  2642     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  2643       IsGCActiveMark x;
  2645       gc_prologue(false);
  2646       increment_total_collections(false /* full gc */);
  2648 #if G1_REM_SET_LOGGING
  2649       gclog_or_tty->print_cr("\nJust chose CS, heap:");
  2650       print();
  2651 #endif
  2653       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  2654         HandleMark hm;  // Discard invalid handles created during verification
  2655         prepare_for_verify();
  2656         gclog_or_tty->print(" VerifyBeforeGC:");
  2657         Universe::verify(false);
  2660       COMPILER2_PRESENT(DerivedPointerTable::clear());
  2662       // We want to turn off ref discovery, if necessary, and turn it back on
  2663       // on again later if we do. XXX Dubious: why is discovery disabled?
  2664       bool was_enabled = ref_processor()->discovery_enabled();
  2665       if (was_enabled) ref_processor()->disable_discovery();
  2667       // Forget the current alloc region (we might even choose it to be part
  2668       // of the collection set!).
  2669       abandon_cur_alloc_region();
  2671       // The elapsed time induced by the start time below deliberately elides
  2672       // the possible verification above.
  2673       double start_time_sec = os::elapsedTime();
  2674       size_t start_used_bytes = used();
  2676       g1_policy()->record_collection_pause_start(start_time_sec,
  2677                                                  start_used_bytes);
  2679       guarantee(_in_cset_fast_test == NULL, "invariant");
  2680       guarantee(_in_cset_fast_test_base == NULL, "invariant");
  2681       _in_cset_fast_test_length = max_regions();
  2682       _in_cset_fast_test_base =
  2683                              NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  2684       memset(_in_cset_fast_test_base, false,
  2685                                      _in_cset_fast_test_length * sizeof(bool));
  2686       // We're biasing _in_cset_fast_test to avoid subtracting the
  2687       // beginning of the heap every time we want to index; basically
  2688       // it's the same with what we do with the card table.
  2689       _in_cset_fast_test = _in_cset_fast_test_base -
  2690               ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2692 #if SCAN_ONLY_VERBOSE
  2693       _young_list->print();
  2694 #endif // SCAN_ONLY_VERBOSE
  2696       if (g1_policy()->should_initiate_conc_mark()) {
  2697         concurrent_mark()->checkpointRootsInitialPre();
  2699       save_marks();
  2701       // We must do this before any possible evacuation that should propagate
  2702       // marks.
  2703       if (mark_in_progress()) {
  2704         double start_time_sec = os::elapsedTime();
  2706         _cm->drainAllSATBBuffers();
  2707         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  2708         g1_policy()->record_satb_drain_time(finish_mark_ms);
  2710       // Record the number of elements currently on the mark stack, so we
  2711       // only iterate over these.  (Since evacuation may add to the mark
  2712       // stack, doing more exposes race conditions.)  If no mark is in
  2713       // progress, this will be zero.
  2714       _cm->set_oops_do_bound();
  2716       assert(regions_accounted_for(), "Region leakage.");
  2718       if (mark_in_progress())
  2719         concurrent_mark()->newCSet();
  2721       // Now choose the CS.
  2722       g1_policy()->choose_collection_set();
  2724       // We may abandon a pause if we find no region that will fit in the MMU
  2725       // pause.
  2726       bool abandoned = (g1_policy()->collection_set() == NULL);
  2728       // Nothing to do if we were unable to choose a collection set.
  2729       if (!abandoned) {
  2730 #if G1_REM_SET_LOGGING
  2731         gclog_or_tty->print_cr("\nAfter pause, heap:");
  2732         print();
  2733 #endif
  2735         setup_surviving_young_words();
  2737         // Set up the gc allocation regions.
  2738         get_gc_alloc_regions();
  2740         // Actually do the work...
  2741         evacuate_collection_set();
  2742         free_collection_set(g1_policy()->collection_set());
  2743         g1_policy()->clear_collection_set();
  2745         FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
  2746         // this is more for peace of mind; we're nulling them here and
  2747         // we're expecting them to be null at the beginning of the next GC
  2748         _in_cset_fast_test = NULL;
  2749         _in_cset_fast_test_base = NULL;
  2751         cleanup_surviving_young_words();
  2753         if (g1_policy()->in_young_gc_mode()) {
  2754           _young_list->reset_sampled_info();
  2755           assert(check_young_list_empty(true),
  2756                  "young list should be empty");
  2758 #if SCAN_ONLY_VERBOSE
  2759           _young_list->print();
  2760 #endif // SCAN_ONLY_VERBOSE
  2762           g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  2763                                           _young_list->first_survivor_region(),
  2764                                           _young_list->last_survivor_region());
  2765           _young_list->reset_auxilary_lists();
  2767       } else {
  2768         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  2771       if (evacuation_failed()) {
  2772         _summary_bytes_used = recalculate_used();
  2773       } else {
  2774         // The "used" of the the collection set have already been subtracted
  2775         // when they were freed.  Add in the bytes evacuated.
  2776         _summary_bytes_used += g1_policy()->bytes_in_to_space();
  2779       if (g1_policy()->in_young_gc_mode() &&
  2780           g1_policy()->should_initiate_conc_mark()) {
  2781         concurrent_mark()->checkpointRootsInitialPost();
  2782         set_marking_started();
  2783         // CAUTION: after the doConcurrentMark() call below,
  2784         // the concurrent marking thread(s) could be running
  2785         // concurrently with us. Make sure that anything after
  2786         // this point does not assume that we are the only GC thread
  2787         // running. Note: of course, the actual marking work will
  2788         // not start until the safepoint itself is released in
  2789         // ConcurrentGCThread::safepoint_desynchronize().
  2790         doConcurrentMark();
  2793 #if SCAN_ONLY_VERBOSE
  2794       _young_list->print();
  2795 #endif // SCAN_ONLY_VERBOSE
  2797       double end_time_sec = os::elapsedTime();
  2798       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  2799       g1_policy()->record_pause_time_ms(pause_time_ms);
  2800       g1_policy()->record_collection_pause_end(abandoned);
  2802       assert(regions_accounted_for(), "Region leakage.");
  2804       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  2805         HandleMark hm;  // Discard invalid handles created during verification
  2806         gclog_or_tty->print(" VerifyAfterGC:");
  2807         prepare_for_verify();
  2808         Universe::verify(false);
  2811       if (was_enabled) ref_processor()->enable_discovery();
  2814         size_t expand_bytes = g1_policy()->expansion_amount();
  2815         if (expand_bytes > 0) {
  2816           size_t bytes_before = capacity();
  2817           expand(expand_bytes);
  2821       if (mark_in_progress()) {
  2822         concurrent_mark()->update_g1_committed();
  2825 #ifdef TRACESPINNING
  2826       ParallelTaskTerminator::print_termination_counts();
  2827 #endif
  2829       gc_epilogue(false);
  2832     assert(verify_region_lists(), "Bad region lists.");
  2834     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  2835       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  2836       print_tracing_info();
  2837       vm_exit(-1);
  2841   if (PrintHeapAtGC) {
  2842     Universe::print_heap_after_gc();
  2844   if (G1SummarizeRSetStats &&
  2845       (G1SummarizeRSetStatsPeriod > 0) &&
  2846       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  2847     g1_rem_set()->print_summary_info();
  2851 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  2852   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  2853   // make sure we don't call set_gc_alloc_region() multiple times on
  2854   // the same region
  2855   assert(r == NULL || !r->is_gc_alloc_region(),
  2856          "shouldn't already be a GC alloc region");
  2857   HeapWord* original_top = NULL;
  2858   if (r != NULL)
  2859     original_top = r->top();
  2861   // We will want to record the used space in r as being there before gc.
  2862   // One we install it as a GC alloc region it's eligible for allocation.
  2863   // So record it now and use it later.
  2864   size_t r_used = 0;
  2865   if (r != NULL) {
  2866     r_used = r->used();
  2868     if (ParallelGCThreads > 0) {
  2869       // need to take the lock to guard against two threads calling
  2870       // get_gc_alloc_region concurrently (very unlikely but...)
  2871       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2872       r->save_marks();
  2875   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  2876   _gc_alloc_regions[purpose] = r;
  2877   if (old_alloc_region != NULL) {
  2878     // Replace aliases too.
  2879     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2880       if (_gc_alloc_regions[ap] == old_alloc_region) {
  2881         _gc_alloc_regions[ap] = r;
  2885   if (r != NULL) {
  2886     push_gc_alloc_region(r);
  2887     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  2888       // We are using a region as a GC alloc region after it has been used
  2889       // as a mutator allocation region during the current marking cycle.
  2890       // The mutator-allocated objects are currently implicitly marked, but
  2891       // when we move hr->next_top_at_mark_start() forward at the the end
  2892       // of the GC pause, they won't be.  We therefore mark all objects in
  2893       // the "gap".  We do this object-by-object, since marking densely
  2894       // does not currently work right with marking bitmap iteration.  This
  2895       // means we rely on TLAB filling at the start of pauses, and no
  2896       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  2897       // to fix the marking bitmap iteration.
  2898       HeapWord* curhw = r->next_top_at_mark_start();
  2899       HeapWord* t = original_top;
  2901       while (curhw < t) {
  2902         oop cur = (oop)curhw;
  2903         // We'll assume parallel for generality.  This is rare code.
  2904         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  2905         curhw = curhw + cur->size();
  2907       assert(curhw == t, "Should have parsed correctly.");
  2909     if (G1PolicyVerbose > 1) {
  2910       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  2911                           "for survivors:", r->bottom(), original_top, r->end());
  2912       r->print();
  2914     g1_policy()->record_before_bytes(r_used);
  2918 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  2919   assert(Thread::current()->is_VM_thread() ||
  2920          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  2921   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  2922          "Precondition.");
  2923   hr->set_is_gc_alloc_region(true);
  2924   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  2925   _gc_alloc_region_list = hr;
  2928 #ifdef G1_DEBUG
  2929 class FindGCAllocRegion: public HeapRegionClosure {
  2930 public:
  2931   bool doHeapRegion(HeapRegion* r) {
  2932     if (r->is_gc_alloc_region()) {
  2933       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  2934                              r->hrs_index(), r->bottom());
  2936     return false;
  2938 };
  2939 #endif // G1_DEBUG
  2941 void G1CollectedHeap::forget_alloc_region_list() {
  2942   assert(Thread::current()->is_VM_thread(), "Precondition");
  2943   while (_gc_alloc_region_list != NULL) {
  2944     HeapRegion* r = _gc_alloc_region_list;
  2945     assert(r->is_gc_alloc_region(), "Invariant.");
  2946     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
  2947     // newly allocated data in order to be able to apply deferred updates
  2948     // before the GC is done for verification purposes (i.e to allow
  2949     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
  2950     // collection.
