src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Tue, 20 Sep 2011 09:59:59 -0400

author
tonyp
date
Tue, 20 Sep 2011 09:59:59 -0400
changeset 3168
4f93f0d00802
parent 3120
af2ab04e0038
child 3175
4dfb2df418f2
permissions
-rw-r--r--

7059019: G1: add G1 support to the SA
Summary: Extend the SA to recognize the G1CollectedHeap and implement any code that's needed by our serviceability tools (jmap, jinfo, jstack, etc.) that depend on the SA.
Reviewed-by: never, poonam, johnc

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    41 // over and over again and introducing subtle problems through small typos and
    42 // cutting and pasting mistakes. The macros below introduces a number
    43 // sequnce into the following two classes and the methods that access it.
    45 #define define_num_seq(name)                                                  \
    46 private:                                                                      \
    47   NumberSeq _all_##name##_times_ms;                                           \
    48 public:                                                                       \
    49   void record_##name##_time_ms(double ms) {                                   \
    50     _all_##name##_times_ms.add(ms);                                           \
    51   }                                                                           \
    52   NumberSeq* get_##name##_seq() {                                             \
    53     return &_all_##name##_times_ms;                                           \
    54   }
    56 class MainBodySummary;
    58 class PauseSummary: public CHeapObj {
    59   define_num_seq(total)
    60     define_num_seq(other)
    62 public:
    63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    64 };
    66 class MainBodySummary: public CHeapObj {
    67   define_num_seq(satb_drain) // optional
    68   define_num_seq(parallel) // parallel only
    69     define_num_seq(ext_root_scan)
    70     define_num_seq(mark_stack_scan)
    71     define_num_seq(update_rs)
    72     define_num_seq(scan_rs)
    73     define_num_seq(obj_copy)
    74     define_num_seq(termination) // parallel only
    75     define_num_seq(parallel_other) // parallel only
    76   define_num_seq(mark_closure)
    77   define_num_seq(clear_ct)  // parallel only
    78 };
    80 class Summary: public PauseSummary,
    81                public MainBodySummary {
    82 public:
    83   virtual MainBodySummary*    main_body_summary()    { return this; }
    84 };
    86 class G1CollectorPolicy: public CollectorPolicy {
    87 protected:
    88   // The number of pauses during the execution.
    89   long _n_pauses;
    91   // either equal to the number of parallel threads, if ParallelGCThreads
    92   // has been set, or 1 otherwise
    93   int _parallel_gc_threads;
    95   enum SomePrivateConstants {
    96     NumPrevPausesForHeuristics = 10
    97   };
    99   G1MMUTracker* _mmu_tracker;
   101   void initialize_flags();
   103   void initialize_all() {
   104     initialize_flags();
   105     initialize_size_info();
   106     initialize_perm_generation(PermGen::MarkSweepCompact);
   107   }
   109   virtual size_t default_init_heap_size() {
   110     // Pick some reasonable default.
   111     return 8*M;
   112   }
   114   double _cur_collection_start_sec;
   115   size_t _cur_collection_pause_used_at_start_bytes;
   116   size_t _cur_collection_pause_used_regions_at_start;
   117   size_t _prev_collection_pause_used_at_end_bytes;
   118   double _cur_collection_par_time_ms;
   119   double _cur_satb_drain_time_ms;
   120   double _cur_clear_ct_time_ms;
   121   bool   _satb_drain_time_set;
   123 #ifndef PRODUCT
   124   // Card Table Count Cache stats
   125   double _min_clear_cc_time_ms;         // min
   126   double _max_clear_cc_time_ms;         // max
   127   double _cur_clear_cc_time_ms;         // clearing time during current pause
   128   double _cum_clear_cc_time_ms;         // cummulative clearing time
   129   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   130 #endif
   132   // Statistics for recent GC pauses.  See below for how indexed.
   133   TruncatedSeq* _recent_rs_scan_times_ms;
   135   // These exclude marking times.
