src/share/vm/memory/allocation.cpp

Wed, 28 Nov 2012 17:50:21 -0500

author
coleenp
date
Wed, 28 Nov 2012 17:50:21 -0500
changeset 4295
59c790074993
parent 4193
716c64bda5ba
child 4962
6f817ce50129
child 5241
f75faf51e8c4
permissions
-rw-r--r--

8003635: NPG: AsynchGetCallTrace broken by Method* virtual call
Summary: Make metaspace::contains be lock free and used to see if something is in metaspace, also compare Method* with vtbl pointer.
Reviewed-by: dholmes, sspitsyn, dcubed, jmasa

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/metaspaceShared.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "memory/universe.hpp"
    32 #include "runtime/atomic.hpp"
    33 #include "runtime/os.hpp"
    34 #include "runtime/task.hpp"
    35 #include "runtime/threadCritical.hpp"
    36 #include "services/memTracker.hpp"
    37 #include "utilities/ostream.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "os_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "os_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "os_windows.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_FAMILY_bsd
    49 # include "os_bsd.inline.hpp"
    50 #endif
    52 void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
    53 void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
    54 void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
    55 void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
    57 void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
    58                                 size_t word_size, bool read_only, TRAPS) {
    59   // Klass has it's own operator new
    60   return Metaspace::allocate(loader_data, word_size, read_only,
    61                              Metaspace::NonClassType, CHECK_NULL);
    62 }
    64 bool MetaspaceObj::is_shared() const {
    65   return MetaspaceShared::is_in_shared_space(this);
    66 }
    68 bool MetaspaceObj::is_metadata() const {
    69   // GC Verify checks use this in guarantees.
    70   // TODO: either replace them with is_metaspace_object() or remove them.
    71   // is_metaspace_object() is slower than this test.  This test doesn't
    72   // seem very useful for metaspace objects anymore though.
    73   return !Universe::heap()->is_in_reserved(this);
    74 }
    76 bool MetaspaceObj::is_metaspace_object() const {
    77   return Metaspace::contains((void*)this);
    78 }
    80 void MetaspaceObj::print_address_on(outputStream* st) const {
    81   st->print(" {"INTPTR_FORMAT"}", this);
    82 }
    85 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) {
    86   address res;
    87   switch (type) {
    88    case C_HEAP:
    89     res = (address)AllocateHeap(size, flags, CALLER_PC);
    90     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
    91     break;
    92    case RESOURCE_AREA:
    93     // new(size) sets allocation type RESOURCE_AREA.
    94     res = (address)operator new(size);
    95     break;
    96    default:
    97     ShouldNotReachHere();
    98   }
    99   return res;
   100 }
   102 void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
   103     allocation_type type, MEMFLAGS flags) {
   104   //should only call this with std::nothrow, use other operator new() otherwise
   105   address res;
   106   switch (type) {
   107    case C_HEAP:
   108     res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
   109     DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
   110     break;
   111    case RESOURCE_AREA:
   112     // new(size) sets allocation type RESOURCE_AREA.
   113     res = (address)operator new(size, std::nothrow);
   114     break;
   115    default:
   116     ShouldNotReachHere();
   117   }
   118   return res;
   119 }
   122 void ResourceObj::operator delete(void* p) {
   123   assert(((ResourceObj *)p)->allocated_on_C_heap(),
   124          "delete only allowed for C_HEAP objects");
   125   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
   126   FreeHeap(p);
   127 }
   129 #ifdef ASSERT
   130 void ResourceObj::set_allocation_type(address res, allocation_type type) {
   131     // Set allocation type in the resource object
   132     uintptr_t allocation = (uintptr_t)res;
   133     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
   134     assert(type <= allocation_mask, "incorrect allocation type");
   135     ResourceObj* resobj = (ResourceObj *)res;
   136     resobj->_allocation_t[0] = ~(allocation + type);
   137     if (type != STACK_OR_EMBEDDED) {
   138       // Called from operator new() and CollectionSetChooser(),
   139       // set verification value.
   140       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
   141     }
   142 }
   144 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
   145     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
   146     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
   147 }
   149 bool ResourceObj::is_type_set() const {
   150     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
   151     return get_allocation_type()  == type &&
   152            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
   153 }
   155 ResourceObj::ResourceObj() { // default constructor
   156     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
   157       // Operator new() is not called for allocations
   158       // on stack and for embedded objects.
   159       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   160     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
   161       // For some reason we got a value which resembles
   162       // an embedded or stack object (operator new() does not
   163       // set such type). Keep it since it is valid value
   164       // (even if it was garbage).
