src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Thu, 30 Jul 2009 16:22:58 -0400

author
tonyp
date
Thu, 30 Jul 2009 16:22:58 -0400
changeset 1377
2c79770d1f6e
parent 1376
8b46c4d82093
child 1428
54b3b351d6f9
permissions
-rw-r--r--

6819085: G1: use larger and/or user settable region size
Summary: Instead of the region size being hard-coded, allow the user to set it.
Reviewed-by: jmasa, johnc, apetrusenko

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectedHeap.cpp.incl"
    28 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    30 // turn it on so that the contents of the young list (scan-only /
    31 // to-be-collected) are printed at "strategic" points before / during
    32 // / after the collection --- this is useful for debugging
    33 #define SCAN_ONLY_VERBOSE 0
    34 // CURRENT STATUS
    35 // This file is under construction.  Search for "FIXME".
    37 // INVARIANTS/NOTES
    38 //
    39 // All allocation activity covered by the G1CollectedHeap interface is
    40 //   serialized by acquiring the HeapLock.  This happens in
    41 //   mem_allocate_work, which all such allocation functions call.
    42 //   (Note that this does not apply to TLAB allocation, which is not part
    43 //   of this interface: it is done by clients of this interface.)
    45 // Local to this file.
    47 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    48   SuspendibleThreadSet* _sts;
    49   G1RemSet* _g1rs;
    50   ConcurrentG1Refine* _cg1r;
    51   bool _concurrent;
    52 public:
    53   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    54                               G1RemSet* g1rs,
    55                               ConcurrentG1Refine* cg1r) :
    56     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    57   {}
    58   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    59     _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
    60     if (_concurrent && _sts->should_yield()) {
    61       // Caller will actually yield.
    62       return false;
    63     }
    64     // Otherwise, we finished successfully; return true.
    65     return true;
    66   }
    67   void set_concurrent(bool b) { _concurrent = b; }
    68 };
    71 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    72   int _calls;
    73   G1CollectedHeap* _g1h;
    74   CardTableModRefBS* _ctbs;
    75   int _histo[256];
    76 public:
    77   ClearLoggedCardTableEntryClosure() :
    78     _calls(0)
    79   {
    80     _g1h = G1CollectedHeap::heap();
    81     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    82     for (int i = 0; i < 256; i++) _histo[i] = 0;
    83   }
    84   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    85     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
    86       _calls++;
    87       unsigned char* ujb = (unsigned char*)card_ptr;
    88       int ind = (int)(*ujb);
    89       _histo[ind]++;
    90       *card_ptr = -1;
    91     }
    92     return true;
    93   }
    94   int calls() { return _calls; }
    95   void print_histo() {
    96     gclog_or_tty->print_cr("Card table value histogram:");
    97     for (int i = 0; i < 256; i++) {
    98       if (_histo[i] != 0) {
    99         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   100       }
   101     }
   102   }
   103 };
   105 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   106   int _calls;
   107   G1CollectedHeap* _g1h;
   108   CardTableModRefBS* _ctbs;
   109 public:
   110   RedirtyLoggedCardTableEntryClosure() :
   111     _calls(0)
   112   {
   113     _g1h = G1CollectedHeap::heap();
   114     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   115   }
   116   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   117     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   118       _calls++;
   119       *card_ptr = 0;
   120     }
   121     return true;
   122   }
   123   int calls() { return _calls; }
   124 };
   126 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   127 public:
   128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   129     *card_ptr = CardTableModRefBS::dirty_card_val();
   130     return true;
   131   }
   132 };
   134 YoungList::YoungList(G1CollectedHeap* g1h)
   135   : _g1h(g1h), _head(NULL),
   136     _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
   137     _length(0), _scan_only_length(0),
   138     _last_sampled_rs_lengths(0),
   139     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   140 {
   141   guarantee( check_list_empty(false), "just making sure..." );
   142 }
   144 void YoungList::push_region(HeapRegion *hr) {
   145   assert(!hr->is_young(), "should not already be young");
   146   assert(hr->get_next_young_region() == NULL, "cause it should!");
   148   hr->set_next_young_region(_head);
   149   _head = hr;
   151   hr->set_young();
   152   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   153   ++_length;
   154 }
   156 void YoungList::add_survivor_region(HeapRegion* hr) {
   157   assert(hr->is_survivor(), "should be flagged as survivor region");
   158   assert(hr->get_next_young_region() == NULL, "cause it should!");
   160   hr->set_next_young_region(_survivor_head);
   161   if (_survivor_head == NULL) {
   162     _survivor_tail = hr;
   163   }
   164   _survivor_head = hr;
   166   ++_survivor_length;
   167 }
   169 HeapRegion* YoungList::pop_region() {
   170   while (_head != NULL) {
   171     assert( length() > 0, "list should not be empty" );
   172     HeapRegion* ret = _head;
   173     _head = ret->get_next_young_region();
   174     ret->set_next_young_region(NULL);
   175     --_length;
   176     assert(ret->is_young(), "region should be very young");
   178     // Replace 'Survivor' region type with 'Young'. So the region will
   179     // be treated as a young region and will not be 'confused' with
   180     // newly created survivor regions.
   181     if (ret->is_survivor()) {
   182       ret->set_young();
   183     }
   185     if (!ret->is_scan_only()) {
   186       return ret;
   187     }
   189     // scan-only, we'll add it to the scan-only list
   190     if (_scan_only_tail == NULL) {
   191       guarantee( _scan_only_head == NULL, "invariant" );
   193       _scan_only_head = ret;
   194       _curr_scan_only = ret;
   195     } else {
   196       guarantee( _scan_only_head != NULL, "invariant" );
   197       _scan_only_tail->set_next_young_region(ret);
   198     }
   199     guarantee( ret->get_next_young_region() == NULL, "invariant" );
   200     _scan_only_tail = ret;
   202     // no need to be tagged as scan-only any more
   203     ret->set_young();
   205     ++_scan_only_length;
   206   }
   207   assert( length() == 0, "list should be empty" );
   208   return NULL;
   209 }
   211 void YoungList::empty_list(HeapRegion* list) {
   212   while (list != NULL) {
   213     HeapRegion* next = list->get_next_young_region();
   214     list->set_next_young_region(NULL);
   215     list->uninstall_surv_rate_group();
   216     list->set_not_young();
   217     list = next;
   218   }
   219 }
   221 void YoungList::empty_list() {
   222   assert(check_list_well_formed(), "young list should be well formed");
   224   empty_list(_head);
   225   _head = NULL;
   226   _length = 0;
   228   empty_list(_scan_only_head);
   229   _scan_only_head = NULL;
   230   _scan_only_tail = NULL;
   231   _scan_only_length = 0;
   232   _curr_scan_only = NULL;
   234   empty_list(_survivor_head);
   235   _survivor_head = NULL;
   236   _survivor_tail = NULL;
   237   _survivor_length = 0;
   239   _last_sampled_rs_lengths = 0;
   241   assert(check_list_empty(false), "just making sure...");
   242 }
   244 bool YoungList::check_list_well_formed() {
   245   bool ret = true;
   247   size_t length = 0;
   248   HeapRegion* curr = _head;
   249   HeapRegion* last = NULL;
   250   while (curr != NULL) {
   251     if (!curr->is_young() || curr->is_scan_only()) {
   252       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   253                              "incorrectly tagged (%d, %d)",
   254                              curr->bottom(), curr->end(),
   255                              curr->is_young(), curr->is_scan_only());
   256       ret = false;
   257     }
   258     ++length;
   259     last = curr;
   260     curr = curr->get_next_young_region();
   261   }
   262   ret = ret && (length == _length);
   264   if (!ret) {
   265     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   266     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   267                            length, _length);
   268   }
   270   bool scan_only_ret = true;
   271   length = 0;
   272   curr = _scan_only_head;
   273   last = NULL;
   274   while (curr != NULL) {
   275     if (!curr->is_young() || curr->is_scan_only()) {
   276       gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
   277                              "incorrectly tagged (%d, %d)",
   278                              curr->bottom(), curr->end(),
   279                              curr->is_young(), curr->is_scan_only());
   280       scan_only_ret = false;
   281     }
   282     ++length;
   283     last = curr;
   284     curr = curr->get_next_young_region();
   285   }
   286   scan_only_ret = scan_only_ret && (length == _scan_only_length);
   288   if ( (last != _scan_only_tail) ||
   289        (_scan_only_head == NULL && _scan_only_tail != NULL) ||
   290        (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
   291      gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
   292      scan_only_ret = false;
   293   }
   295   if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
   296     gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
   297     scan_only_ret = false;
   298    }
   300   if (!scan_only_ret) {
   301     gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
   302     gclog_or_tty->print_cr("###   list has %d entries, _scan_only_length is %d",
   303                   length, _scan_only_length);
   304   }
   306   return ret && scan_only_ret;
   307 }
   309 bool YoungList::check_list_empty(bool ignore_scan_only_list,
   310                                  bool check_sample) {
   311   bool ret = true;
   313   if (_length != 0) {
   314     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   315                   _length);
   316     ret = false;
   317   }
   318   if (check_sample && _last_sampled_rs_lengths != 0) {
   319     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   320     ret = false;
   321   }
   322   if (_head != NULL) {
   323     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   324     ret = false;
   325   }
   326   if (!ret) {
   327     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   328   }
   330   if (ignore_scan_only_list)
   331     return ret;
   333   bool scan_only_ret = true;
   334   if (_scan_only_length != 0) {
   335     gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
   336                   _scan_only_length);
   337     scan_only_ret = false;
   338   }
   339   if (_scan_only_head != NULL) {
   340     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
   341      scan_only_ret = false;
   342   }
   343   if (_scan_only_tail != NULL) {
   344     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
   345     scan_only_ret = false;
   346   }
   347   if (!scan_only_ret) {
   348     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
   349   }
   351   return ret && scan_only_ret;
   352 }
   354 void
   355 YoungList::rs_length_sampling_init() {
   356   _sampled_rs_lengths = 0;
   357   _curr               = _head;
   358 }
   360 bool
   361 YoungList::rs_length_sampling_more() {
   362   return _curr != NULL;
   363 }
   365 void
   366 YoungList::rs_length_sampling_next() {
   367   assert( _curr != NULL, "invariant" );
   368   _sampled_rs_lengths += _curr->rem_set()->occupied();
   369   _curr = _curr->get_next_young_region();
   370   if (_curr == NULL) {
   371     _last_sampled_rs_lengths = _sampled_rs_lengths;
   372     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   373   }
   374 }
   376 void
   377 YoungList::reset_auxilary_lists() {
   378   // We could have just "moved" the scan-only list to the young list.
   379   // However, the scan-only list is ordered according to the region
   380   // age in descending order, so, by moving one entry at a time, we
   381   // ensure that it is recreated in ascending order.
   383   guarantee( is_empty(), "young list should be empty" );
   384   assert(check_list_well_formed(), "young list should be well formed");
   386   // Add survivor regions to SurvRateGroup.
   387   _g1h->g1_policy()->note_start_adding_survivor_regions();
   388   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   389   for (HeapRegion* curr = _survivor_head;
   390        curr != NULL;
   391        curr = curr->get_next_young_region()) {
   392     _g1h->g1_policy()->set_region_survivors(curr);
   393   }
   394   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   396   if (_survivor_head != NULL) {
   397     _head           = _survivor_head;
   398     _length         = _survivor_length + _scan_only_length;
   399     _survivor_tail->set_next_young_region(_scan_only_head);
   400   } else {
   401     _head           = _scan_only_head;
   402     _length         = _scan_only_length;
   403   }
   405   for (HeapRegion* curr = _scan_only_head;
   406        curr != NULL;
   407        curr = curr->get_next_young_region()) {
   408     curr->recalculate_age_in_surv_rate_group();
   409   }
   410   _scan_only_head   = NULL;
   411   _scan_only_tail   = NULL;
   412   _scan_only_length = 0;
   413   _curr_scan_only   = NULL;
   415   _survivor_head    = NULL;
   416   _survivor_tail   = NULL;
   417   _survivor_length  = 0;
   418   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   420   assert(check_list_well_formed(), "young list should be well formed");
   421 }
   423 void YoungList::print() {
   424   HeapRegion* lists[] = {_head,   _scan_only_head, _survivor_head};
   425   const char* names[] = {"YOUNG", "SCAN-ONLY",     "SURVIVOR"};
   427   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   428     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   429     HeapRegion *curr = lists[list];
   430     if (curr == NULL)
   431       gclog_or_tty->print_cr("  empty");
   432     while (curr != NULL) {
   433       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   434                              "age: %4d, y: %d, s-o: %d, surv: %d",
   435                              curr->bottom(), curr->end(),
   436                              curr->top(),
   437                              curr->prev_top_at_mark_start(),
   438                              curr->next_top_at_mark_start(),
   439                              curr->top_at_conc_mark_count(),
   440                              curr->age_in_surv_rate_group_cond(),
   441                              curr->is_young(),
   442                              curr->is_scan_only(),
   443                              curr->is_survivor());
   444       curr = curr->get_next_young_region();
   445     }
   446   }
   448   gclog_or_tty->print_cr("");
   449 }
   451 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   452 {
   453   // Claim the right to put the region on the dirty cards region list
   454   // by installing a self pointer.
   455   HeapRegion* next = hr->get_next_dirty_cards_region();
   456   if (next == NULL) {
   457     HeapRegion* res = (HeapRegion*)
   458       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   459                           NULL);
   460     if (res == NULL) {
   461       HeapRegion* head;
   462       do {
   463         // Put the region to the dirty cards region list.
   464         head = _dirty_cards_region_list;
   465         next = (HeapRegion*)
   466           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   467         if (next == head) {
   468           assert(hr->get_next_dirty_cards_region() == hr,
   469                  "hr->get_next_dirty_cards_region() != hr");
   470           if (next == NULL) {
   471             // The last region in the list points to itself.
   472             hr->set_next_dirty_cards_region(hr);
   473           } else {
   474             hr->set_next_dirty_cards_region(next);
   475           }
   476         }
   477       } while (next != head);
   478     }
   479   }
   480 }
   482 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   483 {
   484   HeapRegion* head;
   485   HeapRegion* hr;
   486   do {
   487     head = _dirty_cards_region_list;
   488     if (head == NULL) {
   489       return NULL;
   490     }
   491     HeapRegion* new_head = head->get_next_dirty_cards_region();
   492     if (head == new_head) {
   493       // The last region.
   494       new_head = NULL;
   495     }
   496     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   497                                           head);
   498   } while (hr != head);
   499   assert(hr != NULL, "invariant");
   500   hr->set_next_dirty_cards_region(NULL);
   501   return hr;
   502 }
   504 void G1CollectedHeap::stop_conc_gc_threads() {
   505   _cg1r->stop();
   506   _czft->stop();
   507   _cmThread->stop();
   508 }
   511 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   512   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   513   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   515   // Count the dirty cards at the start.
   516   CountNonCleanMemRegionClosure count1(this);
   517   ct_bs->mod_card_iterate(&count1);
   518   int orig_count = count1.n();
   520   // First clear the logged cards.
   521   ClearLoggedCardTableEntryClosure clear;
   522   dcqs.set_closure(&clear);
   523   dcqs.apply_closure_to_all_completed_buffers();
   524   dcqs.iterate_closure_all_threads(false);
   525   clear.print_histo();
   527   // Now ensure that there's no dirty cards.
   528   CountNonCleanMemRegionClosure count2(this);
   529   ct_bs->mod_card_iterate(&count2);
   530   if (count2.n() != 0) {
   531     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   532                            count2.n(), orig_count);
   533   }
   534   guarantee(count2.n() == 0, "Card table should be clean.");
   536   RedirtyLoggedCardTableEntryClosure redirty;
   537   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   538   dcqs.apply_closure_to_all_completed_buffers();
   539   dcqs.iterate_closure_all_threads(false);
   540   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   541                          clear.calls(), orig_count);
   542   guarantee(redirty.calls() == clear.calls(),
   543             "Or else mechanism is broken.");
   545   CountNonCleanMemRegionClosure count3(this);
   546   ct_bs->mod_card_iterate(&count3);
   547   if (count3.n() != orig_count) {
   548     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   549                            orig_count, count3.n());
   550     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   551   }
   553   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   554 }
   556 // Private class members.
   558 G1CollectedHeap* G1CollectedHeap::_g1h;
   560 // Private methods.
   562 // Finds a HeapRegion that can be used to allocate a given size of block.
   565 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
   566                                                  bool do_expand,
   567                                                  bool zero_filled) {
   568   ConcurrentZFThread::note_region_alloc();
   569   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
   570   if (res == NULL && do_expand) {
   571     expand(word_size * HeapWordSize);
   572     res = alloc_free_region_from_lists(zero_filled);
   573     assert(res == NULL ||
   574            (!res->isHumongous() &&
   575             (!zero_filled ||
   576              res->zero_fill_state() == HeapRegion::Allocated)),
   577            "Alloc Regions must be zero filled (and non-H)");
   578   }
   579   if (res != NULL && res->is_empty()) _free_regions--;
   580   assert(res == NULL ||
   581          (!res->isHumongous() &&
   582           (!zero_filled ||
   583            res->zero_fill_state() == HeapRegion::Allocated)),
   584          "Non-young alloc Regions must be zero filled (and non-H)");
   586   if (G1PrintRegions) {
   587     if (res != NULL) {
   588       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
   589                              "top "PTR_FORMAT,
   590                              res->hrs_index(), res->bottom(), res->end(), res->top());
   591     }
   592   }
   594   return res;
   595 }
   597 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
   598                                                          size_t word_size,
   599                                                          bool zero_filled) {
   600   HeapRegion* alloc_region = NULL;
   601   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   602     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
   603     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   604       alloc_region->set_survivor();
   605     }
   606     ++_gc_alloc_region_counts[purpose];
   607   } else {
   608     g1_policy()->note_alloc_region_limit_reached(purpose);
   609   }
   610   return alloc_region;
   611 }
   613 // If could fit into free regions w/o expansion, try.
   614 // Otherwise, if can expand, do so.
   615 // Otherwise, if using ex regions might help, try with ex given back.
   616 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
   617   assert(regions_accounted_for(), "Region leakage!");
   619   // We can't allocate H regions while cleanupComplete is running, since
   620   // some of the regions we find to be empty might not yet be added to the
   621   // unclean list.  (If we're already at a safepoint, this call is
   622   // unnecessary, not to mention wrong.)
   623   if (!SafepointSynchronize::is_at_safepoint())
   624     wait_for_cleanup_complete();
   626   size_t num_regions =
   627     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   629   // Special case if < one region???
   631   // Remember the ft size.
   632   size_t x_size = expansion_regions();
   634   HeapWord* res = NULL;
   635   bool eliminated_allocated_from_lists = false;
   637   // Can the allocation potentially fit in the free regions?
   638   if (free_regions() >= num_regions) {
   639     res = _hrs->obj_allocate(word_size);
   640   }
   641   if (res == NULL) {
   642     // Try expansion.
   643     size_t fs = _hrs->free_suffix();
   644     if (fs + x_size >= num_regions) {
   645       expand((num_regions - fs) * HeapRegion::GrainBytes);
   646       res = _hrs->obj_allocate(word_size);
   647       assert(res != NULL, "This should have worked.");
   648     } else {
   649       // Expansion won't help.  Are there enough free regions if we get rid
   650       // of reservations?
   651       size_t avail = free_regions();
   652       if (avail >= num_regions) {
   653         res = _hrs->obj_allocate(word_size);
   654         if (res != NULL) {
   655           remove_allocated_regions_from_lists();
   656           eliminated_allocated_from_lists = true;
   657         }
   658       }
   659     }
   660   }
   661   if (res != NULL) {
   662     // Increment by the number of regions allocated.
   663     // FIXME: Assumes regions all of size GrainBytes.