   136   TruncatedSeq* _recent_pause_times_ms;
   137   TruncatedSeq* _recent_gc_times_ms;
   139   TruncatedSeq* _recent_CS_bytes_used_before;
   140   TruncatedSeq* _recent_CS_bytes_surviving;
   142   TruncatedSeq* _recent_rs_sizes;
   144   TruncatedSeq* _concurrent_mark_remark_times_ms;
   145   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   147   Summary*           _summary;
   149   NumberSeq* _all_pause_times_ms;
   150   NumberSeq* _all_full_gc_times_ms;
   151   double _stop_world_start;
   152   NumberSeq* _all_stop_world_times_ms;
   153   NumberSeq* _all_yield_times_ms;
   155   size_t     _region_num_young;
   156   size_t     _region_num_tenured;
   157   size_t     _prev_region_num_young;
   158   size_t     _prev_region_num_tenured;
   160   NumberSeq* _all_mod_union_times_ms;
   162   int        _aux_num;
   163   NumberSeq* _all_aux_times_ms;
   164   double*    _cur_aux_start_times_ms;
   165   double*    _cur_aux_times_ms;
   166   bool*      _cur_aux_times_set;
   168   double* _par_last_gc_worker_start_times_ms;
   169   double* _par_last_ext_root_scan_times_ms;
   170   double* _par_last_mark_stack_scan_times_ms;
   171   double* _par_last_update_rs_times_ms;
   172   double* _par_last_update_rs_processed_buffers;
   173   double* _par_last_scan_rs_times_ms;
   174   double* _par_last_obj_copy_times_ms;
   175   double* _par_last_termination_times_ms;
   176   double* _par_last_termination_attempts;
   177   double* _par_last_gc_worker_end_times_ms;
   178   double* _par_last_gc_worker_times_ms;
   180   // indicates whether we are in full young or partially young GC mode
   181   bool _full_young_gcs;
   183   // if true, then it tries to dynamically adjust the length of the
   184   // young list
   185   bool _adaptive_young_list_length;
   186   size_t _young_list_target_length;
   187   size_t _young_list_fixed_length;
   188   size_t _prev_eden_capacity; // used for logging
   190   // The max number of regions we can extend the eden by while the GC
   191   // locker is active. This should be >= _young_list_target_length;
   192   size_t _young_list_max_length;
   194   size_t _young_cset_length;
   195   bool   _last_young_gc_full;
   197   unsigned              _full_young_pause_num;
   198   unsigned              _partial_young_pause_num;
   200   bool                  _during_marking;
   201   bool                  _in_marking_window;
   202   bool                  _in_marking_window_im;
   204   SurvRateGroup*        _short_lived_surv_rate_group;
   205   SurvRateGroup*        _survivor_surv_rate_group;
   206   // add here any more surv rate groups
   208   double                _gc_overhead_perc;
   210   double _reserve_factor;
   211   size_t _reserve_regions;
   213   bool during_marking() {
   214     return _during_marking;
   215   }
   217   // <NEW PREDICTION>
   219 private:
   220   enum PredictionConstants {
   221     TruncatedSeqLength = 10
   222   };
   224   TruncatedSeq* _alloc_rate_ms_seq;
   225   double        _prev_collection_pause_end_ms;
   227   TruncatedSeq* _pending_card_diff_seq;
   228   TruncatedSeq* _rs_length_diff_seq;
   229   TruncatedSeq* _cost_per_card_ms_seq;
   230   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   231   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   232   TruncatedSeq* _cost_per_entry_ms_seq;
   233   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   234   TruncatedSeq* _cost_per_byte_ms_seq;
   235   TruncatedSeq* _constant_other_time_ms_seq;
   236   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   237   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   239   TruncatedSeq* _pending_cards_seq;
   240   TruncatedSeq* _scanned_cards_seq;
   241   TruncatedSeq* _rs_lengths_seq;
   243   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   245   TruncatedSeq* _young_gc_eff_seq;
   247   TruncatedSeq* _max_conc_overhead_seq;
   249   bool   _using_new_ratio_calculations;
   250   size_t _min_desired_young_length; // as set on the command line or default calculations
   251   size_t _max_desired_young_length; // as set on the command line or default calculations
   253   size_t _recorded_young_regions;
   254   size_t _recorded_non_young_regions;
   255   size_t _recorded_region_num;
   257   size_t _free_regions_at_end_of_collection;
   259   size_t _recorded_rs_lengths;
   260   size_t _max_rs_lengths;
   262   size_t _recorded_marked_bytes;
   263   size_t _recorded_young_bytes;
   265   size_t _predicted_pending_cards;
   266   size_t _predicted_cards_scanned;
   267   size_t _predicted_rs_lengths;
   268   size_t _predicted_bytes_to_copy;
   270   double _predicted_survival_ratio;
   271   double _predicted_rs_update_time_ms;
   272   double _predicted_rs_scan_time_ms;
   273   double _predicted_object_copy_time_ms;
   274   double _predicted_constant_other_time_ms;
   275   double _predicted_young_other_time_ms;
   276   double _predicted_non_young_other_time_ms;
   277   double _predicted_pause_time_ms;
   279   double _vtime_diff_ms;
   281   double _recorded_young_free_cset_time_ms;
   282   double _recorded_non_young_free_cset_time_ms;
   284   double _sigma;
   285   double _expensive_region_limit_ms;
   287   size_t _rs_lengths_prediction;
   289   size_t _known_garbage_bytes;
   290   double _known_garbage_ratio;
   292   double sigma() {
   293     return _sigma;
   294   }
   296   // A function that prevents us putting too much stock in small sample
   297   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   298   // of samples.  5 or more samples yields one; fewer scales linearly from
   299   // 2.0 at 1 sample to 1.0 at 5.
