src/share/vm/opto/callnode.hpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2314
f95d63e2154a
child 3040
c7b60b601eb4
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
    26 #define SHARE_VM_OPTO_CALLNODE_HPP
    28 #include "opto/connode.hpp"
    29 #include "opto/mulnode.hpp"
    30 #include "opto/multnode.hpp"
    31 #include "opto/opcodes.hpp"
    32 #include "opto/phaseX.hpp"
    33 #include "opto/type.hpp"
    35 // Portions of code courtesy of Clifford Click
    37 // Optimization - Graph Style
    39 class Chaitin;
    40 class NamedCounter;
    41 class MultiNode;
    42 class  SafePointNode;
    43 class   CallNode;
    44 class     CallJavaNode;
    45 class       CallStaticJavaNode;
    46 class       CallDynamicJavaNode;
    47 class     CallRuntimeNode;
    48 class       CallLeafNode;
    49 class         CallLeafNoFPNode;
    50 class     AllocateNode;
    51 class       AllocateArrayNode;
    52 class     LockNode;
    53 class     UnlockNode;
    54 class JVMState;
    55 class OopMap;
    56 class State;
    57 class StartNode;
    58 class MachCallNode;
    59 class FastLockNode;
    61 //------------------------------StartNode--------------------------------------
    62 // The method start node
    63 class StartNode : public MultiNode {
    64   virtual uint cmp( const Node &n ) const;
    65   virtual uint size_of() const; // Size is bigger
    66 public:
    67   const TypeTuple *_domain;
    68   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    69     init_class_id(Class_Start);
    70     init_flags(Flag_is_block_start);
    71     init_req(0,this);
    72     init_req(1,root);
    73   }
    74   virtual int Opcode() const;
    75   virtual bool pinned() const { return true; };
    76   virtual const Type *bottom_type() const;
    77   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    78   virtual const Type *Value( PhaseTransform *phase ) const;
    79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    80   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    81   virtual const RegMask &in_RegMask(uint) const;
    82   virtual Node *match( const ProjNode *proj, const Matcher *m );
    83   virtual uint ideal_reg() const { return 0; }
    84 #ifndef PRODUCT
    85   virtual void  dump_spec(outputStream *st) const;
    86 #endif
    87 };
    89 //------------------------------StartOSRNode-----------------------------------
    90 // The method start node for on stack replacement code
    91 class StartOSRNode : public StartNode {
    92 public:
    93   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    94   virtual int   Opcode() const;
    95   static  const TypeTuple *osr_domain();
    96 };
    99 //------------------------------ParmNode---------------------------------------
   100 // Incoming parameters
   101 class ParmNode : public ProjNode {
   102   static const char * const names[TypeFunc::Parms+1];
   103 public:
   104   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
   105     init_class_id(Class_Parm);
   106   }
   107   virtual int Opcode() const;
   108   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
   109   virtual uint ideal_reg() const;
   110 #ifndef PRODUCT
   111   virtual void dump_spec(outputStream *st) const;
   112 #endif
   113 };
   116 //------------------------------ReturnNode-------------------------------------
   117 // Return from subroutine node
   118 class ReturnNode : public Node {
   119 public:
   120   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   121   virtual int Opcode() const;
   122   virtual bool  is_CFG() const { return true; }
   123   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   124   virtual bool depends_only_on_test() const { return false; }
   125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   126   virtual const Type *Value( PhaseTransform *phase ) const;
   127   virtual uint ideal_reg() const { return NotAMachineReg; }
   128   virtual uint match_edge(uint idx) const;
   129 #ifndef PRODUCT
   130   virtual void dump_req() const;
   131 #endif
   132 };
   135 //------------------------------RethrowNode------------------------------------
   136 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   137 // ends the current basic block like a ReturnNode.  Restores registers and
   138 // unwinds stack.  Rethrow happens in the caller's method.
