src/share/vm/gc_implementation/g1/concurrentMark.hpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2190
4805b9f4779e
child 2379
b03260081e9b
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegion.hpp"
    29 #include "utilities/taskqueue.hpp"
    31 class G1CollectedHeap;
    32 class CMTask;
    33 typedef GenericTaskQueue<oop>            CMTaskQueue;
    34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
    36 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    37 // class, with one bit per (1<<_shifter) HeapWords.
    39 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    40  protected:
    41   HeapWord* _bmStartWord;      // base address of range covered by map
    42   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    43   const int _shifter;          // map to char or bit
    44   VirtualSpace _virtual_space; // underlying the bit map
    45   BitMap    _bm;               // the bit map itself
    47  public:
    48   // constructor
    49   CMBitMapRO(ReservedSpace rs, int shifter);
    51   enum { do_yield = true };
    53   // inquiries
    54   HeapWord* startWord()   const { return _bmStartWord; }
    55   size_t    sizeInWords() const { return _bmWordSize;  }
    56   // the following is one past the last word in space
    57   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    59   // read marks
    61   bool isMarked(HeapWord* addr) const {
    62     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    63            "outside underlying space?");
    64     return _bm.at(heapWordToOffset(addr));
    65   }
    67   // iteration
    68   bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
    69   bool iterate(BitMapClosure* cl, MemRegion mr);
    71   // Return the address corresponding to the next marked bit at or after
    72   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    73   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    74   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    75                                      HeapWord* limit = NULL) const;
    76   // Return the address corresponding to the next unmarked bit at or after
    77   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    78   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    79   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    80                                        HeapWord* limit = NULL) const;
    82   // conversion utilities
    83   // XXX Fix these so that offsets are size_t's...
    84   HeapWord* offsetToHeapWord(size_t offset) const {
    85     return _bmStartWord + (offset << _shifter);
    86   }
    87   size_t heapWordToOffset(HeapWord* addr) const {
    88     return pointer_delta(addr, _bmStartWord) >> _shifter;
    89   }
    90   int heapWordDiffToOffsetDiff(size_t diff) const;
    91   HeapWord* nextWord(HeapWord* addr) {
    92     return offsetToHeapWord(heapWordToOffset(addr) + 1);
    93   }
    95   void mostly_disjoint_range_union(BitMap*   from_bitmap,
    96                                    size_t    from_start_index,
    97                                    HeapWord* to_start_word,
    98                                    size_t    word_num);
   100   // debugging
   101   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   102 };
   104 class CMBitMap : public CMBitMapRO {
   106  public:
   107   // constructor
   108   CMBitMap(ReservedSpace rs, int shifter) :
   109     CMBitMapRO(rs, shifter) {}
   111   // write marks
   112   void mark(HeapWord* addr) {
   113     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   114            "outside underlying space?");
   115     _bm.at_put(heapWordToOffset(addr), true);
   116   }
   117   void clear(HeapWord* addr) {
   118     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   119            "outside underlying space?");
   120     _bm.at_put(heapWordToOffset(addr), false);
   121   }
   122   bool parMark(HeapWord* addr) {
   123     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   124            "outside underlying space?");
   125     return _bm.par_at_put(heapWordToOffset(addr), true);
   126   }
   127   bool parClear(HeapWord* addr) {
   128     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   129            "outside underlying space?");
   130     return _bm.par_at_put(heapWordToOffset(addr), false);
   131   }
   132   void markRange(MemRegion mr);
   133   void clearAll();
   134   void clearRange(MemRegion mr);
   136   // Starting at the bit corresponding to "addr" (inclusive), find the next
   137   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   138   // the end of this run (stopping at "end_addr").  Return the MemRegion
   139   // covering from the start of the region corresponding to the first bit
   140   // of the run to the end of the region corresponding to the last bit of
   141   // the run.  If there is no "1" bit at or after "addr", return an empty
   142   // MemRegion.
   143   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   144 };
   146 // Represents a marking stack used by the CM collector.
   147 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   148 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   149   ConcurrentMark* _cm;
   150   oop*   _base;      // bottom of stack
   151   jint   _index;     // one more than last occupied index
   152   jint   _capacity;  // max #elements
   153   jint   _oops_do_bound;  // Number of elements to include in next iteration.
   154   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
   156   bool   _overflow;
   157   DEBUG_ONLY(bool _drain_in_progress;)
   158   DEBUG_ONLY(bool _drain_in_progress_yields;)
   160  public:
   161   CMMarkStack(ConcurrentMark* cm);
   162   ~CMMarkStack();
   164   void allocate(size_t size);
   166   oop pop() {
   167     if (!isEmpty()) {
   168       return _base[--_index] ;
   169     }
   170     return NULL;
   171   }
   173   // If overflow happens, don't do the push, and record the overflow.
   174   // *Requires* that "ptr" is already marked.
   175   void push(oop ptr) {
   176     if (isFull()) {
   177       // Record overflow.