  2951     r->ContiguousSpace::set_saved_mark();
  2952     _gc_alloc_region_list = r->next_gc_alloc_region();
  2953     r->set_next_gc_alloc_region(NULL);
  2954     r->set_is_gc_alloc_region(false);
  2955     if (r->is_survivor()) {
  2956       if (r->is_empty()) {
  2957         r->set_not_young();
  2958       } else {
  2959         _young_list->add_survivor_region(r);
  2962     if (r->is_empty()) {
  2963       ++_free_regions;
  2966 #ifdef G1_DEBUG
  2967   FindGCAllocRegion fa;
  2968   heap_region_iterate(&fa);
  2969 #endif // G1_DEBUG
  2973 bool G1CollectedHeap::check_gc_alloc_regions() {
  2974   // TODO: allocation regions check
  2975   return true;
  2978 void G1CollectedHeap::get_gc_alloc_regions() {
  2979   // First, let's check that the GC alloc region list is empty (it should)
  2980   assert(_gc_alloc_region_list == NULL, "invariant");
  2982   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2983     assert(_gc_alloc_regions[ap] == NULL, "invariant");
  2984     assert(_gc_alloc_region_counts[ap] == 0, "invariant");
  2986     // Create new GC alloc regions.
  2987     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
  2988     _retained_gc_alloc_regions[ap] = NULL;
  2990     if (alloc_region != NULL) {
  2991       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
  2993       // let's make sure that the GC alloc region is not tagged as such
  2994       // outside a GC operation
  2995       assert(!alloc_region->is_gc_alloc_region(), "sanity");
  2997       if (alloc_region->in_collection_set() ||
  2998           alloc_region->top() == alloc_region->end() ||
  2999           alloc_region->top() == alloc_region->bottom()) {
  3000         // we will discard the current GC alloc region if it's in the
  3001         // collection set (it can happen!), if it's already full (no
  3002         // point in using it), or if it's empty (this means that it
  3003         // was emptied during a cleanup and it should be on the free
  3004         // list now).
  3006         alloc_region = NULL;
  3010     if (alloc_region == NULL) {
  3011       // we will get a new GC alloc region
  3012       alloc_region = newAllocRegionWithExpansion(ap, 0);
  3013     } else {
  3014       // the region was retained from the last collection
  3015       ++_gc_alloc_region_counts[ap];
  3018     if (alloc_region != NULL) {
  3019       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
  3020       set_gc_alloc_region(ap, alloc_region);
  3023     assert(_gc_alloc_regions[ap] == NULL ||
  3024            _gc_alloc_regions[ap]->is_gc_alloc_region(),
  3025            "the GC alloc region should be tagged as such");
  3026     assert(_gc_alloc_regions[ap] == NULL ||
  3027            _gc_alloc_regions[ap] == _gc_alloc_region_list,
  3028            "the GC alloc region should be the same as the GC alloc list head");
  3030   // Set alternative regions for allocation purposes that have reached
  3031   // their limit.
  3032   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3033     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  3034     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  3035       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  3038   assert(check_gc_alloc_regions(), "alloc regions messed up");
  3041 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
  3042   // We keep a separate list of all regions that have been alloc regions in
  3043   // the current collection pause. Forget that now. This method will
  3044   // untag the GC alloc regions and tear down the GC alloc region
  3045   // list. It's desirable that no regions are tagged as GC alloc
  3046   // outside GCs.
  3047   forget_alloc_region_list();
  3049   // The current alloc regions contain objs that have survived
  3050   // collection. Make them no longer GC alloc regions.
  3051   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3052     HeapRegion* r = _gc_alloc_regions[ap];
  3053     _retained_gc_alloc_regions[ap] = NULL;
  3054     _gc_alloc_region_counts[ap] = 0;
  3056     if (r != NULL) {
  3057       // we retain nothing on _gc_alloc_regions between GCs
  3058       set_gc_alloc_region(ap, NULL);
  3060       if (r->is_empty()) {
  3061         // we didn't actually allocate anything in it; let's just put
  3062         // it on the free list
  3063         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  3064         r->set_zero_fill_complete();
  3065         put_free_region_on_list_locked(r);
  3066       } else if (_retain_gc_alloc_region[ap] && !totally) {
  3067         // retain it so that we can use it at the beginning of the next GC
  3068         _retained_gc_alloc_regions[ap] = r;
  3074 #ifndef PRODUCT
  3075 // Useful for debugging
  3077 void G1CollectedHeap::print_gc_alloc_regions() {
  3078   gclog_or_tty->print_cr("GC alloc regions");
  3079   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3080     HeapRegion* r = _gc_alloc_regions[ap];
  3081     if (r == NULL) {
  3082       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
  3083     } else {
  3084       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
  3085                              ap, r->bottom(), r->used());
  3089 #endif // PRODUCT
  3091 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3092   _drain_in_progress = false;
  3093   set_evac_failure_closure(cl);
  3094   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3097 void G1CollectedHeap::finalize_for_evac_failure() {
  3098   assert(_evac_failure_scan_stack != NULL &&
  3099          _evac_failure_scan_stack->length() == 0,
  3100          "Postcondition");
  3101   assert(!_drain_in_progress, "Postcondition");
  3102   // Don't have to delete, since the scan stack is a resource object.
  3103   _evac_failure_scan_stack = NULL;
  3108 // *** Sequential G1 Evacuation
  3110 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
  3111   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3112   // let the caller handle alloc failure
  3113   if (alloc_region == NULL) return NULL;
  3114   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
  3115          "Either the object is humongous or the region isn't");
  3116   HeapWord* block = alloc_region->allocate(word_size);
  3117   if (block == NULL) {
  3118     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
  3120   return block;
  3123 class G1IsAliveClosure: public BoolObjectClosure {
  3124   G1CollectedHeap* _g1;
  3125 public:
  3126   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3127   void do_object(oop p) { assert(false, "Do not call."); }
  3128   bool do_object_b(oop p) {
  3129     // It is reachable if it is outside the collection set, or is inside
  3130     // and forwarded.
  3132 #ifdef G1_DEBUG
  3133     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  3134                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  3135                            !_g1->obj_in_cs(p) || p->is_forwarded());
  3136 #endif // G1_DEBUG
  3138     return !_g1->obj_in_cs(p) || p->is_forwarded();
  3140 };
  3142 class G1KeepAliveClosure: public OopClosure {
  3143   G1CollectedHeap* _g1;
  3144 public:
  3145   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3146   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  3147   void do_oop(      oop* p) {
  3148     oop obj = *p;
  3149 #ifdef G1_DEBUG
  3150     if (PrintGC && Verbose) {
  3151       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  3152                              p, (void*) obj, (void*) *p);
  3154 #endif // G1_DEBUG
  3156     if (_g1->obj_in_cs(obj)) {
  3157       assert( obj->is_forwarded(), "invariant" );
  3158       *p = obj->forwardee();
  3159 #ifdef G1_DEBUG
  3160       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  3161                              (void*) obj, (void*) *p);
  3162 #endif // G1_DEBUG
  3165 };
  3167 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
  3168 private:
  3169   G1CollectedHeap* _g1;
  3170   G1RemSet* _g1_rem_set;
  3171 public:
  3172   UpdateRSetImmediate(G1CollectedHeap* g1) :
  3173     _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
  3175   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3176   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3177   template <class T> void do_oop_work(T* p) {
  3178     assert(_from->is_in_reserved(p), "paranoia");
  3179     T heap_oop = oopDesc::load_heap_oop(p);
  3180     if (!oopDesc::is_null(heap_oop) && !_from->is_survivor()) {
  3181       _g1_rem_set->par_write_ref(_from, p, 0);
  3184 };
  3186 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3187 private:
  3188   G1CollectedHeap* _g1;
  3189   DirtyCardQueue *_dcq;
  3190   CardTableModRefBS* _ct_bs;
  3192 public:
  3193   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3194     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3196   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3197   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3198   template <class T> void do_oop_work(T* p) {
  3199     assert(_from->is_in_reserved(p), "paranoia");
  3200     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
  3201         !_from->is_survivor()) {
  3202       size_t card_index = _ct_bs->index_for(p);
  3203       if (_ct_bs->mark_card_deferred(card_index)) {
  3204         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3208 };
  3212 class RemoveSelfPointerClosure: public ObjectClosure {
  3213 private:
  3214   G1CollectedHeap* _g1;
  3215   ConcurrentMark* _cm;
  3216   HeapRegion* _hr;
  3217   size_t _prev_marked_bytes;
  3218   size_t _next_marked_bytes;
  3219   OopsInHeapRegionClosure *_cl;
  3220 public:
  3221   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
  3222     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3223     _next_marked_bytes(0), _cl(cl) {}
  3225   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3226   size_t next_marked_bytes() { return _next_marked_bytes; }
  3228   // The original idea here was to coalesce evacuated and dead objects.
  3229   // However that caused complications with the block offset table (BOT).
  3230   // In particular if there were two TLABs, one of them partially refined.
  3231   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3232   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3233   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3234   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3235   // would point into middle of the filler object.
  3236   //
  3237   // The current approach is to not coalesce and leave the BOT contents intact.
  3238   void do_object(oop obj) {
  3239     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3240       // The object failed to move.
