src/share/vm/gc_implementation/g1/concurrentMark.hpp

Fri, 01 Oct 2010 18:23:16 -0700

author
johnc
date
Fri, 01 Oct 2010 18:23:16 -0700
changeset 2195
4e0094bc41fa
parent 2190
4805b9f4779e
child 2314
f95d63e2154a
permissions
-rw-r--r--

6983311: G1: LoopTest hangs when run with -XX:+ExplicitInvokesConcurrent
Summary: Clear the concurrent marking "in progress" flag while the FullGCCount_lock is held. This avoids a race that can cause back to back System.gc() calls, when ExplicitGCInvokesConcurrent is enabled, to fail to initiate a marking cycle causing the requesting thread to hang.
Reviewed-by: tonyp, ysr

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 class G1CollectedHeap;
    26 class CMTask;
    27 typedef GenericTaskQueue<oop>            CMTaskQueue;
    28 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
    30 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    31 // class, with one bit per (1<<_shifter) HeapWords.
    33 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    34  protected:
    35   HeapWord* _bmStartWord;      // base address of range covered by map
    36   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    37   const int _shifter;          // map to char or bit
    38   VirtualSpace _virtual_space; // underlying the bit map
    39   BitMap    _bm;               // the bit map itself
    41  public:
    42   // constructor
    43   CMBitMapRO(ReservedSpace rs, int shifter);
    45   enum { do_yield = true };
    47   // inquiries
    48   HeapWord* startWord()   const { return _bmStartWord; }
    49   size_t    sizeInWords() const { return _bmWordSize;  }
    50   // the following is one past the last word in space
    51   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    53   // read marks
    55   bool isMarked(HeapWord* addr) const {
    56     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    57            "outside underlying space?");
    58     return _bm.at(heapWordToOffset(addr));
    59   }
    61   // iteration
    62   bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
    63   bool iterate(BitMapClosure* cl, MemRegion mr);
    65   // Return the address corresponding to the next marked bit at or after
    66   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    67   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    68   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    69                                      HeapWord* limit = NULL) const;
    70   // Return the address corresponding to the next unmarked bit at or after
    71   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    72   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    73   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    74                                        HeapWord* limit = NULL) const;
    76   // conversion utilities
    77   // XXX Fix these so that offsets are size_t's...
    78   HeapWord* offsetToHeapWord(size_t offset) const {
    79     return _bmStartWord + (offset << _shifter);
    80   }
    81   size_t heapWordToOffset(HeapWord* addr) const {
    82     return pointer_delta(addr, _bmStartWord) >> _shifter;
    83   }
    84   int heapWordDiffToOffsetDiff(size_t diff) const;
    85   HeapWord* nextWord(HeapWord* addr) {
    86     return offsetToHeapWord(heapWordToOffset(addr) + 1);
    87   }
    89   void mostly_disjoint_range_union(BitMap*   from_bitmap,
    90                                    size_t    from_start_index,
    91                                    HeapWord* to_start_word,
    92                                    size_t    word_num);
    94   // debugging
    95   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
    96 };
    98 class CMBitMap : public CMBitMapRO {
   100  public:
   101   // constructor
   102   CMBitMap(ReservedSpace rs, int shifter) :
   103     CMBitMapRO(rs, shifter) {}
   105   // write marks
   106   void mark(HeapWord* addr) {
   107     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   108            "outside underlying space?");
   109     _bm.at_put(heapWordToOffset(addr), true);
   110   }
   111   void clear(HeapWord* addr) {
   112     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   113            "outside underlying space?");
   114     _bm.at_put(heapWordToOffset(addr), false);
   115   }
   116   bool parMark(HeapWord* addr) {
   117     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   118            "outside underlying space?");
   119     return _bm.par_at_put(heapWordToOffset(addr), true);
   120   }
   121   bool parClear(HeapWord* addr) {
   122     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   123            "outside underlying space?");
   124     return _bm.par_at_put(heapWordToOffset(addr), false);
   125   }
   126   void markRange(MemRegion mr);
   127   void clearAll();
   128   void clearRange(MemRegion mr);
   130   // Starting at the bit corresponding to "addr" (inclusive), find the next
   131   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   132   // the end of this run (stopping at "end_addr").  Return the MemRegion
   133   // covering from the start of the region corresponding to the first bit
   134   // of the run to the end of the region corresponding to the last bit of
   135   // the run.  If there is no "1" bit at or after "addr", return an empty
   136   // MemRegion.
   137   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   138 };
   140 // Represents a marking stack used by the CM collector.
   141 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   142 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   143   ConcurrentMark* _cm;
   144   oop*   _base;      // bottom of stack
   145   jint   _index;     // one more than last occupied index
   146   jint   _capacity;  // max #elements
   147   jint   _oops_do_bound;  // Number of elements to include in next iteration.
   148   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
   150   bool   _overflow;
   151   DEBUG_ONLY(bool _drain_in_progress;)
   152   DEBUG_ONLY(bool _drain_in_progress_yields;)
   154  public:
   155   CMMarkStack(ConcurrentMark* cm);
   156   ~CMMarkStack();
   158   void allocate(size_t size);
   160   oop pop() {
   161     if (!isEmpty()) {
   162       return _base[--_index] ;
   163     }
   164     return NULL;
   165   }
   167   // If overflow happens, don't do the push, and record the overflow.