   178       _overflow = true;
   179       return;
   180     } else {
   181       _base[_index++] = ptr;
   182       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   183     }
   184   }
   185   // Non-block impl.  Note: concurrency is allowed only with other
   186   // "par_push" operations, not with "pop" or "drain".  We would need
   187   // parallel versions of them if such concurrency was desired.
   188   void par_push(oop ptr);
   190   // Pushes the first "n" elements of "ptr_arr" on the stack.
   191   // Non-block impl.  Note: concurrency is allowed only with other
   192   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   193   void par_adjoin_arr(oop* ptr_arr, int n);
   195   // Pushes the first "n" elements of "ptr_arr" on the stack.
   196   // Locking impl: concurrency is allowed only with
   197   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   198   // locking strategy.
   199   void par_push_arr(oop* ptr_arr, int n);
   201   // If returns false, the array was empty.  Otherwise, removes up to "max"
   202   // elements from the stack, and transfers them to "ptr_arr" in an
   203   // unspecified order.  The actual number transferred is given in "n" ("n
   204   // == 0" is deliberately redundant with the return value.)  Locking impl:
   205   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   206   // operations, which use the same locking strategy.
   207   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   209   // Drain the mark stack, applying the given closure to all fields of
   210   // objects on the stack.  (That is, continue until the stack is empty,
   211   // even if closure applications add entries to the stack.)  The "bm"
   212   // argument, if non-null, may be used to verify that only marked objects
   213   // are on the mark stack.  If "yield_after" is "true", then the
   214   // concurrent marker performing the drain offers to yield after
   215   // processing each object.  If a yield occurs, stops the drain operation
   216   // and returns false.  Otherwise, returns true.
   217   template<class OopClosureClass>
   218   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   220   bool isEmpty()    { return _index == 0; }
   221   bool isFull()     { return _index == _capacity; }
   222   int maxElems()    { return _capacity; }
   224   bool overflow() { return _overflow; }
   225   void clear_overflow() { _overflow = false; }
   227   int  size() { return _index; }
   229   void setEmpty()   { _index = 0; clear_overflow(); }
   231   // Record the current size; a subsequent "oops_do" will iterate only over
   232   // indices valid at the time of this call.
   233   void set_oops_do_bound(jint bound = -1) {
   234     if (bound == -1) {
   235       _oops_do_bound = _index;
   236     } else {
   237       _oops_do_bound = bound;
   238     }
   239   }
   240   jint oops_do_bound() { return _oops_do_bound; }
   241   // iterate over the oops in the mark stack, up to the bound recorded via
   242   // the call above.
   243   void oops_do(OopClosure* f);
   244 };
   246 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
   247   MemRegion* _base;
   248   jint _capacity;
   249   jint _index;
   250   jint _oops_do_bound;
   251   bool _overflow;
   252 public:
   253   CMRegionStack();
   254   ~CMRegionStack();
   255   void allocate(size_t size);
   257   // This is lock-free; assumes that it will only be called in parallel
   258   // with other "push" operations (no pops).
   259   void push_lock_free(MemRegion mr);
   261   // Lock-free; assumes that it will only be called in parallel
   262   // with other "pop" operations (no pushes).
   263   MemRegion pop_lock_free();
   265 #if 0
   266   // The routines that manipulate the region stack with a lock are
   267   // not currently used. They should be retained, however, as a
   268   // diagnostic aid.
   270   // These two are the implementations that use a lock. They can be
   271   // called concurrently with each other but they should not be called
   272   // concurrently with the lock-free versions (push() / pop()).
   273   void push_with_lock(MemRegion mr);
   274   MemRegion pop_with_lock();
   275 #endif
   277   bool isEmpty()    { return _index == 0; }
   278   bool isFull()     { return _index == _capacity; }
   280   bool overflow() { return _overflow; }
   281   void clear_overflow() { _overflow = false; }
   283   int  size() { return _index; }
   285   // It iterates over the entries in the region stack and it
   286   // invalidates (i.e. assigns MemRegion()) the ones that point to
   287   // regions in the collection set.
   288   bool invalidate_entries_into_cset();
   290   // This gives an upper bound up to which the iteration in
   291   // invalidate_entries_into_cset() will reach. This prevents
   292   // newly-added entries to be unnecessarily scanned.
   293   void set_oops_do_bound() {
   294     _oops_do_bound = _index;
   295   }
   297   void setEmpty()   { _index = 0; clear_overflow(); }
   298 };
   300 // this will enable a variety of different statistics per GC task
   301 #define _MARKING_STATS_       0
   302 // this will enable the higher verbose levels
   303 #define _MARKING_VERBOSE_     0
   305 #if _MARKING_STATS_
   306 #define statsOnly(statement)  \
   307 do {                          \
   308   statement ;                 \
   309 } while (0)
   310 #else // _MARKING_STATS_
   311 #define statsOnly(statement)  \
   312 do {                          \
   313 } while (0)
   314 #endif // _MARKING_STATS_
   316 typedef enum {
   317   no_verbose  = 0,   // verbose turned off
   318   stats_verbose,     // only prints stats at the end of marking
   319   low_verbose,       // low verbose, mostly per region and per major event
   320   medium_verbose,    // a bit more detailed than low
   321   high_verbose       // per object verbose
   322 } CMVerboseLevel;
   325 class ConcurrentMarkThread;
   327 class ConcurrentMark: public CHeapObj {
   328   friend class ConcurrentMarkThread;
   329   friend class CMTask;
   330   friend class CMBitMapClosure;
   331   friend class CSMarkOopClosure;
   332   friend class CMGlobalObjectClosure;
   333   friend class CMRemarkTask;
   334   friend class CMConcurrentMarkingTask;
   335   friend class G1ParNoteEndTask;
   336   friend class CalcLiveObjectsClosure;
   338 protected:
   339   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   340   G1CollectedHeap*      _g1h;        // the heap.
