src/share/vm/opto/postaloc.cpp

Thu, 08 Sep 2011 09:35:41 +0200

author
roland
date
Thu, 08 Sep 2011 09:35:41 +0200
changeset 3133
8f47d8870d9a
parent 2350
2f644f85485d
child 3140
2209834ccb59
permissions
-rw-r--r--

7087453: PhaseChaitin::yank_if_dead() should handle MachTemp inputs
Summary: PhaseChaitin::yank_if_dead() should be able to handle MachTemp inputs as a special case and yank them.
Reviewed-by: never, kvn

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/chaitin.hpp"
    28 #include "opto/machnode.hpp"
    30 // see if this register kind does not requires two registers
    31 static bool is_single_register(uint x) {
    32 #ifdef _LP64
    33   return (x != Op_RegD && x != Op_RegL && x != Op_RegP);
    34 #else
    35   return (x != Op_RegD && x != Op_RegL);
    36 #endif
    37 }
    39 //---------------------------may_be_copy_of_callee-----------------------------
    40 // Check to see if we can possibly be a copy of a callee-save value.
    41 bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
    42   // Short circuit if there are no callee save registers
    43   if (_matcher.number_of_saved_registers() == 0) return false;
    45   // Expect only a spill-down and reload on exit for callee-save spills.
    46   // Chains of copies cannot be deep.
    47   // 5008997 - This is wishful thinking. Register allocator seems to
    48   // be splitting live ranges for callee save registers to such
    49   // an extent that in large methods the chains can be very long
    50   // (50+). The conservative answer is to return true if we don't
    51   // know as this prevents optimizations from occurring.
    53   const int limit = 60;
    54   int i;
    55   for( i=0; i < limit; i++ ) {
    56     if( def->is_Proj() && def->in(0)->is_Start() &&
    57         _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
    58       return true;              // Direct use of callee-save proj
    59     if( def->is_Copy() )        // Copies carry value through
    60       def = def->in(def->is_Copy());
    61     else if( def->is_Phi() )    // Phis can merge it from any direction
    62       def = def->in(1);
    63     else
    64       break;
    65     guarantee(def != NULL, "must not resurrect dead copy");
    66   }
    67   // If we reached the end and didn't find a callee save proj
    68   // then this may be a callee save proj so we return true
    69   // as the conservative answer. If we didn't reach then end
    70   // we must have discovered that it was not a callee save
    71   // else we would have returned.
    72   return i == limit;
    73 }
    75 //------------------------------yank-----------------------------------
    76 // Helper function for yank_if_dead
    77 int PhaseChaitin::yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
    78   int blk_adjust=0;
    79   Block *oldb = _cfg._bbs[old->_idx];
    80   oldb->find_remove(old);
    81   // Count 1 if deleting an instruction from the current block
    82   if( oldb == current_block ) blk_adjust++;
    83   _cfg._bbs.map(old->_idx,NULL);
    84   OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
    85   if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
    86     value->map(old_reg,NULL);  // Yank from value/regnd maps
    87     regnd->map(old_reg,NULL);  // This register's value is now unknown
    88   }
    89   return blk_adjust;
    90 }
    92 //------------------------------yank_if_dead-----------------------------------
    93 // Removed an edge from 'old'.  Yank if dead.  Return adjustment counts to
    94 // iterators in the current block.
    95 int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
    96   int blk_adjust=0;
    97   while (old->outcnt() == 0 && old != C->top()) {
    98     blk_adjust += yank(old, current_block, value, regnd);
   100     Node *tmp = NULL;
   101     for (uint i = 1; i < old->req(); i++) {
   102       if (old->in(i)->is_MachTemp()) {
   103         Node* machtmp = old->in(i);
   104         assert(machtmp->outcnt() == 1, "expected for a MachTemp");
   105         blk_adjust += yank(machtmp, current_block, value, regnd);
   106         machtmp->disconnect_inputs(NULL);
   107       } else {
   108         assert(tmp == NULL, "can't handle more non MachTemp inputs");
   109         tmp = old->in(i);
   110       }
   111     }
   112     old->disconnect_inputs(NULL);
   113     if( !tmp ) break;
   114     old = tmp;
   115   }
   116   return blk_adjust;
   117 }
   119 //------------------------------use_prior_register-----------------------------
   120 // Use the prior value instead of the current value, in an effort to make
   121 // the current value go dead.  Return block iterator adjustment, in case
   122 // we yank some instructions from this block.
