src/share/vm/opto/postaloc.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2350
2f644f85485d
child 3133
8f47d8870d9a
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/chaitin.hpp"
    28 #include "opto/machnode.hpp"
    30 // see if this register kind does not requires two registers
    31 static bool is_single_register(uint x) {
    32 #ifdef _LP64
    33   return (x != Op_RegD && x != Op_RegL && x != Op_RegP);
    34 #else
    35   return (x != Op_RegD && x != Op_RegL);
    36 #endif
    37 }
    39 //---------------------------may_be_copy_of_callee-----------------------------
    40 // Check to see if we can possibly be a copy of a callee-save value.
    41 bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
    42   // Short circuit if there are no callee save registers
    43   if (_matcher.number_of_saved_registers() == 0) return false;
    45   // Expect only a spill-down and reload on exit for callee-save spills.
    46   // Chains of copies cannot be deep.
    47   // 5008997 - This is wishful thinking. Register allocator seems to
    48   // be splitting live ranges for callee save registers to such
    49   // an extent that in large methods the chains can be very long
    50   // (50+). The conservative answer is to return true if we don't
    51   // know as this prevents optimizations from occurring.
    53   const int limit = 60;
    54   int i;
    55   for( i=0; i < limit; i++ ) {
    56     if( def->is_Proj() && def->in(0)->is_Start() &&
    57         _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
    58       return true;              // Direct use of callee-save proj
    59     if( def->is_Copy() )        // Copies carry value through
    60       def = def->in(def->is_Copy());
    61     else if( def->is_Phi() )    // Phis can merge it from any direction
    62       def = def->in(1);
    63     else
    64       break;
    65     guarantee(def != NULL, "must not resurrect dead copy");
    66   }
    67   // If we reached the end and didn't find a callee save proj
    68   // then this may be a callee save proj so we return true
    69   // as the conservative answer. If we didn't reach then end
    70   // we must have discovered that it was not a callee save
    71   // else we would have returned.
    72   return i == limit;
    73 }
    77 //------------------------------yank_if_dead-----------------------------------
    78 // Removed an edge from 'old'.  Yank if dead.  Return adjustment counts to
    79 // iterators in the current block.
    80 int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
    81   int blk_adjust=0;
    82   while (old->outcnt() == 0 && old != C->top()) {
    83     Block *oldb = _cfg._bbs[old->_idx];
    84     oldb->find_remove(old);
    85     // Count 1 if deleting an instruction from the current block
    86     if( oldb == current_block ) blk_adjust++;
    87     _cfg._bbs.map(old->_idx,NULL);
    88     OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
    89     if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
    90       value->map(old_reg,NULL);  // Yank from value/regnd maps
    91       regnd->map(old_reg,NULL);  // This register's value is now unknown
    92     }
    93     assert(old->req() <= 2, "can't handle more inputs");
    94     Node *tmp = old->req() > 1 ? old->in(1) : NULL;
    95     old->disconnect_inputs(NULL);
    96     if( !tmp ) break;
    97     old = tmp;
    98   }
    99   return blk_adjust;
   100 }
   102 //------------------------------use_prior_register-----------------------------
   103 // Use the prior value instead of the current value, in an effort to make
   104 // the current value go dead.  Return block iterator adjustment, in case
   105 // we yank some instructions from this block.
   106 int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
   107   // No effect?
   108   if( def == n->in(idx) ) return 0;
   109   // Def is currently dead and can be removed?  Do not resurrect
   110   if( def->outcnt() == 0 ) return 0;
   112   // Not every pair of physical registers are assignment compatible,
   113   // e.g. on sparc floating point registers are not assignable to integer
   114   // registers.
   115   const LRG &def_lrg = lrgs(n2lidx(def));
   116   OptoReg::Name def_reg = def_lrg.reg();
   117   const RegMask &use_mask = n->in_RegMask(idx);
   118   bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
   119                                                    : (use_mask.is_AllStack() != 0));
   120   // Check for a copy to or from a misaligned pair.