   300   double confidence_factor(int samples) {
   301     if (samples > 4) return 1.0;
   302     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   303   }
   305   double get_new_neg_prediction(TruncatedSeq* seq) {
   306     return seq->davg() - sigma() * seq->dsd();
   307   }
   309 #ifndef PRODUCT
   310   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   311 #endif // PRODUCT
   313   void adjust_concurrent_refinement(double update_rs_time,
   314                                     double update_rs_processed_buffers,
   315                                     double goal_ms);
   317 protected:
   318   double _pause_time_target_ms;
   319   double _recorded_young_cset_choice_time_ms;
   320   double _recorded_non_young_cset_choice_time_ms;
   321   bool   _within_target;
   322   size_t _pending_cards;
   323   size_t _max_pending_cards;
   325 public:
   327   void set_region_short_lived(HeapRegion* hr) {
   328     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   329   }
   331   void set_region_survivors(HeapRegion* hr) {
   332     hr->install_surv_rate_group(_survivor_surv_rate_group);
   333   }
   335 #ifndef PRODUCT
   336   bool verify_young_ages();
   337 #endif // PRODUCT
   339   double get_new_prediction(TruncatedSeq* seq) {
   340     return MAX2(seq->davg() + sigma() * seq->dsd(),
   341                 seq->davg() * confidence_factor(seq->num()));
   342   }
   344   size_t young_cset_length() {
   345     return _young_cset_length;
   346   }
   348   void record_max_rs_lengths(size_t rs_lengths) {
   349     _max_rs_lengths = rs_lengths;
   350   }
   352   size_t predict_pending_card_diff() {
   353     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   354     if (prediction < 0.00001)
   355       return 0;
   356     else
   357       return (size_t) prediction;
   358   }
   360   size_t predict_pending_cards() {
   361     size_t max_pending_card_num = _g1->max_pending_card_num();
   362     size_t diff = predict_pending_card_diff();
   363     size_t prediction;
   364     if (diff > max_pending_card_num)
   365       prediction = max_pending_card_num;
   366     else
   367       prediction = max_pending_card_num - diff;
   369     return prediction;
   370   }
   372   size_t predict_rs_length_diff() {
   373     return (size_t) get_new_prediction(_rs_length_diff_seq);
   374   }
   376   double predict_alloc_rate_ms() {
   377     return get_new_prediction(_alloc_rate_ms_seq);
   378   }
   380   double predict_cost_per_card_ms() {
   381     return get_new_prediction(_cost_per_card_ms_seq);
   382   }
   384   double predict_rs_update_time_ms(size_t pending_cards) {
   385     return (double) pending_cards * predict_cost_per_card_ms();
   386   }
   388   double predict_fully_young_cards_per_entry_ratio() {
   389     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   390   }
   392   double predict_partially_young_cards_per_entry_ratio() {
   393     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   394       return predict_fully_young_cards_per_entry_ratio();
   395     else
   396       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   397   }
   399   size_t predict_young_card_num(size_t rs_length) {
   400     return (size_t) ((double) rs_length *
   401                      predict_fully_young_cards_per_entry_ratio());
   402   }
   404   size_t predict_non_young_card_num(size_t rs_length) {
   405     return (size_t) ((double) rs_length *
   406                      predict_partially_young_cards_per_entry_ratio());
   407   }
   409   double predict_rs_scan_time_ms(size_t card_num) {
   410     if (full_young_gcs())
   411       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   412     else
   413       return predict_partially_young_rs_scan_time_ms(card_num);
   414   }
   416   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   417     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   418       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   419     else
   420       return (double) card_num *
   421         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   422   }
   424   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   425     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   426       return 1.1 * (double) bytes_to_copy *
   427         get_new_prediction(_cost_per_byte_ms_seq);
   428     else
   429       return (double) bytes_to_copy *
   430         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   431   }
   433   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   434     if (_in_marking_window && !_in_marking_window_im)
   435       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   436     else
   437       return (double) bytes_to_copy *
   438         get_new_prediction(_cost_per_byte_ms_seq);
   439   }
   441   double predict_constant_other_time_ms() {
   442     return get_new_prediction(_constant_other_time_ms_seq);
   443   }
   445   double predict_young_other_time_ms(size_t young_num) {
   446     return
   447       (double) young_num *
   448       get_new_prediction(_young_other_cost_per_region_ms_seq);
   449   }
   451   double predict_non_young_other_time_ms(size_t non_young_num) {
   452     return
   453       (double) non_young_num *
   454       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   455   }
   457   void check_if_region_is_too_expensive(double predicted_time_ms);
   459   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   460   double predict_base_elapsed_time_ms(size_t pending_cards);
   461   double predict_base_elapsed_time_ms(size_t pending_cards,
   462                                       size_t scanned_cards);
   463   size_t predict_bytes_to_copy(HeapRegion* hr);
   464   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   466   void start_recording_regions();
   467   void record_cset_region_info(HeapRegion* hr, bool young);
   468   void record_non_young_cset_region(HeapRegion* hr);
   470   void set_recorded_young_regions(size_t n_regions);
   471   void set_recorded_young_bytes(size_t bytes);
   472   void set_recorded_rs_lengths(size_t rs_lengths);
   473   void set_predicted_bytes_to_copy(size_t bytes);
   475   void end_recording_regions();
   477   void record_vtime_diff_ms(double vtime_diff_ms) {
   478     _vtime_diff_ms = vtime_diff_ms;
   479   }
   481   void record_young_free_cset_time_ms(double time_ms) {
   482     _recorded_young_free_cset_time_ms = time_ms;
   483   }
   485   void record_non_young_free_cset_time_ms(double time_ms) {
   486     _recorded_non_young_free_cset_time_ms = time_ms;
   487   }
   489   double predict_young_gc_eff() {
   490     return get_new_neg_prediction(_young_gc_eff_seq);
   491   }
   493   double predict_survivor_regions_evac_time();
   495   // </NEW PREDICTION>
   497   void cset_regions_freed() {
   498     bool propagate = _last_young_gc_full && !_in_marking_window;
   499     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   500     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   501     // also call it on any more surv rate groups
   502   }
   504   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   505     _known_garbage_bytes = known_garbage_bytes;
   506     size_t heap_bytes = _g1->capacity();
   507     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   508   }
   510   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   511     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   513     _known_garbage_bytes -= known_garbage_bytes;
   514     size_t heap_bytes = _g1->capacity();
   515     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   516   }
   518   G1MMUTracker* mmu_tracker() {
   519     return _mmu_tracker;
   520   }
   522   double max_pause_time_ms() {
   523     return _mmu_tracker->max_gc_time() * 1000.0;
   524   }
   526   double predict_remark_time_ms() {
   527     return get_new_prediction(_concurrent_mark_remark_times_ms);
   528   }
   530   double predict_cleanup_time_ms() {
   531     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   532   }
   534   // Returns an estimate of the survival rate of the region at yg-age
   535   // "yg_age".