   123 int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
   124   // No effect?
   125   if( def == n->in(idx) ) return 0;
   126   // Def is currently dead and can be removed?  Do not resurrect
   127   if( def->outcnt() == 0 ) return 0;
   129   // Not every pair of physical registers are assignment compatible,
   130   // e.g. on sparc floating point registers are not assignable to integer
   131   // registers.
   132   const LRG &def_lrg = lrgs(n2lidx(def));
   133   OptoReg::Name def_reg = def_lrg.reg();
   134   const RegMask &use_mask = n->in_RegMask(idx);
   135   bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
   136                                                    : (use_mask.is_AllStack() != 0));
   137   // Check for a copy to or from a misaligned pair.
   138   can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair();
   140   if (!can_use)
   141     return 0;
   143   // Capture the old def in case it goes dead...
   144   Node *old = n->in(idx);
   146   // Save-on-call copies can only be elided if the entire copy chain can go
   147   // away, lest we get the same callee-save value alive in 2 locations at
   148   // once.  We check for the obvious trivial case here.  Although it can
   149   // sometimes be elided with cooperation outside our scope, here we will just
   150   // miss the opportunity.  :-(
   151   if( may_be_copy_of_callee(def) ) {
   152     if( old->outcnt() > 1 ) return 0; // We're the not last user
   153     int idx = old->is_Copy();
   154     assert( idx, "chain of copies being removed" );
   155     Node *old2 = old->in(idx);  // Chain of copies
   156     if( old2->outcnt() > 1 ) return 0; // old is not the last user
   157     int idx2 = old2->is_Copy();
   158     if( !idx2 ) return 0;       // Not a chain of 2 copies
   159     if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
   160   }
   162   // Use the new def
   163   n->set_req(idx,def);
   164   _post_alloc++;
   166   // Is old def now dead?  We successfully yanked a copy?
   167   return yank_if_dead(old,current_block,&value,&regnd);
   168 }
   171 //------------------------------skip_copies------------------------------------
   172 // Skip through any number of copies (that don't mod oop-i-ness)
   173 Node *PhaseChaitin::skip_copies( Node *c ) {
   174   int idx = c->is_Copy();
   175   uint is_oop = lrgs(n2lidx(c))._is_oop;
   176   while (idx != 0) {
   177     guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
   178     if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
   179       break;  // casting copy, not the same value
   180     c = c->in(idx);
   181     idx = c->is_Copy();
   182   }
   183   return c;
   184 }
   186 //------------------------------elide_copy-------------------------------------
   187 // Remove (bypass) copies along Node n, edge k.
   188 int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
   189   int blk_adjust = 0;
   191   uint nk_idx = n2lidx(n->in(k));
   192   OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
   194   // Remove obvious same-register copies
   195   Node *x = n->in(k);
   196   int idx;
   197   while( (idx=x->is_Copy()) != 0 ) {
   198     Node *copy = x->in(idx);
   199     guarantee(copy != NULL, "must not resurrect dead copy");
   200     if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
   201     blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
   202     if( n->in(k) != copy ) break; // Failed for some cutout?
   203     x = copy;                   // Progress, try again
   204   }
   206   // Phis and 2-address instructions cannot change registers so easily - their
   207   // outputs must match their input.
   208   if( !can_change_regs )
   209     return blk_adjust;          // Only check stupid copies!
   211   // Loop backedges won't have a value-mapping yet
   212   if( &value == NULL ) return blk_adjust;
   214   // Skip through all copies to the _value_ being used.  Do not change from
   215   // int to pointer.  This attempts to jump through a chain of copies, where
   216   // intermediate copies might be illegal, i.e., value is stored down to stack
   217   // then reloaded BUT survives in a register the whole way.