   121   can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair();
   123   if (!can_use)
   124     return 0;
   126   // Capture the old def in case it goes dead...
   127   Node *old = n->in(idx);
   129   // Save-on-call copies can only be elided if the entire copy chain can go
   130   // away, lest we get the same callee-save value alive in 2 locations at
   131   // once.  We check for the obvious trivial case here.  Although it can
   132   // sometimes be elided with cooperation outside our scope, here we will just
   133   // miss the opportunity.  :-(
   134   if( may_be_copy_of_callee(def) ) {
   135     if( old->outcnt() > 1 ) return 0; // We're the not last user
   136     int idx = old->is_Copy();
   137     assert( idx, "chain of copies being removed" );
   138     Node *old2 = old->in(idx);  // Chain of copies
   139     if( old2->outcnt() > 1 ) return 0; // old is not the last user
   140     int idx2 = old2->is_Copy();
   141     if( !idx2 ) return 0;       // Not a chain of 2 copies
   142     if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
   143   }
   145   // Use the new def
   146   n->set_req(idx,def);
   147   _post_alloc++;
   149   // Is old def now dead?  We successfully yanked a copy?
   150   return yank_if_dead(old,current_block,&value,&regnd);
   151 }
   154 //------------------------------skip_copies------------------------------------
   155 // Skip through any number of copies (that don't mod oop-i-ness)
   156 Node *PhaseChaitin::skip_copies( Node *c ) {
   157   int idx = c->is_Copy();
   158   uint is_oop = lrgs(n2lidx(c))._is_oop;
   159   while (idx != 0) {
   160     guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
   161     if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
   162       break;  // casting copy, not the same value
   163     c = c->in(idx);
   164     idx = c->is_Copy();
   165   }
   166   return c;
   167 }
   169 //------------------------------elide_copy-------------------------------------
   170 // Remove (bypass) copies along Node n, edge k.
   171 int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
   172   int blk_adjust = 0;
   174   uint nk_idx = n2lidx(n->in(k));
   175   OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
   177   // Remove obvious same-register copies
   178   Node *x = n->in(k);
   179   int idx;
   180   while( (idx=x->is_Copy()) != 0 ) {
   181     Node *copy = x->in(idx);
   182     guarantee(copy != NULL, "must not resurrect dead copy");
   183     if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
   184     blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
   185     if( n->in(k) != copy ) break; // Failed for some cutout?
   186     x = copy;                   // Progress, try again
   187   }
   189   // Phis and 2-address instructions cannot change registers so easily - their
   190   // outputs must match their input.
   191   if( !can_change_regs )
   192     return blk_adjust;          // Only check stupid copies!
   194   // Loop backedges won't have a value-mapping yet
   195   if( &value == NULL ) return blk_adjust;
   197   // Skip through all copies to the _value_ being used.  Do not change from
   198   // int to pointer.  This attempts to jump through a chain of copies, where
   199   // intermediate copies might be illegal, i.e., value is stored down to stack
   200   // then reloaded BUT survives in a register the whole way.
   201   Node *val = skip_copies(n->in(k));
   203   if (val == x && nk_idx != 0 &&
   204       regnd[nk_reg] != NULL && regnd[nk_reg] != x &&
   205       n2lidx(x) == n2lidx(regnd[nk_reg])) {
   206     // When rematerialzing nodes and stretching lifetimes, the
   207     // allocator will reuse the original def for multidef LRG instead
   208     // of the current reaching def because it can't know it's safe to
   209     // do so.  After allocation completes if they are in the same LRG
   210     // then it should use the current reaching def instead.
   211     n->set_req(k, regnd[nk_reg]);
   212     blk_adjust += yank_if_dead(val, current_block, &value, &regnd);
   213     val = skip_copies(n->in(k));
   214   }
   216   if( val == x ) return blk_adjust; // No progress?
   218   bool single = is_single_register(val->ideal_reg());
   219   uint val_idx = n2lidx(val);
   220   OptoReg::Name val_reg = lrgs(val_idx).reg();
   222   // See if it happens to already be in the correct register!