   139 class RethrowNode : public Node {
   140  public:
   141   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   142   virtual int Opcode() const;
   143   virtual bool  is_CFG() const { return true; }
   144   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   145   virtual bool depends_only_on_test() const { return false; }
   146   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   147   virtual const Type *Value( PhaseTransform *phase ) const;
   148   virtual uint match_edge(uint idx) const;
   149   virtual uint ideal_reg() const { return NotAMachineReg; }
   150 #ifndef PRODUCT
   151   virtual void dump_req() const;
   152 #endif
   153 };
   156 //------------------------------TailCallNode-----------------------------------
   157 // Pop stack frame and jump indirect
   158 class TailCallNode : public ReturnNode {
   159 public:
   160   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   161     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   162     init_req(TypeFunc::Parms, target);
   163     init_req(TypeFunc::Parms+1, moop);
   164   }
   166   virtual int Opcode() const;
   167   virtual uint match_edge(uint idx) const;
   168 };
   170 //------------------------------TailJumpNode-----------------------------------
   171 // Pop stack frame and jump indirect
   172 class TailJumpNode : public ReturnNode {
   173 public:
   174   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   175     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   176     init_req(TypeFunc::Parms, target);
   177     init_req(TypeFunc::Parms+1, ex_oop);
   178   }
   180   virtual int Opcode() const;
   181   virtual uint match_edge(uint idx) const;
   182 };
   184 //-------------------------------JVMState-------------------------------------
   185 // A linked list of JVMState nodes captures the whole interpreter state,
   186 // plus GC roots, for all active calls at some call site in this compilation
   187 // unit.  (If there is no inlining, then the list has exactly one link.)
   188 // This provides a way to map the optimized program back into the interpreter,
   189 // or to let the GC mark the stack.
   190 class JVMState : public ResourceObj {
   191 public:
   192   typedef enum {
   193     Reexecute_Undefined = -1, // not defined -- will be translated into false later
   194     Reexecute_False     =  0, // false       -- do not reexecute
   195     Reexecute_True      =  1  // true        -- reexecute the bytecode
   196   } ReexecuteState; //Reexecute State
   198 private:
   199   JVMState*         _caller;    // List pointer for forming scope chains
   200   uint              _depth;     // One mroe than caller depth, or one.
   201   uint              _locoff;    // Offset to locals in input edge mapping
   202   uint              _stkoff;    // Offset to stack in input edge mapping
   203   uint              _monoff;    // Offset to monitors in input edge mapping
   204   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
   205   uint              _endoff;    // Offset to end of input edge mapping
   206   uint              _sp;        // Jave Expression Stack Pointer for this state
   207   int               _bci;       // Byte Code Index of this JVM point
   208   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
   209   ciMethod*         _method;    // Method Pointer
   210   SafePointNode*    _map;       // Map node associated with this scope
   211 public:
   212   friend class Compile;
   213   friend class PreserveReexecuteState;
   215   // Because JVMState objects live over the entire lifetime of the
   216   // Compile object, they are allocated into the comp_arena, which
   217   // does not get resource marked or reset during the compile process
   218   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   219   void operator delete( void * ) { } // fast deallocation
   221   // Create a new JVMState, ready for abstract interpretation.
   222   JVMState(ciMethod* method, JVMState* caller);
   223   JVMState(int stack_size);  // root state; has a null method
   225   // Access functions for the JVM
   226   uint              locoff() const { return _locoff; }
   227   uint              stkoff() const { return _stkoff; }
   228   uint              argoff() const { return _stkoff + _sp; }
   229   uint              monoff() const { return _monoff; }
   230   uint              scloff() const { return _scloff; }
   231   uint              endoff() const { return _endoff; }
   232   uint              oopoff() const { return debug_end(); }
   234   int            loc_size() const { return _stkoff - _locoff; }
   235   int            stk_size() const { return _monoff - _stkoff; }
   236   int            mon_size() const { return _scloff - _monoff; }
   237   int            scl_size() const { return _endoff - _scloff; }
   239   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
   240   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
   241   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
   242   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
   244   uint                      sp() const { return _sp; }
   245   int                      bci() const { return _bci; }
   246   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
   247   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
   248   bool              has_method() const { return _method != NULL; }
   249   ciMethod*             method() const { assert(has_method(), ""); return _method; }
   250   JVMState*             caller() const { return _caller; }
   251   SafePointNode*           map() const { return _map; }
   252   uint                   depth() const { return _depth; }
   253   uint             debug_start() const; // returns locoff of root caller
   254   uint               debug_end() const; // returns endoff of self
   255   uint              debug_size() const {
   256     return loc_size() + sp() + mon_size() + scl_size();
   257   }
   258   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   260   // Returns the JVM state at the desired depth (1 == root).