  3241       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3242       _cm->markPrev(obj);
  3243       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3244       _prev_marked_bytes += (obj->size() * HeapWordSize);
  3245       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3246         _cm->markAndGrayObjectIfNecessary(obj);
  3248       obj->set_mark(markOopDesc::prototype());
  3249       // While we were processing RSet buffers during the
  3250       // collection, we actually didn't scan any cards on the
  3251       // collection set, since we didn't want to update remebered
  3252       // sets with entries that point into the collection set, given
  3253       // that live objects fromthe collection set are about to move
  3254       // and such entries will be stale very soon. This change also
  3255       // dealt with a reliability issue which involved scanning a
  3256       // card in the collection set and coming across an array that
  3257       // was being chunked and looking malformed. The problem is
  3258       // that, if evacuation fails, we might have remembered set
  3259       // entries missing given that we skipped cards on the
  3260       // collection set. So, we'll recreate such entries now.
  3261       obj->oop_iterate(_cl);
  3262       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3263     } else {
  3264       // The object has been either evacuated or is dead. Fill it with a
  3265       // dummy object.
  3266       MemRegion mr((HeapWord*)obj, obj->size());
  3267       CollectedHeap::fill_with_object(mr);
  3268       _cm->clearRangeBothMaps(mr);
  3271 };
  3273 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3274   UpdateRSetImmediate immediate_update(_g1h);
  3275   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3276   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3277   OopsInHeapRegionClosure *cl;
  3278   if (G1DeferredRSUpdate) {
  3279     cl = &deferred_update;
  3280   } else {
  3281     cl = &immediate_update;
  3283   HeapRegion* cur = g1_policy()->collection_set();
  3284   while (cur != NULL) {
  3285     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3287     RemoveSelfPointerClosure rspc(_g1h, cl);
  3288     if (cur->evacuation_failed()) {
  3289       assert(cur->in_collection_set(), "bad CS");
  3290       cl->set_region(cur);
  3291       cur->object_iterate(&rspc);
  3293       // A number of manipulations to make the TAMS be the current top,
  3294       // and the marked bytes be the ones observed in the iteration.
  3295       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3296         // The comments below are the postconditions achieved by the
  3297         // calls.  Note especially the last such condition, which says that
  3298         // the count of marked bytes has been properly restored.
  3299         cur->note_start_of_marking(false);
  3300         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3301         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3302         // _next_marked_bytes == prev_marked_bytes.
  3303         cur->note_end_of_marking();
  3304         // _prev_top_at_mark_start == top(),
  3305         // _prev_marked_bytes == prev_marked_bytes
  3307       // If there is no mark in progress, we modified the _next variables
  3308       // above needlessly, but harmlessly.
  3309       if (_g1h->mark_in_progress()) {
  3310         cur->note_start_of_marking(false);
  3311         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3312         // _next_marked_bytes == next_marked_bytes.
  3315       // Now make sure the region has the right index in the sorted array.
  3316       g1_policy()->note_change_in_marked_bytes(cur);
  3318     cur = cur->next_in_collection_set();
  3320   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3322   // Now restore saved marks, if any.
  3323   if (_objs_with_preserved_marks != NULL) {
  3324     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3325     assert(_objs_with_preserved_marks->length() ==
  3326            _preserved_marks_of_objs->length(), "Both or none.");
  3327     guarantee(_objs_with_preserved_marks->length() ==
  3328               _preserved_marks_of_objs->length(), "Both or none.");
  3329     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3330       oop obj   = _objs_with_preserved_marks->at(i);
  3331       markOop m = _preserved_marks_of_objs->at(i);
  3332       obj->set_mark(m);
  3334     // Delete the preserved marks growable arrays (allocated on the C heap).
  3335     delete _objs_with_preserved_marks;
  3336     delete _preserved_marks_of_objs;
  3337     _objs_with_preserved_marks = NULL;
  3338     _preserved_marks_of_objs = NULL;
  3342 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3343   _evac_failure_scan_stack->push(obj);
  3346 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3347   assert(_evac_failure_scan_stack != NULL, "precondition");
  3349   while (_evac_failure_scan_stack->length() > 0) {
  3350      oop obj = _evac_failure_scan_stack->pop();
  3351      _evac_failure_closure->set_region(heap_region_containing(obj));
  3352      obj->oop_iterate_backwards(_evac_failure_closure);
  3356 void G1CollectedHeap::handle_evacuation_failure(oop old) {
  3357   markOop m = old->mark();
  3358   // forward to self
  3359   assert(!old->is_forwarded(), "precondition");
  3361   old->forward_to(old);
  3362   handle_evacuation_failure_common(old, m);
  3365 oop
  3366 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3367                                                oop old) {
  3368   markOop m = old->mark();
  3369   oop forward_ptr = old->forward_to_atomic(old);
  3370   if (forward_ptr == NULL) {
  3371     // Forward-to-self succeeded.
  3372     if (_evac_failure_closure != cl) {
  3373       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3374       assert(!_drain_in_progress,
  3375              "Should only be true while someone holds the lock.");
  3376       // Set the global evac-failure closure to the current thread's.
  3377       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3378       set_evac_failure_closure(cl);
  3379       // Now do the common part.
  3380       handle_evacuation_failure_common(old, m);
  3381       // Reset to NULL.
  3382       set_evac_failure_closure(NULL);
  3383     } else {
  3384       // The lock is already held, and this is recursive.
  3385       assert(_drain_in_progress, "This should only be the recursive case.");
  3386       handle_evacuation_failure_common(old, m);
  3388     return old;
  3389   } else {
  3390     // Someone else had a place to copy it.
  3391     return forward_ptr;
  3395 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3396   set_evacuation_failed(true);
  3398   preserve_mark_if_necessary(old, m);
  3400   HeapRegion* r = heap_region_containing(old);
  3401   if (!r->evacuation_failed()) {
  3402     r->set_evacuation_failed(true);
  3403     if (G1PrintRegions) {
  3404       gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
  3405                           "["PTR_FORMAT","PTR_FORMAT")\n",
  3406                           r, r->bottom(), r->end());
  3410   push_on_evac_failure_scan_stack(old);
  3412   if (!_drain_in_progress) {
  3413     // prevent recursion in copy_to_survivor_space()
  3414     _drain_in_progress = true;
  3415     drain_evac_failure_scan_stack();
  3416     _drain_in_progress = false;
  3420 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  3421   if (m != markOopDesc::prototype()) {
  3422     if (_objs_with_preserved_marks == NULL) {
  3423       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  3424       _objs_with_preserved_marks =
  3425         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3426       _preserved_marks_of_objs =
  3427         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  3429     _objs_with_preserved_marks->push(obj);
  3430     _preserved_marks_of_objs->push(m);
  3434 // *** Parallel G1 Evacuation
  3436 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  3437                                                   size_t word_size) {
  3438   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3439   // let the caller handle alloc failure
  3440   if (alloc_region == NULL) return NULL;
  3442   HeapWord* block = alloc_region->par_allocate(word_size);
  3443   if (block == NULL) {
  3444     MutexLockerEx x(par_alloc_during_gc_lock(),
  3445                     Mutex::_no_safepoint_check_flag);
  3446     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  3448   return block;
  3451 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  3452                                             bool par) {
  3453   // Another thread might have obtained alloc_region for the given
  3454   // purpose, and might be attempting to allocate in it, and might
  3455   // succeed.  Therefore, we can't do the "finalization" stuff on the
  3456   // region below until we're sure the last allocation has happened.
  3457   // We ensure this by allocating the remaining space with a garbage
  3458   // object.
  3459   if (par) par_allocate_remaining_space(alloc_region);
  3460   // Now we can do the post-GC stuff on the region.
  3461   alloc_region->note_end_of_copying();
  3462   g1_policy()->record_after_bytes(alloc_region->used());
  3465 HeapWord*
  3466 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  3467                                          HeapRegion*    alloc_region,
  3468                                          bool           par,
  3469                                          size_t         word_size) {
  3470   HeapWord* block = NULL;
  3471   // In the parallel case, a previous thread to obtain the lock may have
  3472   // already assigned a new gc_alloc_region.
  3473   if (alloc_region != _gc_alloc_regions[purpose]) {
  3474     assert(par, "But should only happen in parallel case.");
  3475     alloc_region = _gc_alloc_regions[purpose];
  3476     if (alloc_region == NULL) return NULL;
  3477     block = alloc_region->par_allocate(word_size);
  3478     if (block != NULL) return block;
  3479     // Otherwise, continue; this new region is empty, too.
  3481   assert(alloc_region != NULL, "We better have an allocation region");
  3482   retire_alloc_region(alloc_region, par);
  3484   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  3485     // Cannot allocate more regions for the given purpose.
  3486     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  3487     // Is there an alternative?
  3488     if (purpose != alt_purpose) {
  3489       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  3490       // Has not the alternative region been aliased?
  3491       if (alloc_region != alt_region && alt_region != NULL) {
  3492         // Try to allocate in the alternative region.
  3493         if (par) {
  3494           block = alt_region->par_allocate(word_size);
  3495         } else {
  3496           block = alt_region->allocate(word_size);
  3498         // Make an alias.
  3499         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  3500         if (block != NULL) {
  3501           return block;
  3503         retire_alloc_region(alt_region, par);
  3505       // Both the allocation region and the alternative one are full
  3506       // and aliased, replace them with a new allocation region.
  3507       purpose = alt_purpose;
  3508     } else {
  3509       set_gc_alloc_region(purpose, NULL);
  3510       return NULL;
  3514   // Now allocate a new region for allocation.
  3515   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
  3517   // let the caller handle alloc failure
  3518   if (alloc_region != NULL) {
  3520     assert(check_gc_alloc_regions(), "alloc regions messed up");
  3521     assert(alloc_region->saved_mark_at_top(),
  3522            "Mark should have been saved already.");
  3523     // We used to assert that the region was zero-filled here, but no
  3524     // longer.
  3526     // This must be done last: once it's installed, other regions may
  3527     // allocate in it (without holding the lock.)