   664 #ifndef PRODUCT
   665     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
   666                                            HeapRegion::GrainWords));
   667 #endif
   668     if (!eliminated_allocated_from_lists)
   669       remove_allocated_regions_from_lists();
   670     _summary_bytes_used += word_size * HeapWordSize;
   671     _free_regions -= num_regions;
   672     _num_humongous_regions += (int) num_regions;
   673   }
   674   assert(regions_accounted_for(), "Region Leakage");
   675   return res;
   676 }
   678 HeapWord*
   679 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   680                                          bool permit_collection_pause) {
   681   HeapWord* res = NULL;
   682   HeapRegion* allocated_young_region = NULL;
   684   assert( SafepointSynchronize::is_at_safepoint() ||
   685           Heap_lock->owned_by_self(), "pre condition of the call" );
   687   if (isHumongous(word_size)) {
   688     // Allocation of a humongous object can, in a sense, complete a
   689     // partial region, if the previous alloc was also humongous, and
   690     // caused the test below to succeed.
   691     if (permit_collection_pause)
   692       do_collection_pause_if_appropriate(word_size);
   693     res = humongousObjAllocate(word_size);
   694     assert(_cur_alloc_region == NULL
   695            || !_cur_alloc_region->isHumongous(),
   696            "Prevent a regression of this bug.");
   698   } else {
   699     // We may have concurrent cleanup working at the time. Wait for it
   700     // to complete. In the future we would probably want to make the
   701     // concurrent cleanup truly concurrent by decoupling it from the
   702     // allocation.
   703     if (!SafepointSynchronize::is_at_safepoint())
   704       wait_for_cleanup_complete();
   705     // If we do a collection pause, this will be reset to a non-NULL
   706     // value.  If we don't, nulling here ensures that we allocate a new
   707     // region below.
   708     if (_cur_alloc_region != NULL) {
   709       // We're finished with the _cur_alloc_region.
   710       _summary_bytes_used += _cur_alloc_region->used();
   711       _cur_alloc_region = NULL;
   712     }
   713     assert(_cur_alloc_region == NULL, "Invariant.");
   714     // Completion of a heap region is perhaps a good point at which to do
   715     // a collection pause.
   716     if (permit_collection_pause)
   717       do_collection_pause_if_appropriate(word_size);
   718     // Make sure we have an allocation region available.
   719     if (_cur_alloc_region == NULL) {
   720       if (!SafepointSynchronize::is_at_safepoint())
   721         wait_for_cleanup_complete();
   722       bool next_is_young = should_set_young_locked();
   723       // If the next region is not young, make sure it's zero-filled.
   724       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
   725       if (_cur_alloc_region != NULL) {
   726         _summary_bytes_used -= _cur_alloc_region->used();
   727         if (next_is_young) {
   728           set_region_short_lived_locked(_cur_alloc_region);
   729           allocated_young_region = _cur_alloc_region;
   730         }
   731       }
   732     }
   733     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
   734            "Prevent a regression of this bug.");
   736     // Now retry the allocation.
   737     if (_cur_alloc_region != NULL) {
   738       res = _cur_alloc_region->allocate(word_size);
   739     }
   740   }
   742   // NOTE: fails frequently in PRT
   743   assert(regions_accounted_for(), "Region leakage!");
   745   if (res != NULL) {
   746     if (!SafepointSynchronize::is_at_safepoint()) {
   747       assert( permit_collection_pause, "invariant" );
   748       assert( Heap_lock->owned_by_self(), "invariant" );
   749       Heap_lock->unlock();
   750     }
   752     if (allocated_young_region != NULL) {
   753       HeapRegion* hr = allocated_young_region;
   754       HeapWord* bottom = hr->bottom();
   755       HeapWord* end = hr->end();
   756       MemRegion mr(bottom, end);
   757       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
   758     }
   759   }
   761   assert( SafepointSynchronize::is_at_safepoint() ||
   762           (res == NULL && Heap_lock->owned_by_self()) ||
   763           (res != NULL && !Heap_lock->owned_by_self()),
   764           "post condition of the call" );
   766   return res;
   767 }
   769 HeapWord*
   770 G1CollectedHeap::mem_allocate(size_t word_size,
   771                               bool   is_noref,
   772                               bool   is_tlab,
   773                               bool* gc_overhead_limit_was_exceeded) {
   774   debug_only(check_for_valid_allocation_state());
   775   assert(no_gc_in_progress(), "Allocation during gc not allowed");
   776   HeapWord* result = NULL;
   778   // Loop until the allocation is satisified,
   779   // or unsatisfied after GC.
   780   for (int try_count = 1; /* return or throw */; try_count += 1) {
   781     int gc_count_before;
   782     {
   783       Heap_lock->lock();
   784       result = attempt_allocation(word_size);
   785       if (result != NULL) {
   786         // attempt_allocation should have unlocked the heap lock
   787         assert(is_in(result), "result not in heap");
   788         return result;
   789       }
   790       // Read the gc count while the heap lock is held.
   791       gc_count_before = SharedHeap::heap()->total_collections();
   792       Heap_lock->unlock();
   793     }
   795     // Create the garbage collection operation...
   796     VM_G1CollectForAllocation op(word_size,
   797                                  gc_count_before);
   799     // ...and get the VM thread to execute it.
   800     VMThread::execute(&op);
   801     if (op.prologue_succeeded()) {
   802       result = op.result();
   803       assert(result == NULL || is_in(result), "result not in heap");
   804       return result;
   805     }
   807     // Give a warning if we seem to be looping forever.
   808     if ((QueuedAllocationWarningCount > 0) &&
   809         (try_count % QueuedAllocationWarningCount == 0)) {
   810       warning("G1CollectedHeap::mem_allocate_work retries %d times",
   811               try_count);
   812     }
   813   }
   814 }
   816 void G1CollectedHeap::abandon_cur_alloc_region() {
   817   if (_cur_alloc_region != NULL) {
   818     // We're finished with the _cur_alloc_region.
   819     if (_cur_alloc_region->is_empty()) {
   820       _free_regions++;
   821       free_region(_cur_alloc_region);
   822     } else {
   823       _summary_bytes_used += _cur_alloc_region->used();
   824     }
   825     _cur_alloc_region = NULL;
   826   }
   827 }
   829 void G1CollectedHeap::abandon_gc_alloc_regions() {
   830   // first, make sure that the GC alloc region list is empty (it should!)
   831   assert(_gc_alloc_region_list == NULL, "invariant");
   832   release_gc_alloc_regions(true /* totally */);
   833 }
   835 class PostMCRemSetClearClosure: public HeapRegionClosure {
   836   ModRefBarrierSet* _mr_bs;
   837 public:
   838   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   839   bool doHeapRegion(HeapRegion* r) {
   840     r->reset_gc_time_stamp();
   841     if (r->continuesHumongous())
   842       return false;
   843     HeapRegionRemSet* hrrs = r->rem_set();
   844     if (hrrs != NULL) hrrs->clear();
   845     // You might think here that we could clear just the cards
   846     // corresponding to the used region.  But no: if we leave a dirty card
   847     // in a region we might allocate into, then it would prevent that card
   848     // from being enqueued, and cause it to be missed.
   849     // Re: the performance cost: we shouldn't be doing full GC anyway!
   850     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
   851     return false;
   852   }
   853 };
   856 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
   857   ModRefBarrierSet* _mr_bs;
   858 public:
   859   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
   860   bool doHeapRegion(HeapRegion* r) {
   861     if (r->continuesHumongous()) return false;
   862     if (r->used_region().word_size() != 0) {
   863       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
   864     }
   865     return false;
   866   }
   867 };
   869 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
   870   G1CollectedHeap*   _g1h;
   871   UpdateRSOopClosure _cl;
   872   int                _worker_i;
   873 public:
   874   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
   875     _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
   876     _worker_i(worker_i),
   877     _g1h(g1)
   878   { }
   879   bool doHeapRegion(HeapRegion* r) {
   880     if (!r->continuesHumongous()) {
   881       _cl.set_from(r);
   882       r->oop_iterate(&_cl);
   883     }
   884     return false;
   885   }
   886 };
   888 class ParRebuildRSTask: public AbstractGangTask {
   889   G1CollectedHeap* _g1;
   890 public:
   891   ParRebuildRSTask(G1CollectedHeap* g1)
   892     : AbstractGangTask("ParRebuildRSTask"),
   893       _g1(g1)
   894   { }
   896   void work(int i) {
   897     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
   898     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
   899                                          HeapRegion::RebuildRSClaimValue);
   900   }
   901 };
   903 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
   904                                     size_t word_size) {
   905   ResourceMark rm;
   907   if (PrintHeapAtGC) {
   908     Universe::print_heap_before_gc();
   909   }
   911   if (full && DisableExplicitGC) {
   912     gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
   913     return;
   914   }
   916   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   917   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
   919   if (GC_locker::is_active()) {
   920     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   921   }
   923   {
   924     IsGCActiveMark x;
   926     // Timing
   927     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   928     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   929     TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
   931     double start = os::elapsedTime();
   932     g1_policy()->record_full_collection_start();
   934     gc_prologue(true);
   935     increment_total_collections(true /* full gc */);
   937     size_t g1h_prev_used = used();
   938     assert(used() == recalculate_used(), "Should be equal");
   940     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
   941       HandleMark hm;  // Discard invalid handles created during verification
   942       prepare_for_verify();
   943       gclog_or_tty->print(" VerifyBeforeGC:");
   944       Universe::verify(true);
   945     }
   946     assert(regions_accounted_for(), "Region leakage!");
   948     COMPILER2_PRESENT(DerivedPointerTable::clear());
   950     // We want to discover references, but not process them yet.
   951     // This mode is disabled in
   952     // instanceRefKlass::process_discovered_references if the
   953     // generation does some collection work, or
   954     // instanceRefKlass::enqueue_discovered_references if the
   955     // generation returns without doing any work.
   956     ref_processor()->disable_discovery();
   957     ref_processor()->abandon_partial_discovery();
   958     ref_processor()->verify_no_references_recorded();
   960     // Abandon current iterations of concurrent marking and concurrent
   961     // refinement, if any are in progress.
   962     concurrent_mark()->abort();
   964     // Make sure we'll choose a new allocation region afterwards.
   965     abandon_cur_alloc_region();
   966     abandon_gc_alloc_regions();
   967     assert(_cur_alloc_region == NULL, "Invariant.");
   968     g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
   969     tear_down_region_lists();
   970     set_used_regions_to_need_zero_fill();
   971     if (g1_policy()->in_young_gc_mode()) {
   972       empty_young_list();
   973       g1_policy()->set_full_young_gcs(true);
   974     }
   976     // Temporarily make reference _discovery_ single threaded (non-MT).
   977     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
   979     // Temporarily make refs discovery atomic
   980     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
   982     // Temporarily clear _is_alive_non_header
   983     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
   985     ref_processor()->enable_discovery();
   986     ref_processor()->setup_policy(clear_all_soft_refs);
   988     // Do collection work
   989     {
   990       HandleMark hm;  // Discard invalid handles created during gc
   991       G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
   992     }
   993     // Because freeing humongous regions may have added some unclean
   994     // regions, it is necessary to tear down again before rebuilding.
   995     tear_down_region_lists();
   996     rebuild_region_lists();
   998     _summary_bytes_used = recalculate_used();
  1000     ref_processor()->enqueue_discovered_references();
  1002     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1004     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1005       HandleMark hm;  // Discard invalid handles created during verification
  1006       gclog_or_tty->print(" VerifyAfterGC:");
  1007       prepare_for_verify();
  1008       Universe::verify(false);
  1010     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  1012     reset_gc_time_stamp();
  1013     // Since everything potentially moved, we will clear all remembered
  1014     // sets, and clear all cards.  Later we will rebuild remebered
  1015     // sets. We will also reset the GC time stamps of the regions.
  1016     PostMCRemSetClearClosure rs_clear(mr_bs());
  1017     heap_region_iterate(&rs_clear);
  1019     // Resize the heap if necessary.
  1020     resize_if_necessary_after_full_collection(full ? 0 : word_size);
  1022     if (_cg1r->use_cache()) {
  1023       _cg1r->clear_and_record_card_counts();
  1024       _cg1r->clear_hot_cache();
  1027     // Rebuild remembered sets of all regions.
  1028     if (ParallelGCThreads > 0) {
  1029       ParRebuildRSTask rebuild_rs_task(this);
  1030       assert(check_heap_region_claim_values(
  1031              HeapRegion::InitialClaimValue), "sanity check");
  1032       set_par_threads(workers()->total_workers());
  1033       workers()->run_task(&rebuild_rs_task);
  1034       set_par_threads(0);
  1035       assert(check_heap_region_claim_values(
  1036              HeapRegion::RebuildRSClaimValue), "sanity check");
  1037       reset_heap_region_claim_values();
  1038     } else {
  1039       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1040       heap_region_iterate(&rebuild_rs);
  1043     if (PrintGC) {
  1044       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1047     if (true) { // FIXME
  1048       // Ask the permanent generation to adjust size for full collections
  1049       perm()->compute_new_size();
  1052     double end = os::elapsedTime();
  1053     g1_policy()->record_full_collection_end();
  1055 #ifdef TRACESPINNING
  1056     ParallelTaskTerminator::print_termination_counts();
  1057 #endif
  1059     gc_epilogue(true);
  1061     // Discard all rset updates
  1062     JavaThread::dirty_card_queue_set().abandon_logs();
  1063     assert(!G1DeferredRSUpdate
  1064            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1065     assert(regions_accounted_for(), "Region leakage!");
  1068   if (g1_policy()->in_young_gc_mode()) {
  1069     _young_list->reset_sampled_info();
  1070     assert( check_young_list_empty(false, false),
  1071             "young list should be empty at this point");
  1074   if (PrintHeapAtGC) {
  1075     Universe::print_heap_after_gc();
  1079 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1080   do_collection(true, clear_all_soft_refs, 0);
  1083 // This code is mostly copied from TenuredGeneration.
  1084 void
  1085 G1CollectedHeap::
  1086 resize_if_necessary_after_full_collection(size_t word_size) {
  1087   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1089   // Include the current allocation, if any, and bytes that will be
  1090   // pre-allocated to support collections, as "used".
  1091   const size_t used_after_gc = used();
  1092   const size_t capacity_after_gc = capacity();
  1093   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1095   // We don't have floating point command-line arguments
  1096   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
  1097   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1098   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
  1099   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1101   size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
  1102   size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
  1104   // Don't shrink less than the initial size.
  1105   minimum_desired_capacity =
  1106     MAX2(minimum_desired_capacity,
  1107          collector_policy()->initial_heap_byte_size());
  1108   maximum_desired_capacity =
  1109     MAX2(maximum_desired_capacity,
  1110          collector_policy()->initial_heap_byte_size());
  1112   // We are failing here because minimum_desired_capacity is
  1113   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
  1114   assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
  1116   if (PrintGC && Verbose) {
  1117     const double free_percentage = ((double)free_after_gc) / capacity();
  1118     gclog_or_tty->print_cr("Computing new size after full GC ");
  1119     gclog_or_tty->print_cr("  "
  1120                            "  minimum_free_percentage: %6.2f",
  1121                            minimum_free_percentage);
  1122     gclog_or_tty->print_cr("  "
  1123                            "  maximum_free_percentage: %6.2f",
  1124                            maximum_free_percentage);
  1125     gclog_or_tty->print_cr("  "
  1126                            "  capacity: %6.1fK"
  1127                            "  minimum_desired_capacity: %6.1fK"
  1128                            "  maximum_desired_capacity: %6.1fK",
  1129                            capacity() / (double) K,
  1130                            minimum_desired_capacity / (double) K,
  1131                            maximum_desired_capacity / (double) K);
  1132     gclog_or_tty->print_cr("  "
  1133                            "   free_after_gc   : %6.1fK"
  1134                            "   used_after_gc   : %6.1fK",
  1135                            free_after_gc / (double) K,
  1136                            used_after_gc / (double) K);
  1137     gclog_or_tty->print_cr("  "
  1138                            "   free_percentage: %6.2f",
  1139                            free_percentage);
  1141   if (capacity() < minimum_desired_capacity) {
  1142     // Don't expand unless it's significant
  1143     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1144     expand(expand_bytes);
  1145     if (PrintGC && Verbose) {
  1146       gclog_or_tty->print_cr("    expanding:"
  1147                              "  minimum_desired_capacity: %6.1fK"
  1148                              "  expand_bytes: %6.1fK",
  1149                              minimum_desired_capacity / (double) K,
  1150                              expand_bytes / (double) K);
  1153     // No expansion, now see if we want to shrink
  1154   } else if (capacity() > maximum_desired_capacity) {
  1155     // Capacity too large, compute shrinking size
  1156     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1157     shrink(shrink_bytes);
  1158     if (PrintGC && Verbose) {
  1159       gclog_or_tty->print_cr("  "
  1160                              "  shrinking:"
  1161                              "  initSize: %.1fK"
  1162                              "  maximum_desired_capacity: %.1fK",
  1163                              collector_policy()->initial_heap_byte_size() / (double) K,
  1164                              maximum_desired_capacity / (double) K);
  1165       gclog_or_tty->print_cr("  "
  1166                              "  shrink_bytes: %.1fK",
  1167                              shrink_bytes / (double) K);
  1173 HeapWord*
  1174 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
  1175   HeapWord* result = NULL;
  1177   // In a G1 heap, we're supposed to keep allocation from failing by
  1178   // incremental pauses.  Therefore, at least for now, we'll favor
  1179   // expansion over collection.  (This might change in the future if we can
  1180   // do something smarter than full collection to satisfy a failed alloc.)
  1182   result = expand_and_allocate(word_size);
  1183   if (result != NULL) {
  1184     assert(is_in(result), "result not in heap");
  1185     return result;
  1188   // OK, I guess we have to try collection.
  1190   do_collection(false, false, word_size);
  1192   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1194   if (result != NULL) {
  1195     assert(is_in(result), "result not in heap");
  1196     return result;
  1199   // Try collecting soft references.
  1200   do_collection(false, true, word_size);
  1201   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  1202   if (result != NULL) {
  1203     assert(is_in(result), "result not in heap");
  1204     return result;
  1207   // What else?  We might try synchronous finalization later.  If the total
  1208   // space available is large enough for the allocation, then a more
  1209   // complete compaction phase than we've tried so far might be
  1210   // appropriate.
  1211   return NULL;
  1214 // Attempting to expand the heap sufficiently
  1215 // to support an allocation of the given "word_size".  If
  1216 // successful, perform the allocation and return the address of the
  1217 // allocated block, or else "NULL".
  1219 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1220   size_t expand_bytes = word_size * HeapWordSize;
  1221   if (expand_bytes < MinHeapDeltaBytes) {
  1222     expand_bytes = MinHeapDeltaBytes;
  1224   expand(expand_bytes);
  1225   assert(regions_accounted_for(), "Region leakage!");
  1226   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
  1227   return result;
  1230 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  1231   size_t pre_used = 0;
  1232   size_t cleared_h_regions = 0;
  1233   size_t freed_regions = 0;
  1234   UncleanRegionList local_list;
  1235   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
  1236                                     freed_regions, &local_list);
  1238   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  1239                           &local_list);
  1240   return pre_used;
  1243 void
  1244 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
  1245                                                    size_t& pre_used,
  1246                                                    size_t& cleared_h,
  1247                                                    size_t& freed_regions,
  1248                                                    UncleanRegionList* list,
  1249                                                    bool par) {
  1250   assert(!hr->continuesHumongous(), "should have filtered these out");
  1251   size_t res = 0;
  1252   if (hr->used() > 0 && hr->garbage_bytes() == hr->used() &&
  1253       !hr->is_young()) {
  1254     if (G1PolicyVerbose > 0)
  1255       gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
  1256                                                                                " during cleanup", hr, hr->used());
  1257     free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
  1261 // FIXME: both this and shrink could probably be more efficient by
  1262 // doing one "VirtualSpace::expand_by" call rather than several.
  1263 void G1CollectedHeap::expand(size_t expand_bytes) {
  1264   size_t old_mem_size = _g1_storage.committed_size();
  1265   // We expand by a minimum of 1K.
  1266   expand_bytes = MAX2(expand_bytes, (size_t)K);
  1267   size_t aligned_expand_bytes =
  1268     ReservedSpace::page_align_size_up(expand_bytes);
  1269   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1270                                        HeapRegion::GrainBytes);
  1271   expand_bytes = aligned_expand_bytes;
  1272   while (expand_bytes > 0) {
  1273     HeapWord* base = (HeapWord*)_g1_storage.high();
  1274     // Commit more storage.