   165       // Ignore garbage in other fields.
   166     } else if (is_type_set()) {
   167       // Operator new() was called and type was set.
   168       assert(!allocated_on_stack(),
   169              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   170                      this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   171     } else {
   172       // Operator new() was not called.
   173       // Assume that it is embedded or stack object.
   174       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   175     }
   176     _allocation_t[1] = 0; // Zap verification value
   177 }
   179 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
   180     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
   181     // Note: garbage may resembles valid value.
   182     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
   183            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   184                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   185     set_allocation_type((address)this, STACK_OR_EMBEDDED);
   186     _allocation_t[1] = 0; // Zap verification value
   187 }
   189 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
   190     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
   191     assert(allocated_on_stack(),
   192            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   193                    this, get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   194     // Keep current _allocation_t value;
   195     return *this;
   196 }
   198 ResourceObj::~ResourceObj() {
   199     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
   200     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
   201       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
   202     }
   203 }
   204 #endif // ASSERT
   207 void trace_heap_malloc(size_t size, const char* name, void* p) {
   208   // A lock is not needed here - tty uses a lock internally
   209   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p, size, name == NULL ? "" : name);
   210 }
   213 void trace_heap_free(void* p) {
   214   // A lock is not needed here - tty uses a lock internally
   215   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
   216 }
   218 bool warn_new_operator = false; // see vm_main
   220 //--------------------------------------------------------------------------------------
   221 // ChunkPool implementation
   223 // MT-safe pool of chunks to reduce malloc/free thrashing
   224 // NB: not using Mutex because pools are used before Threads are initialized
   225 class ChunkPool: public CHeapObj<mtInternal> {
   226   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
   227   size_t       _num_chunks;   // number of unused chunks in pool
   228   size_t       _num_used;     // number of chunks currently checked out
   229   const size_t _size;         // size of each chunk (must be uniform)
   231   // Our three static pools
   232   static ChunkPool* _large_pool;
   233   static ChunkPool* _medium_pool;
   234   static ChunkPool* _small_pool;
   236   // return first element or null
   237   void* get_first() {
   238     Chunk* c = _first;
   239     if (_first) {
   240       _first = _first->next();
   241       _num_chunks--;
   242     }
   243     return c;
   244   }
   246  public:
   247   // All chunks in a ChunkPool has the same size
   248    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
   250   // Allocate a new chunk from the pool (might expand the pool)
   251   _NOINLINE_ void* allocate(size_t bytes) {
   252     assert(bytes == _size, "bad size");
   253     void* p = NULL;
   254     // No VM lock can be taken inside ThreadCritical lock, so os::malloc
   255     // should be done outside ThreadCritical lock due to NMT
   256     { ThreadCritical tc;
   257       _num_used++;
   258       p = get_first();
   259     }
   260     if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
   261     if (p == NULL)
   262       vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
   264     return p;
   265   }
   267   // Return a chunk to the pool
   268   void free(Chunk* chunk) {
   269     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
   270     ThreadCritical tc;
   271     _num_used--;
   273     // Add chunk to list
   274     chunk->set_next(_first);
   275     _first = chunk;
   276     _num_chunks++;
   277   }
   279   // Prune the pool
   280   void free_all_but(size_t n) {
   281     Chunk* cur = NULL;
   282     Chunk* next;
   283     {
   284     // if we have more than n chunks, free all of them
   285     ThreadCritical tc;
   286     if (_num_chunks > n) {
   287       // free chunks at end of queue, for better locality
   288         cur = _first;
   289       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
   291       if (cur != NULL) {
   292           next = cur->next();
   293         cur->set_next(NULL);
   294         cur = next;
   296           _num_chunks = n;
   297         }
   298       }
   299     }
   301     // Free all remaining chunks, outside of ThreadCritical
   302     // to avoid deadlock with NMT
   303         while(cur != NULL) {
   304           next = cur->next();
   305       os::free(cur, mtChunk);
   306           cur = next;
   307         }
   308       }
   310   // Accessors to preallocated pool's
   311   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
   312   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
   313   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
   315   static void initialize() {
   316     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
   317     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
   318     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
   319   }
   321   static void clean() {
   322     enum { BlocksToKeep = 5 };
   323      _small_pool->free_all_but(BlocksToKeep);
   324      _medium_pool->free_all_but(BlocksToKeep);
   325      _large_pool->free_all_but(BlocksToKeep);
   326   }
   327 };
   329 ChunkPool* ChunkPool::_large_pool  = NULL;
   330 ChunkPool* ChunkPool::_medium_pool = NULL;
   331 ChunkPool* ChunkPool::_small_pool  = NULL;
   333 void chunkpool_init() {
   334   ChunkPool::initialize();
   335 }
   337 void
   338 Chunk::clean_chunk_pool() {
   339   ChunkPool::clean();
   340 }
   343 //--------------------------------------------------------------------------------------
   344 // ChunkPoolCleaner implementation
   345 //
   347 class ChunkPoolCleaner : public PeriodicTask {
   348   enum { CleaningInterval = 5000 };      // cleaning interval in ms
   350  public:
   351    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   352    void task() {
   353      ChunkPool::clean();
   354    }
   355 };
   357 //--------------------------------------------------------------------------------------
   358 // Chunk implementation
   360 void* Chunk::operator new(size_t requested_size, size_t length) {
   361   // requested_size is equal to sizeof(Chunk) but in order for the arena
   362   // allocations to come out aligned as expected the size must be aligned
   363   // to expected arean alignment.