   168   // *Requires* that "ptr" is already marked.
   169   void push(oop ptr) {
   170     if (isFull()) {
   171       // Record overflow.
   172       _overflow = true;
   173       return;
   174     } else {
   175       _base[_index++] = ptr;
   176       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   177     }
   178   }
   179   // Non-block impl.  Note: concurrency is allowed only with other
   180   // "par_push" operations, not with "pop" or "drain".  We would need
   181   // parallel versions of them if such concurrency was desired.
   182   void par_push(oop ptr);
   184   // Pushes the first "n" elements of "ptr_arr" on the stack.
   185   // Non-block impl.  Note: concurrency is allowed only with other
   186   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   187   void par_adjoin_arr(oop* ptr_arr, int n);
   189   // Pushes the first "n" elements of "ptr_arr" on the stack.
   190   // Locking impl: concurrency is allowed only with
   191   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   192   // locking strategy.
   193   void par_push_arr(oop* ptr_arr, int n);
   195   // If returns false, the array was empty.  Otherwise, removes up to "max"
   196   // elements from the stack, and transfers them to "ptr_arr" in an
   197   // unspecified order.  The actual number transferred is given in "n" ("n
   198   // == 0" is deliberately redundant with the return value.)  Locking impl:
   199   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   200   // operations, which use the same locking strategy.
   201   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   203   // Drain the mark stack, applying the given closure to all fields of
   204   // objects on the stack.  (That is, continue until the stack is empty,
   205   // even if closure applications add entries to the stack.)  The "bm"
   206   // argument, if non-null, may be used to verify that only marked objects
   207   // are on the mark stack.  If "yield_after" is "true", then the
   208   // concurrent marker performing the drain offers to yield after
   209   // processing each object.  If a yield occurs, stops the drain operation
   210   // and returns false.  Otherwise, returns true.
   211   template<class OopClosureClass>
   212   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   214   bool isEmpty()    { return _index == 0; }
   215   bool isFull()     { return _index == _capacity; }
   216   int maxElems()    { return _capacity; }
   218   bool overflow() { return _overflow; }
   219   void clear_overflow() { _overflow = false; }
   221   int  size() { return _index; }
   223   void setEmpty()   { _index = 0; clear_overflow(); }
   225   // Record the current size; a subsequent "oops_do" will iterate only over
   226   // indices valid at the time of this call.
   227   void set_oops_do_bound(jint bound = -1) {
   228     if (bound == -1) {
   229       _oops_do_bound = _index;
   230     } else {
   231       _oops_do_bound = bound;
   232     }
   233   }
   234   jint oops_do_bound() { return _oops_do_bound; }
   235   // iterate over the oops in the mark stack, up to the bound recorded via
   236   // the call above.
   237   void oops_do(OopClosure* f);
   238 };
   240 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
   241   MemRegion* _base;
   242   jint _capacity;
   243   jint _index;
   244   jint _oops_do_bound;
   245   bool _overflow;
   246 public:
   247   CMRegionStack();
   248   ~CMRegionStack();
   249   void allocate(size_t size);
   251   // This is lock-free; assumes that it will only be called in parallel
   252   // with other "push" operations (no pops).
   253   void push_lock_free(MemRegion mr);
   255   // Lock-free; assumes that it will only be called in parallel
   256   // with other "pop" operations (no pushes).
   257   MemRegion pop_lock_free();
   259 #if 0
   260   // The routines that manipulate the region stack with a lock are
   261   // not currently used. They should be retained, however, as a
   262   // diagnostic aid.
   264   // These two are the implementations that use a lock. They can be
   265   // called concurrently with each other but they should not be called
   266   // concurrently with the lock-free versions (push() / pop()).
   267   void push_with_lock(MemRegion mr);
   268   MemRegion pop_with_lock();
   269 #endif
   271   bool isEmpty()    { return _index == 0; }
   272   bool isFull()     { return _index == _capacity; }
   274   bool overflow() { return _overflow; }
   275   void clear_overflow() { _overflow = false; }
   277   int  size() { return _index; }
   279   // It iterates over the entries in the region stack and it
   280   // invalidates (i.e. assigns MemRegion()) the ones that point to
   281   // regions in the collection set.
   282   bool invalidate_entries_into_cset();
   284   // This gives an upper bound up to which the iteration in
   285   // invalidate_entries_into_cset() will reach. This prevents
   286   // newly-added entries to be unnecessarily scanned.
