src/share/vm/opto/callnode.hpp

Wed, 27 Jul 2011 17:28:36 -0700

author
kvn
date
Wed, 27 Jul 2011 17:28:36 -0700
changeset 3040
c7b60b601eb4
parent 2314
f95d63e2154a
child 3138
f6f3bb0ee072
permissions
-rw-r--r--

7069452: Cleanup NodeFlags
Summary: Remove flags which duplicate information in Node::NodeClasses.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
    26 #define SHARE_VM_OPTO_CALLNODE_HPP
    28 #include "opto/connode.hpp"
    29 #include "opto/mulnode.hpp"
    30 #include "opto/multnode.hpp"
    31 #include "opto/opcodes.hpp"
    32 #include "opto/phaseX.hpp"
    33 #include "opto/type.hpp"
    35 // Portions of code courtesy of Clifford Click
    37 // Optimization - Graph Style
    39 class Chaitin;
    40 class NamedCounter;
    41 class MultiNode;
    42 class  SafePointNode;
    43 class   CallNode;
    44 class     CallJavaNode;
    45 class       CallStaticJavaNode;
    46 class       CallDynamicJavaNode;
    47 class     CallRuntimeNode;
    48 class       CallLeafNode;
    49 class         CallLeafNoFPNode;
    50 class     AllocateNode;
    51 class       AllocateArrayNode;
    52 class     LockNode;
    53 class     UnlockNode;
    54 class JVMState;
    55 class OopMap;
    56 class State;
    57 class StartNode;
    58 class MachCallNode;
    59 class FastLockNode;
    61 //------------------------------StartNode--------------------------------------
    62 // The method start node
    63 class StartNode : public MultiNode {
    64   virtual uint cmp( const Node &n ) const;
    65   virtual uint size_of() const; // Size is bigger
    66 public:
    67   const TypeTuple *_domain;
    68   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    69     init_class_id(Class_Start);
    70     init_req(0,this);
    71     init_req(1,root);
    72   }
    73   virtual int Opcode() const;
    74   virtual bool pinned() const { return true; };
    75   virtual const Type *bottom_type() const;
    76   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    77   virtual const Type *Value( PhaseTransform *phase ) const;
    78   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    79   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    80   virtual const RegMask &in_RegMask(uint) const;
    81   virtual Node *match( const ProjNode *proj, const Matcher *m );
    82   virtual uint ideal_reg() const { return 0; }
    83 #ifndef PRODUCT
    84   virtual void  dump_spec(outputStream *st) const;
    85 #endif
    86 };
    88 //------------------------------StartOSRNode-----------------------------------
    89 // The method start node for on stack replacement code
    90 class StartOSRNode : public StartNode {
    91 public:
    92   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    93   virtual int   Opcode() const;
    94   static  const TypeTuple *osr_domain();
    95 };
    98 //------------------------------ParmNode---------------------------------------
    99 // Incoming parameters
   100 class ParmNode : public ProjNode {
   101   static const char * const names[TypeFunc::Parms+1];
   102 public:
   103   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
   104     init_class_id(Class_Parm);
   105   }
   106   virtual int Opcode() const;
   107   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
   108   virtual uint ideal_reg() const;
   109 #ifndef PRODUCT
   110   virtual void dump_spec(outputStream *st) const;
   111 #endif
   112 };
   115 //------------------------------ReturnNode-------------------------------------
   116 // Return from subroutine node
   117 class ReturnNode : public Node {
   118 public:
   119   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   120   virtual int Opcode() const;
   121   virtual bool  is_CFG() const { return true; }
   122   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   123   virtual bool depends_only_on_test() const { return false; }
   124   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   125   virtual const Type *Value( PhaseTransform *phase ) const;
   126   virtual uint ideal_reg() const { return NotAMachineReg; }
   127   virtual uint match_edge(uint idx) const;
   128 #ifndef PRODUCT
   129   virtual void dump_req() const;
   130 #endif
   131 };
   134 //------------------------------RethrowNode------------------------------------
   135 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   136 // ends the current basic block like a ReturnNode.  Restores registers and
   137 // unwinds stack.  Rethrow happens in the caller's method.