   364   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
   365   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
   366   size_t bytes = ARENA_ALIGN(requested_size) + length;
   367   switch (length) {
   368    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
   369    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
   370    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
   371    default: {
   372      void *p =  os::malloc(bytes, mtChunk, CALLER_PC);
   373      if (p == NULL)
   374        vm_exit_out_of_memory(bytes, "Chunk::new");
   375      return p;
   376    }
   377   }
   378 }
   380 void Chunk::operator delete(void* p) {
   381   Chunk* c = (Chunk*)p;
   382   switch (c->length()) {
   383    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   384    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   385    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   386    default:                 os::free(c, mtChunk);
   387   }
   388 }
   390 Chunk::Chunk(size_t length) : _len(length) {
   391   _next = NULL;         // Chain on the linked list
   392 }
   395 void Chunk::chop() {
   396   Chunk *k = this;
   397   while( k ) {
   398     Chunk *tmp = k->next();
   399     // clear out this chunk (to detect allocation bugs)
   400     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
   401     delete k;                   // Free chunk (was malloc'd)
   402     k = tmp;
   403   }
   404 }
   406 void Chunk::next_chop() {
   407   _next->chop();
   408   _next = NULL;
   409 }
   412 void Chunk::start_chunk_pool_cleaner_task() {
   413 #ifdef ASSERT
   414   static bool task_created = false;
   415   assert(!task_created, "should not start chuck pool cleaner twice");
   416   task_created = true;
   417 #endif
   418   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
   419   cleaner->enroll();
   420 }
   422 //------------------------------Arena------------------------------------------
   423 NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
   425 Arena::Arena(size_t init_size) {
   426   size_t round_size = (sizeof (char *)) - 1;
   427   init_size = (init_size+round_size) & ~round_size;
   428   _first = _chunk = new (init_size) Chunk(init_size);
   429   _hwm = _chunk->bottom();      // Save the cached hwm, max
   430   _max = _chunk->top();
   431   set_size_in_bytes(init_size);
   432   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   433 }
   435 Arena::Arena() {
   436   _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
   437   _hwm = _chunk->bottom();      // Save the cached hwm, max
   438   _max = _chunk->top();
   439   set_size_in_bytes(Chunk::init_size);
   440   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   441 }
   443 Arena *Arena::move_contents(Arena *copy) {
   444   copy->destruct_contents();
   445   copy->_chunk = _chunk;
   446   copy->_hwm   = _hwm;
   447   copy->_max   = _max;
   448   copy->_first = _first;
   450   // workaround rare racing condition, which could double count
   451   // the arena size by native memory tracking
   452   size_t size = size_in_bytes();
   453   set_size_in_bytes(0);
   454   copy->set_size_in_bytes(size);
   455   // Destroy original arena
   456   reset();
   457   return copy;            // Return Arena with contents
   458 }
   460 Arena::~Arena() {
   461   destruct_contents();
   462   NOT_PRODUCT(Atomic::dec(&_instance_count);)
   463 }
   465 void* Arena::operator new(size_t size) {
   466   assert(false, "Use dynamic memory type binding");
   467   return NULL;
   468 }
   470 void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) {
   471   assert(false, "Use dynamic memory type binding");
   472   return NULL;
   473 }
   475   // dynamic memory type binding
   476 void* Arena::operator new(size_t size, MEMFLAGS flags) {
   477 #ifdef ASSERT
   478   void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
   479   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   480   return p;
   481 #else
   482   return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
   483 #endif
   484 }
   486 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) {
   487 #ifdef ASSERT
   488   void* p = os::malloc(size, flags|otArena, CALLER_PC);