  1275     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
  1276     if (!successful) {
  1277         expand_bytes = 0;
  1278     } else {
  1279       expand_bytes -= HeapRegion::GrainBytes;
  1280       // Expand the committed region.
  1281       HeapWord* high = (HeapWord*) _g1_storage.high();
  1282       _g1_committed.set_end(high);
  1283       // Create a new HeapRegion.
  1284       MemRegion mr(base, high);
  1285       bool is_zeroed = !_g1_max_committed.contains(base);
  1286       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1288       // Now update max_committed if necessary.
  1289       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
  1291       // Add it to the HeapRegionSeq.
  1292       _hrs->insert(hr);
  1293       // Set the zero-fill state, according to whether it's already
  1294       // zeroed.
  1296         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  1297         if (is_zeroed) {
  1298           hr->set_zero_fill_complete();
  1299           put_free_region_on_list_locked(hr);
  1300         } else {
  1301           hr->set_zero_fill_needed();
  1302           put_region_on_unclean_list_locked(hr);
  1305       _free_regions++;
  1306       // And we used up an expansion region to create it.
  1307       _expansion_regions--;
  1308       // Tell the cardtable about it.
  1309       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1310       // And the offset table as well.
  1311       _bot_shared->resize(_g1_committed.word_size());
  1314   if (Verbose && PrintGC) {
  1315     size_t new_mem_size = _g1_storage.committed_size();
  1316     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
  1317                            old_mem_size/K, aligned_expand_bytes/K,
  1318                            new_mem_size/K);
  1322 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1324   size_t old_mem_size = _g1_storage.committed_size();
  1325   size_t aligned_shrink_bytes =
  1326     ReservedSpace::page_align_size_down(shrink_bytes);
  1327   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1328                                          HeapRegion::GrainBytes);
  1329   size_t num_regions_deleted = 0;
  1330   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1332   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1333   if (mr.byte_size() > 0)
  1334     _g1_storage.shrink_by(mr.byte_size());
  1335   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1337   _g1_committed.set_end(mr.start());
  1338   _free_regions -= num_regions_deleted;
  1339   _expansion_regions += num_regions_deleted;
  1341   // Tell the cardtable about it.
  1342   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1344   // And the offset table as well.
  1345   _bot_shared->resize(_g1_committed.word_size());
  1347   HeapRegionRemSet::shrink_heap(n_regions());
  1349   if (Verbose && PrintGC) {
  1350     size_t new_mem_size = _g1_storage.committed_size();
  1351     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1352                            old_mem_size/K, aligned_shrink_bytes/K,
  1353                            new_mem_size/K);
  1357 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1358   release_gc_alloc_regions(true /* totally */);
  1359   tear_down_region_lists();  // We will rebuild them in a moment.
  1360   shrink_helper(shrink_bytes);
  1361   rebuild_region_lists();
  1364 // Public methods.
  1366 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1367 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1368 #endif // _MSC_VER
  1371 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1372   SharedHeap(policy_),
  1373   _g1_policy(policy_),
  1374   _ref_processor(NULL),
  1375   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1376   _bot_shared(NULL),
  1377   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  1378   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1379   _evac_failure_scan_stack(NULL) ,
  1380   _mark_in_progress(false),
  1381   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  1382   _cur_alloc_region(NULL),
  1383   _refine_cte_cl(NULL),
  1384   _free_region_list(NULL), _free_region_list_size(0),
  1385   _free_regions(0),
  1386   _full_collection(false),
  1387   _unclean_region_list(),
  1388   _unclean_regions_coming(false),
  1389   _young_list(new YoungList(this)),
  1390   _gc_time_stamp(0),
  1391   _surviving_young_words(NULL),
  1392   _in_cset_fast_test(NULL),
  1393   _in_cset_fast_test_base(NULL),
  1394   _dirty_cards_region_list(NULL) {
  1395   _g1h = this; // To catch bugs.
  1396   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1397     vm_exit_during_initialization("Failed necessary allocation.");
  1400   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1402   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1403   _task_queues = new RefToScanQueueSet(n_queues);
  1405   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1406   assert(n_rem_sets > 0, "Invariant.");
  1408   HeapRegionRemSetIterator** iter_arr =
  1409     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1410   for (int i = 0; i < n_queues; i++) {
  1411     iter_arr[i] = new HeapRegionRemSetIterator();
  1413   _rem_set_iterator = iter_arr;
  1415   for (int i = 0; i < n_queues; i++) {
  1416     RefToScanQueue* q = new RefToScanQueue();
  1417     q->initialize();
  1418     _task_queues->register_queue(i, q);
  1421   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1422     _gc_alloc_regions[ap]          = NULL;
  1423     _gc_alloc_region_counts[ap]    = 0;
  1424     _retained_gc_alloc_regions[ap] = NULL;
  1425     // by default, we do not retain a GC alloc region for each ap;
  1426     // we'll override this, when appropriate, below
  1427     _retain_gc_alloc_region[ap]    = false;
  1430   // We will try to remember the last half-full tenured region we
  1431   // allocated to at the end of a collection so that we can re-use it
  1432   // during the next collection.
  1433   _retain_gc_alloc_region[GCAllocForTenured]  = true;
  1435   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1438 jint G1CollectedHeap::initialize() {
  1439   os::enable_vtime();
  1441   // Necessary to satisfy locking discipline assertions.
  1443   MutexLocker x(Heap_lock);
  1445   // While there are no constraints in the GC code that HeapWordSize
  1446   // be any particular value, there are multiple other areas in the
  1447   // system which believe this to be true (e.g. oop->object_size in some
  1448   // cases incorrectly returns the size in wordSize units rather than
  1449   // HeapWordSize).
  1450   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1452   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1453   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1455   // Ensure that the sizes are properly aligned.
  1456   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1457   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1459   // We allocate this in any case, but only do no work if the command line
  1460   // param is off.
  1461   _cg1r = new ConcurrentG1Refine();
  1463   // Reserve the maximum.
  1464   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1465   // Includes the perm-gen.
  1467   const size_t total_reserved = max_byte_size + pgs->max_size();
  1468   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1470   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  1471                         HeapRegion::GrainBytes,
  1472                         false /*ism*/, addr);
  1474   if (UseCompressedOops) {
  1475     if (addr != NULL && !heap_rs.is_reserved()) {
  1476       // Failed to reserve at specified address - the requested memory
  1477       // region is taken already, for example, by 'java' launcher.
  1478       // Try again to reserver heap higher.
  1479       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  1480       ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  1481                              false /*ism*/, addr);
  1482       if (addr != NULL && !heap_rs0.is_reserved()) {
  1483         // Failed to reserve at specified address again - give up.
  1484         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  1485         assert(addr == NULL, "");
  1486         ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  1487                                false /*ism*/, addr);
  1488         heap_rs = heap_rs1;
  1489       } else {
  1490         heap_rs = heap_rs0;
  1495   if (!heap_rs.is_reserved()) {
  1496     vm_exit_during_initialization("Could not reserve enough space for object heap");
  1497     return JNI_ENOMEM;
  1500   // It is important to do this in a way such that concurrent readers can't
  1501   // temporarily think somethings in the heap.  (I've actually seen this
  1502   // happen in asserts: DLD.)
  1503   _reserved.set_word_size(0);
  1504   _reserved.set_start((HeapWord*)heap_rs.base());
  1505   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  1507   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  1509   _num_humongous_regions = 0;
  1511   // Create the gen rem set (and barrier set) for the entire reserved region.
  1512   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  1513   set_barrier_set(rem_set()->bs());
  1514   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  1515     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  1516   } else {
  1517     vm_exit_during_initialization("G1 requires a mod ref bs.");
  1518     return JNI_ENOMEM;
  1521   // Also create a G1 rem set.
  1522   if (G1UseHRIntoRS) {
  1523     if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  1524       _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
  1525     } else {
  1526       vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  1527       return JNI_ENOMEM;
  1529   } else {
  1530     _g1_rem_set = new StupidG1RemSet(this);
  1533   // Carve out the G1 part of the heap.
  1535   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  1536   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  1537                            g1_rs.size()/HeapWordSize);
  1538   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  1540   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  1542   _g1_storage.initialize(g1_rs, 0);
  1543   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  1544   _g1_max_committed = _g1_committed;
  1545   _hrs = new HeapRegionSeq(_expansion_regions);
  1546   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  1547   guarantee(_cur_alloc_region == NULL, "from constructor");
  1549   // 6843694 - ensure that the maximum region index can fit
  1550   // in the remembered set structures.
  1551   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  1552   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  1554   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  1555   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  1556   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
  1557             "too many cards per region");
  1559   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  1560                                              heap_word_size(init_byte_size));
  1562   _g1h = this;
  1564   // Create the ConcurrentMark data structure and thread.
  1565   // (Must do this late, so that "max_regions" is defined.)
  1566   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  1567   _cmThread = _cm->cmThread();
  1569   // ...and the concurrent zero-fill thread, if necessary.
  1570   if (G1ConcZeroFill) {
  1571     _czft = new ConcurrentZFThread();
  1574   // Initialize the from_card cache structure of HeapRegionRemSet.
  1575   HeapRegionRemSet::init_heap(max_regions());
  1577   // Now expand into the initial heap size.
  1578   expand(init_byte_size);
  1580   // Perform any initialization actions delegated to the policy.
  1581   g1_policy()->init();
  1583   g1_policy()->note_start_of_mark_thread();
  1585   _refine_cte_cl =
  1586     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  1587                                     g1_rem_set(),
  1588                                     concurrent_g1_refine());
  1589   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  1591   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  1592                                                SATB_Q_FL_lock,
  1593                                                0,
  1594                                                Shared_SATB_Q_lock);
  1596   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1597                                                 DirtyCardQ_FL_lock,
  1598                                                 G1UpdateBufferQueueMaxLength,
  1599                                                 Shared_DirtyCardQ_lock);
  1601   if (G1DeferredRSUpdate) {
  1602     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  1603                                       DirtyCardQ_FL_lock,
  1604                                       0,
  1605                                       Shared_DirtyCardQ_lock,
  1606                                       &JavaThread::dirty_card_queue_set());
  1608   // In case we're keeping closure specialization stats, initialize those
  1609   // counts and that mechanism.
  1610   SpecializationStats::clear();
  1612   _gc_alloc_region_list = NULL;
  1614   // Do later initialization work for concurrent refinement.
  1615   _cg1r->init();
  1617   return JNI_OK;
  1620 void G1CollectedHeap::ref_processing_init() {
  1621   SharedHeap::ref_processing_init();
  1622   MemRegion mr = reserved_region();
  1623   _ref_processor = ReferenceProcessor::create_ref_processor(
  1624                                          mr,    // span
  1625                                          false, // Reference discovery is not atomic
  1626                                                 // (though it shouldn't matter here.)
  1627                                          true,  // mt_discovery
  1628                                          NULL,  // is alive closure: need to fill this in for efficiency
  1629                                          ParallelGCThreads,
  1630                                          ParallelRefProcEnabled,
  1631                                          true); // Setting next fields of discovered
  1632                                                 // lists requires a barrier.
  1635 size_t G1CollectedHeap::capacity() const {
  1636   return _g1_committed.byte_size();
  1639 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
  1640                                                  int worker_i) {
  1641   // Clean cards in the hot card cache
  1642   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set());
  1644   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1645   int n_completed_buffers = 0;
  1646   while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
  1647     n_completed_buffers++;
  1649   g1_policy()->record_update_rs_processed_buffers(worker_i,
  1650                                                   (double) n_completed_buffers);
  1651   dcqs.clear_n_completed_buffers();
  1652   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  1656 // Computes the sum of the storage used by the various regions.
  1658 size_t G1CollectedHeap::used() const {
  1659   assert(Heap_lock->owner() != NULL,
  1660          "Should be owned on this thread's behalf.");
  1661   size_t result = _summary_bytes_used;
  1662   // Read only once in case it is set to NULL concurrently
  1663   HeapRegion* hr = _cur_alloc_region;
  1664   if (hr != NULL)
  1665     result += hr->used();
  1666   return result;
  1669 size_t G1CollectedHeap::used_unlocked() const {
  1670   size_t result = _summary_bytes_used;
  1671   return result;
  1674 class SumUsedClosure: public HeapRegionClosure {
  1675   size_t _used;
  1676 public:
  1677   SumUsedClosure() : _used(0) {}
  1678   bool doHeapRegion(HeapRegion* r) {
  1679     if (!r->continuesHumongous()) {
  1680       _used += r->used();
  1682     return false;
  1684   size_t result() { return _used; }
  1685 };
  1687 size_t G1CollectedHeap::recalculate_used() const {
  1688   SumUsedClosure blk;
  1689   _hrs->iterate(&blk);
  1690   return blk.result();
  1693 #ifndef PRODUCT
  1694 class SumUsedRegionsClosure: public HeapRegionClosure {
  1695   size_t _num;
  1696 public:
  1697   SumUsedRegionsClosure() : _num(0) {}
  1698   bool doHeapRegion(HeapRegion* r) {
  1699     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  1700       _num += 1;
  1702     return false;
  1704   size_t result() { return _num; }
  1705 };
  1707 size_t G1CollectedHeap::recalculate_used_regions() const {
  1708   SumUsedRegionsClosure blk;
  1709   _hrs->iterate(&blk);
  1710   return blk.result();
  1712 #endif // PRODUCT
  1714 size_t G1CollectedHeap::unsafe_max_alloc() {
  1715   if (_free_regions > 0) return HeapRegion::GrainBytes;
  1716   // otherwise, is there space in the current allocation region?
  1718   // We need to store the current allocation region in a local variable
  1719   // here. The problem is that this method doesn't take any locks and
  1720   // there may be other threads which overwrite the current allocation
  1721   // region field. attempt_allocation(), for example, sets it to NULL
  1722   // and this can happen *after* the NULL check here but before the call
  1723   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  1724   // to be a problem in the optimized build, since the two loads of the
  1725   // current allocation region field are optimized away.
  1726   HeapRegion* car = _cur_alloc_region;
  1728   // FIXME: should iterate over all regions?
  1729   if (car == NULL) {
  1730     return 0;
  1732   return car->free();
  1735 void G1CollectedHeap::collect(GCCause::Cause cause) {
  1736   // The caller doesn't have the Heap_lock
  1737   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  1738   MutexLocker ml(Heap_lock);
  1739   collect_locked(cause);
  1742 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  1743   assert(Thread::current()->is_VM_thread(), "Precondition#1");
  1744   assert(Heap_lock->is_locked(), "Precondition#2");
  1745   GCCauseSetter gcs(this, cause);
  1746   switch (cause) {
  1747     case GCCause::_heap_inspection:
  1748     case GCCause::_heap_dump: {
  1749       HandleMark hm;
  1750       do_full_collection(false);         // don't clear all soft refs
  1751       break;
  1753     default: // XXX FIX ME
  1754       ShouldNotReachHere(); // Unexpected use of this function
  1759 void G1CollectedHeap::collect_locked(GCCause::Cause cause) {
  1760   // Don't want to do a GC until cleanup is completed.
  1761   wait_for_cleanup_complete();
  1763   // Read the GC count while holding the Heap_lock
  1764   int gc_count_before = SharedHeap::heap()->total_collections();
  1766     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  1767     VM_G1CollectFull op(gc_count_before, cause);
  1768     VMThread::execute(&op);
  1772 bool G1CollectedHeap::is_in(const void* p) const {
  1773   if (_g1_committed.contains(p)) {
  1774     HeapRegion* hr = _hrs->addr_to_region(p);
  1775     return hr->is_in(p);
  1776   } else {
  1777     return _perm_gen->as_gen()->is_in(p);
  1781 // Iteration functions.
  1783 // Iterates an OopClosure over all ref-containing fields of objects
  1784 // within a HeapRegion.
  1786 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  1787   MemRegion _mr;
  1788   OopClosure* _cl;
  1789 public:
  1790   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  1791     : _mr(mr), _cl(cl) {}
  1792   bool doHeapRegion(HeapRegion* r) {
  1793     if (! r->continuesHumongous()) {
  1794       r->oop_iterate(_cl);
  1796     return false;
  1798 };
  1800 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  1801   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  1802   _hrs->iterate(&blk);
  1803   if (do_perm) {
  1804     perm_gen()->oop_iterate(cl);
  1808 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  1809   IterateOopClosureRegionClosure blk(mr, cl);
  1810   _hrs->iterate(&blk);
  1811   if (do_perm) {
  1812     perm_gen()->oop_iterate(cl);
  1816 // Iterates an ObjectClosure over all objects within a HeapRegion.
  1818 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  1819   ObjectClosure* _cl;
  1820 public:
  1821   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  1822   bool doHeapRegion(HeapRegion* r) {
  1823     if (! r->continuesHumongous()) {
  1824       r->object_iterate(_cl);
  1826     return false;
  1828 };
  1830 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  1831   IterateObjectClosureRegionClosure blk(cl);
  1832   _hrs->iterate(&blk);
  1833   if (do_perm) {
  1834     perm_gen()->object_iterate(cl);
  1838 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1839   // FIXME: is this right?
  1840   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  1843 // Calls a SpaceClosure on a HeapRegion.
  1845 class SpaceClosureRegionClosure: public HeapRegionClosure {
  1846   SpaceClosure* _cl;
  1847 public:
  1848   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  1849   bool doHeapRegion(HeapRegion* r) {
  1850     _cl->do_space(r);
  1851     return false;
  1853 };
  1855 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  1856   SpaceClosureRegionClosure blk(cl);
  1857   _hrs->iterate(&blk);
  1860 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  1861   _hrs->iterate(cl);
  1864 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  1865                                                HeapRegionClosure* cl) {
  1866   _hrs->iterate_from(r, cl);
  1869 void
  1870 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  1871   _hrs->iterate_from(idx, cl);
  1874 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  1876 void
  1877 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  1878                                                  int worker,
  1879                                                  jint claim_value) {
  1880   const size_t regions = n_regions();
  1881   const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
  1882   // try to spread out the starting points of the workers
  1883   const size_t start_index = regions / worker_num * (size_t) worker;
  1885   // each worker will actually look at all regions
  1886   for (size_t count = 0; count < regions; ++count) {
  1887     const size_t index = (start_index + count) % regions;
  1888     assert(0 <= index && index < regions, "sanity");
  1889     HeapRegion* r = region_at(index);
  1890     // we'll ignore "continues humongous" regions (we'll process them
  1891     // when we come across their corresponding "start humongous"
  1892     // region) and regions already claimed
  1893     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  1894       continue;
  1896     // OK, try to claim it
  1897     if (r->claimHeapRegion(claim_value)) {
  1898       // success!
  1899       assert(!r->continuesHumongous(), "sanity");
  1900       if (r->startsHumongous()) {
  1901         // If the region is "starts humongous" we'll iterate over its
  1902         // "continues humongous" first; in fact we'll do them
  1903         // first. The order is important. In on case, calling the
  1904         // closure on the "starts humongous" region might de-allocate
  1905         // and clear all its "continues humongous" regions and, as a
  1906         // result, we might end up processing them twice. So, we'll do
  1907         // them first (notice: most closures will ignore them anyway) and
  1908         // then we'll do the "starts humongous" region.
  1909         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  1910           HeapRegion* chr = region_at(ch_index);
  1912           // if the region has already been claimed or it's not
  1913           // "continues humongous" we're done
  1914           if (chr->claim_value() == claim_value ||
  1915               !chr->continuesHumongous()) {
  1916             break;
  1919           // Noone should have claimed it directly. We can given
  1920           // that we claimed its "starts humongous" region.
  1921           assert(chr->claim_value() != claim_value, "sanity");
  1922           assert(chr->humongous_start_region() == r, "sanity");
  1924           if (chr->claimHeapRegion(claim_value)) {
  1925             // we should always be able to claim it; noone else should
  1926             // be trying to claim this region
  1928             bool res2 = cl->doHeapRegion(chr);
  1929             assert(!res2, "Should not abort");
  1931             // Right now, this holds (i.e., no closure that actually
  1932             // does something with "continues humongous" regions
  1933             // clears them). We might have to weaken it in the future,
  1934             // but let's leave these two asserts here for extra safety.