   138 class RethrowNode : public Node {
   139  public:
   140   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   141   virtual int Opcode() const;
   142   virtual bool  is_CFG() const { return true; }
   143   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   144   virtual bool depends_only_on_test() const { return false; }
   145   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   146   virtual const Type *Value( PhaseTransform *phase ) const;
   147   virtual uint match_edge(uint idx) const;
   148   virtual uint ideal_reg() const { return NotAMachineReg; }
   149 #ifndef PRODUCT
   150   virtual void dump_req() const;
   151 #endif
   152 };
   155 //------------------------------TailCallNode-----------------------------------
   156 // Pop stack frame and jump indirect
   157 class TailCallNode : public ReturnNode {
   158 public:
   159   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   160     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   161     init_req(TypeFunc::Parms, target);
   162     init_req(TypeFunc::Parms+1, moop);
   163   }
   165   virtual int Opcode() const;
   166   virtual uint match_edge(uint idx) const;
   167 };
   169 //------------------------------TailJumpNode-----------------------------------
   170 // Pop stack frame and jump indirect
   171 class TailJumpNode : public ReturnNode {
   172 public:
   173   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   174     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   175     init_req(TypeFunc::Parms, target);
   176     init_req(TypeFunc::Parms+1, ex_oop);
   177   }
   179   virtual int Opcode() const;
   180   virtual uint match_edge(uint idx) const;
   181 };
   183 //-------------------------------JVMState-------------------------------------
   184 // A linked list of JVMState nodes captures the whole interpreter state,
   185 // plus GC roots, for all active calls at some call site in this compilation
   186 // unit.  (If there is no inlining, then the list has exactly one link.)
   187 // This provides a way to map the optimized program back into the interpreter,
   188 // or to let the GC mark the stack.
   189 class JVMState : public ResourceObj {
   190 public:
   191   typedef enum {
   192     Reexecute_Undefined = -1, // not defined -- will be translated into false later
   193     Reexecute_False     =  0, // false       -- do not reexecute
   194     Reexecute_True      =  1  // true        -- reexecute the bytecode
   195   } ReexecuteState; //Reexecute State
   197 private:
   198   JVMState*         _caller;    // List pointer for forming scope chains
   199   uint              _depth;     // One mroe than caller depth, or one.
   200   uint              _locoff;    // Offset to locals in input edge mapping
   201   uint              _stkoff;    // Offset to stack in input edge mapping
   202   uint              _monoff;    // Offset to monitors in input edge mapping
   203   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
   204   uint              _endoff;    // Offset to end of input edge mapping
   205   uint              _sp;        // Jave Expression Stack Pointer for this state
   206   int               _bci;       // Byte Code Index of this JVM point
   207   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
   208   ciMethod*         _method;    // Method Pointer
   209   SafePointNode*    _map;       // Map node associated with this scope
   210 public:
   211   friend class Compile;
   212   friend class PreserveReexecuteState;
   214   // Because JVMState objects live over the entire lifetime of the
   215   // Compile object, they are allocated into the comp_arena, which
   216   // does not get resource marked or reset during the compile process
   217   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
   218   void operator delete( void * ) { } // fast deallocation
   220   // Create a new JVMState, ready for abstract interpretation.
   221   JVMState(ciMethod* method, JVMState* caller);
   222   JVMState(int stack_size);  // root state; has a null method
   224   // Access functions for the JVM
   225   uint              locoff() const { return _locoff; }
   226   uint              stkoff() const { return _stkoff; }
   227   uint              argoff() const { return _stkoff + _sp; }
   228   uint              monoff() const { return _monoff; }
   229   uint              scloff() const { return _scloff; }
   230   uint              endoff() const { return _endoff; }
   231   uint              oopoff() const { return debug_end(); }
   233   int            loc_size() const { return _stkoff - _locoff; }
   234   int            stk_size() const { return _monoff - _stkoff; }
   235   int            mon_size() const { return _scloff - _monoff; }
   236   int            scl_size() const { return _endoff - _scloff; }
   238   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
   239   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
   240   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
   241   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
   243   uint                      sp() const { return _sp; }
   244   int                      bci() const { return _bci; }
   245   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
   246   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
   247   bool              has_method() const { return _method != NULL; }
   248   ciMethod*             method() const { assert(has_method(), ""); return _method; }
   249   JVMState*             caller() const { return _caller; }
   250   SafePointNode*           map() const { return _map; }
   251   uint                   depth() const { return _depth; }
   252   uint             debug_start() const; // returns locoff of root caller
   253   uint               debug_end() const; // returns endoff of self
   254   uint              debug_size() const {
   255     return loc_size() + sp() + mon_size() + scl_size();
   256   }
   257   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   259   // Returns the JVM state at the desired depth (1 == root).