  3528     set_gc_alloc_region(purpose, alloc_region);
  3530     if (par) {
  3531       block = alloc_region->par_allocate(word_size);
  3532     } else {
  3533       block = alloc_region->allocate(word_size);
  3535     // Caller handles alloc failure.
  3536   } else {
  3537     // This sets other apis using the same old alloc region to NULL, also.
  3538     set_gc_alloc_region(purpose, NULL);
  3540   return block;  // May be NULL.
  3543 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  3544   HeapWord* block = NULL;
  3545   size_t free_words;
  3546   do {
  3547     free_words = r->free()/HeapWordSize;
  3548     // If there's too little space, no one can allocate, so we're done.
  3549     if (free_words < (size_t)oopDesc::header_size()) return;
  3550     // Otherwise, try to claim it.
  3551     block = r->par_allocate(free_words);
  3552   } while (block == NULL);
  3553   fill_with_object(block, free_words);
  3556 #ifndef PRODUCT
  3557 bool GCLabBitMapClosure::do_bit(size_t offset) {
  3558   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  3559   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  3560   return true;
  3562 #endif // PRODUCT
  3564 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  3565   : _g1h(g1h),
  3566     _refs(g1h->task_queue(queue_num)),
  3567     _dcq(&g1h->dirty_card_queue_set()),
  3568     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  3569     _g1_rem(g1h->g1_rem_set()),
  3570     _hash_seed(17), _queue_num(queue_num),
  3571     _term_attempts(0),
  3572     _age_table(false),
  3573 #if G1_DETAILED_STATS
  3574     _pushes(0), _pops(0), _steals(0),
  3575     _steal_attempts(0),  _overflow_pushes(0),
  3576 #endif
  3577     _strong_roots_time(0), _term_time(0),
  3578     _alloc_buffer_waste(0), _undo_waste(0)
  3580   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  3581   // we "sacrifice" entry 0 to keep track of surviving bytes for
  3582   // non-young regions (where the age is -1)
  3583   // We also add a few elements at the beginning and at the end in
  3584   // an attempt to eliminate cache contention
  3585   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  3586   size_t array_length = PADDING_ELEM_NUM +
  3587                         real_length +
  3588                         PADDING_ELEM_NUM;
  3589   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  3590   if (_surviving_young_words_base == NULL)
  3591     vm_exit_out_of_memory(array_length * sizeof(size_t),
  3592                           "Not enough space for young surv histo.");
  3593   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  3594   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  3596   _overflowed_refs = new OverflowQueue(10);
  3598   _start = os::elapsedTime();
  3601 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  3602   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  3603   _par_scan_state(par_scan_state) { }
  3605 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
  3606   // This is called _after_ do_oop_work has been called, hence after
  3607   // the object has been relocated to its new location and *p points
  3608   // to its new location.
  3610   T heap_oop = oopDesc::load_heap_oop(p);
  3611   if (!oopDesc::is_null(heap_oop)) {
  3612     oop obj = oopDesc::decode_heap_oop(heap_oop);
  3613     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
  3614            "shouldn't still be in the CSet if evacuation didn't fail.");
  3615     HeapWord* addr = (HeapWord*)obj;
  3616     if (_g1->is_in_g1_reserved(addr))
  3617       _cm->grayRoot(oop(addr));
  3621 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  3622   size_t    word_sz = old->size();
  3623   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  3624   // +1 to make the -1 indexes valid...
  3625   int       young_index = from_region->young_index_in_cset()+1;
  3626   assert( (from_region->is_young() && young_index > 0) ||
  3627           (!from_region->is_young() && young_index == 0), "invariant" );
  3628   G1CollectorPolicy* g1p = _g1->g1_policy();
  3629   markOop m = old->mark();
  3630   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  3631                                            : m->age();
  3632   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  3633                                                              word_sz);
  3634   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  3635   oop       obj     = oop(obj_ptr);
  3637   if (obj_ptr == NULL) {
  3638     // This will either forward-to-self, or detect that someone else has
  3639     // installed a forwarding pointer.
  3640     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  3641     return _g1->handle_evacuation_failure_par(cl, old);
  3644   // We're going to allocate linearly, so might as well prefetch ahead.
  3645   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  3647   oop forward_ptr = old->forward_to_atomic(obj);
  3648   if (forward_ptr == NULL) {
  3649     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  3650     if (g1p->track_object_age(alloc_purpose)) {
  3651       // We could simply do obj->incr_age(). However, this causes a
  3652       // performance issue. obj->incr_age() will first check whether
  3653       // the object has a displaced mark by checking its mark word;
  3654       // getting the mark word from the new location of the object
  3655       // stalls. So, given that we already have the mark word and we
  3656       // are about to install it anyway, it's better to increase the
  3657       // age on the mark word, when the object does not have a
  3658       // displaced mark word. We're not expecting many objects to have
  3659       // a displaced marked word, so that case is not optimized
  3660       // further (it could be...) and we simply call obj->incr_age().
  3662       if (m->has_displaced_mark_helper()) {
  3663         // in this case, we have to install the mark word first,
  3664         // otherwise obj looks to be forwarded (the old mark word,
  3665         // which contains the forward pointer, was copied)
  3666         obj->set_mark(m);
  3667         obj->incr_age();
  3668       } else {
  3669         m = m->incr_age();
  3670         obj->set_mark(m);
  3672       _par_scan_state->age_table()->add(obj, word_sz);
  3673     } else {
  3674       obj->set_mark(m);
  3677     // preserve "next" mark bit
  3678     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  3679       if (!use_local_bitmaps ||
  3680           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  3681         // if we couldn't mark it on the local bitmap (this happens when
  3682         // the object was not allocated in the GCLab), we have to bite
  3683         // the bullet and do the standard parallel mark
  3684         _cm->markAndGrayObjectIfNecessary(obj);
  3686 #if 1
  3687       if (_g1->isMarkedNext(old)) {
  3688         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  3690 #endif
  3693     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  3694     surv_young_words[young_index] += word_sz;
  3696     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  3697       arrayOop(old)->set_length(0);
  3698       oop* old_p = set_partial_array_mask(old);
  3699       _par_scan_state->push_on_queue(old_p);
  3700     } else {
  3701       // No point in using the slower heap_region_containing() method,
  3702       // given that we know obj is in the heap.
  3703       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  3704       obj->oop_iterate_backwards(_scanner);
  3706   } else {
  3707     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  3708     obj = forward_ptr;
  3710   return obj;
  3713 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee, bool skip_cset_test>
  3714 template <class T>
  3715 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee, skip_cset_test>
  3716 ::do_oop_work(T* p) {
  3717   oop obj = oopDesc::load_decode_heap_oop(p);
  3718   assert(barrier != G1BarrierRS || obj != NULL,
  3719          "Precondition: G1BarrierRS implies obj is nonNull");
  3721   // The only time we skip the cset test is when we're scanning
  3722   // references popped from the queue. And we only push on the queue
  3723   // references that we know point into the cset, so no point in
  3724   // checking again. But we'll leave an assert here for peace of mind.
  3725   assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant");
  3727   // here the null check is implicit in the cset_fast_test() test
  3728   if (skip_cset_test || _g1->in_cset_fast_test(obj)) {
  3729 #if G1_REM_SET_LOGGING
  3730     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  3731                            "into CS.", p, (void*) obj);
  3732 #endif
  3733     if (obj->is_forwarded()) {
  3734       oopDesc::encode_store_heap_oop(p, obj->forwardee());
  3735     } else {
  3736       oop copy_oop = copy_to_survivor_space(obj);
  3737       oopDesc::encode_store_heap_oop(p, copy_oop);
  3739     // When scanning the RS, we only care about objs in CS.
  3740     if (barrier == G1BarrierRS) {
  3741       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3745   // When scanning moved objs, must look at all oops.
  3746   if (barrier == G1BarrierEvac && obj != NULL) {
  3747     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3750   if (do_gen_barrier && obj != NULL) {
  3751     par_do_barrier(p);
  3755 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(oop* p);
  3756 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(narrowOop* p);
  3758 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  3759   assert(has_partial_array_mask(p), "invariant");
  3760   oop old = clear_partial_array_mask(p);
  3761   assert(old->is_objArray(), "must be obj array");
  3762   assert(old->is_forwarded(), "must be forwarded");
  3763   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  3765   objArrayOop obj = objArrayOop(old->forwardee());
  3766   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  3767   // Process ParGCArrayScanChunk elements now
  3768   // and push the remainder back onto queue
  3769   int start     = arrayOop(old)->length();
  3770   int end       = obj->length();
  3771   int remainder = end - start;
  3772   assert(start <= end, "just checking");
  3773   if (remainder > 2 * ParGCArrayScanChunk) {
  3774     // Test above combines last partial chunk with a full chunk
  3775     end = start + ParGCArrayScanChunk;
  3776     arrayOop(old)->set_length(end);
  3777     // Push remainder.
  3778     oop* old_p = set_partial_array_mask(old);
  3779     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
  3780     _par_scan_state->push_on_queue(old_p);
  3781   } else {
  3782     // Restore length so that the heap remains parsable in
  3783     // case of evacuation failure.