   287   void set_oops_do_bound() {
   288     _oops_do_bound = _index;
   289   }
   291   void setEmpty()   { _index = 0; clear_overflow(); }
   292 };
   294 // this will enable a variety of different statistics per GC task
   295 #define _MARKING_STATS_       0
   296 // this will enable the higher verbose levels
   297 #define _MARKING_VERBOSE_     0
   299 #if _MARKING_STATS_
   300 #define statsOnly(statement)  \
   301 do {                          \
   302   statement ;                 \
   303 } while (0)
   304 #else // _MARKING_STATS_
   305 #define statsOnly(statement)  \
   306 do {                          \
   307 } while (0)
   308 #endif // _MARKING_STATS_
   310 typedef enum {
   311   no_verbose  = 0,   // verbose turned off
   312   stats_verbose,     // only prints stats at the end of marking
   313   low_verbose,       // low verbose, mostly per region and per major event
   314   medium_verbose,    // a bit more detailed than low
   315   high_verbose       // per object verbose
   316 } CMVerboseLevel;
   319 class ConcurrentMarkThread;
   321 class ConcurrentMark: public CHeapObj {
   322   friend class ConcurrentMarkThread;
   323   friend class CMTask;
   324   friend class CMBitMapClosure;
   325   friend class CSMarkOopClosure;
   326   friend class CMGlobalObjectClosure;
   327   friend class CMRemarkTask;
   328   friend class CMConcurrentMarkingTask;
   329   friend class G1ParNoteEndTask;
   330   friend class CalcLiveObjectsClosure;
   332 protected:
   333   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   334   G1CollectedHeap*      _g1h;        // the heap.
   335   size_t                _parallel_marking_threads; // the number of marking
   336                                                    // threads we'll use
   337   double                _sleep_factor; // how much we have to sleep, with
   338                                        // respect to the work we just did, to
   339                                        // meet the marking overhead goal
   340   double                _marking_task_overhead; // marking target overhead for
   341                                                 // a single task
   343   // same as the two above, but for the cleanup task
   344   double                _cleanup_sleep_factor;
   345   double                _cleanup_task_overhead;
   347   // Stuff related to age cohort processing.
   348   struct ParCleanupThreadState {
   349     char _pre[64];
   350     UncleanRegionList list;
   351     char _post[64];
   352   };
   353   ParCleanupThreadState** _par_cleanup_thread_state;
   355   // CMS marking support structures
   356   CMBitMap                _markBitMap1;
   357   CMBitMap                _markBitMap2;
   358   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   359   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   360   bool                    _at_least_one_mark_complete;
   362   BitMap                  _region_bm;
   363   BitMap                  _card_bm;
   365   // Heap bounds
   366   HeapWord*               _heap_start;
   367   HeapWord*               _heap_end;
   369   // For gray objects
   370   CMMarkStack             _markStack; // Grey objects behind global finger.
   371   CMRegionStack           _regionStack; // Grey regions behind global finger.
   372   HeapWord* volatile      _finger;  // the global finger, region aligned,
   373                                     // always points to the end of the
   374                                     // last claimed region
   376   // marking tasks
   377   size_t                  _max_task_num; // maximum task number
   378   size_t                  _active_tasks; // task num currently active
   379   CMTask**                _tasks;        // task queue array (max_task_num len)
   380   CMTaskQueueSet*         _task_queues;  // task queue set
   381   ParallelTaskTerminator  _terminator;   // for termination
   383   // Two sync barriers that are used to synchronise tasks when an
   384   // overflow occurs. The algorithm is the following. All tasks enter
   385   // the first one to ensure that they have all stopped manipulating
   386   // the global data structures. After they exit it, they re-initialise
   387   // their data structures and task 0 re-initialises the global data
   388   // structures. Then, they enter the second sync barrier. This
   389   // ensure, that no task starts doing work before all data
   390   // structures (local and global) have been re-initialised. When they
   391   // exit it, they are free to start working again.
   392   WorkGangBarrierSync     _first_overflow_barrier_sync;
   393   WorkGangBarrierSync     _second_overflow_barrier_sync;
   396   // this is set by any task, when an overflow on the global data
   397   // structures is detected.
   398   volatile bool           _has_overflown;
   399   // true: marking is concurrent, false: we're in remark
   400   volatile bool           _concurrent;
   401   // set at the end of a Full GC so that marking aborts
   402   volatile bool           _has_aborted;
   404   // used when remark aborts due to an overflow to indicate that
   405   // another concurrent marking phase should start
   406   volatile bool           _restart_for_overflow;
   408   // This is true from the very start of concurrent marking until the
   409   // point when all the tasks complete their work. It is really used
   410   // to determine the points between the end of concurrent marking and
   411   // time of remark.
   412   volatile bool           _concurrent_marking_in_progress;
   414   // verbose level
   415   CMVerboseLevel          _verbose_level;
   417   // These two fields are used to implement the optimisation that
   418   // avoids pushing objects on the global/region stack if there are
   419   // no collection set regions above the lowest finger.
   421   // This is the lowest finger (among the global and local fingers),
   422   // which is calculated before a new collection set is chosen.
   423   HeapWord* _min_finger;
   424   // If this flag is true, objects/regions that are marked below the
   425   // finger should be pushed on the stack(s). If this is flag is
   426   // false, it is safe not to push them on the stack(s).
   427   bool      _should_gray_objects;
   429   // All of these times are in ms.