   341   size_t                _parallel_marking_threads; // the number of marking
   342                                                    // threads we'll use
   343   double                _sleep_factor; // how much we have to sleep, with
   344                                        // respect to the work we just did, to
   345                                        // meet the marking overhead goal
   346   double                _marking_task_overhead; // marking target overhead for
   347                                                 // a single task
   349   // same as the two above, but for the cleanup task
   350   double                _cleanup_sleep_factor;
   351   double                _cleanup_task_overhead;
   353   // Stuff related to age cohort processing.
   354   struct ParCleanupThreadState {
   355     char _pre[64];
   356     UncleanRegionList list;
   357     char _post[64];
   358   };
   359   ParCleanupThreadState** _par_cleanup_thread_state;
   361   // CMS marking support structures
   362   CMBitMap                _markBitMap1;
   363   CMBitMap                _markBitMap2;
   364   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   365   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   366   bool                    _at_least_one_mark_complete;
   368   BitMap                  _region_bm;
   369   BitMap                  _card_bm;
   371   // Heap bounds
   372   HeapWord*               _heap_start;
   373   HeapWord*               _heap_end;
   375   // For gray objects
   376   CMMarkStack             _markStack; // Grey objects behind global finger.
   377   CMRegionStack           _regionStack; // Grey regions behind global finger.
   378   HeapWord* volatile      _finger;  // the global finger, region aligned,
   379                                     // always points to the end of the
   380                                     // last claimed region
   382   // marking tasks
   383   size_t                  _max_task_num; // maximum task number
   384   size_t                  _active_tasks; // task num currently active
   385   CMTask**                _tasks;        // task queue array (max_task_num len)
   386   CMTaskQueueSet*         _task_queues;  // task queue set
   387   ParallelTaskTerminator  _terminator;   // for termination
   389   // Two sync barriers that are used to synchronise tasks when an
   390   // overflow occurs. The algorithm is the following. All tasks enter
   391   // the first one to ensure that they have all stopped manipulating
   392   // the global data structures. After they exit it, they re-initialise
   393   // their data structures and task 0 re-initialises the global data
   394   // structures. Then, they enter the second sync barrier. This
   395   // ensure, that no task starts doing work before all data
   396   // structures (local and global) have been re-initialised. When they
   397   // exit it, they are free to start working again.
   398   WorkGangBarrierSync     _first_overflow_barrier_sync;
   399   WorkGangBarrierSync     _second_overflow_barrier_sync;
   402   // this is set by any task, when an overflow on the global data
   403   // structures is detected.
   404   volatile bool           _has_overflown;
   405   // true: marking is concurrent, false: we're in remark
   406   volatile bool           _concurrent;
   407   // set at the end of a Full GC so that marking aborts
   408   volatile bool           _has_aborted;
   410   // used when remark aborts due to an overflow to indicate that
   411   // another concurrent marking phase should start
   412   volatile bool           _restart_for_overflow;
   414   // This is true from the very start of concurrent marking until the
   415   // point when all the tasks complete their work. It is really used
   416   // to determine the points between the end of concurrent marking and
   417   // time of remark.
   418   volatile bool           _concurrent_marking_in_progress;
   420   // verbose level
   421   CMVerboseLevel          _verbose_level;
   423   // These two fields are used to implement the optimisation that
   424   // avoids pushing objects on the global/region stack if there are
   425   // no collection set regions above the lowest finger.
   427   // This is the lowest finger (among the global and local fingers),
   428   // which is calculated before a new collection set is chosen.
   429   HeapWord* _min_finger;
   430   // If this flag is true, objects/regions that are marked below the
   431   // finger should be pushed on the stack(s). If this is flag is
   432   // false, it is safe not to push them on the stack(s).
   433   bool      _should_gray_objects;
   435   // All of these times are in ms.
   436   NumberSeq _init_times;
   437   NumberSeq _remark_times;
   438   NumberSeq   _remark_mark_times;
   439   NumberSeq   _remark_weak_ref_times;
   440   NumberSeq _cleanup_times;
   441   double    _total_counting_time;
   442   double    _total_rs_scrub_time;
   444   double*   _accum_task_vtime;   // accumulated task vtime
   446   WorkGang* _parallel_workers;
   448   void weakRefsWork(bool clear_all_soft_refs);
   450   void swapMarkBitMaps();
   452   // It resets the global marking data structures, as well as the
   453   // task local ones; should be called during initial mark.