   218   Node *val = skip_copies(n->in(k));
   220   if (val == x && nk_idx != 0 &&
   221       regnd[nk_reg] != NULL && regnd[nk_reg] != x &&
   222       n2lidx(x) == n2lidx(regnd[nk_reg])) {
   223     // When rematerialzing nodes and stretching lifetimes, the
   224     // allocator will reuse the original def for multidef LRG instead
   225     // of the current reaching def because it can't know it's safe to
   226     // do so.  After allocation completes if they are in the same LRG
   227     // then it should use the current reaching def instead.
   228     n->set_req(k, regnd[nk_reg]);
   229     blk_adjust += yank_if_dead(val, current_block, &value, &regnd);
   230     val = skip_copies(n->in(k));
   231   }
   233   if( val == x ) return blk_adjust; // No progress?
   235   bool single = is_single_register(val->ideal_reg());
   236   uint val_idx = n2lidx(val);
   237   OptoReg::Name val_reg = lrgs(val_idx).reg();
   239   // See if it happens to already be in the correct register!
   240   // (either Phi's direct register, or the common case of the name
   241   // never-clobbered original-def register)
   242   if( value[val_reg] == val &&
   243       // Doubles check both halves
   244       ( single || value[val_reg-1] == val ) ) {
   245     blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
   246     if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
   247       return blk_adjust;
   248   }
   250   // See if we can skip the copy by changing registers.  Don't change from
   251   // using a register to using the stack unless we know we can remove a
   252   // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
   253   // ops reading from memory instead of just loading once and using the
   254   // register.
   256   // Also handle duplicate copies here.
   257   const Type *t = val->is_Con() ? val->bottom_type() : NULL;
   259   // Scan all registers to see if this value is around already
   260   for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
   261     if (reg == (uint)nk_reg) {
   262       // Found ourselves so check if there is only one user of this
   263       // copy and keep on searching for a better copy if so.
   264       bool ignore_self = true;
   265       x = n->in(k);
   266       DUIterator_Fast imax, i = x->fast_outs(imax);
   267       Node* first = x->fast_out(i); i++;
   268       while (i < imax && ignore_self) {
   269         Node* use = x->fast_out(i); i++;
   270         if (use != first) ignore_self = false;
   271       }
   272       if (ignore_self) continue;
   273     }
   275     Node *vv = value[reg];
   276     if( !single ) {             // Doubles check for aligned-adjacent pair
   277       if( (reg&1)==0 ) continue;  // Wrong half of a pair
   278       if( vv != value[reg-1] ) continue; // Not a complete pair
   279     }
   280     if( vv == val ||            // Got a direct hit?
   281         (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
   282          vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
   283       assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
   284       if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
   285           OptoReg::is_reg(reg) || // turning into a register use OR
   286           regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
   287         blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
   288         if( n->in(k) == regnd[reg] ) // Success!  Quit trying
   289           return blk_adjust;
   290       } // End of if not degrading to a stack
   291     } // End of if found value in another register
   292   } // End of scan all machine registers
   293   return blk_adjust;
   294 }
   297 //
   298 // Check if nreg already contains the constant value val.  Normal copy
   299 // elimination doesn't doesn't work on constants because multiple
   300 // nodes can represent the same constant so the type and rule of the
   301 // MachNode must be checked to ensure equivalence.
   302 //
   303 bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
   304                                               Block *current_block,
   305                                               Node_List& value, Node_List& regnd,
   306                                               OptoReg::Name nreg, OptoReg::Name nreg2) {
   307   if (value[nreg] != val && val->is_Con() &&
   308       value[nreg] != NULL && value[nreg]->is_Con() &&
   309       (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
   310       value[nreg]->bottom_type() == val->bottom_type() &&
   311       value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
   312     // This code assumes that two MachNodes representing constants
   313     // which have the same rule and the same bottom type will produce
   314     // identical effects into a register.  This seems like it must be
   315     // objectively true unless there are hidden inputs to the nodes
   316     // but if that were to change this code would need to updated.
   317     // Since they are equivalent the second one if redundant and can
   318     // be removed.
   319     //
   320     // n will be replaced with the old value but n might have
   321     // kills projections associated with it so remove them now so that
   322     // yank_if_dead will be able to eliminate the copy once the uses
   323     // have been transferred to the old[value].