   430   NumberSeq _init_times;
   431   NumberSeq _remark_times;
   432   NumberSeq   _remark_mark_times;
   433   NumberSeq   _remark_weak_ref_times;
   434   NumberSeq _cleanup_times;
   435   double    _total_counting_time;
   436   double    _total_rs_scrub_time;
   438   double*   _accum_task_vtime;   // accumulated task vtime
   440   WorkGang* _parallel_workers;
   442   void weakRefsWork(bool clear_all_soft_refs);
   444   void swapMarkBitMaps();
   446   // It resets the global marking data structures, as well as the
   447   // task local ones; should be called during initial mark.
   448   void reset();
   449   // It resets all the marking data structures.
   450   void clear_marking_state();
   452   // It should be called to indicate which phase we're in (concurrent
   453   // mark or remark) and how many threads are currently active.
   454   void set_phase(size_t active_tasks, bool concurrent);
   455   // We do this after we're done with marking so that the marking data
   456   // structures are initialised to a sensible and predictable state.
   457   void set_non_marking_state();
   459   // prints all gathered CM-related statistics
   460   void print_stats();
   462   // accessor methods
   463   size_t parallel_marking_threads() { return _parallel_marking_threads; }
   464   double sleep_factor()             { return _sleep_factor; }
   465   double marking_task_overhead()    { return _marking_task_overhead;}
   466   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
   467   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
   469   HeapWord*               finger()        { return _finger;   }
   470   bool                    concurrent()    { return _concurrent; }
   471   size_t                  active_tasks()  { return _active_tasks; }
   472   ParallelTaskTerminator* terminator()    { return &_terminator; }
   474   // It claims the next available region to be scanned by a marking
   475   // task. It might return NULL if the next region is empty or we have
   476   // run out of regions. In the latter case, out_of_regions()
   477   // determines whether we've really run out of regions or the task
   478   // should call claim_region() again.  This might seem a bit
   479   // awkward. Originally, the code was written so that claim_region()
   480   // either successfully returned with a non-empty region or there
   481   // were no more regions to be claimed. The problem with this was
   482   // that, in certain circumstances, it iterated over large chunks of
   483   // the heap finding only empty regions and, while it was working, it
   484   // was preventing the calling task to call its regular clock
   485   // method. So, this way, each task will spend very little time in
   486   // claim_region() and is allowed to call the regular clock method
   487   // frequently.
   488   HeapRegion* claim_region(int task);
   490   // It determines whether we've run out of regions to scan.
   491   bool        out_of_regions() { return _finger == _heap_end; }
   493   // Returns the task with the given id
   494   CMTask* task(int id) {
   495     assert(0 <= id && id < (int) _active_tasks,
   496            "task id not within active bounds");
   497     return _tasks[id];
   498   }
   500   // Returns the task queue with the given id
   501   CMTaskQueue* task_queue(int id) {
   502     assert(0 <= id && id < (int) _active_tasks,
   503            "task queue id not within active bounds");
   504     return (CMTaskQueue*) _task_queues->queue(id);
   505   }
   507   // Returns the task queue set
   508   CMTaskQueueSet* task_queues()  { return _task_queues; }
   510   // Access / manipulation of the overflow flag which is set to
   511   // indicate that the global stack or region stack has overflown
   512   bool has_overflown()           { return _has_overflown; }
   513   void set_has_overflown()       { _has_overflown = true; }
   514   void clear_has_overflown()     { _has_overflown = false; }
   516   bool has_aborted()             { return _has_aborted; }
   517   bool restart_for_overflow()    { return _restart_for_overflow; }
   519   // Methods to enter the two overflow sync barriers
   520   void enter_first_sync_barrier(int task_num);
   521   void enter_second_sync_barrier(int task_num);
   523 public:
   524   // Manipulation of the global mark stack.
   525   // Notice that the first mark_stack_push is CAS-based, whereas the
   526   // two below are Mutex-based. This is OK since the first one is only
   527   // called during evacuation pauses and doesn't compete with the
   528   // other two (which are called by the marking tasks during
   529   // concurrent marking or remark).
   530   bool mark_stack_push(oop p) {
   531     _markStack.par_push(p);
   532     if (_markStack.overflow()) {
   533       set_has_overflown();
   534       return false;
   535     }
   536     return true;
   537   }
   538   bool mark_stack_push(oop* arr, int n) {
   539     _markStack.par_push_arr(arr, n);
   540     if (_markStack.overflow()) {
   541       set_has_overflown();
   542       return false;
   543     }
   544     return true;
   545   }
   546   void mark_stack_pop(oop* arr, int max, int* n) {
   547     _markStack.par_pop_arr(arr, max, n);
   548   }
   549   size_t mark_stack_size()              { return _markStack.size(); }
   550   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   551   bool mark_stack_overflow()            { return _markStack.overflow(); }
   552   bool mark_stack_empty()               { return _markStack.isEmpty(); }
   554   // (Lock-free) Manipulation of the region stack
   555   bool region_stack_push_lock_free(MemRegion mr) {
   556     // Currently we only call the lock-free version during evacuation
   557     // pauses.
   558     assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
   560     _regionStack.push_lock_free(mr);
   561     if (_regionStack.overflow()) {
   562       set_has_overflown();
   563       return false;
   564     }
   565     return true;
   566   }
   568   // Lock-free version of region-stack pop. Should only be
   569   // called in tandem with other lock-free pops.
