src/cpu/x86/vm/methodHandles_x86.cpp

Thu, 02 Feb 2012 09:14:38 -0800

author
twisti
date
Thu, 02 Feb 2012 09:14:38 -0800
changeset 3501
392a3f07d567
parent 3451
5dbed2f542ff
child 3566
45a1bf98f1bb
permissions
-rw-r--r--

7141637: JSR 292: MH spread invoker crashes with NULL argument on x86_32
Reviewed-by: twisti
Contributed-by: Volker Simonis <volker.simonis@gmail.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "prims/methodHandles.hpp"
    31 #define __ _masm->
    33 #ifdef PRODUCT
    34 #define BLOCK_COMMENT(str) /* nothing */
    35 #else
    36 #define BLOCK_COMMENT(str) __ block_comment(str)
    37 #endif
    39 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    41 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
    42 static RegisterOrConstant constant(int value) {
    43   return RegisterOrConstant(value);
    44 }
    46 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
    47                                                 address interpreted_entry) {
    48   // Just before the actual machine code entry point, allocate space
    49   // for a MethodHandleEntry::Data record, so that we can manage everything
    50   // from one base pointer.
    51   __ align(wordSize);
    52   address target = __ pc() + sizeof(Data);
    53   while (__ pc() < target) {
    54     __ nop();
    55     __ align(wordSize);
    56   }
    58   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
    59   me->set_end_address(__ pc());         // set a temporary end_address
    60   me->set_from_interpreted_entry(interpreted_entry);
    61   me->set_type_checking_entry(NULL);
    63   return (address) me;
    64 }
    66 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
    67                                                 address start_addr) {
    68   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
    69   assert(me->end_address() == start_addr, "valid ME");
    71   // Fill in the real end_address:
    72   __ align(wordSize);
    73   me->set_end_address(__ pc());
    75   return me;
    76 }
    78 // stack walking support
    80 frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
    81   RicochetFrame* f = RicochetFrame::from_frame(fr);
    82   if (map->update_map())
    83     frame::update_map_with_saved_link(map, &f->_sender_link);
    84   return frame(f->extended_sender_sp(), f->exact_sender_sp(), f->sender_link(), f->sender_pc());
    85 }
    87 void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
    88   RicochetFrame* f = RicochetFrame::from_frame(fr);
    90   // pick up the argument type descriptor:
    91   Thread* thread = Thread::current();
    92   Handle cookie(thread, f->compute_saved_args_layout(true, true));
    94   // process fixed part
    95   blk->do_oop((oop*)f->saved_target_addr());
    96   blk->do_oop((oop*)f->saved_args_layout_addr());
    98   // process variable arguments:
    99   if (cookie.is_null())  return;  // no arguments to describe
   101   // the cookie is actually the invokeExact method for my target
   102   // his argument signature is what I'm interested in
   103   assert(cookie->is_method(), "");
   104   methodHandle invoker(thread, methodOop(cookie()));
   105   assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
   106   assert(!invoker->is_static(), "must have MH argument");
   107   int slot_count = invoker->size_of_parameters();
   108   assert(slot_count >= 1, "must include 'this'");
   109   intptr_t* base = f->saved_args_base();
   110   intptr_t* retval = NULL;
   111   if (f->has_return_value_slot())
   112     retval = f->return_value_slot_addr();
   113   int slot_num = slot_count;
   114   intptr_t* loc = &base[slot_num -= 1];
   115   //blk->do_oop((oop*) loc);   // original target, which is irrelevant
   116   int arg_num = 0;
   117   for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
   118     if (ss.at_return_type())  continue;
   119     BasicType ptype = ss.type();
   120     if (ptype == T_ARRAY)  ptype = T_OBJECT; // fold all refs to T_OBJECT
   121     assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
   122     loc = &base[slot_num -= type2size[ptype]];
   123     bool is_oop = (ptype == T_OBJECT && loc != retval);
   124     if (is_oop)  blk->do_oop((oop*)loc);
   125     arg_num += 1;
   126   }
   127   assert(slot_num == 0, "must have processed all the arguments");
   128 }
   130 oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
   131   oop cookie = NULL;
   132   if (read_cache) {
   133     cookie = saved_args_layout();
   134     if (cookie != NULL)  return cookie;
   135   }
   136   oop target = saved_target();
   137   oop mtype  = java_lang_invoke_MethodHandle::type(target);
   138   oop mtform = java_lang_invoke_MethodType::form(mtype);
   139   cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
   140   if (write_cache)  {
   141     (*saved_args_layout_addr()) = cookie;
   142   }
   143   return cookie;
   144 }
   146 void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
   147                                                           // output params:
   148                                                           int* bounce_offset,
   149                                                           int* exception_offset,
   150                                                           int* frame_size_in_words) {
   151   (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
   153   address start = __ pc();
   155 #ifdef ASSERT
   156   __ hlt(); __ hlt(); __ hlt();
   157   // here's a hint of something special:
   158   __ push(MAGIC_NUMBER_1);
   159   __ push(MAGIC_NUMBER_2);
   160 #endif //ASSERT
   161   __ hlt();  // not reached
   163   // A return PC has just been popped from the stack.
   164   // Return values are in registers.
   165   // The ebp points into the RicochetFrame, which contains
   166   // a cleanup continuation we must return to.
   168   (*bounce_offset) = __ pc() - start;
   169   BLOCK_COMMENT("ricochet_blob.bounce");
   171   if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
   172   trace_method_handle(_masm, "return/ricochet_blob.bounce");
   174   __ jmp(frame_address(continuation_offset_in_bytes()));
   175   __ hlt();
   176   DEBUG_ONLY(__ push(MAGIC_NUMBER_2));
   178   (*exception_offset) = __ pc() - start;
   179   BLOCK_COMMENT("ricochet_blob.exception");
   181   // compare this to Interpreter::rethrow_exception_entry, which is parallel code
   182   // for example, see TemplateInterpreterGenerator::generate_throw_exception
   183   // Live registers in:
   184   //   rax: exception
   185   //   rdx: return address/pc that threw exception (ignored, always equal to bounce addr)
   186   __ verify_oop(rax);
   188   // no need to empty_FPU_stack or reinit_heapbase, since caller frame will do the same if needed
   190   // Take down the frame.
   192   // Cf. InterpreterMacroAssembler::remove_activation.
   193   leave_ricochet_frame(_masm, /*rcx_recv=*/ noreg,
   194                        saved_last_sp_register(),
   195                        /*sender_pc_reg=*/ rdx);
   197   // In between activations - previous activation type unknown yet
   198   // compute continuation point - the continuation point expects the
   199   // following registers set up:
   200   //
   201   // rax: exception
   202   // rdx: return address/pc that threw exception
   203   // rsp: expression stack of caller
   204   // rbp: ebp of caller
   205   __ push(rax);                                  // save exception
   206   __ push(rdx);                                  // save return address
   207   Register thread_reg = LP64_ONLY(r15_thread) NOT_LP64(rdi);
   208   NOT_LP64(__ get_thread(thread_reg));
   209   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
   210                                    SharedRuntime::exception_handler_for_return_address),
   211                   thread_reg, rdx);
   212   __ mov(rbx, rax);                              // save exception handler
   213   __ pop(rdx);                                   // restore return address
   214   __ pop(rax);                                   // restore exception
   215   __ jmp(rbx);                                   // jump to exception
   216                                                  // handler of caller
   217 }
   219 void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
   220                                                         Register rcx_recv,
   221                                                         Register rax_argv,
   222                                                         address return_handler,
   223                                                         Register rbx_temp) {
   224   const Register saved_last_sp = saved_last_sp_register();
   225   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
   226   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
   228   // Push the RicochetFrame a word at a time.
   229   // This creates something similar to an interpreter frame.
   230   // Cf. TemplateInterpreterGenerator::generate_fixed_frame.
   231   BLOCK_COMMENT("push RicochetFrame {");
   232   DEBUG_ONLY(int rfo = (int) sizeof(RicochetFrame));
   233   assert((rfo -= wordSize) == RicochetFrame::sender_pc_offset_in_bytes(), "");
   234 #define RF_FIELD(push_value, name)                                      \
   235   { push_value;                                                         \
   236     assert((rfo -= wordSize) == RicochetFrame::name##_offset_in_bytes(), ""); }
   237   RF_FIELD(__ push(rbp),                   sender_link);
   238   RF_FIELD(__ push(saved_last_sp),         exact_sender_sp);  // rsi/r13
   239   RF_FIELD(__ pushptr(rcx_amh_conversion), conversion);
   240   RF_FIELD(__ push(rax_argv),              saved_args_base);   // can be updated if args are shifted
   241   RF_FIELD(__ push((int32_t) NULL_WORD),   saved_args_layout); // cache for GC layout cookie
   242   if (UseCompressedOops) {
   243     __ load_heap_oop(rbx_temp, rcx_mh_vmtarget);
   244     RF_FIELD(__ push(rbx_temp),            saved_target);
   245   } else {
   246     RF_FIELD(__ pushptr(rcx_mh_vmtarget),  saved_target);
   247   }
   248   __ lea(rbx_temp, ExternalAddress(return_handler));
   249   RF_FIELD(__ push(rbx_temp),              continuation);
   250 #undef RF_FIELD
   251   assert(rfo == 0, "fully initialized the RicochetFrame");
   252   // compute new frame pointer:
   253   __ lea(rbp, Address(rsp, RicochetFrame::sender_link_offset_in_bytes()));
   254   // Push guard word #1 in debug mode.
   255   DEBUG_ONLY(__ push((int32_t) RicochetFrame::MAGIC_NUMBER_1));
   256   // For debugging, leave behind an indication of which stub built this frame.
   257   DEBUG_ONLY({ Label L; __ call(L, relocInfo::none); __ bind(L); });
   258   BLOCK_COMMENT("} RicochetFrame");
   259 }
   261 void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
   262                                                         Register rcx_recv,
   263                                                         Register new_sp_reg,
   264                                                         Register sender_pc_reg) {
   265   assert_different_registers(rcx_recv, new_sp_reg, sender_pc_reg);
   266   const Register saved_last_sp = saved_last_sp_register();
   267   // Take down the frame.
   268   // Cf. InterpreterMacroAssembler::remove_activation.
   269   BLOCK_COMMENT("end_ricochet_frame {");
   270   // TO DO: If (exact_sender_sp - extended_sender_sp) > THRESH, compact the frame down.
   271   // This will keep stack in bounds even with unlimited tailcalls, each with an adapter.
   272   if (rcx_recv->is_valid())
   273     __ movptr(rcx_recv,    RicochetFrame::frame_address(RicochetFrame::saved_target_offset_in_bytes()));
   274   __ movptr(sender_pc_reg, RicochetFrame::frame_address(RicochetFrame::sender_pc_offset_in_bytes()));
   275   __ movptr(saved_last_sp, RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes()));
   276   __ movptr(rbp,           RicochetFrame::frame_address(RicochetFrame::sender_link_offset_in_bytes()));
   277   __ mov(rsp, new_sp_reg);
   278   BLOCK_COMMENT("} end_ricochet_frame");
   279 }
   281 // Emit code to verify that RBP is pointing at a valid ricochet frame.
   282 #ifndef PRODUCT
   283 enum {
   284   ARG_LIMIT = 255, SLOP = 4,
   285   // use this parameter for checking for garbage stack movements:
   286   UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
   287   // the slop defends against false alarms due to fencepost errors
   288 };
   289 #endif
   291 #ifdef ASSERT
   292 void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
   293   // The stack should look like this:
   294   //    ... keep1 | dest=42 | keep2 | RF | magic | handler | magic | recursive args |
   295   // Check various invariants.