   536   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   537     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   538     if (seq->num() == 0)
   539       gclog_or_tty->print("BARF! age is %d", age);
   540     guarantee( seq->num() > 0, "invariant" );
   541     double pred = get_new_prediction(seq);
   542     if (pred > 1.0)
   543       pred = 1.0;
   544     return pred;
   545   }
   547   double predict_yg_surv_rate(int age) {
   548     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   549   }
   551   double accum_yg_surv_rate_pred(int age) {
   552     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   553   }
   555 protected:
   556   void print_stats(int level, const char* str, double value);
   557   void print_stats(int level, const char* str, int value);
   559   void print_par_stats(int level, const char* str, double* data);
   560   void print_par_sizes(int level, const char* str, double* data);
   562   void check_other_times(int level,
   563                          NumberSeq* other_times_ms,
   564                          NumberSeq* calc_other_times_ms) const;
   566   void print_summary (PauseSummary* stats) const;
   568   void print_summary (int level, const char* str, NumberSeq* seq) const;
   569   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   571   double avg_value (double* data);
   572   double max_value (double* data);
   573   double sum_of_values (double* data);
   574   double max_sum (double* data1, double* data2);
   576   int _last_satb_drain_processed_buffers;
   577   int _last_update_rs_processed_buffers;
   578   double _last_pause_time_ms;
   580   size_t _bytes_in_collection_set_before_gc;
   581   size_t _bytes_copied_during_gc;
   583   // Used to count used bytes in CS.
   584   friend class CountCSClosure;
   586   // Statistics kept per GC stoppage, pause or full.
   587   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   589   // We track markings.
   590   int _num_markings;
   591   double _mark_thread_startup_sec;       // Time at startup of marking thread
   593   // Add a new GC of the given duration and end time to the record.
   594   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   596   // The head of the list (via "next_in_collection_set()") representing the
   597   // current collection set. Set from the incrementally built collection
   598   // set at the start of the pause.
   599   HeapRegion* _collection_set;
   601   // The number of regions in the collection set. Set from the incrementally
   602   // built collection set at the start of an evacuation pause.
   603   size_t _collection_set_size;
   605   // The number of bytes in the collection set before the pause. Set from
   606   // the incrementally built collection set at the start of an evacuation
   607   // pause.
   608   size_t _collection_set_bytes_used_before;
   610   // The associated information that is maintained while the incremental
   611   // collection set is being built with young regions. Used to populate
   612   // the recorded info for the evacuation pause.
   614   enum CSetBuildType {
   615     Active,             // We are actively building the collection set
   616     Inactive            // We are not actively building the collection set
   617   };
   619   CSetBuildType _inc_cset_build_state;
   621   // The head of the incrementally built collection set.
   622   HeapRegion* _inc_cset_head;
   624   // The tail of the incrementally built collection set.
   625   HeapRegion* _inc_cset_tail;
   627   // The number of regions in the incrementally built collection set.
   628   // Used to set _collection_set_size at the start of an evacuation
   629   // pause.
   630   size_t _inc_cset_size;
   632   // Used as the index in the surving young words structure
   633   // which tracks the amount of space, for each young region,
   634   // that survives the pause.
   635   size_t _inc_cset_young_index;
   637   // The number of bytes in the incrementally built collection set.
   638   // Used to set _collection_set_bytes_used_before at the start of
   639   // an evacuation pause.
   640   size_t _inc_cset_bytes_used_before;
   642   // Used to record the highest end of heap region in collection set
   643   HeapWord* _inc_cset_max_finger;
   645   // The number of recorded used bytes in the young regions
   646   // of the collection set. This is the sum of the used() bytes
   647   // of retired young regions in the collection set.
   648   size_t _inc_cset_recorded_young_bytes;
   650   // The RSet lengths recorded for regions in the collection set
   651   // (updated by the periodic sampling of the regions in the
   652   // young list/collection set).
   653   size_t _inc_cset_recorded_rs_lengths;
   655   // The predicted elapsed time it will take to collect the regions
   656   // in the collection set (updated by the periodic sampling of the
   657   // regions in the young list/collection set).
   658   double _inc_cset_predicted_elapsed_time_ms;
   660   // The predicted bytes to copy for the regions in the collection
   661   // set (updated by the periodic sampling of the regions in the
   662   // young list/collection set).
   663   size_t _inc_cset_predicted_bytes_to_copy;
   665   // Info about marking.
   666   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   668   // The number of collection pauses at the end of the last mark.
   669   size_t _n_pauses_at_mark_end;
   671   // Stash a pointer to the g1 heap.
   672   G1CollectedHeap* _g1;
   674   // The average time in ms per collection pause, averaged over recent pauses.
   675   double recent_avg_time_for_pauses_ms();
   677   // The average time in ms for RS scanning, per pause, averaged
   678   // over recent pauses. (Note the RS scanning time for a pause
   679   // is itself an average of the RS scanning time for each worker
   680   // thread.)
