src/share/vm/memory/allocation.cpp

Tue, 30 Oct 2012 10:23:55 -0700

author
jmasa
date
Tue, 30 Oct 2012 10:23:55 -0700
changeset 4234
3fadc0e8cffe
parent 4193
716c64bda5ba
child 4295
59c790074993
permissions
-rw-r--r--

8000988: VM deadlock when running btree006 on windows-i586
Reviewed-by: johnc, jcoomes, ysr

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/metaspaceShared.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "memory/universe.hpp"
    32 #include "runtime/atomic.hpp"
    33 #include "runtime/os.hpp"
    34 #include "runtime/task.hpp"
    35 #include "runtime/threadCritical.hpp"
    36 #include "services/memTracker.hpp"
    37 #include "utilities/ostream.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "os_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "os_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "os_windows.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_FAMILY_bsd
    49 # include "os_bsd.inline.hpp"
    50 #endif
    52 void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
    53 void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
    54 void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
    55 void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
    57 void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
    58                                 size_t word_size, bool read_only, TRAPS) {
    59   // Klass has it's own operator new
    60   return Metaspace::allocate(loader_data, word_size, read_only,
    61                              Metaspace::NonClassType, CHECK_NULL);
    62 }
    64 bool MetaspaceObj::is_shared() const {
    65   return MetaspaceShared::is_in_shared_space(this);
    66 }
    68 bool MetaspaceObj::is_metadata() const {
    69   // ClassLoaderDataGraph::contains((address)this); has lock inversion problems
    70   return !Universe::heap()->is_in_reserved(this);
    71 }
    73 void MetaspaceObj::print_address_on(outputStream* st) const {
    74   st->print(" {"INTPTR_FORMAT"}", this);
    75 }
    78 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
    79   address res;
    80   switch (type) {
    81    case C_HEAP:
    82     res = (address)AllocateHeap(size, flags, CALLER_PC);
    83     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
    84     break;
    85    case RESOURCE_AREA:
    86     // new(size) sets allocation type RESOURCE_AREA.
    87     res = (address)operator new(size);
    88     break;
    89    default:
    90     ShouldNotReachHere();
    91   }
    92   return res;
    93 }
    95 void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
    96     allocation_type type, MEMFLAGS flags) {
    97   //should only call this with std::nothrow, use other operator new() otherwise
    98   address res;
    99   switch (type) {
   100    case C_HEAP:
   101     res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
   102     DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
   103     break;
   104    case RESOURCE_AREA:
   105     // new(size) sets allocation type RESOURCE_AREA.
   106     res = (address)operator new(size, std::nothrow);
   107     break;
   108    default:
   109     ShouldNotReachHere();
   110   }
   111   return res;
   112 }
   115 void ResourceObj::operator delete(void* p) {
   116   assert(((ResourceObj *)p)->allocated_on_C_heap(),
   117          "delete only allowed for C_HEAP objects");
   118   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
   119   FreeHeap(p);
   120 }
   122 #ifdef ASSERT
   123 void ResourceObj::set_allocation_type(address res, allocation_type type) {
   124     // Set allocation type in the resource object
   125     uintptr_t allocation = (uintptr_t)res;
   126     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
   127     assert(type <= allocation_mask, "incorrect allocation type");
   128     ResourceObj* resobj = (ResourceObj *)res;
   129     resobj->_allocation_t[0] = ~(allocation + type);
   130     if (type != STACK_OR_EMBEDDED) {
   131       // Called from operator new() and CollectionSetChooser(),
   132       // set verification value.
   133       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
   134     }
   135 }
   137 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
   138     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
   139     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
   140 }
   142 bool ResourceObj::is_type_set() const {
   143     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
   144     return get_allocation_type()  == type &&
   145            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
   146 }
   148 ResourceObj::ResourceObj() { // default constructor
   149     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
   150       // Operator new() is not called for allocations
   151       // on stack and for embedded objects.
   152       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   153     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
   154       // For some reason we got a value which resembles
   155       // an embedded or stack object (operator new() does not
   156       // set such type). Keep it since it is valid value
   157       // (even if it was garbage).
   158       // Ignore garbage in other fields.
   159     } else if (is_type_set()) {
   160       // Operator new() was called and type was set.
   161       assert(!allocated_on_stack(),
   162              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   163                      this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   164     } else {
   165       // Operator new() was not called.
   166       // Assume that it is embedded or stack object.