   489   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   490   return p;
   491 #else
   492   return os::malloc(size, flags|otArena, CALLER_PC);
   493 #endif
   494 }
   496 void Arena::operator delete(void* p) {
   497   FreeHeap(p);
   498 }
   500 // Destroy this arenas contents and reset to empty
   501 void Arena::destruct_contents() {
   502   if (UseMallocOnly && _first != NULL) {
   503     char* end = _first->next() ? _first->top() : _hwm;
   504     free_malloced_objects(_first, _first->bottom(), end, _hwm);
   505   }
   506   // reset size before chop to avoid a rare racing condition
   507   // that can have total arena memory exceed total chunk memory
   508   set_size_in_bytes(0);
   509   _first->chop();
   510   reset();
   511 }
   513 // This is high traffic method, but many calls actually don't
   514 // change the size
   515 void Arena::set_size_in_bytes(size_t size) {
   516   if (_size_in_bytes != size) {
   517     _size_in_bytes = size;
   518     MemTracker::record_arena_size((address)this, size);
   519   }
   520 }
   522 // Total of all Chunks in arena
   523 size_t Arena::used() const {
   524   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
   525   register Chunk *k = _first;
   526   while( k != _chunk) {         // Whilst have Chunks in a row
   527     sum += k->length();         // Total size of this Chunk
   528     k = k->next();              // Bump along to next Chunk
   529   }
   530   return sum;                   // Return total consumed space.
   531 }
   533 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
   534   vm_exit_out_of_memory(sz, whence);
   535 }
   537 // Grow a new Chunk
   538 void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
   539   // Get minimal required size.  Either real big, or even bigger for giant objs
   540   size_t len = MAX2(x, (size_t) Chunk::size);
   542   Chunk *k = _chunk;            // Get filled-up chunk address
   543   _chunk = new (len) Chunk(len);
   545   if (_chunk == NULL) {
   546     if (alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   547       signal_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
   548     }
   549     return NULL;
   550   }
   551   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
   552   else _first = _chunk;
   553   _hwm  = _chunk->bottom();     // Save the cached hwm, max
   554   _max =  _chunk->top();
   555   set_size_in_bytes(size_in_bytes() + len);
   556   void* result = _hwm;
   557   _hwm += x;
   558   return result;
   559 }
   563 // Reallocate storage in Arena.
   564 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
   565   assert(new_size >= 0, "bad size");
   566   if (new_size == 0) return NULL;
   567 #ifdef ASSERT
   568   if (UseMallocOnly) {
   569     // always allocate a new object  (otherwise we'll free this one twice)
   570     char* copy = (char*)Amalloc(new_size, alloc_failmode);
   571     if (copy == NULL) {
   572       return NULL;
   573     }
   574     size_t n = MIN2(old_size, new_size);
   575     if (n > 0) memcpy(copy, old_ptr, n);
   576     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
   577     return copy;
   578   }
   579 #endif
   580   char *c_old = (char*)old_ptr; // Handy name
   581   // Stupid fast special case
   582   if( new_size <= old_size ) {  // Shrink in-place
   583     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
   584       _hwm = c_old+new_size;    // Adjust hwm
   585     return c_old;
   586   }
   588   // make sure that new_size is legal
   589   size_t corrected_new_size = ARENA_ALIGN(new_size);
   591   // See if we can resize in-place
   592   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
   593       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
   594     _hwm = c_old+corrected_new_size;      // Adjust hwm
   595     return c_old;               // Return old pointer
   596   }
   598   // Oops, got to relocate guts
   599   void *new_ptr = Amalloc(new_size, alloc_failmode);
   600   if (new_ptr == NULL) {
   601     return NULL;
   602   }
   603   memcpy( new_ptr, c_old, old_size );
   604   Afree(c_old,old_size);        // Mostly done to keep stats accurate
   605   return new_ptr;
   606 }
   609 // Determine if pointer belongs to this Arena or not.