   454   void reset();
   455   // It resets all the marking data structures.
   456   void clear_marking_state();
   458   // It should be called to indicate which phase we're in (concurrent
   459   // mark or remark) and how many threads are currently active.
   460   void set_phase(size_t active_tasks, bool concurrent);
   461   // We do this after we're done with marking so that the marking data
   462   // structures are initialised to a sensible and predictable state.
   463   void set_non_marking_state();
   465   // prints all gathered CM-related statistics
   466   void print_stats();
   468   // accessor methods
   469   size_t parallel_marking_threads() { return _parallel_marking_threads; }
   470   double sleep_factor()             { return _sleep_factor; }
   471   double marking_task_overhead()    { return _marking_task_overhead;}
   472   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
   473   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
   475   HeapWord*               finger()        { return _finger;   }
   476   bool                    concurrent()    { return _concurrent; }
   477   size_t                  active_tasks()  { return _active_tasks; }
   478   ParallelTaskTerminator* terminator()    { return &_terminator; }
   480   // It claims the next available region to be scanned by a marking
   481   // task. It might return NULL if the next region is empty or we have
   482   // run out of regions. In the latter case, out_of_regions()
   483   // determines whether we've really run out of regions or the task
   484   // should call claim_region() again.  This might seem a bit
   485   // awkward. Originally, the code was written so that claim_region()
   486   // either successfully returned with a non-empty region or there
   487   // were no more regions to be claimed. The problem with this was
   488   // that, in certain circumstances, it iterated over large chunks of
   489   // the heap finding only empty regions and, while it was working, it
   490   // was preventing the calling task to call its regular clock
   491   // method. So, this way, each task will spend very little time in
   492   // claim_region() and is allowed to call the regular clock method
   493   // frequently.
   494   HeapRegion* claim_region(int task);
   496   // It determines whether we've run out of regions to scan.
   497   bool        out_of_regions() { return _finger == _heap_end; }
   499   // Returns the task with the given id
   500   CMTask* task(int id) {
   501     assert(0 <= id && id < (int) _active_tasks,
   502            "task id not within active bounds");
   503     return _tasks[id];
   504   }
   506   // Returns the task queue with the given id
   507   CMTaskQueue* task_queue(int id) {
   508     assert(0 <= id && id < (int) _active_tasks,
   509            "task queue id not within active bounds");
   510     return (CMTaskQueue*) _task_queues->queue(id);
   511   }
   513   // Returns the task queue set
   514   CMTaskQueueSet* task_queues()  { return _task_queues; }
   516   // Access / manipulation of the overflow flag which is set to
   517   // indicate that the global stack or region stack has overflown
   518   bool has_overflown()           { return _has_overflown; }
   519   void set_has_overflown()       { _has_overflown = true; }
   520   void clear_has_overflown()     { _has_overflown = false; }
   522   bool has_aborted()             { return _has_aborted; }
   523   bool restart_for_overflow()    { return _restart_for_overflow; }
   525   // Methods to enter the two overflow sync barriers
   526   void enter_first_sync_barrier(int task_num);
   527   void enter_second_sync_barrier(int task_num);
   529 public:
   530   // Manipulation of the global mark stack.
   531   // Notice that the first mark_stack_push is CAS-based, whereas the
   532   // two below are Mutex-based. This is OK since the first one is only
   533   // called during evacuation pauses and doesn't compete with the
   534   // other two (which are called by the marking tasks during
   535   // concurrent marking or remark).
   536   bool mark_stack_push(oop p) {
   537     _markStack.par_push(p);
   538     if (_markStack.overflow()) {
   539       set_has_overflown();
   540       return false;
   541     }
   542     return true;
   543   }
   544   bool mark_stack_push(oop* arr, int n) {
   545     _markStack.par_push_arr(arr, n);
   546     if (_markStack.overflow()) {
   547       set_has_overflown();
   548       return false;
   549     }
   550     return true;
   551   }
   552   void mark_stack_pop(oop* arr, int max, int* n) {
   553     _markStack.par_pop_arr(arr, max, n);
   554   }
   555   size_t mark_stack_size()              { return _markStack.size(); }
   556   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   557   bool mark_stack_overflow()            { return _markStack.overflow(); }
   558   bool mark_stack_empty()               { return _markStack.isEmpty(); }
   560   // (Lock-free) Manipulation of the region stack
   561   bool region_stack_push_lock_free(MemRegion mr) {
   562     // Currently we only call the lock-free version during evacuation
   563     // pauses.
   564     assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
   566     _regionStack.push_lock_free(mr);
   567     if (_regionStack.overflow()) {
   568       set_has_overflown();
   569       return false;
   570     }
   571     return true;
   572   }
   574   // Lock-free version of region-stack pop. Should only be
   575   // called in tandem with other lock-free pops.
   576   MemRegion region_stack_pop_lock_free() {
   577     return _regionStack.pop_lock_free();
   578   }
   580 #if 0
   581   // The routines that manipulate the region stack with a lock are
   582   // not currently used. They should be retained, however, as a
   583   // diagnostic aid.