  3784     arrayOop(old)->set_length(end);
  3786   _scanner.set_region(_g1->heap_region_containing_raw(obj));
  3787   // process our set of indices (include header in first chunk)
  3788   obj->oop_iterate_range(&_scanner, start, end);
  3791 class G1ParEvacuateFollowersClosure : public VoidClosure {
  3792 protected:
  3793   G1CollectedHeap*              _g1h;
  3794   G1ParScanThreadState*         _par_scan_state;
  3795   RefToScanQueueSet*            _queues;
  3796   ParallelTaskTerminator*       _terminator;
  3798   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  3799   RefToScanQueueSet*      queues()         { return _queues; }
  3800   ParallelTaskTerminator* terminator()     { return _terminator; }
  3802 public:
  3803   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  3804                                 G1ParScanThreadState* par_scan_state,
  3805                                 RefToScanQueueSet* queues,
  3806                                 ParallelTaskTerminator* terminator)
  3807     : _g1h(g1h), _par_scan_state(par_scan_state),
  3808       _queues(queues), _terminator(terminator) {}
  3810   void do_void() {
  3811     G1ParScanThreadState* pss = par_scan_state();
  3812     while (true) {
  3813       pss->trim_queue();
  3814       IF_G1_DETAILED_STATS(pss->note_steal_attempt());
  3816       StarTask stolen_task;
  3817       if (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  3818         IF_G1_DETAILED_STATS(pss->note_steal());
  3820         // slightly paranoid tests; I'm trying to catch potential
  3821         // problems before we go into push_on_queue to know where the
  3822         // problem is coming from
  3823         assert((oop*)stolen_task != NULL, "Error");
  3824         if (stolen_task.is_narrow()) {
  3825           assert(UseCompressedOops, "Error");
  3826           narrowOop* p = (narrowOop*) stolen_task;
  3827           assert(has_partial_array_mask(p) ||
  3828                  _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "Error");
  3829           pss->push_on_queue(p);
  3830         } else {
  3831           oop* p = (oop*) stolen_task;
  3832           assert(has_partial_array_mask(p) || _g1h->obj_in_cs(*p), "Error");
  3833           pss->push_on_queue(p);
  3835         continue;
  3837       pss->start_term_time();
  3838       if (terminator()->offer_termination()) break;
  3839       pss->end_term_time();
  3841     pss->end_term_time();
  3842     pss->retire_alloc_buffers();
  3844 };
  3846 class G1ParTask : public AbstractGangTask {
  3847 protected:
  3848   G1CollectedHeap*       _g1h;
  3849   RefToScanQueueSet      *_queues;
  3850   ParallelTaskTerminator _terminator;
  3851   int _n_workers;
  3853   Mutex _stats_lock;
  3854   Mutex* stats_lock() { return &_stats_lock; }
  3856   size_t getNCards() {
  3857     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  3858       / G1BlockOffsetSharedArray::N_bytes;
  3861 public:
  3862   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  3863     : AbstractGangTask("G1 collection"),
  3864       _g1h(g1h),
  3865       _queues(task_queues),
  3866       _terminator(workers, _queues),
  3867       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
  3868       _n_workers(workers)
  3869   {}
  3871   RefToScanQueueSet* queues() { return _queues; }
  3873   RefToScanQueue *work_queue(int i) {
  3874     return queues()->queue(i);
  3877   void work(int i) {
  3878     if (i >= _n_workers) return;  // no work needed this round
  3879     ResourceMark rm;
  3880     HandleMark   hm;
  3882     G1ParScanThreadState            pss(_g1h, i);
  3883     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  3884     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  3885     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  3887     pss.set_evac_closure(&scan_evac_cl);
  3888     pss.set_evac_failure_closure(&evac_failure_cl);
  3889     pss.set_partial_scan_closure(&partial_scan_cl);
  3891     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  3892     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  3893     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  3895     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  3896     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  3897     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  3899     OopsInHeapRegionClosure        *scan_root_cl;
  3900     OopsInHeapRegionClosure        *scan_perm_cl;
  3901     OopsInHeapRegionClosure        *scan_so_cl;
  3903     if (_g1h->g1_policy()->should_initiate_conc_mark()) {
  3904       scan_root_cl = &scan_mark_root_cl;
  3905       scan_perm_cl = &scan_mark_perm_cl;
  3906       scan_so_cl   = &scan_mark_heap_rs_cl;
  3907     } else {
  3908       scan_root_cl = &only_scan_root_cl;
  3909       scan_perm_cl = &only_scan_perm_cl;
  3910       scan_so_cl   = &only_scan_heap_rs_cl;
  3913     pss.start_strong_roots();
  3914     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  3915                                   SharedHeap::SO_AllClasses,
  3916                                   scan_root_cl,
  3917                                   &only_scan_heap_rs_cl,
  3918                                   scan_so_cl,
  3919                                   scan_perm_cl,
  3920                                   i);
  3921     pss.end_strong_roots();
  3923       double start = os::elapsedTime();
  3924       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  3925       evac.do_void();
  3926       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  3927       double term_ms = pss.term_time()*1000.0;
  3928       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  3929       _g1h->g1_policy()->record_termination_time(i, term_ms);
  3931     if (G1UseSurvivorSpaces) {
  3932       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  3934     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  3936     // Clean up any par-expanded rem sets.
  3937     HeapRegionRemSet::par_cleanup();
  3939     MutexLocker x(stats_lock());
  3940     if (ParallelGCVerbose) {
  3941       gclog_or_tty->print("Thread %d complete:\n", i);
  3942 #if G1_DETAILED_STATS
  3943       gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
  3944                           pss.pushes(),
  3945                           pss.pops(),
  3946                           pss.overflow_pushes(),
  3947                           pss.steals(),
  3948                           pss.steal_attempts());
  3949 #endif
  3950       double elapsed      = pss.elapsed();
  3951       double strong_roots = pss.strong_roots_time();
  3952       double term         = pss.term_time();
  3953       gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
  3954                           "    Strong roots: %7.2f ms (%6.2f%%)\n"
  3955                           "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
  3956                           elapsed * 1000.0,
  3957                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
  3958                           term * 1000.0, (term*100.0/elapsed),
  3959                           pss.term_attempts());
  3960       size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
  3961       gclog_or_tty->print("  Waste: %8dK\n"
  3962                  "    Alloc Buffer: %8dK\n"
  3963                  "    Undo: %8dK\n",
  3964                  (total_waste * HeapWordSize) / K,
  3965                  (pss.alloc_buffer_waste() * HeapWordSize) / K,
  3966                  (pss.undo_waste() * HeapWordSize) / K);
  3969     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
  3970     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
  3972 };
  3974 // *** Common G1 Evacuation Stuff
  3976 void
  3977 G1CollectedHeap::
  3978 g1_process_strong_roots(bool collecting_perm_gen,
  3979                         SharedHeap::ScanningOption so,
  3980                         OopClosure* scan_non_heap_roots,
  3981                         OopsInHeapRegionClosure* scan_rs,
  3982                         OopsInHeapRegionClosure* scan_so,
  3983                         OopsInGenClosure* scan_perm,
  3984                         int worker_i) {
  3985   // First scan the strong roots, including the perm gen.
  3986   double ext_roots_start = os::elapsedTime();
  3987   double closure_app_time_sec = 0.0;
  3989   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  3990   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  3991   buf_scan_perm.set_generation(perm_gen());
  3993   // Walk the code cache w/o buffering, because StarTask cannot handle
  3994   // unaligned oop locations.
  3995   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
  3997   process_strong_roots(false, // no scoping; this is parallel code
  3998                        collecting_perm_gen, so,
  3999                        &buf_scan_non_heap_roots,
  4000                        &eager_scan_code_roots,
  4001                        &buf_scan_perm);
  4002   // Finish up any enqueued closure apps.
  4003   buf_scan_non_heap_roots.done();
  4004   buf_scan_perm.done();
  4005   double ext_roots_end = os::elapsedTime();
  4006   g1_policy()->reset_obj_copy_time(worker_i);
  4007   double obj_copy_time_sec =
  4008     buf_scan_non_heap_roots.closure_app_seconds() +
  4009     buf_scan_perm.closure_app_seconds();
  4010   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4011   double ext_root_time_ms =
  4012     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4013   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4015   // Scan strong roots in mark stack.
  4016   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4017     concurrent_mark()->oops_do(scan_non_heap_roots);
  4019   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4020   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4022   // XXX What should this be doing in the parallel case?
  4023   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4024   if (scan_so != NULL) {
  4025     scan_scan_only_set(scan_so, worker_i);
  4027   // Now scan the complement of the collection set.
  4028   if (scan_rs != NULL) {
  4029     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4031   // Finish with the ref_processor roots.
  4032   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4033     ref_processor()->oops_do(scan_non_heap_roots);
  4035   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4036   _process_strong_tasks->all_tasks_completed();
  4039 void
  4040 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
  4041                                        OopsInHeapRegionClosure* oc,
  4042                                        int worker_i) {
  4043   HeapWord* startAddr = r->bottom();
  4044   HeapWord* endAddr = r->used_region().end();
  4046   oc->set_region(r);
  4048   HeapWord* p = r->bottom();
  4049   HeapWord* t = r->top();
  4050   guarantee( p == r->next_top_at_mark_start(), "invariant" );
  4051   while (p < t) {
  4052     oop obj = oop(p);
  4053     p += obj->oop_iterate(oc);
  4057 void
  4058 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
  4059                                     int worker_i) {
  4060   double start = os::elapsedTime();
  4062   BufferingOopsInHeapRegionClosure boc(oc);
  4064   FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
  4065   FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
  4067   OopsInHeapRegionClosure *foc;
  4068   if (g1_policy()->should_initiate_conc_mark())
  4069     foc = &scan_and_mark;
  4070   else
  4071     foc = &scan_only;
  4073   HeapRegion* hr;
  4074   int n = 0;
  4075   while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
  4076     scan_scan_only_region(hr, foc, worker_i);
  4077     ++n;
  4079   boc.done();
  4081   double closure_app_s = boc.closure_app_seconds();
  4082   g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
  4083   double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
  4084   g1_policy()->record_scan_only_time(worker_i, ms, n);
  4087 void
  4088 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4089                                        OopClosure* non_root_closure) {
  4090   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4091   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4095 class SaveMarksClosure: public HeapRegionClosure {
  4096 public:
  4097   bool doHeapRegion(HeapRegion* r) {
  4098     r->save_marks();
  4099     return false;
  4101 };
  4103 void G1CollectedHeap::save_marks() {
  4104   if (ParallelGCThreads == 0) {
  4105     SaveMarksClosure sm;
  4106     heap_region_iterate(&sm);
  4108   // We do this even in the parallel case
  4109   perm_gen()->save_marks();
  4112 void G1CollectedHeap::evacuate_collection_set() {
  4113   set_evacuation_failed(false);
  4115   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4116   concurrent_g1_refine()->set_use_cache(false);
  4117   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  4119   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4120   set_par_threads(n_workers);
  4121   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4123   init_for_evac_failure(NULL);
  4125   rem_set()->prepare_for_younger_refs_iterate(true);
  4127   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4128   double start_par = os::elapsedTime();
  4129   if (ParallelGCThreads > 0) {
  4130     // The individual threads will set their evac-failure closures.