   296   verify_offsets();
   298   Register rdi_temp = rdi;
   299   Register rcx_temp = rcx;
   300   { __ push(rdi_temp); __ push(rcx_temp); }
   301 #define UNPUSH_TEMPS \
   302   { __ pop(rcx_temp);  __ pop(rdi_temp); }
   304   Address magic_number_1_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_1_offset_in_bytes());
   305   Address magic_number_2_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_2_offset_in_bytes());
   306   Address continuation_addr    = RicochetFrame::frame_address(RicochetFrame::continuation_offset_in_bytes());
   307   Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
   308   Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
   310   Label L_bad, L_ok;
   311   BLOCK_COMMENT("verify_clean {");
   312   // Magic numbers must check out:
   313   __ cmpptr(magic_number_1_addr, (int32_t) MAGIC_NUMBER_1);
   314   __ jcc(Assembler::notEqual, L_bad);
   315   __ cmpptr(magic_number_2_addr, (int32_t) MAGIC_NUMBER_2);
   316   __ jcc(Assembler::notEqual, L_bad);
   318   // Arguments pointer must look reasonable:
   319   __ movptr(rcx_temp, saved_args_base_addr);
   320   __ cmpptr(rcx_temp, rbp);
   321   __ jcc(Assembler::below, L_bad);
   322   __ subptr(rcx_temp, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize);
   323   __ cmpptr(rcx_temp, rbp);
   324   __ jcc(Assembler::above, L_bad);
   326   load_conversion_dest_type(_masm, rdi_temp, conversion_addr);
   327   __ cmpl(rdi_temp, T_VOID);
   328   __ jcc(Assembler::equal, L_ok);
   329   __ movptr(rcx_temp, saved_args_base_addr);
   330   load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
   331   __ cmpptr(Address(rcx_temp, rdi_temp, Interpreter::stackElementScale()),
   332             (int32_t) RETURN_VALUE_PLACEHOLDER);
   333   __ jcc(Assembler::equal, L_ok);
   334   __ BIND(L_bad);
   335   UNPUSH_TEMPS;
   336   __ stop("damaged ricochet frame");
   337   __ BIND(L_ok);
   338   UNPUSH_TEMPS;
   339   BLOCK_COMMENT("} verify_clean");
   341 #undef UNPUSH_TEMPS
   343 }
   344 #endif //ASSERT
   346 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) {
   347   if (VerifyMethodHandles)
   348     verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(),
   349                  "AMH argument is a Class");
   350   __ load_heap_oop(klass_reg, Address(klass_reg, java_lang_Class::klass_offset_in_bytes()));
   351 }
   353 void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
   354   int bits   = BitsPerByte;
   355   int offset = (CONV_VMINFO_SHIFT / bits);
   356   int shift  = (CONV_VMINFO_SHIFT % bits);
   357   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
   358   assert(CONV_VMINFO_MASK == right_n_bits(bits - shift), "else change type of previous load");
   359   assert(shift == 0, "no shift needed");
   360 }
   362 void MethodHandles::load_conversion_dest_type(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
   363   int bits   = BitsPerByte;
   364   int offset = (CONV_DEST_TYPE_SHIFT / bits);
   365   int shift  = (CONV_DEST_TYPE_SHIFT % bits);
   366   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
   367   assert(CONV_TYPE_MASK == right_n_bits(bits - shift), "else change type of previous load");
   368   __ shrl(reg, shift);
   369   DEBUG_ONLY(int conv_type_bits = (int) exact_log2(CONV_TYPE_MASK+1));
   370   assert((shift + conv_type_bits) == bits, "left justified in byte");
   371 }
   373 void MethodHandles::load_stack_move(MacroAssembler* _masm,
   374                                     Register rdi_stack_move,
   375                                     Register rcx_amh,
   376                                     bool might_be_negative) {
   377   BLOCK_COMMENT("load_stack_move {");
   378   Address rcx_amh_conversion(rcx_amh, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
   379   __ movl(rdi_stack_move, rcx_amh_conversion);
   380   __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
   381 #ifdef _LP64
   382   if (might_be_negative) {
   383     // clean high bits of stack motion register (was loaded as an int)
   384     __ movslq(rdi_stack_move, rdi_stack_move);
   385   }
   386 #endif //_LP64
   387 #ifdef ASSERT
   388   if (VerifyMethodHandles) {
   389     Label L_ok, L_bad;
   390     int32_t stack_move_limit = 0x4000;  // extra-large
   391     __ cmpptr(rdi_stack_move, stack_move_limit);
   392     __ jcc(Assembler::greaterEqual, L_bad);
   393     __ cmpptr(rdi_stack_move, -stack_move_limit);
   394     __ jcc(Assembler::greater, L_ok);
   395     __ bind(L_bad);
   396     __ stop("load_stack_move of garbage value");
   397     __ BIND(L_ok);
   398   }
   399 #endif
   400   BLOCK_COMMENT("} load_stack_move");
   401 }
   403 #ifdef ASSERT
   404 void MethodHandles::RicochetFrame::verify_offsets() {
   405   // Check compatibility of this struct with the more generally used offsets of class frame:
   406   int ebp_off = sender_link_offset_in_bytes();  // offset from struct base to local rbp value
   407   assert(ebp_off + wordSize*frame::interpreter_frame_method_offset      == saved_args_base_offset_in_bytes(), "");
   408   assert(ebp_off + wordSize*frame::interpreter_frame_last_sp_offset     == conversion_offset_in_bytes(), "");
   409   assert(ebp_off + wordSize*frame::interpreter_frame_sender_sp_offset   == exact_sender_sp_offset_in_bytes(), "");
   410   // These last two have to be exact:
   411   assert(ebp_off + wordSize*frame::link_offset                          == sender_link_offset_in_bytes(), "");
   412   assert(ebp_off + wordSize*frame::return_addr_offset                   == sender_pc_offset_in_bytes(), "");
   413 }
   415 void MethodHandles::RicochetFrame::verify() const {
   416   verify_offsets();
   417   assert(magic_number_1() == MAGIC_NUMBER_1, err_msg(PTR_FORMAT " == " PTR_FORMAT, magic_number_1(), MAGIC_NUMBER_1));
   418   assert(magic_number_2() == MAGIC_NUMBER_2, err_msg(PTR_FORMAT " == " PTR_FORMAT, magic_number_2(), MAGIC_NUMBER_2));
   419   if (!Universe::heap()->is_gc_active()) {
   420     if (saved_args_layout() != NULL) {
   421       assert(saved_args_layout()->is_method(), "must be valid oop");
   422     }
   423     if (saved_target() != NULL) {
   424       assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
   425     }
   426   }
   427   int conv_op = adapter_conversion_op(conversion());
   428   assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
   429          conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
   430          conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
   431          "must be a sane conversion");
   432   if (has_return_value_slot()) {
   433     assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
   434   }
   435 }
   436 #endif //PRODUCT
   438 #ifdef ASSERT
   439 void MethodHandles::verify_argslot(MacroAssembler* _masm,
   440                                    Register argslot_reg,
   441                                    const char* error_message) {
   442   // Verify that argslot lies within (rsp, rbp].
   443   Label L_ok, L_bad;
   444   BLOCK_COMMENT("verify_argslot {");
   445   __ cmpptr(argslot_reg, rbp);
   446   __ jccb(Assembler::above, L_bad);
   447   __ cmpptr(rsp, argslot_reg);
   448   __ jccb(Assembler::below, L_ok);
   449   __ bind(L_bad);
   450   __ stop(error_message);
   451   __ BIND(L_ok);
   452   BLOCK_COMMENT("} verify_argslot");
   453 }
   455 void MethodHandles::verify_argslots(MacroAssembler* _masm,
   456                                     RegisterOrConstant arg_slots,
   457                                     Register arg_slot_base_reg,
   458                                     bool negate_argslots,
   459                                     const char* error_message) {
   460   // Verify that [argslot..argslot+size) lies within (rsp, rbp).
   461   Label L_ok, L_bad;
   462   Register rdi_temp = rdi;
   463   BLOCK_COMMENT("verify_argslots {");
   464   __ push(rdi_temp);
   465   if (negate_argslots) {
   466     if (arg_slots.is_constant()) {
   467       arg_slots = -1 * arg_slots.as_constant();
   468     } else {
   469       __ movptr(rdi_temp, arg_slots);
   470       __ negptr(rdi_temp);
   471       arg_slots = rdi_temp;
   472     }
   473   }
   474   __ lea(rdi_temp, Address(arg_slot_base_reg, arg_slots, Interpreter::stackElementScale()));
   475   __ cmpptr(rdi_temp, rbp);
   476   __ pop(rdi_temp);
   477   __ jcc(Assembler::above, L_bad);
   478   __ cmpptr(rsp, arg_slot_base_reg);
   479   __ jcc(Assembler::below, L_ok);
   480   __ bind(L_bad);
   481   __ stop(error_message);
   482   __ BIND(L_ok);
   483   BLOCK_COMMENT("} verify_argslots");
   484 }
   486 // Make sure that arg_slots has the same sign as the given direction.
   487 // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
   488 void MethodHandles::verify_stack_move(MacroAssembler* _masm,
   489                                       RegisterOrConstant arg_slots, int direction) {
   490   bool allow_zero = arg_slots.is_constant();
   491   if (direction == 0) { direction = +1; allow_zero = true; }
   492   assert(stack_move_unit() == -1, "else add extra checks here");
   493   if (arg_slots.is_register()) {
   494     Label L_ok, L_bad;
   495     BLOCK_COMMENT("verify_stack_move {");
   496     // testl(arg_slots.as_register(), -stack_move_unit() - 1);  // no need
   497     // jcc(Assembler::notZero, L_bad);
   498     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
   499     if (direction > 0) {
   500       __ jcc(allow_zero ? Assembler::less : Assembler::lessEqual, L_bad);
   501       __ cmpptr(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
   502       __ jcc(Assembler::less, L_ok);
   503     } else {
   504       __ jcc(allow_zero ? Assembler::greater : Assembler::greaterEqual, L_bad);
   505       __ cmpptr(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
   506       __ jcc(Assembler::greater, L_ok);
   507     }
   508     __ bind(L_bad);
   509     if (direction > 0)
   510       __ stop("assert arg_slots > 0");
   511     else
   512       __ stop("assert arg_slots < 0");
   513     __ BIND(L_ok);
   514     BLOCK_COMMENT("} verify_stack_move");
   515   } else {
   516     intptr_t size = arg_slots.as_constant();
   517     if (direction < 0)  size = -size;
   518     assert(size >= 0, "correct direction of constant move");
   519     assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
   520   }
   521 }
   523 void MethodHandles::verify_klass(MacroAssembler* _masm,
   524                                  Register obj, KlassHandle klass,
   525                                  const char* error_message) {
   526   oop* klass_addr = klass.raw_value();
   527   assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
   528          klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
   529          "must be one of the SystemDictionaryHandles");
   530   Register temp = rdi;
   531   Label L_ok, L_bad;
   532   BLOCK_COMMENT("verify_klass {");
   533   __ verify_oop(obj);
   534   __ testptr(obj, obj);
   535   __ jcc(Assembler::zero, L_bad);
   536   __ push(temp);
   537   __ load_klass(temp, obj);
   538   __ cmpptr(temp, ExternalAddress((address) klass_addr));
   539   __ jcc(Assembler::equal, L_ok);
   540   intptr_t super_check_offset = klass->super_check_offset();
   541   __ movptr(temp, Address(temp, super_check_offset));
   542   __ cmpptr(temp, ExternalAddress((address) klass_addr));
   543   __ jcc(Assembler::equal, L_ok);
   544   __ pop(temp);
   545   __ bind(L_bad);
   546   __ stop(error_message);
   547   __ BIND(L_ok);
   548   __ pop(temp);
   549   BLOCK_COMMENT("} verify_klass");
   550 }
   551 #endif //ASSERT
   553 void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp) {
   554   if (JvmtiExport::can_post_interpreter_events()) {
   555     Label run_compiled_code;
   556     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   557     // compiled code in threads for which the event is enabled.  Check here for
   558     // interp_only_mode if these events CAN be enabled.
   559 #ifdef _LP64
   560     Register rthread = r15_thread;
   561 #else
   562     Register rthread = temp;
   563     __ get_thread(rthread);
   564 #endif
   565     // interp_only is an int, on little endian it is sufficient to test the byte only
   566     // Is a cmpl faster?
   567     __ cmpb(Address(rthread, JavaThread::interp_only_mode_offset()), 0);
   568     __ jccb(Assembler::zero, run_compiled_code);
   569     __ jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   570     __ bind(run_compiled_code);
   571   }
   572   __ jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   573 }
   575 // Code generation
   576 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
   577   // rbx: methodOop
   578   // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
   579   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
   580   // rdx, rdi: garbage temp, blown away
   582   Register rbx_method = rbx;
   583   Register rcx_recv   = rcx;
   584   Register rax_mtype  = rax;
   585   Register rdx_temp   = rdx;
   586   Register rdi_temp   = rdi;
   588   // emit WrongMethodType path first, to enable jccb back-branch from main path
   589   Label wrong_method_type;
   590   __ bind(wrong_method_type);
   591   Label invoke_generic_slow_path, invoke_exact_error_path;
   592   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
   593   __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
   594   __ jcc(Assembler::notEqual, invoke_generic_slow_path);
   595   __ jmp(invoke_exact_error_path);
   597   // here's where control starts out:
   598   __ align(CodeEntryAlignment);
   599   address entry_point = __ pc();
   601   // fetch the MethodType from the method handle into rax (the 'check' register)
   602   // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
   603   // This would simplify several touchy bits of code.
   604   // See 6984712: JSR 292 method handle calls need a clean argument base pointer
   605   {
   606     Register tem = rbx_method;
   607     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
   608       __ movptr(rax_mtype, Address(tem, *pchase));
   609       tem = rax_mtype;          // in case there is another indirection
   610     }
   611   }
   613   // given the MethodType, find out where the MH argument is buried
   614   __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp)));
   615   Register rdx_vmslots = rdx_temp;
   616   __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
   617   Address mh_receiver_slot_addr = __ argument_address(rdx_vmslots);
   618   __ movptr(rcx_recv, mh_receiver_slot_addr);
   620   trace_method_handle(_masm, "invokeExact");
   622   __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
   624   // Nobody uses the MH receiver slot after this.  Make sure.
   625   DEBUG_ONLY(__ movptr(mh_receiver_slot_addr, (int32_t)0x999999));
   627   __ jump_to_method_handle_entry(rcx_recv, rdi_temp);
   629   // error path for invokeExact (only)
   630   __ bind(invoke_exact_error_path);
   631   // ensure that the top of stack is properly aligned.