   261   JVMState* of_depth(int d) const;
   263   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   264   bool same_calls_as(const JVMState* that) const;
   266   // Monitors (monitors are stored as (boxNode, objNode) pairs
   267   enum { logMonitorEdges = 1 };
   268   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   269   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   270   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   271   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   272   bool is_monitor_box(uint off)    const {
   273     assert(is_mon(off), "should be called only for monitor edge");
   274     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   275   }
   276   bool is_monitor_use(uint off)    const { return (is_mon(off)
   277                                                    && is_monitor_box(off))
   278                                              || (caller() && caller()->is_monitor_use(off)); }
   280   // Initialization functions for the JVM
   281   void              set_locoff(uint off) { _locoff = off; }
   282   void              set_stkoff(uint off) { _stkoff = off; }
   283   void              set_monoff(uint off) { _monoff = off; }
   284   void              set_scloff(uint off) { _scloff = off; }
   285   void              set_endoff(uint off) { _endoff = off; }
   286   void              set_offsets(uint off) {
   287     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
   288   }
   289   void              set_map(SafePointNode *map) { _map = map; }
   290   void              set_sp(uint sp) { _sp = sp; }
   291                     // _reexecute is initialized to "undefined" for a new bci
   292   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
   293   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
   295   // Miscellaneous utility functions
   296   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   297   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   299 #ifndef PRODUCT
   300   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   301   void      dump_spec(outputStream *st) const;
   302   void      dump_on(outputStream* st) const;
   303   void      dump() const {
   304     dump_on(tty);
   305   }
   306 #endif
   307 };
   309 //------------------------------SafePointNode----------------------------------
   310 // A SafePointNode is a subclass of a MultiNode for convenience (and
   311 // potential code sharing) only - conceptually it is independent of
   312 // the Node semantics.
   313 class SafePointNode : public MultiNode {
   314   virtual uint           cmp( const Node &n ) const;
   315   virtual uint           size_of() const;       // Size is bigger
   317 public:
   318   SafePointNode(uint edges, JVMState* jvms,
   319                 // A plain safepoint advertises no memory effects (NULL):
   320                 const TypePtr* adr_type = NULL)
   321     : MultiNode( edges ),
   322       _jvms(jvms),
   323       _oop_map(NULL),
   324       _adr_type(adr_type)
   325   {
   326     init_class_id(Class_SafePoint);
   327   }
   329   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   330   JVMState* const _jvms;      // Pointer to list of JVM State objects
   331   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   333   // Many calls take *all* of memory as input,
   334   // but some produce a limited subset of that memory as output.
   335   // The adr_type reports the call's behavior as a store, not a load.