   324     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   325       Node* use = n->fast_out(i);
   326       if (use->is_Proj() && use->outcnt() == 0) {
   327         // Kill projections have no users and one input
   328         use->set_req(0, C->top());
   329         yank_if_dead(use, current_block, &value, &regnd);
   330         --i; --imax;
   331       }
   332     }
   333     _post_alloc++;
   334     return true;
   335   }
   336   return false;
   337 }
   340 //------------------------------post_allocate_copy_removal---------------------
   341 // Post-Allocation peephole copy removal.  We do this in 1 pass over the
   342 // basic blocks.  We maintain a mapping of registers to Nodes (an  array of
   343 // Nodes indexed by machine register or stack slot number).  NULL means that a
   344 // register is not mapped to any Node.  We can (want to have!) have several
   345 // registers map to the same Node.  We walk forward over the instructions
   346 // updating the mapping as we go.  At merge points we force a NULL if we have
   347 // to merge 2 different Nodes into the same register.  Phi functions will give
   348 // us a new Node if there is a proper value merging.  Since the blocks are
   349 // arranged in some RPO, we will visit all parent blocks before visiting any
   350 // successor blocks (except at loops).
   351 //
   352 // If we find a Copy we look to see if the Copy's source register is a stack
   353 // slot and that value has already been loaded into some machine register; if
   354 // so we use machine register directly.  This turns a Load into a reg-reg
   355 // Move.  We also look for reloads of identical constants.
   356 //
   357 // When we see a use from a reg-reg Copy, we will attempt to use the copy's
   358 // source directly and make the copy go dead.
   359 void PhaseChaitin::post_allocate_copy_removal() {
   360   NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
   361   ResourceMark rm;
   363   // Need a mapping from basic block Node_Lists.  We need a Node_List to
   364   // map from register number to value-producing Node.
   365   Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
   366   memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
   367   // Need a mapping from basic block Node_Lists.  We need a Node_List to
   368   // map from register number to register-defining Node.
   369   Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
   370   memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
   372   // We keep unused Node_Lists on a free_list to avoid wasting
   373   // memory.
   374   GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
   376   // For all blocks
   377   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   378     uint j;
   379     Block *b = _cfg._blocks[i];
   381     // Count of Phis in block
   382     uint phi_dex;
   383     for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
   384       Node *phi = b->_nodes[phi_dex];
   385       if( !phi->is_Phi() )
   386         break;
   387     }
   389     // If any predecessor has not been visited, we do not know the state
   390     // of registers at the start.  Check for this, while updating copies
   391     // along Phi input edges
   392     bool missing_some_inputs = false;
   393     Block *freed = NULL;
   394     for( j = 1; j < b->num_preds(); j++ ) {
   395       Block *pb = _cfg._bbs[b->pred(j)->_idx];
   396       // Remove copies along phi edges
   397       for( uint k=1; k<phi_dex; k++ )
   398         elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
   399       if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
   400         // See if this predecessor's mappings have been used by everybody
   401         // who wants them.  If so, free 'em.
   402         uint k;
   403         for( k=0; k<pb->_num_succs; k++ ) {
   404           Block *pbsucc = pb->_succs[k];
   405           if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
   406             break;              // Found a future user
   407         }
   408         if( k >= pb->_num_succs ) { // No more uses, free!
   409           freed = pb;           // Record last block freed
   410           free_list.push(blk2value[pb->_pre_order]);
   411           free_list.push(blk2regnd[pb->_pre_order]);
   412         }
   413       } else {                  // This block has unvisited (loopback) inputs
   414         missing_some_inputs = true;
   415       }
   416     }
   419     // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
   420     // 'freed's blocks off the list
   421     Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
   422     Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
   423     assert( !freed || blk2value[freed->_pre_order] == &value, "" );
   424     value.map(_max_reg,NULL);
   425     regnd.map(_max_reg,NULL);
   426     // Set mappings as OUR mappings
   427     blk2value[b->_pre_order] = &value;
   428     blk2regnd[b->_pre_order] = &regnd;
   430     // Initialize value & regnd for this block
   431     if( missing_some_inputs ) {
   432       // Some predecessor has not yet been visited; zap map to empty
   433       for( uint k = 0; k < (uint)_max_reg; k++ ) {
   434         value.map(k,NULL);
   435         regnd.map(k,NULL);
   436       }
   437     } else {
   438       if( !freed ) {            // Didn't get a freebie prior block
   439         // Must clone some data
   440         freed = _cfg._bbs[b->pred(1)->_idx];
   441         Node_List &f_value = *blk2value[freed->_pre_order];
   442         Node_List &f_regnd = *blk2regnd[freed->_pre_order];
   443         for( uint k = 0; k < (uint)_max_reg; k++ ) {
   444           value.map(k,f_value[k]);
   445           regnd.map(k,f_regnd[k]);
   446         }
   447       }
   448       // Merge all inputs together, setting to NULL any conflicts.