   223   // (either Phi's direct register, or the common case of the name
   224   // never-clobbered original-def register)
   225   if( value[val_reg] == val &&
   226       // Doubles check both halves
   227       ( single || value[val_reg-1] == val ) ) {
   228     blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
   229     if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
   230       return blk_adjust;
   231   }
   233   // See if we can skip the copy by changing registers.  Don't change from
   234   // using a register to using the stack unless we know we can remove a
   235   // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
   236   // ops reading from memory instead of just loading once and using the
   237   // register.
   239   // Also handle duplicate copies here.
   240   const Type *t = val->is_Con() ? val->bottom_type() : NULL;
   242   // Scan all registers to see if this value is around already
   243   for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
   244     if (reg == (uint)nk_reg) {
   245       // Found ourselves so check if there is only one user of this
   246       // copy and keep on searching for a better copy if so.
   247       bool ignore_self = true;
   248       x = n->in(k);
   249       DUIterator_Fast imax, i = x->fast_outs(imax);
   250       Node* first = x->fast_out(i); i++;
   251       while (i < imax && ignore_self) {
   252         Node* use = x->fast_out(i); i++;
   253         if (use != first) ignore_self = false;
   254       }
   255       if (ignore_self) continue;
   256     }
   258     Node *vv = value[reg];
   259     if( !single ) {             // Doubles check for aligned-adjacent pair
   260       if( (reg&1)==0 ) continue;  // Wrong half of a pair
   261       if( vv != value[reg-1] ) continue; // Not a complete pair
   262     }
   263     if( vv == val ||            // Got a direct hit?
   264         (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
   265          vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
   266       assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
   267       if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
   268           OptoReg::is_reg(reg) || // turning into a register use OR
   269           regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
   270         blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
   271         if( n->in(k) == regnd[reg] ) // Success!  Quit trying
   272           return blk_adjust;
   273       } // End of if not degrading to a stack
   274     } // End of if found value in another register
   275   } // End of scan all machine registers
   276   return blk_adjust;
   277 }
   280 //
   281 // Check if nreg already contains the constant value val.  Normal copy
   282 // elimination doesn't doesn't work on constants because multiple
   283 // nodes can represent the same constant so the type and rule of the
   284 // MachNode must be checked to ensure equivalence.
   285 //
   286 bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
   287                                               Block *current_block,
   288                                               Node_List& value, Node_List& regnd,
   289                                               OptoReg::Name nreg, OptoReg::Name nreg2) {
   290   if (value[nreg] != val && val->is_Con() &&
   291       value[nreg] != NULL && value[nreg]->is_Con() &&
   292       (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
   293       value[nreg]->bottom_type() == val->bottom_type() &&
   294       value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
   295     // This code assumes that two MachNodes representing constants
   296     // which have the same rule and the same bottom type will produce
   297     // identical effects into a register.  This seems like it must be
   298     // objectively true unless there are hidden inputs to the nodes
   299     // but if that were to change this code would need to updated.
   300     // Since they are equivalent the second one if redundant and can
   301     // be removed.
   302     //
   303     // n will be replaced with the old value but n might have
   304     // kills projections associated with it so remove them now so that
   305     // yank_if_dead will be able to eliminate the copy once the uses
   306     // have been transferred to the old[value].
   307     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   308       Node* use = n->fast_out(i);
   309       if (use->is_Proj() && use->outcnt() == 0) {
   310         // Kill projections have no users and one input
   311         use->set_req(0, C->top());
   312         yank_if_dead(use, current_block, &value, &regnd);
   313         --i; --imax;
   314       }
   315     }
   316     _post_alloc++;
   317     return true;
   318   }
   319   return false;
   320 }
   323 //------------------------------post_allocate_copy_removal---------------------
   324 // Post-Allocation peephole copy removal.  We do this in 1 pass over the
   325 // basic blocks.  We maintain a mapping of registers to Nodes (an  array of
   326 // Nodes indexed by machine register or stack slot number).  NULL means that a
   327 // register is not mapped to any Node.  We can (want to have!) have several
   328 // registers map to the same Node.  We walk forward over the instructions
   329 // updating the mapping as we go.  At merge points we force a NULL if we have
   330 // to merge 2 different Nodes into the same register.  Phi functions will give
   331 // us a new Node if there is a proper value merging.  Since the blocks are
   332 // arranged in some RPO, we will visit all parent blocks before visiting any
   333 // successor blocks (except at loops).