   585   bool region_stack_push_with_lock(MemRegion mr) {
   586     // Currently we only call the lock-based version during either
   587     // concurrent marking or remark.
   588     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   589            "if we are at a safepoint it should be the remark safepoint");
   591     _regionStack.push_with_lock(mr);
   592     if (_regionStack.overflow()) {
   593       set_has_overflown();
   594       return false;
   595     }
   596     return true;
   597   }
   599   MemRegion region_stack_pop_with_lock() {
   600     // Currently we only call the lock-based version during either
   601     // concurrent marking or remark.
   602     assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
   603            "if we are at a safepoint it should be the remark safepoint");
   605     return _regionStack.pop_with_lock();
   606   }
   607 #endif
   609   int region_stack_size()               { return _regionStack.size(); }
   610   bool region_stack_overflow()          { return _regionStack.overflow(); }
   611   bool region_stack_empty()             { return _regionStack.isEmpty(); }
   613   // Iterate over any regions that were aborted while draining the
   614   // region stack (any such regions are saved in the corresponding
   615   // CMTask) and invalidate (i.e. assign to the empty MemRegion())
   616   // any regions that point into the collection set.
   617   bool invalidate_aborted_regions_in_cset();
   619   // Returns true if there are any aborted memory regions.
   620   bool has_aborted_regions();
   622   bool concurrent_marking_in_progress() {
   623     return _concurrent_marking_in_progress;
   624   }
   625   void set_concurrent_marking_in_progress() {
   626     _concurrent_marking_in_progress = true;
   627   }
   628   void clear_concurrent_marking_in_progress() {
   629     _concurrent_marking_in_progress = false;
   630   }
   632   void update_accum_task_vtime(int i, double vtime) {
   633     _accum_task_vtime[i] += vtime;
   634   }
   636   double all_task_accum_vtime() {
   637     double ret = 0.0;
   638     for (int i = 0; i < (int)_max_task_num; ++i)
   639       ret += _accum_task_vtime[i];
   640     return ret;
   641   }
   643   // Attempts to steal an object from the task queues of other tasks
   644   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
   645     return _task_queues->steal(task_num, hash_seed, obj);
   646   }
   648   // It grays an object by first marking it. Then, if it's behind the
   649   // global finger, it also pushes it on the global stack.
   650   void deal_with_reference(oop obj);
   652   ConcurrentMark(ReservedSpace rs, int max_regions);
   653   ~ConcurrentMark();
   654   ConcurrentMarkThread* cmThread() { return _cmThread; }
   656   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   657   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   659   // The following three are interaction between CM and
   660   // G1CollectedHeap
   662   // This notifies CM that a root during initial-mark needs to be
   663   // grayed and it's MT-safe. Currently, we just mark it. But, in the
   664   // future, we can experiment with pushing it on the stack and we can
   665   // do this without changing G1CollectedHeap.
   666   void grayRoot(oop p);
   667   // It's used during evacuation pauses to gray a region, if
   668   // necessary, and it's MT-safe. It assumes that the caller has
   669   // marked any objects on that region. If _should_gray_objects is
   670   // true and we're still doing concurrent marking, the region is
   671   // pushed on the region stack, if it is located below the global
   672   // finger, otherwise we do nothing.
   673   void grayRegionIfNecessary(MemRegion mr);
   674   // It's used during evacuation pauses to mark and, if necessary,
   675   // gray a single object and it's MT-safe. It assumes the caller did
   676   // not mark the object. If _should_gray_objects is true and we're
   677   // still doing concurrent marking, the objects is pushed on the
   678   // global stack, if it is located below the global finger, otherwise
   679   // we do nothing.
   680   void markAndGrayObjectIfNecessary(oop p);
   682   // It iterates over the heap and for each object it comes across it
   683   // will dump the contents of its reference fields, as well as
   684   // liveness information for the object and its referents. The dump
   685   // will be written to a file with the following name:
   686   // G1PrintReachableBaseFile + "." + str. use_prev_marking decides
   687   // whether the prev (use_prev_marking == true) or next
   688   // (use_prev_marking == false) marking information will be used to
   689   // determine the liveness of each object / referent. If all is true,
   690   // all objects in the heap will be dumped, otherwise only the live
   691   // ones. In the dump the following symbols / abbreviations are used:
   692   //   M : an explicitly live object (its bitmap bit is set)
   693   //   > : an implicitly live object (over tams)
   694   //   O : an object outside the G1 heap (typically: in the perm gen)
   695   //   NOT : a reference field whose referent is not live
   696   //   AND MARKED : indicates that an object is both explicitly and
   697   //   implicitly live (it should be one or the other, not both)
   698   void print_reachable(const char* str,
   699                        bool use_prev_marking, bool all) PRODUCT_RETURN;
   701   // Clear the next marking bitmap (will be called concurrently).
   702   void clearNextBitmap();
   704   // main CMS steps and related support
   705   void checkpointRootsInitial();
   707   // These two do the work that needs to be done before and after the
   708   // initial root checkpoint. Since this checkpoint can be done at two
   709   // different points (i.e. an explicit pause or piggy-backed on a
   710   // young collection), then it's nice to be able to easily share the
   711   // pre/post code. It might be the case that we can put everything in
   712   // the post method. TP
   713   void checkpointRootsInitialPre();
   714   void checkpointRootsInitialPost();
   716   // Do concurrent phase of marking, to a tentative transitive closure.
