src/cpu/x86/vm/stubGenerator_x86_32.cpp

Thu, 21 Mar 2013 09:27:54 +0100

author
roland
date
Thu, 21 Mar 2013 09:27:54 +0100
changeset 4860
46f6f063b272
parent 4411
e2e6bf86682c
child 4873
e961c11b85fe
permissions
-rw-r--r--

7153771: array bound check elimination for c1
Summary: when possible optimize out array bound checks, inserting predicates when needed.
Reviewed-by: never, kvn, twisti
Contributed-by: thomaswue <thomas.wuerthinger@oracle.com>

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_x86.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/method.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "runtime/thread.inline.hpp"
    41 #include "utilities/top.hpp"
    42 #ifdef COMPILER2
    43 #include "opto/runtime.hpp"
    44 #endif
    46 // Declaration and definition of StubGenerator (no .hpp file).
    47 // For a more detailed description of the stub routine structure
    48 // see the comment in stubRoutines.hpp
    50 #define __ _masm->
    51 #define a__ ((Assembler*)_masm)->
    53 #ifdef PRODUCT
    54 #define BLOCK_COMMENT(str) /* nothing */
    55 #else
    56 #define BLOCK_COMMENT(str) __ block_comment(str)
    57 #endif
    59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    61 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    62 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    64 // -------------------------------------------------------------------------------------------------------------------------
    65 // Stub Code definitions
    67 static address handle_unsafe_access() {
    68   JavaThread* thread = JavaThread::current();
    69   address pc  = thread->saved_exception_pc();
    70   // pc is the instruction which we must emulate
    71   // doing a no-op is fine:  return garbage from the load
    72   // therefore, compute npc
    73   address npc = Assembler::locate_next_instruction(pc);
    75   // request an async exception
    76   thread->set_pending_unsafe_access_error();
    78   // return address of next instruction to execute
    79   return npc;
    80 }
    82 class StubGenerator: public StubCodeGenerator {
    83  private:
    85 #ifdef PRODUCT
    86 #define inc_counter_np(counter) (0)
    87 #else
    88   void inc_counter_np_(int& counter) {
    89     __ incrementl(ExternalAddress((address)&counter));
    90   }
    91 #define inc_counter_np(counter) \
    92   BLOCK_COMMENT("inc_counter " #counter); \
    93   inc_counter_np_(counter);
    94 #endif //PRODUCT
    96   void inc_copy_counter_np(BasicType t) {
    97 #ifndef PRODUCT
    98     switch (t) {
    99     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
   100     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
   101     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
   102     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
   103     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
   104     }
   105     ShouldNotReachHere();
   106 #endif //PRODUCT
   107   }
   109   //------------------------------------------------------------------------------------------------------------------------
   110   // Call stubs are used to call Java from C
   111   //
   112   //    [ return_from_Java     ] <--- rsp
   113   //    [ argument word n      ]
   114   //      ...
   115   // -N [ argument word 1      ]
   116   // -7 [ Possible padding for stack alignment ]
   117   // -6 [ Possible padding for stack alignment ]
   118   // -5 [ Possible padding for stack alignment ]
   119   // -4 [ mxcsr save           ] <--- rsp_after_call
   120   // -3 [ saved rbx,            ]
   121   // -2 [ saved rsi            ]
   122   // -1 [ saved rdi            ]
   123   //  0 [ saved rbp,            ] <--- rbp,
   124   //  1 [ return address       ]
   125   //  2 [ ptr. to call wrapper ]
   126   //  3 [ result               ]
   127   //  4 [ result_type          ]
   128   //  5 [ method               ]
   129   //  6 [ entry_point          ]
   130   //  7 [ parameters           ]
   131   //  8 [ parameter_size       ]
   132   //  9 [ thread               ]
   135   address generate_call_stub(address& return_address) {
   136     StubCodeMark mark(this, "StubRoutines", "call_stub");
   137     address start = __ pc();
   139     // stub code parameters / addresses
   140     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   141     bool  sse_save = false;
   142     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   143     const int     locals_count_in_bytes  (4*wordSize);
   144     const Address mxcsr_save    (rbp, -4 * wordSize);
   145     const Address saved_rbx     (rbp, -3 * wordSize);
   146     const Address saved_rsi     (rbp, -2 * wordSize);
   147     const Address saved_rdi     (rbp, -1 * wordSize);
   148     const Address result        (rbp,  3 * wordSize);
   149     const Address result_type   (rbp,  4 * wordSize);
   150     const Address method        (rbp,  5 * wordSize);
   151     const Address entry_point   (rbp,  6 * wordSize);
   152     const Address parameters    (rbp,  7 * wordSize);
   153     const Address parameter_size(rbp,  8 * wordSize);
   154     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   155     sse_save =  UseSSE > 0;
   157     // stub code
   158     __ enter();
   159     __ movptr(rcx, parameter_size);              // parameter counter
   160     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
   161     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
   162     __ subptr(rsp, rcx);
   163     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
   165     // save rdi, rsi, & rbx, according to C calling conventions
   166     __ movptr(saved_rdi, rdi);
   167     __ movptr(saved_rsi, rsi);
   168     __ movptr(saved_rbx, rbx);
   169     // save and initialize %mxcsr
   170     if (sse_save) {
   171       Label skip_ldmx;
   172       __ stmxcsr(mxcsr_save);
   173       __ movl(rax, mxcsr_save);
   174       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   175       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   176       __ cmp32(rax, mxcsr_std);
   177       __ jcc(Assembler::equal, skip_ldmx);
   178       __ ldmxcsr(mxcsr_std);
   179       __ bind(skip_ldmx);
   180     }
   182     // make sure the control word is correct.
   183     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   185 #ifdef ASSERT
   186     // make sure we have no pending exceptions
   187     { Label L;
   188       __ movptr(rcx, thread);
   189       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   190       __ jcc(Assembler::equal, L);
   191       __ stop("StubRoutines::call_stub: entered with pending exception");
   192       __ bind(L);
   193     }
   194 #endif
   196     // pass parameters if any
   197     BLOCK_COMMENT("pass parameters if any");
   198     Label parameters_done;
   199     __ movl(rcx, parameter_size);  // parameter counter
   200     __ testl(rcx, rcx);
   201     __ jcc(Assembler::zero, parameters_done);
   203     // parameter passing loop
   205     Label loop;
   206     // Copy Java parameters in reverse order (receiver last)
   207     // Note that the argument order is inverted in the process
   208     // source is rdx[rcx: N-1..0]
   209     // dest   is rsp[rbx: 0..N-1]
   211     __ movptr(rdx, parameters);          // parameter pointer
   212     __ xorptr(rbx, rbx);
   214     __ BIND(loop);
   216     // get parameter
   217     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   218     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   219                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   220     __ increment(rbx);
   221     __ decrement(rcx);
   222     __ jcc(Assembler::notZero, loop);
   224     // call Java function
   225     __ BIND(parameters_done);
   226     __ movptr(rbx, method);           // get Method*
   227     __ movptr(rax, entry_point);      // get entry_point
   228     __ mov(rsi, rsp);                 // set sender sp
   229     BLOCK_COMMENT("call Java function");
   230     __ call(rax);
   232     BLOCK_COMMENT("call_stub_return_address:");
   233     return_address = __ pc();
   235 #ifdef COMPILER2
   236     {
   237       Label L_skip;
   238       if (UseSSE >= 2) {
   239         __ verify_FPU(0, "call_stub_return");
   240       } else {
   241         for (int i = 1; i < 8; i++) {
   242           __ ffree(i);
   243         }
   245         // UseSSE <= 1 so double result should be left on TOS
   246         __ movl(rsi, result_type);
   247         __ cmpl(rsi, T_DOUBLE);
   248         __ jcc(Assembler::equal, L_skip);
   249         if (UseSSE == 0) {
   250           // UseSSE == 0 so float result should be left on TOS
   251           __ cmpl(rsi, T_FLOAT);
   252           __ jcc(Assembler::equal, L_skip);
   253         }
   254         __ ffree(0);
   255       }
   256       __ BIND(L_skip);
   257     }
   258 #endif // COMPILER2
   260     // store result depending on type
   261     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   262     __ movptr(rdi, result);
   263     Label is_long, is_float, is_double, exit;
   264     __ movl(rsi, result_type);
   265     __ cmpl(rsi, T_LONG);
   266     __ jcc(Assembler::equal, is_long);
   267     __ cmpl(rsi, T_FLOAT);
   268     __ jcc(Assembler::equal, is_float);
   269     __ cmpl(rsi, T_DOUBLE);
   270     __ jcc(Assembler::equal, is_double);
   272     // handle T_INT case
   273     __ movl(Address(rdi, 0), rax);
   274     __ BIND(exit);
   276     // check that FPU stack is empty
   277     __ verify_FPU(0, "generate_call_stub");
   279     // pop parameters
   280     __ lea(rsp, rsp_after_call);
   282     // restore %mxcsr
   283     if (sse_save) {
   284       __ ldmxcsr(mxcsr_save);
   285     }
   287     // restore rdi, rsi and rbx,
   288     __ movptr(rbx, saved_rbx);
   289     __ movptr(rsi, saved_rsi);
   290     __ movptr(rdi, saved_rdi);
   291     __ addptr(rsp, 4*wordSize);
   293     // return
   294     __ pop(rbp);
   295     __ ret(0);
   297     // handle return types different from T_INT
   298     __ BIND(is_long);
   299     __ movl(Address(rdi, 0 * wordSize), rax);
   300     __ movl(Address(rdi, 1 * wordSize), rdx);
   301     __ jmp(exit);
   303     __ BIND(is_float);
   304     // interpreter uses xmm0 for return values
   305     if (UseSSE >= 1) {
   306       __ movflt(Address(rdi, 0), xmm0);
   307     } else {
   308       __ fstp_s(Address(rdi, 0));
   309     }
   310     __ jmp(exit);
   312     __ BIND(is_double);
   313     // interpreter uses xmm0 for return values
   314     if (UseSSE >= 2) {
   315       __ movdbl(Address(rdi, 0), xmm0);
   316     } else {
   317       __ fstp_d(Address(rdi, 0));
   318     }
   319     __ jmp(exit);
   321     return start;
   322   }
   325   //------------------------------------------------------------------------------------------------------------------------
   326   // Return point for a Java call if there's an exception thrown in Java code.
   327   // The exception is caught and transformed into a pending exception stored in
   328   // JavaThread that can be tested from within the VM.
   329   //
   330   // Note: Usually the parameters are removed by the callee. In case of an exception
   331   //       crossing an activation frame boundary, that is not the case if the callee
   332   //       is compiled code => need to setup the rsp.
   333   //
   334   // rax,: exception oop
   336   address generate_catch_exception() {
   337     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   338     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   339     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   340     address start = __ pc();
   342     // get thread directly
   343     __ movptr(rcx, thread);
   344 #ifdef ASSERT
   345     // verify that threads correspond
   346     { Label L;
   347       __ get_thread(rbx);
   348       __ cmpptr(rbx, rcx);
   349       __ jcc(Assembler::equal, L);
   350       __ stop("StubRoutines::catch_exception: threads must correspond");
   351       __ bind(L);
   352     }
   353 #endif
   354     // set pending exception
   355     __ verify_oop(rax);
   356     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
   357     __ lea(Address(rcx, Thread::exception_file_offset   ()),
   358            ExternalAddress((address)__FILE__));
   359     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   360     // complete return to VM
   361     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   362     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   364     return start;
   365   }
   368   //------------------------------------------------------------------------------------------------------------------------
   369   // Continuation point for runtime calls returning with a pending exception.
   370   // The pending exception check happened in the runtime or native call stub.
   371   // The pending exception in Thread is converted into a Java-level exception.
   372   //
   373   // Contract with Java-level exception handlers:
   374   // rax: exception
   375   // rdx: throwing pc
   376   //
   377   // NOTE: At entry of this stub, exception-pc must be on stack !!
   379   address generate_forward_exception() {
   380     StubCodeMark mark(this, "StubRoutines", "forward exception");
   381     address start = __ pc();
   382     const Register thread = rcx;
   384     // other registers used in this stub
   385     const Register exception_oop = rax;
   386     const Register handler_addr  = rbx;
   387     const Register exception_pc  = rdx;
   389     // Upon entry, the sp points to the return address returning into Java
   390     // (interpreted or compiled) code; i.e., the return address becomes the
   391     // throwing pc.