   681   double recent_avg_time_for_rs_scan_ms();
   683   // The number of "recent" GCs recorded in the number sequences
   684   int number_of_recent_gcs();
   686   // The average survival ratio, computed by the total number of bytes
   687   // suriviving / total number of bytes before collection over the last
   688   // several recent pauses.
   689   double recent_avg_survival_fraction();
   690   // The survival fraction of the most recent pause; if there have been no
   691   // pauses, returns 1.0.
   692   double last_survival_fraction();
   694   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   695   // one that may be higher than "recent_avg_survival_fraction".
   696   // This is conservative in several ways:
   697   //   If there have been few pauses, it will assume a potential high
   698   //     variance, and err on the side of caution.
   699   //   It puts a lower bound (currently 0.1) on the value it will return.
   700   //   To try to detect phase changes, if the most recent pause ("latest") has a
   701   //     higher-than average ("avg") survival rate, it returns that rate.
   702   // "work" version is a utility function; young is restricted to young regions.
   703   double conservative_avg_survival_fraction_work(double avg,
   704                                                  double latest);
   706   // The arguments are the two sequences that keep track of the number of bytes
   707   //   surviving and the total number of bytes before collection, resp.,
   708   //   over the last evereal recent pauses
   709   // Returns the survival rate for the category in the most recent pause.
   710   // If there have been no pauses, returns 1.0.
   711   double last_survival_fraction_work(TruncatedSeq* surviving,
   712                                      TruncatedSeq* before);
   714   // The arguments are the two sequences that keep track of the number of bytes
   715   //   surviving and the total number of bytes before collection, resp.,
   716   //   over the last several recent pauses
   717   // Returns the average survival ration over the last several recent pauses
   718   // If there have been no pauses, return 1.0
   719   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   720                                            TruncatedSeq* before);
   722   double conservative_avg_survival_fraction() {
   723     double avg = recent_avg_survival_fraction();
   724     double latest = last_survival_fraction();
   725     return conservative_avg_survival_fraction_work(avg, latest);
   726   }
   728   // The ratio of gc time to elapsed time, computed over recent pauses.
   729   double _recent_avg_pause_time_ratio;
   731   double recent_avg_pause_time_ratio() {
   732     return _recent_avg_pause_time_ratio;
   733   }
   735   // Number of pauses between concurrent marking.
   736   size_t _pauses_btwn_concurrent_mark;
   738   size_t _n_marks_since_last_pause;
   740   // At the end of a pause we check the heap occupancy and we decide
   741   // whether we will start a marking cycle during the next pause. If
   742   // we decide that we want to do that, we will set this parameter to
   743   // true. So, this parameter will stay true between the end of a
   744   // pause and the beginning of a subsequent pause (not necessarily
   745   // the next one, see the comments on the next field) when we decide
   746   // that we will indeed start a marking cycle and do the initial-mark
   747   // work.
   748   volatile bool _initiate_conc_mark_if_possible;
   750   // If initiate_conc_mark_if_possible() is set at the beginning of a
   751   // pause, it is a suggestion that the pause should start a marking
   752   // cycle by doing the initial-mark work. However, it is possible
   753   // that the concurrent marking thread is still finishing up the
   754   // previous marking cycle (e.g., clearing the next marking
   755   // bitmap). If that is the case we cannot start a new cycle and
   756   // we'll have to wait for the concurrent marking thread to finish
   757   // what it is doing. In this case we will postpone the marking cycle
   758   // initiation decision for the next pause. When we eventually decide
   759   // to start a cycle, we will set _during_initial_mark_pause which
   760   // will stay true until the end of the initial-mark pause and it's
   761   // the condition that indicates that a pause is doing the
   762   // initial-mark work.
   763   volatile bool _during_initial_mark_pause;
   765   bool _should_revert_to_full_young_gcs;
   766   bool _last_full_young_gc;
   768   // This set of variables tracks the collector efficiency, in order to
   769   // determine whether we should initiate a new marking.
   770   double _cur_mark_stop_world_time_ms;
   771   double _mark_remark_start_sec;
   772   double _mark_cleanup_start_sec;
   773   double _mark_closure_time_ms;
   775   // Update the young list target length either by setting it to the
   776   // desired fixed value or by calculating it using G1's pause
   777   // prediction model. If no rs_lengths parameter is passed, predict
   778   // the RS lengths using the prediction model, otherwise use the
   779   // given rs_lengths as the prediction.
   780   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   782   // Calculate and return the minimum desired young list target
   783   // length. This is the minimum desired young list length according
   784   // to the user's inputs.
   785   size_t calculate_young_list_desired_min_length(size_t base_min_length);
   787   // Calculate and return the maximum desired young list target
   788   // length. This is the maximum desired young list length according
   789   // to the user's inputs.
   790   size_t calculate_young_list_desired_max_length();
   792   // Calculate and return the maximum young list target length that
   793   // can fit into the pause time goal. The parameters are: rs_lengths
   794   // represent the prediction of how large the young RSet lengths will
   795   // be, base_min_length is the alreay existing number of regions in
   796   // the young list, min_length and max_length are the desired min and
   797   // max young list length according to the user's inputs.