   717   void markFromRoots();
   719   // Process all unprocessed SATB buffers. It is called at the
   720   // beginning of an evacuation pause.
   721   void drainAllSATBBuffers();
   723   void checkpointRootsFinal(bool clear_all_soft_refs);
   724   void checkpointRootsFinalWork();
   725   void calcDesiredRegions();
   726   void cleanup();
   727   void completeCleanup();
   729   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   730   // this carefully!
   731   void markPrev(oop p);
   732   void clear(oop p);
   733   // Clears marks for all objects in the given range, for both prev and
   734   // next bitmaps.  NB: the previous bitmap is usually read-only, so use
   735   // this carefully!
   736   void clearRangeBothMaps(MemRegion mr);
   738   // Record the current top of the mark and region stacks; a
   739   // subsequent oops_do() on the mark stack and
   740   // invalidate_entries_into_cset() on the region stack will iterate
   741   // only over indices valid at the time of this call.
   742   void set_oops_do_bound() {
   743     _markStack.set_oops_do_bound();
   744     _regionStack.set_oops_do_bound();
   745   }
   746   // Iterate over the oops in the mark stack and all local queues. It
   747   // also calls invalidate_entries_into_cset() on the region stack.
   748   void oops_do(OopClosure* f);
   749   // It is called at the end of an evacuation pause during marking so
   750   // that CM is notified of where the new end of the heap is. It
   751   // doesn't do anything if concurrent_marking_in_progress() is false,
   752   // unless the force parameter is true.
   753   void update_g1_committed(bool force = false);
   755   void complete_marking_in_collection_set();
   757   // It indicates that a new collection set is being chosen.
   758   void newCSet();
   759   // It registers a collection set heap region with CM. This is used
   760   // to determine whether any heap regions are located above the finger.
   761   void registerCSetRegion(HeapRegion* hr);
   763   // Registers the maximum region-end associated with a set of
   764   // regions with CM. Again this is used to determine whether any
   765   // heap regions are located above the finger.
   766   void register_collection_set_finger(HeapWord* max_finger) {
   767     // max_finger is the highest heap region end of the regions currently
   768     // contained in the collection set. If this value is larger than
   769     // _min_finger then we need to gray objects.
   770     // This routine is like registerCSetRegion but for an entire
   771     // collection of regions.
   772     if (max_finger > _min_finger)
   773       _should_gray_objects = true;
   774   }
   776   // Returns "true" if at least one mark has been completed.
   777   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
   779   bool isMarked(oop p) const {
   780     assert(p != NULL && p->is_oop(), "expected an oop");
   781     HeapWord* addr = (HeapWord*)p;
   782     assert(addr >= _nextMarkBitMap->startWord() ||
   783            addr < _nextMarkBitMap->endWord(), "in a region");
   785     return _nextMarkBitMap->isMarked(addr);
   786   }
   788   inline bool not_yet_marked(oop p) const;
   790   // XXX Debug code
   791   bool containing_card_is_marked(void* p);
   792   bool containing_cards_are_marked(void* start, void* last);
   794   bool isPrevMarked(oop p) const {
   795     assert(p != NULL && p->is_oop(), "expected an oop");
   796     HeapWord* addr = (HeapWord*)p;
   797     assert(addr >= _prevMarkBitMap->startWord() ||
   798            addr < _prevMarkBitMap->endWord(), "in a region");
   800     return _prevMarkBitMap->isMarked(addr);
   801   }
   803   inline bool do_yield_check(int worker_i = 0);
   804   inline bool should_yield();
   806   // Called to abort the marking cycle after a Full GC takes palce.
   807   void abort();
   809   // This prints the global/local fingers. It is used for debugging.
   810   NOT_PRODUCT(void print_finger();)
   812   void print_summary_info();
   814   void print_worker_threads_on(outputStream* st) const;
   816   // The following indicate whether a given verbose level has been
   817   // set. Notice that anything above stats is conditional to
   818   // _MARKING_VERBOSE_ having been set to 1
   819   bool verbose_stats()
   820     { return _verbose_level >= stats_verbose; }
   821   bool verbose_low()
   822     { return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
   823   bool verbose_medium()
   824     { return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
   825   bool verbose_high()
   826     { return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
   827 };
   829 // A class representing a marking task.