  1935             assert(chr->continuesHumongous(), "should still be the case");
  1936             assert(chr->humongous_start_region() == r, "sanity");
  1937           } else {
  1938             guarantee(false, "we should not reach here");
  1943       assert(!r->continuesHumongous(), "sanity");
  1944       bool res = cl->doHeapRegion(r);
  1945       assert(!res, "Should not abort");
  1950 class ResetClaimValuesClosure: public HeapRegionClosure {
  1951 public:
  1952   bool doHeapRegion(HeapRegion* r) {
  1953     r->set_claim_value(HeapRegion::InitialClaimValue);
  1954     return false;
  1956 };
  1958 void
  1959 G1CollectedHeap::reset_heap_region_claim_values() {
  1960   ResetClaimValuesClosure blk;
  1961   heap_region_iterate(&blk);
  1964 #ifdef ASSERT
  1965 // This checks whether all regions in the heap have the correct claim
  1966 // value. I also piggy-backed on this a check to ensure that the
  1967 // humongous_start_region() information on "continues humongous"
  1968 // regions is correct.
  1970 class CheckClaimValuesClosure : public HeapRegionClosure {
  1971 private:
  1972   jint _claim_value;
  1973   size_t _failures;
  1974   HeapRegion* _sh_region;
  1975 public:
  1976   CheckClaimValuesClosure(jint claim_value) :
  1977     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  1978   bool doHeapRegion(HeapRegion* r) {
  1979     if (r->claim_value() != _claim_value) {
  1980       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1981                              "claim value = %d, should be %d",
  1982                              r->bottom(), r->end(), r->claim_value(),
  1983                              _claim_value);
  1984       ++_failures;
  1986     if (!r->isHumongous()) {
  1987       _sh_region = NULL;
  1988     } else if (r->startsHumongous()) {
  1989       _sh_region = r;
  1990     } else if (r->continuesHumongous()) {
  1991       if (r->humongous_start_region() != _sh_region) {
  1992         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  1993                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  1994                                r->bottom(), r->end(),
  1995                                r->humongous_start_region(),
  1996                                _sh_region);
  1997         ++_failures;
  2000     return false;
  2002   size_t failures() {
  2003     return _failures;
  2005 };
  2007 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2008   CheckClaimValuesClosure cl(claim_value);
  2009   heap_region_iterate(&cl);
  2010   return cl.failures() == 0;
  2012 #endif // ASSERT
  2014 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2015   HeapRegion* r = g1_policy()->collection_set();
  2016   while (r != NULL) {
  2017     HeapRegion* next = r->next_in_collection_set();
  2018     if (cl->doHeapRegion(r)) {
  2019       cl->incomplete();
  2020       return;
  2022     r = next;
  2026 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2027                                                   HeapRegionClosure *cl) {
  2028   assert(r->in_collection_set(),
  2029          "Start region must be a member of the collection set.");
  2030   HeapRegion* cur = r;
  2031   while (cur != NULL) {
  2032     HeapRegion* next = cur->next_in_collection_set();
  2033     if (cl->doHeapRegion(cur) && false) {
  2034       cl->incomplete();
  2035       return;
  2037     cur = next;
  2039   cur = g1_policy()->collection_set();
  2040   while (cur != r) {
  2041     HeapRegion* next = cur->next_in_collection_set();
  2042     if (cl->doHeapRegion(cur) && false) {
  2043       cl->incomplete();
  2044       return;
  2046     cur = next;
  2050 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2051   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  2055 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2056   Space* res = heap_region_containing(addr);
  2057   if (res == NULL)
  2058     res = perm_gen()->space_containing(addr);
  2059   return res;
  2062 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2063   Space* sp = space_containing(addr);
  2064   if (sp != NULL) {
  2065     return sp->block_start(addr);
  2067   return NULL;
  2070 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2071   Space* sp = space_containing(addr);
  2072   assert(sp != NULL, "block_size of address outside of heap");
  2073   return sp->block_size(addr);
  2076 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2077   Space* sp = space_containing(addr);
  2078   return sp->block_is_obj(addr);
  2081 bool G1CollectedHeap::supports_tlab_allocation() const {
  2082   return true;
  2085 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2086   return HeapRegion::GrainBytes;
  2089 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2090   // Return the remaining space in the cur alloc region, but not less than
  2091   // the min TLAB size.
  2092   // Also, no more than half the region size, since we can't allow tlabs to
  2093   // grow big enough to accomodate humongous objects.
  2095   // We need to story it locally, since it might change between when we
  2096   // test for NULL and when we use it later.
  2097   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
  2098   if (cur_alloc_space == NULL) {
  2099     return HeapRegion::GrainBytes/2;
  2100   } else {
  2101     return MAX2(MIN2(cur_alloc_space->free(),
  2102                      (size_t)(HeapRegion::GrainBytes/2)),
  2103                 (size_t)MinTLABSize);
  2107 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
  2108   bool dummy;
  2109   return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
  2112 bool G1CollectedHeap::allocs_are_zero_filled() {
  2113   return false;
  2116 size_t G1CollectedHeap::large_typearray_limit() {
  2117   // FIXME
  2118   return HeapRegion::GrainBytes/HeapWordSize;
  2121 size_t G1CollectedHeap::max_capacity() const {
  2122   return _g1_committed.byte_size();
  2125 jlong G1CollectedHeap::millis_since_last_gc() {
  2126   // assert(false, "NYI");
  2127   return 0;
  2131 void G1CollectedHeap::prepare_for_verify() {
  2132   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2133     ensure_parsability(false);
  2135   g1_rem_set()->prepare_for_verify();
  2138 class VerifyLivenessOopClosure: public OopClosure {
  2139   G1CollectedHeap* g1h;
  2140 public:
  2141   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2142     g1h = _g1h;
  2144   void do_oop(narrowOop *p) { do_oop_work(p); }
  2145   void do_oop(      oop *p) { do_oop_work(p); }
  2147   template <class T> void do_oop_work(T *p) {
  2148     oop obj = oopDesc::load_decode_heap_oop(p);
  2149     guarantee(obj == NULL || !g1h->is_obj_dead(obj),
  2150               "Dead object referenced by a not dead object");
  2152 };
  2154 class VerifyObjsInRegionClosure: public ObjectClosure {
  2155 private:
  2156   G1CollectedHeap* _g1h;
  2157   size_t _live_bytes;
  2158   HeapRegion *_hr;
  2159   bool _use_prev_marking;
  2160 public:
  2161   // use_prev_marking == true  -> use "prev" marking information,
  2162   // use_prev_marking == false -> use "next" marking information
  2163   VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
  2164     : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
  2165     _g1h = G1CollectedHeap::heap();
  2167   void do_object(oop o) {
  2168     VerifyLivenessOopClosure isLive(_g1h);
  2169     assert(o != NULL, "Huh?");
  2170     if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
  2171       o->oop_iterate(&isLive);
  2172       if (!_hr->obj_allocated_since_prev_marking(o))
  2173         _live_bytes += (o->size() * HeapWordSize);
  2176   size_t live_bytes() { return _live_bytes; }
  2177 };
  2179 class PrintObjsInRegionClosure : public ObjectClosure {
  2180   HeapRegion *_hr;
  2181   G1CollectedHeap *_g1;
  2182 public:
  2183   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2184     _g1 = G1CollectedHeap::heap();
  2185   };
  2187   void do_object(oop o) {
  2188     if (o != NULL) {
  2189       HeapWord *start = (HeapWord *) o;
  2190       size_t word_sz = o->size();
  2191       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2192                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2193                           (void*) o, word_sz,
  2194                           _g1->isMarkedPrev(o),
  2195                           _g1->isMarkedNext(o),
  2196                           _hr->obj_allocated_since_prev_marking(o));
  2197       HeapWord *end = start + word_sz;
  2198       HeapWord *cur;
  2199       int *val;
  2200       for (cur = start; cur < end; cur++) {
  2201         val = (int *) cur;
  2202         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2206 };
  2208 class VerifyRegionClosure: public HeapRegionClosure {
  2209 private:
  2210   bool _allow_dirty;
  2211   bool _par;
  2212   bool _use_prev_marking;
  2213 public:
  2214   // use_prev_marking == true  -> use "prev" marking information,
  2215   // use_prev_marking == false -> use "next" marking information
  2216   VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
  2217     : _allow_dirty(allow_dirty),
  2218       _par(par),
  2219       _use_prev_marking(use_prev_marking) {}
  2221   bool doHeapRegion(HeapRegion* r) {
  2222     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2223               "Should be unclaimed at verify points.");
  2224     if (!r->continuesHumongous()) {
  2225       VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
  2226       r->verify(_allow_dirty, _use_prev_marking);
  2227       r->object_iterate(&not_dead_yet_cl);
  2228       guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
  2229                 "More live objects than counted in last complete marking.");
  2231     return false;
  2233 };
  2235 class VerifyRootsClosure: public OopsInGenClosure {
  2236 private:
  2237   G1CollectedHeap* _g1h;
  2238   bool             _failures;
  2239   bool             _use_prev_marking;
  2240 public:
  2241   // use_prev_marking == true  -> use "prev" marking information,
  2242   // use_prev_marking == false -> use "next" marking information
  2243   VerifyRootsClosure(bool use_prev_marking) :
  2244     _g1h(G1CollectedHeap::heap()),
  2245     _failures(false),
  2246     _use_prev_marking(use_prev_marking) { }
  2248   bool failures() { return _failures; }
  2250   template <class T> void do_oop_nv(T* p) {
  2251     T heap_oop = oopDesc::load_heap_oop(p);
  2252     if (!oopDesc::is_null(heap_oop)) {
  2253       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2254       if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
  2255         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2256                                "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2257         obj->print_on(gclog_or_tty);
  2258         _failures = true;
  2263   void do_oop(oop* p)       { do_oop_nv(p); }
  2264   void do_oop(narrowOop* p) { do_oop_nv(p); }
  2265 };
  2267 // This is the task used for parallel heap verification.
  2269 class G1ParVerifyTask: public AbstractGangTask {
  2270 private:
  2271   G1CollectedHeap* _g1h;
  2272   bool _allow_dirty;
  2273   bool _use_prev_marking;
  2275 public:
  2276   // use_prev_marking == true  -> use "prev" marking information,
  2277   // use_prev_marking == false -> use "next" marking information
  2278   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
  2279                   bool use_prev_marking) :
  2280     AbstractGangTask("Parallel verify task"),
  2281     _g1h(g1h),
  2282     _allow_dirty(allow_dirty),
  2283     _use_prev_marking(use_prev_marking) { }
  2285   void work(int worker_i) {
  2286     HandleMark hm;
  2287     VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
  2288     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2289                                           HeapRegion::ParVerifyClaimValue);
  2291 };
  2293 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2294   verify(allow_dirty, silent, /* use_prev_marking */ true);
  2297 void G1CollectedHeap::verify(bool allow_dirty,
  2298                              bool silent,
  2299                              bool use_prev_marking) {
  2300   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2301     if (!silent) { gclog_or_tty->print("roots "); }
  2302     VerifyRootsClosure rootsCl(use_prev_marking);
  2303     process_strong_roots(false,
  2304                          SharedHeap::SO_AllClasses,
  2305                          &rootsCl,
  2306                          &rootsCl);
  2307     rem_set()->invalidate(perm_gen()->used_region(), false);
  2308     if (!silent) { gclog_or_tty->print("heapRegions "); }
  2309     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  2310       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2311              "sanity check");
  2313       G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
  2314       int n_workers = workers()->total_workers();
  2315       set_par_threads(n_workers);
  2316       workers()->run_task(&task);
  2317       set_par_threads(0);
  2319       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  2320              "sanity check");
  2322       reset_heap_region_claim_values();
  2324       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2325              "sanity check");
  2326     } else {
  2327       VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
  2328       _hrs->iterate(&blk);
  2330     if (!silent) gclog_or_tty->print("remset ");
  2331     rem_set()->verify();
  2332     guarantee(!rootsCl.failures(), "should not have had failures");
  2333   } else {
  2334     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  2338 class PrintRegionClosure: public HeapRegionClosure {
  2339   outputStream* _st;
  2340 public:
  2341   PrintRegionClosure(outputStream* st) : _st(st) {}
  2342   bool doHeapRegion(HeapRegion* r) {
  2343     r->print_on(_st);
  2344     return false;
  2346 };
  2348 void G1CollectedHeap::print() const { print_on(tty); }
  2350 void G1CollectedHeap::print_on(outputStream* st) const {
  2351   print_on(st, PrintHeapAtGCExtended);
  2354 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  2355   st->print(" %-20s", "garbage-first heap");
  2356   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  2357             capacity()/K, used_unlocked()/K);
  2358   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  2359             _g1_storage.low_boundary(),
  2360             _g1_storage.high(),
  2361             _g1_storage.high_boundary());
  2362   st->cr();
  2363   st->print("  region size " SIZE_FORMAT "K, ",
  2364             HeapRegion::GrainBytes/K);
  2365   size_t young_regions = _young_list->length();
  2366   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  2367             young_regions, young_regions * HeapRegion::GrainBytes / K);
  2368   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  2369   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  2370             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  2371   st->cr();
  2372   perm()->as_gen()->print_on(st);
  2373   if (extended) {
  2374     print_on_extended(st);
  2378 void G1CollectedHeap::print_on_extended(outputStream* st) const {
  2379   PrintRegionClosure blk(st);
  2380   _hrs->iterate(&blk);
  2383 class PrintOnThreadsClosure : public ThreadClosure {
  2384   outputStream* _st;
  2385 public:
  2386   PrintOnThreadsClosure(outputStream* st) : _st(st) { }
  2387   virtual void do_thread(Thread *t) {
  2388     t->print_on(_st);
  2390 };
  2392 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  2393   if (ParallelGCThreads > 0) {
  2394     workers()->print_worker_threads();
  2396   st->print("\"G1 concurrent mark GC Thread\" ");
  2397   _cmThread->print();
  2398   st->cr();
  2399   st->print("\"G1 concurrent refinement GC Threads\" ");
  2400   PrintOnThreadsClosure p(st);
  2401   _cg1r->threads_do(&p);
  2402   st->cr();
  2403   st->print("\"G1 zero-fill GC Thread\" ");
  2404   _czft->print_on(st);
  2405   st->cr();
  2408 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  2409   if (ParallelGCThreads > 0) {
  2410     workers()->threads_do(tc);
  2412   tc->do_thread(_cmThread);
  2413   _cg1r->threads_do(tc);
  2414   tc->do_thread(_czft);
  2417 void G1CollectedHeap::print_tracing_info() const {
  2418   // We'll overload this to mean "trace GC pause statistics."
  2419   if (TraceGen0Time || TraceGen1Time) {
  2420     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  2421     // to that.
  2422     g1_policy()->print_tracing_info();
  2424   if (G1SummarizeRSetStats) {
  2425     g1_rem_set()->print_summary_info();
  2427   if (G1SummarizeConcurrentMark) {
  2428     concurrent_mark()->print_summary_info();
  2430   if (G1SummarizeZFStats) {
  2431     ConcurrentZFThread::print_summary_info();
  2433   g1_policy()->print_yg_surv_rate_info();
  2435   SpecializationStats::print();
  2439 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  2440   HeapRegion* hr = heap_region_containing(addr);
  2441   if (hr == NULL) {
  2442     return 0;
  2443   } else {
  2444     return 1;
  2448 G1CollectedHeap* G1CollectedHeap::heap() {
  2449   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  2450          "not a garbage-first heap");
  2451   return _g1h;
  2454 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  2455   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  2456   // Call allocation profiler
  2457   AllocationProfiler::iterate_since_last_gc();
  2458   // Fill TLAB's and such
  2459   ensure_parsability(true);
  2462 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  2463   // FIXME: what is this about?
  2464   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  2465   // is set.
  2466   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  2467                         "derived pointer present"));
  2470 void G1CollectedHeap::do_collection_pause() {
  2471   // Read the GC count while holding the Heap_lock
  2472   // we need to do this _before_ wait_for_cleanup_complete(), to
  2473   // ensure that we do not give up the heap lock and potentially
  2474   // pick up the wrong count
  2475   int gc_count_before = SharedHeap::heap()->total_collections();
  2477   // Don't want to do a GC pause while cleanup is being completed!
  2478   wait_for_cleanup_complete();
  2480   g1_policy()->record_stop_world_start();
  2482     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
  2483     VM_G1IncCollectionPause op(gc_count_before);
  2484     VMThread::execute(&op);
  2488 void
  2489 G1CollectedHeap::doConcurrentMark() {
  2490   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2491   if (!_cmThread->in_progress()) {
  2492     _cmThread->set_started();
  2493     CGC_lock->notify();
  2497 class VerifyMarkedObjsClosure: public ObjectClosure {
  2498     G1CollectedHeap* _g1h;
  2499     public:
  2500     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  2501     void do_object(oop obj) {
  2502       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  2503              "markandsweep mark should agree with concurrent deadness");
  2505 };
  2507 void
  2508 G1CollectedHeap::checkConcurrentMark() {
  2509     VerifyMarkedObjsClosure verifycl(this);
  2510     //    MutexLockerEx x(getMarkBitMapLock(),
  2511     //              Mutex::_no_safepoint_check_flag);
  2512     object_iterate(&verifycl, false);
  2515 void G1CollectedHeap::do_sync_mark() {
  2516   _cm->checkpointRootsInitial();
  2517   _cm->markFromRoots();
  2518   _cm->checkpointRootsFinal(false);
  2521 // <NEW PREDICTION>
  2523 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  2524                                                        bool young) {
  2525   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  2528 void G1CollectedHeap::check_if_region_is_too_expensive(double
  2529                                                            predicted_time_ms) {
  2530   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  2533 size_t G1CollectedHeap::pending_card_num() {
  2534   size_t extra_cards = 0;
  2535   JavaThread *curr = Threads::first();
  2536   while (curr != NULL) {
  2537     DirtyCardQueue& dcq = curr->dirty_card_queue();
  2538     extra_cards += dcq.size();
  2539     curr = curr->next();
  2541   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2542   size_t buffer_size = dcqs.buffer_size();
  2543   size_t buffer_num = dcqs.completed_buffers_num();
  2544   return buffer_size * buffer_num + extra_cards;
  2547 size_t G1CollectedHeap::max_pending_card_num() {
  2548   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2549   size_t buffer_size = dcqs.buffer_size();
  2550   size_t buffer_num  = dcqs.completed_buffers_num();
  2551   int thread_num  = Threads::number_of_threads();
  2552   return (buffer_num + thread_num) * buffer_size;
  2555 size_t G1CollectedHeap::cards_scanned() {
  2556   HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
  2557   return g1_rset->cardsScanned();
  2560 void
  2561 G1CollectedHeap::setup_surviving_young_words() {
  2562   guarantee( _surviving_young_words == NULL, "pre-condition" );
  2563   size_t array_length = g1_policy()->young_cset_length();
  2564   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  2565   if (_surviving_young_words == NULL) {
  2566     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  2567                           "Not enough space for young surv words summary.");
  2569   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  2570 #ifdef ASSERT
  2571   for (size_t i = 0;  i < array_length; ++i) {
  2572     assert( _surviving_young_words[i] == 0, "memset above" );
  2574 #endif // !ASSERT
  2577 void
  2578 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  2579   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2580   size_t array_length = g1_policy()->young_cset_length();
  2581   for (size_t i = 0; i < array_length; ++i)
  2582     _surviving_young_words[i] += surv_young_words[i];
  2585 void
  2586 G1CollectedHeap::cleanup_surviving_young_words() {
  2587   guarantee( _surviving_young_words != NULL, "pre-condition" );
  2588   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  2589   _surviving_young_words = NULL;
  2592 // </NEW PREDICTION>
  2594 void
  2595 G1CollectedHeap::do_collection_pause_at_safepoint() {
  2596   if (PrintHeapAtGC) {
  2597     Universe::print_heap_before_gc();
  2601     char verbose_str[128];
  2602     sprintf(verbose_str, "GC pause ");
  2603     if (g1_policy()->in_young_gc_mode()) {
  2604       if (g1_policy()->full_young_gcs())
  2605         strcat(verbose_str, "(young)");
  2606       else
  2607         strcat(verbose_str, "(partial)");
  2609     if (g1_policy()->should_initiate_conc_mark())
  2610       strcat(verbose_str, " (initial-mark)");
  2612     GCCauseSetter x(this, GCCause::_g1_inc_collection_pause);
  2614     // if PrintGCDetails is on, we'll print long statistics information
  2615     // in the collector policy code, so let's not print this as the output
  2616     // is messy if we do.