   570   MemRegion region_stack_pop_lock_free() {
   571     return _regionStack.pop_lock_free();
   572   }
   574 #if 0
   575   // The routines that manipulate the region stack with a lock are
   576   // not currently used. They should be retained, however, as a
   577   // diagnostic aid.
   579   bool region_stack_push_with_lock(MemRegion mr) {
   580     // Currently we only call the lock-based version during either
   581     // concurrent marking or remark.
   582     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   583            "if we are at a safepoint it should be the remark safepoint");
   585     _regionStack.push_with_lock(mr);
   586     if (_regionStack.overflow()) {
   587       set_has_overflown();
   588       return false;
   589     }
   590     return true;
   591   }
   593   MemRegion region_stack_pop_with_lock() {
   594     // Currently we only call the lock-based version during either
   595     // concurrent marking or remark.
   596     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   597            "if we are at a safepoint it should be the remark safepoint");
   599     return _regionStack.pop_with_lock();
   600   }
   601 #endif
   603   int region_stack_size()               { return _regionStack.size(); }
   604   bool region_stack_overflow()          { return _regionStack.overflow(); }
   605   bool region_stack_empty()             { return _regionStack.isEmpty(); }
   607   // Iterate over any regions that were aborted while draining the
   608   // region stack (any such regions are saved in the corresponding
   609   // CMTask) and invalidate (i.e. assign to the empty MemRegion())
   610   // any regions that point into the collection set.
   611   bool invalidate_aborted_regions_in_cset();
   613   // Returns true if there are any aborted memory regions.
   614   bool has_aborted_regions();
   616   bool concurrent_marking_in_progress() {
   617     return _concurrent_marking_in_progress;
   618   }
   619   void set_concurrent_marking_in_progress() {
   620     _concurrent_marking_in_progress = true;
   621   }
   622   void clear_concurrent_marking_in_progress() {
   623     _concurrent_marking_in_progress = false;
   624   }
   626   void update_accum_task_vtime(int i, double vtime) {
   627     _accum_task_vtime[i] += vtime;
   628   }
   630   double all_task_accum_vtime() {
   631     double ret = 0.0;
   632     for (int i = 0; i < (int)_max_task_num; ++i)
   633       ret += _accum_task_vtime[i];
   634     return ret;
   635   }
   637   // Attempts to steal an object from the task queues of other tasks
   638   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
   639     return _task_queues->steal(task_num, hash_seed, obj);
   640   }
   642   // It grays an object by first marking it. Then, if it's behind the
   643   // global finger, it also pushes it on the global stack.
   644   void deal_with_reference(oop obj);
   646   ConcurrentMark(ReservedSpace rs, int max_regions);
   647   ~ConcurrentMark();
   648   ConcurrentMarkThread* cmThread() { return _cmThread; }
   650   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   651   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   653   // The following three are interaction between CM and
   654   // G1CollectedHeap
   656   // This notifies CM that a root during initial-mark needs to be
   657   // grayed and it's MT-safe. Currently, we just mark it. But, in the
   658   // future, we can experiment with pushing it on the stack and we can
   659   // do this without changing G1CollectedHeap.
   660   void grayRoot(oop p);
   661   // It's used during evacuation pauses to gray a region, if
   662   // necessary, and it's MT-safe. It assumes that the caller has
   663   // marked any objects on that region. If _should_gray_objects is
   664   // true and we're still doing concurrent marking, the region is
   665   // pushed on the region stack, if it is located below the global
   666   // finger, otherwise we do nothing.
   667   void grayRegionIfNecessary(MemRegion mr);
   668   // It's used during evacuation pauses to mark and, if necessary,
   669   // gray a single object and it's MT-safe. It assumes the caller did
   670   // not mark the object. If _should_gray_objects is true and we're
   671   // still doing concurrent marking, the objects is pushed on the
   672   // global stack, if it is located below the global finger, otherwise
   673   // we do nothing.
   674   void markAndGrayObjectIfNecessary(oop p);
   676   // It iterates over the heap and for each object it comes across it
   677   // will dump the contents of its reference fields, as well as
   678   // liveness information for the object and its referents. The dump
   679   // will be written to a file with the following name:
   680   // G1PrintReachableBaseFile + "." + str. use_prev_marking decides
   681   // whether the prev (use_prev_marking == true) or next
   682   // (use_prev_marking == false) marking information will be used to
   683   // determine the liveness of each object / referent. If all is true,
   684   // all objects in the heap will be dumped, otherwise only the live
   685   // ones. In the dump the following symbols / abbreviations are used:
   686   //   M : an explicitly live object (its bitmap bit is set)
   687   //   > : an implicitly live object (over tams)
   688   //   O : an object outside the G1 heap (typically: in the perm gen)
   689   //   NOT : a reference field whose referent is not live
   690   //   AND MARKED : indicates that an object is both explicitly and
   691   //   implicitly live (it should be one or the other, not both)
   692   void print_reachable(const char* str,
   693                        bool use_prev_marking, bool all) PRODUCT_RETURN;
   695   // Clear the next marking bitmap (will be called concurrently).