   167       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   168     }
   169     _allocation_t[1] = 0; // Zap verification value
   170 }
   172 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
   173     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
   174     // Note: garbage may resembles valid value.
   175     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
   176            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   177                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   178     set_allocation_type((address)this, STACK_OR_EMBEDDED);
   179     _allocation_t[1] = 0; // Zap verification value
   180 }
   182 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
   183     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
   184     assert(allocated_on_stack(),
   185            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   186                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   187     // Keep current _allocation_t value;
   188     return *this;
   189 }
   191 ResourceObj::~ResourceObj() {
   192     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
   193     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
   194       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
   195     }
   196 }
   197 #endif // ASSERT
   200 void trace_heap_malloc(size_t size, const char* name, void* p) {
   201   // A lock is not needed here - tty uses a lock internally
   202   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
   203 }
   206 void trace_heap_free(void* p) {
   207   // A lock is not needed here - tty uses a lock internally
   208   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
   209 }
   211 bool warn_new_operator = false; // see vm_main
   213 //--------------------------------------------------------------------------------------
   214 // ChunkPool implementation
   216 // MT-safe pool of chunks to reduce malloc/free thrashing
   217 // NB: not using Mutex because pools are used before Threads are initialized
   218 class ChunkPool: public CHeapObj<mtInternal> {
   219   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
   220   size_t       _num_chunks;   // number of unused chunks in pool
   221   size_t       _num_used;     // number of chunks currently checked out
   222   const size_t _size;         // size of each chunk (must be uniform)
   224   // Our three static pools
   225   static ChunkPool* _large_pool;
   226   static ChunkPool* _medium_pool;
   227   static ChunkPool* _small_pool;
   229   // return first element or null
   230   void* get_first() {
   231     Chunk* c = _first;
   232     if (_first) {
   233       _first = _first->next();
   234       _num_chunks--;
   235     }
   236     return c;
   237   }
   239  public:
   240   // All chunks in a ChunkPool has the same size
   241    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
   243   // Allocate a new chunk from the pool (might expand the pool)
   244   _NOINLINE_ void* allocate(size_t bytes) {
   245     assert(bytes == _size, "bad size");
   246     void* p = NULL;
   247     // No VM lock can be taken inside ThreadCritical lock, so os::malloc
   248     // should be done outside ThreadCritical lock due to NMT
   249     { ThreadCritical tc;
   250       _num_used++;
   251       p = get_first();
   252     }
   253     if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
   254     if (p == NULL)
   255       vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
   257     return p;
   258   }
   260   // Return a chunk to the pool
   261   void free(Chunk* chunk) {
   262     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
   263     ThreadCritical tc;
   264     _num_used--;
   266     // Add chunk to list
   267     chunk->set_next(_first);
   268     _first = chunk;
   269     _num_chunks++;
   270   }
   272   // Prune the pool
   273   void free_all_but(size_t n) {
   274     Chunk* cur = NULL;
   275     Chunk* next;
   276     {
   277     // if we have more than n chunks, free all of them
   278     ThreadCritical tc;
   279     if (_num_chunks > n) {
   280       // free chunks at end of queue, for better locality
   281         cur = _first;
   282       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
   284       if (cur != NULL) {
   285           next = cur->next();
   286         cur->set_next(NULL);
   287         cur = next;
   289           _num_chunks = n;
   290         }
   291       }
   292     }
   294     // Free all remaining chunks, outside of ThreadCritical
   295     // to avoid deadlock with NMT
   296         while(cur != NULL) {
   297           next = cur->next();
   298       os::free(cur, mtChunk);
   299           cur = next;
   300         }
   301       }
   303   // Accessors to preallocated pool's
   304   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
   305   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
   306   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
   308   static void initialize() {
   309     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
   310     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
   311     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
   312   }
   314   static void clean() {
   315     enum { BlocksToKeep = 5 };
   316      _small_pool->free_all_but(BlocksToKeep);
   317      _medium_pool->free_all_but(BlocksToKeep);
   318      _large_pool->free_all_but(BlocksToKeep);
   319   }
   320 };
   322 ChunkPool* ChunkPool::_large_pool  = NULL;
   323 ChunkPool* ChunkPool::_medium_pool = NULL;
   324 ChunkPool* ChunkPool::_small_pool  = NULL;
   326 void chunkpool_init() {
   327   ChunkPool::initialize();
   328 }
   330 void
   331 Chunk::clean_chunk_pool() {
   332   ChunkPool::clean();
   333 }
   336 //--------------------------------------------------------------------------------------
   337 // ChunkPoolCleaner implementation
   338 //
   340 class ChunkPoolCleaner : public PeriodicTask {
   341   enum { CleaningInterval = 5000 };      // cleaning interval in ms
   343  public:
   344    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   345    void task() {
   346      ChunkPool::clean();
   347    }
   348 };
   350 //--------------------------------------------------------------------------------------
   351 // Chunk implementation
   353 void* Chunk::operator new(size_t requested_size, size_t length) {
   354   // requested_size is equal to sizeof(Chunk) but in order for the arena
   355   // allocations to come out aligned as expected the size must be aligned
   356   // to expected arean alignment.