  2617     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  2618     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  2619     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  2621     ResourceMark rm;
  2622     assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  2623     assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
  2624     guarantee(!is_gc_active(), "collection is not reentrant");
  2625     assert(regions_accounted_for(), "Region leakage!");
  2627     increment_gc_time_stamp();
  2629     if (g1_policy()->in_young_gc_mode()) {
  2630       assert(check_young_list_well_formed(),
  2631              "young list should be well formed");
  2634     if (GC_locker::is_active()) {
  2635       return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  2638     bool abandoned = false;
  2639     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  2640       IsGCActiveMark x;
  2642       gc_prologue(false);
  2643       increment_total_collections(false /* full gc */);
  2645 #if G1_REM_SET_LOGGING
  2646       gclog_or_tty->print_cr("\nJust chose CS, heap:");
  2647       print();
  2648 #endif
  2650       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  2651         HandleMark hm;  // Discard invalid handles created during verification
  2652         prepare_for_verify();
  2653         gclog_or_tty->print(" VerifyBeforeGC:");
  2654         Universe::verify(false);
  2657       COMPILER2_PRESENT(DerivedPointerTable::clear());
  2659       // We want to turn off ref discovery, if necessary, and turn it back on
  2660       // on again later if we do. XXX Dubious: why is discovery disabled?
  2661       bool was_enabled = ref_processor()->discovery_enabled();
  2662       if (was_enabled) ref_processor()->disable_discovery();
  2664       // Forget the current alloc region (we might even choose it to be part
  2665       // of the collection set!).
  2666       abandon_cur_alloc_region();
  2668       // The elapsed time induced by the start time below deliberately elides
  2669       // the possible verification above.
  2670       double start_time_sec = os::elapsedTime();
  2671       size_t start_used_bytes = used();
  2673       g1_policy()->record_collection_pause_start(start_time_sec,
  2674                                                  start_used_bytes);
  2676       guarantee(_in_cset_fast_test == NULL, "invariant");
  2677       guarantee(_in_cset_fast_test_base == NULL, "invariant");
  2678       _in_cset_fast_test_length = max_regions();
  2679       _in_cset_fast_test_base =
  2680                              NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  2681       memset(_in_cset_fast_test_base, false,
  2682                                      _in_cset_fast_test_length * sizeof(bool));
  2683       // We're biasing _in_cset_fast_test to avoid subtracting the
  2684       // beginning of the heap every time we want to index; basically
  2685       // it's the same with what we do with the card table.
  2686       _in_cset_fast_test = _in_cset_fast_test_base -
  2687               ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2689 #if SCAN_ONLY_VERBOSE
  2690       _young_list->print();
  2691 #endif // SCAN_ONLY_VERBOSE
  2693       if (g1_policy()->should_initiate_conc_mark()) {
  2694         concurrent_mark()->checkpointRootsInitialPre();
  2696       save_marks();
  2698       // We must do this before any possible evacuation that should propagate
  2699       // marks.
  2700       if (mark_in_progress()) {
  2701         double start_time_sec = os::elapsedTime();
  2703         _cm->drainAllSATBBuffers();
  2704         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  2705         g1_policy()->record_satb_drain_time(finish_mark_ms);
  2707       // Record the number of elements currently on the mark stack, so we
  2708       // only iterate over these.  (Since evacuation may add to the mark
  2709       // stack, doing more exposes race conditions.)  If no mark is in
  2710       // progress, this will be zero.
  2711       _cm->set_oops_do_bound();
  2713       assert(regions_accounted_for(), "Region leakage.");
  2715       if (mark_in_progress())
  2716         concurrent_mark()->newCSet();
  2718       // Now choose the CS.
  2719       g1_policy()->choose_collection_set();
  2721       // We may abandon a pause if we find no region that will fit in the MMU
  2722       // pause.
  2723       bool abandoned = (g1_policy()->collection_set() == NULL);
  2725       // Nothing to do if we were unable to choose a collection set.
  2726       if (!abandoned) {
  2727 #if G1_REM_SET_LOGGING
  2728         gclog_or_tty->print_cr("\nAfter pause, heap:");
  2729         print();
  2730 #endif
  2732         setup_surviving_young_words();
  2734         // Set up the gc allocation regions.
  2735         get_gc_alloc_regions();
  2737         // Actually do the work...
  2738         evacuate_collection_set();
  2739         free_collection_set(g1_policy()->collection_set());
  2740         g1_policy()->clear_collection_set();
  2742         FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
  2743         // this is more for peace of mind; we're nulling them here and
  2744         // we're expecting them to be null at the beginning of the next GC
  2745         _in_cset_fast_test = NULL;
  2746         _in_cset_fast_test_base = NULL;
  2748         cleanup_surviving_young_words();
  2750         if (g1_policy()->in_young_gc_mode()) {
  2751           _young_list->reset_sampled_info();
  2752           assert(check_young_list_empty(true),
  2753                  "young list should be empty");
  2755 #if SCAN_ONLY_VERBOSE
  2756           _young_list->print();
  2757 #endif // SCAN_ONLY_VERBOSE
  2759           g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  2760                                           _young_list->first_survivor_region(),
  2761                                           _young_list->last_survivor_region());
  2762           _young_list->reset_auxilary_lists();
  2764       } else {
  2765         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  2768       if (evacuation_failed()) {
  2769         _summary_bytes_used = recalculate_used();
  2770       } else {
  2771         // The "used" of the the collection set have already been subtracted
  2772         // when they were freed.  Add in the bytes evacuated.
  2773         _summary_bytes_used += g1_policy()->bytes_in_to_space();
  2776       if (g1_policy()->in_young_gc_mode() &&
  2777           g1_policy()->should_initiate_conc_mark()) {
  2778         concurrent_mark()->checkpointRootsInitialPost();
  2779         set_marking_started();
  2780         // CAUTION: after the doConcurrentMark() call below,
  2781         // the concurrent marking thread(s) could be running
  2782         // concurrently with us. Make sure that anything after
  2783         // this point does not assume that we are the only GC thread
  2784         // running. Note: of course, the actual marking work will
  2785         // not start until the safepoint itself is released in
  2786         // ConcurrentGCThread::safepoint_desynchronize().
  2787         doConcurrentMark();
  2790 #if SCAN_ONLY_VERBOSE
  2791       _young_list->print();
  2792 #endif // SCAN_ONLY_VERBOSE
  2794       double end_time_sec = os::elapsedTime();
  2795       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  2796       g1_policy()->record_pause_time_ms(pause_time_ms);
  2797       g1_policy()->record_collection_pause_end(abandoned);
  2799       assert(regions_accounted_for(), "Region leakage.");
  2801       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  2802         HandleMark hm;  // Discard invalid handles created during verification
  2803         gclog_or_tty->print(" VerifyAfterGC:");
  2804         prepare_for_verify();
  2805         Universe::verify(false);
  2808       if (was_enabled) ref_processor()->enable_discovery();
  2811         size_t expand_bytes = g1_policy()->expansion_amount();
  2812         if (expand_bytes > 0) {
  2813           size_t bytes_before = capacity();
  2814           expand(expand_bytes);
  2818       if (mark_in_progress()) {
  2819         concurrent_mark()->update_g1_committed();
  2822 #ifdef TRACESPINNING
  2823       ParallelTaskTerminator::print_termination_counts();
  2824 #endif
  2826       gc_epilogue(false);
  2829     assert(verify_region_lists(), "Bad region lists.");
  2831     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  2832       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  2833       print_tracing_info();
  2834       vm_exit(-1);
  2838   if (PrintHeapAtGC) {
  2839     Universe::print_heap_after_gc();
  2841   if (G1SummarizeRSetStats &&
  2842       (G1SummarizeRSetStatsPeriod > 0) &&
  2843       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  2844     g1_rem_set()->print_summary_info();
  2848 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  2849   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  2850   // make sure we don't call set_gc_alloc_region() multiple times on
  2851   // the same region
  2852   assert(r == NULL || !r->is_gc_alloc_region(),
  2853          "shouldn't already be a GC alloc region");
  2854   HeapWord* original_top = NULL;
  2855   if (r != NULL)
  2856     original_top = r->top();
  2858   // We will want to record the used space in r as being there before gc.
  2859   // One we install it as a GC alloc region it's eligible for allocation.
  2860   // So record it now and use it later.
  2861   size_t r_used = 0;
  2862   if (r != NULL) {
  2863     r_used = r->used();
  2865     if (ParallelGCThreads > 0) {
  2866       // need to take the lock to guard against two threads calling
  2867       // get_gc_alloc_region concurrently (very unlikely but...)
  2868       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  2869       r->save_marks();
  2872   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  2873   _gc_alloc_regions[purpose] = r;
  2874   if (old_alloc_region != NULL) {
  2875     // Replace aliases too.
  2876     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2877       if (_gc_alloc_regions[ap] == old_alloc_region) {
  2878         _gc_alloc_regions[ap] = r;
  2882   if (r != NULL) {
  2883     push_gc_alloc_region(r);
  2884     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  2885       // We are using a region as a GC alloc region after it has been used
  2886       // as a mutator allocation region during the current marking cycle.
  2887       // The mutator-allocated objects are currently implicitly marked, but
  2888       // when we move hr->next_top_at_mark_start() forward at the the end
  2889       // of the GC pause, they won't be.  We therefore mark all objects in
  2890       // the "gap".  We do this object-by-object, since marking densely
  2891       // does not currently work right with marking bitmap iteration.  This
  2892       // means we rely on TLAB filling at the start of pauses, and no
  2893       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  2894       // to fix the marking bitmap iteration.
  2895       HeapWord* curhw = r->next_top_at_mark_start();
  2896       HeapWord* t = original_top;
  2898       while (curhw < t) {
  2899         oop cur = (oop)curhw;
  2900         // We'll assume parallel for generality.  This is rare code.
  2901         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  2902         curhw = curhw + cur->size();
  2904       assert(curhw == t, "Should have parsed correctly.");
  2906     if (G1PolicyVerbose > 1) {
  2907       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  2908                           "for survivors:", r->bottom(), original_top, r->end());
  2909       r->print();
  2911     g1_policy()->record_before_bytes(r_used);
  2915 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  2916   assert(Thread::current()->is_VM_thread() ||
  2917          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  2918   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  2919          "Precondition.");
  2920   hr->set_is_gc_alloc_region(true);
  2921   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  2922   _gc_alloc_region_list = hr;
  2925 #ifdef G1_DEBUG
  2926 class FindGCAllocRegion: public HeapRegionClosure {
  2927 public:
  2928   bool doHeapRegion(HeapRegion* r) {
  2929     if (r->is_gc_alloc_region()) {
  2930       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  2931                              r->hrs_index(), r->bottom());
  2933     return false;
  2935 };
  2936 #endif // G1_DEBUG
  2938 void G1CollectedHeap::forget_alloc_region_list() {
  2939   assert(Thread::current()->is_VM_thread(), "Precondition");
  2940   while (_gc_alloc_region_list != NULL) {
  2941     HeapRegion* r = _gc_alloc_region_list;
  2942     assert(r->is_gc_alloc_region(), "Invariant.");
  2943     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
  2944     // newly allocated data in order to be able to apply deferred updates
  2945     // before the GC is done for verification purposes (i.e to allow
  2946     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
  2947     // collection.
  2948     r->ContiguousSpace::set_saved_mark();
  2949     _gc_alloc_region_list = r->next_gc_alloc_region();
  2950     r->set_next_gc_alloc_region(NULL);
  2951     r->set_is_gc_alloc_region(false);
  2952     if (r->is_survivor()) {
  2953       if (r->is_empty()) {
  2954         r->set_not_young();
  2955       } else {
  2956         _young_list->add_survivor_region(r);
  2959     if (r->is_empty()) {
  2960       ++_free_regions;
  2963 #ifdef G1_DEBUG
  2964   FindGCAllocRegion fa;
  2965   heap_region_iterate(&fa);
  2966 #endif // G1_DEBUG
  2970 bool G1CollectedHeap::check_gc_alloc_regions() {
  2971   // TODO: allocation regions check
  2972   return true;
  2975 void G1CollectedHeap::get_gc_alloc_regions() {
  2976   // First, let's check that the GC alloc region list is empty (it should)
  2977   assert(_gc_alloc_region_list == NULL, "invariant");
  2979   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  2980     assert(_gc_alloc_regions[ap] == NULL, "invariant");
  2981     assert(_gc_alloc_region_counts[ap] == 0, "invariant");
  2983     // Create new GC alloc regions.
  2984     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
  2985     _retained_gc_alloc_regions[ap] = NULL;
  2987     if (alloc_region != NULL) {
  2988       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
  2990       // let's make sure that the GC alloc region is not tagged as such
  2991       // outside a GC operation
  2992       assert(!alloc_region->is_gc_alloc_region(), "sanity");
  2994       if (alloc_region->in_collection_set() ||
  2995           alloc_region->top() == alloc_region->end() ||
  2996           alloc_region->top() == alloc_region->bottom()) {
  2997         // we will discard the current GC alloc region if it's in the
  2998         // collection set (it can happen!), if it's already full (no
  2999         // point in using it), or if it's empty (this means that it
  3000         // was emptied during a cleanup and it should be on the free
  3001         // list now).
  3003         alloc_region = NULL;
  3007     if (alloc_region == NULL) {
  3008       // we will get a new GC alloc region
  3009       alloc_region = newAllocRegionWithExpansion(ap, 0);
  3010     } else {
  3011       // the region was retained from the last collection
  3012       ++_gc_alloc_region_counts[ap];
  3015     if (alloc_region != NULL) {
  3016       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
  3017       set_gc_alloc_region(ap, alloc_region);
  3020     assert(_gc_alloc_regions[ap] == NULL ||
  3021            _gc_alloc_regions[ap]->is_gc_alloc_region(),
  3022            "the GC alloc region should be tagged as such");
  3023     assert(_gc_alloc_regions[ap] == NULL ||
  3024            _gc_alloc_regions[ap] == _gc_alloc_region_list,
  3025            "the GC alloc region should be the same as the GC alloc list head");
  3027   // Set alternative regions for allocation purposes that have reached
  3028   // their limit.
  3029   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3030     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  3031     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  3032       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  3035   assert(check_gc_alloc_regions(), "alloc regions messed up");
  3038 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
  3039   // We keep a separate list of all regions that have been alloc regions in
  3040   // the current collection pause. Forget that now. This method will
  3041   // untag the GC alloc regions and tear down the GC alloc region
  3042   // list. It's desirable that no regions are tagged as GC alloc
  3043   // outside GCs.
  3044   forget_alloc_region_list();
  3046   // The current alloc regions contain objs that have survived
  3047   // collection. Make them no longer GC alloc regions.
  3048   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3049     HeapRegion* r = _gc_alloc_regions[ap];
  3050     _retained_gc_alloc_regions[ap] = NULL;
  3051     _gc_alloc_region_counts[ap] = 0;
  3053     if (r != NULL) {
  3054       // we retain nothing on _gc_alloc_regions between GCs
  3055       set_gc_alloc_region(ap, NULL);
  3057       if (r->is_empty()) {
  3058         // we didn't actually allocate anything in it; let's just put
  3059         // it on the free list
  3060         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  3061         r->set_zero_fill_complete();
  3062         put_free_region_on_list_locked(r);
  3063       } else if (_retain_gc_alloc_region[ap] && !totally) {
  3064         // retain it so that we can use it at the beginning of the next GC
  3065         _retained_gc_alloc_regions[ap] = r;
  3071 #ifndef PRODUCT
  3072 // Useful for debugging
  3074 void G1CollectedHeap::print_gc_alloc_regions() {
  3075   gclog_or_tty->print_cr("GC alloc regions");
  3076   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3077     HeapRegion* r = _gc_alloc_regions[ap];
  3078     if (r == NULL) {
  3079       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
  3080     } else {
  3081       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
  3082                              ap, r->bottom(), r->used());
  3086 #endif // PRODUCT
  3088 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3089   _drain_in_progress = false;
  3090   set_evac_failure_closure(cl);
  3091   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3094 void G1CollectedHeap::finalize_for_evac_failure() {
  3095   assert(_evac_failure_scan_stack != NULL &&
  3096          _evac_failure_scan_stack->length() == 0,
  3097          "Postcondition");
  3098   assert(!_drain_in_progress, "Postcondition");
  3099   // Don't have to delete, since the scan stack is a resource object.
  3100   _evac_failure_scan_stack = NULL;
  3105 // *** Sequential G1 Evacuation
  3107 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
  3108   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3109   // let the caller handle alloc failure
  3110   if (alloc_region == NULL) return NULL;
  3111   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
  3112          "Either the object is humongous or the region isn't");
  3113   HeapWord* block = alloc_region->allocate(word_size);
  3114   if (block == NULL) {
  3115     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
  3117   return block;
  3120 class G1IsAliveClosure: public BoolObjectClosure {
  3121   G1CollectedHeap* _g1;
  3122 public:
  3123   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3124   void do_object(oop p) { assert(false, "Do not call."); }
  3125   bool do_object_b(oop p) {
  3126     // It is reachable if it is outside the collection set, or is inside
  3127     // and forwarded.
  3129 #ifdef G1_DEBUG
  3130     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  3131                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  3132                            !_g1->obj_in_cs(p) || p->is_forwarded());
  3133 #endif // G1_DEBUG
  3135     return !_g1->obj_in_cs(p) || p->is_forwarded();
  3137 };
  3139 class G1KeepAliveClosure: public OopClosure {
  3140   G1CollectedHeap* _g1;
  3141 public:
  3142   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3143   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  3144   void do_oop(      oop* p) {
  3145     oop obj = *p;
  3146 #ifdef G1_DEBUG
  3147     if (PrintGC && Verbose) {
  3148       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  3149                              p, (void*) obj, (void*) *p);
  3151 #endif // G1_DEBUG
  3153     if (_g1->obj_in_cs(obj)) {
  3154       assert( obj->is_forwarded(), "invariant" );
  3155       *p = obj->forwardee();
  3156 #ifdef G1_DEBUG
  3157       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  3158                              (void*) obj, (void*) *p);
  3159 #endif // G1_DEBUG
  3162 };
  3164 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
  3165 private:
  3166   G1CollectedHeap* _g1;
  3167   G1RemSet* _g1_rem_set;
  3168 public:
  3169   UpdateRSetImmediate(G1CollectedHeap* g1) :
  3170     _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
  3172   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3173   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3174   template <class T> void do_oop_work(T* p) {
  3175     assert(_from->is_in_reserved(p), "paranoia");
  3176     T heap_oop = oopDesc::load_heap_oop(p);
  3177     if (!oopDesc::is_null(heap_oop) && !_from->is_survivor()) {
  3178       _g1_rem_set->par_write_ref(_from, p, 0);
  3181 };
  3183 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3184 private:
  3185   G1CollectedHeap* _g1;
  3186   DirtyCardQueue *_dcq;
  3187   CardTableModRefBS* _ct_bs;
  3189 public:
  3190   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3191     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3193   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3194   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3195   template <class T> void do_oop_work(T* p) {
  3196     assert(_from->is_in_reserved(p), "paranoia");
  3197     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
  3198         !_from->is_survivor()) {
  3199       size_t card_index = _ct_bs->index_for(p);
  3200       if (_ct_bs->mark_card_deferred(card_index)) {
  3201         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3205 };
  3209 class RemoveSelfPointerClosure: public ObjectClosure {
  3210 private:
  3211   G1CollectedHeap* _g1;
  3212   ConcurrentMark* _cm;
  3213   HeapRegion* _hr;
  3214   size_t _prev_marked_bytes;
  3215   size_t _next_marked_bytes;
  3216   OopsInHeapRegionClosure *_cl;
  3217 public:
  3218   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
  3219     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3220     _next_marked_bytes(0), _cl(cl) {}
  3222   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3223   size_t next_marked_bytes() { return _next_marked_bytes; }
  3225   // The original idea here was to coalesce evacuated and dead objects.