   830 class CMTask : public TerminatorTerminator {
   831 private:
   832   enum PrivateConstants {
   833     // the regular clock call is called once the scanned words reaches
   834     // this limit
   835     words_scanned_period          = 12*1024,
   836     // the regular clock call is called once the number of visited
   837     // references reaches this limit
   838     refs_reached_period           = 384,
   839     // initial value for the hash seed, used in the work stealing code
   840     init_hash_seed                = 17,
   841     // how many entries will be transferred between global stack and
   842     // local queues
   843     global_stack_transfer_size    = 16
   844   };
   846   int                         _task_id;
   847   G1CollectedHeap*            _g1h;
   848   ConcurrentMark*             _cm;
   849   CMBitMap*                   _nextMarkBitMap;
   850   // the task queue of this task
   851   CMTaskQueue*                _task_queue;
   852 private:
   853   // the task queue set---needed for stealing
   854   CMTaskQueueSet*             _task_queues;
   855   // indicates whether the task has been claimed---this is only  for
   856   // debugging purposes
   857   bool                        _claimed;
   859   // number of calls to this task
   860   int                         _calls;
   862   // when the virtual timer reaches this time, the marking step should
   863   // exit
   864   double                      _time_target_ms;
   865   // the start time of the current marking step
   866   double                      _start_time_ms;
   868   // the oop closure used for iterations over oops
   869   OopClosure*                 _oop_closure;
   871   // the region this task is scanning, NULL if we're not scanning any
   872   HeapRegion*                 _curr_region;
   873   // the local finger of this task, NULL if we're not scanning a region
   874   HeapWord*                   _finger;
   875   // limit of the region this task is scanning, NULL if we're not scanning one
   876   HeapWord*                   _region_limit;
   878   // This is used only when we scan regions popped from the region
   879   // stack. It records what the last object on such a region we
   880   // scanned was. It is used to ensure that, if we abort region
   881   // iteration, we do not rescan the first part of the region. This
   882   // should be NULL when we're not scanning a region from the region
   883   // stack.
   884   HeapWord*                   _region_finger;
   886   // If we abort while scanning a region we record the remaining
   887   // unscanned portion and check this field when marking restarts.
   888   // This avoids having to push on the region stack while other
   889   // marking threads may still be popping regions.
   890   // If we were to push the unscanned portion directly to the
   891   // region stack then we would need to using locking versions
   892   // of the push and pop operations.
   893   MemRegion                   _aborted_region;
   895   // the number of words this task has scanned
   896   size_t                      _words_scanned;
   897   // When _words_scanned reaches this limit, the regular clock is
   898   // called. Notice that this might be decreased under certain
   899   // circumstances (i.e. when we believe that we did an expensive
   900   // operation).
   901   size_t                      _words_scanned_limit;
   902   // the initial value of _words_scanned_limit (i.e. what it was
   903   // before it was decreased).
   904   size_t                      _real_words_scanned_limit;
   906   // the number of references this task has visited
   907   size_t                      _refs_reached;
   908   // When _refs_reached reaches this limit, the regular clock is
   909   // called. Notice this this might be decreased under certain
   910   // circumstances (i.e. when we believe that we did an expensive
   911   // operation).
   912   size_t                      _refs_reached_limit;
   913   // the initial value of _refs_reached_limit (i.e. what it was before
   914   // it was decreased).
   915   size_t                      _real_refs_reached_limit;
   917   // used by the work stealing stuff
   918   int                         _hash_seed;
   919   // if this is true, then the task has aborted for some reason
   920   bool                        _has_aborted;
   921   // set when the task aborts because it has met its time quota
   922   bool                        _has_aborted_timed_out;
   923   // true when we're draining SATB buffers; this avoids the task
   924   // aborting due to SATB buffers being available (as we're already
   925   // dealing with them)
   926   bool                        _draining_satb_buffers;
   928   // number sequence of past step times
   929   NumberSeq                   _step_times_ms;
   930   // elapsed time of this task
   931   double                      _elapsed_time_ms;
   932   // termination time of this task
   933   double                      _termination_time_ms;
   934   // when this task got into the termination protocol
   935   double                      _termination_start_time_ms;
   937   // true when the task is during a concurrent phase, false when it is
   938   // in the remark phase (so, in the latter case, we do not have to
   939   // check all the things that we have to check during the concurrent
   940   // phase, i.e. SATB buffer availability...)
   941   bool                        _concurrent;
   943   TruncatedSeq                _marking_step_diffs_ms;
   945   // LOTS of statistics related with this task
   946 #if _MARKING_STATS_
   947   NumberSeq                   _all_clock_intervals_ms;
   948   double                      _interval_start_time_ms;
   950   int                         _aborted;
   951   int                         _aborted_overflow;
   952   int                         _aborted_cm_aborted;
   953   int                         _aborted_yield;
   954   int                         _aborted_timed_out;
   955   int                         _aborted_satb;
   956   int                         _aborted_termination;
   958   int                         _steal_attempts;
   959   int                         _steals;
   961   int                         _clock_due_to_marking;
   962   int                         _clock_due_to_scanning;
   964   int                         _local_pushes;
   965   int                         _local_pops;
   966   int                         _local_max_size;
   967   int                         _objs_scanned;
   969   int                         _global_pushes;
   970   int                         _global_pops;
   971   int                         _global_max_size;
   973   int                         _global_transfers_to;
   974   int                         _global_transfers_from;
   976   int                         _region_stack_pops;
   978   int                         _regions_claimed;
   979   int                         _objs_found_on_bitmap;
   981   int                         _satb_buffers_processed;
   982 #endif // _MARKING_STATS_
   984   // it updates the local fields after this task has claimed
   985   // a new region to scan
   986   void setup_for_region(HeapRegion* hr);
   987   // it brings up-to-date the limit of the region
   988   void update_region_limit();
   989   // it resets the local fields after a task has finished scanning a
   990   // region
   991   void giveup_current_region();
   993   // called when either the words scanned or the refs visited limit
   994   // has been reached
   995   void reached_limit();
   996   // recalculates the words scanned and refs visited limits
   997   void recalculate_limits();
   998   // decreases the words scanned and refs visited limits when we reach
   999   // an expensive operation
  1000   void decrease_limits();
  1001   // it checks whether the words scanned or refs visited reached their
  1002   // respective limit and calls reached_limit() if they have
  1003   void check_limits() {
  1004     if (_words_scanned >= _words_scanned_limit ||
  1005         _refs_reached >= _refs_reached_limit)
  1006       reached_limit();
  1008   // this is supposed to be called regularly during a marking step as
  1009   // it checks a bunch of conditions that might cause the marking step
  1010   // to abort
  1011   void regular_clock_call();
  1012   bool concurrent() { return _concurrent; }
  1014 public:
  1015   // It resets the task; it should be called right at the beginning of
  1016   // a marking phase.