   449       for( j = 1; j < b->num_preds(); j++ ) {
   450         Block *pb = _cfg._bbs[b->pred(j)->_idx];
   451         if( pb == freed ) continue; // Did self already via freelist
   452         Node_List &p_regnd = *blk2regnd[pb->_pre_order];
   453         for( uint k = 0; k < (uint)_max_reg; k++ ) {
   454           if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
   455             value.map(k,NULL); // Then no value handy
   456             regnd.map(k,NULL);
   457           }
   458         }
   459       }
   460     }
   462     // For all Phi's
   463     for( j = 1; j < phi_dex; j++ ) {
   464       uint k;
   465       Node *phi = b->_nodes[j];
   466       uint pidx = n2lidx(phi);
   467       OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
   469       // Remove copies remaining on edges.  Check for junk phi.
   470       Node *u = NULL;
   471       for( k=1; k<phi->req(); k++ ) {
   472         Node *x = phi->in(k);
   473         if( phi != x && u != x ) // Found a different input
   474           u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
   475       }
   476       if( u != NodeSentinel ) {    // Junk Phi.  Remove
   477         b->_nodes.remove(j--); phi_dex--;
   478         _cfg._bbs.map(phi->_idx,NULL);
   479         phi->replace_by(u);
   480         phi->disconnect_inputs(NULL);
   481         continue;
   482       }
   483       // Note that if value[pidx] exists, then we merged no new values here
   484       // and the phi is useless.  This can happen even with the above phi
   485       // removal for complex flows.  I cannot keep the better known value here
   486       // because locally the phi appears to define a new merged value.  If I
   487       // keep the better value then a copy of the phi, being unable to use the
   488       // global flow analysis, can't "peek through" the phi to the original
   489       // reaching value and so will act like it's defining a new value.  This
   490       // can lead to situations where some uses are from the old and some from
   491       // the new values.  Not illegal by itself but throws the over-strong
   492       // assert in scheduling.
   493       if( pidx ) {
   494         value.map(preg,phi);
   495         regnd.map(preg,phi);
   496         OptoReg::Name preg_lo = OptoReg::add(preg,-1);
   497         if( !is_single_register(phi->ideal_reg()) ) {
   498           value.map(preg_lo,phi);
   499           regnd.map(preg_lo,phi);
   500         }
   501       }
   502     }
   504     // For all remaining instructions
   505     for( j = phi_dex; j < b->_nodes.size(); j++ ) {
   506       Node *n = b->_nodes[j];
   508       if( n->outcnt() == 0 &&   // Dead?
   509           n != C->top() &&      // (ignore TOP, it has no du info)
   510           !n->is_Proj() ) {     // fat-proj kills
   511         j -= yank_if_dead(n,b,&value,&regnd);
   512         continue;
   513       }
   515       // Improve reaching-def info.  Occasionally post-alloc's liveness gives
   516       // up (at loop backedges, because we aren't doing a full flow pass).
   517       // The presence of a live use essentially asserts that the use's def is
   518       // alive and well at the use (or else the allocator fubar'd).  Take
   519       // advantage of this info to set a reaching def for the use-reg.