   392     //
   393     // Arguments pushed before the runtime call are still on the stack but
   394     // the exception handler will reset the stack pointer -> ignore them.
   395     // A potential result in registers can be ignored as well.
   397 #ifdef ASSERT
   398     // make sure this code is only executed if there is a pending exception
   399     { Label L;
   400       __ get_thread(thread);
   401       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   402       __ jcc(Assembler::notEqual, L);
   403       __ stop("StubRoutines::forward exception: no pending exception (1)");
   404       __ bind(L);
   405     }
   406 #endif
   408     // compute exception handler into rbx,
   409     __ get_thread(thread);
   410     __ movptr(exception_pc, Address(rsp, 0));
   411     BLOCK_COMMENT("call exception_handler_for_return_address");
   412     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   413     __ mov(handler_addr, rax);
   415     // setup rax & rdx, remove return address & clear pending exception
   416     __ get_thread(thread);
   417     __ pop(exception_pc);
   418     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   419     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   421 #ifdef ASSERT
   422     // make sure exception is set
   423     { Label L;
   424       __ testptr(exception_oop, exception_oop);
   425       __ jcc(Assembler::notEqual, L);
   426       __ stop("StubRoutines::forward exception: no pending exception (2)");
   427       __ bind(L);
   428     }
   429 #endif
   431     // Verify that there is really a valid exception in RAX.
   432     __ verify_oop(exception_oop);
   434     // continue at exception handler (return address removed)
   435     // rax: exception
   436     // rbx: exception handler
   437     // rdx: throwing pc
   438     __ jmp(handler_addr);
   440     return start;
   441   }
   444   //----------------------------------------------------------------------------------------------------
   445   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   446   //
   447   // xchg exists as far back as 8086, lock needed for MP only
   448   // Stack layout immediately after call:
   449   //
   450   // 0 [ret addr ] <--- rsp
   451   // 1 [  ex     ]
   452   // 2 [  dest   ]
   453   //
   454   // Result:   *dest <- ex, return (old *dest)
   455   //
   456   // Note: win32 does not currently use this code
   458   address generate_atomic_xchg() {
   459     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   460     address start = __ pc();
   462     __ push(rdx);
   463     Address exchange(rsp, 2 * wordSize);
   464     Address dest_addr(rsp, 3 * wordSize);
   465     __ movl(rax, exchange);
   466     __ movptr(rdx, dest_addr);
   467     __ xchgl(rax, Address(rdx, 0));
   468     __ pop(rdx);
   469     __ ret(0);
   471     return start;
   472   }
   474   //----------------------------------------------------------------------------------------------------
   475   // Support for void verify_mxcsr()
   476   //
   477   // This routine is used with -Xcheck:jni to verify that native
   478   // JNI code does not return to Java code without restoring the
   479   // MXCSR register to our expected state.
   482   address generate_verify_mxcsr() {
   483     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   484     address start = __ pc();
   486     const Address mxcsr_save(rsp, 0);
   488     if (CheckJNICalls && UseSSE > 0 ) {
   489       Label ok_ret;
   490       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   491       __ push(rax);
   492       __ subptr(rsp, wordSize);      // allocate a temp location
   493       __ stmxcsr(mxcsr_save);
   494       __ movl(rax, mxcsr_save);
   495       __ andl(rax, MXCSR_MASK);
   496       __ cmp32(rax, mxcsr_std);
   497       __ jcc(Assembler::equal, ok_ret);
   499       __ warn("MXCSR changed by native JNI code.");
   501       __ ldmxcsr(mxcsr_std);
   503       __ bind(ok_ret);
   504       __ addptr(rsp, wordSize);
   505       __ pop(rax);
   506     }
   508     __ ret(0);
   510     return start;
   511   }
   514   //---------------------------------------------------------------------------
   515   // Support for void verify_fpu_cntrl_wrd()
   516   //
   517   // This routine is used with -Xcheck:jni to verify that native
   518   // JNI code does not return to Java code without restoring the
   519   // FP control word to our expected state.
   521   address generate_verify_fpu_cntrl_wrd() {
   522     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   523     address start = __ pc();
   525     const Address fpu_cntrl_wrd_save(rsp, 0);
   527     if (CheckJNICalls) {
   528       Label ok_ret;
   529       __ push(rax);
   530       __ subptr(rsp, wordSize);      // allocate a temp location
   531       __ fnstcw(fpu_cntrl_wrd_save);
   532       __ movl(rax, fpu_cntrl_wrd_save);
   533       __ andl(rax, FPU_CNTRL_WRD_MASK);
   534       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   535       __ cmp32(rax, fpu_std);
   536       __ jcc(Assembler::equal, ok_ret);
   538       __ warn("Floating point control word changed by native JNI code.");
   540       __ fldcw(fpu_std);
   542       __ bind(ok_ret);
   543       __ addptr(rsp, wordSize);
   544       __ pop(rax);
   545     }
   547     __ ret(0);
   549     return start;
   550   }
   552   //---------------------------------------------------------------------------
   553   // Wrapper for slow-case handling of double-to-integer conversion
   554   // d2i or f2i fast case failed either because it is nan or because
   555   // of under/overflow.
   556   // Input:  FPU TOS: float value
   557   // Output: rax, (rdx): integer (long) result
   559   address generate_d2i_wrapper(BasicType t, address fcn) {
   560     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   561     address start = __ pc();
   563   // Capture info about frame layout
   564   enum layout { FPUState_off         = 0,
   565                 rbp_off              = FPUStateSizeInWords,
   566                 rdi_off,
   567                 rsi_off,
   568                 rcx_off,
   569                 rbx_off,
   570                 saved_argument_off,
   571                 saved_argument_off2, // 2nd half of double
   572                 framesize
   573   };
   575   assert(FPUStateSizeInWords == 27, "update stack layout");
   577     // Save outgoing argument to stack across push_FPU_state()
   578     __ subptr(rsp, wordSize * 2);
   579     __ fstp_d(Address(rsp, 0));
   581     // Save CPU & FPU state
   582     __ push(rbx);
   583     __ push(rcx);
   584     __ push(rsi);
   585     __ push(rdi);
   586     __ push(rbp);
   587     __ push_FPU_state();
   589     // push_FPU_state() resets the FP top of stack
   590     // Load original double into FP top of stack
   591     __ fld_d(Address(rsp, saved_argument_off * wordSize));
   592     // Store double into stack as outgoing argument
   593     __ subptr(rsp, wordSize*2);
   594     __ fst_d(Address(rsp, 0));
   596     // Prepare FPU for doing math in C-land
   597     __ empty_FPU_stack();
   598     // Call the C code to massage the double.  Result in EAX
   599     if (t == T_INT)
   600       { BLOCK_COMMENT("SharedRuntime::d2i"); }
   601     else if (t == T_LONG)
   602       { BLOCK_COMMENT("SharedRuntime::d2l"); }
   603     __ call_VM_leaf( fcn, 2 );
   605     // Restore CPU & FPU state
   606     __ pop_FPU_state();
   607     __ pop(rbp);
   608     __ pop(rdi);
   609     __ pop(rsi);
   610     __ pop(rcx);
   611     __ pop(rbx);
   612     __ addptr(rsp, wordSize * 2);
   614     __ ret(0);
   616     return start;
   617   }
   620   //---------------------------------------------------------------------------
   621   // The following routine generates a subroutine to throw an asynchronous
   622   // UnknownError when an unsafe access gets a fault that could not be
   623   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   624   address generate_handler_for_unsafe_access() {
   625     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   626     address start = __ pc();
   628     __ push(0);                       // hole for return address-to-be
   629     __ pusha();                       // push registers
   630     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   631     BLOCK_COMMENT("call handle_unsafe_access");
   632     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   633     __ movptr(next_pc, rax);          // stuff next address
   634     __ popa();
   635     __ ret(0);                        // jump to next address
   637     return start;
   638   }
   641   //----------------------------------------------------------------------------------------------------
   642   // Non-destructive plausibility checks for oops
   644   address generate_verify_oop() {
   645     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   646     address start = __ pc();
   648     // Incoming arguments on stack after saving rax,:
   649     //
   650     // [tos    ]: saved rdx
   651     // [tos + 1]: saved EFLAGS
   652     // [tos + 2]: return address
   653     // [tos + 3]: char* error message
   654     // [tos + 4]: oop   object to verify
   655     // [tos + 5]: saved rax, - saved by caller and bashed
   657     Label exit, error;
   658     __ pushf();
   659     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   660     __ push(rdx);                                // save rdx
   661     // make sure object is 'reasonable'
   662     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
   663     __ testptr(rax, rax);
   664     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   666     // Check if the oop is in the right area of memory
   667     const int oop_mask = Universe::verify_oop_mask();
   668     const int oop_bits = Universe::verify_oop_bits();
   669     __ mov(rdx, rax);
   670     __ andptr(rdx, oop_mask);
   671     __ cmpptr(rdx, oop_bits);
   672     __ jcc(Assembler::notZero, error);
   674     // make sure klass is 'reasonable', which is not zero.
   675     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   676     __ testptr(rax, rax);
   677     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   678     // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
   680     // return if everything seems ok
   681     __ bind(exit);
   682     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   683     __ pop(rdx);                                 // restore rdx
   684     __ popf();                                   // restore EFLAGS
   685     __ ret(3 * wordSize);                        // pop arguments
   687     // handle errors
   688     __ bind(error);
   689     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   690     __ pop(rdx);                                 // get saved rdx back
   691     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
   692     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
   693     BLOCK_COMMENT("call MacroAssembler::debug");
   694     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   695     __ popa();
   696     __ ret(3 * wordSize);                        // pop arguments
   697     return start;
   698   }
   700   //
   701   //  Generate pre-barrier for array stores
   702   //
   703   //  Input:
   704   //     start   -  starting address
   705   //     count   -  element count
   706   void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
   707     assert_different_registers(start, count);
   708     BarrierSet* bs = Universe::heap()->barrier_set();
   709     switch (bs->kind()) {
   710       case BarrierSet::G1SATBCT:
   711       case BarrierSet::G1SATBCTLogging:
   712         // With G1, don't generate the call if we statically know that the target in uninitialized
   713         if (!uninitialized_target) {
   714            __ pusha();                      // push registers
   715            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
   716                            start, count);
   717            __ popa();
   718          }
   719         break;
   720       case BarrierSet::CardTableModRef:
   721       case BarrierSet::CardTableExtension:
   722       case BarrierSet::ModRef:
   723         break;
   724       default      :
   725         ShouldNotReachHere();
   727     }
   728   }
   731   //
   732   // Generate a post-barrier for an array store
   733   //
   734   //     start    -  starting address
   735   //     count    -  element count
   736   //
   737   //  The two input registers are overwritten.