  3226   // However that caused complications with the block offset table (BOT).
  3227   // In particular if there were two TLABs, one of them partially refined.
  3228   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  3229   // The BOT entries of the unrefined part of TLAB_2 point to the start
  3230   // of TLAB_2. If the last object of the TLAB_1 and the first object
  3231   // of TLAB_2 are coalesced, then the cards of the unrefined part
  3232   // would point into middle of the filler object.
  3233   //
  3234   // The current approach is to not coalesce and leave the BOT contents intact.
  3235   void do_object(oop obj) {
  3236     if (obj->is_forwarded() && obj->forwardee() == obj) {
  3237       // The object failed to move.
  3238       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  3239       _cm->markPrev(obj);
  3240       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3241       _prev_marked_bytes += (obj->size() * HeapWordSize);
  3242       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  3243         _cm->markAndGrayObjectIfNecessary(obj);
  3245       obj->set_mark(markOopDesc::prototype());
  3246       // While we were processing RSet buffers during the
  3247       // collection, we actually didn't scan any cards on the
  3248       // collection set, since we didn't want to update remebered
  3249       // sets with entries that point into the collection set, given
  3250       // that live objects fromthe collection set are about to move
  3251       // and such entries will be stale very soon. This change also
  3252       // dealt with a reliability issue which involved scanning a
  3253       // card in the collection set and coming across an array that
  3254       // was being chunked and looking malformed. The problem is
  3255       // that, if evacuation fails, we might have remembered set
  3256       // entries missing given that we skipped cards on the
  3257       // collection set. So, we'll recreate such entries now.
  3258       obj->oop_iterate(_cl);
  3259       assert(_cm->isPrevMarked(obj), "Should be marked!");
  3260     } else {
  3261       // The object has been either evacuated or is dead. Fill it with a
  3262       // dummy object.
  3263       MemRegion mr((HeapWord*)obj, obj->size());
  3264       CollectedHeap::fill_with_object(mr);
  3265       _cm->clearRangeBothMaps(mr);
  3268 };
  3270 void G1CollectedHeap::remove_self_forwarding_pointers() {
  3271   UpdateRSetImmediate immediate_update(_g1h);
  3272   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  3273   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  3274   OopsInHeapRegionClosure *cl;
  3275   if (G1DeferredRSUpdate) {
  3276     cl = &deferred_update;
  3277   } else {
  3278     cl = &immediate_update;
  3280   HeapRegion* cur = g1_policy()->collection_set();
  3281   while (cur != NULL) {
  3282     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3284     RemoveSelfPointerClosure rspc(_g1h, cl);
  3285     if (cur->evacuation_failed()) {
  3286       assert(cur->in_collection_set(), "bad CS");
  3287       cl->set_region(cur);
  3288       cur->object_iterate(&rspc);
  3290       // A number of manipulations to make the TAMS be the current top,
  3291       // and the marked bytes be the ones observed in the iteration.
  3292       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  3293         // The comments below are the postconditions achieved by the
  3294         // calls.  Note especially the last such condition, which says that
  3295         // the count of marked bytes has been properly restored.
  3296         cur->note_start_of_marking(false);
  3297         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3298         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  3299         // _next_marked_bytes == prev_marked_bytes.
  3300         cur->note_end_of_marking();
  3301         // _prev_top_at_mark_start == top(),
  3302         // _prev_marked_bytes == prev_marked_bytes
  3304       // If there is no mark in progress, we modified the _next variables
  3305       // above needlessly, but harmlessly.
  3306       if (_g1h->mark_in_progress()) {
  3307         cur->note_start_of_marking(false);
  3308         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  3309         // _next_marked_bytes == next_marked_bytes.
  3312       // Now make sure the region has the right index in the sorted array.
  3313       g1_policy()->note_change_in_marked_bytes(cur);
  3315     cur = cur->next_in_collection_set();
  3317   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  3319   // Now restore saved marks, if any.
  3320   if (_objs_with_preserved_marks != NULL) {
  3321     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  3322     assert(_objs_with_preserved_marks->length() ==
  3323            _preserved_marks_of_objs->length(), "Both or none.");
  3324     guarantee(_objs_with_preserved_marks->length() ==
  3325               _preserved_marks_of_objs->length(), "Both or none.");
  3326     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  3327       oop obj   = _objs_with_preserved_marks->at(i);
  3328       markOop m = _preserved_marks_of_objs->at(i);
  3329       obj->set_mark(m);
  3331     // Delete the preserved marks growable arrays (allocated on the C heap).
  3332     delete _objs_with_preserved_marks;
  3333     delete _preserved_marks_of_objs;
  3334     _objs_with_preserved_marks = NULL;
  3335     _preserved_marks_of_objs = NULL;
  3339 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  3340   _evac_failure_scan_stack->push(obj);
  3343 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  3344   assert(_evac_failure_scan_stack != NULL, "precondition");
  3346   while (_evac_failure_scan_stack->length() > 0) {
  3347      oop obj = _evac_failure_scan_stack->pop();
  3348      _evac_failure_closure->set_region(heap_region_containing(obj));
  3349      obj->oop_iterate_backwards(_evac_failure_closure);
  3353 void G1CollectedHeap::handle_evacuation_failure(oop old) {
  3354   markOop m = old->mark();
  3355   // forward to self
  3356   assert(!old->is_forwarded(), "precondition");
  3358   old->forward_to(old);
  3359   handle_evacuation_failure_common(old, m);
  3362 oop
  3363 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  3364                                                oop old) {
  3365   markOop m = old->mark();
  3366   oop forward_ptr = old->forward_to_atomic(old);
  3367   if (forward_ptr == NULL) {
  3368     // Forward-to-self succeeded.
  3369     if (_evac_failure_closure != cl) {
  3370       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  3371       assert(!_drain_in_progress,
  3372              "Should only be true while someone holds the lock.");
  3373       // Set the global evac-failure closure to the current thread's.
  3374       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  3375       set_evac_failure_closure(cl);
  3376       // Now do the common part.
  3377       handle_evacuation_failure_common(old, m);
  3378       // Reset to NULL.
  3379       set_evac_failure_closure(NULL);
  3380     } else {
  3381       // The lock is already held, and this is recursive.
  3382       assert(_drain_in_progress, "This should only be the recursive case.");
  3383       handle_evacuation_failure_common(old, m);
  3385     return old;
  3386   } else {
  3387     // Someone else had a place to copy it.
  3388     return forward_ptr;
  3392 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  3393   set_evacuation_failed(true);
  3395   preserve_mark_if_necessary(old, m);
  3397   HeapRegion* r = heap_region_containing(old);
  3398   if (!r->evacuation_failed()) {
  3399     r->set_evacuation_failed(true);
  3400     if (G1PrintRegions) {
  3401       gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
  3402                           "["PTR_FORMAT","PTR_FORMAT")\n",
  3403                           r, r->bottom(), r->end());
  3407   push_on_evac_failure_scan_stack(old);
  3409   if (!_drain_in_progress) {
  3410     // prevent recursion in copy_to_survivor_space()
  3411     _drain_in_progress = true;
  3412     drain_evac_failure_scan_stack();
  3413     _drain_in_progress = false;
  3417 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  3418   if (m != markOopDesc::prototype()) {
  3419     if (_objs_with_preserved_marks == NULL) {
  3420       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  3421       _objs_with_preserved_marks =
  3422         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3423       _preserved_marks_of_objs =
  3424         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  3426     _objs_with_preserved_marks->push(obj);
  3427     _preserved_marks_of_objs->push(m);
  3431 // *** Parallel G1 Evacuation
  3433 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  3434                                                   size_t word_size) {
  3435   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  3436   // let the caller handle alloc failure
  3437   if (alloc_region == NULL) return NULL;
  3439   HeapWord* block = alloc_region->par_allocate(word_size);
  3440   if (block == NULL) {
  3441     MutexLockerEx x(par_alloc_during_gc_lock(),
  3442                     Mutex::_no_safepoint_check_flag);
  3443     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  3445   return block;
  3448 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  3449                                             bool par) {
  3450   // Another thread might have obtained alloc_region for the given
  3451   // purpose, and might be attempting to allocate in it, and might
  3452   // succeed.  Therefore, we can't do the "finalization" stuff on the
  3453   // region below until we're sure the last allocation has happened.
  3454   // We ensure this by allocating the remaining space with a garbage
  3455   // object.
  3456   if (par) par_allocate_remaining_space(alloc_region);
  3457   // Now we can do the post-GC stuff on the region.
  3458   alloc_region->note_end_of_copying();
  3459   g1_policy()->record_after_bytes(alloc_region->used());
  3462 HeapWord*
  3463 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  3464                                          HeapRegion*    alloc_region,
  3465                                          bool           par,
  3466                                          size_t         word_size) {
  3467   HeapWord* block = NULL;
  3468   // In the parallel case, a previous thread to obtain the lock may have
  3469   // already assigned a new gc_alloc_region.
  3470   if (alloc_region != _gc_alloc_regions[purpose]) {
  3471     assert(par, "But should only happen in parallel case.");
  3472     alloc_region = _gc_alloc_regions[purpose];
  3473     if (alloc_region == NULL) return NULL;
  3474     block = alloc_region->par_allocate(word_size);
  3475     if (block != NULL) return block;
  3476     // Otherwise, continue; this new region is empty, too.
  3478   assert(alloc_region != NULL, "We better have an allocation region");
  3479   retire_alloc_region(alloc_region, par);
  3481   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  3482     // Cannot allocate more regions for the given purpose.
  3483     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  3484     // Is there an alternative?
  3485     if (purpose != alt_purpose) {
  3486       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  3487       // Has not the alternative region been aliased?
  3488       if (alloc_region != alt_region && alt_region != NULL) {
  3489         // Try to allocate in the alternative region.
  3490         if (par) {
  3491           block = alt_region->par_allocate(word_size);
  3492         } else {
  3493           block = alt_region->allocate(word_size);
  3495         // Make an alias.
  3496         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  3497         if (block != NULL) {
  3498           return block;
  3500         retire_alloc_region(alt_region, par);
  3502       // Both the allocation region and the alternative one are full
  3503       // and aliased, replace them with a new allocation region.
  3504       purpose = alt_purpose;
  3505     } else {
  3506       set_gc_alloc_region(purpose, NULL);
  3507       return NULL;
  3511   // Now allocate a new region for allocation.
  3512   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
  3514   // let the caller handle alloc failure
  3515   if (alloc_region != NULL) {
  3517     assert(check_gc_alloc_regions(), "alloc regions messed up");
  3518     assert(alloc_region->saved_mark_at_top(),
  3519            "Mark should have been saved already.");
  3520     // We used to assert that the region was zero-filled here, but no
  3521     // longer.
  3523     // This must be done last: once it's installed, other regions may
  3524     // allocate in it (without holding the lock.)
  3525     set_gc_alloc_region(purpose, alloc_region);
  3527     if (par) {
  3528       block = alloc_region->par_allocate(word_size);
  3529     } else {
  3530       block = alloc_region->allocate(word_size);
  3532     // Caller handles alloc failure.
  3533   } else {
  3534     // This sets other apis using the same old alloc region to NULL, also.
  3535     set_gc_alloc_region(purpose, NULL);
  3537   return block;  // May be NULL.
  3540 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  3541   HeapWord* block = NULL;
  3542   size_t free_words;
  3543   do {
  3544     free_words = r->free()/HeapWordSize;
  3545     // If there's too little space, no one can allocate, so we're done.
  3546     if (free_words < (size_t)oopDesc::header_size()) return;
  3547     // Otherwise, try to claim it.
  3548     block = r->par_allocate(free_words);
  3549   } while (block == NULL);
  3550   fill_with_object(block, free_words);
  3553 #ifndef PRODUCT
  3554 bool GCLabBitMapClosure::do_bit(size_t offset) {
  3555   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  3556   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  3557   return true;
  3559 #endif // PRODUCT
  3561 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  3562   : _g1h(g1h),
  3563     _refs(g1h->task_queue(queue_num)),
  3564     _dcq(&g1h->dirty_card_queue_set()),
  3565     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  3566     _g1_rem(g1h->g1_rem_set()),
  3567     _hash_seed(17), _queue_num(queue_num),
  3568     _term_attempts(0),
  3569     _age_table(false),
  3570 #if G1_DETAILED_STATS
  3571     _pushes(0), _pops(0), _steals(0),
  3572     _steal_attempts(0),  _overflow_pushes(0),
  3573 #endif
  3574     _strong_roots_time(0), _term_time(0),
  3575     _alloc_buffer_waste(0), _undo_waste(0)
  3577   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  3578   // we "sacrifice" entry 0 to keep track of surviving bytes for
  3579   // non-young regions (where the age is -1)
  3580   // We also add a few elements at the beginning and at the end in
  3581   // an attempt to eliminate cache contention
  3582   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  3583   size_t array_length = PADDING_ELEM_NUM +
  3584                         real_length +
  3585                         PADDING_ELEM_NUM;
  3586   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  3587   if (_surviving_young_words_base == NULL)
  3588     vm_exit_out_of_memory(array_length * sizeof(size_t),
  3589                           "Not enough space for young surv histo.");
  3590   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  3591   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  3593   _overflowed_refs = new OverflowQueue(10);
  3595   _start = os::elapsedTime();
  3598 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  3599   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  3600   _par_scan_state(par_scan_state) { }
  3602 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
  3603   // This is called _after_ do_oop_work has been called, hence after
  3604   // the object has been relocated to its new location and *p points
  3605   // to its new location.
  3607   T heap_oop = oopDesc::load_heap_oop(p);
  3608   if (!oopDesc::is_null(heap_oop)) {
  3609     oop obj = oopDesc::decode_heap_oop(heap_oop);
  3610     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
  3611            "shouldn't still be in the CSet if evacuation didn't fail.");
  3612     HeapWord* addr = (HeapWord*)obj;
  3613     if (_g1->is_in_g1_reserved(addr))
  3614       _cm->grayRoot(oop(addr));
  3618 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  3619   size_t    word_sz = old->size();
  3620   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  3621   // +1 to make the -1 indexes valid...
  3622   int       young_index = from_region->young_index_in_cset()+1;
  3623   assert( (from_region->is_young() && young_index > 0) ||
  3624           (!from_region->is_young() && young_index == 0), "invariant" );
  3625   G1CollectorPolicy* g1p = _g1->g1_policy();
  3626   markOop m = old->mark();
  3627   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  3628                                            : m->age();
  3629   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  3630                                                              word_sz);
  3631   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  3632   oop       obj     = oop(obj_ptr);
  3634   if (obj_ptr == NULL) {
  3635     // This will either forward-to-self, or detect that someone else has
  3636     // installed a forwarding pointer.
  3637     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  3638     return _g1->handle_evacuation_failure_par(cl, old);
  3641   // We're going to allocate linearly, so might as well prefetch ahead.
  3642   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  3644   oop forward_ptr = old->forward_to_atomic(obj);
  3645   if (forward_ptr == NULL) {
  3646     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  3647     if (g1p->track_object_age(alloc_purpose)) {
  3648       // We could simply do obj->incr_age(). However, this causes a
  3649       // performance issue. obj->incr_age() will first check whether
  3650       // the object has a displaced mark by checking its mark word;
  3651       // getting the mark word from the new location of the object
  3652       // stalls. So, given that we already have the mark word and we
  3653       // are about to install it anyway, it's better to increase the
  3654       // age on the mark word, when the object does not have a
  3655       // displaced mark word. We're not expecting many objects to have
  3656       // a displaced marked word, so that case is not optimized
  3657       // further (it could be...) and we simply call obj->incr_age().
  3659       if (m->has_displaced_mark_helper()) {
  3660         // in this case, we have to install the mark word first,
  3661         // otherwise obj looks to be forwarded (the old mark word,
  3662         // which contains the forward pointer, was copied)
  3663         obj->set_mark(m);
  3664         obj->incr_age();
  3665       } else {
  3666         m = m->incr_age();
  3667         obj->set_mark(m);
  3669       _par_scan_state->age_table()->add(obj, word_sz);
  3670     } else {
  3671       obj->set_mark(m);
  3674     // preserve "next" mark bit
  3675     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  3676       if (!use_local_bitmaps ||
  3677           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  3678         // if we couldn't mark it on the local bitmap (this happens when
  3679         // the object was not allocated in the GCLab), we have to bite
  3680         // the bullet and do the standard parallel mark
  3681         _cm->markAndGrayObjectIfNecessary(obj);
  3683 #if 1
  3684       if (_g1->isMarkedNext(old)) {
  3685         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  3687 #endif
  3690     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  3691     surv_young_words[young_index] += word_sz;
  3693     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  3694       arrayOop(old)->set_length(0);
  3695       oop* old_p = set_partial_array_mask(old);
  3696       _par_scan_state->push_on_queue(old_p);
  3697     } else {
  3698       // No point in using the slower heap_region_containing() method,
  3699       // given that we know obj is in the heap.
  3700       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  3701       obj->oop_iterate_backwards(_scanner);
  3703   } else {
  3704     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  3705     obj = forward_ptr;
  3707   return obj;
  3710 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee, bool skip_cset_test>
  3711 template <class T>
  3712 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee, skip_cset_test>
  3713 ::do_oop_work(T* p) {
  3714   oop obj = oopDesc::load_decode_heap_oop(p);
  3715   assert(barrier != G1BarrierRS || obj != NULL,
  3716          "Precondition: G1BarrierRS implies obj is nonNull");
  3718   // The only time we skip the cset test is when we're scanning
  3719   // references popped from the queue. And we only push on the queue
  3720   // references that we know point into the cset, so no point in
  3721   // checking again. But we'll leave an assert here for peace of mind.
  3722   assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant");
  3724   // here the null check is implicit in the cset_fast_test() test
  3725   if (skip_cset_test || _g1->in_cset_fast_test(obj)) {
  3726 #if G1_REM_SET_LOGGING
  3727     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  3728                            "into CS.", p, (void*) obj);
  3729 #endif
  3730     if (obj->is_forwarded()) {
  3731       oopDesc::encode_store_heap_oop(p, obj->forwardee());
  3732     } else {
  3733       oop copy_oop = copy_to_survivor_space(obj);
  3734       oopDesc::encode_store_heap_oop(p, copy_oop);
  3736     // When scanning the RS, we only care about objs in CS.
  3737     if (barrier == G1BarrierRS) {
  3738       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3742   // When scanning moved objs, must look at all oops.
  3743   if (barrier == G1BarrierEvac && obj != NULL) {
  3744     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  3747   if (do_gen_barrier && obj != NULL) {
  3748     par_do_barrier(p);
  3752 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(oop* p);
  3753 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(narrowOop* p);
  3755 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  3756   assert(has_partial_array_mask(p), "invariant");
  3757   oop old = clear_partial_array_mask(p);
  3758   assert(old->is_objArray(), "must be obj array");
  3759   assert(old->is_forwarded(), "must be forwarded");
  3760   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  3762   objArrayOop obj = objArrayOop(old->forwardee());
  3763   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  3764   // Process ParGCArrayScanChunk elements now
  3765   // and push the remainder back onto queue
  3766   int start     = arrayOop(old)->length();
  3767   int end       = obj->length();
  3768   int remainder = end - start;
  3769   assert(start <= end, "just checking");
  3770   if (remainder > 2 * ParGCArrayScanChunk) {
  3771     // Test above combines last partial chunk with a full chunk
  3772     end = start + ParGCArrayScanChunk;
  3773     arrayOop(old)->set_length(end);
  3774     // Push remainder.
  3775     oop* old_p = set_partial_array_mask(old);
  3776     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
  3777     _par_scan_state->push_on_queue(old_p);
  3778   } else {
  3779     // Restore length so that the heap remains parsable in
  3780     // case of evacuation failure.