   632   __ mov(rdi, rsp);
   633   __ andptr(rsp, -StackAlignmentInBytes); // Align the stack for the ABI
   634   __ pushptr(Address(rdi, 0));  // Pick up the return address
   636   // Stub wants expected type in rax and the actual type in rcx
   637   __ jump(ExternalAddress(StubRoutines::throw_WrongMethodTypeException_entry()));
   639   // for invokeGeneric (only), apply argument and result conversions on the fly
   640   __ bind(invoke_generic_slow_path);
   641 #ifdef ASSERT
   642   if (VerifyMethodHandles) {
   643     Label L;
   644     __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
   645     __ jcc(Assembler::equal, L);
   646     __ stop("bad methodOop::intrinsic_id");
   647     __ bind(L);
   648   }
   649 #endif //ASSERT
   650   Register rbx_temp = rbx_method;  // don't need it now
   652   // make room on the stack for another pointer:
   653   Register rcx_argslot = rcx_recv;
   654   __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
   655   insert_arg_slots(_masm, 2 * stack_move_unit(),
   656                    rcx_argslot, rbx_temp, rdx_temp);
   658   // load up an adapter from the calling type (Java weaves this)
   659   Register rdx_adapter = rdx_temp;
   660   __ load_heap_oop(rdx_temp,    Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,               rdi_temp)));
   661   __ load_heap_oop(rdx_adapter, Address(rdx_temp,  __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
   662   __ verify_oop(rdx_adapter);
   663   __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
   664   // As a trusted first argument, pass the type being called, so the adapter knows
   665   // the actual types of the arguments and return values.
   666   // (Generic invokers are shared among form-families of method-type.)
   667   __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
   668   // FIXME: assert that rdx_adapter is of the right method-type.
   669   __ mov(rcx, rdx_adapter);
   670   trace_method_handle(_masm, "invokeGeneric");
   671   __ jump_to_method_handle_entry(rcx, rdi_temp);
   673   return entry_point;
   674 }
   676 // Helper to insert argument slots into the stack.
   677 // arg_slots must be a multiple of stack_move_unit() and < 0
   678 // rax_argslot is decremented to point to the new (shifted) location of the argslot
   679 // But, rdx_temp ends up holding the original value of rax_argslot.
   680 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
   681                                      RegisterOrConstant arg_slots,
   682                                      Register rax_argslot,
   683                                      Register rbx_temp, Register rdx_temp) {
   684   // allow constant zero
   685   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   686     return;
   687   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   688                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   689   if (VerifyMethodHandles)
   690     verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
   691   if (VerifyMethodHandles)
   692     verify_stack_move(_masm, arg_slots, -1);
   694   // Make space on the stack for the inserted argument(s).
   695   // Then pull down everything shallower than rax_argslot.
   696   // The stacked return address gets pulled down with everything else.
   697   // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
   698   //   rsp -= size;
   699   //   for (rdx = rsp + size; rdx < argslot; rdx++)
   700   //     rdx[-size] = rdx[0]
   701   //   argslot -= size;
   702   BLOCK_COMMENT("insert_arg_slots {");
   703   __ mov(rdx_temp, rsp);                        // source pointer for copy
   704   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
   705   {
   706     Label loop;
   707     __ BIND(loop);
   708     // pull one word down each time through the loop
   709     __ movptr(rbx_temp, Address(rdx_temp, 0));
   710     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
   711     __ addptr(rdx_temp, wordSize);
   712     __ cmpptr(rdx_temp, rax_argslot);
   713     __ jcc(Assembler::below, loop);
   714   }
   716   // Now move the argslot down, to point to the opened-up space.
   717   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
   718   BLOCK_COMMENT("} insert_arg_slots");
   719 }
   721 // Helper to remove argument slots from the stack.
   722 // arg_slots must be a multiple of stack_move_unit() and > 0
   723 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
   724                                      RegisterOrConstant arg_slots,
   725                                      Register rax_argslot,
   726                                      Register rbx_temp, Register rdx_temp) {
   727   // allow constant zero
   728   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   729     return;
   730   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   731                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   732   if (VerifyMethodHandles)
   733     verify_argslots(_masm, arg_slots, rax_argslot, false,
   734                     "deleted argument(s) must fall within current frame");
   735   if (VerifyMethodHandles)
   736     verify_stack_move(_masm, arg_slots, +1);
   738   BLOCK_COMMENT("remove_arg_slots {");
   739   // Pull up everything shallower than rax_argslot.
   740   // Then remove the excess space on the stack.
   741   // The stacked return address gets pulled up with everything else.
   742   // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
   743   //   for (rdx = argslot-1; rdx >= rsp; --rdx)
   744   //     rdx[size] = rdx[0]
   745   //   argslot += size;
   746   //   rsp += size;
   747   __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
   748   {
   749     Label loop;
   750     __ BIND(loop);
   751     // pull one word up each time through the loop
   752     __ movptr(rbx_temp, Address(rdx_temp, 0));
   753     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
   754     __ addptr(rdx_temp, -wordSize);
   755     __ cmpptr(rdx_temp, rsp);
   756     __ jcc(Assembler::aboveEqual, loop);
   757   }
   759   // Now move the argslot up, to point to the just-copied block.
   760   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
   761   // And adjust the argslot address to point at the deletion point.
   762   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
   763   BLOCK_COMMENT("} remove_arg_slots");
   764 }
   766 // Helper to copy argument slots to the top of the stack.
   767 // The sequence starts with rax_argslot and is counted by slot_count
   768 // slot_count must be a multiple of stack_move_unit() and >= 0
   769 // This function blows the temps but does not change rax_argslot.
   770 void MethodHandles::push_arg_slots(MacroAssembler* _masm,
   771                                    Register rax_argslot,
   772                                    RegisterOrConstant slot_count,
   773                                    int skip_words_count,
   774                                    Register rbx_temp, Register rdx_temp) {
   775   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   776                              (!slot_count.is_register() ? rbp : slot_count.as_register()),
   777                              rsp);
   778   assert(Interpreter::stackElementSize == wordSize, "else change this code");
   780   if (VerifyMethodHandles)
   781     verify_stack_move(_masm, slot_count, 0);
   783   // allow constant zero
   784   if (slot_count.is_constant() && slot_count.as_constant() == 0)
   785     return;
   787   BLOCK_COMMENT("push_arg_slots {");
   789   Register rbx_top = rbx_temp;
   791   // There is at most 1 word to carry down with the TOS.
   792   switch (skip_words_count) {
   793   case 1: __ pop(rdx_temp); break;
   794   case 0:                   break;
   795   default: ShouldNotReachHere();
   796   }
   798   if (slot_count.is_constant()) {
   799     for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
   800       __ pushptr(Address(rax_argslot, i * wordSize));
   801     }
   802   } else {
   803     Label L_plural, L_loop, L_break;
   804     // Emit code to dynamically check for the common cases, zero and one slot.
   805     __ cmpl(slot_count.as_register(), (int32_t) 1);
   806     __ jccb(Assembler::greater, L_plural);
   807     __ jccb(Assembler::less, L_break);
   808     __ pushptr(Address(rax_argslot, 0));
   809     __ jmpb(L_break);
   810     __ BIND(L_plural);
   812     // Loop for 2 or more:
   813     //   rbx = &rax[slot_count]
   814     //   while (rbx > rax)  *(--rsp) = *(--rbx)
   815     __ lea(rbx_top, Address(rax_argslot, slot_count, Address::times_ptr));
   816     __ BIND(L_loop);
   817     __ subptr(rbx_top, wordSize);
   818     __ pushptr(Address(rbx_top, 0));
   819     __ cmpptr(rbx_top, rax_argslot);
   820     __ jcc(Assembler::above, L_loop);
   821     __ bind(L_break);
   822   }
   823   switch (skip_words_count) {
   824   case 1: __ push(rdx_temp); break;
   825   case 0:                    break;
   826   default: ShouldNotReachHere();
   827   }
   828   BLOCK_COMMENT("} push_arg_slots");
   829 }
   831 // in-place movement; no change to rsp
   832 // blows rax_temp, rdx_temp
   833 void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
   834                                       Register rbx_bottom,  // invariant
   835                                       Address  top_addr,     // can use rax_temp
   836                                       RegisterOrConstant positive_distance_in_slots,
   837                                       Register rax_temp, Register rdx_temp) {
   838   BLOCK_COMMENT("move_arg_slots_up {");
   839   assert_different_registers(rbx_bottom,
   840                              rax_temp, rdx_temp,
   841                              positive_distance_in_slots.register_or_noreg());
   842   Label L_loop, L_break;
   843   Register rax_top = rax_temp;
   844   if (!top_addr.is_same_address(Address(rax_top, 0)))
   845     __ lea(rax_top, top_addr);
   846   // Detect empty (or broken) loop:
   847 #ifdef ASSERT
   848   if (VerifyMethodHandles) {
   849     // Verify that &bottom < &top (non-empty interval)
   850     Label L_ok, L_bad;
   851     if (positive_distance_in_slots.is_register()) {
   852       __ cmpptr(positive_distance_in_slots.as_register(), (int32_t) 0);
   853       __ jcc(Assembler::lessEqual, L_bad);
   854     }
   855     __ cmpptr(rbx_bottom, rax_top);
   856     __ jcc(Assembler::below, L_ok);
   857     __ bind(L_bad);
   858     __ stop("valid bounds (copy up)");
   859     __ BIND(L_ok);
   860   }
   861 #endif
   862   __ cmpptr(rbx_bottom, rax_top);
   863   __ jccb(Assembler::aboveEqual, L_break);
   864   // work rax down to rbx, copying contiguous data upwards
   865   // In pseudo-code:
   866   //   [rbx, rax) = &[bottom, top)
   867   //   while (--rax >= rbx) *(rax + distance) = *(rax + 0), rax--;
   868   __ BIND(L_loop);
   869   __ subptr(rax_top, wordSize);
   870   __ movptr(rdx_temp, Address(rax_top, 0));
   871   __ movptr(          Address(rax_top, positive_distance_in_slots, Address::times_ptr), rdx_temp);
   872   __ cmpptr(rax_top, rbx_bottom);
   873   __ jcc(Assembler::above, L_loop);
   874   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   875   __ bind(L_break);
   876   BLOCK_COMMENT("} move_arg_slots_up");
   877 }
   879 // in-place movement; no change to rsp
   880 // blows rax_temp, rdx_temp
   881 void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
   882                                         Address  bottom_addr,  // can use rax_temp
   883                                         Register rbx_top,      // invariant
   884                                         RegisterOrConstant negative_distance_in_slots,
   885                                         Register rax_temp, Register rdx_temp) {
   886   BLOCK_COMMENT("move_arg_slots_down {");
   887   assert_different_registers(rbx_top,
   888                              negative_distance_in_slots.register_or_noreg(),
   889                              rax_temp, rdx_temp);
   890   Label L_loop, L_break;
   891   Register rax_bottom = rax_temp;
   892   if (!bottom_addr.is_same_address(Address(rax_bottom, 0)))
   893     __ lea(rax_bottom, bottom_addr);
   894   // Detect empty (or broken) loop:
   895 #ifdef ASSERT
   896   assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
   897   if (VerifyMethodHandles) {
   898     // Verify that &bottom < &top (non-empty interval)
   899     Label L_ok, L_bad;
   900     if (negative_distance_in_slots.is_register()) {
   901       __ cmpptr(negative_distance_in_slots.as_register(), (int32_t) 0);
   902       __ jcc(Assembler::greaterEqual, L_bad);
   903     }
   904     __ cmpptr(rax_bottom, rbx_top);
   905     __ jcc(Assembler::below, L_ok);
   906     __ bind(L_bad);
   907     __ stop("valid bounds (copy down)");
   908     __ BIND(L_ok);
   909   }
   910 #endif
   911   __ cmpptr(rax_bottom, rbx_top);
   912   __ jccb(Assembler::aboveEqual, L_break);
   913   // work rax up to rbx, copying contiguous data downwards
   914   // In pseudo-code:
   915   //   [rax, rbx) = &[bottom, top)
   916   //   while (rax < rbx) *(rax - distance) = *(rax + 0), rax++;
   917   __ BIND(L_loop);
   918   __ movptr(rdx_temp, Address(rax_bottom, 0));
   919   __ movptr(          Address(rax_bottom, negative_distance_in_slots, Address::times_ptr), rdx_temp);
   920   __ addptr(rax_bottom, wordSize);
   921   __ cmpptr(rax_bottom, rbx_top);
   922   __ jcc(Assembler::below, L_loop);
   923   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   924   __ bind(L_break);
   925   BLOCK_COMMENT("} move_arg_slots_down");
   926 }
   928 // Copy from a field or array element to a stacked argument slot.
   929 // is_element (ignored) says whether caller is loading an array element instead of an instance field.