   738   //
   739   void  gen_write_ref_array_post_barrier(Register start, Register count) {
   740     BarrierSet* bs = Universe::heap()->barrier_set();
   741     assert_different_registers(start, count);
   742     switch (bs->kind()) {
   743       case BarrierSet::G1SATBCT:
   744       case BarrierSet::G1SATBCTLogging:
   745         {
   746           __ pusha();                      // push registers
   747           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
   748                           start, count);
   749           __ popa();
   750         }
   751         break;
   753       case BarrierSet::CardTableModRef:
   754       case BarrierSet::CardTableExtension:
   755         {
   756           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   757           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   759           Label L_loop;
   760           const Register end = count;  // elements count; end == start+count-1
   761           assert_different_registers(start, end);
   763           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
   764           __ shrptr(start, CardTableModRefBS::card_shift);
   765           __ shrptr(end,   CardTableModRefBS::card_shift);
   766           __ subptr(end, start); // end --> count
   767         __ BIND(L_loop);
   768           intptr_t disp = (intptr_t) ct->byte_map_base;
   769           Address cardtable(start, count, Address::times_1, disp);
   770           __ movb(cardtable, 0);
   771           __ decrement(count);
   772           __ jcc(Assembler::greaterEqual, L_loop);
   773         }
   774         break;
   775       case BarrierSet::ModRef:
   776         break;
   777       default      :
   778         ShouldNotReachHere();
   780     }
   781   }
   784   // Copy 64 bytes chunks
   785   //
   786   // Inputs:
   787   //   from        - source array address
   788   //   to_from     - destination array address - from
   789   //   qword_count - 8-bytes element count, negative
   790   //
   791   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
   792     assert( UseSSE >= 2, "supported cpu only" );
   793     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   794     // Copy 64-byte chunks
   795     __ jmpb(L_copy_64_bytes);
   796     __ align(OptoLoopAlignment);
   797   __ BIND(L_copy_64_bytes_loop);
   799     if (UseUnalignedLoadStores) {
   800       if (UseAVX >= 2) {
   801         __ vmovdqu(xmm0, Address(from,  0));
   802         __ vmovdqu(Address(from, to_from, Address::times_1,  0), xmm0);
   803         __ vmovdqu(xmm1, Address(from, 32));
   804         __ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1);
   805       } else {
   806         __ movdqu(xmm0, Address(from, 0));
   807         __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
   808         __ movdqu(xmm1, Address(from, 16));
   809         __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
   810         __ movdqu(xmm2, Address(from, 32));
   811         __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
   812         __ movdqu(xmm3, Address(from, 48));
   813         __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
   814       }
   815     } else {
   816       __ movq(xmm0, Address(from, 0));
   817       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
   818       __ movq(xmm1, Address(from, 8));
   819       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
   820       __ movq(xmm2, Address(from, 16));
   821       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
   822       __ movq(xmm3, Address(from, 24));
   823       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
   824       __ movq(xmm4, Address(from, 32));
   825       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
   826       __ movq(xmm5, Address(from, 40));
   827       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
   828       __ movq(xmm6, Address(from, 48));
   829       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
   830       __ movq(xmm7, Address(from, 56));
   831       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
   832     }
   834     __ addl(from, 64);
   835   __ BIND(L_copy_64_bytes);
   836     __ subl(qword_count, 8);
   837     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   838     __ addl(qword_count, 8);
   839     __ jccb(Assembler::zero, L_exit);
   840     //
   841     // length is too short, just copy qwords
   842     //
   843   __ BIND(L_copy_8_bytes);
   844     __ movq(xmm0, Address(from, 0));
   845     __ movq(Address(from, to_from, Address::times_1), xmm0);
   846     __ addl(from, 8);
   847     __ decrement(qword_count);
   848     __ jcc(Assembler::greater, L_copy_8_bytes);
   849   __ BIND(L_exit);
   850   }
   852   // Copy 64 bytes chunks
   853   //
   854   // Inputs:
   855   //   from        - source array address
   856   //   to_from     - destination array address - from
   857   //   qword_count - 8-bytes element count, negative
   858   //
   859   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   860     assert( VM_Version::supports_mmx(), "supported cpu only" );
   861     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   862     // Copy 64-byte chunks
   863     __ jmpb(L_copy_64_bytes);
   864     __ align(OptoLoopAlignment);
   865   __ BIND(L_copy_64_bytes_loop);
   866     __ movq(mmx0, Address(from, 0));
   867     __ movq(mmx1, Address(from, 8));
   868     __ movq(mmx2, Address(from, 16));
   869     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   870     __ movq(mmx3, Address(from, 24));
   871     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   872     __ movq(mmx4, Address(from, 32));
   873     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   874     __ movq(mmx5, Address(from, 40));
   875     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   876     __ movq(mmx6, Address(from, 48));
   877     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   878     __ movq(mmx7, Address(from, 56));
   879     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   880     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   881     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   882     __ addptr(from, 64);
   883   __ BIND(L_copy_64_bytes);
   884     __ subl(qword_count, 8);
   885     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   886     __ addl(qword_count, 8);
   887     __ jccb(Assembler::zero, L_exit);
   888     //
   889     // length is too short, just copy qwords
   890     //
   891   __ BIND(L_copy_8_bytes);
   892     __ movq(mmx0, Address(from, 0));
   893     __ movq(Address(from, to_from, Address::times_1), mmx0);
   894     __ addptr(from, 8);
   895     __ decrement(qword_count);
   896     __ jcc(Assembler::greater, L_copy_8_bytes);
   897   __ BIND(L_exit);
   898     __ emms();
   899   }
   901   address generate_disjoint_copy(BasicType t, bool aligned,
   902                                  Address::ScaleFactor sf,
   903                                  address* entry, const char *name,
   904                                  bool dest_uninitialized = false) {
   905     __ align(CodeEntryAlignment);
   906     StubCodeMark mark(this, "StubRoutines", name);
   907     address start = __ pc();
   909     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   910     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   912     int shift = Address::times_ptr - sf;
   914     const Register from     = rsi;  // source array address
   915     const Register to       = rdi;  // destination array address
   916     const Register count    = rcx;  // elements count
   917     const Register to_from  = to;   // (to - from)
   918     const Register saved_to = rdx;  // saved destination array address
   920     __ enter(); // required for proper stackwalking of RuntimeStub frame
   921     __ push(rsi);
   922     __ push(rdi);
   923     __ movptr(from , Address(rsp, 12+ 4));
   924     __ movptr(to   , Address(rsp, 12+ 8));
   925     __ movl(count, Address(rsp, 12+ 12));
   927     if (entry != NULL) {
   928       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   929       BLOCK_COMMENT("Entry:");
   930     }
   932     if (t == T_OBJECT) {
   933       __ testl(count, count);
   934       __ jcc(Assembler::zero, L_0_count);
   935       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
   936       __ mov(saved_to, to);          // save 'to'
   937     }
   939     __ subptr(to, from); // to --> to_from
   940     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   941     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   942     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
   943       // align source address at 4 bytes address boundary
   944       if (t == T_BYTE) {
   945         // One byte misalignment happens only for byte arrays
   946         __ testl(from, 1);
   947         __ jccb(Assembler::zero, L_skip_align1);
   948         __ movb(rax, Address(from, 0));
   949         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   950         __ increment(from);
   951         __ decrement(count);
   952       __ BIND(L_skip_align1);
   953       }
   954       // Two bytes misalignment happens only for byte and short (char) arrays
   955       __ testl(from, 2);
   956       __ jccb(Assembler::zero, L_skip_align2);
   957       __ movw(rax, Address(from, 0));
   958       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   959       __ addptr(from, 2);
   960       __ subl(count, 1<<(shift-1));
   961     __ BIND(L_skip_align2);
   962     }
   963     if (!VM_Version::supports_mmx()) {
   964       __ mov(rax, count);      // save 'count'
   965       __ shrl(count, shift); // bytes count
   966       __ addptr(to_from, from);// restore 'to'
   967       __ rep_mov();
   968       __ subptr(to_from, from);// restore 'to_from'
   969       __ mov(count, rax);      // restore 'count'
   970       __ jmpb(L_copy_2_bytes); // all dwords were copied
   971     } else {
   972       if (!UseUnalignedLoadStores) {
   973         // align to 8 bytes, we know we are 4 byte aligned to start
   974         __ testptr(from, 4);
   975         __ jccb(Assembler::zero, L_copy_64_bytes);
   976         __ movl(rax, Address(from, 0));
   977         __ movl(Address(from, to_from, Address::times_1, 0), rax);
   978         __ addptr(from, 4);
   979         __ subl(count, 1<<shift);
   980       }
   981     __ BIND(L_copy_64_bytes);
   982       __ mov(rax, count);
   983       __ shrl(rax, shift+1);  // 8 bytes chunk count
   984       //
   985       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
   986       //
   987       if (UseXMMForArrayCopy) {
   988         xmm_copy_forward(from, to_from, rax);
   989       } else {
   990         mmx_copy_forward(from, to_from, rax);
   991       }
   992     }
   993     // copy tailing dword
   994   __ BIND(L_copy_4_bytes);
   995     __ testl(count, 1<<shift);
   996     __ jccb(Assembler::zero, L_copy_2_bytes);
   997     __ movl(rax, Address(from, 0));
   998     __ movl(Address(from, to_from, Address::times_1, 0), rax);
   999     if (t == T_BYTE || t == T_SHORT) {
  1000       __ addptr(from, 4);
  1001     __ BIND(L_copy_2_bytes);
  1002       // copy tailing word
  1003       __ testl(count, 1<<(shift-1));
  1004       __ jccb(Assembler::zero, L_copy_byte);
  1005       __ movw(rax, Address(from, 0));
  1006       __ movw(Address(from, to_from, Address::times_1, 0), rax);
  1007       if (t == T_BYTE) {
  1008         __ addptr(from, 2);
  1009       __ BIND(L_copy_byte);
  1010         // copy tailing byte
  1011         __ testl(count, 1);
  1012         __ jccb(Assembler::zero, L_exit);
  1013         __ movb(rax, Address(from, 0));
  1014         __ movb(Address(from, to_from, Address::times_1, 0), rax);
  1015       __ BIND(L_exit);
  1016       } else {
  1017       __ BIND(L_copy_byte);
  1019     } else {
  1020     __ BIND(L_copy_2_bytes);
  1023     if (t == T_OBJECT) {
  1024       __ movl(count, Address(rsp, 12+12)); // reread 'count'
  1025       __ mov(to, saved_to); // restore 'to'
  1026       gen_write_ref_array_post_barrier(to, count);
  1027     __ BIND(L_0_count);
  1029     inc_copy_counter_np(t);
  1030     __ pop(rdi);
  1031     __ pop(rsi);
  1032     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1033     __ xorptr(rax, rax); // return 0
  1034     __ ret(0);
  1035     return start;
  1039   address generate_fill(BasicType t, bool aligned, const char *name) {
  1040     __ align(CodeEntryAlignment);
  1041     StubCodeMark mark(this, "StubRoutines", name);
  1042     address start = __ pc();
  1044     BLOCK_COMMENT("Entry:");
  1046     const Register to       = rdi;  // source array address
  1047     const Register value    = rdx;  // value
  1048     const Register count    = rsi;  // elements count
  1050     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1051     __ push(rsi);
  1052     __ push(rdi);
  1053     __ movptr(to   , Address(rsp, 12+ 4));
  1054     __ movl(value, Address(rsp, 12+ 8));
  1055     __ movl(count, Address(rsp, 12+ 12));
  1057     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1059     __ pop(rdi);
  1060     __ pop(rsi);
  1061     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1062     __ ret(0);
  1063     return start;
  1066   address generate_conjoint_copy(BasicType t, bool aligned,
  1067                                  Address::ScaleFactor sf,
  1068                                  address nooverlap_target,
  1069                                  address* entry, const char *name,
  1070                                  bool dest_uninitialized = false) {
  1071     __ align(CodeEntryAlignment);
  1072     StubCodeMark mark(this, "StubRoutines", name);
  1073     address start = __ pc();
  1075     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
  1076     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
  1078     int shift = Address::times_ptr - sf;
  1080     const Register src   = rax;  // source array address
  1081     const Register dst   = rdx;  // destination array address
  1082     const Register from  = rsi;  // source array address
  1083     const Register to    = rdi;  // destination array address
  1084     const Register count = rcx;  // elements count
  1085     const Register end   = rax;  // array end address
  1087     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1088     __ push(rsi);
  1089     __ push(rdi);
  1090     __ movptr(src  , Address(rsp, 12+ 4));   // from
  1091     __ movptr(dst  , Address(rsp, 12+ 8));   // to
  1092     __ movl2ptr(count, Address(rsp, 12+12)); // count
  1094     if (entry != NULL) {
  1095       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1096       BLOCK_COMMENT("Entry:");
  1099     // nooverlap_target expects arguments in rsi and rdi.
  1100     __ mov(from, src);
  1101     __ mov(to  , dst);
  1103     // arrays overlap test: dispatch to disjoint stub if necessary.