   357   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
   358   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
   359   size_t bytes = ARENA_ALIGN(requested_size) + length;
   360   switch (length) {
   361    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
   362    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
   363    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
   364    default: {
   365      void *p =  os::malloc(bytes, mtChunk, CALLER_PC);
   366      if (p == NULL)
   367        vm_exit_out_of_memory(bytes, "Chunk::new");
   368      return p;
   369    }
   370   }
   371 }
   373 void Chunk::operator delete(void* p) {
   374   Chunk* c = (Chunk*)p;
   375   switch (c->length()) {
   376    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   377    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   378    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   379    default:                 os::free(c, mtChunk);
   380   }
   381 }
   383 Chunk::Chunk(size_t length) : _len(length) {
   384   _next = NULL;         // Chain on the linked list
   385 }
   388 void Chunk::chop() {
   389   Chunk *k = this;
   390   while( k ) {
   391     Chunk *tmp = k->next();
   392     // clear out this chunk (to detect allocation bugs)
   393     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
   394     delete k;                   // Free chunk (was malloc'd)
   395     k = tmp;
   396   }
   397 }
   399 void Chunk::next_chop() {
   400   _next->chop();
   401   _next = NULL;
   402 }
   405 void Chunk::start_chunk_pool_cleaner_task() {
   406 #ifdef ASSERT
   407   static bool task_created = false;
   408   assert(!task_created, "should not start chuck pool cleaner twice");
   409   task_created = true;
   410 #endif
   411   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
   412   cleaner->enroll();
   413 }
   415 //------------------------------Arena------------------------------------------
   416 NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
   418 Arena::Arena(size_t init_size) {
   419   size_t round_size = (sizeof (char *)) - 1;
   420   init_size = (init_size+round_size) & ~round_size;
   421   _first = _chunk = new (init_size) Chunk(init_size);
   422   _hwm = _chunk->bottom();      // Save the cached hwm, max
   423   _max = _chunk->top();
   424   set_size_in_bytes(init_size);
   425   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   426 }
   428 Arena::Arena() {
   429   _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
   430   _hwm = _chunk->bottom();      // Save the cached hwm, max
   431   _max = _chunk->top();
   432   set_size_in_bytes(Chunk::init_size);
   433   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   434 }
   436 Arena *Arena::move_contents(Arena *copy) {
   437   copy->destruct_contents();
   438   copy->_chunk = _chunk;
   439   copy->_hwm   = _hwm;
   440   copy->_max   = _max;
   441   copy->_first = _first;
   443   // workaround rare racing condition, which could double count
   444   // the arena size by native memory tracking
   445   size_t size = size_in_bytes();
   446   set_size_in_bytes(0);
   447   copy->set_size_in_bytes(size);
   448   // Destroy original arena
   449   reset();
   450   return copy;            // Return Arena with contents
   451 }
   453 Arena::~Arena() {
   454   destruct_contents();
   455   NOT_PRODUCT(Atomic::dec(&_instance_count);)
   456 }
   458 void* Arena::operator new(size_t size) {
   459   assert(false, "Use dynamic memory type binding");
   460   return NULL;
   461 }
   463 void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
   464   assert(false, "Use dynamic memory type binding");
   465   return NULL;
   466 }
   468   // dynamic memory type binding
   469 void* Arena::operator new(size_t size, MEMFLAGS flags) {
   470 #ifdef ASSERT
   471   void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
   472   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   473   return p;
   474 #else
   475   return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
   476 #endif
   477 }
   479 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
   480 #ifdef ASSERT
   481   void* p = os::malloc(size, flags|otArena, CALLER_PC);
   482   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   483   return p;
   484 #else
   485   return os::malloc(size, flags|otArena, CALLER_PC);
   486 #endif
   487 }
   489 void Arena::operator delete(void* p) {
   490   FreeHeap(p);
   491 }
   493 // Destroy this arenas contents and reset to empty
   494 void Arena::destruct_contents() {
   495   if (UseMallocOnly && _first != NULL) {
   496     char* end = _first->next() ? _first->top() : _hwm;
   497     free_malloced_objects(_first, _first->bottom(), end, _hwm);
   498   }
   499   // reset size before chop to avoid a rare racing condition
   500   // that can have total arena memory exceed total chunk memory
   501   set_size_in_bytes(0);
   502   _first->chop();
   503   reset();
   504 }
   506 // This is high traffic method, but many calls actually don't
   507 // change the size
   508 void Arena::set_size_in_bytes(size_t size) {
   509   if (_size_in_bytes != size) {
   510     _size_in_bytes = size;
   511     MemTracker::record_arena_size((address)this, size);
   512   }
   513 }
   515 // Total of all Chunks in arena
   516 size_t Arena::used() const {
   517   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
   518   register Chunk *k = _first;
   519   while( k != _chunk) {         // Whilst have Chunks in a row
   520     sum += k->length();         // Total size of this Chunk
   521     k = k->next();              // Bump along to next Chunk
   522   }
   523   return sum;                   // Return total consumed space.