   696   void clearNextBitmap();
   698   // main CMS steps and related support
   699   void checkpointRootsInitial();
   701   // These two do the work that needs to be done before and after the
   702   // initial root checkpoint. Since this checkpoint can be done at two
   703   // different points (i.e. an explicit pause or piggy-backed on a
   704   // young collection), then it's nice to be able to easily share the
   705   // pre/post code. It might be the case that we can put everything in
   706   // the post method. TP
   707   void checkpointRootsInitialPre();
   708   void checkpointRootsInitialPost();
   710   // Do concurrent phase of marking, to a tentative transitive closure.
   711   void markFromRoots();
   713   // Process all unprocessed SATB buffers. It is called at the
   714   // beginning of an evacuation pause.
   715   void drainAllSATBBuffers();
   717   void checkpointRootsFinal(bool clear_all_soft_refs);
   718   void checkpointRootsFinalWork();
   719   void calcDesiredRegions();
   720   void cleanup();
   721   void completeCleanup();
   723   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   724   // this carefully!
   725   void markPrev(oop p);
   726   void clear(oop p);
   727   // Clears marks for all objects in the given range, for both prev and
   728   // next bitmaps.  NB: the previous bitmap is usually read-only, so use
   729   // this carefully!
   730   void clearRangeBothMaps(MemRegion mr);
   732   // Record the current top of the mark and region stacks; a
   733   // subsequent oops_do() on the mark stack and
   734   // invalidate_entries_into_cset() on the region stack will iterate
   735   // only over indices valid at the time of this call.
   736   void set_oops_do_bound() {
   737     _markStack.set_oops_do_bound();
   738     _regionStack.set_oops_do_bound();
   739   }
   740   // Iterate over the oops in the mark stack and all local queues. It
   741   // also calls invalidate_entries_into_cset() on the region stack.
   742   void oops_do(OopClosure* f);
   743   // It is called at the end of an evacuation pause during marking so
   744   // that CM is notified of where the new end of the heap is. It
   745   // doesn't do anything if concurrent_marking_in_progress() is false,
   746   // unless the force parameter is true.
   747   void update_g1_committed(bool force = false);
   749   void complete_marking_in_collection_set();
   751   // It indicates that a new collection set is being chosen.
   752   void newCSet();
   753   // It registers a collection set heap region with CM. This is used
   754   // to determine whether any heap regions are located above the finger.
   755   void registerCSetRegion(HeapRegion* hr);
   757   // Registers the maximum region-end associated with a set of
   758   // regions with CM. Again this is used to determine whether any
   759   // heap regions are located above the finger.
   760   void register_collection_set_finger(HeapWord* max_finger) {
   761     // max_finger is the highest heap region end of the regions currently
   762     // contained in the collection set. If this value is larger than
   763     // _min_finger then we need to gray objects.
   764     // This routine is like registerCSetRegion but for an entire
   765     // collection of regions.
   766     if (max_finger > _min_finger)
   767       _should_gray_objects = true;
   768   }
   770   // Returns "true" if at least one mark has been completed.
   771   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
   773   bool isMarked(oop p) const {
   774     assert(p != NULL && p->is_oop(), "expected an oop");
   775     HeapWord* addr = (HeapWord*)p;
   776     assert(addr >= _nextMarkBitMap->startWord() ||
   777            addr < _nextMarkBitMap->endWord(), "in a region");
   779     return _nextMarkBitMap->isMarked(addr);
   780   }
   782   inline bool not_yet_marked(oop p) const;
   784   // XXX Debug code
   785   bool containing_card_is_marked(void* p);
   786   bool containing_cards_are_marked(void* start, void* last);
   788   bool isPrevMarked(oop p) const {
   789     assert(p != NULL && p->is_oop(), "expected an oop");
   790     HeapWord* addr = (HeapWord*)p;
   791     assert(addr >= _prevMarkBitMap->startWord() ||
   792            addr < _prevMarkBitMap->endWord(), "in a region");
   794     return _prevMarkBitMap->isMarked(addr);
   795   }
   797   inline bool do_yield_check(int worker_i = 0);
   798   inline bool should_yield();
   800   // Called to abort the marking cycle after a Full GC takes palce.
   801   void abort();
   803   // This prints the global/local fingers. It is used for debugging.
   804   NOT_PRODUCT(void print_finger();)
   806   void print_summary_info();
   808   void print_worker_threads_on(outputStream* st) const;
   810   // The following indicate whether a given verbose level has been
   811   // set. Notice that anything above stats is conditional to
   812   // _MARKING_VERBOSE_ having been set to 1
   813   bool verbose_stats()
   814     { return _verbose_level >= stats_verbose; }
   815   bool verbose_low()
   816     { return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
   817   bool verbose_medium()
   818     { return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
   819   bool verbose_high()
   820     { return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
   821 };
   823 // A class representing a marking task.