  1104     RuntimeAddress nooverlap(nooverlap_target);
  1105     __ cmpptr(dst, src);
  1106     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
  1107     __ jump_cc(Assembler::belowEqual, nooverlap);
  1108     __ cmpptr(dst, end);
  1109     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1111     if (t == T_OBJECT) {
  1112       __ testl(count, count);
  1113       __ jcc(Assembler::zero, L_0_count);
  1114       gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
  1117     // copy from high to low
  1118     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1119     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1120     if (t == T_BYTE || t == T_SHORT) {
  1121       // Align the end of destination array at 4 bytes address boundary
  1122       __ lea(end, Address(dst, count, sf, 0));
  1123       if (t == T_BYTE) {
  1124         // One byte misalignment happens only for byte arrays
  1125         __ testl(end, 1);
  1126         __ jccb(Assembler::zero, L_skip_align1);
  1127         __ decrement(count);
  1128         __ movb(rdx, Address(from, count, sf, 0));
  1129         __ movb(Address(to, count, sf, 0), rdx);
  1130       __ BIND(L_skip_align1);
  1132       // Two bytes misalignment happens only for byte and short (char) arrays
  1133       __ testl(end, 2);
  1134       __ jccb(Assembler::zero, L_skip_align2);
  1135       __ subptr(count, 1<<(shift-1));
  1136       __ movw(rdx, Address(from, count, sf, 0));
  1137       __ movw(Address(to, count, sf, 0), rdx);
  1138     __ BIND(L_skip_align2);
  1139       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1140       __ jcc(Assembler::below, L_copy_4_bytes);
  1143     if (!VM_Version::supports_mmx()) {
  1144       __ std();
  1145       __ mov(rax, count); // Save 'count'
  1146       __ mov(rdx, to);    // Save 'to'
  1147       __ lea(rsi, Address(from, count, sf, -4));
  1148       __ lea(rdi, Address(to  , count, sf, -4));
  1149       __ shrptr(count, shift); // bytes count
  1150       __ rep_mov();
  1151       __ cld();
  1152       __ mov(count, rax); // restore 'count'
  1153       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1154       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
  1155       __ mov(to, rdx);   // restore 'to'
  1156       __ jmpb(L_copy_2_bytes); // all dword were copied
  1157    } else {
  1158       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1159       __ testptr(end, 4);
  1160       __ jccb(Assembler::zero, L_copy_8_bytes);
  1161       __ subl(count, 1<<shift);
  1162       __ movl(rdx, Address(from, count, sf, 0));
  1163       __ movl(Address(to, count, sf, 0), rdx);
  1164       __ jmpb(L_copy_8_bytes);
  1166       __ align(OptoLoopAlignment);
  1167       // Move 8 bytes
  1168     __ BIND(L_copy_8_bytes_loop);
  1169       if (UseXMMForArrayCopy) {
  1170         __ movq(xmm0, Address(from, count, sf, 0));
  1171         __ movq(Address(to, count, sf, 0), xmm0);
  1172       } else {
  1173         __ movq(mmx0, Address(from, count, sf, 0));
  1174         __ movq(Address(to, count, sf, 0), mmx0);
  1176     __ BIND(L_copy_8_bytes);
  1177       __ subl(count, 2<<shift);
  1178       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1179       __ addl(count, 2<<shift);
  1180       if (!UseXMMForArrayCopy) {
  1181         __ emms();
  1184   __ BIND(L_copy_4_bytes);
  1185     // copy prefix qword
  1186     __ testl(count, 1<<shift);
  1187     __ jccb(Assembler::zero, L_copy_2_bytes);
  1188     __ movl(rdx, Address(from, count, sf, -4));
  1189     __ movl(Address(to, count, sf, -4), rdx);
  1191     if (t == T_BYTE || t == T_SHORT) {
  1192         __ subl(count, (1<<shift));
  1193       __ BIND(L_copy_2_bytes);
  1194         // copy prefix dword
  1195         __ testl(count, 1<<(shift-1));
  1196         __ jccb(Assembler::zero, L_copy_byte);
  1197         __ movw(rdx, Address(from, count, sf, -2));
  1198         __ movw(Address(to, count, sf, -2), rdx);
  1199         if (t == T_BYTE) {
  1200           __ subl(count, 1<<(shift-1));
  1201         __ BIND(L_copy_byte);
  1202           // copy prefix byte
  1203           __ testl(count, 1);
  1204           __ jccb(Assembler::zero, L_exit);
  1205           __ movb(rdx, Address(from, 0));
  1206           __ movb(Address(to, 0), rdx);
  1207         __ BIND(L_exit);
  1208         } else {
  1209         __ BIND(L_copy_byte);
  1211     } else {
  1212     __ BIND(L_copy_2_bytes);
  1214     if (t == T_OBJECT) {
  1215       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
  1216       gen_write_ref_array_post_barrier(to, count);
  1217     __ BIND(L_0_count);
  1219     inc_copy_counter_np(t);
  1220     __ pop(rdi);
  1221     __ pop(rsi);
  1222     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1223     __ xorptr(rax, rax); // return 0
  1224     __ ret(0);
  1225     return start;
  1229   address generate_disjoint_long_copy(address* entry, const char *name) {
  1230     __ align(CodeEntryAlignment);
  1231     StubCodeMark mark(this, "StubRoutines", name);
  1232     address start = __ pc();
  1234     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1235     const Register from       = rax;  // source array address
  1236     const Register to         = rdx;  // destination array address
  1237     const Register count      = rcx;  // elements count
  1238     const Register to_from    = rdx;  // (to - from)
  1240     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1241     __ movptr(from , Address(rsp, 8+0));       // from
  1242     __ movptr(to   , Address(rsp, 8+4));       // to
  1243     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1245     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1246     BLOCK_COMMENT("Entry:");
  1248     __ subptr(to, from); // to --> to_from
  1249     if (VM_Version::supports_mmx()) {
  1250       if (UseXMMForArrayCopy) {
  1251         xmm_copy_forward(from, to_from, count);
  1252       } else {
  1253         mmx_copy_forward(from, to_from, count);
  1255     } else {
  1256       __ jmpb(L_copy_8_bytes);
  1257       __ align(OptoLoopAlignment);
  1258     __ BIND(L_copy_8_bytes_loop);
  1259       __ fild_d(Address(from, 0));
  1260       __ fistp_d(Address(from, to_from, Address::times_1));
  1261       __ addptr(from, 8);
  1262     __ BIND(L_copy_8_bytes);
  1263       __ decrement(count);
  1264       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1266     inc_copy_counter_np(T_LONG);
  1267     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1268     __ xorptr(rax, rax); // return 0
  1269     __ ret(0);
  1270     return start;
  1273   address generate_conjoint_long_copy(address nooverlap_target,
  1274                                       address* entry, const char *name) {
  1275     __ align(CodeEntryAlignment);
  1276     StubCodeMark mark(this, "StubRoutines", name);
  1277     address start = __ pc();
  1279     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1280     const Register from       = rax;  // source array address
  1281     const Register to         = rdx;  // destination array address
  1282     const Register count      = rcx;  // elements count
  1283     const Register end_from   = rax;  // source array end address
  1285     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1286     __ movptr(from , Address(rsp, 8+0));       // from
  1287     __ movptr(to   , Address(rsp, 8+4));       // to
  1288     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1290     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1291     BLOCK_COMMENT("Entry:");
  1293     // arrays overlap test
  1294     __ cmpptr(to, from);
  1295     RuntimeAddress nooverlap(nooverlap_target);
  1296     __ jump_cc(Assembler::belowEqual, nooverlap);
  1297     __ lea(end_from, Address(from, count, Address::times_8, 0));
  1298     __ cmpptr(to, end_from);
  1299     __ movptr(from, Address(rsp, 8));  // from
  1300     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1302     __ jmpb(L_copy_8_bytes);
  1304     __ align(OptoLoopAlignment);
  1305   __ BIND(L_copy_8_bytes_loop);
  1306     if (VM_Version::supports_mmx()) {
  1307       if (UseXMMForArrayCopy) {
  1308         __ movq(xmm0, Address(from, count, Address::times_8));
  1309         __ movq(Address(to, count, Address::times_8), xmm0);
  1310       } else {
  1311         __ movq(mmx0, Address(from, count, Address::times_8));
  1312         __ movq(Address(to, count, Address::times_8), mmx0);
  1314     } else {
  1315       __ fild_d(Address(from, count, Address::times_8));
  1316       __ fistp_d(Address(to, count, Address::times_8));
  1318   __ BIND(L_copy_8_bytes);
  1319     __ decrement(count);
  1320     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1322     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
  1323       __ emms();
  1325     inc_copy_counter_np(T_LONG);
  1326     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1327     __ xorptr(rax, rax); // return 0
  1328     __ ret(0);
  1329     return start;
  1333   // Helper for generating a dynamic type check.
  1334   // The sub_klass must be one of {rbx, rdx, rsi}.
  1335   // The temp is killed.
  1336   void generate_type_check(Register sub_klass,
  1337                            Address& super_check_offset_addr,
  1338                            Address& super_klass_addr,
  1339                            Register temp,
  1340                            Label* L_success, Label* L_failure) {
  1341     BLOCK_COMMENT("type_check:");
  1343     Label L_fallthrough;
  1344 #define LOCAL_JCC(assembler_con, label_ptr)                             \
  1345     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
  1346     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
  1348     // The following is a strange variation of the fast path which requires
  1349     // one less register, because needed values are on the argument stack.
  1350     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
  1351     //                                  L_success, L_failure, NULL);
  1352     assert_different_registers(sub_klass, temp);
  1354     int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  1356     // if the pointers are equal, we are done (e.g., String[] elements)
  1357     __ cmpptr(sub_klass, super_klass_addr);
  1358     LOCAL_JCC(Assembler::equal, L_success);
  1360     // check the supertype display:
  1361     __ movl2ptr(temp, super_check_offset_addr);
  1362     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1363     __ movptr(temp, super_check_addr); // load displayed supertype
  1364     __ cmpptr(temp, super_klass_addr); // test the super type
  1365     LOCAL_JCC(Assembler::equal, L_success);
  1367     // if it was a primary super, we can just fail immediately
  1368     __ cmpl(super_check_offset_addr, sc_offset);
  1369     LOCAL_JCC(Assembler::notEqual, L_failure);
  1371     // The repne_scan instruction uses fixed registers, which will get spilled.
  1372     // We happen to know this works best when super_klass is in rax.
  1373     Register super_klass = temp;
  1374     __ movptr(super_klass, super_klass_addr);
  1375     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
  1376                                      L_success, L_failure);
  1378     __ bind(L_fallthrough);
  1380     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
  1381     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
  1383 #undef LOCAL_JCC
  1386   //
  1387   //  Generate checkcasting array copy stub
  1388   //
  1389   //  Input:
  1390   //    4(rsp)   - source array address
  1391   //    8(rsp)   - destination array address
  1392   //   12(rsp)   - element count, can be zero
  1393   //   16(rsp)   - size_t ckoff (super_check_offset)
  1394   //   20(rsp)   - oop ckval (super_klass)
  1395   //
  1396   //  Output:
  1397   //    rax, ==  0  -  success
  1398   //    rax, == -1^K - failure, where K is partial transfer count
  1399   //
  1400   address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
  1401     __ align(CodeEntryAlignment);
  1402     StubCodeMark mark(this, "StubRoutines", name);
  1403     address start = __ pc();
  1405     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1407     // register use:
  1408     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1409     //  rdi, rsi      -- element access (oop, klass)
  1410     //  rbx,           -- temp
  1411     const Register from       = rax;    // source array address
  1412     const Register to         = rdx;    // destination array address
  1413     const Register length     = rcx;    // elements count
  1414     const Register elem       = rdi;    // each oop copied
  1415     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1416     const Register temp       = rbx;    // lone remaining temp
  1418     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1420     __ push(rsi);
  1421     __ push(rdi);
  1422     __ push(rbx);
  1424     Address   from_arg(rsp, 16+ 4);     // from
  1425     Address     to_arg(rsp, 16+ 8);     // to
  1426     Address length_arg(rsp, 16+12);     // elements count
  1427     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1428     Address  ckval_arg(rsp, 16+20);     // super_klass
  1430     // Load up:
  1431     __ movptr(from,     from_arg);
  1432     __ movptr(to,         to_arg);
  1433     __ movl2ptr(length, length_arg);
  1435     if (entry != NULL) {
  1436       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1437       BLOCK_COMMENT("Entry:");
  1440     //---------------------------------------------------------------
  1441     // Assembler stub will be used for this call to arraycopy
  1442     // if the two arrays are subtypes of Object[] but the
  1443     // destination array type is not equal to or a supertype
  1444     // of the source type.  Each element must be separately
  1445     // checked.
  1447     // Loop-invariant addresses.  They are exclusive end pointers.
  1448     Address end_from_addr(from, length, Address::times_ptr, 0);
  1449     Address   end_to_addr(to,   length, Address::times_ptr, 0);
  1451     Register end_from = from;           // re-use
  1452     Register end_to   = to;             // re-use
  1453     Register count    = length;         // re-use
  1455     // Loop-variant addresses.  They assume post-incremented count < 0.
  1456     Address from_element_addr(end_from, count, Address::times_ptr, 0);
  1457     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
  1458     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1460     // Copy from low to high addresses, indexed from the end of each array.
  1461     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
  1462     __ lea(end_from, end_from_addr);
  1463     __ lea(end_to,   end_to_addr);
  1464     assert(length == count, "");        // else fix next line:
  1465     __ negptr(count);                   // negate and test the length
  1466     __ jccb(Assembler::notZero, L_load_element);
  1468     // Empty array:  Nothing to do.