   520       uint k;
   521       for( k = 1; k < n->req(); k++ ) {
   522         Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
   523         guarantee(def != NULL, "no disconnected nodes at this point");
   524         uint useidx = n2lidx(def); // useidx is the live range index for this USE
   526         if( useidx ) {
   527           OptoReg::Name ureg = lrgs(useidx).reg();
   528           if( !value[ureg] ) {
   529             int idx;            // Skip occasional useless copy
   530             while( (idx=def->is_Copy()) != 0 &&
   531                    def->in(idx) != NULL &&  // NULL should not happen
   532                    ureg == lrgs(n2lidx(def->in(idx))).reg() )
   533               def = def->in(idx);
   534             Node *valdef = skip_copies(def); // tighten up val through non-useless copies
   535             value.map(ureg,valdef); // record improved reaching-def info
   536             regnd.map(ureg,   def);
   537             // Record other half of doubles
   538             OptoReg::Name ureg_lo = OptoReg::add(ureg,-1);
   539             if( !is_single_register(def->ideal_reg()) &&
   540                 ( !RegMask::can_represent(ureg_lo) ||
   541                   lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent
   542                 !value[ureg_lo] ) {
   543               value.map(ureg_lo,valdef); // record improved reaching-def info
   544               regnd.map(ureg_lo,   def);
   545             }
   546           }
   547         }
   548       }
   550       const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
   552       // Remove copies along input edges
   553       for( k = 1; k < n->req(); k++ )
   554         j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
   556       // Unallocated Nodes define no registers
   557       uint lidx = n2lidx(n);
   558       if( !lidx ) continue;
   560       // Update the register defined by this instruction
   561       OptoReg::Name nreg = lrgs(lidx).reg();
   562       // Skip through all copies to the _value_ being defined.
   563       // Do not change from int to pointer
   564       Node *val = skip_copies(n);
   566       // Clear out a dead definition before starting so that the
   567       // elimination code doesn't have to guard against it.  The
   568       // definition could in fact be a kill projection with a count of
   569       // 0 which is safe but since those are uninteresting for copy
   570       // elimination just delete them as well.
   571       if (regnd[nreg] != NULL && regnd[nreg]->outcnt() == 0) {
   572         regnd.map(nreg, NULL);
   573         value.map(nreg, NULL);
   574       }
   576       uint n_ideal_reg = n->ideal_reg();
   577       if( is_single_register(n_ideal_reg) ) {
   578         // If Node 'n' does not change the value mapped by the register,
   579         // then 'n' is a useless copy.  Do not update the register->node
   580         // mapping so 'n' will go dead.
   581         if( value[nreg] != val ) {
   582           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) {
   583             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   584           } else {
   585             // Update the mapping: record new Node defined by the register
   586             regnd.map(nreg,n);
   587             // Update mapping for defined *value*, which is the defined
   588             // Node after skipping all copies.
   589             value.map(nreg,val);
   590           }
   591         } else if( !may_be_copy_of_callee(n) ) {
   592           assert( n->is_Copy(), "" );
   593           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   594         }
   595       } else {
   596         // If the value occupies a register pair, record same info
   597         // in both registers.
   598         OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
   599         if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
   600             !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
   601           // Sparc occasionally has non-adjacent pairs.
   602           // Find the actual other value
   603           RegMask tmp = lrgs(lidx).mask();
   604           tmp.Remove(nreg);
   605           nreg_lo = tmp.find_first_elem();
   606         }
   607         if( value[nreg] != val || value[nreg_lo] != val ) {
   608           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) {
   609             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   610           } else {
   611             regnd.map(nreg   , n );
   612             regnd.map(nreg_lo, n );
   613             value.map(nreg   ,val);
   614             value.map(nreg_lo,val);
   615           }
   616         } else if( !may_be_copy_of_callee(n) ) {
   617           assert( n->is_Copy(), "" );
   618           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
   619         }
   620       }
   622       // Fat projections kill many registers
   623       if( n_ideal_reg == MachProjNode::fat_proj ) {
   624         RegMask rm = n->out_RegMask();
   625         // wow, what an expensive iterator...
   626         nreg = rm.find_first_elem();
   627         while( OptoReg::is_valid(nreg)) {
   628           rm.Remove(nreg);
   629           value.map(nreg,n);
   630           regnd.map(nreg,n);
   631           nreg = rm.find_first_elem();
   632         }
   633       }
   635     } // End of for all instructions in the block
   637   } // End for all blocks
   638 }

mercurial