   334 //
   335 // If we find a Copy we look to see if the Copy's source register is a stack
   336 // slot and that value has already been loaded into some machine register; if
   337 // so we use machine register directly.  This turns a Load into a reg-reg
   338 // Move.  We also look for reloads of identical constants.
   339 //
   340 // When we see a use from a reg-reg Copy, we will attempt to use the copy's
   341 // source directly and make the copy go dead.
   342 void PhaseChaitin::post_allocate_copy_removal() {
   343   NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
   344   ResourceMark rm;
   346   // Need a mapping from basic block Node_Lists.  We need a Node_List to
   347   // map from register number to value-producing Node.
   348   Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
   349   memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
   350   // Need a mapping from basic block Node_Lists.  We need a Node_List to
   351   // map from register number to register-defining Node.
   352   Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
   353   memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
   355   // We keep unused Node_Lists on a free_list to avoid wasting
   356   // memory.
   357   GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
   359   // For all blocks
   360   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   361     uint j;
   362     Block *b = _cfg._blocks[i];
   364     // Count of Phis in block
   365     uint phi_dex;
   366     for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
   367       Node *phi = b->_nodes[phi_dex];
   368       if( !phi->is_Phi() )
   369         break;
   370     }
   372     // If any predecessor has not been visited, we do not know the state
   373     // of registers at the start.  Check for this, while updating copies
   374     // along Phi input edges
   375     bool missing_some_inputs = false;
   376     Block *freed = NULL;
   377     for( j = 1; j < b->num_preds(); j++ ) {
   378       Block *pb = _cfg._bbs[b->pred(j)->_idx];
   379       // Remove copies along phi edges
   380       for( uint k=1; k<phi_dex; k++ )
   381         elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
   382       if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
   383         // See if this predecessor's mappings have been used by everybody
   384         // who wants them.  If so, free 'em.
   385         uint k;
   386         for( k=0; k<pb->_num_succs; k++ ) {
   387           Block *pbsucc = pb->_succs[k];
   388           if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
   389             break;              // Found a future user
   390         }
   391         if( k >= pb->_num_succs ) { // No more uses, free!
   392           freed = pb;           // Record last block freed
   393           free_list.push(blk2value[pb->_pre_order]);
   394           free_list.push(blk2regnd[pb->_pre_order]);
   395         }
   396       } else {                  // This block has unvisited (loopback) inputs
   397         missing_some_inputs = true;
   398       }
   399     }
   402     // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
   403     // 'freed's blocks off the list
   404     Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
   405     Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
   406     assert( !freed || blk2value[freed->_pre_order] == &value, "" );
   407     value.map(_max_reg,NULL);
   408     regnd.map(_max_reg,NULL);
   409     // Set mappings as OUR mappings
   410     blk2value[b->_pre_order] = &value;
   411     blk2regnd[b->_pre_order] = &regnd;
   413     // Initialize value & regnd for this block
   414     if( missing_some_inputs ) {
   415       // Some predecessor has not yet been visited; zap map to empty
   416       for( uint k = 0; k < (uint)_max_reg; k++ ) {
   417         value.map(k,NULL);
   418         regnd.map(k,NULL);
   419       }
   420     } else {
   421       if( !freed ) {            // Didn't get a freebie prior block
   422         // Must clone some data
   423         freed = _cfg._bbs[b->pred(1)->_idx];
   424         Node_List &f_value = *blk2value[freed->_pre_order];
   425         Node_List &f_regnd = *blk2regnd[freed->_pre_order];
   426         for( uint k = 0; k < (uint)_max_reg; k++ ) {
   427           value.map(k,f_value[k]);
   428           regnd.map(k,f_regnd[k]);
   429         }
   430       }
   431       // Merge all inputs together, setting to NULL any conflicts.