   930 void MethodHandles::move_typed_arg(MacroAssembler* _masm,
   931                                    BasicType type, bool is_element,
   932                                    Address slot_dest, Address value_src,
   933                                    Register rbx_temp, Register rdx_temp) {
   934   BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
   935   if (type == T_OBJECT || type == T_ARRAY) {
   936     __ load_heap_oop(rbx_temp, value_src);
   937     __ movptr(slot_dest, rbx_temp);
   938   } else if (type != T_VOID) {
   939     int  arg_size      = type2aelembytes(type);
   940     bool arg_is_signed = is_signed_subword_type(type);
   941     int  slot_size     = (arg_size > wordSize) ? arg_size : wordSize;
   942     __ load_sized_value(  rdx_temp,  value_src, arg_size, arg_is_signed, rbx_temp);
   943     __ store_sized_value( slot_dest, rdx_temp,  slot_size,               rbx_temp);
   944   }
   945   BLOCK_COMMENT("} move_typed_arg");
   946 }
   948 void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
   949                                       Address return_slot) {
   950   BLOCK_COMMENT("move_return_value {");
   951   // Old versions of the JVM must clean the FPU stack after every return.
   952 #ifndef _LP64
   953 #ifdef COMPILER2
   954   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   955   if ((type == T_FLOAT && UseSSE < 1) || (type == T_DOUBLE && UseSSE < 2)) {
   956     for (int i = 1; i < 8; i++) {
   957         __ ffree(i);
   958     }
   959   } else if (UseSSE < 2) {
   960     __ empty_FPU_stack();
   961   }
   962 #endif //COMPILER2
   963 #endif //!_LP64
   965   // Look at the type and pull the value out of the corresponding register.
   966   if (type == T_VOID) {
   967     // nothing to do
   968   } else if (type == T_OBJECT) {
   969     __ movptr(return_slot, rax);
   970   } else if (type == T_INT || is_subword_type(type)) {
   971     // write the whole word, even if only 32 bits is significant
   972     __ movptr(return_slot, rax);
   973   } else if (type == T_LONG) {
   974     // store the value by parts
   975     // Note: We assume longs are continguous (if misaligned) on the interpreter stack.
   976     __ store_sized_value(return_slot, rax, BytesPerLong, rdx);
   977   } else if (NOT_LP64((type == T_FLOAT  && UseSSE < 1) ||
   978                       (type == T_DOUBLE && UseSSE < 2) ||)
   979              false) {
   980     // Use old x86 FPU registers:
   981     if (type == T_FLOAT)
   982       __ fstp_s(return_slot);
   983     else
   984       __ fstp_d(return_slot);
   985   } else if (type == T_FLOAT) {
   986     __ movflt(return_slot, xmm0);
   987   } else if (type == T_DOUBLE) {
   988     __ movdbl(return_slot, xmm0);
   989   } else {
   990     ShouldNotReachHere();
   991   }
   992   BLOCK_COMMENT("} move_return_value");
   993 }
   995 #ifndef PRODUCT
   996 #define DESCRIBE_RICOCHET_OFFSET(rf, name) \
   997   values.describe(frame_no, (intptr_t *) (((uintptr_t)rf) + MethodHandles::RicochetFrame::name##_offset_in_bytes()), #name)
   999 void MethodHandles::RicochetFrame::describe(const frame* fr, FrameValues& values, int frame_no)  {
  1000     address bp = (address) fr->fp();
  1001     RicochetFrame* rf = (RicochetFrame*)(bp - sender_link_offset_in_bytes());
  1003     // ricochet slots
  1004     DESCRIBE_RICOCHET_OFFSET(rf, exact_sender_sp);
  1005     DESCRIBE_RICOCHET_OFFSET(rf, conversion);
  1006     DESCRIBE_RICOCHET_OFFSET(rf, saved_args_base);
  1007     DESCRIBE_RICOCHET_OFFSET(rf, saved_args_layout);
  1008     DESCRIBE_RICOCHET_OFFSET(rf, saved_target);
  1009     DESCRIBE_RICOCHET_OFFSET(rf, continuation);
  1011     // relevant ricochet targets (in caller frame)
  1012     values.describe(-1, rf->saved_args_base(),  err_msg("*saved_args_base for #%d", frame_no));
  1014 #endif // ASSERT
  1016 #ifndef PRODUCT
  1017 extern "C" void print_method_handle(oop mh);
  1018 void trace_method_handle_stub(const char* adaptername,
  1019                               oop mh,
  1020                               intptr_t* saved_regs,
  1021                               intptr_t* entry_sp,
  1022                               intptr_t* saved_sp,
  1023                               intptr_t* saved_bp) {
  1024   // called as a leaf from native code: do not block the JVM!
  1025   bool has_mh = (strstr(adaptername, "return/") == NULL);  // return adapters don't have rcx_mh
  1027   intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
  1028   intptr_t* base_sp = last_sp;
  1029   typedef MethodHandles::RicochetFrame RicochetFrame;
  1030   RicochetFrame* rfp = (RicochetFrame*)((address)saved_bp - RicochetFrame::sender_link_offset_in_bytes());
  1031   if (Universe::heap()->is_in((address) rfp->saved_args_base())) {
  1032     // Probably an interpreter frame.
  1033     base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
  1035   intptr_t    mh_reg = (intptr_t)mh;
  1036   const char* mh_reg_name = "rcx_mh";
  1037   if (!has_mh)  mh_reg_name = "rcx";
  1038   tty->print_cr("MH %s %s="PTR_FORMAT" sp=("PTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="PTR_FORMAT,
  1039                 adaptername, mh_reg_name, mh_reg,
  1040                 (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
  1041   if (Verbose) {
  1042     tty->print(" reg dump: ");
  1043     int saved_regs_count = (entry_sp-1) - saved_regs;
  1044     // 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax
  1045     int i;
  1046     for (i = 0; i <= saved_regs_count; i++) {
  1047       if (i > 0 && i % 4 == 0 && i != saved_regs_count) {
  1048         tty->cr();
  1049         tty->print("   + dump: ");
  1051       tty->print(" %d: "PTR_FORMAT, i, saved_regs[i]);
  1053     tty->cr();
  1054     if (last_sp != saved_sp && last_sp != NULL)
  1055       tty->print_cr("*** last_sp="PTR_FORMAT, (intptr_t)last_sp);
  1058      // dumping last frame with frame::describe
  1060       JavaThread* p = JavaThread::active();
  1062       ResourceMark rm;
  1063       PRESERVE_EXCEPTION_MARK; // may not be needed by safer and unexpensive here
  1064       FrameValues values;
  1066       // Note: We want to allow trace_method_handle from any call site.
  1067       // While trace_method_handle creates a frame, it may be entered
  1068       // without a PC on the stack top (e.g. not just after a call).
  1069       // Walking that frame could lead to failures due to that invalid PC.
  1070       // => carefully detect that frame when doing the stack walking
  1072       // Current C frame
  1073       frame cur_frame = os::current_frame();
  1075       // Robust search of trace_calling_frame (independant of inlining).
  1076       // Assumes saved_regs comes from a pusha in the trace_calling_frame.
  1077       assert(cur_frame.sp() < saved_regs, "registers not saved on stack ?");
  1078       frame trace_calling_frame = os::get_sender_for_C_frame(&cur_frame);
  1079       while (trace_calling_frame.fp() < saved_regs) {
  1080         trace_calling_frame = os::get_sender_for_C_frame(&trace_calling_frame);
  1083       // safely create a frame and call frame::describe
  1084       intptr_t *dump_sp = trace_calling_frame.sender_sp();
  1085       intptr_t *dump_fp = trace_calling_frame.link();
  1087       bool walkable = has_mh; // whether the traced frame shoud be walkable
  1089       if (walkable) {
  1090         // The previous definition of walkable may have to be refined
  1091         // if new call sites cause the next frame constructor to start
  1092         // failing. Alternatively, frame constructors could be
  1093         // modified to support the current or future non walkable
  1094         // frames (but this is more intrusive and is not considered as
  1095         // part of this RFE, which will instead use a simpler output).
  1096         frame dump_frame = frame(dump_sp, dump_fp);
  1097         dump_frame.describe(values, 1);
  1098       } else {
  1099         // Stack may not be walkable (invalid PC above FP):
  1100         // Add descriptions without building a Java frame to avoid issues
  1101         values.describe(-1, dump_fp, "fp for #1 <not parsed, cannot trust pc>");
  1102         values.describe(-1, dump_sp, "sp for #1");
  1105       // mark saved_sp if seems valid
  1106       if (has_mh) {
  1107         if ((saved_sp >= dump_sp - UNREASONABLE_STACK_MOVE) && (saved_sp < dump_fp)) {
  1108           values.describe(-1, saved_sp, "*saved_sp");
  1112       tty->print_cr("  stack layout:");
  1113       values.print(p);
  1115     if (has_mh)
  1116       print_method_handle(mh);
  1120 // The stub wraps the arguments in a struct on the stack to avoid
  1121 // dealing with the different calling conventions for passing 6
  1122 // arguments.
  1123 struct MethodHandleStubArguments {
  1124   const char* adaptername;
  1125   oopDesc* mh;
  1126   intptr_t* saved_regs;
  1127   intptr_t* entry_sp;
  1128   intptr_t* saved_sp;
  1129   intptr_t* saved_bp;
  1130 };
  1131 void trace_method_handle_stub_wrapper(MethodHandleStubArguments* args) {
  1132   trace_method_handle_stub(args->adaptername,
  1133                            args->mh,
  1134                            args->saved_regs,
  1135                            args->entry_sp,
  1136                            args->saved_sp,
  1137                            args->saved_bp);
  1140 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
  1141   if (!TraceMethodHandles)  return;
  1142   BLOCK_COMMENT("trace_method_handle {");
  1143   __ enter();
  1144   __ andptr(rsp, -16); // align stack if needed for FPU state
  1145   __ pusha();
  1146   __ mov(rbx, rsp); // for retreiving saved_regs
  1147   // Note: saved_regs must be in the entered frame for the
  1148   // robust stack walking implemented in trace_method_handle_stub.
  1150   // save FP result, valid at some call sites (adapter_opt_return_float, ...)
  1151   __ increment(rsp, -2 * wordSize);
  1152   if  (UseSSE >= 2) {
  1153     __ movdbl(Address(rsp, 0), xmm0);
  1154   } else if (UseSSE == 1) {
  1155     __ movflt(Address(rsp, 0), xmm0);
  1156   } else {
  1157     __ fst_d(Address(rsp, 0));
  1160   // incoming state:
  1161   // rcx: method handle
  1162   // r13 or rsi: saved sp
  1163   // To avoid calling convention issues, build a record on the stack and pass the pointer to that instead.
  1164   // Note: fix the increment below if pushing more arguments
  1165   __ push(rbp);               // saved_bp
  1166   __ push(saved_last_sp_register()); // saved_sp
  1167   __ push(rbp);               // entry_sp (with extra align space)
  1168   __ push(rbx);               // pusha saved_regs
  1169   __ push(rcx);               // mh
  1170   __ push(rcx);               // slot for adaptername
  1171   __ movptr(Address(rsp, 0), (intptr_t) adaptername);
  1172   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub_wrapper), rsp);
  1173   __ increment(rsp, 6 * wordSize); // MethodHandleStubArguments
  1175   if  (UseSSE >= 2) {
  1176     __ movdbl(xmm0, Address(rsp, 0));
  1177   } else if (UseSSE == 1) {
  1178     __ movflt(xmm0, Address(rsp, 0));
  1179   } else {
  1180     __ fld_d(Address(rsp, 0));
  1182   __ increment(rsp, 2 * wordSize);
  1184   __ popa();
  1185   __ leave();
  1186   BLOCK_COMMENT("} trace_method_handle");
  1188 #endif //PRODUCT
  1190 // which conversion op types are implemented here?
  1191 int MethodHandles::adapter_conversion_ops_supported_mask() {
  1192   return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
  1193          |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
  1194          |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
  1195          |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
  1196          |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
  1197           //OP_PRIM_TO_REF is below...
  1198          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
  1199          |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
  1200          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
  1201          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
  1202           //OP_COLLECT_ARGS is below...
  1203          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
  1204          |(
  1205            java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
  1206            ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
  1207            |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
  1208            |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
  1209             ))
  1210          );
  1213 //------------------------------------------------------------------------------
  1214 // MethodHandles::generate_method_handle_stub
  1215 //
  1216 // Generate an "entry" field for a method handle.
  1217 // This determines how the method handle will respond to calls.
  1218 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
  1219   MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
  1221   // Here is the register state during an interpreted call,
  1222   // as set up by generate_method_handle_interpreter_entry():
  1223   // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
  1224   // - rcx: receiver method handle
  1225   // - rax: method handle type (only used by the check_mtype entry point)
  1226   // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
  1227   // - rdx: garbage temp, can blow away
  1229   const Register rcx_recv    = rcx;
  1230   const Register rax_argslot = rax;
  1231   const Register rbx_temp    = rbx;
  1232   const Register rdx_temp    = rdx;
  1233   const Register rdi_temp    = rdi;
  1235   // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
  1236   // and gen_c2i_adapter (from compiled calls):
  1237   const Register saved_last_sp = saved_last_sp_register();
  1239   // Argument registers for _raise_exception.
  1240   // 32-bit: Pass first two oop/int args in registers ECX and EDX.
  1241   const Register rarg0_code     = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
  1242   const Register rarg1_actual   = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
  1243   const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
  1244   assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);
  1246   guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
  1248   // some handy addresses
  1249   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
  1250   Address rcx_dmh_vmindex(    rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() );
  1252   Address rcx_bmh_vmargslot(  rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() );
  1253   Address rcx_bmh_argument(   rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() );
  1255   Address rcx_amh_vmargslot(  rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() );
  1256   Address rcx_amh_argument(   rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() );
  1257   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
  1258   Address vmarg;                // __ argument_address(vmargslot)
  1260   const int java_mirror_offset = in_bytes(Klass::java_mirror_offset());
  1262   if (have_entry(ek)) {
  1263     __ nop();                   // empty stubs make SG sick
  1264     return;
  1267 #ifdef ASSERT
  1268   __ push((int32_t) 0xEEEEEEEE);
  1269   __ push((int32_t) (intptr_t) entry_name(ek));
  1270   LP64_ONLY(__ push((int32_t) high((intptr_t) entry_name(ek))));
  1271   __ push((int32_t) 0x33333333);
  1272 #endif //ASSERT
  1274   address interp_entry = __ pc();
  1276   trace_method_handle(_masm, entry_name(ek));
  1278   BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
  1280   switch ((int) ek) {
  1281   case _raise_exception:
  1283       // Not a real MH entry, but rather shared code for raising an
  1284       // exception.  Since we use the compiled entry, arguments are
  1285       // expected in compiler argument registers.
  1286       assert(raise_exception_method(), "must be set");
  1287       assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
  1289       const Register rax_pc = rax;
  1290       __ pop(rax_pc);  // caller PC
  1291       __ mov(rsp, saved_last_sp);  // cut the stack back to where the caller started
  1293       Register rbx_method = rbx_temp;
  1294       __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
  1296       const int jobject_oop_offset = 0;
  1297       __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
  1299       __ movptr(saved_last_sp, rsp);
  1300       __ subptr(rsp, 3 * wordSize);
  1301       __ push(rax_pc);         // restore caller PC
  1303       __ movl  (__ argument_address(constant(2)), rarg0_code);
  1304       __ movptr(__ argument_address(constant(1)), rarg1_actual);
  1305       __ movptr(__ argument_address(constant(0)), rarg2_required);
  1306       jump_from_method_handle(_masm, rbx_method, rax);
  1308     break;
  1310   case _invokestatic_mh:
  1311   case _invokespecial_mh:
  1313       Register rbx_method = rbx_temp;
  1314       __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
  1315       __ verify_oop(rbx_method);
  1316       // same as TemplateTable::invokestatic or invokespecial,
  1317       // minus the CP setup and profiling:
  1318       if (ek == _invokespecial_mh) {
  1319         // Must load & check the first argument before entering the target method.
  1320         __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
  1321         __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
  1322         __ null_check(rcx_recv);
  1323         __ verify_oop(rcx_recv);
  1325       jump_from_method_handle(_masm, rbx_method, rax);
  1327     break;
  1329   case _invokevirtual_mh:
  1331       // same as TemplateTable::invokevirtual,
  1332       // minus the CP setup and profiling:
  1334       // pick out the vtable index and receiver offset from the MH,
  1335       // and then we can discard it:
  1336       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
  1337       Register rbx_index = rbx_temp;
  1338       __ movl(rbx_index, rcx_dmh_vmindex);
  1339       // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
  1340       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
  1341       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
  1343       // get receiver klass
  1344       Register rax_klass = rax_argslot;
  1345       __ load_klass(rax_klass, rcx_recv);
  1346       __ verify_oop(rax_klass);
  1348       // get target methodOop & entry point
  1349       const int base = instanceKlass::vtable_start_offset() * wordSize;
  1350       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  1351       Address vtable_entry_addr(rax_klass,
  1352                                 rbx_index, Address::times_ptr,
  1353                                 base + vtableEntry::method_offset_in_bytes());
  1354       Register rbx_method = rbx_temp;
  1355       __ movptr(rbx_method, vtable_entry_addr);
  1357       __ verify_oop(rbx_method);
  1358       jump_from_method_handle(_masm, rbx_method, rax);
  1360     break;
  1362   case _invokeinterface_mh:
  1364       // same as TemplateTable::invokeinterface,
  1365       // minus the CP setup and profiling:
  1367       // pick out the interface and itable index from the MH.
  1368       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
  1369       Register rdx_intf  = rdx_temp;
  1370       Register rbx_index = rbx_temp;
  1371       __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
  1372       __ movl(rbx_index, rcx_dmh_vmindex);
  1373       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
  1374       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
  1376       // get receiver klass
  1377       Register rax_klass = rax_argslot;
  1378       __ load_klass(rax_klass, rcx_recv);
  1379       __ verify_oop(rax_klass);
  1381       Register rbx_method = rbx_index;
  1383       // get interface klass
  1384       Label no_such_interface;
  1385       __ verify_oop(rdx_intf);
  1386       __ lookup_interface_method(rax_klass, rdx_intf,
  1387                                  // note: next two args must be the same:
  1388                                  rbx_index, rbx_method,
  1389                                  rdi_temp,
  1390                                  no_such_interface);
  1392       __ verify_oop(rbx_method);
  1393       jump_from_method_handle(_masm, rbx_method, rax);
  1394       __ hlt();
  1396       __ bind(no_such_interface);
  1397       // Throw an exception.
  1398       // For historical reasons, it will be IncompatibleClassChangeError.
  1399       __ mov(rbx_temp, rcx_recv);  // rarg2_required might be RCX
  1400       assert_different_registers(rarg2_required, rbx_temp);
  1401       __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset));  // required interface
  1402       __ mov(   rarg1_actual,   rbx_temp);                               // bad receiver
  1403       __ movl(  rarg0_code,     (int) Bytecodes::_invokeinterface);      // who is complaining?
  1404       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1406     break;
  1408   case _bound_ref_mh:
  1409   case _bound_int_mh:
  1410   case _bound_long_mh:
  1411   case _bound_ref_direct_mh:
  1412   case _bound_int_direct_mh:
  1413   case _bound_long_direct_mh:
  1415       const bool direct_to_method = (ek >= _bound_ref_direct_mh);
  1416       BasicType arg_type  = ek_bound_mh_arg_type(ek);
  1417       int       arg_slots = type2size[arg_type];
  1419       // make room for the new argument:
  1420       __ movl(rax_argslot, rcx_bmh_vmargslot);
  1421       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1423       insert_arg_slots(_masm, arg_slots * stack_move_unit(), rax_argslot, rbx_temp, rdx_temp);
  1425       // store bound argument into the new stack slot:
  1426       __ load_heap_oop(rbx_temp, rcx_bmh_argument);
  1427       if (arg_type == T_OBJECT) {
  1428         __ movptr(Address(rax_argslot, 0), rbx_temp);
  1429       } else {
  1430         Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
  1431         move_typed_arg(_masm, arg_type, false,
  1432                        Address(rax_argslot, 0),
  1433                        prim_value_addr,
  1434                        rbx_temp, rdx_temp);
  1437       if (direct_to_method) {
  1438         Register rbx_method = rbx_temp;
  1439         __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
  1440         __ verify_oop(rbx_method);
  1441         jump_from_method_handle(_masm, rbx_method, rax);
  1442       } else {
  1443         __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1444         __ verify_oop(rcx_recv);
  1445         __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1448     break;
  1450   case _adapter_opt_profiling:
  1451     if (java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes() != 0) {
  1452       Address rcx_mh_vmcount(rcx_recv, java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes());
  1453       __ incrementl(rcx_mh_vmcount);
  1455     // fall through
  1457   case _adapter_retype_only:
  1458   case _adapter_retype_raw:
  1459     // immediately jump to the next MH layer:
  1460     __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1461     __ verify_oop(rcx_recv);
  1462     __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1463     // This is OK when all parameter types widen.
  1464     // It is also OK when a return type narrows.
  1465     break;
  1467   case _adapter_check_cast:
  1469       // temps:
  1470       Register rbx_klass = rbx_temp; // interesting AMH data
  1472       // check a reference argument before jumping to the next layer of MH:
  1473       __ movl(rax_argslot, rcx_amh_vmargslot);
  1474       vmarg = __ argument_address(rax_argslot);
  1476       // What class are we casting to?
  1477       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
  1478       load_klass_from_Class(_masm, rbx_klass);
  1480       Label done;
  1481       __ movptr(rdx_temp, vmarg);
  1482       __ testptr(rdx_temp, rdx_temp);
  1483       __ jcc(Assembler::zero, done);         // no cast if null
  1484       __ load_klass(rdx_temp, rdx_temp);
  1486       // live at this point:
  1487       // - rbx_klass:  klass required by the target method
  1488       // - rdx_temp:   argument klass to test
  1489       // - rcx_recv:   adapter method handle
  1490       __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
  1492       // If we get here, the type check failed!
  1493       // Call the wrong_method_type stub, passing the failing argument type in rax.
  1494       Register rax_mtype = rax_argslot;
  1495       __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
  1496       __ movptr(rdx_temp, vmarg);
  1498       assert_different_registers(rarg2_required, rdx_temp);
  1499       __ load_heap_oop(rarg2_required, rcx_amh_argument);             // required class
  1500       __ mov(          rarg1_actual,   rdx_temp);                     // bad object
  1501       __ movl(         rarg0_code,     (int) Bytecodes::_checkcast);  // who is complaining?
  1502       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  1504       __ bind(done);
  1505       // get the new MH:
  1506       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1507       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1509     break;
  1511   case _adapter_prim_to_prim:
  1512   case _adapter_ref_to_prim:
  1513   case _adapter_prim_to_ref:
  1514     // handled completely by optimized cases
  1515     __ stop("init_AdapterMethodHandle should not issue this");
  1516     break;
  1518   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
  1519 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  1520   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  1521   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
  1523       // perform an in-place conversion to int or an int subword
  1524       __ movl(rax_argslot, rcx_amh_vmargslot);
  1525       vmarg = __ argument_address(rax_argslot);
  1527       switch (ek) {
  1528       case _adapter_opt_i2i:
  1529         __ movl(rdx_temp, vmarg);
  1530         break;
  1531       case _adapter_opt_l2i:
  1533           // just delete the extra slot; on a little-endian machine we keep the first
  1534           __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
  1535           remove_arg_slots(_masm, -stack_move_unit(),
  1536                            rax_argslot, rbx_temp, rdx_temp);
  1537           vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
  1538           __ movl(rdx_temp, vmarg);
  1540         break;
  1541       case _adapter_opt_unboxi:
  1543           // Load the value up from the heap.
  1544           __ movptr(rdx_temp, vmarg);
  1545           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
  1546 #ifdef ASSERT
  1547           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1548             if (is_subword_type(BasicType(bt)))
  1549               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
  1551 #endif
  1552           __ null_check(rdx_temp, value_offset);
  1553           __ movl(rdx_temp, Address(rdx_temp, value_offset));
  1554           // We load this as a word.  Because we are little-endian,
  1555           // the low bits will be correct, but the high bits may need cleaning.
  1556           // The vminfo will guide us to clean those bits.
  1558         break;
  1559       default:
  1560         ShouldNotReachHere();
  1563       // Do the requested conversion and store the value.
  1564       Register rbx_vminfo = rbx_temp;
  1565       load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
  1567       // get the new MH:
  1568       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1569       // (now we are done with the old MH)
  1571       // original 32-bit vmdata word must be of this form:
  1572       //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
  1573       __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
  1574       __ shll(rdx_temp /*, rcx*/);
  1575       Label zero_extend, done;
  1576       __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
  1577       __ jccb(Assembler::zero, zero_extend);
  1579       // this path is taken for int->byte, int->short
  1580       __ sarl(rdx_temp /*, rcx*/);
  1581       __ jmpb(done);
  1583       __ bind(zero_extend);
  1584       // this is taken for int->char
  1585       __ shrl(rdx_temp /*, rcx*/);
  1587       __ bind(done);
  1588       __ movl(vmarg, rdx_temp);  // Store the value.
  1589       __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
  1591       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1593     break;
  1595   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  1596   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
  1598       // perform an in-place int-to-long or ref-to-long conversion
  1599       __ movl(rax_argslot, rcx_amh_vmargslot);
  1601       // on a little-endian machine we keep the first slot and add another after
  1602       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
  1603       insert_arg_slots(_masm, stack_move_unit(),
  1604                        rax_argslot, rbx_temp, rdx_temp);
  1605       Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
  1606       Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
  1608       switch (ek) {
  1609       case _adapter_opt_i2l:
  1611 #ifdef _LP64
  1612           __ movslq(rdx_temp, vmarg1);  // Load sign-extended
  1613           __ movq(vmarg1, rdx_temp);    // Store into first slot
  1614 #else
  1615           __ movl(rdx_temp, vmarg1);
  1616           __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
  1617           __ movl(vmarg2, rdx_temp); // store second word
  1618 #endif
  1620         break;
  1621       case _adapter_opt_unboxl:
  1623           // Load the value up from the heap.
  1624           __ movptr(rdx_temp, vmarg1);
  1625           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
  1626           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
  1627           __ null_check(rdx_temp, value_offset);
  1628 #ifdef _LP64
  1629           __ movq(rbx_temp, Address(rdx_temp, value_offset));
  1630           __ movq(vmarg1, rbx_temp);
  1631 #else
  1632           __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
  1633           __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
  1634           __ movl(vmarg1, rbx_temp);
  1635           __ movl(vmarg2, rdx_temp);
  1636 #endif
  1638         break;
  1639       default:
  1640         ShouldNotReachHere();
  1643       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1644       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1646     break;
  1648   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  1649   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
  1651       // perform an in-place floating primitive conversion
  1652       __ movl(rax_argslot, rcx_amh_vmargslot);
  1653       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
  1654       if (ek == _adapter_opt_f2d) {
  1655         insert_arg_slots(_masm, stack_move_unit(),
  1656                          rax_argslot, rbx_temp, rdx_temp);
  1658       Address vmarg(rax_argslot, -Interpreter::stackElementSize);
  1660 #ifdef _LP64
  1661       if (ek == _adapter_opt_f2d) {
  1662         __ movflt(xmm0, vmarg);
  1663         __ cvtss2sd(xmm0, xmm0);
  1664         __ movdbl(vmarg, xmm0);
  1665       } else {
  1666         __ movdbl(xmm0, vmarg);
  1667         __ cvtsd2ss(xmm0, xmm0);
  1668         __ movflt(vmarg, xmm0);
  1670 #else //_LP64
  1671       if (ek == _adapter_opt_f2d) {
  1672         __ fld_s(vmarg);        // load float to ST0
  1673         __ fstp_d(vmarg);       // store double
  1674       } else {
  1675         __ fld_d(vmarg);        // load double to ST0
  1676         __ fstp_s(vmarg);       // store single
  1678 #endif //_LP64
  1680       if (ek == _adapter_opt_d2f) {
  1681         remove_arg_slots(_masm, -stack_move_unit(),
  1682                          rax_argslot, rbx_temp, rdx_temp);
  1685       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1686       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1688     break;
  1690   case _adapter_swap_args:
  1691   case _adapter_rot_args:
  1692     // handled completely by optimized cases
  1693     __ stop("init_AdapterMethodHandle should not issue this");
  1694     break;
  1696   case _adapter_opt_swap_1:
  1697   case _adapter_opt_swap_2:
  1698   case _adapter_opt_rot_1_up:
  1699   case _adapter_opt_rot_1_down:
  1700   case _adapter_opt_rot_2_up:
  1701   case _adapter_opt_rot_2_down:
  1703       int swap_slots = ek_adapter_opt_swap_slots(ek);
  1704       int rotate     = ek_adapter_opt_swap_mode(ek);
  1706       // 'argslot' is the position of the first argument to swap
  1707       __ movl(rax_argslot, rcx_amh_vmargslot);
  1708       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1710       // 'vminfo' is the second
  1711       Register rbx_destslot = rbx_temp;
  1712       load_conversion_vminfo(_masm, rbx_destslot, rcx_amh_conversion);
  1713       __ lea(rbx_destslot, __ argument_address(rbx_destslot));
  1714       if (VerifyMethodHandles)
  1715         verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame");
  1717       assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
  1718       if (!rotate) {
  1719         // simple swap
  1720         for (int i = 0; i < swap_slots; i++) {
  1721           __ movptr(rdi_temp, Address(rax_argslot,  i * wordSize));
  1722           __ movptr(rdx_temp, Address(rbx_destslot, i * wordSize));
  1723           __ movptr(Address(rax_argslot,  i * wordSize), rdx_temp);
  1724           __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
  1726       } else {
  1727         // A rotate is actually pair of moves, with an "odd slot" (or pair)
  1728         // changing place with a series of other slots.
  1729         // First, push the "odd slot", which is going to get overwritten
  1730         for (int i = swap_slots - 1; i >= 0; i--) {
  1731           // handle one with rdi_temp instead of a push:
  1732           if (i == 0)  __ movptr(rdi_temp, Address(rax_argslot, i * wordSize));
  1733           else         __ pushptr(         Address(rax_argslot, i * wordSize));
  1735         if (rotate > 0) {
  1736           // Here is rotate > 0:
  1737           // (low mem)                                          (high mem)
  1738           //     | dest:     more_slots...     | arg: odd_slot :arg+1 |
  1739           // =>
  1740           //     | dest: odd_slot | dest+1: more_slots...      :arg+1 |
  1741           // work argslot down to destslot, copying contiguous data upwards
  1742           // pseudo-code:
  1743           //   rax = src_addr - swap_bytes
  1744           //   rbx = dest_addr
  1745           //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
  1746           move_arg_slots_up(_masm,
  1747                             rbx_destslot,
  1748                             Address(rax_argslot, 0),
  1749                             swap_slots,
  1750                             rax_argslot, rdx_temp);
  1751         } else {
  1752           // Here is the other direction, rotate < 0:
  1753           // (low mem)                                          (high mem)
  1754           //     | arg: odd_slot | arg+1: more_slots...       :dest+1 |
  1755           // =>
  1756           //     | arg:    more_slots...     | dest: odd_slot :dest+1 |
  1757           // work argslot up to destslot, copying contiguous data downwards
  1758           // pseudo-code:
  1759           //   rax = src_addr + swap_bytes
  1760           //   rbx = dest_addr
  1761           //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
  1762           // dest_slot denotes an exclusive upper limit
  1763           int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
  1764           if (limit_bias != 0)
  1765             __ addptr(rbx_destslot, - limit_bias * wordSize);
  1766           move_arg_slots_down(_masm,
  1767                               Address(rax_argslot, swap_slots * wordSize),
  1768                               rbx_destslot,
  1769                               -swap_slots,
  1770                               rax_argslot, rdx_temp);
  1771           __ subptr(rbx_destslot, swap_slots * wordSize);
  1773         // pop the original first chunk into the destination slot, now free
  1774         for (int i = 0; i < swap_slots; i++) {
  1775           if (i == 0)  __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
  1776           else         __ popptr(Address(rbx_destslot, i * wordSize));
  1780       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1781       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1783     break;
  1785   case _adapter_dup_args:
  1787       // 'argslot' is the position of the first argument to duplicate
  1788       __ movl(rax_argslot, rcx_amh_vmargslot);
  1789       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1791       // 'stack_move' is negative number of words to duplicate
  1792       Register rdi_stack_move = rdi_temp;
  1793       load_stack_move(_masm, rdi_stack_move, rcx_recv, true);
  1795       if (VerifyMethodHandles) {
  1796         verify_argslots(_masm, rdi_stack_move, rax_argslot, true,
  1797                         "copied argument(s) must fall within current frame");
  1800       // insert location is always the bottom of the argument list:
  1801       Address insert_location = __ argument_address(constant(0));
  1802       int pre_arg_words = insert_location.disp() / wordSize;   // return PC is pushed
  1803       assert(insert_location.base() == rsp, "");
  1805       __ negl(rdi_stack_move);
  1806       push_arg_slots(_masm, rax_argslot, rdi_stack_move,
  1807                      pre_arg_words, rbx_temp, rdx_temp);
  1809       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1810       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1812     break;
  1814   case _adapter_drop_args:
  1816       // 'argslot' is the position of the first argument to nuke
  1817       __ movl(rax_argslot, rcx_amh_vmargslot);
  1818       __ lea(rax_argslot, __ argument_address(rax_argslot));
  1820       // (must do previous push after argslot address is taken)
  1822       // 'stack_move' is number of words to drop
  1823       Register rdi_stack_move = rdi_temp;
  1824       load_stack_move(_masm, rdi_stack_move, rcx_recv, false);
  1825       remove_arg_slots(_masm, rdi_stack_move,
  1826                        rax_argslot, rbx_temp, rdx_temp);
  1828       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  1829       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  1831     break;
  1833   case _adapter_collect_args:
  1834   case _adapter_fold_args:
  1835   case _adapter_spread_args:
  1836     // handled completely by optimized cases
  1837     __ stop("init_AdapterMethodHandle should not issue this");
  1838     break;
  1840   case _adapter_opt_collect_ref:
  1841   case _adapter_opt_collect_int:
  1842   case _adapter_opt_collect_long:
  1843   case _adapter_opt_collect_float:
  1844   case _adapter_opt_collect_double:
  1845   case _adapter_opt_collect_void:
  1846   case _adapter_opt_collect_0_ref:
  1847   case _adapter_opt_collect_1_ref:
  1848   case _adapter_opt_collect_2_ref:
  1849   case _adapter_opt_collect_3_ref:
  1850   case _adapter_opt_collect_4_ref:
  1851   case _adapter_opt_collect_5_ref:
  1852   case _adapter_opt_filter_S0_ref:
  1853   case _adapter_opt_filter_S1_ref:
  1854   case _adapter_opt_filter_S2_ref:
  1855   case _adapter_opt_filter_S3_ref:
  1856   case _adapter_opt_filter_S4_ref:
  1857   case _adapter_opt_filter_S5_ref:
  1858   case _adapter_opt_collect_2_S0_ref:
  1859   case _adapter_opt_collect_2_S1_ref:
  1860   case _adapter_opt_collect_2_S2_ref:
  1861   case _adapter_opt_collect_2_S3_ref:
  1862   case _adapter_opt_collect_2_S4_ref:
  1863   case _adapter_opt_collect_2_S5_ref:
  1864   case _adapter_opt_fold_ref:
  1865   case _adapter_opt_fold_int:
  1866   case _adapter_opt_fold_long:
  1867   case _adapter_opt_fold_float:
  1868   case _adapter_opt_fold_double:
  1869   case _adapter_opt_fold_void:
  1870   case _adapter_opt_fold_1_ref:
  1871   case _adapter_opt_fold_2_ref:
  1872   case _adapter_opt_fold_3_ref:
  1873   case _adapter_opt_fold_4_ref:
  1874   case _adapter_opt_fold_5_ref:
  1876       // Given a fresh incoming stack frame, build a new ricochet frame.
  1877       // On entry, TOS points at a return PC, and RBP is the callers frame ptr.
  1878       // RSI/R13 has the caller's exact stack pointer, which we must also preserve.
  1879       // RCX contains an AdapterMethodHandle of the indicated kind.
  1881       // Relevant AMH fields:
  1882       // amh.vmargslot:
  1883       //   points to the trailing edge of the arguments
  1884       //   to filter, collect, or fold.  For a boxing operation,
  1885       //   it points just after the single primitive value.
  1886       // amh.argument:
  1887       //   recursively called MH, on |collect| arguments
  1888       // amh.vmtarget:
  1889       //   final destination MH, on return value, etc.
  1890       // amh.conversion.dest:
  1891       //   tells what is the type of the return value
  1892       //   (not needed here, since dest is also derived from ek)
  1893       // amh.conversion.vminfo:
  1894       //   points to the trailing edge of the return value
  1895       //   when the vmtarget is to be called; this is
  1896       //   equal to vmargslot + (retained ? |collect| : 0)
  1898       // Pass 0 or more argument slots to the recursive target.
  1899       int collect_count_constant = ek_adapter_opt_collect_count(ek);
  1901       // The collected arguments are copied from the saved argument list:
  1902       int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
  1904       assert(ek_orig == _adapter_collect_args ||
  1905              ek_orig == _adapter_fold_args, "");
  1906       bool retain_original_args = (ek_orig == _adapter_fold_args);
  1908       // The return value is replaced (or inserted) at the 'vminfo' argslot.
  1909       // Sometimes we can compute this statically.
  1910       int dest_slot_constant = -1;
  1911       if (!retain_original_args)
  1912         dest_slot_constant = collect_slot_constant;
  1913       else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
  1914         // We are preserving all the arguments, and the return value is prepended,
  1915         // so the return slot is to the left (above) the |collect| sequence.
  1916         dest_slot_constant = collect_slot_constant + collect_count_constant;
  1918       // Replace all those slots by the result of the recursive call.
  1919       // The result type can be one of ref, int, long, float, double, void.
  1920       // In the case of void, nothing is pushed on the stack after return.
  1921       BasicType dest = ek_adapter_opt_collect_type(ek);
  1922       assert(dest == type2wfield[dest], "dest is a stack slot type");
  1923       int dest_count = type2size[dest];
  1924       assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
  1926       // Choose a return continuation.
  1927       EntryKind ek_ret = _adapter_opt_return_any;
  1928       if (dest != T_CONFLICT && OptimizeMethodHandles) {
  1929         switch (dest) {
  1930         case T_INT    : ek_ret = _adapter_opt_return_int;     break;
  1931         case T_LONG   : ek_ret = _adapter_opt_return_long;    break;
  1932         case T_FLOAT  : ek_ret = _adapter_opt_return_float;   break;
  1933         case T_DOUBLE : ek_ret = _adapter_opt_return_double;  break;
  1934         case T_OBJECT : ek_ret = _adapter_opt_return_ref;     break;
  1935         case T_VOID   : ek_ret = _adapter_opt_return_void;    break;
  1936         default       : ShouldNotReachHere();
  1938         if (dest == T_OBJECT && dest_slot_constant >= 0) {
  1939           EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
  1940           if (ek_try <= _adapter_opt_return_LAST &&
  1941               ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
  1942             ek_ret = ek_try;
  1945         assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
  1948       // Already pushed:  ... keep1 | collect | keep2 | sender_pc |
  1949       // push(sender_pc);
  1951       // Compute argument base:
  1952       Register rax_argv = rax_argslot;
  1953       __ lea(rax_argv, __ argument_address(constant(0)));
  1955       // Push a few extra argument words, if we need them to store the return value.
  1957         int extra_slots = 0;
  1958         if (retain_original_args) {
  1959           extra_slots = dest_count;
  1960         } else if (collect_count_constant == -1) {
  1961           extra_slots = dest_count;  // collect_count might be zero; be generous
  1962         } else if (dest_count > collect_count_constant) {
  1963           extra_slots = (dest_count - collect_count_constant);
  1964         } else {
  1965           // else we know we have enough dead space in |collect| to repurpose for return values
  1967         DEBUG_ONLY(extra_slots += 1);
  1968         if (extra_slots > 0) {
  1969           __ pop(rbx_temp);   // return value
  1970           __ subptr(rsp, (extra_slots * Interpreter::stackElementSize));
  1971           // Push guard word #2 in debug mode.
  1972           DEBUG_ONLY(__ movptr(Address(rsp, 0), (int32_t) RicochetFrame::MAGIC_NUMBER_2));
  1973           __ push(rbx_temp);
  1977       RicochetFrame::enter_ricochet_frame(_masm, rcx_recv, rax_argv,
  1978                                           entry(ek_ret)->from_interpreted_entry(), rbx_temp);
  1980       // Now pushed:  ... keep1 | collect | keep2 | RF |
  1981       // some handy frame slots:
  1982       Address exact_sender_sp_addr = RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes());
  1983       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
  1984       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
  1986 #ifdef ASSERT
  1987       if (VerifyMethodHandles && dest != T_CONFLICT) {
  1988         BLOCK_COMMENT("verify AMH.conv.dest");
  1989         load_conversion_dest_type(_masm, rbx_temp, conversion_addr);
  1990         Label L_dest_ok;
  1991         __ cmpl(rbx_temp, (int) dest);
  1992         __ jcc(Assembler::equal, L_dest_ok);
  1993         if (dest == T_INT) {
  1994           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1995             if (is_subword_type(BasicType(bt))) {
  1996               __ cmpl(rbx_temp, (int) bt);
  1997               __ jcc(Assembler::equal, L_dest_ok);
  2001         __ stop("bad dest in AMH.conv");
  2002         __ BIND(L_dest_ok);
  2004 #endif //ASSERT
  2006       // Find out where the original copy of the recursive argument sequence begins.
  2007       Register rax_coll = rax_argv;
  2009         RegisterOrConstant collect_slot = collect_slot_constant;
  2010         if (collect_slot_constant == -1) {
  2011           __ movl(rdi_temp, rcx_amh_vmargslot);
  2012           collect_slot = rdi_temp;
  2014         if (collect_slot_constant != 0)
  2015           __ lea(rax_coll, Address(rax_argv, collect_slot, Interpreter::stackElementScale()));
  2016         // rax_coll now points at the trailing edge of |collect| and leading edge of |keep2|
  2019       // Replace the old AMH with the recursive MH.  (No going back now.)
  2020       // In the case of a boxing call, the recursive call is to a 'boxer' method,
  2021       // such as Integer.valueOf or Long.valueOf.  In the case of a filter
  2022       // or collect call, it will take one or more arguments, transform them,
  2023       // and return some result, to store back into argument_base[vminfo].
  2024       __ load_heap_oop(rcx_recv, rcx_amh_argument);
  2025       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
  2027       // Push a space for the recursively called MH first:
  2028       __ push((int32_t)NULL_WORD);
  2030       // Calculate |collect|, the number of arguments we are collecting.
  2031       Register rdi_collect_count = rdi_temp;
  2032       RegisterOrConstant collect_count;
  2033       if (collect_count_constant >= 0) {
  2034         collect_count = collect_count_constant;
  2035       } else {
  2036         __ load_method_handle_vmslots(rdi_collect_count, rcx_recv, rdx_temp);
  2037         collect_count = rdi_collect_count;
  2039 #ifdef ASSERT
  2040       if (VerifyMethodHandles && collect_count_constant >= 0) {
  2041         __ load_method_handle_vmslots(rbx_temp, rcx_recv, rdx_temp);
  2042         Label L_count_ok;
  2043         __ cmpl(rbx_temp, collect_count_constant);
  2044         __ jcc(Assembler::equal, L_count_ok);
  2045         __ stop("bad vminfo in AMH.conv");
  2046         __ BIND(L_count_ok);
  2048 #endif //ASSERT
  2050       // copy |collect| slots directly to TOS:
  2051       push_arg_slots(_masm, rax_coll, collect_count, 0, rbx_temp, rdx_temp);
  2052       // Now pushed:  ... keep1 | collect | keep2 | RF... | collect |
  2053       // rax_coll still points at the trailing edge of |collect| and leading edge of |keep2|
  2055       // If necessary, adjust the saved arguments to make room for the eventual return value.
  2056       // Normal adjustment:  ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
  2057       // If retaining args:  ... keep1 | +dest+ |  collect  | keep2 | RF... | collect |
  2058       // In the non-retaining case, this might move keep2 either up or down.
  2059       // We don't have to copy the whole | RF... collect | complex,
  2060       // but we must adjust RF.saved_args_base.
  2061       // Also, from now on, we will forget about the original copy of |collect|.
  2062       // If we are retaining it, we will treat it as part of |keep2|.
  2063       // For clarity we will define |keep3| = |collect|keep2| or |keep2|.
  2065       BLOCK_COMMENT("adjust trailing arguments {");
  2066       // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
  2067       int                open_count  = dest_count;
  2068       RegisterOrConstant close_count = collect_count_constant;
  2069       Register rdi_close_count = rdi_collect_count;
  2070       if (retain_original_args) {
  2071         close_count = constant(0);
  2072       } else if (collect_count_constant == -1) {
  2073         close_count = rdi_collect_count;
  2076       // How many slots need moving?  This is simply dest_slot (0 => no |keep3|).
  2077       RegisterOrConstant keep3_count;
  2078       Register rsi_keep3_count = rsi;  // can repair from RF.exact_sender_sp
  2079       if (dest_slot_constant >= 0) {
  2080         keep3_count = dest_slot_constant;
  2081       } else  {
  2082         load_conversion_vminfo(_masm, rsi_keep3_count, conversion_addr);
  2083         keep3_count = rsi_keep3_count;
  2085 #ifdef ASSERT
  2086       if (VerifyMethodHandles && dest_slot_constant >= 0) {
  2087         load_conversion_vminfo(_masm, rbx_temp, conversion_addr);
  2088         Label L_vminfo_ok;
  2089         __ cmpl(rbx_temp, dest_slot_constant);
  2090         __ jcc(Assembler::equal, L_vminfo_ok);
  2091         __ stop("bad vminfo in AMH.conv");
  2092         __ BIND(L_vminfo_ok);
  2094 #endif //ASSERT
  2096       // tasks remaining:
  2097       bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
  2098       bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
  2099       bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
  2101       if (stomp_dest | fix_arg_base) {
  2102         // we will probably need an updated rax_argv value
  2103         if (collect_slot_constant >= 0) {
  2104           // rax_coll already holds the leading edge of |keep2|, so tweak it
  2105           assert(rax_coll == rax_argv, "elided a move");
  2106           if (collect_slot_constant != 0)
  2107             __ subptr(rax_argv, collect_slot_constant * Interpreter::stackElementSize);
  2108         } else {
  2109           // Just reload from RF.saved_args_base.
  2110           __ movptr(rax_argv, saved_args_base_addr);
  2114       // Old and new argument locations (based at slot 0).
  2115       // Net shift (&new_argv - &old_argv) is (close_count - open_count).
  2116       bool zero_open_count = (open_count == 0);  // remember this bit of info
  2117       if (move_keep3 && fix_arg_base) {
  2118         // It will be easier to have everything in one register:
  2119         if (close_count.is_register()) {
  2120           // Deduct open_count from close_count register to get a clean +/- value.
  2121           __ subptr(close_count.as_register(), open_count);
  2122         } else {
  2123           close_count = close_count.as_constant() - open_count;
  2125         open_count = 0;
  2127       Address old_argv(rax_argv, 0);
  2128       Address new_argv(rax_argv, close_count,  Interpreter::stackElementScale(),
  2129                                 - open_count * Interpreter::stackElementSize);
  2131       // First decide if any actual data are to be moved.
  2132       // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
  2133       // (As it happens, all movements involve an argument list size change.)
  2135       // If there are variable parameters, use dynamic checks to skip around the whole mess.
  2136       Label L_done;
  2137       if (!keep3_count.is_constant()) {
  2138         __ testl(keep3_count.as_register(), keep3_count.as_register());
  2139         __ jcc(Assembler::zero, L_done);
  2141       if (!close_count.is_constant()) {
  2142         __ cmpl(close_count.as_register(), open_count);
  2143         __ jcc(Assembler::equal, L_done);
  2146       if (move_keep3 && fix_arg_base) {
  2147         bool emit_move_down = false, emit_move_up = false, emit_guard = false;
  2148         if (!close_count.is_constant()) {
  2149           emit_move_down = emit_guard = !zero_open_count;
  2150           emit_move_up   = true;
  2151         } else if (open_count != close_count.as_constant()) {
  2152           emit_move_down = (open_count > close_count.as_constant());
  2153           emit_move_up   = !emit_move_down;
  2155         Label L_move_up;
  2156         if (emit_guard) {
  2157           __ cmpl(close_count.as_register(), open_count);
  2158           __ jcc(Assembler::greater, L_move_up);
  2161         if (emit_move_down) {
  2162           // Move arguments down if |+dest+| > |-collect-|
  2163           // (This is rare, except when arguments are retained.)
  2164           // This opens space for the return value.
  2165           if (keep3_count.is_constant()) {
  2166             for (int i = 0; i < keep3_count.as_constant(); i++) {
  2167               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
  2168               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
  2170           } else {
  2171             Register rbx_argv_top = rbx_temp;
  2172             __ lea(rbx_argv_top, old_argv.plus_disp(keep3_count, Interpreter::stackElementScale()));
  2173             move_arg_slots_down(_masm,
  2174                                 old_argv,     // beginning of old argv
  2175                                 rbx_argv_top, // end of old argv
  2176                                 close_count,  // distance to move down (must be negative)
  2177                                 rax_argv, rdx_temp);
  2178             // Used argv as an iteration variable; reload from RF.saved_args_base.
  2179             __ movptr(rax_argv, saved_args_base_addr);
  2183         if (emit_guard) {
  2184           __ jmp(L_done);  // assumes emit_move_up is true also
  2185           __ BIND(L_move_up);
  2188         if (emit_move_up) {
  2190           // Move arguments up if |+dest+| < |-collect-|
  2191           // (This is usual, except when |keep3| is empty.)
  2192           // This closes up the space occupied by the now-deleted collect values.
  2193           if (keep3_count.is_constant()) {
  2194             for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
  2195               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
  2196               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
  2198           } else {
  2199             Address argv_top = old_argv.plus_disp(keep3_count, Interpreter::stackElementScale());
  2200             move_arg_slots_up(_masm,
  2201                               rax_argv,     // beginning of old argv
  2202                               argv_top,     // end of old argv
  2203                               close_count,  // distance to move up (must be positive)
  2204                               rbx_temp, rdx_temp);
  2208       __ BIND(L_done);
  2210       if (fix_arg_base) {
  2211         // adjust RF.saved_args_base by adding (close_count - open_count)
  2212         if (!new_argv.is_same_address(Address(rax_argv, 0)))
  2213           __ lea(rax_argv, new_argv);
  2214         __ movptr(saved_args_base_addr, rax_argv);
  2217       if (stomp_dest) {
  2218         // Stomp the return slot, so it doesn't hold garbage.
  2219         // This isn't strictly necessary, but it may help detect bugs.
  2220         int forty_two = RicochetFrame::RETURN_VALUE_PLACEHOLDER;
  2221         __ movptr(Address(rax_argv, keep3_count, Address::times_ptr),
  2222                   (int32_t) forty_two);
  2223         // uses rsi_keep3_count
  2225       BLOCK_COMMENT("} adjust trailing arguments");
  2227       BLOCK_COMMENT("do_recursive_call");
  2228       __ mov(saved_last_sp, rsp);    // set rsi/r13 for callee
  2229       __ pushptr(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr()).addr());
  2230       // The globally unique bounce address has two purposes:
  2231       // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
  2232       // 2. When returned to, it cuts back the stack and redirects control flow
  2233       //    to the return handler.
  2234       // The return handler will further cut back the stack when it takes
  2235       // down the RF.  Perhaps there is a way to streamline this further.
  2237       // State during recursive call:
  2238       // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
  2239       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  2241       break;
  2244   case _adapter_opt_return_ref:
  2245   case _adapter_opt_return_int:
  2246   case _adapter_opt_return_long:
  2247   case _adapter_opt_return_float:
  2248   case _adapter_opt_return_double:
  2249   case _adapter_opt_return_void:
  2250   case _adapter_opt_return_S0_ref:
  2251   case _adapter_opt_return_S1_ref:
  2252   case _adapter_opt_return_S2_ref:
  2253   case _adapter_opt_return_S3_ref:
  2254   case _adapter_opt_return_S4_ref:
  2255   case _adapter_opt_return_S5_ref:
  2257       BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
  2258       int       dest_slot_constant = ek_adapter_opt_return_slot(ek);
  2260       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2262       if (dest_slot_constant == -1) {
  2263         // The current stub is a general handler for this dest_type.
  2264         // It can be called from _adapter_opt_return_any below.
  2265         // Stash the address in a little table.
  2266         assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
  2267         address return_handler = __ pc();
  2268         _adapter_return_handlers[dest_type_constant] = return_handler;
  2269         if (dest_type_constant == T_INT) {
  2270           // do the subword types too
  2271           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  2272             if (is_subword_type(BasicType(bt)) &&
  2273                 _adapter_return_handlers[bt] == NULL) {
  2274               _adapter_return_handlers[bt] = return_handler;
  2280       Register rbx_arg_base = rbx_temp;
  2281       assert_different_registers(rax, rdx,  // possibly live return value registers
  2282                                  rdi_temp, rbx_arg_base);
  2284       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
  2285       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
  2287       __ movptr(rbx_arg_base, saved_args_base_addr);
  2288       RegisterOrConstant dest_slot = dest_slot_constant;
  2289       if (dest_slot_constant == -1) {
  2290         load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
  2291         dest_slot = rdi_temp;
  2293       // Store the result back into the argslot.
  2294       // This code uses the interpreter calling sequence, in which the return value
  2295       // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
  2296       // There are certain irregularities with floating point values, which can be seen
  2297       // in TemplateInterpreterGenerator::generate_return_entry_for.
  2298       move_return_value(_masm, dest_type_constant, Address(rbx_arg_base, dest_slot, Interpreter::stackElementScale()));
  2300       RicochetFrame::leave_ricochet_frame(_masm, rcx_recv, rbx_arg_base, rdx_temp);
  2301       __ push(rdx_temp);  // repush the return PC
  2303       // Load the final target and go.
  2304       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
  2305       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  2306       __ hlt(); // --------------------
  2307       break;
  2310   case _adapter_opt_return_any:
  2312       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2313       Register rdi_conv = rdi_temp;
  2314       assert_different_registers(rax, rdx,  // possibly live return value registers
  2315                                  rdi_conv, rbx_temp);
  2317       Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
  2318       load_conversion_dest_type(_masm, rdi_conv, conversion_addr);
  2319       __ lea(rbx_temp, ExternalAddress((address) &_adapter_return_handlers[0]));
  2320       __ movptr(rbx_temp, Address(rbx_temp, rdi_conv, Address::times_ptr));
  2322 #ifdef ASSERT
  2323       { Label L_badconv;
  2324         __ testptr(rbx_temp, rbx_temp);
  2325         __ jccb(Assembler::zero, L_badconv);
  2326         __ jmp(rbx_temp);
  2327         __ bind(L_badconv);
  2328         __ stop("bad method handle return");
  2330 #else //ASSERT
  2331       __ jmp(rbx_temp);
  2332 #endif //ASSERT
  2333       break;
  2336   case _adapter_opt_spread_0:
  2337   case _adapter_opt_spread_1_ref:
  2338   case _adapter_opt_spread_2_ref:
  2339   case _adapter_opt_spread_3_ref:
  2340   case _adapter_opt_spread_4_ref:
  2341   case _adapter_opt_spread_5_ref:
  2342   case _adapter_opt_spread_ref:
  2343   case _adapter_opt_spread_byte:
  2344   case _adapter_opt_spread_char:
  2345   case _adapter_opt_spread_short:
  2346   case _adapter_opt_spread_int:
  2347   case _adapter_opt_spread_long:
  2348   case _adapter_opt_spread_float:
  2349   case _adapter_opt_spread_double:
  2351       // spread an array out into a group of arguments
  2352       int length_constant = ek_adapter_opt_spread_count(ek);
  2353       bool length_can_be_zero = (length_constant == 0);
  2354       if (length_constant < 0) {
  2355         // some adapters with variable length must handle the zero case
  2356         if (!OptimizeMethodHandles ||
  2357             ek_adapter_opt_spread_type(ek) != T_OBJECT)
  2358           length_can_be_zero = true;
  2361       // find the address of the array argument
  2362       __ movl(rax_argslot, rcx_amh_vmargslot);
  2363       __ lea(rax_argslot, __ argument_address(rax_argslot));
  2365       // grab another temp
  2366       Register rsi_temp = rsi;
  2368       // arx_argslot points both to the array and to the first output arg
  2369       vmarg = Address(rax_argslot, 0);
  2371       // Get the array value.
  2372       Register  rdi_array       = rdi_temp;
  2373       Register  rdx_array_klass = rdx_temp;
  2374       BasicType elem_type = ek_adapter_opt_spread_type(ek);
  2375       int       elem_slots = type2size[elem_type];  // 1 or 2
  2376       int       array_slots = 1;  // array is always a T_OBJECT
  2377       int       length_offset   = arrayOopDesc::length_offset_in_bytes();
  2378       int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
  2379       __ movptr(rdi_array, vmarg);
  2381       Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
  2382       if (length_can_be_zero) {
  2383         // handle the null pointer case, if zero is allowed
  2384         Label L_skip;
  2385         if (length_constant < 0) {
  2386           load_conversion_vminfo(_masm, rbx_temp, rcx_amh_conversion);
  2387           __ testl(rbx_temp, rbx_temp);
  2388           __ jcc(Assembler::notZero, L_skip);
  2390         __ testptr(rdi_array, rdi_array);
  2391         __ jcc(Assembler::notZero, L_skip);
  2393         // If 'rsi' contains the 'saved_last_sp' (this is only the
  2394         // case in a 32-bit version of the VM) we have to save 'rsi'
  2395         // on the stack because later on (at 'L_array_is_empty') 'rsi'
  2396         // will be overwritten.
  2397         { if (rsi_temp == saved_last_sp)  __ push(saved_last_sp); }
  2398         // Also prepare a handy macro which restores 'rsi' if required.
  2399 #define UNPUSH_RSI                                                      \
  2400         { if (rsi_temp == saved_last_sp)  __ pop(saved_last_sp); }
  2402         __ jmp(L_array_is_empty);
  2403         __ bind(L_skip);
  2405       __ null_check(rdi_array, oopDesc::klass_offset_in_bytes());
  2406       __ load_klass(rdx_array_klass, rdi_array);
  2408       // Save 'rsi' if required (see comment above).  Do this only
  2409       // after the null check such that the exception handler which is
  2410       // called in the case of a null pointer exception will not be
  2411       // confused by the extra value on the stack (it expects the
  2412       // return pointer on top of the stack)
  2413       { if (rsi_temp == saved_last_sp)  __ push(saved_last_sp); }
  2415       // Check the array type.
  2416       Register rbx_klass = rbx_temp;
  2417       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
  2418       load_klass_from_Class(_masm, rbx_klass);
  2420       Label ok_array_klass, bad_array_klass, bad_array_length;
  2421       __ check_klass_subtype(rdx_array_klass, rbx_klass, rsi_temp, ok_array_klass);
  2422       // If we get here, the type check failed!
  2423       __ jmp(bad_array_klass);
  2424       __ BIND(ok_array_klass);
  2426       // Check length.
  2427       if (length_constant >= 0) {
  2428         __ cmpl(Address(rdi_array, length_offset), length_constant);
  2429       } else {
  2430         Register rbx_vminfo = rbx_temp;
  2431         load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
  2432         __ cmpl(rbx_vminfo, Address(rdi_array, length_offset));
  2434       __ jcc(Assembler::notEqual, bad_array_length);
  2436       Register rdx_argslot_limit = rdx_temp;
  2438       // Array length checks out.  Now insert any required stack slots.
  2439       if (length_constant == -1) {
  2440         // Form a pointer to the end of the affected region.
  2441         __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
  2442         // 'stack_move' is negative number of words to insert
  2443         // This number already accounts for elem_slots.
  2444         Register rsi_stack_move = rsi_temp;
  2445         load_stack_move(_masm, rsi_stack_move, rcx_recv, true);
  2446         __ cmpptr(rsi_stack_move, 0);
  2447         assert(stack_move_unit() < 0, "else change this comparison");
  2448         __ jcc(Assembler::less, L_insert_arg_space);
  2449         __ jcc(Assembler::equal, L_copy_args);
  2450         // single argument case, with no array movement
  2451         __ BIND(L_array_is_empty);
  2452         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2453                          rax_argslot, rbx_temp, rdx_temp);
  2454         __ jmp(L_args_done);  // no spreading to do
  2455         __ BIND(L_insert_arg_space);
  2456         // come here in the usual case, stack_move < 0 (2 or more spread arguments)
  2457         Register rdi_temp = rdi_array;  // spill this
  2458         insert_arg_slots(_masm, rsi_stack_move,
  2459                          rax_argslot, rbx_temp, rdi_temp);
  2460         // reload the array since rsi was killed
  2461         // reload from rdx_argslot_limit since rax_argslot is now decremented
  2462         __ movptr(rdi_array, Address(rdx_argslot_limit, -Interpreter::stackElementSize));
  2463       } else if (length_constant >= 1) {
  2464         int new_slots = (length_constant * elem_slots) - array_slots;
  2465         insert_arg_slots(_masm, new_slots * stack_move_unit(),
  2466                          rax_argslot, rbx_temp, rdx_temp);
  2467       } else if (length_constant == 0) {
  2468         __ BIND(L_array_is_empty);
  2469         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2470                          rax_argslot, rbx_temp, rdx_temp);
  2471       } else {
  2472         ShouldNotReachHere();
  2475       // Copy from the array to the new slots.
  2476       // Note: Stack change code preserves integrity of rax_argslot pointer.
  2477       // So even after slot insertions, rax_argslot still points to first argument.
  2478       // Beware:  Arguments that are shallow on the stack are deep in the array,
  2479       // and vice versa.  So a downward-growing stack (the usual) has to be copied
  2480       // elementwise in reverse order from the source array.
  2481       __ BIND(L_copy_args);
  2482       if (length_constant == -1) {
  2483         // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
  2484         // Array element [0] goes at rdx_argslot_limit[-wordSize].
  2485         Register rdi_source = rdi_array;
  2486         __ lea(rdi_source, Address(rdi_array, elem0_offset));
  2487         Register rdx_fill_ptr = rdx_argslot_limit;
  2488         Label loop;
  2489         __ BIND(loop);
  2490         __ addptr(rdx_fill_ptr, -Interpreter::stackElementSize * elem_slots);
  2491         move_typed_arg(_masm, elem_type, true,
  2492                        Address(rdx_fill_ptr, 0), Address(rdi_source, 0),
  2493                        rbx_temp, rsi_temp);
  2494         __ addptr(rdi_source, type2aelembytes(elem_type));
  2495         __ cmpptr(rdx_fill_ptr, rax_argslot);
  2496         __ jcc(Assembler::above, loop);
  2497       } else if (length_constant == 0) {
  2498         // nothing to copy
  2499       } else {
  2500         int elem_offset = elem0_offset;
  2501         int slot_offset = length_constant * Interpreter::stackElementSize;
  2502         for (int index = 0; index < length_constant; index++) {
  2503           slot_offset -= Interpreter::stackElementSize * elem_slots;  // fill backward
  2504           move_typed_arg(_masm, elem_type, true,
  2505                          Address(rax_argslot, slot_offset), Address(rdi_array, elem_offset),
  2506                          rbx_temp, rsi_temp);
  2507           elem_offset += type2aelembytes(elem_type);
  2510       __ BIND(L_args_done);
  2512       // Arguments are spread.  Move to next method handle.
  2513       UNPUSH_RSI;
  2514       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
  2515       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
  2517       __ bind(bad_array_klass);
  2518       UNPUSH_RSI;
  2519       assert(!vmarg.uses(rarg2_required), "must be different registers");
  2520       __ load_heap_oop( rarg2_required, Address(rdx_array_klass, java_mirror_offset));  // required type
  2521       __ movptr(        rarg1_actual,   vmarg);                                         // bad array
  2522       __ movl(          rarg0_code,     (int) Bytecodes::_aaload);                      // who is complaining?
  2523       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  2525       __ bind(bad_array_length);
  2526       UNPUSH_RSI;
  2527       assert(!vmarg.uses(rarg2_required), "must be different registers");
  2528       __ mov(    rarg2_required, rcx_recv);                       // AMH requiring a certain length
  2529       __ movptr( rarg1_actual,   vmarg);                          // bad array
  2530       __ movl(   rarg0_code,     (int) Bytecodes::_arraylength);  // who is complaining?
  2531       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
  2532 #undef UNPUSH_RSI
  2534       break;
  2537   default:
  2538     // do not require all platforms to recognize all adapter types
  2539     __ nop();
  2540     return;
  2542   BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
  2543   __ hlt();
  2545   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  2546   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  2548   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));

mercurial