   798   size_t calculate_young_list_target_length(size_t rs_lengths,
   799                                             size_t base_min_length,
   800                                             size_t desired_min_length,
   801                                             size_t desired_max_length);
   803   // Check whether a given young length (young_length) fits into the
   804   // given target pause time and whether the prediction for the amount
   805   // of objects to be copied for the given length will fit into the
   806   // given free space (expressed by base_free_regions).  It is used by
   807   // calculate_young_list_target_length().
   808   bool predict_will_fit(size_t young_length, double base_time_ms,
   809                         size_t base_free_regions, double target_pause_time_ms);
   811 public:
   813   G1CollectorPolicy();
   815   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   817   virtual CollectorPolicy::Name kind() {
   818     return CollectorPolicy::G1CollectorPolicyKind;
   819   }
   821   // Check the current value of the young list RSet lengths and
   822   // compare it against the last prediction. If the current value is
   823   // higher, recalculate the young list target length prediction.
   824   void revise_young_list_target_length_if_necessary();
   826   size_t bytes_in_collection_set() {
   827     return _bytes_in_collection_set_before_gc;
   828   }
   830   unsigned calc_gc_alloc_time_stamp() {
   831     return _all_pause_times_ms->num() + 1;
   832   }
   834   // This should be called after the heap is resized.
   835   void record_new_heap_size(size_t new_number_of_regions);
   837 protected:
   839   // Count the number of bytes used in the CS.
   840   void count_CS_bytes_used();
   842   // Together these do the base cleanup-recording work.  Subclasses might
   843   // want to put something between them.
   844   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   845                                                 size_t max_live_bytes);
   846   void record_concurrent_mark_cleanup_end_work2();
   848   void update_young_list_size_using_newratio(size_t number_of_heap_regions);
   850 public:
   852   virtual void init();
   854   // Create jstat counters for the policy.
   855   virtual void initialize_gc_policy_counters();
   857   virtual HeapWord* mem_allocate_work(size_t size,
   858                                       bool is_tlab,
   859                                       bool* gc_overhead_limit_was_exceeded);
   861   // This method controls how a collector handles one or more
   862   // of its generations being fully allocated.
   863   virtual HeapWord* satisfy_failed_allocation(size_t size,
   864                                               bool is_tlab);
   866   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   868   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   870   // The number of collection pauses so far.
   871   long n_pauses() const { return _n_pauses; }
   873   // Update the heuristic info to record a collection pause of the given
   874   // start time, where the given number of bytes were used at the start.
   875   // This may involve changing the desired size of a collection set.
   877   virtual void record_stop_world_start();
   879   virtual void record_collection_pause_start(double start_time_sec,
   880                                              size_t start_used);
   882   // Must currently be called while the world is stopped.
   883   void record_concurrent_mark_init_end(double
   884                                            mark_init_elapsed_time_ms);
   886   void record_mark_closure_time(double mark_closure_time_ms);
   888   virtual void record_concurrent_mark_remark_start();
   889   virtual void record_concurrent_mark_remark_end();
   891   virtual void record_concurrent_mark_cleanup_start();
   892   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   893                                                   size_t max_live_bytes);
   894   virtual void record_concurrent_mark_cleanup_completed();
   896   virtual void record_concurrent_pause();
   897   virtual void record_concurrent_pause_end();
   899   virtual void record_collection_pause_end();
   900   void print_heap_transition();
   902   // Record the fact that a full collection occurred.
   903   virtual void record_full_collection_start();
   904   virtual void record_full_collection_end();
   906   void record_gc_worker_start_time(int worker_i, double ms) {
   907     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   908   }
   910   void record_ext_root_scan_time(int worker_i, double ms) {
   911     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   912   }
   914   void record_mark_stack_scan_time(int worker_i, double ms) {
   915     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   916   }
   918   void record_satb_drain_time(double ms) {
   919     _cur_satb_drain_time_ms = ms;
   920     _satb_drain_time_set    = true;
   921   }
   923   void record_satb_drain_processed_buffers (int processed_buffers) {
   924     _last_satb_drain_processed_buffers = processed_buffers;
   925   }
   927   void record_mod_union_time(double ms) {
   928     _all_mod_union_times_ms->add(ms);
   929   }
   931   void record_update_rs_time(int thread, double ms) {
   932     _par_last_update_rs_times_ms[thread] = ms;
   933   }
   935   void record_update_rs_processed_buffers (int thread,
   936                                            double processed_buffers) {
   937     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   938   }
   940   void record_scan_rs_time(int thread, double ms) {
   941     _par_last_scan_rs_times_ms[thread] = ms;
   942   }
   944   void reset_obj_copy_time(int thread) {
   945     _par_last_obj_copy_times_ms[thread] = 0.0;
   946   }
   948   void reset_obj_copy_time() {
   949     reset_obj_copy_time(0);
   950   }
   952   void record_obj_copy_time(int thread, double ms) {
   953     _par_last_obj_copy_times_ms[thread] += ms;
   954   }
   956   void record_termination(int thread, double ms, size_t attempts) {
   957     _par_last_termination_times_ms[thread] = ms;
   958     _par_last_termination_attempts[thread] = (double) attempts;
   959   }
   961   void record_gc_worker_end_time(int worker_i, double ms) {
   962     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   963   }
   965   void record_pause_time_ms(double ms) {
   966     _last_pause_time_ms = ms;
   967   }
   969   void record_clear_ct_time(double ms) {
   970     _cur_clear_ct_time_ms = ms;
   971   }
   973   void record_par_time(double ms) {
   974     _cur_collection_par_time_ms = ms;
   975   }
   977   void record_aux_start_time(int i) {
   978     guarantee(i < _aux_num, "should be within range");
   979     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   980   }
   982   void record_aux_end_time(int i) {
   983     guarantee(i < _aux_num, "should be within range");
   984     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   985     _cur_aux_times_set[i] = true;
   986     _cur_aux_times_ms[i] += ms;
   987   }
   989 #ifndef PRODUCT
   990   void record_cc_clear_time(double ms) {
   991     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   992       _min_clear_cc_time_ms = ms;
   993     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   994       _max_clear_cc_time_ms = ms;
   995     _cur_clear_cc_time_ms = ms;
   996     _cum_clear_cc_time_ms += ms;
   997     _num_cc_clears++;
   998   }
   999 #endif
  1001   // Record how much space we copied during a GC. This is typically
  1002   // called when a GC alloc region is being retired.