   432       for( j = 1; j < b->num_preds(); j++ ) {
   433         Block *pb = _cfg._bbs[b->pred(j)->_idx];
   434         if( pb == freed ) continue; // Did self already via freelist
   435         Node_List &p_regnd = *blk2regnd[pb->_pre_order];
   436         for( uint k = 0; k < (uint)_max_reg; k++ ) {
   437           if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
   438             value.map(k,NULL); // Then no value handy
   439             regnd.map(k,NULL);
   440           }
   441         }
   442       }
   443     }
   445     // For all Phi's
   446     for( j = 1; j < phi_dex; j++ ) {
   447       uint k;
   448       Node *phi = b->_nodes[j];
   449       uint pidx = n2lidx(phi);
   450       OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
   452       // Remove copies remaining on edges.  Check for junk phi.
   453       Node *u = NULL;
   454       for( k=1; k<phi->req(); k++ ) {
   455         Node *x = phi->in(k);
   456         if( phi != x && u != x ) // Found a different input
   457           u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
   458       }
   459       if( u != NodeSentinel ) {    // Junk Phi.  Remove
   460         b->_nodes.remove(j--); phi_dex--;
   461         _cfg._bbs.map(phi->_idx,NULL);
   462         phi->replace_by(u);
   463         phi->disconnect_inputs(NULL);
   464         continue;
   465       }
   466       // Note that if value[pidx] exists, then we merged no new values here
   467       // and the phi is useless.  This can happen even with the above phi
   468       // removal for complex flows.  I cannot keep the better known value here
   469       // because locally the phi appears to define a new merged value.  If I
   470       // keep the better value then a copy of the phi, being unable to use the
   471       // global flow analysis, can't "peek through" the phi to the original
   472       // reaching value and so will act like it's defining a new value.  This
   473       // can lead to situations where some uses are from the old and some from
   474       // the new values.  Not illegal by itself but throws the over-strong
   475       // assert in scheduling.
   476       if( pidx ) {
   477         value.map(preg,phi);
   478         regnd.map(preg,phi);
   479         OptoReg::Name preg_lo = OptoReg::add(preg,-1);
   480         if( !is_single_register(phi->ideal_reg()) ) {
   481           value.map(preg_lo,phi);
   482           regnd.map(preg_lo,phi);
   483         }
   484       }
   485     }
   487     // For all remaining instructions
   488     for( j = phi_dex; j < b->_nodes.size(); j++ ) {
   489       Node *n = b->_nodes[j];
   491       if( n->outcnt() == 0 &&   // Dead?
   492           n != C->top() &&      // (ignore TOP, it has no du info)
   493           !n->is_Proj() ) {     // fat-proj kills
   494         j -= yank_if_dead(n,b,&value,&regnd);
   495         continue;
   496       }
   498       // Improve reaching-def info.  Occasionally post-alloc's liveness gives
   499       // up (at loop backedges, because we aren't doing a full flow pass).
   500       // The presence of a live use essentially asserts that the use's def is
   501       // alive and well at the use (or else the allocator fubar'd).  Take
   502       // advantage of this info to set a reaching def for the use-reg.