   824 class CMTask : public TerminatorTerminator {
   825 private:
   826   enum PrivateConstants {
   827     // the regular clock call is called once the scanned words reaches
   828     // this limit
   829     words_scanned_period          = 12*1024,
   830     // the regular clock call is called once the number of visited
   831     // references reaches this limit
   832     refs_reached_period           = 384,
   833     // initial value for the hash seed, used in the work stealing code
   834     init_hash_seed                = 17,
   835     // how many entries will be transferred between global stack and
   836     // local queues
   837     global_stack_transfer_size    = 16
   838   };
   840   int                         _task_id;
   841   G1CollectedHeap*            _g1h;
   842   ConcurrentMark*             _cm;
   843   CMBitMap*                   _nextMarkBitMap;
   844   // the task queue of this task
   845   CMTaskQueue*                _task_queue;
   846 private:
   847   // the task queue set---needed for stealing
   848   CMTaskQueueSet*             _task_queues;
   849   // indicates whether the task has been claimed---this is only  for
   850   // debugging purposes
   851   bool                        _claimed;
   853   // number of calls to this task
   854   int                         _calls;
   856   // when the virtual timer reaches this time, the marking step should
   857   // exit
   858   double                      _time_target_ms;
   859   // the start time of the current marking step
   860   double                      _start_time_ms;
   862   // the oop closure used for iterations over oops
   863   OopClosure*                 _oop_closure;
   865   // the region this task is scanning, NULL if we're not scanning any
   866   HeapRegion*                 _curr_region;
   867   // the local finger of this task, NULL if we're not scanning a region
   868   HeapWord*                   _finger;
   869   // limit of the region this task is scanning, NULL if we're not scanning one
   870   HeapWord*                   _region_limit;
   872   // This is used only when we scan regions popped from the region
   873   // stack. It records what the last object on such a region we
   874   // scanned was. It is used to ensure that, if we abort region
   875   // iteration, we do not rescan the first part of the region. This
   876   // should be NULL when we're not scanning a region from the region
   877   // stack.
   878   HeapWord*                   _region_finger;
   880   // If we abort while scanning a region we record the remaining
   881   // unscanned portion and check this field when marking restarts.
   882   // This avoids having to push on the region stack while other
   883   // marking threads may still be popping regions.
   884   // If we were to push the unscanned portion directly to the
   885   // region stack then we would need to using locking versions
   886   // of the push and pop operations.
   887   MemRegion                   _aborted_region;
   889   // the number of words this task has scanned
   890   size_t                      _words_scanned;
   891   // When _words_scanned reaches this limit, the regular clock is
   892   // called. Notice that this might be decreased under certain
   893   // circumstances (i.e. when we believe that we did an expensive
   894   // operation).
   895   size_t                      _words_scanned_limit;
   896   // the initial value of _words_scanned_limit (i.e. what it was
   897   // before it was decreased).
   898   size_t                      _real_words_scanned_limit;
   900   // the number of references this task has visited
   901   size_t                      _refs_reached;
   902   // When _refs_reached reaches this limit, the regular clock is
   903   // called. Notice this this might be decreased under certain
   904   // circumstances (i.e. when we believe that we did an expensive
   905   // operation).
   906   size_t                      _refs_reached_limit;
   907   // the initial value of _refs_reached_limit (i.e. what it was before
   908   // it was decreased).
   909   size_t                      _real_refs_reached_limit;
   911   // used by the work stealing stuff
   912   int                         _hash_seed;
   913   // if this is true, then the task has aborted for some reason
   914   bool                        _has_aborted;
   915   // set when the task aborts because it has met its time quota
   916   bool                        _has_aborted_timed_out;
   917   // true when we're draining SATB buffers; this avoids the task
   918   // aborting due to SATB buffers being available (as we're already
   919   // dealing with them)
   920   bool                        _draining_satb_buffers;
   922   // number sequence of past step times
   923   NumberSeq                   _step_times_ms;
   924   // elapsed time of this task
   925   double                      _elapsed_time_ms;
   926   // termination time of this task
   927   double                      _termination_time_ms;
   928   // when this task got into the termination protocol
   929   double                      _termination_start_time_ms;
   931   // true when the task is during a concurrent phase, false when it is
   932   // in the remark phase (so, in the latter case, we do not have to
   933   // check all the things that we have to check during the concurrent
   934   // phase, i.e. SATB buffer availability...)