   524 }
   526 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
   527   vm_exit_out_of_memory(sz, whence);
   528 }
   530 // Grow a new Chunk
   531 void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
   532   // Get minimal required size.  Either real big, or even bigger for giant objs
   533   size_t len = MAX2(x, (size_t) Chunk::size);
   535   Chunk *k = _chunk;            // Get filled-up chunk address
   536   _chunk = new (len) Chunk(len);
   538   if (_chunk == NULL) {
   539     if (alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   540       signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
   541     }
   542     return NULL;
   543   }
   544   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
   545   else _first = _chunk;
   546   _hwm  = _chunk->bottom();     // Save the cached hwm, max
   547   _max =  _chunk->top();
   548   set_size_in_bytes(size_in_bytes() + len);
   549   void* result = _hwm;
   550   _hwm += x;
   551   return result;
   552 }
   556 // Reallocate storage in Arena.
   557 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
   558   assert(new_size >= 0, "bad size");
   559   if (new_size == 0) return NULL;
   560 #ifdef ASSERT
   561   if (UseMallocOnly) {
   562     // always allocate a new object  (otherwise we'll free this one twice)
   563     char* copy = (char*)Amalloc(new_size, alloc_failmode);
   564     if (copy == NULL) {
   565       return NULL;
   566     }
   567     size_t n = MIN2(old_size, new_size);
   568     if (n > 0) memcpy(copy, old_ptr, n);
   569     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
   570     return copy;
   571   }
   572 #endif
   573   char *c_old = (char*)old_ptr; // Handy name
   574   // Stupid fast special case
   575   if( new_size <= old_size ) {  // Shrink in-place
   576     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
   577       _hwm = c_old+new_size;    // Adjust hwm
   578     return c_old;
   579   }
   581   // make sure that new_size is legal
   582   size_t corrected_new_size = ARENA_ALIGN(new_size);
   584   // See if we can resize in-place
   585   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
   586       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
   587     _hwm = c_old+corrected_new_size;      // Adjust hwm
   588     return c_old;               // Return old pointer
   589   }
   591   // Oops, got to relocate guts
   592   void *new_ptr = Amalloc(new_size, alloc_failmode);
   593   if (new_ptr == NULL) {
   594     return NULL;
   595   }
   596   memcpy( new_ptr, c_old, old_size );
   597   Afree(c_old,old_size);        // Mostly done to keep stats accurate
   598   return new_ptr;
   599 }
   602 // Determine if pointer belongs to this Arena or not.