  4131     StrongRootsScope srs(this);
  4132     workers()->run_task(&g1_par_task);
  4133   } else {
  4134     StrongRootsScope srs(this);
  4135     g1_par_task.work(0);
  4138   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4139   g1_policy()->record_par_time(par_time);
  4140   set_par_threads(0);
  4141   // Is this the right thing to do here?  We don't save marks
  4142   // on individual heap regions when we allocate from
  4143   // them in parallel, so this seems like the correct place for this.
  4144   retire_all_alloc_regions();
  4146     G1IsAliveClosure is_alive(this);
  4147     G1KeepAliveClosure keep_alive(this);
  4148     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4150   release_gc_alloc_regions(false /* totally */);
  4151   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4153   concurrent_g1_refine()->clear_hot_cache();
  4154   concurrent_g1_refine()->set_use_cache(true);
  4156   finalize_for_evac_failure();
  4158   // Must do this before removing self-forwarding pointers, which clears
  4159   // the per-region evac-failure flags.
  4160   concurrent_mark()->complete_marking_in_collection_set();
  4162   if (evacuation_failed()) {
  4163     remove_self_forwarding_pointers();
  4164     if (PrintGCDetails) {
  4165       gclog_or_tty->print(" (evacuation failed)");
  4166     } else if (PrintGC) {
  4167       gclog_or_tty->print("--");
  4171   if (G1DeferredRSUpdate) {
  4172     RedirtyLoggedCardTableEntryFastClosure redirty;
  4173     dirty_card_queue_set().set_closure(&redirty);
  4174     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4175     JavaThread::dirty_card_queue_set().merge_bufferlists(&dirty_card_queue_set());
  4176     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4179   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4182 void G1CollectedHeap::free_region(HeapRegion* hr) {
  4183   size_t pre_used = 0;
  4184   size_t cleared_h_regions = 0;
  4185   size_t freed_regions = 0;
  4186   UncleanRegionList local_list;
  4188   HeapWord* start = hr->bottom();
  4189   HeapWord* end   = hr->prev_top_at_mark_start();
  4190   size_t used_bytes = hr->used();
  4191   size_t live_bytes = hr->max_live_bytes();
  4192   if (used_bytes > 0) {
  4193     guarantee( live_bytes <= used_bytes, "invariant" );
  4194   } else {
  4195     guarantee( live_bytes == 0, "invariant" );
  4198   size_t garbage_bytes = used_bytes - live_bytes;
  4199   if (garbage_bytes > 0)
  4200     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
  4202   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
  4203                    &local_list);
  4204   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  4205                           &local_list);
  4208 void
  4209 G1CollectedHeap::free_region_work(HeapRegion* hr,
  4210                                   size_t& pre_used,
  4211                                   size_t& cleared_h_regions,
  4212                                   size_t& freed_regions,
  4213                                   UncleanRegionList* list,
  4214                                   bool par) {
  4215   pre_used += hr->used();
  4216   if (hr->isHumongous()) {
  4217     assert(hr->startsHumongous(),
  4218            "Only the start of a humongous region should be freed.");
  4219     int ind = _hrs->find(hr);
  4220     assert(ind != -1, "Should have an index.");
  4221     // Clear the start region.
  4222     hr->hr_clear(par, true /*clear_space*/);
  4223     list->insert_before_head(hr);
  4224     cleared_h_regions++;
  4225     freed_regions++;
  4226     // Clear any continued regions.
  4227     ind++;
  4228     while ((size_t)ind < n_regions()) {
  4229       HeapRegion* hrc = _hrs->at(ind);
  4230       if (!hrc->continuesHumongous()) break;
  4231       // Otherwise, does continue the H region.
  4232       assert(hrc->humongous_start_region() == hr, "Huh?");
  4233       hrc->hr_clear(par, true /*clear_space*/);
  4234       cleared_h_regions++;
  4235       freed_regions++;
  4236       list->insert_before_head(hrc);
  4237       ind++;
  4239   } else {
  4240     hr->hr_clear(par, true /*clear_space*/);
  4241     list->insert_before_head(hr);
  4242     freed_regions++;
  4243     // If we're using clear2, this should not be enabled.
  4244     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  4248 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
  4249                                               size_t cleared_h_regions,
  4250                                               size_t freed_regions,
  4251                                               UncleanRegionList* list) {
  4252   if (list != NULL && list->sz() > 0) {
  4253     prepend_region_list_on_unclean_list(list);
  4255   // Acquire a lock, if we're parallel, to update possibly-shared
  4256   // variables.
  4257   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  4259     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4260     _summary_bytes_used -= pre_used;
  4261     _num_humongous_regions -= (int) cleared_h_regions;
  4262     _free_regions += freed_regions;
  4267 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  4268   while (list != NULL) {
  4269     guarantee( list->is_young(), "invariant" );
  4271     HeapWord* bottom = list->bottom();
  4272     HeapWord* end = list->end();
  4273     MemRegion mr(bottom, end);
  4274     ct_bs->dirty(mr);
  4276     list = list->get_next_young_region();
  4281 class G1ParCleanupCTTask : public AbstractGangTask {
  4282   CardTableModRefBS* _ct_bs;
  4283   G1CollectedHeap* _g1h;
  4284   HeapRegion* volatile _so_head;
  4285   HeapRegion* volatile _su_head;
  4286 public:
  4287   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  4288                      G1CollectedHeap* g1h,
  4289                      HeapRegion* scan_only_list,
  4290                      HeapRegion* survivor_list) :
  4291     AbstractGangTask("G1 Par Cleanup CT Task"),
  4292     _ct_bs(ct_bs),
  4293     _g1h(g1h),
  4294     _so_head(scan_only_list),
  4295     _su_head(survivor_list)
  4296   { }
  4298   void work(int i) {
  4299     HeapRegion* r;
  4300     while (r = _g1h->pop_dirty_cards_region()) {
  4301       clear_cards(r);
  4303     // Redirty the cards of the scan-only and survivor regions.
  4304     dirty_list(&this->_so_head);
  4305     dirty_list(&this->_su_head);
  4308   void clear_cards(HeapRegion* r) {
  4309     // Cards for Survivor and Scan-Only regions will be dirtied later.
  4310     if (!r->is_scan_only() && !r->is_survivor()) {
  4311       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  4315   void dirty_list(HeapRegion* volatile * head_ptr) {
  4316     HeapRegion* head;
  4317     do {
  4318       // Pop region off the list.
  4319       head = *head_ptr;
  4320       if (head != NULL) {
  4321         HeapRegion* r = (HeapRegion*)
  4322           Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
  4323         if (r == head) {
  4324           assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
  4325           _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
  4328     } while (*head_ptr != NULL);
  4330 };
  4333 #ifndef PRODUCT
  4334 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  4335   CardTableModRefBS* _ct_bs;
  4336 public:
  4337   G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
  4338     : _ct_bs(ct_bs)
  4339   { }
  4340   virtual bool doHeapRegion(HeapRegion* r)
  4342     MemRegion mr(r->bottom(), r->end());
  4343     if (r->is_scan_only() || r->is_survivor()) {
  4344       _ct_bs->verify_dirty_region(mr);
  4345     } else {
  4346       _ct_bs->verify_clean_region(mr);
  4348     return false;
  4350 };
  4351 #endif
  4353 void G1CollectedHeap::cleanUpCardTable() {
  4354   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4355   double start = os::elapsedTime();
  4357   // Iterate over the dirty cards region list.
  4358   G1ParCleanupCTTask cleanup_task(ct_bs, this,
  4359                                   _young_list->first_scan_only_region(),
  4360                                   _young_list->first_survivor_region());
  4361   if (ParallelGCThreads > 0) {
  4362     set_par_threads(workers()->total_workers());
  4363     workers()->run_task(&cleanup_task);
  4364     set_par_threads(0);
  4365   } else {
  4366     while (_dirty_cards_region_list) {
  4367       HeapRegion* r = _dirty_cards_region_list;
  4368       cleanup_task.clear_cards(r);
  4369       _dirty_cards_region_list = r->get_next_dirty_cards_region();
  4370       if (_dirty_cards_region_list == r) {
  4371         // The last region.
  4372         _dirty_cards_region_list = NULL;
  4374       r->set_next_dirty_cards_region(NULL);
  4376     // now, redirty the cards of the scan-only and survivor regions
  4377     // (it seemed faster to do it this way, instead of iterating over
  4378     // all regions and then clearing / dirtying as appropriate)
  4379     dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
  4380     dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  4382   double elapsed = os::elapsedTime() - start;
  4383   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4384 #ifndef PRODUCT
  4385   if (G1VerifyCTCleanup || VerifyAfterGC) {
  4386     G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
  4387     heap_region_iterate(&cleanup_verifier);
  4389 #endif
  4392 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
  4393   if (g1_policy()->should_do_collection_pause(word_size)) {
  4394     do_collection_pause();
  4398 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4399   double young_time_ms     = 0.0;
  4400   double non_young_time_ms = 0.0;
  4402   G1CollectorPolicy* policy = g1_policy();
  4404   double start_sec = os::elapsedTime();
  4405   bool non_young = true;
  4407   HeapRegion* cur = cs_head;
  4408   int age_bound = -1;
  4409   size_t rs_lengths = 0;
  4411   while (cur != NULL) {
  4412     if (non_young) {
  4413       if (cur->is_young()) {
  4414         double end_sec = os::elapsedTime();
  4415         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4416         non_young_time_ms += elapsed_ms;
  4418         start_sec = os::elapsedTime();
  4419         non_young = false;
  4421     } else {
  4422       if (!cur->is_on_free_list()) {
  4423         double end_sec = os::elapsedTime();
  4424         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4425         young_time_ms += elapsed_ms;
  4427         start_sec = os::elapsedTime();
  4428         non_young = true;
  4432     rs_lengths += cur->rem_set()->occupied();
  4434     HeapRegion* next = cur->next_in_collection_set();
  4435     assert(cur->in_collection_set(), "bad CS");
  4436     cur->set_next_in_collection_set(NULL);
  4437     cur->set_in_collection_set(false);
  4439     if (cur->is_young()) {
  4440       int index = cur->young_index_in_cset();
  4441       guarantee( index != -1, "invariant" );
  4442       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4443       size_t words_survived = _surviving_young_words[index];
  4444       cur->record_surv_words_in_group(words_survived);
  4445     } else {
  4446       int index = cur->young_index_in_cset();
  4447       guarantee( index == -1, "invariant" );
  4450     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4451             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4452             "invariant" );
  4454     if (!cur->evacuation_failed()) {
  4455       // And the region is empty.