   935   bool                        _concurrent;
   937   TruncatedSeq                _marking_step_diffs_ms;
   939   // LOTS of statistics related with this task
   940 #if _MARKING_STATS_
   941   NumberSeq                   _all_clock_intervals_ms;
   942   double                      _interval_start_time_ms;
   944   int                         _aborted;
   945   int                         _aborted_overflow;
   946   int                         _aborted_cm_aborted;
   947   int                         _aborted_yield;
   948   int                         _aborted_timed_out;
   949   int                         _aborted_satb;
   950   int                         _aborted_termination;
   952   int                         _steal_attempts;
   953   int                         _steals;
   955   int                         _clock_due_to_marking;
   956   int                         _clock_due_to_scanning;
   958   int                         _local_pushes;
   959   int                         _local_pops;
   960   int                         _local_max_size;
   961   int                         _objs_scanned;
   963   int                         _global_pushes;
   964   int                         _global_pops;
   965   int                         _global_max_size;
   967   int                         _global_transfers_to;
   968   int                         _global_transfers_from;
   970   int                         _region_stack_pops;
   972   int                         _regions_claimed;
   973   int                         _objs_found_on_bitmap;
   975   int                         _satb_buffers_processed;
   976 #endif // _MARKING_STATS_
   978   // it updates the local fields after this task has claimed
   979   // a new region to scan
   980   void setup_for_region(HeapRegion* hr);
   981   // it brings up-to-date the limit of the region
   982   void update_region_limit();
   983   // it resets the local fields after a task has finished scanning a
   984   // region
   985   void giveup_current_region();
   987   // called when either the words scanned or the refs visited limit
   988   // has been reached
   989   void reached_limit();
   990   // recalculates the words scanned and refs visited limits
   991   void recalculate_limits();
   992   // decreases the words scanned and refs visited limits when we reach
   993   // an expensive operation
   994   void decrease_limits();
   995   // it checks whether the words scanned or refs visited reached their
   996   // respective limit and calls reached_limit() if they have
   997   void check_limits() {
   998     if (_words_scanned >= _words_scanned_limit ||
   999         _refs_reached >= _refs_reached_limit)
  1000       reached_limit();
  1002   // this is supposed to be called regularly during a marking step as
  1003   // it checks a bunch of conditions that might cause the marking step
  1004   // to abort
  1005   void regular_clock_call();
  1006   bool concurrent() { return _concurrent; }
  1008 public:
  1009   // It resets the task; it should be called right at the beginning of
  1010   // a marking phase.
  1011   void reset(CMBitMap* _nextMarkBitMap);
  1012   // it clears all the fields that correspond to a claimed region.
  1013   void clear_region_fields();
  1015   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1017   // The main method of this class which performs a marking step
  1018   // trying not to exceed the given duration. However, it might exit
  1019   // prematurely, according to some conditions (i.e. SATB buffers are
  1020   // available for processing).
  1021   void do_marking_step(double target_ms);
  1023   // These two calls start and stop the timer
  1024   void record_start_time() {
  1025     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1027   void record_end_time() {
  1028     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1031   // returns the task ID
  1032   int task_id() { return _task_id; }
  1034   // From TerminatorTerminator. It determines whether this task should
  1035   // exit the termination protocol after it's entered it.
  1036   virtual bool should_exit_termination();
  1038   HeapWord* finger()            { return _finger; }
  1040   bool has_aborted()            { return _has_aborted; }
  1041   void set_has_aborted()        { _has_aborted = true; }
  1042   void clear_has_aborted()      { _has_aborted = false; }
  1043   bool claimed() { return _claimed; }
  1045   // Support routines for the partially scanned region that may be
  1046   // recorded as a result of aborting while draining the CMRegionStack
  1047   MemRegion aborted_region()    { return _aborted_region; }
  1048   void set_aborted_region(MemRegion mr)
  1049                                 { _aborted_region = mr; }
  1051   // Clears any recorded partially scanned region
  1052   void clear_aborted_region()   { set_aborted_region(MemRegion()); }
  1054   void set_oop_closure(OopClosure* oop_closure) {
  1055     _oop_closure = oop_closure;
  1058   // It grays the object by marking it and, if necessary, pushing it
  1059   // on the local queue
  1060   void deal_with_reference(oop obj);
  1062   // It scans an object and visits its children.
  1063   void scan_object(oop obj) {
  1064     assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  1066     if (_cm->verbose_high())
  1067       gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
  1068                              _task_id, (void*) obj);
  1070     size_t obj_size = obj->size();
  1071     _words_scanned += obj_size;
  1073     obj->oop_iterate(_oop_closure);
  1074     statsOnly( ++_objs_scanned );
  1075     check_limits();
  1078   // It pushes an object on the local queue.
  1079   void push(oop obj);
  1081   // These two move entries to/from the global stack.
  1082   void move_entries_to_global_stack();
  1083   void get_entries_from_global_stack();
  1085   // It pops and scans objects from the local queue. If partially is
  1086   // true, then it stops when the queue size is of a given limit. If
  1087   // partially is false, then it stops when the queue is empty.
  1088   void drain_local_queue(bool partially);
  1089   // It moves entries from the global stack to the local queue and
  1090   // drains the local queue. If partially is true, then it stops when
  1091   // both the global stack and the local queue reach a given size. If
  1092   // partially if false, it tries to empty them totally.
  1093   void drain_global_stack(bool partially);
  1094   // It keeps picking SATB buffers and processing them until no SATB
  1095   // buffers are available.
  1096   void drain_satb_buffers();
  1097   // It keeps popping regions from the region stack and processing
  1098   // them until the region stack is empty.
  1099   void drain_region_stack(BitMapClosure* closure);
  1101   // moves the local finger to a new location
  1102   inline void move_finger_to(HeapWord* new_finger) {
  1103     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1104     _finger = new_finger;
  1107   // moves the region finger to a new location
  1108   inline void move_region_finger_to(HeapWord* new_finger) {
  1109     assert(new_finger < _cm->finger(), "invariant");
  1110     _region_finger = new_finger;
  1113   CMTask(int task_num, ConcurrentMark *cm,
  1114          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1116   // it prints statistics associated with this task
  1117   void print_stats();
  1119 #if _MARKING_STATS_
  1120   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1121 #endif // _MARKING_STATS_
  1122 };

mercurial