   260   JVMState* of_depth(int d) const;
   262   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   263   bool same_calls_as(const JVMState* that) const;
   265   // Monitors (monitors are stored as (boxNode, objNode) pairs
   266   enum { logMonitorEdges = 1 };
   267   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   268   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   269   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   270   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   271   bool is_monitor_box(uint off)    const {
   272     assert(is_mon(off), "should be called only for monitor edge");
   273     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   274   }
   275   bool is_monitor_use(uint off)    const { return (is_mon(off)
   276                                                    && is_monitor_box(off))
   277                                              || (caller() && caller()->is_monitor_use(off)); }
   279   // Initialization functions for the JVM
   280   void              set_locoff(uint off) { _locoff = off; }
   281   void              set_stkoff(uint off) { _stkoff = off; }
   282   void              set_monoff(uint off) { _monoff = off; }
   283   void              set_scloff(uint off) { _scloff = off; }
   284   void              set_endoff(uint off) { _endoff = off; }
   285   void              set_offsets(uint off) {
   286     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
   287   }
   288   void              set_map(SafePointNode *map) { _map = map; }
   289   void              set_sp(uint sp) { _sp = sp; }
   290                     // _reexecute is initialized to "undefined" for a new bci
   291   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
   292   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
   294   // Miscellaneous utility functions
   295   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   296   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   298 #ifndef PRODUCT
   299   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   300   void      dump_spec(outputStream *st) const;
   301   void      dump_on(outputStream* st) const;
   302   void      dump() const {
   303     dump_on(tty);
   304   }
   305 #endif
   306 };
   308 //------------------------------SafePointNode----------------------------------
   309 // A SafePointNode is a subclass of a MultiNode for convenience (and
   310 // potential code sharing) only - conceptually it is independent of
   311 // the Node semantics.
   312 class SafePointNode : public MultiNode {
   313   virtual uint           cmp( const Node &n ) const;
   314   virtual uint           size_of() const;       // Size is bigger
   316 public:
   317   SafePointNode(uint edges, JVMState* jvms,
   318                 // A plain safepoint advertises no memory effects (NULL):
   319                 const TypePtr* adr_type = NULL)
   320     : MultiNode( edges ),
   321       _jvms(jvms),
   322       _oop_map(NULL),
   323       _adr_type(adr_type)
   324   {
   325     init_class_id(Class_SafePoint);
   326   }
   328   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   329   JVMState* const _jvms;      // Pointer to list of JVM State objects
   330   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   332   // Many calls take *all* of memory as input,
   333   // but some produce a limited subset of that memory as output.
   334   // The adr_type reports the call's behavior as a store, not a load.
   336   virtual JVMState* jvms() const { return _jvms; }
   337   void set_jvms(JVMState* s) {
   338     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   339   }
   340   OopMap *oop_map() const { return _oop_map; }
   341   void set_oop_map(OopMap *om) { _oop_map = om; }
   343   // Functionality from old debug nodes which has changed
   344   Node *local(JVMState* jvms, uint idx) const {
   345     assert(verify_jvms(jvms), "jvms must match");
   346     return in(jvms->locoff() + idx);
   347   }
   348   Node *stack(JVMState* jvms, uint idx) const {
   349     assert(verify_jvms(jvms), "jvms must match");
   350     return in(jvms->stkoff() + idx);
   351   }
   352   Node *argument(JVMState* jvms, uint idx) const {
   353     assert(verify_jvms(jvms), "jvms must match");
   354     return in(jvms->argoff() + idx);
   355   }
   356   Node *monitor_box(JVMState* jvms, uint idx) const {
   357     assert(verify_jvms(jvms), "jvms must match");
   358     return in(jvms->monitor_box_offset(idx));
   359   }
   360   Node *monitor_obj(JVMState* jvms, uint idx) const {
   361     assert(verify_jvms(jvms), "jvms must match");
   362     return in(jvms->monitor_obj_offset(idx));
   363   }
   365   void  set_local(JVMState* jvms, uint idx, Node *c);
   367   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   368     assert(verify_jvms(jvms), "jvms must match");
   369     set_req(jvms->stkoff() + idx, c);
   370   }
   371   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   372     assert(verify_jvms(jvms), "jvms must match");
   373     set_req(jvms->argoff() + idx, c);
   374   }