  4456       assert(!cur->is_empty(),
  4457              "Should not have empty regions in a CS.");
  4458       free_region(cur);
  4459     } else {
  4460       guarantee( !cur->is_scan_only(), "should not be scan only" );
  4461       cur->uninstall_surv_rate_group();
  4462       if (cur->is_young())
  4463         cur->set_young_index_in_cset(-1);
  4464       cur->set_not_young();
  4465       cur->set_evacuation_failed(false);
  4467     cur = next;
  4470   policy->record_max_rs_lengths(rs_lengths);
  4471   policy->cset_regions_freed();
  4473   double end_sec = os::elapsedTime();
  4474   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4475   if (non_young)
  4476     non_young_time_ms += elapsed_ms;
  4477   else
  4478     young_time_ms += elapsed_ms;
  4480   policy->record_young_free_cset_time_ms(young_time_ms);
  4481   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  4484 HeapRegion*
  4485 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  4486   assert(ZF_mon->owned_by_self(), "Precondition");
  4487   HeapRegion* res = pop_unclean_region_list_locked();
  4488   if (res != NULL) {
  4489     assert(!res->continuesHumongous() &&
  4490            res->zero_fill_state() != HeapRegion::Allocated,
  4491            "Only free regions on unclean list.");
  4492     if (zero_filled) {
  4493       res->ensure_zero_filled_locked();
  4494       res->set_zero_fill_allocated();
  4497   return res;
  4500 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  4501   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  4502   return alloc_region_from_unclean_list_locked(zero_filled);
  4505 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  4506   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4507   put_region_on_unclean_list_locked(r);
  4508   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4511 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  4512   MutexLockerEx x(Cleanup_mon);
  4513   set_unclean_regions_coming_locked(b);
  4516 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  4517   assert(Cleanup_mon->owned_by_self(), "Precondition");
  4518   _unclean_regions_coming = b;
  4519   // Wake up mutator threads that might be waiting for completeCleanup to
  4520   // finish.
  4521   if (!b) Cleanup_mon->notify_all();
  4524 void G1CollectedHeap::wait_for_cleanup_complete() {
  4525   MutexLockerEx x(Cleanup_mon);
  4526   wait_for_cleanup_complete_locked();
  4529 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  4530   assert(Cleanup_mon->owned_by_self(), "precondition");
  4531   while (_unclean_regions_coming) {
  4532     Cleanup_mon->wait();
  4536 void
  4537 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  4538   assert(ZF_mon->owned_by_self(), "precondition.");
  4539   _unclean_region_list.insert_before_head(r);
  4542 void
  4543 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  4544   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4545   prepend_region_list_on_unclean_list_locked(list);
  4546   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4549 void
  4550 G1CollectedHeap::
  4551 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  4552   assert(ZF_mon->owned_by_self(), "precondition.");
  4553   _unclean_region_list.prepend_list(list);
  4556 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  4557   assert(ZF_mon->owned_by_self(), "precondition.");
  4558   HeapRegion* res = _unclean_region_list.pop();
  4559   if (res != NULL) {
  4560     // Inform ZF thread that there's a new unclean head.
  4561     if (_unclean_region_list.hd() != NULL && should_zf())
  4562       ZF_mon->notify_all();
  4564   return res;
  4567 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  4568   assert(ZF_mon->owned_by_self(), "precondition.");
  4569   return _unclean_region_list.hd();
  4573 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  4574   assert(ZF_mon->owned_by_self(), "Precondition");
  4575   HeapRegion* r = peek_unclean_region_list_locked();
  4576   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
  4577     // Result of below must be equal to "r", since we hold the lock.
  4578     (void)pop_unclean_region_list_locked();
  4579     put_free_region_on_list_locked(r);
  4580     return true;
  4581   } else {
  4582     return false;
  4586 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  4587   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4588   return move_cleaned_region_to_free_list_locked();
  4592 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  4593   assert(ZF_mon->owned_by_self(), "precondition.");
  4594   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4595   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
  4596         "Regions on free list must be zero filled");
  4597   assert(!r->isHumongous(), "Must not be humongous.");
  4598   assert(r->is_empty(), "Better be empty");
  4599   assert(!r->is_on_free_list(),
  4600          "Better not already be on free list");
  4601   assert(!r->is_on_unclean_list(),
  4602          "Better not already be on unclean list");
  4603   r->set_on_free_list(true);
  4604   r->set_next_on_free_list(_free_region_list);
  4605   _free_region_list = r;
  4606   _free_region_list_size++;
  4607   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4610 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  4611   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4612   put_free_region_on_list_locked(r);
  4615 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  4616   assert(ZF_mon->owned_by_self(), "precondition.");
  4617   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4618   HeapRegion* res = _free_region_list;
  4619   if (res != NULL) {
  4620     _free_region_list = res->next_from_free_list();
  4621     _free_region_list_size--;
  4622     res->set_on_free_list(false);
  4623     res->set_next_on_free_list(NULL);
  4624     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4626   return res;
  4630 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  4631   // By self, or on behalf of self.
  4632   assert(Heap_lock->is_locked(), "Precondition");
  4633   HeapRegion* res = NULL;
  4634   bool first = true;
  4635   while (res == NULL) {
  4636     if (zero_filled || !first) {
  4637       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4638       res = pop_free_region_list_locked();
  4639       if (res != NULL) {
  4640         assert(!res->zero_fill_is_allocated(),
  4641                "No allocated regions on free list.");
  4642         res->set_zero_fill_allocated();
  4643       } else if (!first) {
  4644         break;  // We tried both, time to return NULL.
  4648     if (res == NULL) {
  4649       res = alloc_region_from_unclean_list(zero_filled);
  4651     assert(res == NULL ||
  4652            !zero_filled ||
  4653            res->zero_fill_is_allocated(),
  4654            "We must have allocated the region we're returning");
  4655     first = false;
  4657   return res;
  4660 void G1CollectedHeap::remove_allocated_regions_from_lists() {
  4661   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4663     HeapRegion* prev = NULL;
  4664     HeapRegion* cur = _unclean_region_list.hd();
  4665     while (cur != NULL) {
  4666       HeapRegion* next = cur->next_from_unclean_list();
  4667       if (cur->zero_fill_is_allocated()) {
  4668         // Remove from the list.
  4669         if (prev == NULL) {
  4670           (void)_unclean_region_list.pop();
  4671         } else {
  4672           _unclean_region_list.delete_after(prev);
  4674         cur->set_on_unclean_list(false);
  4675         cur->set_next_on_unclean_list(NULL);
  4676       } else {
  4677         prev = cur;
  4679       cur = next;
  4681     assert(_unclean_region_list.sz() == unclean_region_list_length(),
  4682            "Inv");
  4686     HeapRegion* prev = NULL;
  4687     HeapRegion* cur = _free_region_list;
  4688     while (cur != NULL) {
  4689       HeapRegion* next = cur->next_from_free_list();
  4690       if (cur->zero_fill_is_allocated()) {
  4691         // Remove from the list.
  4692         if (prev == NULL) {
  4693           _free_region_list = cur->next_from_free_list();
  4694         } else {
  4695           prev->set_next_on_free_list(cur->next_from_free_list());
  4697         cur->set_on_free_list(false);
  4698         cur->set_next_on_free_list(NULL);
  4699         _free_region_list_size--;
  4700       } else {
  4701         prev = cur;
  4703       cur = next;
  4705     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4709 bool G1CollectedHeap::verify_region_lists() {
  4710   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4711   return verify_region_lists_locked();
  4714 bool G1CollectedHeap::verify_region_lists_locked() {
  4715   HeapRegion* unclean = _unclean_region_list.hd();
  4716   while (unclean != NULL) {
  4717     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
  4718     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
  4719     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
  4720               "Everything else is possible.");
  4721     unclean = unclean->next_from_unclean_list();
  4723   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
  4725   HeapRegion* free_r = _free_region_list;
  4726   while (free_r != NULL) {
  4727     assert(free_r->is_on_free_list(), "Well, it is!");
  4728     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
  4729     switch (free_r->zero_fill_state()) {
  4730     case HeapRegion::NotZeroFilled:
  4731     case HeapRegion::ZeroFilling:
  4732       guarantee(false, "Should not be on free list.");
  4733       break;
  4734     default:
  4735       // Everything else is possible.
  4736       break;
  4738     free_r = free_r->next_from_free_list();
  4740   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  4741   // If we didn't do an assertion...
  4742   return true;
  4745 size_t G1CollectedHeap::free_region_list_length() {
  4746   assert(ZF_mon->owned_by_self(), "precondition.");
  4747   size_t len = 0;
  4748   HeapRegion* cur = _free_region_list;
  4749   while (cur != NULL) {
  4750     len++;
  4751     cur = cur->next_from_free_list();
  4753   return len;
  4756 size_t G1CollectedHeap::unclean_region_list_length() {
  4757   assert(ZF_mon->owned_by_self(), "precondition.");
  4758   return _unclean_region_list.length();
  4761 size_t G1CollectedHeap::n_regions() {
  4762   return _hrs->length();
  4765 size_t G1CollectedHeap::max_regions() {
  4766   return
  4767     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
  4768     HeapRegion::GrainBytes;
  4771 size_t G1CollectedHeap::free_regions() {
  4772   /* Possibly-expensive assert.