  1003   void record_bytes_copied_during_gc(size_t bytes) {
  1004     _bytes_copied_during_gc += bytes;
  1007   // The amount of space we copied during a GC.
  1008   size_t bytes_copied_during_gc() {
  1009     return _bytes_copied_during_gc;
  1012   // Choose a new collection set.  Marks the chosen regions as being
  1013   // "in_collection_set", and links them together.  The head and number of
  1014   // the collection set are available via access methods.
  1015   virtual void choose_collection_set(double target_pause_time_ms) = 0;
  1017   // The head of the list (via "next_in_collection_set()") representing the
  1018   // current collection set.
  1019   HeapRegion* collection_set() { return _collection_set; }
  1021   void clear_collection_set() { _collection_set = NULL; }
  1023   // The number of elements in the current collection set.
  1024   size_t collection_set_size() { return _collection_set_size; }
  1026   // Add "hr" to the CS.
  1027   void add_to_collection_set(HeapRegion* hr);
  1029   // Incremental CSet Support
  1031   // The head of the incrementally built collection set.
  1032   HeapRegion* inc_cset_head() { return _inc_cset_head; }
  1034   // The tail of the incrementally built collection set.
  1035   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
  1037   // The number of elements in the incrementally built collection set.
  1038   size_t inc_cset_size() { return _inc_cset_size; }
  1040   // Initialize incremental collection set info.
  1041   void start_incremental_cset_building();
  1043   void clear_incremental_cset() {
  1044     _inc_cset_head = NULL;
  1045     _inc_cset_tail = NULL;
  1048   // Stop adding regions to the incremental collection set
  1049   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
  1051   // Add/remove information about hr to the aggregated information
  1052   // for the incrementally built collection set.
  1053   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
  1054   void remove_from_incremental_cset_info(HeapRegion* hr);
  1056   // Update information about hr in the aggregated information for
  1057   // the incrementally built collection set.
  1058   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
  1060 private:
  1061   // Update the incremental cset information when adding a region
  1062   // (should not be called directly).
  1063   void add_region_to_incremental_cset_common(HeapRegion* hr);
  1065 public:
  1066   // Add hr to the LHS of the incremental collection set.
  1067   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
  1069   // Add hr to the RHS of the incremental collection set.
  1070   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
  1072 #ifndef PRODUCT
  1073   void print_collection_set(HeapRegion* list_head, outputStream* st);
  1074 #endif // !PRODUCT
  1076   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
  1077   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
  1078   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
  1080   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
  1081   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
  1082   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
  1084   // This sets the initiate_conc_mark_if_possible() flag to start a
  1085   // new cycle, as long as we are not already in one. It's best if it
  1086   // is called during a safepoint when the test whether a cycle is in
  1087   // progress or not is stable.
  1088   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
  1090   // This is called at the very beginning of an evacuation pause (it
  1091   // has to be the first thing that the pause does). If
  1092   // initiate_conc_mark_if_possible() is true, and the concurrent
  1093   // marking thread has completed its work during the previous cycle,
  1094   // it will set during_initial_mark_pause() to so that the pause does
  1095   // the initial-mark work and start a marking cycle.
  1096   void decide_on_conc_mark_initiation();
  1098   // If an expansion would be appropriate, because recent GC overhead had
  1099   // exceeded the desired limit, return an amount to expand by.
  1100   virtual size_t expansion_amount();
  1102   // note start of mark thread
  1103   void note_start_of_mark_thread();
  1105   // The marked bytes of the "r" has changed; reclassify it's desirability
  1106   // for marking.  Also asserts that "r" is eligible for a CS.
  1107   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
  1109 #ifndef PRODUCT
  1110   // Check any appropriate marked bytes info, asserting false if
  1111   // something's wrong, else returning "true".
  1112   virtual bool assertMarkedBytesDataOK() = 0;
  1113 #endif
  1115   // Print tracing information.