   337   virtual JVMState* jvms() const { return _jvms; }
   338   void set_jvms(JVMState* s) {
   339     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   340   }
   341   OopMap *oop_map() const { return _oop_map; }
   342   void set_oop_map(OopMap *om) { _oop_map = om; }
   344   // Functionality from old debug nodes which has changed
   345   Node *local(JVMState* jvms, uint idx) const {
   346     assert(verify_jvms(jvms), "jvms must match");
   347     return in(jvms->locoff() + idx);
   348   }
   349   Node *stack(JVMState* jvms, uint idx) const {
   350     assert(verify_jvms(jvms), "jvms must match");
   351     return in(jvms->stkoff() + idx);
   352   }
   353   Node *argument(JVMState* jvms, uint idx) const {
   354     assert(verify_jvms(jvms), "jvms must match");
   355     return in(jvms->argoff() + idx);
   356   }
   357   Node *monitor_box(JVMState* jvms, uint idx) const {
   358     assert(verify_jvms(jvms), "jvms must match");
   359     return in(jvms->monitor_box_offset(idx));
   360   }
   361   Node *monitor_obj(JVMState* jvms, uint idx) const {
   362     assert(verify_jvms(jvms), "jvms must match");
   363     return in(jvms->monitor_obj_offset(idx));
   364   }
   366   void  set_local(JVMState* jvms, uint idx, Node *c);
   368   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   369     assert(verify_jvms(jvms), "jvms must match");
   370     set_req(jvms->stkoff() + idx, c);
   371   }
   372   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   373     assert(verify_jvms(jvms), "jvms must match");
   374     set_req(jvms->argoff() + idx, c);
   375   }
   376   void ensure_stack(JVMState* jvms, uint stk_size) {
   377     assert(verify_jvms(jvms), "jvms must match");
   378     int grow_by = (int)stk_size - (int)jvms->stk_size();
   379     if (grow_by > 0)  grow_stack(jvms, grow_by);
   380   }
   381   void grow_stack(JVMState* jvms, uint grow_by);
   382   // Handle monitor stack
   383   void push_monitor( const FastLockNode *lock );
   384   void pop_monitor ();
   385   Node *peek_monitor_box() const;
   386   Node *peek_monitor_obj() const;
   388   // Access functions for the JVM
   389   Node *control  () const { return in(TypeFunc::Control  ); }
   390   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   391   Node *memory   () const { return in(TypeFunc::Memory   ); }
   392   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   393   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   395   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   396   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   397   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   399   MergeMemNode* merged_memory() const {
   400     return in(TypeFunc::Memory)->as_MergeMem();
   401   }
   403   // The parser marks useless maps as dead when it's done with them:
   404   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   406   // Exception states bubbling out of subgraphs such as inlined calls
   407   // are recorded here.  (There might be more than one, hence the "next".)
   408   // This feature is used only for safepoints which serve as "maps"
   409   // for JVM states during parsing, intrinsic expansion, etc.
   410   SafePointNode*         next_exception() const;
   411   void               set_next_exception(SafePointNode* n);
   412   bool                   has_exceptions() const { return next_exception() != NULL; }
   414   // Standard Node stuff
   415   virtual int            Opcode() const;
   416   virtual bool           pinned() const { return true; }
   417   virtual const Type    *Value( PhaseTransform *phase ) const;
   418   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   419   virtual const TypePtr *adr_type() const { return _adr_type; }
   420   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   421   virtual Node          *Identity( PhaseTransform *phase );
   422   virtual uint           ideal_reg() const { return 0; }
   423   virtual const RegMask &in_RegMask(uint) const;
   424   virtual const RegMask &out_RegMask() const;
   425   virtual uint           match_edge(uint idx) const;
   427   static  bool           needs_polling_address_input();
   429 #ifndef PRODUCT
   430   virtual void              dump_spec(outputStream *st) const;
   431 #endif
   432 };
   434 //------------------------------SafePointScalarObjectNode----------------------
   435 // A SafePointScalarObjectNode represents the state of a scalarized object
   436 // at a safepoint.
   438 class SafePointScalarObjectNode: public TypeNode {
   439   uint _first_index; // First input edge index of a SafePoint node where
   440                      // states of the scalarized object fields are collected.
   441   uint _n_fields;    // Number of non-static fields of the scalarized object.
   442   DEBUG_ONLY(AllocateNode* _alloc;)
   443 public:
   444   SafePointScalarObjectNode(const TypeOopPtr* tp,
   445 #ifdef ASSERT
   446                             AllocateNode* alloc,
   447 #endif
   448                             uint first_index, uint n_fields);
   449   virtual int Opcode() const;
   450   virtual uint           ideal_reg() const;
   451   virtual const RegMask &in_RegMask(uint) const;
   452   virtual const RegMask &out_RegMask() const;
   453   virtual uint           match_edge(uint idx) const;
   455   uint first_index() const { return _first_index; }
   456   uint n_fields()    const { return _n_fields; }
   457   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
   459   // SafePointScalarObject should be always pinned to the control edge
   460   // of the SafePoint node for which it was generated.
   461   virtual bool pinned() const; // { return true; }
   463   // SafePointScalarObject depends on the SafePoint node
   464   // for which it was generated.
   465   virtual bool depends_only_on_test() const; // { return false; }
   467   virtual uint size_of() const { return sizeof(*this); }
   469   // Assumes that "this" is an argument to a safepoint node "s", and that
   470   // "new_call" is being created to correspond to "s".  But the difference
   471   // between the start index of the jvmstates of "new_call" and "s" is
   472   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
   473   // corresponds appropriately to "this" in "new_call".  Assumes that
   474   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
   475   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
   476   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
   478 #ifndef PRODUCT
   479   virtual void              dump_spec(outputStream *st) const;
   480 #endif
   481 };
   484 // Simple container for the outgoing projections of a call.  Useful
   485 // for serious surgery on calls.
   486 class CallProjections : public StackObj {
   487 public:
   488   Node* fallthrough_proj;
   489   Node* fallthrough_catchproj;
   490   Node* fallthrough_memproj;
   491   Node* fallthrough_ioproj;
   492   Node* catchall_catchproj;
   493   Node* catchall_memproj;
   494   Node* catchall_ioproj;
   495   Node* resproj;
   496   Node* exobj;
   497 };
   500 //------------------------------CallNode---------------------------------------
   501 // Call nodes now subsume the function of debug nodes at callsites, so they
   502 // contain the functionality of a full scope chain of debug nodes.
   503 class CallNode : public SafePointNode {
   504 public:
   505   const TypeFunc *_tf;        // Function type
   506   address      _entry_point;  // Address of method being called
   507   float        _cnt;          // Estimate of number of times called
   509   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   510     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   511       _tf(tf),
   512       _entry_point(addr),
   513       _cnt(COUNT_UNKNOWN)
   514   {
   515     init_class_id(Class_Call);
   516     init_flags(Flag_is_Call);
   517   }
   519   const TypeFunc* tf()        const { return _tf; }
   520   const address entry_point() const { return _entry_point; }
   521   const float   cnt()         const { return _cnt; }
   523   void set_tf(const TypeFunc* tf) { _tf = tf; }
   524   void set_entry_point(address p) { _entry_point = p; }
   525   void set_cnt(float c)           { _cnt = c; }
   527   virtual const Type *bottom_type() const;
   528   virtual const Type *Value( PhaseTransform *phase ) const;
   529   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   530   virtual uint        cmp( const Node &n ) const;
   531   virtual uint        size_of() const = 0;
   532   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   533   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   534   virtual uint        ideal_reg() const { return NotAMachineReg; }
   535   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   536   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   537   virtual bool        guaranteed_safepoint()  { return true; }
   538   // For macro nodes, the JVMState gets modified during expansion, so when cloning
   539   // the node the JVMState must be cloned.
   540   virtual void        clone_jvms() { }   // default is not to clone
   542   // Returns true if the call may modify n
   543   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
   544   // Does this node have a use of n other than in debug information?
   545   bool                has_non_debug_use(Node *n);
   546   // Returns the unique CheckCastPP of a call
   547   // or result projection is there are several CheckCastPP
   548   // or returns NULL if there is no one.
   549   Node *result_cast();
   551   // Collect all the interesting edges from a call for use in
   552   // replacing the call by something else.  Used by macro expansion
   553   // and the late inlining support.
   554   void extract_projections(CallProjections* projs, bool separate_io_proj);
   556   virtual uint match_edge(uint idx) const;
   558 #ifndef PRODUCT
   559   virtual void        dump_req()  const;
   560   virtual void        dump_spec(outputStream *st) const;
   561 #endif
   562 };
   565 //------------------------------CallJavaNode-----------------------------------
   566 // Make a static or dynamic subroutine call node using Java calling
   567 // convention.  (The "Java" calling convention is the compiler's calling
   568 // convention, as opposed to the interpreter's or that of native C.)
   569 class CallJavaNode : public CallNode {
   570 protected:
   571   virtual uint cmp( const Node &n ) const;
   572   virtual uint size_of() const; // Size is bigger
   574   bool    _optimized_virtual;
   575   bool    _method_handle_invoke;
   576   ciMethod* _method;            // Method being direct called
   577 public:
   578   const int       _bci;         // Byte Code Index of call byte code
   579   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   580     : CallNode(tf, addr, TypePtr::BOTTOM),
   581       _method(method), _bci(bci),
   582       _optimized_virtual(false),
   583       _method_handle_invoke(false)
   584   {
   585     init_class_id(Class_CallJava);
   586   }
   588   virtual int   Opcode() const;
   589   ciMethod* method() const                { return _method; }
   590   void  set_method(ciMethod *m)           { _method = m; }
   591   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   592   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   593   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
   594   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
   596 #ifndef PRODUCT
   597   virtual void  dump_spec(outputStream *st) const;
   598 #endif
   599 };
   601 //------------------------------CallStaticJavaNode-----------------------------
   602 // Make a direct subroutine call using Java calling convention (for static
   603 // calls and optimized virtual calls, plus calls to wrappers for run-time
   604 // routines); generates static stub.
   605 class CallStaticJavaNode : public CallJavaNode {
   606   virtual uint cmp( const Node &n ) const;
   607   virtual uint size_of() const; // Size is bigger
   608 public:
   609   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
   610     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   611     init_class_id(Class_CallStaticJava);
   612   }
   613   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   614                      const TypePtr* adr_type)
   615     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   616     init_class_id(Class_CallStaticJava);
   617     // This node calls a runtime stub, which often has narrow memory effects.
   618     _adr_type = adr_type;
   619   }
   620   const char *_name;            // Runtime wrapper name
   622   // If this is an uncommon trap, return the request code, else zero.
   623   int uncommon_trap_request() const;
   624   static int extract_uncommon_trap_request(const Node* call);
   626   virtual int         Opcode() const;
   627 #ifndef PRODUCT
   628   virtual void        dump_spec(outputStream *st) const;
   629 #endif
   630 };
   632 //------------------------------CallDynamicJavaNode----------------------------
   633 // Make a dispatched call using Java calling convention.
   634 class CallDynamicJavaNode : public CallJavaNode {
   635   virtual uint cmp( const Node &n ) const;
   636   virtual uint size_of() const; // Size is bigger
   637 public:
   638   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   639     init_class_id(Class_CallDynamicJava);
   640   }
   642   int _vtable_index;
   643   virtual int   Opcode() const;
   644 #ifndef PRODUCT
   645   virtual void  dump_spec(outputStream *st) const;
   646 #endif
   647 };
   649 //------------------------------CallRuntimeNode--------------------------------
   650 // Make a direct subroutine call node into compiled C++ code.
   651 class CallRuntimeNode : public CallNode {
   652   virtual uint cmp( const Node &n ) const;
   653   virtual uint size_of() const; // Size is bigger
   654 public:
   655   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   656                   const TypePtr* adr_type)
   657     : CallNode(tf, addr, adr_type),
   658       _name(name)
   659   {
   660     init_class_id(Class_CallRuntime);
   661   }
   663   const char *_name;            // Printable name, if _method is NULL
   664   virtual int   Opcode() const;
   665   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   667 #ifndef PRODUCT
   668   virtual void  dump_spec(outputStream *st) const;
   669 #endif
   670 };
   672 //------------------------------CallLeafNode-----------------------------------
   673 // Make a direct subroutine call node into compiled C++ code, without
   674 // safepoints
   675 class CallLeafNode : public CallRuntimeNode {
   676 public:
   677   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   678                const TypePtr* adr_type)
   679     : CallRuntimeNode(tf, addr, name, adr_type)
   680   {
   681     init_class_id(Class_CallLeaf);
   682   }
   683   virtual int   Opcode() const;
   684   virtual bool        guaranteed_safepoint()  { return false; }
   685 #ifndef PRODUCT
   686   virtual void  dump_spec(outputStream *st) const;
   687 #endif
   688 };
   690 //------------------------------CallLeafNoFPNode-------------------------------
   691 // CallLeafNode, not using floating point or using it in the same manner as
   692 // the generated code
   693 class CallLeafNoFPNode : public CallLeafNode {
   694 public:
   695   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   696                    const TypePtr* adr_type)
   697     : CallLeafNode(tf, addr, name, adr_type)
   698   {
   699   }
   700   virtual int   Opcode() const;
   701 };
   704 //------------------------------Allocate---------------------------------------
   705 // High-level memory allocation
   706 //
   707 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   708 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   709 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   710 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   711 //  order to differentiate the uses of the projection on the normal control path from
   712 //  those on the exception return path.
   713 //
   714 class AllocateNode : public CallNode {
   715 public:
   716   enum {
   717     // Output:
   718     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   719     // Inputs:
   720     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   721     KlassNode,                        // type (maybe dynamic) of the obj.
   722     InitialTest,                      // slow-path test (may be constant)
   723     ALength,                          // array length (or TOP if none)
   724     ParmLimit
   725   };
   727   static const TypeFunc* alloc_type() {
   728     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   729     fields[AllocSize]   = TypeInt::POS;
   730     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   731     fields[InitialTest] = TypeInt::BOOL;
   732     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
   734     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   736     // create result type (range)
   737     fields = TypeTuple::fields(1);
   738     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   740     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   742     return TypeFunc::make(domain, range);
   743   }
   745   bool _is_scalar_replaceable;  // Result of Escape Analysis
   747   virtual uint size_of() const; // Size is bigger
   748   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   749                Node *size, Node *klass_node, Node *initial_test);
   750   // Expansion modifies the JVMState, so we need to clone it
   751   virtual void  clone_jvms() {
   752     set_jvms(jvms()->clone_deep(Compile::current()));
   753   }
   754   virtual int Opcode() const;
   755   virtual uint ideal_reg() const { return Op_RegP; }
   756   virtual bool        guaranteed_safepoint()  { return false; }
   758   // allocations do not modify their arguments
   759   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
   761   // Pattern-match a possible usage of AllocateNode.
   762   // Return null if no allocation is recognized.
   763   // The operand is the pointer produced by the (possible) allocation.
   764   // It must be a projection of the Allocate or its subsequent CastPP.
   765   // (Note:  This function is defined in file graphKit.cpp, near
   766   // GraphKit::new_instance/new_array, whose output it recognizes.)
   767   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   768   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   770   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   771   // an offset, which is reported back to the caller.
   772   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   773   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   774                                         intptr_t& offset);
   776   // Dig the klass operand out of a (possible) allocation site.
   777   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   778     AllocateNode* allo = Ideal_allocation(ptr, phase);
   779     return (allo == NULL) ? NULL : allo->in(KlassNode);
   780   }
   782   // Conservatively small estimate of offset of first non-header byte.
   783   int minimum_header_size() {
   784     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
   785                                 instanceOopDesc::base_offset_in_bytes();
   786   }
   788   // Return the corresponding initialization barrier (or null if none).
   789   // Walks out edges to find it...
   790   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   791   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   792   InitializeNode* initialization();
   794   // Convenience for initialization->maybe_set_complete(phase)
   795   bool maybe_set_complete(PhaseGVN* phase);
   796 };
   798 //------------------------------AllocateArray---------------------------------
   799 //
   800 // High-level array allocation
   801 //
   802 class AllocateArrayNode : public AllocateNode {
   803 public:
   804   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   805                     Node* size, Node* klass_node, Node* initial_test,
   806                     Node* count_val
   807                     )
   808     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   809                    initial_test)
   810   {
   811     init_class_id(Class_AllocateArray);
   812     set_req(AllocateNode::ALength,        count_val);
   813   }
   814   virtual int Opcode() const;
   815   virtual uint size_of() const; // Size is bigger
   816   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   818   // Dig the length operand out of a array allocation site.