  3781     arrayOop(old)->set_length(end);
  3783   _scanner.set_region(_g1->heap_region_containing_raw(obj));
  3784   // process our set of indices (include header in first chunk)
  3785   obj->oop_iterate_range(&_scanner, start, end);
  3788 class G1ParEvacuateFollowersClosure : public VoidClosure {
  3789 protected:
  3790   G1CollectedHeap*              _g1h;
  3791   G1ParScanThreadState*         _par_scan_state;
  3792   RefToScanQueueSet*            _queues;
  3793   ParallelTaskTerminator*       _terminator;
  3795   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  3796   RefToScanQueueSet*      queues()         { return _queues; }
  3797   ParallelTaskTerminator* terminator()     { return _terminator; }
  3799 public:
  3800   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  3801                                 G1ParScanThreadState* par_scan_state,
  3802                                 RefToScanQueueSet* queues,
  3803                                 ParallelTaskTerminator* terminator)
  3804     : _g1h(g1h), _par_scan_state(par_scan_state),
  3805       _queues(queues), _terminator(terminator) {}
  3807   void do_void() {
  3808     G1ParScanThreadState* pss = par_scan_state();
  3809     while (true) {
  3810       pss->trim_queue();
  3811       IF_G1_DETAILED_STATS(pss->note_steal_attempt());
  3813       StarTask stolen_task;
  3814       if (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  3815         IF_G1_DETAILED_STATS(pss->note_steal());
  3817         // slightly paranoid tests; I'm trying to catch potential
  3818         // problems before we go into push_on_queue to know where the
  3819         // problem is coming from
  3820         assert((oop*)stolen_task != NULL, "Error");
  3821         if (stolen_task.is_narrow()) {
  3822           assert(UseCompressedOops, "Error");
  3823           narrowOop* p = (narrowOop*) stolen_task;
  3824           assert(has_partial_array_mask(p) ||
  3825                  _g1h->obj_in_cs(oopDesc::load_decode_heap_oop(p)), "Error");
  3826           pss->push_on_queue(p);
  3827         } else {
  3828           oop* p = (oop*) stolen_task;
  3829           assert(has_partial_array_mask(p) || _g1h->obj_in_cs(*p), "Error");
  3830           pss->push_on_queue(p);
  3832         continue;
  3834       pss->start_term_time();
  3835       if (terminator()->offer_termination()) break;
  3836       pss->end_term_time();
  3838     pss->end_term_time();
  3839     pss->retire_alloc_buffers();
  3841 };
  3843 class G1ParTask : public AbstractGangTask {
  3844 protected:
  3845   G1CollectedHeap*       _g1h;
  3846   RefToScanQueueSet      *_queues;
  3847   ParallelTaskTerminator _terminator;
  3848   int _n_workers;
  3850   Mutex _stats_lock;
  3851   Mutex* stats_lock() { return &_stats_lock; }
  3853   size_t getNCards() {
  3854     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  3855       / G1BlockOffsetSharedArray::N_bytes;
  3858 public:
  3859   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  3860     : AbstractGangTask("G1 collection"),
  3861       _g1h(g1h),
  3862       _queues(task_queues),
  3863       _terminator(workers, _queues),
  3864       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
  3865       _n_workers(workers)
  3866   {}
  3868   RefToScanQueueSet* queues() { return _queues; }
  3870   RefToScanQueue *work_queue(int i) {
  3871     return queues()->queue(i);
  3874   void work(int i) {
  3875     if (i >= _n_workers) return;  // no work needed this round
  3876     ResourceMark rm;
  3877     HandleMark   hm;
  3879     G1ParScanThreadState            pss(_g1h, i);
  3880     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  3881     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  3882     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  3884     pss.set_evac_closure(&scan_evac_cl);
  3885     pss.set_evac_failure_closure(&evac_failure_cl);
  3886     pss.set_partial_scan_closure(&partial_scan_cl);
  3888     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  3889     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  3890     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  3892     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  3893     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  3894     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  3896     OopsInHeapRegionClosure        *scan_root_cl;
  3897     OopsInHeapRegionClosure        *scan_perm_cl;
  3898     OopsInHeapRegionClosure        *scan_so_cl;
  3900     if (_g1h->g1_policy()->should_initiate_conc_mark()) {
  3901       scan_root_cl = &scan_mark_root_cl;
  3902       scan_perm_cl = &scan_mark_perm_cl;
  3903       scan_so_cl   = &scan_mark_heap_rs_cl;
  3904     } else {
  3905       scan_root_cl = &only_scan_root_cl;
  3906       scan_perm_cl = &only_scan_perm_cl;
  3907       scan_so_cl   = &only_scan_heap_rs_cl;
  3910     pss.start_strong_roots();
  3911     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  3912                                   SharedHeap::SO_AllClasses,
  3913                                   scan_root_cl,
  3914                                   &only_scan_heap_rs_cl,
  3915                                   scan_so_cl,
  3916                                   scan_perm_cl,
  3917                                   i);
  3918     pss.end_strong_roots();
  3920       double start = os::elapsedTime();
  3921       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  3922       evac.do_void();
  3923       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  3924       double term_ms = pss.term_time()*1000.0;
  3925       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  3926       _g1h->g1_policy()->record_termination_time(i, term_ms);
  3928     if (G1UseSurvivorSpaces) {
  3929       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  3931     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  3933     // Clean up any par-expanded rem sets.
  3934     HeapRegionRemSet::par_cleanup();
  3936     MutexLocker x(stats_lock());
  3937     if (ParallelGCVerbose) {
  3938       gclog_or_tty->print("Thread %d complete:\n", i);
  3939 #if G1_DETAILED_STATS
  3940       gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
  3941                           pss.pushes(),
  3942                           pss.pops(),
  3943                           pss.overflow_pushes(),
  3944                           pss.steals(),
  3945                           pss.steal_attempts());
  3946 #endif
  3947       double elapsed      = pss.elapsed();
  3948       double strong_roots = pss.strong_roots_time();
  3949       double term         = pss.term_time();
  3950       gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
  3951                           "    Strong roots: %7.2f ms (%6.2f%%)\n"
  3952                           "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
  3953                           elapsed * 1000.0,
  3954                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
  3955                           term * 1000.0, (term*100.0/elapsed),
  3956                           pss.term_attempts());
  3957       size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
  3958       gclog_or_tty->print("  Waste: %8dK\n"
  3959                  "    Alloc Buffer: %8dK\n"
  3960                  "    Undo: %8dK\n",
  3961                  (total_waste * HeapWordSize) / K,
  3962                  (pss.alloc_buffer_waste() * HeapWordSize) / K,
  3963                  (pss.undo_waste() * HeapWordSize) / K);
  3966     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
  3967     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
  3969 };
  3971 // *** Common G1 Evacuation Stuff
  3973 void
  3974 G1CollectedHeap::
  3975 g1_process_strong_roots(bool collecting_perm_gen,
  3976                         SharedHeap::ScanningOption so,
  3977                         OopClosure* scan_non_heap_roots,
  3978                         OopsInHeapRegionClosure* scan_rs,
  3979                         OopsInHeapRegionClosure* scan_so,
  3980                         OopsInGenClosure* scan_perm,
  3981                         int worker_i) {
  3982   // First scan the strong roots, including the perm gen.
  3983   double ext_roots_start = os::elapsedTime();
  3984   double closure_app_time_sec = 0.0;
  3986   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  3987   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  3988   buf_scan_perm.set_generation(perm_gen());
  3990   process_strong_roots(collecting_perm_gen, so,
  3991                        &buf_scan_non_heap_roots,
  3992                        &buf_scan_perm);
  3993   // Finish up any enqueued closure apps.
  3994   buf_scan_non_heap_roots.done();
  3995   buf_scan_perm.done();
  3996   double ext_roots_end = os::elapsedTime();
  3997   g1_policy()->reset_obj_copy_time(worker_i);
  3998   double obj_copy_time_sec =
  3999     buf_scan_non_heap_roots.closure_app_seconds() +
  4000     buf_scan_perm.closure_app_seconds();
  4001   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4002   double ext_root_time_ms =
  4003     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4004   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4006   // Scan strong roots in mark stack.
  4007   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4008     concurrent_mark()->oops_do(scan_non_heap_roots);
  4010   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4011   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4013   // XXX What should this be doing in the parallel case?
  4014   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4015   if (scan_so != NULL) {
  4016     scan_scan_only_set(scan_so, worker_i);
  4018   // Now scan the complement of the collection set.
  4019   if (scan_rs != NULL) {
  4020     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4022   // Finish with the ref_processor roots.
  4023   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4024     ref_processor()->oops_do(scan_non_heap_roots);
  4026   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4027   _process_strong_tasks->all_tasks_completed();
  4030 void
  4031 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
  4032                                        OopsInHeapRegionClosure* oc,
  4033                                        int worker_i) {
  4034   HeapWord* startAddr = r->bottom();
  4035   HeapWord* endAddr = r->used_region().end();
  4037   oc->set_region(r);
  4039   HeapWord* p = r->bottom();
  4040   HeapWord* t = r->top();
  4041   guarantee( p == r->next_top_at_mark_start(), "invariant" );
  4042   while (p < t) {
  4043     oop obj = oop(p);
  4044     p += obj->oop_iterate(oc);
  4048 void
  4049 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
  4050                                     int worker_i) {
  4051   double start = os::elapsedTime();
  4053   BufferingOopsInHeapRegionClosure boc(oc);
  4055   FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
  4056   FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
  4058   OopsInHeapRegionClosure *foc;
  4059   if (g1_policy()->should_initiate_conc_mark())
  4060     foc = &scan_and_mark;
  4061   else
  4062     foc = &scan_only;
  4064   HeapRegion* hr;
  4065   int n = 0;
  4066   while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
  4067     scan_scan_only_region(hr, foc, worker_i);
  4068     ++n;
  4070   boc.done();
  4072   double closure_app_s = boc.closure_app_seconds();
  4073   g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
  4074   double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
  4075   g1_policy()->record_scan_only_time(worker_i, ms, n);
  4078 void
  4079 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4080                                        OopClosure* non_root_closure) {
  4081   SharedHeap::process_weak_roots(root_closure, non_root_closure);
  4085 class SaveMarksClosure: public HeapRegionClosure {
  4086 public:
  4087   bool doHeapRegion(HeapRegion* r) {
  4088     r->save_marks();
  4089     return false;
  4091 };
  4093 void G1CollectedHeap::save_marks() {
  4094   if (ParallelGCThreads == 0) {
  4095     SaveMarksClosure sm;
  4096     heap_region_iterate(&sm);
  4098   // We do this even in the parallel case
  4099   perm_gen()->save_marks();
  4102 void G1CollectedHeap::evacuate_collection_set() {
  4103   set_evacuation_failed(false);
  4105   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4106   concurrent_g1_refine()->set_use_cache(false);
  4107   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  4109   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4110   set_par_threads(n_workers);
  4111   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4113   init_for_evac_failure(NULL);
  4115   change_strong_roots_parity();  // In preparation for parallel strong roots.
  4116   rem_set()->prepare_for_younger_refs_iterate(true);
  4118   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4119   double start_par = os::elapsedTime();
  4120   if (ParallelGCThreads > 0) {
  4121     // The individual threads will set their evac-failure closures.
  4122     workers()->run_task(&g1_par_task);
  4123   } else {
  4124     g1_par_task.work(0);
  4127   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4128   g1_policy()->record_par_time(par_time);
  4129   set_par_threads(0);
  4130   // Is this the right thing to do here?  We don't save marks
  4131   // on individual heap regions when we allocate from
  4132   // them in parallel, so this seems like the correct place for this.
  4133   retire_all_alloc_regions();
  4135     G1IsAliveClosure is_alive(this);
  4136     G1KeepAliveClosure keep_alive(this);
  4137     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4139   release_gc_alloc_regions(false /* totally */);
  4140   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4142   concurrent_g1_refine()->clear_hot_cache();
  4143   concurrent_g1_refine()->set_use_cache(true);
  4145   finalize_for_evac_failure();
  4147   // Must do this before removing self-forwarding pointers, which clears
  4148   // the per-region evac-failure flags.
  4149   concurrent_mark()->complete_marking_in_collection_set();
  4151   if (evacuation_failed()) {
  4152     remove_self_forwarding_pointers();
  4153     if (PrintGCDetails) {
  4154       gclog_or_tty->print(" (evacuation failed)");
  4155     } else if (PrintGC) {
  4156       gclog_or_tty->print("--");
  4160   if (G1DeferredRSUpdate) {
  4161     RedirtyLoggedCardTableEntryFastClosure redirty;
  4162     dirty_card_queue_set().set_closure(&redirty);
  4163     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4164     JavaThread::dirty_card_queue_set().merge_bufferlists(&dirty_card_queue_set());
  4165     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4168   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4171 void G1CollectedHeap::free_region(HeapRegion* hr) {
  4172   size_t pre_used = 0;
  4173   size_t cleared_h_regions = 0;
  4174   size_t freed_regions = 0;
  4175   UncleanRegionList local_list;
  4177   HeapWord* start = hr->bottom();
  4178   HeapWord* end   = hr->prev_top_at_mark_start();
  4179   size_t used_bytes = hr->used();
  4180   size_t live_bytes = hr->max_live_bytes();
  4181   if (used_bytes > 0) {
  4182     guarantee( live_bytes <= used_bytes, "invariant" );
  4183   } else {
  4184     guarantee( live_bytes == 0, "invariant" );
  4187   size_t garbage_bytes = used_bytes - live_bytes;
  4188   if (garbage_bytes > 0)
  4189     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
  4191   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
  4192                    &local_list);
  4193   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
  4194                           &local_list);
  4197 void
  4198 G1CollectedHeap::free_region_work(HeapRegion* hr,
  4199                                   size_t& pre_used,
  4200                                   size_t& cleared_h_regions,
  4201                                   size_t& freed_regions,
  4202                                   UncleanRegionList* list,
  4203                                   bool par) {
  4204   pre_used += hr->used();
  4205   if (hr->isHumongous()) {
  4206     assert(hr->startsHumongous(),
  4207            "Only the start of a humongous region should be freed.");
  4208     int ind = _hrs->find(hr);
  4209     assert(ind != -1, "Should have an index.");
  4210     // Clear the start region.
  4211     hr->hr_clear(par, true /*clear_space*/);
  4212     list->insert_before_head(hr);
  4213     cleared_h_regions++;
  4214     freed_regions++;
  4215     // Clear any continued regions.
  4216     ind++;
  4217     while ((size_t)ind < n_regions()) {
  4218       HeapRegion* hrc = _hrs->at(ind);
  4219       if (!hrc->continuesHumongous()) break;
  4220       // Otherwise, does continue the H region.
  4221       assert(hrc->humongous_start_region() == hr, "Huh?");
  4222       hrc->hr_clear(par, true /*clear_space*/);
  4223       cleared_h_regions++;
  4224       freed_regions++;
  4225       list->insert_before_head(hrc);
  4226       ind++;
  4228   } else {
  4229     hr->hr_clear(par, true /*clear_space*/);
  4230     list->insert_before_head(hr);
  4231     freed_regions++;
  4232     // If we're using clear2, this should not be enabled.
  4233     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  4237 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
  4238                                               size_t cleared_h_regions,
  4239                                               size_t freed_regions,
  4240                                               UncleanRegionList* list) {
  4241   if (list != NULL && list->sz() > 0) {
  4242     prepend_region_list_on_unclean_list(list);
  4244   // Acquire a lock, if we're parallel, to update possibly-shared
  4245   // variables.
  4246   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  4248     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  4249     _summary_bytes_used -= pre_used;
  4250     _num_humongous_regions -= (int) cleared_h_regions;
  4251     _free_regions += freed_regions;
  4256 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  4257   while (list != NULL) {
  4258     guarantee( list->is_young(), "invariant" );
  4260     HeapWord* bottom = list->bottom();
  4261     HeapWord* end = list->end();
  4262     MemRegion mr(bottom, end);
  4263     ct_bs->dirty(mr);
  4265     list = list->get_next_young_region();
  4270 class G1ParCleanupCTTask : public AbstractGangTask {
  4271   CardTableModRefBS* _ct_bs;
  4272   G1CollectedHeap* _g1h;
  4273   HeapRegion* volatile _so_head;
  4274   HeapRegion* volatile _su_head;
  4275 public:
  4276   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  4277                      G1CollectedHeap* g1h,
  4278                      HeapRegion* scan_only_list,
  4279                      HeapRegion* survivor_list) :
  4280     AbstractGangTask("G1 Par Cleanup CT Task"),
  4281     _ct_bs(ct_bs),
  4282     _g1h(g1h),
  4283     _so_head(scan_only_list),
  4284     _su_head(survivor_list)
  4285   { }
  4287   void work(int i) {
  4288     HeapRegion* r;
  4289     while (r = _g1h->pop_dirty_cards_region()) {
  4290       clear_cards(r);
  4292     // Redirty the cards of the scan-only and survivor regions.
  4293     dirty_list(&this->_so_head);
  4294     dirty_list(&this->_su_head);
  4297   void clear_cards(HeapRegion* r) {
  4298     // Cards for Survivor and Scan-Only regions will be dirtied later.
  4299     if (!r->is_scan_only() && !r->is_survivor()) {
  4300       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  4304   void dirty_list(HeapRegion* volatile * head_ptr) {
  4305     HeapRegion* head;
  4306     do {
  4307       // Pop region off the list.
  4308       head = *head_ptr;
  4309       if (head != NULL) {
  4310         HeapRegion* r = (HeapRegion*)
  4311           Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
  4312         if (r == head) {
  4313           assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
  4314           _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
  4317     } while (*head_ptr != NULL);
  4319 };
  4322 #ifndef PRODUCT
  4323 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  4324   CardTableModRefBS* _ct_bs;
  4325 public:
  4326   G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
  4327     : _ct_bs(ct_bs)
  4328   { }
  4329   virtual bool doHeapRegion(HeapRegion* r)
  4331     MemRegion mr(r->bottom(), r->end());
  4332     if (r->is_scan_only() || r->is_survivor()) {
  4333       _ct_bs->verify_dirty_region(mr);
  4334     } else {
  4335       _ct_bs->verify_clean_region(mr);
  4337     return false;
  4339 };
  4340 #endif
  4342 void G1CollectedHeap::cleanUpCardTable() {
  4343   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  4344   double start = os::elapsedTime();
  4346   // Iterate over the dirty cards region list.
  4347   G1ParCleanupCTTask cleanup_task(ct_bs, this,
  4348                                   _young_list->first_scan_only_region(),
  4349                                   _young_list->first_survivor_region());
  4350   if (ParallelGCThreads > 0) {
  4351     set_par_threads(workers()->total_workers());
  4352     workers()->run_task(&cleanup_task);
  4353     set_par_threads(0);
  4354   } else {
  4355     while (_dirty_cards_region_list) {
  4356       HeapRegion* r = _dirty_cards_region_list;
  4357       cleanup_task.clear_cards(r);
  4358       _dirty_cards_region_list = r->get_next_dirty_cards_region();
  4359       if (_dirty_cards_region_list == r) {
  4360         // The last region.
  4361         _dirty_cards_region_list = NULL;
  4363       r->set_next_dirty_cards_region(NULL);
  4365     // now, redirty the cards of the scan-only and survivor regions
  4366     // (it seemed faster to do it this way, instead of iterating over
  4367     // all regions and then clearing / dirtying as appropriate)
  4368     dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
  4369     dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  4371   double elapsed = os::elapsedTime() - start;
  4372   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  4373 #ifndef PRODUCT
  4374   if (G1VerifyCTCleanup || VerifyAfterGC) {
  4375     G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
  4376     heap_region_iterate(&cleanup_verifier);
  4378 #endif
  4381 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
  4382   if (g1_policy()->should_do_collection_pause(word_size)) {
  4383     do_collection_pause();
  4387 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  4388   double young_time_ms     = 0.0;
  4389   double non_young_time_ms = 0.0;
  4391   G1CollectorPolicy* policy = g1_policy();
  4393   double start_sec = os::elapsedTime();
  4394   bool non_young = true;
  4396   HeapRegion* cur = cs_head;
  4397   int age_bound = -1;
  4398   size_t rs_lengths = 0;
  4400   while (cur != NULL) {
  4401     if (non_young) {
  4402       if (cur->is_young()) {
  4403         double end_sec = os::elapsedTime();
  4404         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4405         non_young_time_ms += elapsed_ms;
  4407         start_sec = os::elapsedTime();
  4408         non_young = false;
  4410     } else {
  4411       if (!cur->is_on_free_list()) {
  4412         double end_sec = os::elapsedTime();
  4413         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4414         young_time_ms += elapsed_ms;
  4416         start_sec = os::elapsedTime();
  4417         non_young = true;
  4421     rs_lengths += cur->rem_set()->occupied();
  4423     HeapRegion* next = cur->next_in_collection_set();
  4424     assert(cur->in_collection_set(), "bad CS");
  4425     cur->set_next_in_collection_set(NULL);
  4426     cur->set_in_collection_set(false);
  4428     if (cur->is_young()) {
  4429       int index = cur->young_index_in_cset();
  4430       guarantee( index != -1, "invariant" );
  4431       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  4432       size_t words_survived = _surviving_young_words[index];
  4433       cur->record_surv_words_in_group(words_survived);
  4434     } else {
  4435       int index = cur->young_index_in_cset();
  4436       guarantee( index == -1, "invariant" );
  4439     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  4440             (!cur->is_young() && cur->young_index_in_cset() == -1),
  4441             "invariant" );
  4443     if (!cur->evacuation_failed()) {
  4444       // And the region is empty.