   603 bool Arena::contains( const void *ptr ) const {
   604 #ifdef ASSERT
   605   if (UseMallocOnly) {
   606     // really slow, but not easy to make fast
   607     if (_chunk == NULL) return false;
   608     char** bottom = (char**)_chunk->bottom();
   609     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
   610       if (*p == ptr) return true;
   611     }
   612     for (Chunk *c = _first; c != NULL; c = c->next()) {
   613       if (c == _chunk) continue;  // current chunk has been processed
   614       char** bottom = (char**)c->bottom();
   615       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
   616         if (*p == ptr) return true;
   617       }
   618     }
   619     return false;
   620   }
   621 #endif
   622   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
   623     return true;                // Check for in this chunk
   624   for (Chunk *c = _first; c; c = c->next()) {
   625     if (c == _chunk) continue;  // current chunk has been processed
   626     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
   627       return true;              // Check for every chunk in Arena
   628     }
   629   }
   630   return false;                 // Not in any Chunk, so not in Arena
   631 }
   634 #ifdef ASSERT
   635 void* Arena::malloc(size_t size) {
   636   assert(UseMallocOnly, "shouldn't call");
   637   // use malloc, but save pointer in res. area for later freeing
   638   char** save = (char**)internal_malloc_4(sizeof(char*));
   639   return (*save = (char*)os::malloc(size, mtChunk));
   640 }
   642 // for debugging with UseMallocOnly
   643 void* Arena::internal_malloc_4(size_t x) {
   644   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   645   check_for_overflow(x, "Arena::internal_malloc_4");
   646   if (_hwm + x > _max) {
   647     return grow(x);
   648   } else {
   649     char *old = _hwm;
   650     _hwm += x;
   651     return old;
   652   }
   653 }
   654 #endif
   657 //--------------------------------------------------------------------------------------
   658 // Non-product code
   660 #ifndef PRODUCT
   661 // The global operator new should never be called since it will usually indicate
   662 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
   663 // that they're allocated on the C heap.
   664 // Commented out in product version to avoid conflicts with third-party C++ native code.
   665 // %% note this is causing a problem on solaris debug build. the global
   666 // new is being called from jdk source and causing data corruption.
   667 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
   668 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
   669 #ifdef CATCH_OPERATOR_NEW_USAGE
   670 void* operator new(size_t size){
   671   static bool warned = false;
   672   if (!warned && warn_new_operator)
   673     warning("should not call global (default) operator new");
   674   warned = true;
   675   return (void *) AllocateHeap(size, "global operator new");
   676 }
   677 #endif
   679 void AllocatedObj::print() const       { print_on(tty); }
   680 void AllocatedObj::print_value() const { print_value_on(tty); }
   682 void AllocatedObj::print_on(outputStream* st) const {
   683   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
   684 }
   686 void AllocatedObj::print_value_on(outputStream* st) const {
   687   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
   688 }
   690 julong Arena::_bytes_allocated = 0;
   692 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
   694 AllocStats::AllocStats() {
   695   start_mallocs      = os::num_mallocs;
   696   start_frees        = os::num_frees;
   697   start_malloc_bytes = os::alloc_bytes;
   698   start_mfree_bytes  = os::free_bytes;
   699   start_res_bytes    = Arena::_bytes_allocated;
   700 }
   702 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
   703 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
   704 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
   705 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
   706 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
   707 void    AllocStats::print() {
   708   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
   709                 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
   710                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
   711 }
   714 // debugging code
   715 inline void Arena::free_all(char** start, char** end) {
   716   for (char** p = start; p < end; p++) if (*p) os::free(*p);
   717 }
   719 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
   720   assert(UseMallocOnly, "should not call");
   721   // free all objects malloced since resource mark was created; resource area
   722   // contains their addresses
   723   if (chunk->next()) {
   724     // this chunk is full, and some others too
   725     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
   726       char* top = c->top();
   727       if (c->next() == NULL) {
   728         top = hwm2;     // last junk is only used up to hwm2
   729         assert(c->contains(hwm2), "bad hwm2");
   730       }
   731       free_all((char**)c->bottom(), (char**)top);
   732     }
   733     assert(chunk->contains(hwm), "bad hwm");
   734     assert(chunk->contains(max), "bad max");
   735     free_all((char**)hwm, (char**)max);
   736   } else {
   737     // this chunk was partially used
   738     assert(chunk->contains(hwm), "bad hwm");
   739     assert(chunk->contains(hwm2), "bad hwm2");
   740     free_all((char**)hwm, (char**)hwm2);
   741   }
   742 }
   745 ReallocMark::ReallocMark() {
   746 #ifdef ASSERT
   747   Thread *thread = ThreadLocalStorage::get_thread_slow();
   748   _nesting = thread->resource_area()->nesting();
   749 #endif
   750 }
   752 void ReallocMark::check() {
   753 #ifdef ASSERT
   754   if (_nesting != Thread::current()->resource_area()->nesting()) {
   755     fatal("allocation bug: array could grow within nested ResourceMark");
   756   }
   757 #endif
   758 }
   760 #endif // Non-product

mercurial