   819   Node* Ideal_length() {
   820     return in(AllocateNode::ALength);
   821   }
   823   // Dig the length operand out of a array allocation site and narrow the
   824   // type with a CastII, if necesssary
   825   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
   827   // Pattern-match a possible usage of AllocateArrayNode.
   828   // Return null if no allocation is recognized.
   829   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   830     AllocateNode* allo = Ideal_allocation(ptr, phase);
   831     return (allo == NULL || !allo->is_AllocateArray())
   832            ? NULL : allo->as_AllocateArray();
   833   }
   834 };
   836 //------------------------------AbstractLockNode-----------------------------------
   837 class AbstractLockNode: public CallNode {
   838 private:
   839   bool _eliminate;    // indicates this lock can be safely eliminated
   840   bool _coarsened;    // indicates this lock was coarsened
   841 #ifndef PRODUCT
   842   NamedCounter* _counter;
   843 #endif
   845 protected:
   846   // helper functions for lock elimination
   847   //
   849   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   850                             GrowableArray<AbstractLockNode*> &lock_ops);
   851   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   852                                        GrowableArray<AbstractLockNode*> &lock_ops);
   853   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   854                                GrowableArray<AbstractLockNode*> &lock_ops);
   855   LockNode *find_matching_lock(UnlockNode* unlock);
   858 public:
   859   AbstractLockNode(const TypeFunc *tf)
   860     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   861       _coarsened(false),
   862       _eliminate(false)
   863   {
   864 #ifndef PRODUCT
   865     _counter = NULL;
   866 #endif
   867   }
   868   virtual int Opcode() const = 0;
   869   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   870   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   871   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   872   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   874   virtual uint size_of() const { return sizeof(*this); }
   876   bool is_eliminated()         {return _eliminate; }
   877   // mark node as eliminated and update the counter if there is one
   878   void set_eliminated();
   880   bool is_coarsened()  { return _coarsened; }
   881   void set_coarsened() { _coarsened = true; }
   883   // locking does not modify its arguments
   884   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
   886 #ifndef PRODUCT
   887   void create_lock_counter(JVMState* s);
   888   NamedCounter* counter() const { return _counter; }
   889 #endif
   890 };
   892 //------------------------------Lock---------------------------------------
   893 // High-level lock operation
   894 //
   895 // This is a subclass of CallNode because it is a macro node which gets expanded
   896 // into a code sequence containing a call.  This node takes 3 "parameters":
   897 //    0  -  object to lock
   898 //    1 -   a BoxLockNode
   899 //    2 -   a FastLockNode
   900 //
   901 class LockNode : public AbstractLockNode {
   902 public:
   904   static const TypeFunc *lock_type() {
   905     // create input type (domain)
   906     const Type **fields = TypeTuple::fields(3);
   907     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   908     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   909     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   910     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   912     // create result type (range)
   913     fields = TypeTuple::fields(0);
   915     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   917     return TypeFunc::make(domain,range);
   918   }
   920   virtual int Opcode() const;
   921   virtual uint size_of() const; // Size is bigger
   922   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   923     init_class_id(Class_Lock);
   924     init_flags(Flag_is_macro);
   925     C->add_macro_node(this);
   926   }
   927   virtual bool        guaranteed_safepoint()  { return false; }
   929   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   930   // Expansion modifies the JVMState, so we need to clone it
   931   virtual void  clone_jvms() {
   932     set_jvms(jvms()->clone_deep(Compile::current()));
   933   }
   934 };
   936 //------------------------------Unlock---------------------------------------
   937 // High-level unlock operation
   938 class UnlockNode : public AbstractLockNode {
   939 public:
   940   virtual int Opcode() const;
   941   virtual uint size_of() const; // Size is bigger
   942   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   943     init_class_id(Class_Unlock);
   944     init_flags(Flag_is_macro);
   945     C->add_macro_node(this);
   946   }
   947   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   948   // unlock is never a safepoint
   949   virtual bool        guaranteed_safepoint()  { return false; }
   950 };
   952 #endif // SHARE_VM_OPTO_CALLNODE_HPP

mercurial