  1469     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  1470     __ jmp(L_done);
  1472     // ======== begin loop ========
  1473     // (Loop is rotated; its entry is L_load_element.)
  1474     // Loop control:
  1475     //   for (count = -count; count != 0; count++)
  1476     // Base pointers src, dst are biased by 8*count,to last element.
  1477     __ align(OptoLoopAlignment);
  1479     __ BIND(L_store_element);
  1480     __ movptr(to_element_addr, elem);     // store the oop
  1481     __ increment(count);                // increment the count toward zero
  1482     __ jccb(Assembler::zero, L_do_card_marks);
  1484     // ======== loop entry is here ========
  1485     __ BIND(L_load_element);
  1486     __ movptr(elem, from_element_addr);   // load the oop
  1487     __ testptr(elem, elem);
  1488     __ jccb(Assembler::zero, L_store_element);
  1490     // (Could do a trick here:  Remember last successful non-null
  1491     // element stored and make a quick oop equality check on it.)
  1493     __ movptr(elem_klass, elem_klass_addr); // query the object klass
  1494     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1495                         &L_store_element, NULL);
  1496       // (On fall-through, we have failed the element type check.)
  1497     // ======== end loop ========
  1499     // It was a real error; we must depend on the caller to finish the job.
  1500     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
  1501     // Emit GC store barriers for the oops we have copied (length_arg + count),
  1502     // and report their number to the caller.
  1503     __ addl(count, length_arg);         // transfers = (length - remaining)
  1504     __ movl2ptr(rax, count);            // save the value
  1505     __ notptr(rax);                     // report (-1^K) to caller
  1506     __ movptr(to, to_arg);              // reload
  1507     assert_different_registers(to, count, rax);
  1508     gen_write_ref_array_post_barrier(to, count);
  1509     __ jmpb(L_done);
  1511     // Come here on success only.
  1512     __ BIND(L_do_card_marks);
  1513     __ movl2ptr(count, length_arg);
  1514     __ movptr(to, to_arg);                // reload
  1515     gen_write_ref_array_post_barrier(to, count);
  1516     __ xorptr(rax, rax);                  // return 0 on success
  1518     // Common exit point (success or failure).
  1519     __ BIND(L_done);
  1520     __ pop(rbx);
  1521     __ pop(rdi);
  1522     __ pop(rsi);
  1523     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1524     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1525     __ ret(0);
  1527     return start;
  1530   //
  1531   //  Generate 'unsafe' array copy stub
  1532   //  Though just as safe as the other stubs, it takes an unscaled
  1533   //  size_t argument instead of an element count.
  1534   //
  1535   //  Input:
  1536   //    4(rsp)   - source array address
  1537   //    8(rsp)   - destination array address
  1538   //   12(rsp)   - byte count, can be zero
  1539   //
  1540   //  Output:
  1541   //    rax, ==  0  -  success
  1542   //    rax, == -1  -  need to call System.arraycopy
  1543   //
  1544   // Examines the alignment of the operands and dispatches
  1545   // to a long, int, short, or byte copy loop.
  1546   //
  1547   address generate_unsafe_copy(const char *name,
  1548                                address byte_copy_entry,
  1549                                address short_copy_entry,
  1550                                address int_copy_entry,
  1551                                address long_copy_entry) {
  1553     Label L_long_aligned, L_int_aligned, L_short_aligned;
  1555     __ align(CodeEntryAlignment);
  1556     StubCodeMark mark(this, "StubRoutines", name);
  1557     address start = __ pc();
  1559     const Register from       = rax;  // source array address
  1560     const Register to         = rdx;  // destination array address
  1561     const Register count      = rcx;  // elements count
  1563     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1564     __ push(rsi);
  1565     __ push(rdi);
  1566     Address  from_arg(rsp, 12+ 4);      // from
  1567     Address    to_arg(rsp, 12+ 8);      // to
  1568     Address count_arg(rsp, 12+12);      // byte count
  1570     // Load up:
  1571     __ movptr(from ,  from_arg);
  1572     __ movptr(to   ,    to_arg);
  1573     __ movl2ptr(count, count_arg);
  1575     // bump this on entry, not on exit:
  1576     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1578     const Register bits = rsi;
  1579     __ mov(bits, from);
  1580     __ orptr(bits, to);
  1581     __ orptr(bits, count);
  1583     __ testl(bits, BytesPerLong-1);
  1584     __ jccb(Assembler::zero, L_long_aligned);
  1586     __ testl(bits, BytesPerInt-1);
  1587     __ jccb(Assembler::zero, L_int_aligned);
  1589     __ testl(bits, BytesPerShort-1);
  1590     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1592     __ BIND(L_short_aligned);
  1593     __ shrptr(count, LogBytesPerShort); // size => short_count
  1594     __ movl(count_arg, count);          // update 'count'
  1595     __ jump(RuntimeAddress(short_copy_entry));
  1597     __ BIND(L_int_aligned);
  1598     __ shrptr(count, LogBytesPerInt); // size => int_count
  1599     __ movl(count_arg, count);          // update 'count'
  1600     __ jump(RuntimeAddress(int_copy_entry));
  1602     __ BIND(L_long_aligned);
  1603     __ shrptr(count, LogBytesPerLong); // size => qword_count
  1604     __ movl(count_arg, count);          // update 'count'
  1605     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1606     __ pop(rsi);
  1607     __ jump(RuntimeAddress(long_copy_entry));
  1609     return start;
  1613   // Perform range checks on the proposed arraycopy.
  1614   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1615   void arraycopy_range_checks(Register src,
  1616                               Register src_pos,
  1617                               Register dst,
  1618                               Register dst_pos,
  1619                               Address& length,
  1620                               Label& L_failed) {
  1621     BLOCK_COMMENT("arraycopy_range_checks:");
  1622     const Register src_end = src_pos;   // source array end position
  1623     const Register dst_end = dst_pos;   // destination array end position
  1624     __ addl(src_end, length); // src_pos + length
  1625     __ addl(dst_end, length); // dst_pos + length
  1627     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1628     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1629     __ jcc(Assembler::above, L_failed);
  1631     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1632     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1633     __ jcc(Assembler::above, L_failed);
  1635     BLOCK_COMMENT("arraycopy_range_checks done");
  1639   //
  1640   //  Generate generic array copy stubs
  1641   //
  1642   //  Input:
  1643   //     4(rsp)    -  src oop
  1644   //     8(rsp)    -  src_pos
  1645   //    12(rsp)    -  dst oop
  1646   //    16(rsp)    -  dst_pos
  1647   //    20(rsp)    -  element count
  1648   //
  1649   //  Output:
  1650   //    rax, ==  0  -  success
  1651   //    rax, == -1^K - failure, where K is partial transfer count
  1652   //
  1653   address generate_generic_copy(const char *name,
  1654                                 address entry_jbyte_arraycopy,
  1655                                 address entry_jshort_arraycopy,
  1656                                 address entry_jint_arraycopy,
  1657                                 address entry_oop_arraycopy,
  1658                                 address entry_jlong_arraycopy,
  1659                                 address entry_checkcast_arraycopy) {
  1660     Label L_failed, L_failed_0, L_objArray;
  1662     { int modulus = CodeEntryAlignment;
  1663       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1664       int advance = target - (__ offset() % modulus);
  1665       if (advance < 0)  advance += modulus;
  1666       if (advance > 0)  __ nop(advance);
  1668     StubCodeMark mark(this, "StubRoutines", name);
  1670     // Short-hop target to L_failed.  Makes for denser prologue code.
  1671     __ BIND(L_failed_0);
  1672     __ jmp(L_failed);
  1673     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1675     __ align(CodeEntryAlignment);
  1676     address start = __ pc();
  1678     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1679     __ push(rsi);
  1680     __ push(rdi);
  1682     // bump this on entry, not on exit:
  1683     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1685     // Input values
  1686     Address SRC     (rsp, 12+ 4);
  1687     Address SRC_POS (rsp, 12+ 8);
  1688     Address DST     (rsp, 12+12);
  1689     Address DST_POS (rsp, 12+16);
  1690     Address LENGTH  (rsp, 12+20);
  1692     //-----------------------------------------------------------------------
  1693     // Assembler stub will be used for this call to arraycopy
  1694     // if the following conditions are met:
  1695     //
  1696     // (1) src and dst must not be null.
  1697     // (2) src_pos must not be negative.
  1698     // (3) dst_pos must not be negative.
  1699     // (4) length  must not be negative.
  1700     // (5) src klass and dst klass should be the same and not NULL.
  1701     // (6) src and dst should be arrays.
  1702     // (7) src_pos + length must not exceed length of src.
  1703     // (8) dst_pos + length must not exceed length of dst.
  1704     //
  1706     const Register src     = rax;       // source array oop
  1707     const Register src_pos = rsi;
  1708     const Register dst     = rdx;       // destination array oop
  1709     const Register dst_pos = rdi;
  1710     const Register length  = rcx;       // transfer count
  1712     //  if (src == NULL) return -1;
  1713     __ movptr(src, SRC);      // src oop
  1714     __ testptr(src, src);
  1715     __ jccb(Assembler::zero, L_failed_0);
  1717     //  if (src_pos < 0) return -1;
  1718     __ movl2ptr(src_pos, SRC_POS);  // src_pos
  1719     __ testl(src_pos, src_pos);
  1720     __ jccb(Assembler::negative, L_failed_0);
  1722     //  if (dst == NULL) return -1;
  1723     __ movptr(dst, DST);      // dst oop
  1724     __ testptr(dst, dst);
  1725     __ jccb(Assembler::zero, L_failed_0);
  1727     //  if (dst_pos < 0) return -1;
  1728     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
  1729     __ testl(dst_pos, dst_pos);
  1730     __ jccb(Assembler::negative, L_failed_0);
  1732     //  if (length < 0) return -1;
  1733     __ movl2ptr(length, LENGTH);   // length
  1734     __ testl(length, length);
  1735     __ jccb(Assembler::negative, L_failed_0);
  1737     //  if (src->klass() == NULL) return -1;
  1738     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1739     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1740     const Register rcx_src_klass = rcx;    // array klass
  1741     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1743 #ifdef ASSERT
  1744     //  assert(src->klass() != NULL);
  1745     BLOCK_COMMENT("assert klasses not null");
  1746     { Label L1, L2;
  1747       __ testptr(rcx_src_klass, rcx_src_klass);
  1748       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1749       __ bind(L1);
  1750       __ stop("broken null klass");
  1751       __ bind(L2);
  1752       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
  1753       __ jccb(Assembler::equal, L1);      // this would be broken also
  1754       BLOCK_COMMENT("assert done");
  1756 #endif //ASSERT
  1758     // Load layout helper (32-bits)
  1759     //
  1760     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1761     // 32        30    24            16              8     2                 0
  1762     //
  1763     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1764     //
  1766     int lh_offset = in_bytes(Klass::layout_helper_offset());
  1767     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1769     // Handle objArrays completely differently...
  1770     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1771     __ cmpl(src_klass_lh_addr, objArray_lh);
  1772     __ jcc(Assembler::equal, L_objArray);
  1774     //  if (src->klass() != dst->klass()) return -1;
  1775     __ cmpptr(rcx_src_klass, dst_klass_addr);
  1776     __ jccb(Assembler::notEqual, L_failed_0);
  1778     const Register rcx_lh = rcx;  // layout helper
  1779     assert(rcx_lh == rcx_src_klass, "known alias");
  1780     __ movl(rcx_lh, src_klass_lh_addr);
  1782     //  if (!src->is_Array()) return -1;
  1783     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1784     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1786     // At this point, it is known to be a typeArray (array_tag 0x3).
  1787 #ifdef ASSERT
  1788     { Label L;
  1789       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1790       __ jcc(Assembler::greaterEqual, L); // signed cmp
  1791       __ stop("must be a primitive array");
  1792       __ bind(L);
  1794 #endif
  1796     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1797     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1799     // TypeArrayKlass
  1800     //
  1801     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1802     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1803     //
  1804     const Register rsi_offset = rsi; // array offset
  1805     const Register src_array  = src; // src array offset
  1806     const Register dst_array  = dst; // dst array offset
  1807     const Register rdi_elsize = rdi; // log2 element size
  1809     __ mov(rsi_offset, rcx_lh);
  1810     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
  1811     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1812     __ addptr(src_array, rsi_offset);  // src array offset
  1813     __ addptr(dst_array, rsi_offset);  // dst array offset
  1814     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1816     // next registers should be set before the jump to corresponding stub
  1817     const Register from       = src; // source array address
  1818     const Register to         = dst; // destination array address
  1819     const Register count      = rcx; // elements count
  1820     // some of them should be duplicated on stack
  1821 #define FROM   Address(rsp, 12+ 4)
  1822 #define TO     Address(rsp, 12+ 8)   // Not used now
  1823 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1825     BLOCK_COMMENT("scale indexes to element size");
  1826     __ movl2ptr(rsi, SRC_POS);  // src_pos
  1827     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
  1828     assert(src_array == from, "");
  1829     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
  1830     __ movl2ptr(rdi, DST_POS);  // dst_pos
  1831     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
  1832     assert(dst_array == to, "");
  1833     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
  1834     __ movptr(FROM, from);      // src_addr
  1835     __ mov(rdi_elsize, rcx_lh); // log2 elsize
  1836     __ movl2ptr(count, LENGTH); // elements count
  1838     BLOCK_COMMENT("choose copy loop based on element size");
  1839     __ cmpl(rdi_elsize, 0);
  1841     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1842     __ cmpl(rdi_elsize, LogBytesPerShort);
  1843     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1844     __ cmpl(rdi_elsize, LogBytesPerInt);
  1845     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1846 #ifdef ASSERT
  1847     __ cmpl(rdi_elsize, LogBytesPerLong);
  1848     __ jccb(Assembler::notEqual, L_failed);
  1849 #endif
  1850     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1851     __ pop(rsi);
  1852     __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1854   __ BIND(L_failed);
  1855     __ xorptr(rax, rax);
  1856     __ notptr(rax); // return -1
  1857     __ pop(rdi);
  1858     __ pop(rsi);
  1859     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1860     __ ret(0);
  1862     // ObjArrayKlass
  1863   __ BIND(L_objArray);
  1864     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1866     Label L_plain_copy, L_checkcast_copy;
  1867     //  test array classes for subtyping
  1868     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1869     __ jccb(Assembler::notEqual, L_checkcast_copy);
  1871     // Identically typed arrays can be copied without element-wise checks.
  1872     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1873     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1875   __ BIND(L_plain_copy);
  1876     __ movl2ptr(count, LENGTH); // elements count
  1877     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
  1878     __ lea(from, Address(src, src_pos, Address::times_ptr,
  1879                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1880     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
  1881     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
  1882                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1883     __ movptr(FROM,  from);   // src_addr
  1884     __ movptr(TO,    to);     // dst_addr
  1885     __ movl(COUNT, count);  // count
  1886     __ jump(RuntimeAddress(entry_oop_arraycopy));
  1888   __ BIND(L_checkcast_copy);
  1889     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1891       // Handy offsets:
  1892       int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  1893       int sco_offset = in_bytes(Klass::super_check_offset_offset());
  1895       Register rsi_dst_klass = rsi;
  1896       Register rdi_temp      = rdi;
  1897       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1898       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1899       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1901       // Before looking at dst.length, make sure dst is also an objArray.
  1902       __ movptr(rsi_dst_klass, dst_klass_addr);
  1903       __ cmpl(dst_klass_lh_addr, objArray_lh);
  1904       __ jccb(Assembler::notEqual, L_failed);
  1906       // It is safe to examine both src.length and dst.length.
  1907       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
  1908       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1909       // (Now src_pos and dst_pos are killed, but not src and dst.)
  1911       // We'll need this temp (don't forget to pop it after the type check).
  1912       __ push(rbx);
  1913       Register rbx_src_klass = rbx;
  1915       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1916       __ movptr(rsi_dst_klass, dst_klass_addr);
  1917       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1918       Label L_fail_array_check;
  1919       generate_type_check(rbx_src_klass,
  1920                           super_check_offset_addr, dst_klass_addr,
  1921                           rdi_temp, NULL, &L_fail_array_check);
  1922       // (On fall-through, we have passed the array type check.)
  1923       __ pop(rbx);
  1924       __ jmp(L_plain_copy);
  1926       __ BIND(L_fail_array_check);
  1927       // Reshuffle arguments so we can call checkcast_arraycopy:
  1929       // match initial saves for checkcast_arraycopy
  1930       // push(rsi);    // already done; see above
  1931       // push(rdi);    // already done; see above
  1932       // push(rbx);    // already done; see above
  1934       // Marshal outgoing arguments now, freeing registers.
  1935       Address   from_arg(rsp, 16+ 4);   // from
  1936       Address     to_arg(rsp, 16+ 8);   // to
  1937       Address length_arg(rsp, 16+12);   // elements count
  1938       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1939       Address  ckval_arg(rsp, 16+20);   // super_klass
  1941       Address SRC_POS_arg(rsp, 16+ 8);
  1942       Address DST_POS_arg(rsp, 16+16);
  1943       Address  LENGTH_arg(rsp, 16+20);
  1944       // push rbx, changed the incoming offsets (why not just use rbp,??)
  1945       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1947       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
  1948       __ movl2ptr(length, LENGTH_arg);    // reload elements count
  1949       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
  1950       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
  1952       __ movptr(ckval_arg, rbx);          // destination element type
  1953       __ movl(rbx, Address(rbx, sco_offset));
  1954       __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1956       __ movl(length_arg, length);      // outgoing length argument
  1958       __ lea(from, Address(src, src_pos, Address::times_ptr,
  1959                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1960       __ movptr(from_arg, from);
  1962       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
  1963                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1964       __ movptr(to_arg, to);
  1965       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1968     return start;
  1971   void generate_arraycopy_stubs() {
  1972     address entry;
  1973     address entry_jbyte_arraycopy;
  1974     address entry_jshort_arraycopy;
  1975     address entry_jint_arraycopy;
  1976     address entry_oop_arraycopy;
  1977     address entry_jlong_arraycopy;
  1978     address entry_checkcast_arraycopy;
  1980     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  1981         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  1982                                "arrayof_jbyte_disjoint_arraycopy");
  1983     StubRoutines::_arrayof_jbyte_arraycopy =
  1984         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  1985                                NULL, "arrayof_jbyte_arraycopy");
  1986     StubRoutines::_jbyte_disjoint_arraycopy =
  1987         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  1988                                "jbyte_disjoint_arraycopy");
  1989     StubRoutines::_jbyte_arraycopy =
  1990         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  1991                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
  1993     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  1994         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  1995                                "arrayof_jshort_disjoint_arraycopy");
  1996     StubRoutines::_arrayof_jshort_arraycopy =
  1997         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  1998                                NULL, "arrayof_jshort_arraycopy");
  1999     StubRoutines::_jshort_disjoint_arraycopy =
  2000         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  2001                                "jshort_disjoint_arraycopy");
  2002     StubRoutines::_jshort_arraycopy =
  2003         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  2004                                &entry_jshort_arraycopy, "jshort_arraycopy");
  2006     // Next arrays are always aligned on 4 bytes at least.
  2007     StubRoutines::_jint_disjoint_arraycopy =
  2008         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  2009                                "jint_disjoint_arraycopy");
  2010     StubRoutines::_jint_arraycopy =
  2011         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  2012                                &entry_jint_arraycopy, "jint_arraycopy");
  2014     StubRoutines::_oop_disjoint_arraycopy =
  2015         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2016                                "oop_disjoint_arraycopy");
  2017     StubRoutines::_oop_arraycopy =
  2018         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2019                                &entry_oop_arraycopy, "oop_arraycopy");
  2021     StubRoutines::_oop_disjoint_arraycopy_uninit =
  2022         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2023                                "oop_disjoint_arraycopy_uninit",
  2024                                /*dest_uninitialized*/true);
  2025     StubRoutines::_oop_arraycopy_uninit =
  2026         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2027                                NULL, "oop_arraycopy_uninit",
  2028                                /*dest_uninitialized*/true);
  2030     StubRoutines::_jlong_disjoint_arraycopy =
  2031         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  2032     StubRoutines::_jlong_arraycopy =
  2033         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  2034                                     "jlong_arraycopy");
  2036     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2037     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2038     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2039     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2040     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2041     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2043     StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
  2044     StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
  2045     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
  2046     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
  2048     StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
  2049     StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
  2050     StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
  2051     StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
  2053     StubRoutines::_checkcast_arraycopy =
  2054         generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
  2055     StubRoutines::_checkcast_arraycopy_uninit =
  2056         generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
  2058     StubRoutines::_unsafe_arraycopy =
  2059         generate_unsafe_copy("unsafe_arraycopy",
  2060                                entry_jbyte_arraycopy,
  2061                                entry_jshort_arraycopy,
  2062                                entry_jint_arraycopy,
  2063                                entry_jlong_arraycopy);
  2065     StubRoutines::_generic_arraycopy =
  2066         generate_generic_copy("generic_arraycopy",
  2067                                entry_jbyte_arraycopy,
  2068                                entry_jshort_arraycopy,
  2069                                entry_jint_arraycopy,
  2070                                entry_oop_arraycopy,
  2071                                entry_jlong_arraycopy,
  2072                                entry_checkcast_arraycopy);
  2075   void generate_math_stubs() {
  2077       StubCodeMark mark(this, "StubRoutines", "log");
  2078       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2080       __ fld_d(Address(rsp, 4));
  2081       __ flog();
  2082       __ ret(0);
  2085       StubCodeMark mark(this, "StubRoutines", "log10");
  2086       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2088       __ fld_d(Address(rsp, 4));
  2089       __ flog10();
  2090       __ ret(0);
  2093       StubCodeMark mark(this, "StubRoutines", "sin");
  2094       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
  2096       __ fld_d(Address(rsp, 4));
  2097       __ trigfunc('s');
  2098       __ ret(0);
  2101       StubCodeMark mark(this, "StubRoutines", "cos");
  2102       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2104       __ fld_d(Address(rsp, 4));
  2105       __ trigfunc('c');
  2106       __ ret(0);
  2109       StubCodeMark mark(this, "StubRoutines", "tan");
  2110       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2112       __ fld_d(Address(rsp, 4));
  2113       __ trigfunc('t');
  2114       __ ret(0);
  2117       StubCodeMark mark(this, "StubRoutines", "exp");
  2118       StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
  2120       __ fld_d(Address(rsp, 4));
  2121       __ exp_with_fallback(0);
  2122       __ ret(0);
  2125       StubCodeMark mark(this, "StubRoutines", "pow");
  2126       StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
  2128       __ fld_d(Address(rsp, 12));
  2129       __ fld_d(Address(rsp, 4));
  2130       __ pow_with_fallback(0);
  2131       __ ret(0);
  2135   // AES intrinsic stubs
  2136   enum {AESBlockSize = 16};
  2138   address generate_key_shuffle_mask() {
  2139     __ align(16);
  2140     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
  2141     address start = __ pc();
  2142     __ emit_data(0x00010203, relocInfo::none, 0 );
  2143     __ emit_data(0x04050607, relocInfo::none, 0 );
  2144     __ emit_data(0x08090a0b, relocInfo::none, 0 );
  2145     __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
  2146     return start;
  2149   // Utility routine for loading a 128-bit key word in little endian format
  2150   // can optionally specify that the shuffle mask is already in an xmmregister
  2151   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
  2152     __ movdqu(xmmdst, Address(key, offset));
  2153     if (xmm_shuf_mask != NULL) {
  2154       __ pshufb(xmmdst, xmm_shuf_mask);
  2155     } else {
  2156       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  2160   // aesenc using specified key+offset
  2161   // can optionally specify that the shuffle mask is already in an xmmregister
  2162   void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
  2163     load_key(xmmtmp, key, offset, xmm_shuf_mask);
  2164     __ aesenc(xmmdst, xmmtmp);
  2167   // aesdec using specified key+offset
  2168   // can optionally specify that the shuffle mask is already in an xmmregister
  2169   void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
  2170     load_key(xmmtmp, key, offset, xmm_shuf_mask);
  2171     __ aesdec(xmmdst, xmmtmp);
  2175   // Arguments:
  2176   //
  2177   // Inputs:
  2178   //   c_rarg0   - source byte array address
  2179   //   c_rarg1   - destination byte array address
  2180   //   c_rarg2   - K (key) in little endian int array
  2181   //
  2182   address generate_aescrypt_encryptBlock() {
  2183     assert(UseAES, "need AES instructions and misaligned SSE support");
  2184     __ align(CodeEntryAlignment);
  2185     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
  2186     Label L_doLast;
  2187     address start = __ pc();
  2189     const Register from        = rdx;      // source array address
  2190     const Register to          = rdx;      // destination array address
  2191     const Register key         = rcx;      // key array address
  2192     const Register keylen      = rax;
  2193     const Address  from_param(rbp, 8+0);
  2194     const Address  to_param  (rbp, 8+4);
  2195     const Address  key_param (rbp, 8+8);
  2197     const XMMRegister xmm_result = xmm0;
  2198     const XMMRegister xmm_key_shuf_mask = xmm1;
  2199     const XMMRegister xmm_temp1  = xmm2;
  2200     const XMMRegister xmm_temp2  = xmm3;
  2201     const XMMRegister xmm_temp3  = xmm4;
  2202     const XMMRegister xmm_temp4  = xmm5;
  2204     __ enter();   // required for proper stackwalking of RuntimeStub frame
  2205     __ movptr(from, from_param);
  2206     __ movptr(key, key_param);
  2208     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
  2209     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
  2211     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  2212     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
  2213     __ movptr(to, to_param);
  2215     // For encryption, the java expanded key ordering is just what we need
  2217     load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
  2218     __ pxor(xmm_result, xmm_temp1);
  2220     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
  2221     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
  2222     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
  2223     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
  2225     __ aesenc(xmm_result, xmm_temp1);
  2226     __ aesenc(xmm_result, xmm_temp2);
  2227     __ aesenc(xmm_result, xmm_temp3);
  2228     __ aesenc(xmm_result, xmm_temp4);
  2230     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
  2231     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
  2232     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
  2233     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
  2235     __ aesenc(xmm_result, xmm_temp1);
  2236     __ aesenc(xmm_result, xmm_temp2);
  2237     __ aesenc(xmm_result, xmm_temp3);
  2238     __ aesenc(xmm_result, xmm_temp4);
  2240     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
  2241     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
  2243     __ cmpl(keylen, 44);
  2244     __ jccb(Assembler::equal, L_doLast);
  2246     __ aesenc(xmm_result, xmm_temp1);
  2247     __ aesenc(xmm_result, xmm_temp2);
  2249     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
  2250     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
  2252     __ cmpl(keylen, 52);
  2253     __ jccb(Assembler::equal, L_doLast);
  2255     __ aesenc(xmm_result, xmm_temp1);
  2256     __ aesenc(xmm_result, xmm_temp2);
  2258     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
  2259     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
  2261     __ BIND(L_doLast);
  2262     __ aesenc(xmm_result, xmm_temp1);
  2263     __ aesenclast(xmm_result, xmm_temp2);
  2264     __ movdqu(Address(to, 0), xmm_result);        // store the result
  2265     __ xorptr(rax, rax); // return 0
  2266     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2267     __ ret(0);
  2269     return start;
  2273   // Arguments:
  2274   //
  2275   // Inputs:
  2276   //   c_rarg0   - source byte array address
  2277   //   c_rarg1   - destination byte array address
  2278   //   c_rarg2   - K (key) in little endian int array
  2279   //
  2280   address generate_aescrypt_decryptBlock() {
  2281     assert(UseAES, "need AES instructions and misaligned SSE support");
  2282     __ align(CodeEntryAlignment);
  2283     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
  2284     Label L_doLast;
  2285     address start = __ pc();
  2287     const Register from        = rdx;      // source array address
  2288     const Register to          = rdx;      // destination array address
  2289     const Register key         = rcx;      // key array address
  2290     const Register keylen      = rax;
  2291     const Address  from_param(rbp, 8+0);
  2292     const Address  to_param  (rbp, 8+4);
  2293     const Address  key_param (rbp, 8+8);
  2295     const XMMRegister xmm_result = xmm0;
  2296     const XMMRegister xmm_key_shuf_mask = xmm1;
  2297     const XMMRegister xmm_temp1  = xmm2;
  2298     const XMMRegister xmm_temp2  = xmm3;
  2299     const XMMRegister xmm_temp3  = xmm4;
  2300     const XMMRegister xmm_temp4  = xmm5;
  2302     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2303     __ movptr(from, from_param);
  2304     __ movptr(key, key_param);
  2306     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
  2307     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
  2309     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  2310     __ movdqu(xmm_result, Address(from, 0));
  2311     __ movptr(to, to_param);
  2313     // for decryption java expanded key ordering is rotated one position from what we want
  2314     // so we start from 0x10 here and hit 0x00 last
  2315     // we don't know if the key is aligned, hence not using load-execute form
  2316     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
  2317     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
  2318     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
  2319     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
  2321     __ pxor  (xmm_result, xmm_temp1);
  2322     __ aesdec(xmm_result, xmm_temp2);
  2323     __ aesdec(xmm_result, xmm_temp3);
  2324     __ aesdec(xmm_result, xmm_temp4);
  2326     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
  2327     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
  2328     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
  2329     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
  2331     __ aesdec(xmm_result, xmm_temp1);
  2332     __ aesdec(xmm_result, xmm_temp2);
  2333     __ aesdec(xmm_result, xmm_temp3);
  2334     __ aesdec(xmm_result, xmm_temp4);
  2336     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
  2337     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
  2338     load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
  2340     __ cmpl(keylen, 44);
  2341     __ jccb(Assembler::equal, L_doLast);
  2343     __ aesdec(xmm_result, xmm_temp1);
  2344     __ aesdec(xmm_result, xmm_temp2);
  2346     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
  2347     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
  2349     __ cmpl(keylen, 52);
  2350     __ jccb(Assembler::equal, L_doLast);
  2352     __ aesdec(xmm_result, xmm_temp1);
  2353     __ aesdec(xmm_result, xmm_temp2);
  2355     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
  2356     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
  2358     __ BIND(L_doLast);
  2359     __ aesdec(xmm_result, xmm_temp1);
  2360     __ aesdec(xmm_result, xmm_temp2);
  2362     // for decryption the aesdeclast operation is always on key+0x00
  2363     __ aesdeclast(xmm_result, xmm_temp3);
  2364     __ movdqu(Address(to, 0), xmm_result);  // store the result
  2365     __ xorptr(rax, rax); // return 0
  2366     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2367     __ ret(0);
  2369     return start;
  2372   void handleSOERegisters(bool saving) {
  2373     const int saveFrameSizeInBytes = 4 * wordSize;
  2374     const Address saved_rbx     (rbp, -3 * wordSize);
  2375     const Address saved_rsi     (rbp, -2 * wordSize);
  2376     const Address saved_rdi     (rbp, -1 * wordSize);
  2378     if (saving) {
  2379       __ subptr(rsp, saveFrameSizeInBytes);
  2380       __ movptr(saved_rsi, rsi);
  2381       __ movptr(saved_rdi, rdi);
  2382       __ movptr(saved_rbx, rbx);
  2383     } else {
  2384       // restoring
  2385       __ movptr(rsi, saved_rsi);
  2386       __ movptr(rdi, saved_rdi);
  2387       __ movptr(rbx, saved_rbx);
  2391   // Arguments:
  2392   //
  2393   // Inputs:
  2394   //   c_rarg0   - source byte array address
  2395   //   c_rarg1   - destination byte array address
  2396   //   c_rarg2   - K (key) in little endian int array
  2397   //   c_rarg3   - r vector byte array address
  2398   //   c_rarg4   - input length
  2399   //
  2400   address generate_cipherBlockChaining_encryptAESCrypt() {
  2401     assert(UseAES, "need AES instructions and misaligned SSE support");
  2402     __ align(CodeEntryAlignment);
  2403     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
  2404     address start = __ pc();
  2406     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
  2407     const Register from        = rsi;      // source array address
  2408     const Register to          = rdx;      // destination array address
  2409     const Register key         = rcx;      // key array address
  2410     const Register rvec        = rdi;      // r byte array initialized from initvector array address
  2411                                            // and left with the results of the last encryption block
  2412     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
  2413     const Register pos         = rax;
  2415     // xmm register assignments for the loops below
  2416     const XMMRegister xmm_result = xmm0;
  2417     const XMMRegister xmm_temp   = xmm1;
  2418     // first 6 keys preloaded into xmm2-xmm7
  2419     const int XMM_REG_NUM_KEY_FIRST = 2;
  2420     const int XMM_REG_NUM_KEY_LAST  = 7;
  2421     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
  2423     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2424     handleSOERegisters(true /*saving*/);
  2426     // load registers from incoming parameters
  2427     const Address  from_param(rbp, 8+0);
  2428     const Address  to_param  (rbp, 8+4);
  2429     const Address  key_param (rbp, 8+8);
  2430     const Address  rvec_param (rbp, 8+12);
  2431     const Address  len_param  (rbp, 8+16);
  2432     __ movptr(from , from_param);
  2433     __ movptr(to   , to_param);
  2434     __ movptr(key  , key_param);
  2435     __ movptr(rvec , rvec_param);
  2436     __ movptr(len_reg , len_param);
  2438     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
  2439     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  2440     // load up xmm regs 2 thru 7 with keys 0-5
  2441     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2442       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
  2443       offset += 0x10;
  2446     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
  2448     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
  2449     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
  2450     __ cmpl(rax, 44);
  2451     __ jcc(Assembler::notEqual, L_key_192_256);
  2453     // 128 bit code follows here
  2454     __ movl(pos, 0);
  2455     __ align(OptoLoopAlignment);
  2456     __ BIND(L_loopTop_128);
  2457     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
  2458     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
  2460     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
  2461     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2462       __ aesenc(xmm_result, as_XMMRegister(rnum));
  2464     for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
  2465       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
  2467     load_key(xmm_temp, key, 0xa0);
  2468     __ aesenclast(xmm_result, xmm_temp);
  2470     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
  2471     // no need to store r to memory until we exit
  2472     __ addptr(pos, AESBlockSize);
  2473     __ subptr(len_reg, AESBlockSize);
  2474     __ jcc(Assembler::notEqual, L_loopTop_128);
  2476     __ BIND(L_exit);
  2477     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
  2479     handleSOERegisters(false /*restoring*/);
  2480     __ movl(rax, 0);                             // return 0 (why?)
  2481     __ leave();                                  // required for proper stackwalking of RuntimeStub frame
  2482     __ ret(0);
  2484     __ BIND(L_key_192_256);
  2485     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
  2486     __ cmpl(rax, 52);
  2487     __ jcc(Assembler::notEqual, L_key_256);
  2489     // 192-bit code follows here (could be changed to use more xmm registers)
  2490     __ movl(pos, 0);
  2491     __ align(OptoLoopAlignment);
  2492     __ BIND(L_loopTop_192);
  2493     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
  2494     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
  2496     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
  2497     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2498       __ aesenc(xmm_result, as_XMMRegister(rnum));
  2500     for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
  2501       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
  2503     load_key(xmm_temp, key, 0xc0);
  2504     __ aesenclast(xmm_result, xmm_temp);
  2506     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
  2507     // no need to store r to memory until we exit
  2508     __ addptr(pos, AESBlockSize);
  2509     __ subptr(len_reg, AESBlockSize);
  2510     __ jcc(Assembler::notEqual, L_loopTop_192);
  2511     __ jmp(L_exit);
  2513     __ BIND(L_key_256);
  2514     // 256-bit code follows here (could be changed to use more xmm registers)
  2515     __ movl(pos, 0);
  2516     __ align(OptoLoopAlignment);
  2517     __ BIND(L_loopTop_256);
  2518     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
  2519     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
  2521     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
  2522     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2523       __ aesenc(xmm_result, as_XMMRegister(rnum));
  2525     for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
  2526       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
  2528     load_key(xmm_temp, key, 0xe0);
  2529     __ aesenclast(xmm_result, xmm_temp);
  2531     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
  2532     // no need to store r to memory until we exit
  2533     __ addptr(pos, AESBlockSize);
  2534     __ subptr(len_reg, AESBlockSize);
  2535     __ jcc(Assembler::notEqual, L_loopTop_256);
  2536     __ jmp(L_exit);
  2538     return start;
  2542   // CBC AES Decryption.
  2543   // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
  2544   //
  2545   // Arguments:
  2546   //
  2547   // Inputs:
  2548   //   c_rarg0   - source byte array address
  2549   //   c_rarg1   - destination byte array address
  2550   //   c_rarg2   - K (key) in little endian int array
  2551   //   c_rarg3   - r vector byte array address
  2552   //   c_rarg4   - input length
  2553   //
  2555   address generate_cipherBlockChaining_decryptAESCrypt() {
  2556     assert(UseAES, "need AES instructions and misaligned SSE support");
  2557     __ align(CodeEntryAlignment);
  2558     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
  2559     address start = __ pc();
  2561     Label L_exit, L_key_192_256, L_key_256;
  2562     Label L_singleBlock_loopTop_128;
  2563     Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
  2564     const Register from        = rsi;      // source array address
  2565     const Register to          = rdx;      // destination array address
  2566     const Register key         = rcx;      // key array address
  2567     const Register rvec        = rdi;      // r byte array initialized from initvector array address
  2568                                            // and left with the results of the last encryption block
  2569     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
  2570     const Register pos         = rax;
  2572     // xmm register assignments for the loops below
  2573     const XMMRegister xmm_result = xmm0;
  2574     const XMMRegister xmm_temp   = xmm1;
  2575     // first 6 keys preloaded into xmm2-xmm7
  2576     const int XMM_REG_NUM_KEY_FIRST = 2;
  2577     const int XMM_REG_NUM_KEY_LAST  = 7;
  2578     const int FIRST_NON_REG_KEY_offset = 0x70;
  2579     const XMMRegister xmm_key_first   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
  2581     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2582     handleSOERegisters(true /*saving*/);
  2584     // load registers from incoming parameters
  2585     const Address  from_param(rbp, 8+0);
  2586     const Address  to_param  (rbp, 8+4);
  2587     const Address  key_param (rbp, 8+8);
  2588     const Address  rvec_param (rbp, 8+12);
  2589     const Address  len_param  (rbp, 8+16);
  2590     __ movptr(from , from_param);
  2591     __ movptr(to   , to_param);
  2592     __ movptr(key  , key_param);
  2593     __ movptr(rvec , rvec_param);
  2594     __ movptr(len_reg , len_param);
  2596     // the java expanded key ordering is rotated one position from what we want
  2597     // so we start from 0x10 here and hit 0x00 last
  2598     const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
  2599     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
  2600     // load up xmm regs 2 thru 6 with first 5 keys
  2601     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2602       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
  2603       offset += 0x10;
  2606     // inside here, use the rvec register to point to previous block cipher
  2607     // with which we xor at the end of each newly decrypted block
  2608     const Register  prev_block_cipher_ptr = rvec;
  2610     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
  2611     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
  2612     __ cmpl(rax, 44);
  2613     __ jcc(Assembler::notEqual, L_key_192_256);
  2616     // 128-bit code follows here, parallelized
  2617     __ movl(pos, 0);
  2618     __ align(OptoLoopAlignment);
  2619     __ BIND(L_singleBlock_loopTop_128);
  2620     __ cmpptr(len_reg, 0);           // any blocks left??
  2621     __ jcc(Assembler::equal, L_exit);
  2622     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
  2623     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
  2624     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2625       __ aesdec(xmm_result, as_XMMRegister(rnum));
  2627     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) {   // 128-bit runs up to key offset a0
  2628       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
  2630     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
  2631     __ aesdeclast(xmm_result, xmm_temp);
  2632     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
  2633     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
  2634     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
  2635     // no need to store r to memory until we exit
  2636     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
  2637     __ addptr(pos, AESBlockSize);
  2638     __ subptr(len_reg, AESBlockSize);
  2639     __ jmp(L_singleBlock_loopTop_128);
  2642     __ BIND(L_exit);
  2643     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
  2644     __ movptr(rvec , rvec_param);                                     // restore this since used in loop
  2645     __ movdqu(Address(rvec, 0), xmm_temp);                            // final value of r stored in rvec of CipherBlockChaining object
  2646     handleSOERegisters(false /*restoring*/);
  2647     __ movl(rax, 0);                                                  // return 0 (why?)
  2648     __ leave();                                                       // required for proper stackwalking of RuntimeStub frame
  2649     __ ret(0);
  2652     __ BIND(L_key_192_256);
  2653     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
  2654     __ cmpl(rax, 52);
  2655     __ jcc(Assembler::notEqual, L_key_256);
  2657     // 192-bit code follows here (could be optimized to use parallelism)
  2658     __ movl(pos, 0);
  2659     __ align(OptoLoopAlignment);
  2660     __ BIND(L_singleBlock_loopTop_192);
  2661     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
  2662     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
  2663     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2664       __ aesdec(xmm_result, as_XMMRegister(rnum));
  2666     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) {   // 192-bit runs up to key offset c0
  2667       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
  2669     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
  2670     __ aesdeclast(xmm_result, xmm_temp);
  2671     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
  2672     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
  2673     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
  2674     // no need to store r to memory until we exit
  2675     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
  2676     __ addptr(pos, AESBlockSize);
  2677     __ subptr(len_reg, AESBlockSize);
  2678     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
  2679     __ jmp(L_exit);
  2681     __ BIND(L_key_256);
  2682     // 256-bit code follows here (could be optimized to use parallelism)
  2683     __ movl(pos, 0);
  2684     __ align(OptoLoopAlignment);
  2685     __ BIND(L_singleBlock_loopTop_256);
  2686     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
  2687     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
  2688     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
  2689       __ aesdec(xmm_result, as_XMMRegister(rnum));
  2691     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) {   // 256-bit runs up to key offset e0
  2692       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
  2694     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
  2695     __ aesdeclast(xmm_result, xmm_temp);
  2696     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
  2697     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
  2698     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
  2699     // no need to store r to memory until we exit
  2700     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
  2701     __ addptr(pos, AESBlockSize);
  2702     __ subptr(len_reg, AESBlockSize);
  2703     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
  2704     __ jmp(L_exit);
  2706     return start;
  2710  public:
  2711   // Information about frame layout at time of blocking runtime call.
  2712   // Note that we only have to preserve callee-saved registers since
  2713   // the compilers are responsible for supplying a continuation point
  2714   // if they expect all registers to be preserved.
  2715   enum layout {
  2716     thread_off,    // last_java_sp
  2717     arg1_off,
  2718     arg2_off,
  2719     rbp_off,       // callee saved register
  2720     ret_pc,
  2721     framesize
  2722   };
  2724  private:
  2726 #undef  __
  2727 #define __ masm->
  2729   //------------------------------------------------------------------------------------------------------------------------
  2730   // Continuation point for throwing of implicit exceptions that are not handled in
  2731   // the current activation. Fabricates an exception oop and initiates normal
  2732   // exception dispatching in this frame.
  2733   //
  2734   // Previously the compiler (c2) allowed for callee save registers on Java calls.
  2735   // This is no longer true after adapter frames were removed but could possibly
  2736   // be brought back in the future if the interpreter code was reworked and it
  2737   // was deemed worthwhile. The comment below was left to describe what must
  2738   // happen here if callee saves were resurrected. As it stands now this stub
  2739   // could actually be a vanilla BufferBlob and have now oopMap at all.
  2740   // Since it doesn't make much difference we've chosen to leave it the
  2741   // way it was in the callee save days and keep the comment.
  2743   // If we need to preserve callee-saved values we need a callee-saved oop map and
  2744   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  2745   // If the compiler needs all registers to be preserved between the fault
  2746   // point and the exception handler then it must assume responsibility for that in
  2747   // AbstractCompiler::continuation_for_implicit_null_exception or
  2748   // continuation_for_implicit_division_by_zero_exception. All other implicit
  2749   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  2750   // either at call sites or otherwise assume that stack unwinding will be initiated,
  2751   // so caller saved registers were assumed volatile in the compiler.
  2752   address generate_throw_exception(const char* name, address runtime_entry,
  2753                                    Register arg1 = noreg, Register arg2 = noreg) {
  2755     int insts_size = 256;
  2756     int locs_size  = 32;
  2758     CodeBuffer code(name, insts_size, locs_size);
  2759     OopMapSet* oop_maps  = new OopMapSet();
  2760     MacroAssembler* masm = new MacroAssembler(&code);
  2762     address start = __ pc();
  2764     // This is an inlined and slightly modified version of call_VM
  2765     // which has the ability to fetch the return PC out of
  2766     // thread-local storage and also sets up last_Java_sp slightly
  2767     // differently than the real call_VM
  2768     Register java_thread = rbx;
  2769     __ get_thread(java_thread);
  2771     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2773     // pc and rbp, already pushed
  2774     __ subptr(rsp, (framesize-2) * wordSize); // prolog
  2776     // Frame is now completed as far as size and linkage.
  2778     int frame_complete = __ pc() - start;
  2780     // push java thread (becomes first argument of C function)
  2781     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
  2782     if (arg1 != noreg) {
  2783       __ movptr(Address(rsp, arg1_off * wordSize), arg1);
  2785     if (arg2 != noreg) {
  2786       assert(arg1 != noreg, "missing reg arg");
  2787       __ movptr(Address(rsp, arg2_off * wordSize), arg2);
  2790     // Set up last_Java_sp and last_Java_fp
  2791     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  2793     // Call runtime
  2794     BLOCK_COMMENT("call runtime_entry");
  2795     __ call(RuntimeAddress(runtime_entry));
  2796     // Generate oop map
  2797     OopMap* map =  new OopMap(framesize, 0);
  2798     oop_maps->add_gc_map(__ pc() - start, map);
  2800     // restore the thread (cannot use the pushed argument since arguments
  2801     // may be overwritten by C code generated by an optimizing compiler);
  2802     // however can use the register value directly if it is callee saved.
  2803     __ get_thread(java_thread);
  2805     __ reset_last_Java_frame(java_thread, true, false);
  2807     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2809     // check for pending exceptions
  2810 #ifdef ASSERT
  2811     Label L;
  2812     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2813     __ jcc(Assembler::notEqual, L);
  2814     __ should_not_reach_here();
  2815     __ bind(L);
  2816 #endif /* ASSERT */
  2817     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2820     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  2821     return stub->entry_point();
  2825   void create_control_words() {
  2826     // Round to nearest, 53-bit mode, exceptions masked
  2827     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  2828     // Round to zero, 53-bit mode, exception mased
  2829     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  2830     // Round to nearest, 24-bit mode, exceptions masked
  2831     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  2832     // Round to nearest, 64-bit mode, exceptions masked
  2833     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  2834     // Round to nearest, 64-bit mode, exceptions masked
  2835     StubRoutines::_mxcsr_std           = 0x1F80;
  2836     // Note: the following two constants are 80-bit values
  2837     //       layout is critical for correct loading by FPU.
  2838     // Bias for strict fp multiply/divide
  2839     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  2840     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  2841     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  2842     // Un-Bias for strict fp multiply/divide
  2843     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  2844     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  2845     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  2848   //---------------------------------------------------------------------------
  2849   // Initialization
  2851   void generate_initial() {
  2852     // Generates all stubs and initializes the entry points
  2854     //------------------------------------------------------------------------------------------------------------------------
  2855     // entry points that exist in all platforms
  2856     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2857     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2858     StubRoutines::_forward_exception_entry      = generate_forward_exception();
  2860     StubRoutines::_call_stub_entry              =
  2861       generate_call_stub(StubRoutines::_call_stub_return_address);
  2862     // is referenced by megamorphic call
  2863     StubRoutines::_catch_exception_entry        = generate_catch_exception();
  2865     // These are currently used by Solaris/Intel
  2866     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  2868     StubRoutines::_handler_for_unsafe_access_entry =
  2869       generate_handler_for_unsafe_access();
  2871     // platform dependent
  2872     create_control_words();
  2874     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  2875     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  2876     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  2877                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  2878     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  2879                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  2881     // Build this early so it's available for the interpreter
  2882     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
  2886   void generate_all() {
  2887     // Generates all stubs and initializes the entry points
  2889     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2890     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  2891     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
  2892     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
  2893     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
  2895     //------------------------------------------------------------------------------------------------------------------------
  2896     // entry points that are platform specific
  2898     // support for verify_oop (must happen after universe_init)
  2899     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  2901     // arraycopy stubs used by compilers
  2902     generate_arraycopy_stubs();
  2904     generate_math_stubs();
  2906     // don't bother generating these AES intrinsic stubs unless global flag is set
  2907     if (UseAESIntrinsics) {
  2908       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others
  2910       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
  2911       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
  2912       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
  2913       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
  2918  public:
  2919   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2920     if (all) {
  2921       generate_all();
  2922     } else {
  2923       generate_initial();
  2926 }; // end class declaration
  2929 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2930   StubGenerator g(code, all);

mercurial