   375   void ensure_stack(JVMState* jvms, uint stk_size) {
   376     assert(verify_jvms(jvms), "jvms must match");
   377     int grow_by = (int)stk_size - (int)jvms->stk_size();
   378     if (grow_by > 0)  grow_stack(jvms, grow_by);
   379   }
   380   void grow_stack(JVMState* jvms, uint grow_by);
   381   // Handle monitor stack
   382   void push_monitor( const FastLockNode *lock );
   383   void pop_monitor ();
   384   Node *peek_monitor_box() const;
   385   Node *peek_monitor_obj() const;
   387   // Access functions for the JVM
   388   Node *control  () const { return in(TypeFunc::Control  ); }
   389   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   390   Node *memory   () const { return in(TypeFunc::Memory   ); }
   391   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   392   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   394   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   395   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   396   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   398   MergeMemNode* merged_memory() const {
   399     return in(TypeFunc::Memory)->as_MergeMem();
   400   }
   402   // The parser marks useless maps as dead when it's done with them:
   403   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   405   // Exception states bubbling out of subgraphs such as inlined calls
   406   // are recorded here.  (There might be more than one, hence the "next".)
   407   // This feature is used only for safepoints which serve as "maps"
   408   // for JVM states during parsing, intrinsic expansion, etc.
   409   SafePointNode*         next_exception() const;
   410   void               set_next_exception(SafePointNode* n);
   411   bool                   has_exceptions() const { return next_exception() != NULL; }
   413   // Standard Node stuff
   414   virtual int            Opcode() const;
   415   virtual bool           pinned() const { return true; }
   416   virtual const Type    *Value( PhaseTransform *phase ) const;
   417   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   418   virtual const TypePtr *adr_type() const { return _adr_type; }
   419   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   420   virtual Node          *Identity( PhaseTransform *phase );
   421   virtual uint           ideal_reg() const { return 0; }
   422   virtual const RegMask &in_RegMask(uint) const;
   423   virtual const RegMask &out_RegMask() const;
   424   virtual uint           match_edge(uint idx) const;
   426   static  bool           needs_polling_address_input();
   428 #ifndef PRODUCT
   429   virtual void              dump_spec(outputStream *st) const;
   430 #endif
   431 };
   433 //------------------------------SafePointScalarObjectNode----------------------
   434 // A SafePointScalarObjectNode represents the state of a scalarized object
   435 // at a safepoint.
   437 class SafePointScalarObjectNode: public TypeNode {
   438   uint _first_index; // First input edge index of a SafePoint node where
   439                      // states of the scalarized object fields are collected.
   440   uint _n_fields;    // Number of non-static fields of the scalarized object.
   441   DEBUG_ONLY(AllocateNode* _alloc;)
   442 public:
   443   SafePointScalarObjectNode(const TypeOopPtr* tp,
   444 #ifdef ASSERT
   445                             AllocateNode* alloc,
   446 #endif
   447                             uint first_index, uint n_fields);
   448   virtual int Opcode() const;
   449   virtual uint           ideal_reg() const;
   450   virtual const RegMask &in_RegMask(uint) const;
   451   virtual const RegMask &out_RegMask() const;
   452   virtual uint           match_edge(uint idx) const;
   454   uint first_index() const { return _first_index; }
   455   uint n_fields()    const { return _n_fields; }
   456   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
   458   // SafePointScalarObject should be always pinned to the control edge
   459   // of the SafePoint node for which it was generated.
   460   virtual bool pinned() const; // { return true; }
   462   // SafePointScalarObject depends on the SafePoint node
   463   // for which it was generated.
   464   virtual bool depends_only_on_test() const; // { return false; }
   466   virtual uint size_of() const { return sizeof(*this); }
   468   // Assumes that "this" is an argument to a safepoint node "s", and that
   469   // "new_call" is being created to correspond to "s".  But the difference
   470   // between the start index of the jvmstates of "new_call" and "s" is
   471   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
   472   // corresponds appropriately to "this" in "new_call".  Assumes that
   473   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
   474   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
   475   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
   477 #ifndef PRODUCT
   478   virtual void              dump_spec(outputStream *st) const;
   479 #endif
   480 };
   483 // Simple container for the outgoing projections of a call.  Useful
   484 // for serious surgery on calls.