  4773   assert(_free_regions == count_free_regions(),
  4774          "_free_regions is off.");
  4775   */
  4776   return _free_regions;
  4779 bool G1CollectedHeap::should_zf() {
  4780   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
  4783 class RegionCounter: public HeapRegionClosure {
  4784   size_t _n;
  4785 public:
  4786   RegionCounter() : _n(0) {}
  4787   bool doHeapRegion(HeapRegion* r) {
  4788     if (r->is_empty()) {
  4789       assert(!r->isHumongous(), "H regions should not be empty.");
  4790       _n++;
  4792     return false;
  4794   int res() { return (int) _n; }
  4795 };
  4797 size_t G1CollectedHeap::count_free_regions() {
  4798   RegionCounter rc;
  4799   heap_region_iterate(&rc);
  4800   size_t n = rc.res();
  4801   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
  4802     n--;
  4803   return n;
  4806 size_t G1CollectedHeap::count_free_regions_list() {
  4807   size_t n = 0;
  4808   size_t o = 0;
  4809   ZF_mon->lock_without_safepoint_check();
  4810   HeapRegion* cur = _free_region_list;
  4811   while (cur != NULL) {
  4812     cur = cur->next_from_free_list();
  4813     n++;
  4815   size_t m = unclean_region_list_length();
  4816   ZF_mon->unlock();
  4817   return n + m;
  4820 bool G1CollectedHeap::should_set_young_locked() {
  4821   assert(heap_lock_held_for_gc(),
  4822               "the heap lock should already be held by or for this thread");
  4823   return  (g1_policy()->in_young_gc_mode() &&
  4824            g1_policy()->should_add_next_region_to_young_list());
  4827 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  4828   assert(heap_lock_held_for_gc(),
  4829               "the heap lock should already be held by or for this thread");
  4830   _young_list->push_region(hr);
  4831   g1_policy()->set_region_short_lived(hr);
  4834 class NoYoungRegionsClosure: public HeapRegionClosure {
  4835 private:
  4836   bool _success;
  4837 public:
  4838   NoYoungRegionsClosure() : _success(true) { }
  4839   bool doHeapRegion(HeapRegion* r) {
  4840     if (r->is_young()) {
  4841       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  4842                              r->bottom(), r->end());
  4843       _success = false;
  4845     return false;
  4847   bool success() { return _success; }
  4848 };
  4850 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
  4851                                              bool check_sample) {
  4852   bool ret = true;
  4854   ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
  4855   if (!ignore_scan_only_list) {
  4856     NoYoungRegionsClosure closure;
  4857     heap_region_iterate(&closure);
  4858     ret = ret && closure.success();
  4861   return ret;
  4864 void G1CollectedHeap::empty_young_list() {
  4865   assert(heap_lock_held_for_gc(),
  4866               "the heap lock should already be held by or for this thread");
  4867   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  4869   _young_list->empty_list();
  4872 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  4873   bool no_allocs = true;
  4874   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  4875     HeapRegion* r = _gc_alloc_regions[ap];
  4876     no_allocs = r == NULL || r->saved_mark_at_top();
  4878   return no_allocs;
  4881 void G1CollectedHeap::retire_all_alloc_regions() {
  4882   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  4883     HeapRegion* r = _gc_alloc_regions[ap];
  4884     if (r != NULL) {
  4885       // Check for aliases.
  4886       bool has_processed_alias = false;
  4887       for (int i = 0; i < ap; ++i) {
  4888         if (_gc_alloc_regions[i] == r) {
  4889           has_processed_alias = true;
  4890           break;
  4893       if (!has_processed_alias) {
  4894         retire_alloc_region(r, false /* par */);
  4901 // Done at the start of full GC.
  4902 void G1CollectedHeap::tear_down_region_lists() {
  4903   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4904   while (pop_unclean_region_list_locked() != NULL) ;
  4905   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
  4906          "Postconditions of loop.")
  4907   while (pop_free_region_list_locked() != NULL) ;
  4908   assert(_free_region_list == NULL, "Postcondition of loop.");
  4909   if (_free_region_list_size != 0) {
  4910     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
  4911     print_on(gclog_or_tty, true /* extended */);
  4913   assert(_free_region_list_size == 0, "Postconditions of loop.");
  4917 class RegionResetter: public HeapRegionClosure {
  4918   G1CollectedHeap* _g1;
  4919   int _n;
  4920 public:
  4921   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  4922   bool doHeapRegion(HeapRegion* r) {
  4923     if (r->continuesHumongous()) return false;
  4924     if (r->top() > r->bottom()) {
  4925       if (r->top() < r->end()) {
  4926         Copy::fill_to_words(r->top(),
  4927                           pointer_delta(r->end(), r->top()));
  4929       r->set_zero_fill_allocated();
  4930     } else {
  4931       assert(r->is_empty(), "tautology");
  4932       _n++;
  4933       switch (r->zero_fill_state()) {
  4934         case HeapRegion::NotZeroFilled:
  4935         case HeapRegion::ZeroFilling:
  4936           _g1->put_region_on_unclean_list_locked(r);
  4937           break;
  4938         case HeapRegion::Allocated:
  4939           r->set_zero_fill_complete();
  4940           // no break; go on to put on free list.
  4941         case HeapRegion::ZeroFilled:
  4942           _g1->put_free_region_on_list_locked(r);
  4943           break;
  4946     return false;
  4949   int getFreeRegionCount() {return _n;}
  4950 };
  4952 // Done at the end of full GC.
  4953 void G1CollectedHeap::rebuild_region_lists() {
  4954   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4955   // This needs to go at the end of the full GC.
  4956   RegionResetter rs;
  4957   heap_region_iterate(&rs);
  4958   _free_regions = rs.getFreeRegionCount();
  4959   // Tell the ZF thread it may have work to do.
  4960   if (should_zf()) ZF_mon->notify_all();
  4963 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  4964   G1CollectedHeap* _g1;
  4965   int _n;
  4966 public:
  4967   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  4968   bool doHeapRegion(HeapRegion* r) {
  4969     if (r->continuesHumongous()) return false;
  4970     if (r->top() > r->bottom()) {
  4971       // There are assertions in "set_zero_fill_needed()" below that
  4972       // require top() == bottom(), so this is technically illegal.
  4973       // We'll skirt the law here, by making that true temporarily.
  4974       DEBUG_ONLY(HeapWord* save_top = r->top();
  4975                  r->set_top(r->bottom()));
  4976       r->set_zero_fill_needed();
  4977       DEBUG_ONLY(r->set_top(save_top));
  4979     return false;
  4981 };
  4983 // Done at the start of full GC.
  4984 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  4985   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4986   // This needs to go at the end of the full GC.
  4987   UsedRegionsNeedZeroFillSetter rs;
  4988   heap_region_iterate(&rs);
  4991 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  4992   _refine_cte_cl->set_concurrent(concurrent);
  4995 #ifndef PRODUCT
  4997 class PrintHeapRegionClosure: public HeapRegionClosure {
  4998 public:
  4999   bool doHeapRegion(HeapRegion *r) {
  5000     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
  5001     if (r != NULL) {
  5002       if (r->is_on_free_list())
  5003         gclog_or_tty->print("Free ");
  5004       if (r->is_young())
  5005         gclog_or_tty->print("Young ");
  5006       if (r->isHumongous())
  5007         gclog_or_tty->print("Is Humongous ");
  5008       r->print();
  5010     return false;
  5012 };
  5014 class SortHeapRegionClosure : public HeapRegionClosure {
  5015   size_t young_regions,free_regions, unclean_regions;
  5016   size_t hum_regions, count;
  5017   size_t unaccounted, cur_unclean, cur_alloc;
  5018   size_t total_free;
  5019   HeapRegion* cur;
  5020 public:
  5021   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
  5022     free_regions(0), unclean_regions(0),
  5023     hum_regions(0),
  5024     count(0), unaccounted(0),
  5025     cur_alloc(0), total_free(0)
  5026   {}
  5027   bool doHeapRegion(HeapRegion *r) {
  5028     count++;
  5029     if (r->is_on_free_list()) free_regions++;
  5030     else if (r->is_on_unclean_list()) unclean_regions++;
  5031     else if (r->isHumongous())  hum_regions++;
  5032     else if (r->is_young()) young_regions++;
  5033     else if (r == cur) cur_alloc++;
  5034     else unaccounted++;
  5035     return false;
  5037   void print() {
  5038     total_free = free_regions + unclean_regions;
  5039     gclog_or_tty->print("%d regions\n", count);
  5040     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
  5041                         total_free, free_regions, unclean_regions);
  5042     gclog_or_tty->print("%d humongous %d young\n",
  5043                         hum_regions, young_regions);
  5044     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
  5045     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  5047 };
  5049 void G1CollectedHeap::print_region_counts() {
  5050   SortHeapRegionClosure sc(_cur_alloc_region);
  5051   PrintHeapRegionClosure cl;
  5052   heap_region_iterate(&cl);
  5053   heap_region_iterate(&sc);
  5054   sc.print();
  5055   print_region_accounting_info();
  5056 };
  5058 bool G1CollectedHeap::regions_accounted_for() {
  5059   // TODO: regions accounting for young/survivor/tenured
  5060   return true;
  5063 bool G1CollectedHeap::print_region_accounting_info() {
  5064   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
  5065                          free_regions(),
  5066                          count_free_regions(), count_free_regions_list(),
  5067                          _free_region_list_size, _unclean_region_list.sz());
  5068   gclog_or_tty->print_cr("cur_alloc: %d.",
  5069                          (_cur_alloc_region == NULL ? 0 : 1));
  5070   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
  5072   // TODO: check regions accounting for young/survivor/tenured
  5073   return true;
  5076 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5077   HeapRegion* hr = heap_region_containing(p);
  5078   if (hr == NULL) {
  5079     return is_in_permanent(p);
  5080   } else {
  5081     return hr->is_in(p);
  5084 #endif // !PRODUCT
  5086 void G1CollectedHeap::g1_unimplemented() {
  5087   // Unimplemented();

mercurial