   610 bool Arena::contains( const void *ptr ) const {
   611 #ifdef ASSERT
   612   if (UseMallocOnly) {
   613     // really slow, but not easy to make fast
   614     if (_chunk == NULL) return false;
   615     char** bottom = (char**)_chunk->bottom();
   616     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
   617       if (*p == ptr) return true;
   618     }
   619     for (Chunk *c = _first; c != NULL; c = c->next()) {
   620       if (c == _chunk) continue;  // current chunk has been processed
   621       char** bottom = (char**)c->bottom();
   622       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
   623         if (*p == ptr) return true;
   624       }
   625     }
   626     return false;
   627   }
   628 #endif
   629   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
   630     return true;                // Check for in this chunk
   631   for (Chunk *c = _first; c; c = c->next()) {
   632     if (c == _chunk) continue;  // current chunk has been processed
   633     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
   634       return true;              // Check for every chunk in Arena
   635     }
   636   }
   637   return false;                 // Not in any Chunk, so not in Arena
   638 }
   641 #ifdef ASSERT
   642 void* Arena::malloc(size_t size) {
   643   assert(UseMallocOnly, "shouldn't call");
   644   // use malloc, but save pointer in res. area for later freeing
   645   char** save = (char**)internal_malloc_4(sizeof(char*));
   646   return (*save = (char*)os::malloc(size, mtChunk));
   647 }
   649 // for debugging with UseMallocOnly
   650 void* Arena::internal_malloc_4(size_t x) {
   651   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   652   check_for_overflow(x, "Arena::internal_malloc_4");
   653   if (_hwm + x > _max) {
   654     return grow(x);
   655   } else {
   656     char *old = _hwm;
   657     _hwm += x;
   658     return old;
   659   }
   660 }
   661 #endif
   664 //--------------------------------------------------------------------------------------
   665 // Non-product code
   667 #ifndef PRODUCT
   668 // The global operator new should never be called since it will usually indicate
   669 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
   670 // that they're allocated on the C heap.
   671 // Commented out in product version to avoid conflicts with third-party C++ native code.
   672 // %% note this is causing a problem on solaris debug build. the global
   673 // new is being called from jdk source and causing data corruption.
   674 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
   675 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
   676 #ifdef CATCH_OPERATOR_NEW_USAGE
   677 void* operator new(size_t size){
   678   static bool warned = false;
   679   if (!warned && warn_new_operator)
   680     warning("should not call global (default) operator new");
   681   warned = true;
   682   return (void *) AllocateHeap(size, "global operator new");
   683 }
   684 #endif
   686 void AllocatedObj::print() const       { print_on(tty); }
   687 void AllocatedObj::print_value() const { print_value_on(tty); }
   689 void AllocatedObj::print_on(outputStream* st) const {
   690   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
   691 }
   693 void AllocatedObj::print_value_on(outputStream* st) const {
   694   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
   695 }
   697 julong Arena::_bytes_allocated = 0;
   699 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
   701 AllocStats::AllocStats() {
   702   start_mallocs      = os::num_mallocs;
   703   start_frees        = os::num_frees;
   704   start_malloc_bytes = os::alloc_bytes;
   705   start_mfree_bytes  = os::free_bytes;
   706   start_res_bytes    = Arena::_bytes_allocated;
   707 }
   709 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
   710 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
   711 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
   712 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
   713 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
   714 void    AllocStats::print() {
   715   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
   716                 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
   717                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
   718 }
   721 // debugging code
   722 inline void Arena::free_all(char** start, char** end) {
   723   for (char** p = start; p < end; p++) if (*p) os::free(*p);
   724 }
   726 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
   727   assert(UseMallocOnly, "should not call");
   728   // free all objects malloced since resource mark was created; resource area
   729   // contains their addresses
   730   if (chunk->next()) {
   731     // this chunk is full, and some others too
   732     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
   733       char* top = c->top();
   734       if (c->next() == NULL) {
   735         top = hwm2;     // last junk is only used up to hwm2
   736         assert(c->contains(hwm2), "bad hwm2");
   737       }
   738       free_all((char**)c->bottom(), (char**)top);
   739     }
   740     assert(chunk->contains(hwm), "bad hwm");
   741     assert(chunk->contains(max), "bad max");
   742     free_all((char**)hwm, (char**)max);
   743   } else {
   744     // this chunk was partially used
   745     assert(chunk->contains(hwm), "bad hwm");
   746     assert(chunk->contains(hwm2), "bad hwm2");
   747     free_all((char**)hwm, (char**)hwm2);
   748   }
   749 }
   752 ReallocMark::ReallocMark() {
   753 #ifdef ASSERT
   754   Thread *thread = ThreadLocalStorage::get_thread_slow();
   755   _nesting = thread->resource_area()->nesting();
   756 #endif
   757 }
   759 void ReallocMark::check() {
   760 #ifdef ASSERT
   761   if (_nesting != Thread::current()->resource_area()->nesting()) {
   762     fatal("allocation bug: array could grow within nested ResourceMark");
   763   }
   764 #endif
   765 }
   767 #endif // Non-product

mercurial