  1116   void print_tracing_info() const;
  1118   // Print stats on young survival ratio
  1119   void print_yg_surv_rate_info() const;
  1121   void finished_recalculating_age_indexes(bool is_survivors) {
  1122     if (is_survivors) {
  1123       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1124     } else {
  1125       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1127     // do that for any other surv rate groups
  1130   bool is_young_list_full() {
  1131     size_t young_list_length = _g1->young_list()->length();
  1132     size_t young_list_target_length = _young_list_target_length;
  1133     return young_list_length >= young_list_target_length;
  1136   bool can_expand_young_list() {
  1137     size_t young_list_length = _g1->young_list()->length();
  1138     size_t young_list_max_length = _young_list_max_length;
  1139     return young_list_length < young_list_max_length;
  1142   void update_region_num(bool young);
  1144   bool full_young_gcs() {
  1145     return _full_young_gcs;
  1147   void set_full_young_gcs(bool full_young_gcs) {
  1148     _full_young_gcs = full_young_gcs;
  1151   bool adaptive_young_list_length() {
  1152     return _adaptive_young_list_length;
  1154   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1155     _adaptive_young_list_length = adaptive_young_list_length;
  1158   inline double get_gc_eff_factor() {
  1159     double ratio = _known_garbage_ratio;
  1161     double square = ratio * ratio;
  1162     // square = square * square;
  1163     double ret = square * 9.0 + 1.0;
  1164 #if 0
  1165     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1166 #endif // 0
  1167     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1168     return ret;
  1171   //
  1172   // Survivor regions policy.
  1173   //
  1174 protected:
  1176   // Current tenuring threshold, set to 0 if the collector reaches the
  1177   // maximum amount of suvivors regions.
  1178   int _tenuring_threshold;
  1180   // The limit on the number of regions allocated for survivors.
  1181   size_t _max_survivor_regions;
  1183   // For reporting purposes.
  1184   size_t _eden_bytes_before_gc;
  1185   size_t _survivor_bytes_before_gc;
  1186   size_t _capacity_before_gc;
  1188   // The amount of survor regions after a collection.
  1189   size_t _recorded_survivor_regions;
  1190   // List of survivor regions.
  1191   HeapRegion* _recorded_survivor_head;
  1192   HeapRegion* _recorded_survivor_tail;
  1194   ageTable _survivors_age_table;
  1196 public:
  1198   inline GCAllocPurpose
  1199     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1200       if (age < _tenuring_threshold && src_region->is_young()) {
  1201         return GCAllocForSurvived;
  1202       } else {
  1203         return GCAllocForTenured;
  1207   inline bool track_object_age(GCAllocPurpose purpose) {
  1208     return purpose == GCAllocForSurvived;
  1211   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1213   size_t max_regions(int purpose);
  1215   // The limit on regions for a particular purpose is reached.
  1216   void note_alloc_region_limit_reached(int purpose) {
  1217     if (purpose == GCAllocForSurvived) {
  1218       _tenuring_threshold = 0;
  1222   void note_start_adding_survivor_regions() {
  1223     _survivor_surv_rate_group->start_adding_regions();
  1226   void note_stop_adding_survivor_regions() {
  1227     _survivor_surv_rate_group->stop_adding_regions();
  1230   void record_survivor_regions(size_t      regions,
  1231                                HeapRegion* head,
  1232                                HeapRegion* tail) {
  1233     _recorded_survivor_regions = regions;
  1234     _recorded_survivor_head    = head;
  1235     _recorded_survivor_tail    = tail;
  1238   size_t recorded_survivor_regions() {
  1239     return _recorded_survivor_regions;
  1242   void record_thread_age_table(ageTable* age_table)
  1244     _survivors_age_table.merge_par(age_table);
  1247   void update_max_gc_locker_expansion();
  1249   // Calculates survivor space parameters.
  1250   void update_survivors_policy();
  1252 };
  1254 // This encapsulates a particular strategy for a g1 Collector.
  1255 //
  1256 //      Start a concurrent mark when our heap size is n bytes
  1257 //            greater then our heap size was at the last concurrent
  1258 //            mark.  Where n is a function of the CMSTriggerRatio
  1259 //            and the MinHeapFreeRatio.
  1260 //
  1261 //      Start a g1 collection pause when we have allocated the
  1262 //            average number of bytes currently being freed in
  1263 //            a collection, but only if it is at least one region
  1264 //            full
  1265 //
  1266 //      Resize Heap based on desired
  1267 //      allocation space, where desired allocation space is
  1268 //      a function of survival rate and desired future to size.
  1269 //
  1270 //      Choose collection set by first picking all older regions
  1271 //      which have a survival rate which beats our projected young
  1272 //      survival rate.  Then fill out the number of needed regions
  1273 //      with young regions.
  1275 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1276   CollectionSetChooser* _collectionSetChooser;
  1278   virtual void choose_collection_set(double target_pause_time_ms);
  1279   virtual void record_collection_pause_start(double start_time_sec,
  1280                                              size_t start_used);
  1281   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1282                                                   size_t max_live_bytes);
  1283   virtual void record_full_collection_end();
  1285 public:
  1286   G1CollectorPolicy_BestRegionsFirst() {
  1287     _collectionSetChooser = new CollectionSetChooser();
  1289   void record_collection_pause_end();
  1290   // This is not needed any more, after the CSet choosing code was
  1291   // changed to use the pause prediction work. But let's leave the
  1292   // hook in just in case.
  1293   void note_change_in_marked_bytes(HeapRegion* r) { }
  1294 #ifndef PRODUCT
  1295   bool assertMarkedBytesDataOK();
  1296 #endif
  1297 };
  1299 // This should move to some place more general...
  1301 // If we have "n" measurements, and we've kept track of their "sum" and the
  1302 // "sum_of_squares" of the measurements, this returns the variance of the
  1303 // sequence.
  1304 inline double variance(int n, double sum_of_squares, double sum) {
  1305   double n_d = (double)n;
  1306   double avg = sum/n_d;
  1307   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1310 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial