src/cpu/x86/vm/vm_version_x86.hpp

Thu, 03 Nov 2011 04:12:49 -0700

author
twisti
date
Thu, 03 Nov 2011 04:12:49 -0700
changeset 3252
448691f285a5
parent 3063
9f12ede5571a
child 3378
7ab5f6318694
child 3388
127b3692c168
permissions
-rw-r--r--

7106944: assert(_pc == *pc_addr) failed may be too strong
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
    26 #define CPU_X86_VM_VM_VERSION_X86_HPP
    28 #include "runtime/globals_extension.hpp"
    29 #include "runtime/vm_version.hpp"
    31 class VM_Version : public Abstract_VM_Version {
    32 public:
    33   // cpuid result register layouts.  These are all unions of a uint32_t
    34   // (in case anyone wants access to the register as a whole) and a bitfield.
    36   union StdCpuid1Eax {
    37     uint32_t value;
    38     struct {
    39       uint32_t stepping   : 4,
    40                model      : 4,
    41                family     : 4,
    42                proc_type  : 2,
    43                           : 2,
    44                ext_model  : 4,
    45                ext_family : 8,
    46                           : 4;
    47     } bits;
    48   };
    50   union StdCpuid1Ebx { // example, unused
    51     uint32_t value;
    52     struct {
    53       uint32_t brand_id         : 8,
    54                clflush_size     : 8,
    55                threads_per_cpu  : 8,
    56                apic_id          : 8;
    57     } bits;
    58   };
    60   union StdCpuid1Ecx {
    61     uint32_t value;
    62     struct {
    63       uint32_t sse3     : 1,
    64                         : 2,
    65                monitor  : 1,
    66                         : 1,
    67                vmx      : 1,
    68                         : 1,
    69                est      : 1,
    70                         : 1,
    71                ssse3    : 1,
    72                cid      : 1,
    73                         : 2,
    74                cmpxchg16: 1,
    75                         : 4,
    76                dca      : 1,
    77                sse4_1   : 1,
    78                sse4_2   : 1,
    79                         : 2,
    80                popcnt   : 1,
    81                         : 8;
    82     } bits;
    83   };
    85   union StdCpuid1Edx {
    86     uint32_t value;
    87     struct {
    88       uint32_t          : 4,
    89                tsc      : 1,
    90                         : 3,
    91                cmpxchg8 : 1,
    92                         : 6,
    93                cmov     : 1,
    94                         : 3,
    95                clflush  : 1,
    96                         : 3,
    97                mmx      : 1,
    98                fxsr     : 1,
    99                sse      : 1,
   100                sse2     : 1,
   101                         : 1,
   102                ht       : 1,
   103                         : 3;
   104     } bits;
   105   };
   107   union DcpCpuid4Eax {
   108     uint32_t value;
   109     struct {
   110       uint32_t cache_type    : 5,
   111                              : 21,
   112                cores_per_cpu : 6;
   113     } bits;
   114   };
   116   union DcpCpuid4Ebx {
   117     uint32_t value;
   118     struct {
   119       uint32_t L1_line_size  : 12,
   120                partitions    : 10,
   121                associativity : 10;
   122     } bits;
   123   };
   125   union TplCpuidBEbx {
   126     uint32_t value;
   127     struct {
   128       uint32_t logical_cpus : 16,
   129                             : 16;
   130     } bits;
   131   };
   133   union ExtCpuid1Ecx {
   134     uint32_t value;
   135     struct {
   136       uint32_t LahfSahf     : 1,
   137                CmpLegacy    : 1,
   138                             : 4,
   139                lzcnt        : 1,
   140                sse4a        : 1,
   141                misalignsse  : 1,
   142                prefetchw    : 1,
   143                             : 22;
   144     } bits;
   145   };
   147   union ExtCpuid1Edx {
   148     uint32_t value;
   149     struct {
   150       uint32_t           : 22,
   151                mmx_amd   : 1,
   152                mmx       : 1,
   153                fxsr      : 1,
   154                          : 4,
   155                long_mode : 1,
   156                tdnow2    : 1,
   157                tdnow     : 1;
   158     } bits;
   159   };
   161   union ExtCpuid5Ex {
   162     uint32_t value;
   163     struct {
   164       uint32_t L1_line_size : 8,
   165                L1_tag_lines : 8,
   166                L1_assoc     : 8,
   167                L1_size      : 8;
   168     } bits;
   169   };
   171   union ExtCpuid8Ecx {
   172     uint32_t value;
   173     struct {
   174       uint32_t cores_per_cpu : 8,
   175                              : 24;
   176     } bits;
   177   };
   179 protected:
   180    static int _cpu;
   181    static int _model;
   182    static int _stepping;
   183    static int _cpuFeatures;     // features returned by the "cpuid" instruction
   184                                 // 0 if this instruction is not available
   185    static const char* _features_str;
   187    enum {
   188      CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
   189      CPU_CMOV   = (1 << 1),
   190      CPU_FXSR   = (1 << 2),
   191      CPU_HT     = (1 << 3),
   192      CPU_MMX    = (1 << 4),
   193      CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
   194                                      // may not necessarily support other 3dnow instructions
   195      CPU_SSE    = (1 << 6),
   196      CPU_SSE2   = (1 << 7),
   197      CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
   198      CPU_SSSE3  = (1 << 9),
   199      CPU_SSE4A  = (1 << 10),
   200      CPU_SSE4_1 = (1 << 11),
   201      CPU_SSE4_2 = (1 << 12),
   202      CPU_POPCNT = (1 << 13),
   203      CPU_LZCNT  = (1 << 14)
   204    } cpuFeatureFlags;
   206   // cpuid information block.  All info derived from executing cpuid with
   207   // various function numbers is stored here.  Intel and AMD info is
   208   // merged in this block: accessor methods disentangle it.
   209   //
   210   // The info block is laid out in subblocks of 4 dwords corresponding to
   211   // eax, ebx, ecx and edx, whether or not they contain anything useful.
   212   struct CpuidInfo {
   213     // cpuid function 0
   214     uint32_t std_max_function;
   215     uint32_t std_vendor_name_0;
   216     uint32_t std_vendor_name_1;
   217     uint32_t std_vendor_name_2;
   219     // cpuid function 1
   220     StdCpuid1Eax std_cpuid1_eax;
   221     StdCpuid1Ebx std_cpuid1_ebx;
   222     StdCpuid1Ecx std_cpuid1_ecx;
   223     StdCpuid1Edx std_cpuid1_edx;
   225     // cpuid function 4 (deterministic cache parameters)
   226     DcpCpuid4Eax dcp_cpuid4_eax;
   227     DcpCpuid4Ebx dcp_cpuid4_ebx;
   228     uint32_t     dcp_cpuid4_ecx; // unused currently
   229     uint32_t     dcp_cpuid4_edx; // unused currently
   231     // cpuid function 0xB (processor topology)
   232     // ecx = 0
   233     uint32_t     tpl_cpuidB0_eax;
   234     TplCpuidBEbx tpl_cpuidB0_ebx;
   235     uint32_t     tpl_cpuidB0_ecx; // unused currently
   236     uint32_t     tpl_cpuidB0_edx; // unused currently
   238     // ecx = 1
   239     uint32_t     tpl_cpuidB1_eax;
   240     TplCpuidBEbx tpl_cpuidB1_ebx;
   241     uint32_t     tpl_cpuidB1_ecx; // unused currently
   242     uint32_t     tpl_cpuidB1_edx; // unused currently
   244     // ecx = 2
   245     uint32_t     tpl_cpuidB2_eax;
   246     TplCpuidBEbx tpl_cpuidB2_ebx;
   247     uint32_t     tpl_cpuidB2_ecx; // unused currently
   248     uint32_t     tpl_cpuidB2_edx; // unused currently
   250     // cpuid function 0x80000000 // example, unused
   251     uint32_t ext_max_function;
   252     uint32_t ext_vendor_name_0;
   253     uint32_t ext_vendor_name_1;
   254     uint32_t ext_vendor_name_2;
   256     // cpuid function 0x80000001
   257     uint32_t     ext_cpuid1_eax; // reserved
   258     uint32_t     ext_cpuid1_ebx; // reserved
   259     ExtCpuid1Ecx ext_cpuid1_ecx;
   260     ExtCpuid1Edx ext_cpuid1_edx;
   262     // cpuid functions 0x80000002 thru 0x80000004: example, unused
   263     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
   264     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
   265     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
   267     // cpuid function 0x80000005 //AMD L1, Intel reserved
   268     uint32_t     ext_cpuid5_eax; // unused currently
   269     uint32_t     ext_cpuid5_ebx; // reserved
   270     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
   271     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
   273     // cpuid function 0x80000008
   274     uint32_t     ext_cpuid8_eax; // unused currently
   275     uint32_t     ext_cpuid8_ebx; // reserved
   276     ExtCpuid8Ecx ext_cpuid8_ecx;
   277     uint32_t     ext_cpuid8_edx; // reserved
   278   };
   280   // The actual cpuid info block
   281   static CpuidInfo _cpuid_info;
   283   // Extractors and predicates
   284   static uint32_t extended_cpu_family() {
   285     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
   286     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
   287     return result;
   288   }
   289   static uint32_t extended_cpu_model() {
   290     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
   291     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
   292     return result;
   293   }
   294   static uint32_t cpu_stepping() {
   295     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
   296     return result;
   297   }
   298   static uint logical_processor_count() {
   299     uint result = threads_per_core();
   300     return result;
   301   }
   302   static uint32_t feature_flags() {
   303     uint32_t result = 0;
   304     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
   305       result |= CPU_CX8;
   306     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
   307       result |= CPU_CMOV;
   308     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
   309         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
   310       result |= CPU_FXSR;
   311     // HT flag is set for multi-core processors also.
   312     if (threads_per_core() > 1)
   313       result |= CPU_HT;
   314     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
   315         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
   316       result |= CPU_MMX;
   317     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
   318       result |= CPU_SSE;
   319     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
   320       result |= CPU_SSE2;
   321     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
   322       result |= CPU_SSE3;
   323     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
   324       result |= CPU_SSSE3;
   325     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
   326       result |= CPU_SSE4_1;
   327     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
   328       result |= CPU_SSE4_2;
   329     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
   330       result |= CPU_POPCNT;
   332     // AMD features.
   333     if (is_amd()) {
   334       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
   335           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
   336         result |= CPU_3DNOW_PREFETCH;
   337       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
   338         result |= CPU_LZCNT;
   339       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
   340         result |= CPU_SSE4A;
   341     }
   343     return result;
   344   }
   346   static void get_processor_features();
   348 public:
   349   // Offsets for cpuid asm stub
   350   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
   351   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
   352   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
   353   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
   354   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
   355   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
   356   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
   357   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
   358   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
   360   // Initialization
   361   static void initialize();
   363   // Asserts
   364   static void assert_is_initialized() {
   365     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
   366   }
   368   //
   369   // Processor family:
   370   //       3   -  386
   371   //       4   -  486
   372   //       5   -  Pentium
   373   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
   374   //              Pentium M, Core Solo, Core Duo, Core2 Duo
   375   //    family 6 model:   9,        13,       14,        15
   376   //    0x0f   -  Pentium 4, Opteron
   377   //
   378   // Note: The cpu family should be used to select between
   379   //       instruction sequences which are valid on all Intel
   380   //       processors.  Use the feature test functions below to
   381   //       determine whether a particular instruction is supported.
   382   //
   383   static int  cpu_family()        { return _cpu;}
   384   static bool is_P6()             { return cpu_family() >= 6; }
   386   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
   387   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
   389   static bool supports_processor_topology() {
   390     return (_cpuid_info.std_max_function >= 0xB) &&
   391            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
   392            // Some cpus have max cpuid >= 0xB but do not support processor topology.
   393            ((_cpuid_info.tpl_cpuidB0_eax & 0x1f | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
   394   }
   396   static uint cores_per_cpu()  {
   397     uint result = 1;
   398     if (is_intel()) {
   399       if (supports_processor_topology()) {
   400         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
   401                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   402       } else {
   403         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
   404       }
   405     } else if (is_amd()) {
   406       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
   407     }
   408     return result;
   409   }
   411   static uint threads_per_core()  {
   412     uint result = 1;
   413     if (is_intel() && supports_processor_topology()) {
   414       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   415     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
   416       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
   417                cores_per_cpu();
   418     }
   419     return result;
   420   }
   422   static intx prefetch_data_size()  {
   423     intx result = 0;
   424     if (is_intel()) {
   425       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
   426     } else if (is_amd()) {
   427       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
   428     }
   429     if (result < 32) // not defined ?
   430       result = 32;   // 32 bytes by default on x86 and other x64
   431     return result;
   432   }
   434   //
   435   // Feature identification
   436   //
   437   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
   438   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
   439   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
   440   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
   441   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
   442   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
   443   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
   444   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
   445   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
   446   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
   447   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
   448   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
   449   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
   450   //
   451   // AMD features
   452   //
   453   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
   454   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
   455   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
   456   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
   458   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
   459   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
   460                                            supports_sse3() && _model != 0x1C; }
   462   static bool supports_compare_and_exchange() { return true; }
   464   static const char* cpu_features()           { return _features_str; }
   466   static intx allocate_prefetch_distance() {
   467     // This method should be called before allocate_prefetch_style().
   468     //
   469     // Hardware prefetching (distance/size in bytes):
   470     // Pentium 3 -  64 /  32
   471     // Pentium 4 - 256 / 128
   472     // Athlon    -  64 /  32 ????
   473     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
   474     // Core      - 128 /  64
   475     //
   476     // Software prefetching (distance in bytes / instruction with best score):
   477     // Pentium 3 - 128 / prefetchnta
   478     // Pentium 4 - 512 / prefetchnta
   479     // Athlon    - 128 / prefetchnta
   480     // Opteron   - 256 / prefetchnta
   481     // Core      - 256 / prefetchnta
   482     // It will be used only when AllocatePrefetchStyle > 0
   484     intx count = AllocatePrefetchDistance;
   485     if (count < 0) {   // default ?
   486       if (is_amd()) {  // AMD
   487         if (supports_sse2())
   488           count = 256; // Opteron
   489         else
   490           count = 128; // Athlon
   491       } else {         // Intel
   492         if (supports_sse2())
   493           if (cpu_family() == 6) {
   494             count = 256; // Pentium M, Core, Core2
   495           } else {
   496             count = 512; // Pentium 4
   497           }
   498         else
   499           count = 128; // Pentium 3 (and all other old CPUs)
   500       }
   501     }
   502     return count;
   503   }
   504   static intx allocate_prefetch_style() {
   505     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
   506     // Return 0 if AllocatePrefetchDistance was not defined.
   507     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
   508   }
   510   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
   511   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
   512   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
   513   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
   515   // gc copy/scan is disabled if prefetchw isn't supported, because
   516   // Prefetch::write emits an inlined prefetchw on Linux.
   517   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
   518   // The used prefetcht0 instruction works for both amd64 and em64t.
   519   static intx prefetch_copy_interval_in_bytes() {
   520     intx interval = PrefetchCopyIntervalInBytes;
   521     return interval >= 0 ? interval : 576;
   522   }
   523   static intx prefetch_scan_interval_in_bytes() {
   524     intx interval = PrefetchScanIntervalInBytes;
   525     return interval >= 0 ? interval : 576;
   526   }
   527   static intx prefetch_fields_ahead() {
   528     intx count = PrefetchFieldsAhead;
   529     return count >= 0 ? count : 1;
   530   }
   531 };
   533 #endif // CPU_X86_VM_VM_VERSION_X86_HPP

mercurial