   503       uint k;
   504       for( k = 1; k < n->req(); k++ ) {
   505         Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
   506         guarantee(def != NULL, "no disconnected nodes at this point");
   507         uint useidx = n2lidx(def); // useidx is the live range index for this USE
   509         if( useidx ) {
   510           OptoReg::Name ureg = lrgs(useidx).reg();
   511           if( !value[ureg] ) {
   512             int idx;            // Skip occasional useless copy
   513             while( (idx=def->is_Copy()) != 0 &&
   514                    def->in(idx) != NULL &&  // NULL should not happen
   515                    ureg == lrgs(n2lidx(def->in(idx))).reg() )
   516               def = def->in(idx);
   517             Node *valdef = skip_copies(def); // tighten up val through non-useless copies
   518             value.map(ureg,valdef); // record improved reaching-def info
   519             regnd.map(ureg,   def);
   520             // Record other half of doubles
   521             OptoReg::Name ureg_lo = OptoReg::add(ureg,-1);
   522             if( !is_single_register(def->ideal_reg()) &&
   523                 ( !RegMask::can_represent(ureg_lo) ||
   524                   lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent
   525                 !value[ureg_lo] ) {
   526               value.map(ureg_lo,valdef); // record improved reaching-def info
   527               regnd.map(ureg_lo,   def);
   528             }
   529           }
   530         }
   531       }
   533       const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
   535       // Remove copies along input edges
   536       for( k = 1; k < n->req(); k++ )
   537         j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
   539       // Unallocated Nodes define no registers
   540       uint lidx = n2lidx(n);
   541       if( !lidx ) continue;
   543       // Update the register defined by this instruction
   544       OptoReg::Name nreg = lrgs(lidx).reg();
   545       // Skip through all copies to the _value_ being defined.
   546       // Do not change from int to pointer
   547       Node *val = skip_copies(n);
   549       // Clear out a dead definition before starting so that the
   550       // elimination code doesn't have to guard against it.  The
   551       // definition could in fact be a kill projection with a count of
   552       // 0 which is safe but since those are uninteresting for copy
   553       // elimination just delete them as well.
   554       if (regnd[nreg] != NULL && regnd[nreg]->outcnt() == 0) {
   555         regnd.map(nreg, NULL);
   556         value.map(nreg, NULL);
   557       }
   559       uint n_ideal_reg = n->ideal_reg();
   560       if( is_single_register(n_ideal_reg) ) {
   561         // If Node 'n' does not change the value mapped by the register,
   562         // then 'n' is a useless copy.  Do not update the register->node
   563         // mapping so 'n' will go dead.
   564         if( value[nreg] != val ) {
   565           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) {
   566             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   567           } else {
   568             // Update the mapping: record new Node defined by the register
   569             regnd.map(nreg,n);
   570             // Update mapping for defined *value*, which is the defined
   571             // Node after skipping all copies.
   572             value.map(nreg,val);
   573           }
   574         } else if( !may_be_copy_of_callee(n) ) {
   575           assert( n->is_Copy(), "" );
   576           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   577         }
   578       } else {
   579         // If the value occupies a register pair, record same info
   580         // in both registers.
   581         OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
   582         if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
   583             !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
   584           // Sparc occasionally has non-adjacent pairs.
   585           // Find the actual other value
   586           RegMask tmp = lrgs(lidx).mask();
   587           tmp.Remove(nreg);
   588           nreg_lo = tmp.find_first_elem();
   589         }
   590         if( value[nreg] != val || value[nreg_lo] != val ) {
   591           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) {
   592             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   593           } else {
   594             regnd.map(nreg   , n );
   595             regnd.map(nreg_lo, n );
   596             value.map(nreg   ,val);
   597             value.map(nreg_lo,val);
   598           }
   599         } else if( !may_be_copy_of_callee(n) ) {
   600           assert( n->is_Copy(), "" );
   601           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   602         }
   603       }
   605       // Fat projections kill many registers
   606       if( n_ideal_reg == MachProjNode::fat_proj ) {
   607         RegMask rm = n->out_RegMask();
   608         // wow, what an expensive iterator...
   609         nreg = rm.find_first_elem();
   610         while( OptoReg::is_valid(nreg)) {
   611           rm.Remove(nreg);
   612           value.map(nreg,n);
   613           regnd.map(nreg,n);
   614           nreg = rm.find_first_elem();
   615         }
   616       }
   618     } // End of for all instructions in the block
   620   } // End for all blocks
   621 }

mercurial