  4445       assert(!cur->is_empty(),
  4446              "Should not have empty regions in a CS.");
  4447       free_region(cur);
  4448     } else {
  4449       guarantee( !cur->is_scan_only(), "should not be scan only" );
  4450       cur->uninstall_surv_rate_group();
  4451       if (cur->is_young())
  4452         cur->set_young_index_in_cset(-1);
  4453       cur->set_not_young();
  4454       cur->set_evacuation_failed(false);
  4456     cur = next;
  4459   policy->record_max_rs_lengths(rs_lengths);
  4460   policy->cset_regions_freed();
  4462   double end_sec = os::elapsedTime();
  4463   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  4464   if (non_young)
  4465     non_young_time_ms += elapsed_ms;
  4466   else
  4467     young_time_ms += elapsed_ms;
  4469   policy->record_young_free_cset_time_ms(young_time_ms);
  4470   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  4473 HeapRegion*
  4474 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  4475   assert(ZF_mon->owned_by_self(), "Precondition");
  4476   HeapRegion* res = pop_unclean_region_list_locked();
  4477   if (res != NULL) {
  4478     assert(!res->continuesHumongous() &&
  4479            res->zero_fill_state() != HeapRegion::Allocated,
  4480            "Only free regions on unclean list.");
  4481     if (zero_filled) {
  4482       res->ensure_zero_filled_locked();
  4483       res->set_zero_fill_allocated();
  4486   return res;
  4489 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  4490   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  4491   return alloc_region_from_unclean_list_locked(zero_filled);
  4494 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  4495   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4496   put_region_on_unclean_list_locked(r);
  4497   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4500 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  4501   MutexLockerEx x(Cleanup_mon);
  4502   set_unclean_regions_coming_locked(b);
  4505 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  4506   assert(Cleanup_mon->owned_by_self(), "Precondition");
  4507   _unclean_regions_coming = b;
  4508   // Wake up mutator threads that might be waiting for completeCleanup to
  4509   // finish.
  4510   if (!b) Cleanup_mon->notify_all();
  4513 void G1CollectedHeap::wait_for_cleanup_complete() {
  4514   MutexLockerEx x(Cleanup_mon);
  4515   wait_for_cleanup_complete_locked();
  4518 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  4519   assert(Cleanup_mon->owned_by_self(), "precondition");
  4520   while (_unclean_regions_coming) {
  4521     Cleanup_mon->wait();
  4525 void
  4526 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  4527   assert(ZF_mon->owned_by_self(), "precondition.");
  4528   _unclean_region_list.insert_before_head(r);
  4531 void
  4532 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  4533   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4534   prepend_region_list_on_unclean_list_locked(list);
  4535   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
  4538 void
  4539 G1CollectedHeap::
  4540 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  4541   assert(ZF_mon->owned_by_self(), "precondition.");
  4542   _unclean_region_list.prepend_list(list);
  4545 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  4546   assert(ZF_mon->owned_by_self(), "precondition.");
  4547   HeapRegion* res = _unclean_region_list.pop();
  4548   if (res != NULL) {
  4549     // Inform ZF thread that there's a new unclean head.
  4550     if (_unclean_region_list.hd() != NULL && should_zf())
  4551       ZF_mon->notify_all();
  4553   return res;
  4556 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  4557   assert(ZF_mon->owned_by_self(), "precondition.");
  4558   return _unclean_region_list.hd();
  4562 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  4563   assert(ZF_mon->owned_by_self(), "Precondition");
  4564   HeapRegion* r = peek_unclean_region_list_locked();
  4565   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
  4566     // Result of below must be equal to "r", since we hold the lock.
  4567     (void)pop_unclean_region_list_locked();
  4568     put_free_region_on_list_locked(r);
  4569     return true;
  4570   } else {
  4571     return false;
  4575 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  4576   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4577   return move_cleaned_region_to_free_list_locked();
  4581 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  4582   assert(ZF_mon->owned_by_self(), "precondition.");
  4583   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4584   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
  4585         "Regions on free list must be zero filled");
  4586   assert(!r->isHumongous(), "Must not be humongous.");
  4587   assert(r->is_empty(), "Better be empty");
  4588   assert(!r->is_on_free_list(),
  4589          "Better not already be on free list");
  4590   assert(!r->is_on_unclean_list(),
  4591          "Better not already be on unclean list");
  4592   r->set_on_free_list(true);
  4593   r->set_next_on_free_list(_free_region_list);
  4594   _free_region_list = r;
  4595   _free_region_list_size++;
  4596   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4599 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  4600   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4601   put_free_region_on_list_locked(r);
  4604 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  4605   assert(ZF_mon->owned_by_self(), "precondition.");
  4606   assert(_free_region_list_size == free_region_list_length(), "Inv");
  4607   HeapRegion* res = _free_region_list;
  4608   if (res != NULL) {
  4609     _free_region_list = res->next_from_free_list();
  4610     _free_region_list_size--;
  4611     res->set_on_free_list(false);
  4612     res->set_next_on_free_list(NULL);
  4613     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4615   return res;
  4619 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  4620   // By self, or on behalf of self.
  4621   assert(Heap_lock->is_locked(), "Precondition");
  4622   HeapRegion* res = NULL;
  4623   bool first = true;
  4624   while (res == NULL) {
  4625     if (zero_filled || !first) {
  4626       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4627       res = pop_free_region_list_locked();
  4628       if (res != NULL) {
  4629         assert(!res->zero_fill_is_allocated(),
  4630                "No allocated regions on free list.");
  4631         res->set_zero_fill_allocated();
  4632       } else if (!first) {
  4633         break;  // We tried both, time to return NULL.
  4637     if (res == NULL) {
  4638       res = alloc_region_from_unclean_list(zero_filled);
  4640     assert(res == NULL ||
  4641            !zero_filled ||
  4642            res->zero_fill_is_allocated(),
  4643            "We must have allocated the region we're returning");
  4644     first = false;
  4646   return res;
  4649 void G1CollectedHeap::remove_allocated_regions_from_lists() {
  4650   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4652     HeapRegion* prev = NULL;
  4653     HeapRegion* cur = _unclean_region_list.hd();
  4654     while (cur != NULL) {
  4655       HeapRegion* next = cur->next_from_unclean_list();
  4656       if (cur->zero_fill_is_allocated()) {
  4657         // Remove from the list.
  4658         if (prev == NULL) {
  4659           (void)_unclean_region_list.pop();
  4660         } else {
  4661           _unclean_region_list.delete_after(prev);
  4663         cur->set_on_unclean_list(false);
  4664         cur->set_next_on_unclean_list(NULL);
  4665       } else {
  4666         prev = cur;
  4668       cur = next;
  4670     assert(_unclean_region_list.sz() == unclean_region_list_length(),
  4671            "Inv");
  4675     HeapRegion* prev = NULL;
  4676     HeapRegion* cur = _free_region_list;
  4677     while (cur != NULL) {
  4678       HeapRegion* next = cur->next_from_free_list();
  4679       if (cur->zero_fill_is_allocated()) {
  4680         // Remove from the list.
  4681         if (prev == NULL) {
  4682           _free_region_list = cur->next_from_free_list();
  4683         } else {
  4684           prev->set_next_on_free_list(cur->next_from_free_list());
  4686         cur->set_on_free_list(false);
  4687         cur->set_next_on_free_list(NULL);
  4688         _free_region_list_size--;
  4689       } else {
  4690         prev = cur;
  4692       cur = next;
  4694     assert(_free_region_list_size == free_region_list_length(), "Inv");
  4698 bool G1CollectedHeap::verify_region_lists() {
  4699   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4700   return verify_region_lists_locked();
  4703 bool G1CollectedHeap::verify_region_lists_locked() {
  4704   HeapRegion* unclean = _unclean_region_list.hd();
  4705   while (unclean != NULL) {
  4706     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
  4707     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
  4708     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
  4709               "Everything else is possible.");
  4710     unclean = unclean->next_from_unclean_list();
  4712   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
  4714   HeapRegion* free_r = _free_region_list;
  4715   while (free_r != NULL) {
  4716     assert(free_r->is_on_free_list(), "Well, it is!");
  4717     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
  4718     switch (free_r->zero_fill_state()) {
  4719     case HeapRegion::NotZeroFilled:
  4720     case HeapRegion::ZeroFilling:
  4721       guarantee(false, "Should not be on free list.");
  4722       break;
  4723     default:
  4724       // Everything else is possible.
  4725       break;
  4727     free_r = free_r->next_from_free_list();
  4729   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  4730   // If we didn't do an assertion...
  4731   return true;
  4734 size_t G1CollectedHeap::free_region_list_length() {
  4735   assert(ZF_mon->owned_by_self(), "precondition.");
  4736   size_t len = 0;
  4737   HeapRegion* cur = _free_region_list;
  4738   while (cur != NULL) {
  4739     len++;
  4740     cur = cur->next_from_free_list();
  4742   return len;
  4745 size_t G1CollectedHeap::unclean_region_list_length() {
  4746   assert(ZF_mon->owned_by_self(), "precondition.");
  4747   return _unclean_region_list.length();
  4750 size_t G1CollectedHeap::n_regions() {
  4751   return _hrs->length();
  4754 size_t G1CollectedHeap::max_regions() {
  4755   return
  4756     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
  4757     HeapRegion::GrainBytes;
  4760 size_t G1CollectedHeap::free_regions() {
  4761   /* Possibly-expensive assert.
  4762   assert(_free_regions == count_free_regions(),
  4763          "_free_regions is off.");
  4764   */
  4765   return _free_regions;
  4768 bool G1CollectedHeap::should_zf() {
  4769   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
  4772 class RegionCounter: public HeapRegionClosure {
  4773   size_t _n;
  4774 public:
  4775   RegionCounter() : _n(0) {}
  4776   bool doHeapRegion(HeapRegion* r) {
  4777     if (r->is_empty()) {
  4778       assert(!r->isHumongous(), "H regions should not be empty.");
  4779       _n++;
  4781     return false;
  4783   int res() { return (int) _n; }
  4784 };
  4786 size_t G1CollectedHeap::count_free_regions() {
  4787   RegionCounter rc;
  4788   heap_region_iterate(&rc);
  4789   size_t n = rc.res();
  4790   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
  4791     n--;
  4792   return n;
  4795 size_t G1CollectedHeap::count_free_regions_list() {
  4796   size_t n = 0;
  4797   size_t o = 0;
  4798   ZF_mon->lock_without_safepoint_check();
  4799   HeapRegion* cur = _free_region_list;
  4800   while (cur != NULL) {
  4801     cur = cur->next_from_free_list();
  4802     n++;
  4804   size_t m = unclean_region_list_length();
  4805   ZF_mon->unlock();
  4806   return n + m;
  4809 bool G1CollectedHeap::should_set_young_locked() {
  4810   assert(heap_lock_held_for_gc(),
  4811               "the heap lock should already be held by or for this thread");
  4812   return  (g1_policy()->in_young_gc_mode() &&
  4813            g1_policy()->should_add_next_region_to_young_list());
  4816 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  4817   assert(heap_lock_held_for_gc(),
  4818               "the heap lock should already be held by or for this thread");
  4819   _young_list->push_region(hr);
  4820   g1_policy()->set_region_short_lived(hr);
  4823 class NoYoungRegionsClosure: public HeapRegionClosure {
  4824 private:
  4825   bool _success;
  4826 public:
  4827   NoYoungRegionsClosure() : _success(true) { }
  4828   bool doHeapRegion(HeapRegion* r) {
  4829     if (r->is_young()) {
  4830       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  4831                              r->bottom(), r->end());
  4832       _success = false;
  4834     return false;
  4836   bool success() { return _success; }
  4837 };
  4839 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
  4840                                              bool check_sample) {
  4841   bool ret = true;
  4843   ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
  4844   if (!ignore_scan_only_list) {
  4845     NoYoungRegionsClosure closure;
  4846     heap_region_iterate(&closure);
  4847     ret = ret && closure.success();
  4850   return ret;
  4853 void G1CollectedHeap::empty_young_list() {
  4854   assert(heap_lock_held_for_gc(),
  4855               "the heap lock should already be held by or for this thread");
  4856   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  4858   _young_list->empty_list();
  4861 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  4862   bool no_allocs = true;
  4863   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  4864     HeapRegion* r = _gc_alloc_regions[ap];
  4865     no_allocs = r == NULL || r->saved_mark_at_top();
  4867   return no_allocs;
  4870 void G1CollectedHeap::retire_all_alloc_regions() {
  4871   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  4872     HeapRegion* r = _gc_alloc_regions[ap];
  4873     if (r != NULL) {
  4874       // Check for aliases.
  4875       bool has_processed_alias = false;
  4876       for (int i = 0; i < ap; ++i) {
  4877         if (_gc_alloc_regions[i] == r) {
  4878           has_processed_alias = true;
  4879           break;
  4882       if (!has_processed_alias) {
  4883         retire_alloc_region(r, false /* par */);
  4890 // Done at the start of full GC.
  4891 void G1CollectedHeap::tear_down_region_lists() {
  4892   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4893   while (pop_unclean_region_list_locked() != NULL) ;
  4894   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
  4895          "Postconditions of loop.")
  4896   while (pop_free_region_list_locked() != NULL) ;
  4897   assert(_free_region_list == NULL, "Postcondition of loop.");
  4898   if (_free_region_list_size != 0) {
  4899     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
  4900     print_on(gclog_or_tty, true /* extended */);
  4902   assert(_free_region_list_size == 0, "Postconditions of loop.");
  4906 class RegionResetter: public HeapRegionClosure {
  4907   G1CollectedHeap* _g1;
  4908   int _n;
  4909 public:
  4910   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  4911   bool doHeapRegion(HeapRegion* r) {
  4912     if (r->continuesHumongous()) return false;
  4913     if (r->top() > r->bottom()) {
  4914       if (r->top() < r->end()) {
  4915         Copy::fill_to_words(r->top(),
  4916                           pointer_delta(r->end(), r->top()));
  4918       r->set_zero_fill_allocated();
  4919     } else {
  4920       assert(r->is_empty(), "tautology");
  4921       _n++;
  4922       switch (r->zero_fill_state()) {
  4923         case HeapRegion::NotZeroFilled:
  4924         case HeapRegion::ZeroFilling:
  4925           _g1->put_region_on_unclean_list_locked(r);
  4926           break;
  4927         case HeapRegion::Allocated:
  4928           r->set_zero_fill_complete();
  4929           // no break; go on to put on free list.
  4930         case HeapRegion::ZeroFilled:
  4931           _g1->put_free_region_on_list_locked(r);
  4932           break;
  4935     return false;
  4938   int getFreeRegionCount() {return _n;}
  4939 };
  4941 // Done at the end of full GC.
  4942 void G1CollectedHeap::rebuild_region_lists() {
  4943   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4944   // This needs to go at the end of the full GC.
  4945   RegionResetter rs;
  4946   heap_region_iterate(&rs);
  4947   _free_regions = rs.getFreeRegionCount();
  4948   // Tell the ZF thread it may have work to do.
  4949   if (should_zf()) ZF_mon->notify_all();
  4952 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  4953   G1CollectedHeap* _g1;
  4954   int _n;
  4955 public:
  4956   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  4957   bool doHeapRegion(HeapRegion* r) {
  4958     if (r->continuesHumongous()) return false;
  4959     if (r->top() > r->bottom()) {
  4960       // There are assertions in "set_zero_fill_needed()" below that
  4961       // require top() == bottom(), so this is technically illegal.
  4962       // We'll skirt the law here, by making that true temporarily.
  4963       DEBUG_ONLY(HeapWord* save_top = r->top();
  4964                  r->set_top(r->bottom()));
  4965       r->set_zero_fill_needed();
  4966       DEBUG_ONLY(r->set_top(save_top));
  4968     return false;
  4970 };
  4972 // Done at the start of full GC.
  4973 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  4974   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  4975   // This needs to go at the end of the full GC.
  4976   UsedRegionsNeedZeroFillSetter rs;
  4977   heap_region_iterate(&rs);
  4980 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  4981   _refine_cte_cl->set_concurrent(concurrent);
  4984 #ifndef PRODUCT
  4986 class PrintHeapRegionClosure: public HeapRegionClosure {
  4987 public:
  4988   bool doHeapRegion(HeapRegion *r) {
  4989     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
  4990     if (r != NULL) {
  4991       if (r->is_on_free_list())
  4992         gclog_or_tty->print("Free ");
  4993       if (r->is_young())
  4994         gclog_or_tty->print("Young ");
  4995       if (r->isHumongous())
  4996         gclog_or_tty->print("Is Humongous ");
  4997       r->print();
  4999     return false;
  5001 };
  5003 class SortHeapRegionClosure : public HeapRegionClosure {
  5004   size_t young_regions,free_regions, unclean_regions;
  5005   size_t hum_regions, count;
  5006   size_t unaccounted, cur_unclean, cur_alloc;
  5007   size_t total_free;
  5008   HeapRegion* cur;
  5009 public:
  5010   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
  5011     free_regions(0), unclean_regions(0),
  5012     hum_regions(0),
  5013     count(0), unaccounted(0),
  5014     cur_alloc(0), total_free(0)
  5015   {}
  5016   bool doHeapRegion(HeapRegion *r) {
  5017     count++;
  5018     if (r->is_on_free_list()) free_regions++;
  5019     else if (r->is_on_unclean_list()) unclean_regions++;
  5020     else if (r->isHumongous())  hum_regions++;
  5021     else if (r->is_young()) young_regions++;
  5022     else if (r == cur) cur_alloc++;
  5023     else unaccounted++;
  5024     return false;
  5026   void print() {
  5027     total_free = free_regions + unclean_regions;
  5028     gclog_or_tty->print("%d regions\n", count);
  5029     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
  5030                         total_free, free_regions, unclean_regions);
  5031     gclog_or_tty->print("%d humongous %d young\n",
  5032                         hum_regions, young_regions);
  5033     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
  5034     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  5036 };
  5038 void G1CollectedHeap::print_region_counts() {
  5039   SortHeapRegionClosure sc(_cur_alloc_region);
  5040   PrintHeapRegionClosure cl;
  5041   heap_region_iterate(&cl);
  5042   heap_region_iterate(&sc);
  5043   sc.print();
  5044   print_region_accounting_info();
  5045 };
  5047 bool G1CollectedHeap::regions_accounted_for() {
  5048   // TODO: regions accounting for young/survivor/tenured
  5049   return true;
  5052 bool G1CollectedHeap::print_region_accounting_info() {
  5053   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
  5054                          free_regions(),
  5055                          count_free_regions(), count_free_regions_list(),
  5056                          _free_region_list_size, _unclean_region_list.sz());
  5057   gclog_or_tty->print_cr("cur_alloc: %d.",
  5058                          (_cur_alloc_region == NULL ? 0 : 1));
  5059   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
  5061   // TODO: check regions accounting for young/survivor/tenured
  5062   return true;
  5065 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5066   HeapRegion* hr = heap_region_containing(p);
  5067   if (hr == NULL) {
  5068     return is_in_permanent(p);
  5069   } else {
  5070     return hr->is_in(p);
  5073 #endif // !PRODUCT
  5075 void G1CollectedHeap::g1_unimplemented() {
  5076   // Unimplemented();

mercurial