  1017   void reset(CMBitMap* _nextMarkBitMap);
  1018   // it clears all the fields that correspond to a claimed region.
  1019   void clear_region_fields();
  1021   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1023   // The main method of this class which performs a marking step
  1024   // trying not to exceed the given duration. However, it might exit
  1025   // prematurely, according to some conditions (i.e. SATB buffers are
  1026   // available for processing).
  1027   void do_marking_step(double target_ms);
  1029   // These two calls start and stop the timer
  1030   void record_start_time() {
  1031     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1033   void record_end_time() {
  1034     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1037   // returns the task ID
  1038   int task_id() { return _task_id; }
  1040   // From TerminatorTerminator. It determines whether this task should
  1041   // exit the termination protocol after it's entered it.
  1042   virtual bool should_exit_termination();
  1044   HeapWord* finger()            { return _finger; }
  1046   bool has_aborted()            { return _has_aborted; }
  1047   void set_has_aborted()        { _has_aborted = true; }
  1048   void clear_has_aborted()      { _has_aborted = false; }
  1049   bool claimed() { return _claimed; }
  1051   // Support routines for the partially scanned region that may be
  1052   // recorded as a result of aborting while draining the CMRegionStack
  1053   MemRegion aborted_region()    { return _aborted_region; }
  1054   void set_aborted_region(MemRegion mr)
  1055                                 { _aborted_region = mr; }
  1057   // Clears any recorded partially scanned region
  1058   void clear_aborted_region()   { set_aborted_region(MemRegion()); }
  1060   void set_oop_closure(OopClosure* oop_closure) {
  1061     _oop_closure = oop_closure;
  1064   // It grays the object by marking it and, if necessary, pushing it
  1065   // on the local queue
  1066   void deal_with_reference(oop obj);
  1068   // It scans an object and visits its children.
  1069   void scan_object(oop obj) {
  1070     assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
  1072     if (_cm->verbose_high())
  1073       gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
  1074                              _task_id, (void*) obj);
  1076     size_t obj_size = obj->size();
  1077     _words_scanned += obj_size;
  1079     obj->oop_iterate(_oop_closure);
  1080     statsOnly( ++_objs_scanned );
  1081     check_limits();
  1084   // It pushes an object on the local queue.
  1085   void push(oop obj);
  1087   // These two move entries to/from the global stack.
  1088   void move_entries_to_global_stack();
  1089   void get_entries_from_global_stack();
  1091   // It pops and scans objects from the local queue. If partially is
  1092   // true, then it stops when the queue size is of a given limit. If
  1093   // partially is false, then it stops when the queue is empty.
  1094   void drain_local_queue(bool partially);
  1095   // It moves entries from the global stack to the local queue and
  1096   // drains the local queue. If partially is true, then it stops when
  1097   // both the global stack and the local queue reach a given size. If
  1098   // partially if false, it tries to empty them totally.
  1099   void drain_global_stack(bool partially);
  1100   // It keeps picking SATB buffers and processing them until no SATB
  1101   // buffers are available.
  1102   void drain_satb_buffers();
  1103   // It keeps popping regions from the region stack and processing
  1104   // them until the region stack is empty.
  1105   void drain_region_stack(BitMapClosure* closure);
  1107   // moves the local finger to a new location
  1108   inline void move_finger_to(HeapWord* new_finger) {
  1109     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1110     _finger = new_finger;
  1113   // moves the region finger to a new location
  1114   inline void move_region_finger_to(HeapWord* new_finger) {
  1115     assert(new_finger < _cm->finger(), "invariant");
  1116     _region_finger = new_finger;
  1119   CMTask(int task_num, ConcurrentMark *cm,
  1120          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1122   // it prints statistics associated with this task
  1123   void print_stats();
  1125 #if _MARKING_STATS_
  1126   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1127 #endif // _MARKING_STATS_
  1128 };
  1130 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial