src/cpu/x86/vm/methodHandles_x86.cpp

Mon, 13 Feb 2012 02:29:22 -0800

author
twisti
date
Mon, 13 Feb 2012 02:29:22 -0800
changeset 3566
45a1bf98f1bb
parent 3501
392a3f07d567
child 3969
1d7922586cf6
permissions
-rw-r--r--

7141329: Strange values of stack_size in -XX:+TraceMethodHandles output
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "prims/methodHandles.hpp"
    31 #define __ _masm->
    33 #ifdef PRODUCT
    34 #define BLOCK_COMMENT(str) /* nothing */
    35 #else
    36 #define BLOCK_COMMENT(str) __ block_comment(str)
    37 #endif
    39 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    41 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
    42 static RegisterOrConstant constant(int value) {
    43   return RegisterOrConstant(value);
    44 }
    46 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
    47                                                 address interpreted_entry) {
    48   // Just before the actual machine code entry point, allocate space
    49   // for a MethodHandleEntry::Data record, so that we can manage everything
    50   // from one base pointer.
    51   __ align(wordSize);
    52   address target = __ pc() + sizeof(Data);
    53   while (__ pc() < target) {
    54     __ nop();
    55     __ align(wordSize);
    56   }
    58   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
    59   me->set_end_address(__ pc());         // set a temporary end_address
    60   me->set_from_interpreted_entry(interpreted_entry);
    61   me->set_type_checking_entry(NULL);
    63   return (address) me;
    64 }
    66 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
    67                                                 address start_addr) {
    68   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
    69   assert(me->end_address() == start_addr, "valid ME");
    71   // Fill in the real end_address:
    72   __ align(wordSize);
    73   me->set_end_address(__ pc());
    75   return me;
    76 }
    78 // stack walking support
    80 frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
    81   RicochetFrame* f = RicochetFrame::from_frame(fr);
    82   if (map->update_map())
    83     frame::update_map_with_saved_link(map, &f->_sender_link);
    84   return frame(f->extended_sender_sp(), f->exact_sender_sp(), f->sender_link(), f->sender_pc());
    85 }
    87 void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
    88   RicochetFrame* f = RicochetFrame::from_frame(fr);
    90   // pick up the argument type descriptor:
    91   Thread* thread = Thread::current();
    92   Handle cookie(thread, f->compute_saved_args_layout(true, true));
    94   // process fixed part
    95   blk->do_oop((oop*)f->saved_target_addr());
    96   blk->do_oop((oop*)f->saved_args_layout_addr());
    98   // process variable arguments:
    99   if (cookie.is_null())  return;  // no arguments to describe
   101   // the cookie is actually the invokeExact method for my target
   102   // his argument signature is what I'm interested in
   103   assert(cookie->is_method(), "");
   104   methodHandle invoker(thread, methodOop(cookie()));
   105   assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
   106   assert(!invoker->is_static(), "must have MH argument");
   107   int slot_count = invoker->size_of_parameters();
   108   assert(slot_count >= 1, "must include 'this'");
   109   intptr_t* base = f->saved_args_base();
   110   intptr_t* retval = NULL;
   111   if (f->has_return_value_slot())
   112     retval = f->return_value_slot_addr();
   113   int slot_num = slot_count;
   114   intptr_t* loc = &base[slot_num -= 1];
   115   //blk->do_oop((oop*) loc);   // original target, which is irrelevant
   116   int arg_num = 0;
   117   for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
   118     if (ss.at_return_type())  continue;
   119     BasicType ptype = ss.type();
   120     if (ptype == T_ARRAY)  ptype = T_OBJECT; // fold all refs to T_OBJECT
   121     assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
   122     loc = &base[slot_num -= type2size[ptype]];
   123     bool is_oop = (ptype == T_OBJECT && loc != retval);
   124     if (is_oop)  blk->do_oop((oop*)loc);
   125     arg_num += 1;
   126   }
   127   assert(slot_num == 0, "must have processed all the arguments");
   128 }
   130 oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
   131   oop cookie = NULL;
   132   if (read_cache) {
   133     cookie = saved_args_layout();
   134     if (cookie != NULL)  return cookie;
   135   }
   136   oop target = saved_target();
   137   oop mtype  = java_lang_invoke_MethodHandle::type(target);
   138   oop mtform = java_lang_invoke_MethodType::form(mtype);
   139   cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
   140   if (write_cache)  {
   141     (*saved_args_layout_addr()) = cookie;
   142   }
   143   return cookie;
   144 }
   146 void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
   147                                                           // output params:
   148                                                           int* bounce_offset,
   149                                                           int* exception_offset,
   150                                                           int* frame_size_in_words) {
   151   (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
   153   address start = __ pc();
   155 #ifdef ASSERT
   156   __ hlt(); __ hlt(); __ hlt();
   157   // here's a hint of something special:
   158   __ push(MAGIC_NUMBER_1);
   159   __ push(MAGIC_NUMBER_2);
   160 #endif //ASSERT
   161   __ hlt();  // not reached
   163   // A return PC has just been popped from the stack.
   164   // Return values are in registers.
   165   // The ebp points into the RicochetFrame, which contains
   166   // a cleanup continuation we must return to.
   168   (*bounce_offset) = __ pc() - start;
   169   BLOCK_COMMENT("ricochet_blob.bounce");
   171   if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
   172   trace_method_handle(_masm, "return/ricochet_blob.bounce");
   174   __ jmp(frame_address(continuation_offset_in_bytes()));
   175   __ hlt();
   176   DEBUG_ONLY(__ push(MAGIC_NUMBER_2));
   178   (*exception_offset) = __ pc() - start;
   179   BLOCK_COMMENT("ricochet_blob.exception");
   181   // compare this to Interpreter::rethrow_exception_entry, which is parallel code
   182   // for example, see TemplateInterpreterGenerator::generate_throw_exception
   183   // Live registers in:
   184   //   rax: exception
   185   //   rdx: return address/pc that threw exception (ignored, always equal to bounce addr)
   186   __ verify_oop(rax);
   188   // no need to empty_FPU_stack or reinit_heapbase, since caller frame will do the same if needed
   190   // Take down the frame.
   192   // Cf. InterpreterMacroAssembler::remove_activation.
   193   leave_ricochet_frame(_masm, /*rcx_recv=*/ noreg,
   194                        saved_last_sp_register(),
   195                        /*sender_pc_reg=*/ rdx);
   197   // In between activations - previous activation type unknown yet
   198   // compute continuation point - the continuation point expects the
   199   // following registers set up:
   200   //
   201   // rax: exception
   202   // rdx: return address/pc that threw exception
   203   // rsp: expression stack of caller
   204   // rbp: ebp of caller
   205   __ push(rax);                                  // save exception
   206   __ push(rdx);                                  // save return address
   207   Register thread_reg = LP64_ONLY(r15_thread) NOT_LP64(rdi);
   208   NOT_LP64(__ get_thread(thread_reg));
   209   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
   210                                    SharedRuntime::exception_handler_for_return_address),
   211                   thread_reg, rdx);
   212   __ mov(rbx, rax);                              // save exception handler
   213   __ pop(rdx);                                   // restore return address
   214   __ pop(rax);                                   // restore exception
   215   __ jmp(rbx);                                   // jump to exception
   216                                                  // handler of caller
   217 }
   219 void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
   220                                                         Register rcx_recv,
   221                                                         Register rax_argv,
   222                                                         address return_handler,
   223                                                         Register rbx_temp) {
   224   const Register saved_last_sp = saved_last_sp_register();
   225   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
   226   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
   228   // Push the RicochetFrame a word at a time.
   229   // This creates something similar to an interpreter frame.
   230   // Cf. TemplateInterpreterGenerator::generate_fixed_frame.
   231   BLOCK_COMMENT("push RicochetFrame {");
   232   DEBUG_ONLY(int rfo = (int) sizeof(RicochetFrame));
   233   assert((rfo -= wordSize) == RicochetFrame::sender_pc_offset_in_bytes(), "");
   234 #define RF_FIELD(push_value, name)                                      \
   235   { push_value;                                                         \
   236     assert((rfo -= wordSize) == RicochetFrame::name##_offset_in_bytes(), ""); }
   237   RF_FIELD(__ push(rbp),                   sender_link);
   238   RF_FIELD(__ push(saved_last_sp),         exact_sender_sp);  // rsi/r13
   239   RF_FIELD(__ pushptr(rcx_amh_conversion), conversion);
   240   RF_FIELD(__ push(rax_argv),              saved_args_base);   // can be updated if args are shifted
   241   RF_FIELD(__ push((int32_t) NULL_WORD),   saved_args_layout); // cache for GC layout cookie
   242   if (UseCompressedOops) {
   243     __ load_heap_oop(rbx_temp, rcx_mh_vmtarget);
   244     RF_FIELD(__ push(rbx_temp),            saved_target);
   245   } else {
   246     RF_FIELD(__ pushptr(rcx_mh_vmtarget),  saved_target);
   247   }
   248   __ lea(rbx_temp, ExternalAddress(return_handler));
   249   RF_FIELD(__ push(rbx_temp),              continuation);
   250 #undef RF_FIELD
   251   assert(rfo == 0, "fully initialized the RicochetFrame");
   252   // compute new frame pointer:
   253   __ lea(rbp, Address(rsp, RicochetFrame::sender_link_offset_in_bytes()));
   254   // Push guard word #1 in debug mode.
   255   DEBUG_ONLY(__ push((int32_t) RicochetFrame::MAGIC_NUMBER_1));
   256   // For debugging, leave behind an indication of which stub built this frame.
   257   DEBUG_ONLY({ Label L; __ call(L, relocInfo::none); __ bind(L); });
   258   BLOCK_COMMENT("} RicochetFrame");
   259 }
   261 void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
   262                                                         Register rcx_recv,
   263                                                         Register new_sp_reg,
   264                                                         Register sender_pc_reg) {
   265   assert_different_registers(rcx_recv, new_sp_reg, sender_pc_reg);
   266   const Register saved_last_sp = saved_last_sp_register();
   267   // Take down the frame.
   268   // Cf. InterpreterMacroAssembler::remove_activation.
   269   BLOCK_COMMENT("end_ricochet_frame {");
   270   // TO DO: If (exact_sender_sp - extended_sender_sp) > THRESH, compact the frame down.
   271   // This will keep stack in bounds even with unlimited tailcalls, each with an adapter.
   272   if (rcx_recv->is_valid())
   273     __ movptr(rcx_recv,    RicochetFrame::frame_address(RicochetFrame::saved_target_offset_in_bytes()));
   274   __ movptr(sender_pc_reg, RicochetFrame::frame_address(RicochetFrame::sender_pc_offset_in_bytes()));
   275   __ movptr(saved_last_sp, RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes()));
   276   __ movptr(rbp,           RicochetFrame::frame_address(RicochetFrame::sender_link_offset_in_bytes()));
   277   __ mov(rsp, new_sp_reg);
   278   BLOCK_COMMENT("} end_ricochet_frame");
   279 }
   281 // Emit code to verify that RBP is pointing at a valid ricochet frame.
   282 #ifndef PRODUCT
   283 enum {
   284   ARG_LIMIT = 255, SLOP = 4,
   285   // use this parameter for checking for garbage stack movements:
   286   UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
   287   // the slop defends against false alarms due to fencepost errors
   288 };
   289 #endif
   291 #ifdef ASSERT
   292 void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
   293   // The stack should look like this:
   294   //    ... keep1 | dest=42 | keep2 | RF | magic | handler | magic | recursive args |
   295   // Check various invariants.
   296   verify_offsets();
   298   Register rdi_temp = rdi;
   299   Register rcx_temp = rcx;
   300   { __ push(rdi_temp); __ push(rcx_temp); }
   301 #define UNPUSH_TEMPS \
   302   { __ pop(rcx_temp);  __ pop(rdi_temp); }
   304   Address magic_number_1_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_1_offset_in_bytes());
   305   Address magic_number_2_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_2_offset_in_bytes());
   306   Address continuation_addr    = RicochetFrame::frame_address(RicochetFrame::continuation_offset_in_bytes());
   307   Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
   308   Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
   310   Label L_bad, L_ok;
   311   BLOCK_COMMENT("verify_clean {");
   312   // Magic numbers must check out:
   313   __ cmpptr(magic_number_1_addr, (int32_t) MAGIC_NUMBER_1);
   314   __ jcc(Assembler::notEqual, L_bad);
   315   __ cmpptr(magic_number_2_addr, (int32_t) MAGIC_NUMBER_2);
   316   __ jcc(Assembler::notEqual, L_bad);
   318   // Arguments pointer must look reasonable:
   319   __ movptr(rcx_temp, saved_args_base_addr);
   320   __ cmpptr(rcx_temp, rbp);
   321   __ jcc(Assembler::below, L_bad);
   322   __ subptr(rcx_temp, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize);
   323   __ cmpptr(rcx_temp, rbp);
   324   __ jcc(Assembler::above, L_bad);
   326   load_conversion_dest_type(_masm, rdi_temp, conversion_addr);
   327   __ cmpl(rdi_temp, T_VOID);
   328   __ jcc(Assembler::equal, L_ok);
   329   __ movptr(rcx_temp, saved_args_base_addr);
   330   load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
   331   __ cmpptr(Address(rcx_temp, rdi_temp, Interpreter::stackElementScale()),
   332             (int32_t) RETURN_VALUE_PLACEHOLDER);
   333   __ jcc(Assembler::equal, L_ok);
   334   __ BIND(L_bad);
   335   UNPUSH_TEMPS;
   336   __ stop("damaged ricochet frame");
   337   __ BIND(L_ok);
   338   UNPUSH_TEMPS;
   339   BLOCK_COMMENT("} verify_clean");
   341 #undef UNPUSH_TEMPS
   343 }
   344 #endif //ASSERT
   346 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) {
   347   if (VerifyMethodHandles)
   348     verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(),
   349                  "AMH argument is a Class");
   350   __ load_heap_oop(klass_reg, Address(klass_reg, java_lang_Class::klass_offset_in_bytes()));
   351 }
   353 void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
   354   int bits   = BitsPerByte;
   355   int offset = (CONV_VMINFO_SHIFT / bits);
   356   int shift  = (CONV_VMINFO_SHIFT % bits);
   357   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
   358   assert(CONV_VMINFO_MASK == right_n_bits(bits - shift), "else change type of previous load");
   359   assert(shift == 0, "no shift needed");
   360 }
   362 void MethodHandles::load_conversion_dest_type(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
   363   int bits   = BitsPerByte;
   364   int offset = (CONV_DEST_TYPE_SHIFT / bits);
   365   int shift  = (CONV_DEST_TYPE_SHIFT % bits);
   366   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
   367   assert(CONV_TYPE_MASK == right_n_bits(bits - shift), "else change type of previous load");
   368   __ shrl(reg, shift);
   369   DEBUG_ONLY(int conv_type_bits = (int) exact_log2(CONV_TYPE_MASK+1));
   370   assert((shift + conv_type_bits) == bits, "left justified in byte");
   371 }
   373 void MethodHandles::load_stack_move(MacroAssembler* _masm,
   374                                     Register rdi_stack_move,
   375                                     Register rcx_amh,
   376                                     bool might_be_negative) {
   377   BLOCK_COMMENT("load_stack_move {");
   378   Address rcx_amh_conversion(rcx_amh, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
   379   __ movl(rdi_stack_move, rcx_amh_conversion);
   380   __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
   381 #ifdef _LP64
   382   if (might_be_negative) {
   383     // clean high bits of stack motion register (was loaded as an int)
   384     __ movslq(rdi_stack_move, rdi_stack_move);
   385   }
   386 #endif //_LP64
   387 #ifdef ASSERT
   388   if (VerifyMethodHandles) {
   389     Label L_ok, L_bad;
   390     int32_t stack_move_limit = 0x4000;  // extra-large
   391     __ cmpptr(rdi_stack_move, stack_move_limit);
   392     __ jcc(Assembler::greaterEqual, L_bad);
   393     __ cmpptr(rdi_stack_move, -stack_move_limit);
   394     __ jcc(Assembler::greater, L_ok);
   395     __ bind(L_bad);
   396     __ stop("load_stack_move of garbage value");
   397     __ BIND(L_ok);
   398   }
   399 #endif
   400   BLOCK_COMMENT("} load_stack_move");
   401 }
   403 #ifdef ASSERT
   404 void MethodHandles::RicochetFrame::verify_offsets() {
   405   // Check compatibility of this struct with the more generally used offsets of class frame:
   406   int ebp_off = sender_link_offset_in_bytes();  // offset from struct base to local rbp value
   407   assert(ebp_off + wordSize*frame::interpreter_frame_method_offset      == saved_args_base_offset_in_bytes(), "");
   408   assert(ebp_off + wordSize*frame::interpreter_frame_last_sp_offset     == conversion_offset_in_bytes(), "");
   409   assert(ebp_off + wordSize*frame::interpreter_frame_sender_sp_offset   == exact_sender_sp_offset_in_bytes(), "");
   410   // These last two have to be exact:
   411   assert(ebp_off + wordSize*frame::link_offset                          == sender_link_offset_in_bytes(), "");
   412   assert(ebp_off + wordSize*frame::return_addr_offset                   == sender_pc_offset_in_bytes(), "");
   413 }
   415 void MethodHandles::RicochetFrame::verify() const {
   416   verify_offsets();
   417   assert(magic_number_1() == MAGIC_NUMBER_1, err_msg(PTR_FORMAT " == " PTR_FORMAT, magic_number_1(), MAGIC_NUMBER_1));
   418   assert(magic_number_2() == MAGIC_NUMBER_2, err_msg(PTR_FORMAT " == " PTR_FORMAT, magic_number_2(), MAGIC_NUMBER_2));
   419   if (!Universe::heap()->is_gc_active()) {
   420     if (saved_args_layout() != NULL) {
   421       assert(saved_args_layout()->is_method(), "must be valid oop");
   422     }
   423     if (saved_target() != NULL) {
   424       assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
   425     }
   426   }
   427   int conv_op = adapter_conversion_op(conversion());
   428   assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
   429          conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
   430          conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
   431          "must be a sane conversion");
   432   if (has_return_value_slot()) {
   433     assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
   434   }
   435 }
   436 #endif //PRODUCT
   438 #ifdef ASSERT
   439 void MethodHandles::verify_argslot(MacroAssembler* _masm,
   440                                    Register argslot_reg,
   441                                    const char* error_message) {
   442   // Verify that argslot lies within (rsp, rbp].
   443   Label L_ok, L_bad;
   444   BLOCK_COMMENT("verify_argslot {");
   445   __ cmpptr(argslot_reg, rbp);
   446   __ jccb(Assembler::above, L_bad);
   447   __ cmpptr(rsp, argslot_reg);
   448   __ jccb(Assembler::below, L_ok);
   449   __ bind(L_bad);
   450   __ stop(error_message);
   451   __ BIND(L_ok);
   452   BLOCK_COMMENT("} verify_argslot");
   453 }
   455 void MethodHandles::verify_argslots(MacroAssembler* _masm,
   456                                     RegisterOrConstant arg_slots,
   457                                     Register arg_slot_base_reg,
   458                                     bool negate_argslots,
   459                                     const char* error_message) {
   460   // Verify that [argslot..argslot+size) lies within (rsp, rbp).
   461   Label L_ok, L_bad;
   462   Register rdi_temp = rdi;
   463   BLOCK_COMMENT("verify_argslots {");
   464   __ push(rdi_temp);
   465   if (negate_argslots) {
   466     if (arg_slots.is_constant()) {
   467       arg_slots = -1 * arg_slots.as_constant();
   468     } else {
   469       __ movptr(rdi_temp, arg_slots);
   470       __ negptr(rdi_temp);
   471       arg_slots = rdi_temp;
   472     }
   473   }
   474   __ lea(rdi_temp, Address(arg_slot_base_reg, arg_slots, Interpreter::stackElementScale()));
   475   __ cmpptr(rdi_temp, rbp);
   476   __ pop(rdi_temp);
   477   __ jcc(Assembler::above, L_bad);
   478   __ cmpptr(rsp, arg_slot_base_reg);
   479   __ jcc(Assembler::below, L_ok);
   480   __ bind(L_bad);
   481   __ stop(error_message);
   482   __ BIND(L_ok);
   483   BLOCK_COMMENT("} verify_argslots");
   484 }
   486 // Make sure that arg_slots has the same sign as the given direction.
   487 // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
   488 void MethodHandles::verify_stack_move(MacroAssembler* _masm,
   489                                       RegisterOrConstant arg_slots, int direction) {
   490   bool allow_zero = arg_slots.is_constant();
   491   if (direction == 0) { direction = +1; allow_zero = true; }
   492   assert(stack_move_unit() == -1, "else add extra checks here");
   493   if (arg_slots.is_register()) {
   494     Label L_ok, L_bad;
   495     BLOCK_COMMENT("verify_stack_move {");
   496     // testl(arg_slots.as_register(), -stack_move_unit() - 1);  // no need
   497     // jcc(Assembler::notZero, L_bad);
   498     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
   499     if (direction > 0) {
   500       __ jcc(allow_zero ? Assembler::less : Assembler::lessEqual, L_bad);
   501       __ cmpptr(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
   502       __ jcc(Assembler::less, L_ok);
   503     } else {
   504       __ jcc(allow_zero ? Assembler::greater : Assembler::greaterEqual, L_bad);
   505       __ cmpptr(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
   506       __ jcc(Assembler::greater, L_ok);
   507     }
   508     __ bind(L_bad);
   509     if (direction > 0)
   510       __ stop("assert arg_slots > 0");
   511     else
   512       __ stop("assert arg_slots < 0");
   513     __ BIND(L_ok);
   514     BLOCK_COMMENT("} verify_stack_move");
   515   } else {
   516     intptr_t size = arg_slots.as_constant();
   517     if (direction < 0)  size = -size;
   518     assert(size >= 0, "correct direction of constant move");
   519     assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
   520   }
   521 }
   523 void MethodHandles::verify_klass(MacroAssembler* _masm,
   524                                  Register obj, KlassHandle klass,
   525                                  const char* error_message) {
   526   oop* klass_addr = klass.raw_value();
   527   assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
   528          klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
   529          "must be one of the SystemDictionaryHandles");
   530   Register temp = rdi;
   531   Label L_ok, L_bad;
   532   BLOCK_COMMENT("verify_klass {");
   533   __ verify_oop(obj);
   534   __ testptr(obj, obj);
   535   __ jcc(Assembler::zero, L_bad);
   536   __ push(temp);
   537   __ load_klass(temp, obj);
   538   __ cmpptr(temp, ExternalAddress((address) klass_addr));
   539   __ jcc(Assembler::equal, L_ok);
   540   intptr_t super_check_offset = klass->super_check_offset();
   541   __ movptr(temp, Address(temp, super_check_offset));
   542   __ cmpptr(temp, ExternalAddress((address) klass_addr));
   543   __ jcc(Assembler::equal, L_ok);
   544   __ pop(temp);
   545   __ bind(L_bad);
   546   __ stop(error_message);
   547   __ BIND(L_ok);
   548   __ pop(temp);
   549   BLOCK_COMMENT("} verify_klass");
   550 }
   551 #endif //ASSERT
   553 void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp) {
   554   if (JvmtiExport::can_post_interpreter_events()) {
   555     Label run_compiled_code;
   556     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   557     // compiled code in threads for which the event is enabled.  Check here for
   558     // interp_only_mode if these events CAN be enabled.
   559 #ifdef _LP64
   560     Register rthread = r15_thread;
   561 #else
   562     Register rthread = temp;
   563     __ get_thread(rthread);
   564 #endif
   565     // interp_only is an int, on little endian it is sufficient to test the byte only
   566     // Is a cmpl faster?
   567     __ cmpb(Address(rthread, JavaThread::interp_only_mode_offset()), 0);
   568     __ jccb(Assembler::zero, run_compiled_code);
   569     __ jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   570     __ bind(run_compiled_code);
   571   }
   572   __ jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   573 }
   575 // Code generation
   576 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
   577   // rbx: methodOop
   578   // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
   579   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
   580   // rdx, rdi: garbage temp, blown away
   582   Register rbx_method = rbx;
   583   Register rcx_recv   = rcx;
   584   Register rax_mtype  = rax;
   585   Register rdx_temp   = rdx;
   586   Register rdi_temp   = rdi;
   588   // emit WrongMethodType path first, to enable jccb back-branch from main path
   589   Label wrong_method_type;
   590   __ bind(wrong_method_type);
   591   Label invoke_generic_slow_path, invoke_exact_error_path;
   592   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
   593   __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
   594   __ jcc(Assembler::notEqual, invoke_generic_slow_path);
   595   __ jmp(invoke_exact_error_path);
   597   // here's where control starts out:
   598   __ align(CodeEntryAlignment);
   599   address entry_point = __ pc();
   601   // fetch the MethodType from the method handle into rax (the 'check' register)
   602   // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
   603   // This would simplify several touchy bits of code.
   604   // See 6984712: JSR 292 method handle calls need a clean argument base pointer
   605   {
   606     Register tem = rbx_method;
   607     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
   608       __ movptr(rax_mtype, Address(tem, *pchase));
   609       tem = rax_mtype;          // in case there is another indirection
   610     }
   611   }
   613   // given the MethodType, find out where the MH argument is buried
   614   __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp)));
   615   Register rdx_vmslots = rdx_temp;
   616   __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
   617   Address mh_receiver_slot_addr = __ argument_address(rdx_vmslots);
   618   __ movptr(rcx_recv, mh_receiver_slot_addr);
   620   trace_method_handle(_masm, "invokeExact");
   622   __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
   624   // Nobody uses the MH receiver slot after this.  Make sure.
   625   DEBUG_ONLY(__ movptr(mh_receiver_slot_addr, (int32_t)0x999999));
   627   __ jump_to_method_handle_entry(rcx_recv, rdi_temp);
   629   // error path for invokeExact (only)
   630   __ bind(invoke_exact_error_path);
   631   // ensure that the top of stack is properly aligned.
   632   __ mov(rdi, rsp);
   633   __ andptr(rsp, -StackAlignmentInBytes); // Align the stack for the ABI
   634   __ pushptr(Address(rdi, 0));  // Pick up the return address
   636   // Stub wants expected type in rax and the actual type in rcx
   637   __ jump(ExternalAddress(StubRoutines::throw_WrongMethodTypeException_entry()));
   639   // for invokeGeneric (only), apply argument and result conversions on the fly
   640   __ bind(invoke_generic_slow_path);
   641 #ifdef ASSERT
   642   if (VerifyMethodHandles) {
   643     Label L;
   644     __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
   645     __ jcc(Assembler::equal, L);
   646     __ stop("bad methodOop::intrinsic_id");
   647     __ bind(L);
   648   }
   649 #endif //ASSERT
   650   Register rbx_temp = rbx_method;  // don't need it now
   652   // make room on the stack for another pointer:
   653   Register rcx_argslot = rcx_recv;
   654   __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
   655   insert_arg_slots(_masm, 2 * stack_move_unit(),
   656                    rcx_argslot, rbx_temp, rdx_temp);
   658   // load up an adapter from the calling type (Java weaves this)
   659   Register rdx_adapter = rdx_temp;
   660   __ load_heap_oop(rdx_temp,    Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,               rdi_temp)));
   661   __ load_heap_oop(rdx_adapter, Address(rdx_temp,  __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
   662   __ verify_oop(rdx_adapter);
   663   __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
   664   // As a trusted first argument, pass the type being called, so the adapter knows
   665   // the actual types of the arguments and return values.
   666   // (Generic invokers are shared among form-families of method-type.)
   667   __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
   668   // FIXME: assert that rdx_adapter is of the right method-type.
   669   __ mov(rcx, rdx_adapter);
   670   trace_method_handle(_masm, "invokeGeneric");
   671   __ jump_to_method_handle_entry(rcx, rdi_temp);
   673   return entry_point;
   674 }
   676 // Helper to insert argument slots into the stack.
   677 // arg_slots must be a multiple of stack_move_unit() and < 0
   678 // rax_argslot is decremented to point to the new (shifted) location of the argslot
   679 // But, rdx_temp ends up holding the original value of rax_argslot.
   680 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
   681                                      RegisterOrConstant arg_slots,
   682                                      Register rax_argslot,
   683                                      Register rbx_temp, Register rdx_temp) {
   684   // allow constant zero
   685   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   686     return;
   687   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   688                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   689   if (VerifyMethodHandles)
   690     verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
   691   if (VerifyMethodHandles)
   692     verify_stack_move(_masm, arg_slots, -1);
   694   // Make space on the stack for the inserted argument(s).
   695   // Then pull down everything shallower than rax_argslot.
   696   // The stacked return address gets pulled down with everything else.
   697   // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
   698   //   rsp -= size;
   699   //   for (rdx = rsp + size; rdx < argslot; rdx++)
   700   //     rdx[-size] = rdx[0]
   701   //   argslot -= size;
   702   BLOCK_COMMENT("insert_arg_slots {");
   703   __ mov(rdx_temp, rsp);                        // source pointer for copy
   704   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
   705   {
   706     Label loop;
   707     __ BIND(loop);
   708     // pull one word down each time through the loop
   709     __ movptr(rbx_temp, Address(rdx_temp, 0));
   710     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
   711     __ addptr(rdx_temp, wordSize);
   712     __ cmpptr(rdx_temp, rax_argslot);
   713     __ jcc(Assembler::below, loop);
   714   }
   716   // Now move the argslot down, to point to the opened-up space.
   717   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
   718   BLOCK_COMMENT("} insert_arg_slots");
   719 }
   721 // Helper to remove argument slots from the stack.
   722 // arg_slots must be a multiple of stack_move_unit() and > 0
   723 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
   724                                      RegisterOrConstant arg_slots,
   725                                      Register rax_argslot,
   726                                      Register rbx_temp, Register rdx_temp) {
   727   // allow constant zero
   728   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   729     return;
   730   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   731                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   732   if (VerifyMethodHandles)
   733     verify_argslots(_masm, arg_slots, rax_argslot, false,
   734                     "deleted argument(s) must fall within current frame");
   735   if (VerifyMethodHandles)
   736     verify_stack_move(_masm, arg_slots, +1);
   738   BLOCK_COMMENT("remove_arg_slots {");
   739   // Pull up everything shallower than rax_argslot.
   740   // Then remove the excess space on the stack.
   741   // The stacked return address gets pulled up with everything else.
   742   // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
   743   //   for (rdx = argslot-1; rdx >= rsp; --rdx)
   744   //     rdx[size] = rdx[0]
   745   //   argslot += size;
   746   //   rsp += size;
   747   __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
   748   {
   749     Label loop;
   750     __ BIND(loop);
   751     // pull one word up each time through the loop
   752     __ movptr(rbx_temp, Address(rdx_temp, 0));
   753     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
   754     __ addptr(rdx_temp, -wordSize);
   755     __ cmpptr(rdx_temp, rsp);
   756     __ jcc(Assembler::aboveEqual, loop);
   757   }
   759   // Now move the argslot up, to point to the just-copied block.
   760   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
   761   // And adjust the argslot address to point at the deletion point.
   762   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
   763   BLOCK_COMMENT("} remove_arg_slots");
   764 }
   766 // Helper to copy argument slots to the top of the stack.
   767 // The sequence starts with rax_argslot and is counted by slot_count
   768 // slot_count must be a multiple of stack_move_unit() and >= 0
   769 // This function blows the temps but does not change rax_argslot.
   770 void MethodHandles::push_arg_slots(MacroAssembler* _masm,
   771                                    Register rax_argslot,
   772                                    RegisterOrConstant slot_count,
   773                                    int skip_words_count,
   774                                    Register rbx_temp, Register rdx_temp) {
   775   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   776                              (!slot_count.is_register() ? rbp : slot_count.as_register()),
   777                              rsp);
   778   assert(Interpreter::stackElementSize == wordSize, "else change this code");
   780   if (VerifyMethodHandles)
   781     verify_stack_move(_masm, slot_count, 0);
   783   // allow constant zero
   784   if (slot_count.is_constant() && slot_count.as_constant() == 0)
   785     return;
   787   BLOCK_COMMENT("push_arg_slots {");
   789   Register rbx_top = rbx_temp;
   791   // There is at most 1 word to carry down with the TOS.
   792   switch (skip_words_count) {
   793   case 1: __ pop(rdx_temp); break;
   794   case 0:                   break;
   795   default: ShouldNotReachHere();
   796   }
   798   if (slot_count.is_constant()) {
   799     for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
   800       __ pushptr(Address(rax_argslot, i * wordSize));
   801     }
   802   } else {
   803     Label L_plural, L_loop, L_break;
   804     // Emit code to dynamically check for the common cases, zero and one slot.
   805     __ cmpl(slot_count.as_register(), (int32_t) 1);
   806     __ jccb(Assembler::greater, L_plural);
   807     __ jccb(Assembler::less, L_break);
   808     __ pushptr(Address(rax_argslot, 0));
   809     __ jmpb(L_break);
   810     __ BIND(L_plural);
   812     // Loop for 2 or more:
   813     //   rbx = &rax[slot_count]
   814     //   while (rbx > rax)  *(--rsp) = *(--rbx)
   815     __ lea(rbx_top, Address(rax_argslot, slot_count, Address::times_ptr));
   816     __ BIND(L_loop);
   817     __ subptr(rbx_top, wordSize);
   818     __ pushptr(Address(rbx_top, 0));
   819     __ cmpptr(rbx_top, rax_argslot);
   820     __ jcc(Assembler::above, L_loop);
   821     __ bind(L_break);
   822   }
   823   switch (skip_words_count) {
   824   case 1: __ push(rdx_temp); break;
   825   case 0:                    break;
   826   default: ShouldNotReachHere();
   827   }
   828   BLOCK_COMMENT("} push_arg_slots");
   829 }
   831 // in-place movement; no change to rsp
   832 // blows rax_temp, rdx_temp
   833 void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
   834                                       Register rbx_bottom,  // invariant
   835                                       Address  top_addr,     // can use rax_temp
   836                                       RegisterOrConstant positive_distance_in_slots,
   837                                       Register rax_temp, Register rdx_temp) {
   838   BLOCK_COMMENT("move_arg_slots_up {");
   839   assert_different_registers(rbx_bottom,
   840                              rax_temp, rdx_temp,
   841                              positive_distance_in_slots.register_or_noreg());
   842   Label L_loop, L_break;
   843   Register rax_top = rax_temp;
   844   if (!top_addr.is_same_address(Address(rax_top, 0)))
   845     __ lea(rax_top, top_addr);
   846   // Detect empty (or broken) loop:
   847 #ifdef ASSERT
   848   if (VerifyMethodHandles) {
   849     // Verify that &bottom < &top (non-empty interval)
   850     Label L_ok, L_bad;
   851     if (positive_distance_in_slots.is_register()) {
   852       __ cmpptr(positive_distance_in_slots.as_register(), (int32_t) 0);
   853       __ jcc(Assembler::lessEqual, L_bad);
   854     }
   855     __ cmpptr(rbx_bottom, rax_top);
   856     __ jcc(Assembler::below, L_ok);
   857     __ bind(L_bad);
   858     __ stop("valid bounds (copy up)");
   859     __ BIND(L_ok);
   860   }
   861 #endif
   862   __ cmpptr(rbx_bottom, rax_top);
   863   __ jccb(Assembler::aboveEqual, L_break);
   864   // work rax down to rbx, copying contiguous data upwards
   865   // In pseudo-code:
   866   //   [rbx, rax) = &[bottom, top)
   867   //   while (--rax >= rbx) *(rax + distance) = *(rax + 0), rax--;
   868   __ BIND(L_loop);
   869   __ subptr(rax_top, wordSize);
   870   __ movptr(rdx_temp, Address(rax_top, 0));
   871   __ movptr(          Address(rax_top, positive_distance_in_slots, Address::times_ptr), rdx_temp);
   872   __ cmpptr(rax_top, rbx_bottom);
   873   __ jcc(Assembler::above, L_loop);
   874   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   875   __ bind(L_break);
   876   BLOCK_COMMENT("} move_arg_slots_up");
   877 }
   879 // in-place movement; no change to rsp
   880 // blows rax_temp, rdx_temp
   881 void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
   882                                         Address  bottom_addr,  // can use rax_temp
   883                                         Register rbx_top,      // invariant
   884                                         RegisterOrConstant negative_distance_in_slots,
   885                                         Register rax_temp, Register rdx_temp) {
   886   BLOCK_COMMENT("move_arg_slots_down {");
   887   assert_different_registers(rbx_top,
   888                              negative_distance_in_slots.register_or_noreg(),
   889                              rax_temp, rdx_temp);
   890   Label L_loop, L_break;
   891   Register rax_bottom = rax_temp;
   892   if (!bottom_addr.is_same_address(Address(rax_bottom, 0)))
   893     __ lea(rax_bottom, bottom_addr);
   894   // Detect empty (or broken) loop:
   895 #ifdef ASSERT
   896   assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
   897   if (VerifyMethodHandles) {
   898     // Verify that &bottom < &top (non-empty interval)
   899     Label L_ok, L_bad;
   900     if (negative_distance_in_slots.is_register()) {
   901       __ cmpptr(negative_distance_in_slots.as_register(), (int32_t) 0);
   902       __ jcc(Assembler::greaterEqual, L_bad);
   903     }
   904     __ cmpptr(rax_bottom, rbx_top);
   905     __ jcc(Assembler::below, L_ok);
   906     __ bind(L_bad);
   907     __ stop("valid bounds (copy down)");
   908     __ BIND(L_ok);
   909   }
   910 #endif
   911   __ cmpptr(rax_bottom, rbx_top);
   912   __ jccb(Assembler::aboveEqual, L_break);
   913   // work rax up to rbx, copying contiguous data downwards
   914   // In pseudo-code:
   915   //   [rax, rbx) = &[bottom, top)
   916   //   while (rax < rbx) *(rax - distance) = *(rax + 0), rax++;
   917   __ BIND(L_loop);
   918   __ movptr(rdx_temp, Address(rax_bottom, 0));
   919   __ movptr(          Address(rax_bottom, negative_distance_in_slots, Address::times_ptr), rdx_temp);
   920   __ addptr(rax_bottom, wordSize);
   921   __ cmpptr(rax_bottom, rbx_top);
   922   __ jcc(Assembler::below, L_loop);
   923   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   924   __ bind(L_break);
   925   BLOCK_COMMENT("} move_arg_slots_down");
   926 }
   928 // Copy from a field or array element to a stacked argument slot.
   929 // is_element (ignored) says whether caller is loading an array element instead of an instance field.
   930 void MethodHandles::move_typed_arg(MacroAssembler* _masm,
   931                                    BasicType type, bool is_element,
   932                                    Address slot_dest, Address value_src,
   933                                    Register rbx_temp, Register rdx_temp) {
   934   BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
   935   if (type == T_OBJECT || type == T_ARRAY) {
   936     __ load_heap_oop(rbx_temp, value_src);
   937     __ movptr(slot_dest, rbx_temp);
   938   } else if (type != T_VOID) {
   939     int  arg_size      = type2aelembytes(type);
   940     bool arg_is_signed = is_signed_subword_type(type);
   941     int  slot_size     = (arg_size > wordSize) ? arg_size : wordSize;
   942     __ load_sized_value(  rdx_temp,  value_src, arg_size, arg_is_signed, rbx_temp);
   943     __ store_sized_value( slot_dest, rdx_temp,  slot_size,               rbx_temp);
   944   }
   945   BLOCK_COMMENT("} move_typed_arg");
   946 }
   948 void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
   949                                       Address return_slot) {
   950   BLOCK_COMMENT("move_return_value {");
   951   // Old versions of the JVM must clean the FPU stack after every return.
   952 #ifndef _LP64
   953 #ifdef COMPILER2
   954   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   955   if ((type == T_FLOAT && UseSSE < 1) || (type == T_DOUBLE && UseSSE < 2)) {
   956     for (int i = 1; i < 8; i++) {
   957         __ ffree(i);
   958     }
   959   } else if (UseSSE < 2) {
   960     __ empty_FPU_stack();
   961   }
   962 #endif //COMPILER2
   963 #endif //!_LP64
   965   // Look at the type and pull the value out of the corresponding register.
   966   if (type == T_VOID) {
   967     // nothing to do
   968   } else if (type == T_OBJECT) {
   969     __ movptr(return_slot, rax);
   970   } else if (type == T_INT || is_subword_type(type)) {
   971     // write the whole word, even if only 32 bits is significant
   972     __ movptr(return_slot, rax);
   973   } else if (type == T_LONG) {
   974     // store the value by parts
   975     // Note: We assume longs are continguous (if misaligned) on the interpreter stack.
   976     __ store_sized_value(return_slot, rax, BytesPerLong, rdx);
   977   } else if (NOT_LP64((type == T_FLOAT  && UseSSE < 1) ||
   978                       (type == T_DOUBLE && UseSSE < 2) ||)
   979              false) {
   980     // Use old x86 FPU registers:
   981     if (type == T_FLOAT)
   982       __ fstp_s(return_slot);
   983     else
   984       __ fstp_d(return_slot);
   985   } else if (type == T_FLOAT) {
   986     __ movflt(return_slot, xmm0);
   987   } else if (type == T_DOUBLE) {
   988     __ movdbl(return_slot, xmm0);
   989   } else {
   990     ShouldNotReachHere();
   991   }
   992   BLOCK_COMMENT("} move_return_value");
   993 }
   995 #ifndef PRODUCT
   996 #define DESCRIBE_RICOCHET_OFFSET(rf, name) \
   997   values.describe(frame_no, (intptr_t *) (((uintptr_t)rf) + MethodHandles::RicochetFrame::name##_offset_in_bytes()), #name)
   999 void MethodHandles::RicochetFrame::describe(const frame* fr, FrameValues& values, int frame_no)  {
  1000     address bp = (address) fr->fp();
  1001     RicochetFrame* rf = (RicochetFrame*)(bp - sender_link_offset_in_bytes());
  1003     // ricochet slots
  1004     DESCRIBE_RICOCHET_OFFSET(rf, exact_sender_sp);
  1005     DESCRIBE_RICOCHET_OFFSET(rf, conversion);
  1006     DESCRIBE_RICOCHET_OFFSET(rf, saved_args_base);
  1007     DESCRIBE_RICOCHET_OFFSET(rf, saved_args_layout);
  1008     DESCRIBE_RICOCHET_OFFSET(rf, saved_target);
  1009     DESCRIBE_RICOCHET_OFFSET(rf, continuation);
  1011     // relevant ricochet targets (in caller frame)
  1012     values.describe(-1, rf->saved_args_base(),  err_msg("*saved_args_base for #%d", frame_no));
  1014 #endif // ASSERT
  1016 #ifndef PRODUCT
  1017 extern "C" void print_method_handle(oop mh);
  1018 void trace_method_handle_stub(const char* adaptername,
  1019                               oop mh,
  1020                               intptr_t* saved_regs,
  1021                               intptr_t* entry_sp) {
  1022   // called as a leaf from native code: do not block the JVM!
  1023   bool has_mh = (strstr(adaptername, "return/") == NULL);  // return adapters don't have rcx_mh
  1024   const char* mh_reg_name = has_mh ? "rcx_mh" : "rcx";
  1025   tty->print_cr("MH %s %s="PTR_FORMAT" sp="PTR_FORMAT, adaptername, mh_reg_name, mh, entry_sp);
  1027   if (Verbose) {
  1028     tty->print_cr("Registers:");
  1029     const int saved_regs_count = RegisterImpl::number_of_registers;
  1030     for (int i = 0; i < saved_regs_count; i++) {
  1031       Register r = as_Register(i);
  1032       // The registers are stored in reverse order on the stack (by pusha).
  1033       tty->print("%3s=" PTR_FORMAT, r->name(), saved_regs[((saved_regs_count - 1) - i)]);
  1034       if ((i + 1) % 4 == 0) {
  1035         tty->cr();
  1036       } else {
  1037         tty->print(", ");
  1040     tty->cr();
  1043      // dumping last frame with frame::describe
  1045       JavaThread* p = JavaThread::active();
  1047       ResourceMark rm;
  1048       PRESERVE_EXCEPTION_MARK; // may not be needed by safer and unexpensive here
  1049       FrameValues values;
  1051       // Note: We want to allow trace_method_handle from any call site.
  1052       // While trace_method_handle creates a frame, it may be entered
  1053       // without a PC on the stack top (e.g. not just after a call).
  1054       // Walking that frame could lead to failures due to that invalid PC.
  1055       // => carefully detect that frame when doing the stack walking
  1057       // Current C frame
  1058       frame cur_frame = os::current_frame();
  1060       // Robust search of trace_calling_frame (independant of inlining).
  1061       // Assumes saved_regs comes from a pusha in the trace_calling_frame.
  1062       assert(cur_frame.sp() < saved_regs, "registers not saved on stack ?");
  1063       frame trace_calling_frame = os::get_sender_for_C_frame(&cur_frame);
  1064       while (trace_calling_frame.fp() < saved_regs) {
  1065         trace_calling_frame = os::get_sender_for_C_frame(&trace_calling_frame);
  1068       // safely create a frame and call frame::describe
  1069       intptr_t *dump_sp = trace_calling_frame.sender_sp();
  1070       intptr_t *dump_fp = trace_calling_frame.link();
  1072       bool walkable = has_mh; // whether the traced frame shoud be walkable
  1074       if (walkable) {
  1075         // The previous definition of walkable may have to be refined
  1076         // if new call sites cause the next frame constructor to start
  1077         // failing. Alternatively, frame constructors could be
  1078         // modified to support the current or future non walkable
  1079         // frames (but this is more intrusive and is not considered as
  1080         // part of this RFE, which will instead use a simpler output).
  1081         frame dump_frame = frame(dump_sp, dump_fp);
  1082         dump_frame.describe(values, 1);
  1083       } else {
  1084         // Stack may not be walkable (invalid PC above FP):
  1085         // Add descriptions without building a Java frame to avoid issues
  1086         values.describe(-1, dump_fp, "fp for #1 <not parsed, cannot trust pc>");
  1087         values.describe(-1, dump_sp, "sp for #1");
  1090       tty->print_cr("Stack layout:");
  1091       values.print(p);
  1093     if (has_mh)
  1094       print_method_handle(mh);
  1098 // The stub wraps the arguments in a struct on the stack to avoid
  1099 // dealing with the different calling conventions for passing 6
  1100 // arguments.
  1101 struct MethodHandleStubArguments {
  1102   const char* adaptername;
  1103   oopDesc* mh;
  1104   intptr_t* saved_regs;
  1105   intptr_t* entry_sp;
  1106 };
  1107 void trace_method_handle_stub_wrapper(MethodHandleStubArguments* args) {
  1108   trace_method_handle_stub(args->adaptername,
  1109                            args->mh,
  1110                            args->saved_regs,
  1111                            args->entry_sp);
  1114 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
  1115   if (!TraceMethodHandles)  return;
  1116   BLOCK_COMMENT("trace_method_handle {");
  1117   __ enter();
  1118   __ andptr(rsp, -16); // align stack if needed for FPU state
  1119   __ pusha();
  1120   __ mov(rbx, rsp); // for retreiving saved_regs
  1121   // Note: saved_regs must be in the entered frame for the
  1122   // robust stack walking implemented in trace_method_handle_stub.
  1124   // save FP result, valid at some call sites (adapter_opt_return_float, ...)
  1125   __ increment(rsp, -2 * wordSize);
  1126   if  (UseSSE >= 2) {
  1127     __ movdbl(Address(rsp, 0), xmm0);
  1128   } else if (UseSSE == 1) {
  1129     __ movflt(Address(rsp, 0), xmm0);
  1130   } else {
  1131     __ fst_d(Address(rsp, 0));
  1134   // Incoming state:
  1135   // rcx: method handle
  1136   //
  1137   // To avoid calling convention issues, build a record on the stack
  1138   // and pass the pointer to that instead.
  1139   __ push(rbp);               // entry_sp (with extra align space)
  1140   __ push(rbx);               // pusha saved_regs
  1141   __ push(rcx);               // mh
  1142   __ push(rcx);               // slot for adaptername
  1143   __ movptr(Address(rsp, 0), (intptr_t) adaptername);
  1144   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub_wrapper), rsp);
  1145   __ increment(rsp, sizeof(MethodHandleStubArguments));
  1147   if  (UseSSE >= 2) {
  1148     __ movdbl(xmm0, Address(rsp, 0));
  1149   } else if (UseSSE == 1) {
  1150     __ movflt(xmm0, Address(rsp, 0));
  1151   } else {
  1152     __ fld_d(Address(rsp, 0));
  1154   __ increment(rsp, 2 * wordSize);
  1156   __ popa();
  1157   __ leave();
  1158   BLOCK_COMMENT("} trace_method_handle");
  1160 #endif //PRODUCT
  1162 // which conversion op types are implemented here?
  1163 int MethodHandles::adapter_conversion_ops_supported_mask() {
  1164   return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
  1165          |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
  1166          |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
  1167          |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
  1168          |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
  1169           //OP_PRIM_TO_REF is below...
  1170          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
  1171          |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
  1172          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
  1173          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
  1174           //OP_COLLECT_ARGS is below...
  1175          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
  1176          |(
  1177            java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
  1178            ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
  1179            |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
  1180            |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
  1181             ))
  1182          );
  1185 //------------------------------------------------------------------------------
  1186 // MethodHandles::generate_method_handle_stub
  1187 //
  1188 // Generate an "entry" field for a method handle.
  1189 // This determines how the method handle will respond to calls.
  1190 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
  1191   MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
  1193   // Here is the register state during an interpreted call,
  1194   // as set up by generate_method_handle_interpreter_entry():
  1195   // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
  1196   // - rcx: receiver method handle
  1197   // - rax: method handle type (only used by the check_mtype entry point)
  1198   // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
  1199   // - rdx: garbage temp, can blow away
  1201   const Register rcx_recv    = rcx;
  1202   const Register rax_argslot = rax;
  1203   const Register rbx_temp    = rbx;
  1204   const Register rdx_temp    = rdx;
  1205   const Register rdi_temp    = rdi;
  1207   // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
  1208   // and gen_c2i_adapter (from compiled calls):
  1209   const Register saved_last_sp = saved_last_sp_register();
  1211   // Argument registers for _raise_exception.
  1212   // 32-bit: Pass first two oop/int args in registers ECX and EDX.
  1213   const Register rarg0_code     = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
  1214   const Register rarg1_actual   = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
  1215   const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
  1216   assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);
  1218   guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
  1220   // some handy addresses
  1221   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
  1222   Address rcx_dmh_vmindex(    rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() );
  1224   Address rcx_bmh_vmargslot(  rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() );
  1225   Address rcx_bmh_argument(   rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() );
  1227   Address rcx_amh_vmargslot(  rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() );
  1228   Address rcx_amh_argument(   rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() );
  1229   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
  1230   Address vmarg;                // __ argument_address(vmargslot)
  1232   const int java_mirror_offset = in_bytes(Klass::java_mirror_offset());
  1234   if (have_entry(ek)) {
  1235     __ nop();                   // empty stubs make SG sick
  1236     return;
  1239 #ifdef ASSERT
  1240   __ push((int32_t) 0xEEEEEEEE);
  1241   __ push((int32_t) (intptr_t) entry_name(ek));
  1242   LP64_ONLY(__ push((int32_t) high((intptr_t) entry_name(ek))));
  1243   __ push((int32_t) 0x33333333);
  1244 #endif //ASSERT
  1246   address interp_entry = __ pc();
  1248   trace_method_handle(_masm, entry_name(ek));
  1250   BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
  1252   switch ((int) ek) {
  1253   case _raise_exception:
  1255       // Not a real MH entry, but rather shared code for raising an
  1256       // exception.  Since we use the compiled entry, arguments are
  1257       // expected in compiler argument registers.
  1258       assert(raise_exception_method(), "must be set");
  1259       assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
  1261       const Register rax_pc = rax;
  1262       __ pop(rax_pc);  // caller PC
  1263       __ mov(rsp, saved_last_sp);  // cut the stack back to where the caller started
  1265       Register rbx_method = rbx_temp;
  1266       __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
  1268       const int jobject_oop_offset = 0;
  1269       __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
  1271       __ movptr(saved_last_sp, rsp);
  1272       __ subptr(rsp, 3 * wordSize);
  1273       __ push(rax_pc);         // restore caller PC
  1275       __ movl  (__ argument_address(constant(2)), rarg0_code);
  1276       __ movptr(__ argument_address(constant(1)), rarg1_actual);
  1277       __ movptr(__ argument_address(constant(0)), rarg2_required);
  1278       jump_from_method_handle(_masm, rbx_method, rax);
  1280     break;
  1282   case _invokestatic_mh:
  1283   case _invokespecial_mh:
  1285       Register rbx_method = rbx_temp;
  1286       __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
  1287       __ verify_oop(rbx_method);
  1288       // same as TemplateTable::invokestatic or invokespecial,
  1289       // minus the CP setup and profiling:
  1290       if (ek == _invokespecial_mh) {
  1291         // Must load & check the first argument before entering the target method.
  1292         __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
  1293         __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
  1294         __ null_check(rcx_recv);
  1295         __ verify_oop(rcx_recv);
  1297       jump_from_method_handle(_masm, rbx_method, rax);
  1299     break;
  1301   case _invokevirtual_mh:
  1303       // same as TemplateTable::invokevirtual,
  1304       // minus the CP setup and profiling:
  1306       // pick out the vtable index and receiver offset from the MH,
  1307       // and then we can discard it:
  1308       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
  1309       Register rbx_index = rbx_temp;
  1310       __ movl(rbx_index, rcx_dmh_vmindex);
  1311       // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
  1312       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
  1313       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
  1315       // get receiver klass
  1316       Register rax_klass = rax_argslot;
  1317       __ load_klass(rax_klass, rcx_recv);
  1318       __ verify_oop(rax_klass);
  1320       // get target methodOop & entry point
  1321       const int base = instanceKlass::vtable_start_offset() * wordSize;
  1322       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  1323       Address vtable_entry_addr(rax_klass,
  1324                                 rbx_index, Address::times_ptr,
  1325                                 base + vtableEntry::method_offset_in_bytes());
  1326       Register rbx_method = rbx_temp;
  1327       __ movptr(rbx_method, vtable_entry_addr);
  1329       __ verify_oop(rbx_method);
  1330       jump_from_method_handle(_masm, rbx_method, rax);
  1332     break;
  1334   case _invokeinterface_mh:
  1336       // same as TemplateTable::invokeinterface,
  1337       // minus the CP setup and profiling:
  1339       // pick out the interface and itable index from the MH.
  1340       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
  1341       Register rdx_intf  = rdx_temp;
  1342       Register rbx_index = rbx_temp;
  1343       __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
  1344       __ movl(rbx_index, rcx_dmh_vmindex);
  1345       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
  1346       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
  1348       // get receiver klass
  1349       Register rax_klass = rax_argslot;
  1350       __ load_klass(rax_klass, rcx_recv);
  1351       __ verify_oop(rax_klass);
  1353       Register rbx_method = rbx_index;
  1355       // get interface klass
  1356       Label no_such_interface;
  1357       __ verify_oop(rdx_intf);
  1358       __ lookup_interface_method(rax_klass, rdx_intf,
  1359                                  // note: next two args must be the same:
  1360                                  rbx_index, rbx_method,
  1361                                  rdi_temp,
  1362                                  no_such_interface);
  1364       __ verify_oop(rbx_method);
  1365       jump_from_method_handle(_masm, rbx_method, rax);
  1366       __ hlt();
  1368       __ bind(no_such_interface);
  1369       // Throw an exception.
  1370       // For historical reasons, it will be IncompatibleClassChangeError.
  1371       __ mov(rbx_temp, rcx_recv);  // rarg2_required might be RCX
  1372       assert_different_registers(rarg2_required, rbx_temp);
  1373       __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset));  // required interface
  1374       __ mov(   rarg1_actual,   rbx_temp);                               // bad receiver
  1375       __ movl(  rarg0_code,     (int) Bytecodes::_invokeinterface);      // who is complaining?
  1376       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1378     break;
  1380   case _bound_ref_mh:
  1381   case _bound_int_mh:
  1382   case _bound_long_mh:
  1383   case _bound_ref_direct_mh:
  1384   case _bound_int_direct_mh:
  1385   case _bound_long_direct_mh:
  1387       const bool direct_to_method = (ek >= _bound_ref_direct_mh);
  1388       BasicType arg_type  = ek_bound_mh_arg_type(ek);
  1389       int       arg_slots = type2size[arg_type];
  1391       // make room for the new argument:
  1392       __ movl(rax_argslot, rcx_bmh_vmargslot);
  1393       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1395       insert_arg_slots(_masm, arg_slots * stack_move_unit(), rax_argslot, rbx_temp, rdx_temp);
  1397       // store bound argument into the new stack slot:
  1398       __ load_heap_oop(rbx_temp, rcx_bmh_argument);
  1399       if (arg_type == T_OBJECT) {
  1400         __ movptr(Address(rax_argslot, 0), rbx_temp);
  1401       } else {
  1402         Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
  1403         move_typed_arg(_masm, arg_type, false,
  1404                        Address(rax_argslot, 0),
  1405                        prim_value_addr,
  1406                        rbx_temp, rdx_temp);
  1409       if (direct_to_method) {
  1410         Register rbx_method = rbx_temp;
  1411         __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
  1412         __ verify_oop(rbx_method);
  1413         jump_from_method_handle(_masm, rbx_method, rax);
  1414       } else {
  1415         __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1416         __ verify_oop(rcx_recv);
  1417         __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1420     break;
  1422   case _adapter_opt_profiling:
  1423     if (java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes() != 0) {
  1424       Address rcx_mh_vmcount(rcx_recv, java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes());
  1425       __ incrementl(rcx_mh_vmcount);
  1427     // fall through
  1429   case _adapter_retype_only:
  1430   case _adapter_retype_raw:
  1431     // immediately jump to the next MH layer:
  1432     __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1433     __ verify_oop(rcx_recv);
  1434     __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1435     // This is OK when all parameter types widen.
  1436     // It is also OK when a return type narrows.
  1437     break;
  1439   case _adapter_check_cast:
  1441       // temps:
  1442       Register rbx_klass = rbx_temp; // interesting AMH data
  1444       // check a reference argument before jumping to the next layer of MH:
  1445       __ movl(rax_argslot, rcx_amh_vmargslot);
  1446       vmarg = __ argument_address(rax_argslot);
  1448       // What class are we casting to?
  1449       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
  1450       load_klass_from_Class(_masm, rbx_klass);
  1452       Label done;
  1453       __ movptr(rdx_temp, vmarg);
  1454       __ testptr(rdx_temp, rdx_temp);
  1455       __ jcc(Assembler::zero, done);         // no cast if null
  1456       __ load_klass(rdx_temp, rdx_temp);
  1458       // live at this point:
  1459       // - rbx_klass:  klass required by the target method
  1460       // - rdx_temp:   argument klass to test
  1461       // - rcx_recv:   adapter method handle
  1462       __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
  1464       // If we get here, the type check failed!
  1465       // Call the wrong_method_type stub, passing the failing argument type in rax.
  1466       Register rax_mtype = rax_argslot;
  1467       __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
  1468       __ movptr(rdx_temp, vmarg);
  1470       assert_different_registers(rarg2_required, rdx_temp);
  1471       __ load_heap_oop(rarg2_required, rcx_amh_argument);             // required class
  1472       __ mov(          rarg1_actual,   rdx_temp);                     // bad object
  1473       __ movl(         rarg0_code,     (int) Bytecodes::_checkcast);  // who is complaining?
  1474       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1476       __ bind(done);
  1477       // get the new MH:
  1478       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1479       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1481     break;
  1483   case _adapter_prim_to_prim:
  1484   case _adapter_ref_to_prim:
  1485   case _adapter_prim_to_ref:
  1486     // handled completely by optimized cases
  1487     __ stop("init_AdapterMethodHandle should not issue this");
  1488     break;
  1490   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
  1491 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  1492   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  1493   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
  1495       // perform an in-place conversion to int or an int subword
  1496       __ movl(rax_argslot, rcx_amh_vmargslot);
  1497       vmarg = __ argument_address(rax_argslot);
  1499       switch (ek) {
  1500       case _adapter_opt_i2i:
  1501         __ movl(rdx_temp, vmarg);
  1502         break;
  1503       case _adapter_opt_l2i:
  1505           // just delete the extra slot; on a little-endian machine we keep the first
  1506           __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
  1507           remove_arg_slots(_masm, -stack_move_unit(),
  1508                            rax_argslot, rbx_temp, rdx_temp);
  1509           vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
  1510           __ movl(rdx_temp, vmarg);
  1512         break;
  1513       case _adapter_opt_unboxi:
  1515           // Load the value up from the heap.
  1516           __ movptr(rdx_temp, vmarg);
  1517           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
  1518 #ifdef ASSERT
  1519           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1520             if (is_subword_type(BasicType(bt)))
  1521               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
  1523 #endif
  1524           __ null_check(rdx_temp, value_offset);
  1525           __ movl(rdx_temp, Address(rdx_temp, value_offset));
  1526           // We load this as a word.  Because we are little-endian,
  1527           // the low bits will be correct, but the high bits may need cleaning.
  1528           // The vminfo will guide us to clean those bits.
  1530         break;
  1531       default:
  1532         ShouldNotReachHere();
  1535       // Do the requested conversion and store the value.
  1536       Register rbx_vminfo = rbx_temp;
  1537       load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
  1539       // get the new MH:
  1540       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1541       // (now we are done with the old MH)
  1543       // original 32-bit vmdata word must be of this form:
  1544       //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
  1545       __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
  1546       __ shll(rdx_temp /*, rcx*/);
  1547       Label zero_extend, done;
  1548       __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
  1549       __ jccb(Assembler::zero, zero_extend);
  1551       // this path is taken for int->byte, int->short
  1552       __ sarl(rdx_temp /*, rcx*/);
  1553       __ jmpb(done);
  1555       __ bind(zero_extend);
  1556       // this is taken for int->char
  1557       __ shrl(rdx_temp /*, rcx*/);
  1559       __ bind(done);
  1560       __ movl(vmarg, rdx_temp);  // Store the value.
  1561       __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
  1563       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1565     break;
  1567   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  1568   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
  1570       // perform an in-place int-to-long or ref-to-long conversion
  1571       __ movl(rax_argslot, rcx_amh_vmargslot);
  1573       // on a little-endian machine we keep the first slot and add another after
  1574       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
  1575       insert_arg_slots(_masm, stack_move_unit(),
  1576                        rax_argslot, rbx_temp, rdx_temp);
  1577       Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
  1578       Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
  1580       switch (ek) {
  1581       case _adapter_opt_i2l:
  1583 #ifdef _LP64
  1584           __ movslq(rdx_temp, vmarg1);  // Load sign-extended
  1585           __ movq(vmarg1, rdx_temp);    // Store into first slot
  1586 #else
  1587           __ movl(rdx_temp, vmarg1);
  1588           __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
  1589           __ movl(vmarg2, rdx_temp); // store second word
  1590 #endif
  1592         break;
  1593       case _adapter_opt_unboxl:
  1595           // Load the value up from the heap.
  1596           __ movptr(rdx_temp, vmarg1);
  1597           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
  1598           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
  1599           __ null_check(rdx_temp, value_offset);
  1600 #ifdef _LP64
  1601           __ movq(rbx_temp, Address(rdx_temp, value_offset));
  1602           __ movq(vmarg1, rbx_temp);
  1603 #else
  1604           __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
  1605           __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
  1606           __ movl(vmarg1, rbx_temp);
  1607           __ movl(vmarg2, rdx_temp);
  1608 #endif
  1610         break;
  1611       default:
  1612         ShouldNotReachHere();
  1615       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1616       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1618     break;
  1620   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  1621   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
  1623       // perform an in-place floating primitive conversion
  1624       __ movl(rax_argslot, rcx_amh_vmargslot);
  1625       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
  1626       if (ek == _adapter_opt_f2d) {
  1627         insert_arg_slots(_masm, stack_move_unit(),
  1628                          rax_argslot, rbx_temp, rdx_temp);
  1630       Address vmarg(rax_argslot, -Interpreter::stackElementSize);
  1632 #ifdef _LP64
  1633       if (ek == _adapter_opt_f2d) {
  1634         __ movflt(xmm0, vmarg);
  1635         __ cvtss2sd(xmm0, xmm0);
  1636         __ movdbl(vmarg, xmm0);
  1637       } else {
  1638         __ movdbl(xmm0, vmarg);
  1639         __ cvtsd2ss(xmm0, xmm0);
  1640         __ movflt(vmarg, xmm0);
  1642 #else //_LP64
  1643       if (ek == _adapter_opt_f2d) {
  1644         __ fld_s(vmarg);        // load float to ST0
  1645         __ fstp_d(vmarg);       // store double
  1646       } else {
  1647         __ fld_d(vmarg);        // load double to ST0
  1648         __ fstp_s(vmarg);       // store single
  1650 #endif //_LP64
  1652       if (ek == _adapter_opt_d2f) {
  1653         remove_arg_slots(_masm, -stack_move_unit(),
  1654                          rax_argslot, rbx_temp, rdx_temp);
  1657       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1658       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1660     break;
  1662   case _adapter_swap_args:
  1663   case _adapter_rot_args:
  1664     // handled completely by optimized cases
  1665     __ stop("init_AdapterMethodHandle should not issue this");
  1666     break;
  1668   case _adapter_opt_swap_1:
  1669   case _adapter_opt_swap_2:
  1670   case _adapter_opt_rot_1_up:
  1671   case _adapter_opt_rot_1_down:
  1672   case _adapter_opt_rot_2_up:
  1673   case _adapter_opt_rot_2_down:
  1675       int swap_slots = ek_adapter_opt_swap_slots(ek);
  1676       int rotate     = ek_adapter_opt_swap_mode(ek);
  1678       // 'argslot' is the position of the first argument to swap
  1679       __ movl(rax_argslot, rcx_amh_vmargslot);
  1680       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1682       // 'vminfo' is the second
  1683       Register rbx_destslot = rbx_temp;
  1684       load_conversion_vminfo(_masm, rbx_destslot, rcx_amh_conversion);
  1685       __ lea(rbx_destslot, __ argument_address(rbx_destslot));
  1686       if (VerifyMethodHandles)
  1687         verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame");
  1689       assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
  1690       if (!rotate) {
  1691         // simple swap
  1692         for (int i = 0; i < swap_slots; i++) {
  1693           __ movptr(rdi_temp, Address(rax_argslot,  i * wordSize));
  1694           __ movptr(rdx_temp, Address(rbx_destslot, i * wordSize));
  1695           __ movptr(Address(rax_argslot,  i * wordSize), rdx_temp);
  1696           __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
  1698       } else {
  1699         // A rotate is actually pair of moves, with an "odd slot" (or pair)
  1700         // changing place with a series of other slots.
  1701         // First, push the "odd slot", which is going to get overwritten
  1702         for (int i = swap_slots - 1; i >= 0; i--) {
  1703           // handle one with rdi_temp instead of a push:
  1704           if (i == 0)  __ movptr(rdi_temp, Address(rax_argslot, i * wordSize));
  1705           else         __ pushptr(         Address(rax_argslot, i * wordSize));
  1707         if (rotate > 0) {
  1708           // Here is rotate > 0:
  1709           // (low mem)                                          (high mem)
  1710           //     | dest:     more_slots...     | arg: odd_slot :arg+1 |
  1711           // =>
  1712           //     | dest: odd_slot | dest+1: more_slots...      :arg+1 |
  1713           // work argslot down to destslot, copying contiguous data upwards
  1714           // pseudo-code:
  1715           //   rax = src_addr - swap_bytes
  1716           //   rbx = dest_addr
  1717           //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
  1718           move_arg_slots_up(_masm,
  1719                             rbx_destslot,
  1720                             Address(rax_argslot, 0),
  1721                             swap_slots,
  1722                             rax_argslot, rdx_temp);
  1723         } else {
  1724           // Here is the other direction, rotate < 0:
  1725           // (low mem)                                          (high mem)
  1726           //     | arg: odd_slot | arg+1: more_slots...       :dest+1 |
  1727           // =>
  1728           //     | arg:    more_slots...     | dest: odd_slot :dest+1 |
  1729           // work argslot up to destslot, copying contiguous data downwards
  1730           // pseudo-code:
  1731           //   rax = src_addr + swap_bytes
  1732           //   rbx = dest_addr
  1733           //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
  1734           // dest_slot denotes an exclusive upper limit
  1735           int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
  1736           if (limit_bias != 0)
  1737             __ addptr(rbx_destslot, - limit_bias * wordSize);
  1738           move_arg_slots_down(_masm,
  1739                               Address(rax_argslot, swap_slots * wordSize),
  1740                               rbx_destslot,
  1741                               -swap_slots,
  1742                               rax_argslot, rdx_temp);
  1743           __ subptr(rbx_destslot, swap_slots * wordSize);
  1745         // pop the original first chunk into the destination slot, now free
  1746         for (int i = 0; i < swap_slots; i++) {
  1747           if (i == 0)  __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
  1748           else         __ popptr(Address(rbx_destslot, i * wordSize));
  1752       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1753       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1755     break;
  1757   case _adapter_dup_args:
  1759       // 'argslot' is the position of the first argument to duplicate
  1760       __ movl(rax_argslot, rcx_amh_vmargslot);
  1761       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1763       // 'stack_move' is negative number of words to duplicate
  1764       Register rdi_stack_move = rdi_temp;
  1765       load_stack_move(_masm, rdi_stack_move, rcx_recv, true);
  1767       if (VerifyMethodHandles) {
  1768         verify_argslots(_masm, rdi_stack_move, rax_argslot, true,
  1769                         "copied argument(s) must fall within current frame");
  1772       // insert location is always the bottom of the argument list:
  1773       Address insert_location = __ argument_address(constant(0));
  1774       int pre_arg_words = insert_location.disp() / wordSize;   // return PC is pushed
  1775       assert(insert_location.base() == rsp, "");
  1777       __ negl(rdi_stack_move);
  1778       push_arg_slots(_masm, rax_argslot, rdi_stack_move,
  1779                      pre_arg_words, rbx_temp, rdx_temp);
  1781       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1782       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1784     break;
  1786   case _adapter_drop_args:
  1788       // 'argslot' is the position of the first argument to nuke
  1789       __ movl(rax_argslot, rcx_amh_vmargslot);
  1790       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1792       // (must do previous push after argslot address is taken)
  1794       // 'stack_move' is number of words to drop
  1795       Register rdi_stack_move = rdi_temp;
  1796       load_stack_move(_masm, rdi_stack_move, rcx_recv, false);
  1797       remove_arg_slots(_masm, rdi_stack_move,
  1798                        rax_argslot, rbx_temp, rdx_temp);
  1800       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1801       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1803     break;
  1805   case _adapter_collect_args:
  1806   case _adapter_fold_args:
  1807   case _adapter_spread_args:
  1808     // handled completely by optimized cases
  1809     __ stop("init_AdapterMethodHandle should not issue this");
  1810     break;
  1812   case _adapter_opt_collect_ref:
  1813   case _adapter_opt_collect_int:
  1814   case _adapter_opt_collect_long:
  1815   case _adapter_opt_collect_float:
  1816   case _adapter_opt_collect_double:
  1817   case _adapter_opt_collect_void:
  1818   case _adapter_opt_collect_0_ref:
  1819   case _adapter_opt_collect_1_ref:
  1820   case _adapter_opt_collect_2_ref:
  1821   case _adapter_opt_collect_3_ref:
  1822   case _adapter_opt_collect_4_ref:
  1823   case _adapter_opt_collect_5_ref:
  1824   case _adapter_opt_filter_S0_ref:
  1825   case _adapter_opt_filter_S1_ref:
  1826   case _adapter_opt_filter_S2_ref:
  1827   case _adapter_opt_filter_S3_ref:
  1828   case _adapter_opt_filter_S4_ref:
  1829   case _adapter_opt_filter_S5_ref:
  1830   case _adapter_opt_collect_2_S0_ref:
  1831   case _adapter_opt_collect_2_S1_ref:
  1832   case _adapter_opt_collect_2_S2_ref:
  1833   case _adapter_opt_collect_2_S3_ref:
  1834   case _adapter_opt_collect_2_S4_ref:
  1835   case _adapter_opt_collect_2_S5_ref:
  1836   case _adapter_opt_fold_ref:
  1837   case _adapter_opt_fold_int:
  1838   case _adapter_opt_fold_long:
  1839   case _adapter_opt_fold_float:
  1840   case _adapter_opt_fold_double:
  1841   case _adapter_opt_fold_void:
  1842   case _adapter_opt_fold_1_ref:
  1843   case _adapter_opt_fold_2_ref:
  1844   case _adapter_opt_fold_3_ref:
  1845   case _adapter_opt_fold_4_ref:
  1846   case _adapter_opt_fold_5_ref:
  1848       // Given a fresh incoming stack frame, build a new ricochet frame.
  1849       // On entry, TOS points at a return PC, and RBP is the callers frame ptr.
  1850       // RSI/R13 has the caller's exact stack pointer, which we must also preserve.
  1851       // RCX contains an AdapterMethodHandle of the indicated kind.
  1853       // Relevant AMH fields:
  1854       // amh.vmargslot:
  1855       //   points to the trailing edge of the arguments
  1856       //   to filter, collect, or fold.  For a boxing operation,
  1857       //   it points just after the single primitive value.
  1858       // amh.argument:
  1859       //   recursively called MH, on |collect| arguments
  1860       // amh.vmtarget:
  1861       //   final destination MH, on return value, etc.
  1862       // amh.conversion.dest:
  1863       //   tells what is the type of the return value
  1864       //   (not needed here, since dest is also derived from ek)
  1865       // amh.conversion.vminfo:
  1866       //   points to the trailing edge of the return value
  1867       //   when the vmtarget is to be called; this is
  1868       //   equal to vmargslot + (retained ? |collect| : 0)
  1870       // Pass 0 or more argument slots to the recursive target.
  1871       int collect_count_constant = ek_adapter_opt_collect_count(ek);
  1873       // The collected arguments are copied from the saved argument list:
  1874       int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
  1876       assert(ek_orig == _adapter_collect_args ||
  1877              ek_orig == _adapter_fold_args, "");
  1878       bool retain_original_args = (ek_orig == _adapter_fold_args);
  1880       // The return value is replaced (or inserted) at the 'vminfo' argslot.
  1881       // Sometimes we can compute this statically.
  1882       int dest_slot_constant = -1;
  1883       if (!retain_original_args)
  1884         dest_slot_constant = collect_slot_constant;
  1885       else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
  1886         // We are preserving all the arguments, and the return value is prepended,
  1887         // so the return slot is to the left (above) the |collect| sequence.
  1888         dest_slot_constant = collect_slot_constant + collect_count_constant;
  1890       // Replace all those slots by the result of the recursive call.
  1891       // The result type can be one of ref, int, long, float, double, void.
  1892       // In the case of void, nothing is pushed on the stack after return.
  1893       BasicType dest = ek_adapter_opt_collect_type(ek);
  1894       assert(dest == type2wfield[dest], "dest is a stack slot type");
  1895       int dest_count = type2size[dest];
  1896       assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
  1898       // Choose a return continuation.
  1899       EntryKind ek_ret = _adapter_opt_return_any;
  1900       if (dest != T_CONFLICT && OptimizeMethodHandles) {
  1901         switch (dest) {
  1902         case T_INT    : ek_ret = _adapter_opt_return_int;     break;
  1903         case T_LONG   : ek_ret = _adapter_opt_return_long;    break;
  1904         case T_FLOAT  : ek_ret = _adapter_opt_return_float;   break;
  1905         case T_DOUBLE : ek_ret = _adapter_opt_return_double;  break;
  1906         case T_OBJECT : ek_ret = _adapter_opt_return_ref;     break;
  1907         case T_VOID   : ek_ret = _adapter_opt_return_void;    break;
  1908         default       : ShouldNotReachHere();
  1910         if (dest == T_OBJECT && dest_slot_constant >= 0) {
  1911           EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
  1912           if (ek_try <= _adapter_opt_return_LAST &&
  1913               ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
  1914             ek_ret = ek_try;
  1917         assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
  1920       // Already pushed:  ... keep1 | collect | keep2 | sender_pc |
  1921       // push(sender_pc);
  1923       // Compute argument base:
  1924       Register rax_argv = rax_argslot;
  1925       __ lea(rax_argv, __ argument_address(constant(0)));
  1927       // Push a few extra argument words, if we need them to store the return value.
  1929         int extra_slots = 0;
  1930         if (retain_original_args) {
  1931           extra_slots = dest_count;
  1932         } else if (collect_count_constant == -1) {
  1933           extra_slots = dest_count;  // collect_count might be zero; be generous
  1934         } else if (dest_count > collect_count_constant) {
  1935           extra_slots = (dest_count - collect_count_constant);
  1936         } else {
  1937           // else we know we have enough dead space in |collect| to repurpose for return values
  1939         DEBUG_ONLY(extra_slots += 1);
  1940         if (extra_slots > 0) {
  1941           __ pop(rbx_temp);   // return value
  1942           __ subptr(rsp, (extra_slots * Interpreter::stackElementSize));
  1943           // Push guard word #2 in debug mode.
  1944           DEBUG_ONLY(__ movptr(Address(rsp, 0), (int32_t) RicochetFrame::MAGIC_NUMBER_2));
  1945           __ push(rbx_temp);
  1949       RicochetFrame::enter_ricochet_frame(_masm, rcx_recv, rax_argv,
  1950                                           entry(ek_ret)->from_interpreted_entry(), rbx_temp);
  1952       // Now pushed:  ... keep1 | collect | keep2 | RF |
  1953       // some handy frame slots:
  1954       Address exact_sender_sp_addr = RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes());
  1955       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
  1956       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
  1958 #ifdef ASSERT
  1959       if (VerifyMethodHandles && dest != T_CONFLICT) {
  1960         BLOCK_COMMENT("verify AMH.conv.dest");
  1961         load_conversion_dest_type(_masm, rbx_temp, conversion_addr);
  1962         Label L_dest_ok;
  1963         __ cmpl(rbx_temp, (int) dest);
  1964         __ jcc(Assembler::equal, L_dest_ok);
  1965         if (dest == T_INT) {
  1966           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1967             if (is_subword_type(BasicType(bt))) {
  1968               __ cmpl(rbx_temp, (int) bt);
  1969               __ jcc(Assembler::equal, L_dest_ok);
  1973         __ stop("bad dest in AMH.conv");
  1974         __ BIND(L_dest_ok);
  1976 #endif //ASSERT
  1978       // Find out where the original copy of the recursive argument sequence begins.
  1979       Register rax_coll = rax_argv;
  1981         RegisterOrConstant collect_slot = collect_slot_constant;
  1982         if (collect_slot_constant == -1) {
  1983           __ movl(rdi_temp, rcx_amh_vmargslot);
  1984           collect_slot = rdi_temp;
  1986         if (collect_slot_constant != 0)
  1987           __ lea(rax_coll, Address(rax_argv, collect_slot, Interpreter::stackElementScale()));
  1988         // rax_coll now points at the trailing edge of |collect| and leading edge of |keep2|
  1991       // Replace the old AMH with the recursive MH.  (No going back now.)
  1992       // In the case of a boxing call, the recursive call is to a 'boxer' method,
  1993       // such as Integer.valueOf or Long.valueOf.  In the case of a filter
  1994       // or collect call, it will take one or more arguments, transform them,
  1995       // and return some result, to store back into argument_base[vminfo].
  1996       __ load_heap_oop(rcx_recv, rcx_amh_argument);
  1997       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
  1999       // Push a space for the recursively called MH first:
  2000       __ push((int32_t)NULL_WORD);
  2002       // Calculate |collect|, the number of arguments we are collecting.
  2003       Register rdi_collect_count = rdi_temp;
  2004       RegisterOrConstant collect_count;
  2005       if (collect_count_constant >= 0) {
  2006         collect_count = collect_count_constant;
  2007       } else {
  2008         __ load_method_handle_vmslots(rdi_collect_count, rcx_recv, rdx_temp);
  2009         collect_count = rdi_collect_count;
  2011 #ifdef ASSERT
  2012       if (VerifyMethodHandles && collect_count_constant >= 0) {
  2013         __ load_method_handle_vmslots(rbx_temp, rcx_recv, rdx_temp);
  2014         Label L_count_ok;
  2015         __ cmpl(rbx_temp, collect_count_constant);
  2016         __ jcc(Assembler::equal, L_count_ok);
  2017         __ stop("bad vminfo in AMH.conv");
  2018         __ BIND(L_count_ok);
  2020 #endif //ASSERT
  2022       // copy |collect| slots directly to TOS:
  2023       push_arg_slots(_masm, rax_coll, collect_count, 0, rbx_temp, rdx_temp);
  2024       // Now pushed:  ... keep1 | collect | keep2 | RF... | collect |
  2025       // rax_coll still points at the trailing edge of |collect| and leading edge of |keep2|
  2027       // If necessary, adjust the saved arguments to make room for the eventual return value.
  2028       // Normal adjustment:  ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
  2029       // If retaining args:  ... keep1 | +dest+ |  collect  | keep2 | RF... | collect |
  2030       // In the non-retaining case, this might move keep2 either up or down.
  2031       // We don't have to copy the whole | RF... collect | complex,
  2032       // but we must adjust RF.saved_args_base.
  2033       // Also, from now on, we will forget about the original copy of |collect|.
  2034       // If we are retaining it, we will treat it as part of |keep2|.
  2035       // For clarity we will define |keep3| = |collect|keep2| or |keep2|.
  2037       BLOCK_COMMENT("adjust trailing arguments {");
  2038       // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
  2039       int                open_count  = dest_count;
  2040       RegisterOrConstant close_count = collect_count_constant;
  2041       Register rdi_close_count = rdi_collect_count;
  2042       if (retain_original_args) {
  2043         close_count = constant(0);
  2044       } else if (collect_count_constant == -1) {
  2045         close_count = rdi_collect_count;
  2048       // How many slots need moving?  This is simply dest_slot (0 => no |keep3|).
  2049       RegisterOrConstant keep3_count;
  2050       Register rsi_keep3_count = rsi;  // can repair from RF.exact_sender_sp
  2051       if (dest_slot_constant >= 0) {
  2052         keep3_count = dest_slot_constant;
  2053       } else  {
  2054         load_conversion_vminfo(_masm, rsi_keep3_count, conversion_addr);
  2055         keep3_count = rsi_keep3_count;
  2057 #ifdef ASSERT
  2058       if (VerifyMethodHandles && dest_slot_constant >= 0) {
  2059         load_conversion_vminfo(_masm, rbx_temp, conversion_addr);
  2060         Label L_vminfo_ok;
  2061         __ cmpl(rbx_temp, dest_slot_constant);
  2062         __ jcc(Assembler::equal, L_vminfo_ok);
  2063         __ stop("bad vminfo in AMH.conv");
  2064         __ BIND(L_vminfo_ok);
  2066 #endif //ASSERT
  2068       // tasks remaining:
  2069       bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
  2070       bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
  2071       bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
  2073       if (stomp_dest | fix_arg_base) {
  2074         // we will probably need an updated rax_argv value
  2075         if (collect_slot_constant >= 0) {
  2076           // rax_coll already holds the leading edge of |keep2|, so tweak it
  2077           assert(rax_coll == rax_argv, "elided a move");
  2078           if (collect_slot_constant != 0)
  2079             __ subptr(rax_argv, collect_slot_constant * Interpreter::stackElementSize);
  2080         } else {
  2081           // Just reload from RF.saved_args_base.
  2082           __ movptr(rax_argv, saved_args_base_addr);
  2086       // Old and new argument locations (based at slot 0).
  2087       // Net shift (&new_argv - &old_argv) is (close_count - open_count).
  2088       bool zero_open_count = (open_count == 0);  // remember this bit of info
  2089       if (move_keep3 && fix_arg_base) {
  2090         // It will be easier to have everything in one register:
  2091         if (close_count.is_register()) {
  2092           // Deduct open_count from close_count register to get a clean +/- value.
  2093           __ subptr(close_count.as_register(), open_count);
  2094         } else {
  2095           close_count = close_count.as_constant() - open_count;
  2097         open_count = 0;
  2099       Address old_argv(rax_argv, 0);
  2100       Address new_argv(rax_argv, close_count,  Interpreter::stackElementScale(),
  2101                                 - open_count * Interpreter::stackElementSize);
  2103       // First decide if any actual data are to be moved.
  2104       // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
  2105       // (As it happens, all movements involve an argument list size change.)
  2107       // If there are variable parameters, use dynamic checks to skip around the whole mess.
  2108       Label L_done;
  2109       if (!keep3_count.is_constant()) {
  2110         __ testl(keep3_count.as_register(), keep3_count.as_register());
  2111         __ jcc(Assembler::zero, L_done);
  2113       if (!close_count.is_constant()) {
  2114         __ cmpl(close_count.as_register(), open_count);
  2115         __ jcc(Assembler::equal, L_done);
  2118       if (move_keep3 && fix_arg_base) {
  2119         bool emit_move_down = false, emit_move_up = false, emit_guard = false;
  2120         if (!close_count.is_constant()) {
  2121           emit_move_down = emit_guard = !zero_open_count;
  2122           emit_move_up   = true;
  2123         } else if (open_count != close_count.as_constant()) {
  2124           emit_move_down = (open_count > close_count.as_constant());
  2125           emit_move_up   = !emit_move_down;
  2127         Label L_move_up;
  2128         if (emit_guard) {
  2129           __ cmpl(close_count.as_register(), open_count);
  2130           __ jcc(Assembler::greater, L_move_up);
  2133         if (emit_move_down) {
  2134           // Move arguments down if |+dest+| > |-collect-|
  2135           // (This is rare, except when arguments are retained.)
  2136           // This opens space for the return value.
  2137           if (keep3_count.is_constant()) {
  2138             for (int i = 0; i < keep3_count.as_constant(); i++) {
  2139               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
  2140               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
  2142           } else {
  2143             Register rbx_argv_top = rbx_temp;
  2144             __ lea(rbx_argv_top, old_argv.plus_disp(keep3_count, Interpreter::stackElementScale()));
  2145             move_arg_slots_down(_masm,
  2146                                 old_argv,     // beginning of old argv
  2147                                 rbx_argv_top, // end of old argv
  2148                                 close_count,  // distance to move down (must be negative)
  2149                                 rax_argv, rdx_temp);
  2150             // Used argv as an iteration variable; reload from RF.saved_args_base.
  2151             __ movptr(rax_argv, saved_args_base_addr);
  2155         if (emit_guard) {
  2156           __ jmp(L_done);  // assumes emit_move_up is true also
  2157           __ BIND(L_move_up);
  2160         if (emit_move_up) {
  2162           // Move arguments up if |+dest+| < |-collect-|
  2163           // (This is usual, except when |keep3| is empty.)
  2164           // This closes up the space occupied by the now-deleted collect values.
  2165           if (keep3_count.is_constant()) {
  2166             for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
  2167               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
  2168               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
  2170           } else {
  2171             Address argv_top = old_argv.plus_disp(keep3_count, Interpreter::stackElementScale());
  2172             move_arg_slots_up(_masm,
  2173                               rax_argv,     // beginning of old argv
  2174                               argv_top,     // end of old argv
  2175                               close_count,  // distance to move up (must be positive)
  2176                               rbx_temp, rdx_temp);
  2180       __ BIND(L_done);
  2182       if (fix_arg_base) {
  2183         // adjust RF.saved_args_base by adding (close_count - open_count)
  2184         if (!new_argv.is_same_address(Address(rax_argv, 0)))
  2185           __ lea(rax_argv, new_argv);
  2186         __ movptr(saved_args_base_addr, rax_argv);
  2189       if (stomp_dest) {
  2190         // Stomp the return slot, so it doesn't hold garbage.
  2191         // This isn't strictly necessary, but it may help detect bugs.
  2192         int forty_two = RicochetFrame::RETURN_VALUE_PLACEHOLDER;
  2193         __ movptr(Address(rax_argv, keep3_count, Address::times_ptr),
  2194                   (int32_t) forty_two);
  2195         // uses rsi_keep3_count
  2197       BLOCK_COMMENT("} adjust trailing arguments");
  2199       BLOCK_COMMENT("do_recursive_call");
  2200       __ mov(saved_last_sp, rsp);    // set rsi/r13 for callee
  2201       __ pushptr(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr()).addr());
  2202       // The globally unique bounce address has two purposes:
  2203       // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
  2204       // 2. When returned to, it cuts back the stack and redirects control flow
  2205       //    to the return handler.
  2206       // The return handler will further cut back the stack when it takes
  2207       // down the RF.  Perhaps there is a way to streamline this further.
  2209       // State during recursive call:
  2210       // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
  2211       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  2213       break;
  2216   case _adapter_opt_return_ref:
  2217   case _adapter_opt_return_int:
  2218   case _adapter_opt_return_long:
  2219   case _adapter_opt_return_float:
  2220   case _adapter_opt_return_double:
  2221   case _adapter_opt_return_void:
  2222   case _adapter_opt_return_S0_ref:
  2223   case _adapter_opt_return_S1_ref:
  2224   case _adapter_opt_return_S2_ref:
  2225   case _adapter_opt_return_S3_ref:
  2226   case _adapter_opt_return_S4_ref:
  2227   case _adapter_opt_return_S5_ref:
  2229       BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
  2230       int       dest_slot_constant = ek_adapter_opt_return_slot(ek);
  2232       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2234       if (dest_slot_constant == -1) {
  2235         // The current stub is a general handler for this dest_type.
  2236         // It can be called from _adapter_opt_return_any below.
  2237         // Stash the address in a little table.
  2238         assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
  2239         address return_handler = __ pc();
  2240         _adapter_return_handlers[dest_type_constant] = return_handler;
  2241         if (dest_type_constant == T_INT) {
  2242           // do the subword types too
  2243           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  2244             if (is_subword_type(BasicType(bt)) &&
  2245                 _adapter_return_handlers[bt] == NULL) {
  2246               _adapter_return_handlers[bt] = return_handler;
  2252       Register rbx_arg_base = rbx_temp;
  2253       assert_different_registers(rax, rdx,  // possibly live return value registers
  2254                                  rdi_temp, rbx_arg_base);
  2256       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
  2257       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
  2259       __ movptr(rbx_arg_base, saved_args_base_addr);
  2260       RegisterOrConstant dest_slot = dest_slot_constant;
  2261       if (dest_slot_constant == -1) {
  2262         load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
  2263         dest_slot = rdi_temp;
  2265       // Store the result back into the argslot.
  2266       // This code uses the interpreter calling sequence, in which the return value
  2267       // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
  2268       // There are certain irregularities with floating point values, which can be seen
  2269       // in TemplateInterpreterGenerator::generate_return_entry_for.
  2270       move_return_value(_masm, dest_type_constant, Address(rbx_arg_base, dest_slot, Interpreter::stackElementScale()));
  2272       RicochetFrame::leave_ricochet_frame(_masm, rcx_recv, rbx_arg_base, rdx_temp);
  2273       __ push(rdx_temp);  // repush the return PC
  2275       // Load the final target and go.
  2276       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
  2277       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  2278       __ hlt(); // --------------------
  2279       break;
  2282   case _adapter_opt_return_any:
  2284       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2285       Register rdi_conv = rdi_temp;
  2286       assert_different_registers(rax, rdx,  // possibly live return value registers
  2287                                  rdi_conv, rbx_temp);
  2289       Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
  2290       load_conversion_dest_type(_masm, rdi_conv, conversion_addr);
  2291       __ lea(rbx_temp, ExternalAddress((address) &_adapter_return_handlers[0]));
  2292       __ movptr(rbx_temp, Address(rbx_temp, rdi_conv, Address::times_ptr));
  2294 #ifdef ASSERT
  2295       { Label L_badconv;
  2296         __ testptr(rbx_temp, rbx_temp);
  2297         __ jccb(Assembler::zero, L_badconv);
  2298         __ jmp(rbx_temp);
  2299         __ bind(L_badconv);
  2300         __ stop("bad method handle return");
  2302 #else //ASSERT
  2303       __ jmp(rbx_temp);
  2304 #endif //ASSERT
  2305       break;
  2308   case _adapter_opt_spread_0:
  2309   case _adapter_opt_spread_1_ref:
  2310   case _adapter_opt_spread_2_ref:
  2311   case _adapter_opt_spread_3_ref:
  2312   case _adapter_opt_spread_4_ref:
  2313   case _adapter_opt_spread_5_ref:
  2314   case _adapter_opt_spread_ref:
  2315   case _adapter_opt_spread_byte:
  2316   case _adapter_opt_spread_char:
  2317   case _adapter_opt_spread_short:
  2318   case _adapter_opt_spread_int:
  2319   case _adapter_opt_spread_long:
  2320   case _adapter_opt_spread_float:
  2321   case _adapter_opt_spread_double:
  2323       // spread an array out into a group of arguments
  2324       int length_constant = ek_adapter_opt_spread_count(ek);
  2325       bool length_can_be_zero = (length_constant == 0);
  2326       if (length_constant < 0) {
  2327         // some adapters with variable length must handle the zero case
  2328         if (!OptimizeMethodHandles ||
  2329             ek_adapter_opt_spread_type(ek) != T_OBJECT)
  2330           length_can_be_zero = true;
  2333       // find the address of the array argument
  2334       __ movl(rax_argslot, rcx_amh_vmargslot);
  2335       __ lea(rax_argslot, __ argument_address(rax_argslot));
  2337       // grab another temp
  2338       Register rsi_temp = rsi;
  2340       // arx_argslot points both to the array and to the first output arg
  2341       vmarg = Address(rax_argslot, 0);
  2343       // Get the array value.
  2344       Register  rdi_array       = rdi_temp;
  2345       Register  rdx_array_klass = rdx_temp;
  2346       BasicType elem_type = ek_adapter_opt_spread_type(ek);
  2347       int       elem_slots = type2size[elem_type];  // 1 or 2
  2348       int       array_slots = 1;  // array is always a T_OBJECT
  2349       int       length_offset   = arrayOopDesc::length_offset_in_bytes();
  2350       int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
  2351       __ movptr(rdi_array, vmarg);
  2353       Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
  2354       if (length_can_be_zero) {
  2355         // handle the null pointer case, if zero is allowed
  2356         Label L_skip;
  2357         if (length_constant < 0) {
  2358           load_conversion_vminfo(_masm, rbx_temp, rcx_amh_conversion);
  2359           __ testl(rbx_temp, rbx_temp);
  2360           __ jcc(Assembler::notZero, L_skip);
  2362         __ testptr(rdi_array, rdi_array);
  2363         __ jcc(Assembler::notZero, L_skip);
  2365         // If 'rsi' contains the 'saved_last_sp' (this is only the
  2366         // case in a 32-bit version of the VM) we have to save 'rsi'
  2367         // on the stack because later on (at 'L_array_is_empty') 'rsi'
  2368         // will be overwritten.
  2369         { if (rsi_temp == saved_last_sp)  __ push(saved_last_sp); }
  2370         // Also prepare a handy macro which restores 'rsi' if required.
  2371 #define UNPUSH_RSI                                                      \
  2372         { if (rsi_temp == saved_last_sp)  __ pop(saved_last_sp); }
  2374         __ jmp(L_array_is_empty);
  2375         __ bind(L_skip);
  2377       __ null_check(rdi_array, oopDesc::klass_offset_in_bytes());
  2378       __ load_klass(rdx_array_klass, rdi_array);
  2380       // Save 'rsi' if required (see comment above).  Do this only
  2381       // after the null check such that the exception handler which is
  2382       // called in the case of a null pointer exception will not be
  2383       // confused by the extra value on the stack (it expects the
  2384       // return pointer on top of the stack)
  2385       { if (rsi_temp == saved_last_sp)  __ push(saved_last_sp); }
  2387       // Check the array type.
  2388       Register rbx_klass = rbx_temp;
  2389       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
  2390       load_klass_from_Class(_masm, rbx_klass);
  2392       Label ok_array_klass, bad_array_klass, bad_array_length;
  2393       __ check_klass_subtype(rdx_array_klass, rbx_klass, rsi_temp, ok_array_klass);
  2394       // If we get here, the type check failed!
  2395       __ jmp(bad_array_klass);
  2396       __ BIND(ok_array_klass);
  2398       // Check length.
  2399       if (length_constant >= 0) {
  2400         __ cmpl(Address(rdi_array, length_offset), length_constant);
  2401       } else {
  2402         Register rbx_vminfo = rbx_temp;
  2403         load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
  2404         __ cmpl(rbx_vminfo, Address(rdi_array, length_offset));
  2406       __ jcc(Assembler::notEqual, bad_array_length);
  2408       Register rdx_argslot_limit = rdx_temp;
  2410       // Array length checks out.  Now insert any required stack slots.
  2411       if (length_constant == -1) {
  2412         // Form a pointer to the end of the affected region.
  2413         __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
  2414         // 'stack_move' is negative number of words to insert
  2415         // This number already accounts for elem_slots.
  2416         Register rsi_stack_move = rsi_temp;
  2417         load_stack_move(_masm, rsi_stack_move, rcx_recv, true);
  2418         __ cmpptr(rsi_stack_move, 0);
  2419         assert(stack_move_unit() < 0, "else change this comparison");
  2420         __ jcc(Assembler::less, L_insert_arg_space);
  2421         __ jcc(Assembler::equal, L_copy_args);
  2422         // single argument case, with no array movement
  2423         __ BIND(L_array_is_empty);
  2424         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2425                          rax_argslot, rbx_temp, rdx_temp);
  2426         __ jmp(L_args_done);  // no spreading to do
  2427         __ BIND(L_insert_arg_space);
  2428         // come here in the usual case, stack_move < 0 (2 or more spread arguments)
  2429         Register rdi_temp = rdi_array;  // spill this
  2430         insert_arg_slots(_masm, rsi_stack_move,
  2431                          rax_argslot, rbx_temp, rdi_temp);
  2432         // reload the array since rsi was killed
  2433         // reload from rdx_argslot_limit since rax_argslot is now decremented
  2434         __ movptr(rdi_array, Address(rdx_argslot_limit, -Interpreter::stackElementSize));
  2435       } else if (length_constant >= 1) {
  2436         int new_slots = (length_constant * elem_slots) - array_slots;
  2437         insert_arg_slots(_masm, new_slots * stack_move_unit(),
  2438                          rax_argslot, rbx_temp, rdx_temp);
  2439       } else if (length_constant == 0) {
  2440         __ BIND(L_array_is_empty);
  2441         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2442                          rax_argslot, rbx_temp, rdx_temp);
  2443       } else {
  2444         ShouldNotReachHere();
  2447       // Copy from the array to the new slots.
  2448       // Note: Stack change code preserves integrity of rax_argslot pointer.
  2449       // So even after slot insertions, rax_argslot still points to first argument.
  2450       // Beware:  Arguments that are shallow on the stack are deep in the array,
  2451       // and vice versa.  So a downward-growing stack (the usual) has to be copied
  2452       // elementwise in reverse order from the source array.
  2453       __ BIND(L_copy_args);
  2454       if (length_constant == -1) {
  2455         // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
  2456         // Array element [0] goes at rdx_argslot_limit[-wordSize].
  2457         Register rdi_source = rdi_array;
  2458         __ lea(rdi_source, Address(rdi_array, elem0_offset));
  2459         Register rdx_fill_ptr = rdx_argslot_limit;
  2460         Label loop;
  2461         __ BIND(loop);
  2462         __ addptr(rdx_fill_ptr, -Interpreter::stackElementSize * elem_slots);
  2463         move_typed_arg(_masm, elem_type, true,
  2464                        Address(rdx_fill_ptr, 0), Address(rdi_source, 0),
  2465                        rbx_temp, rsi_temp);
  2466         __ addptr(rdi_source, type2aelembytes(elem_type));
  2467         __ cmpptr(rdx_fill_ptr, rax_argslot);
  2468         __ jcc(Assembler::above, loop);
  2469       } else if (length_constant == 0) {
  2470         // nothing to copy
  2471       } else {
  2472         int elem_offset = elem0_offset;
  2473         int slot_offset = length_constant * Interpreter::stackElementSize;
  2474         for (int index = 0; index < length_constant; index++) {
  2475           slot_offset -= Interpreter::stackElementSize * elem_slots;  // fill backward
  2476           move_typed_arg(_masm, elem_type, true,
  2477                          Address(rax_argslot, slot_offset), Address(rdi_array, elem_offset),
  2478                          rbx_temp, rsi_temp);
  2479           elem_offset += type2aelembytes(elem_type);
  2482       __ BIND(L_args_done);
  2484       // Arguments are spread.  Move to next method handle.
  2485       UNPUSH_RSI;
  2486       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  2487       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  2489       __ bind(bad_array_klass);
  2490       UNPUSH_RSI;
  2491       assert(!vmarg.uses(rarg2_required), "must be different registers");
  2492       __ load_heap_oop( rarg2_required, Address(rdx_array_klass, java_mirror_offset));  // required type
  2493       __ movptr(        rarg1_actual,   vmarg);                                         // bad array
  2494       __ movl(          rarg0_code,     (int) Bytecodes::_aaload);                      // who is complaining?
  2495       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  2497       __ bind(bad_array_length);
  2498       UNPUSH_RSI;
  2499       assert(!vmarg.uses(rarg2_required), "must be different registers");
  2500       __ mov(    rarg2_required, rcx_recv);                       // AMH requiring a certain length
  2501       __ movptr( rarg1_actual,   vmarg);                          // bad array
  2502       __ movl(   rarg0_code,     (int) Bytecodes::_arraylength);  // who is complaining?
  2503       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  2504 #undef UNPUSH_RSI
  2506       break;
  2509   default:
  2510     // do not require all platforms to recognize all adapter types
  2511     __ nop();
  2512     return;
  2514   BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
  2515   __ hlt();
  2517   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  2518   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  2520   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));

mercurial