   485 class CallProjections : public StackObj {
   486 public:
   487   Node* fallthrough_proj;
   488   Node* fallthrough_catchproj;
   489   Node* fallthrough_memproj;
   490   Node* fallthrough_ioproj;
   491   Node* catchall_catchproj;
   492   Node* catchall_memproj;
   493   Node* catchall_ioproj;
   494   Node* resproj;
   495   Node* exobj;
   496 };
   499 //------------------------------CallNode---------------------------------------
   500 // Call nodes now subsume the function of debug nodes at callsites, so they
   501 // contain the functionality of a full scope chain of debug nodes.
   502 class CallNode : public SafePointNode {
   503 public:
   504   const TypeFunc *_tf;        // Function type
   505   address      _entry_point;  // Address of method being called
   506   float        _cnt;          // Estimate of number of times called
   508   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   509     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   510       _tf(tf),
   511       _entry_point(addr),
   512       _cnt(COUNT_UNKNOWN)
   513   {
   514     init_class_id(Class_Call);
   515   }
   517   const TypeFunc* tf()        const { return _tf; }
   518   const address entry_point() const { return _entry_point; }
   519   const float   cnt()         const { return _cnt; }
   521   void set_tf(const TypeFunc* tf) { _tf = tf; }
   522   void set_entry_point(address p) { _entry_point = p; }
   523   void set_cnt(float c)           { _cnt = c; }
   525   virtual const Type *bottom_type() const;
   526   virtual const Type *Value( PhaseTransform *phase ) const;
   527   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   528   virtual uint        cmp( const Node &n ) const;
   529   virtual uint        size_of() const = 0;
   530   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   531   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   532   virtual uint        ideal_reg() const { return NotAMachineReg; }
   533   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   534   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   535   virtual bool        guaranteed_safepoint()  { return true; }
   536   // For macro nodes, the JVMState gets modified during expansion, so when cloning
   537   // the node the JVMState must be cloned.
   538   virtual void        clone_jvms() { }   // default is not to clone
   540   // Returns true if the call may modify n
   541   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
   542   // Does this node have a use of n other than in debug information?
   543   bool                has_non_debug_use(Node *n);
   544   // Returns the unique CheckCastPP of a call
   545   // or result projection is there are several CheckCastPP
   546   // or returns NULL if there is no one.
   547   Node *result_cast();
   549   // Collect all the interesting edges from a call for use in
   550   // replacing the call by something else.  Used by macro expansion
   551   // and the late inlining support.
   552   void extract_projections(CallProjections* projs, bool separate_io_proj);
   554   virtual uint match_edge(uint idx) const;
   556 #ifndef PRODUCT
   557   virtual void        dump_req()  const;
   558   virtual void        dump_spec(outputStream *st) const;
   559 #endif
   560 };
   563 //------------------------------CallJavaNode-----------------------------------
   564 // Make a static or dynamic subroutine call node using Java calling
   565 // convention.  (The "Java" calling convention is the compiler's calling
   566 // convention, as opposed to the interpreter's or that of native C.)
   567 class CallJavaNode : public CallNode {
   568 protected:
   569   virtual uint cmp( const Node &n ) const;
   570   virtual uint size_of() const; // Size is bigger
   572   bool    _optimized_virtual;
   573   bool    _method_handle_invoke;
   574   ciMethod* _method;            // Method being direct called
   575 public:
   576   const int       _bci;         // Byte Code Index of call byte code
   577   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   578     : CallNode(tf, addr, TypePtr::BOTTOM),
   579       _method(method), _bci(bci),
   580       _optimized_virtual(false),
   581       _method_handle_invoke(false)
   582   {
   583     init_class_id(Class_CallJava);
   584   }
   586   virtual int   Opcode() const;
   587   ciMethod* method() const                { return _method; }
   588   void  set_method(ciMethod *m)           { _method = m; }
   589   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   590   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   591   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
   592   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
   594 #ifndef PRODUCT
   595   virtual void  dump_spec(outputStream *st) const;
   596 #endif
   597 };
   599 //------------------------------CallStaticJavaNode-----------------------------
   600 // Make a direct subroutine call using Java calling convention (for static
   601 // calls and optimized virtual calls, plus calls to wrappers for run-time
   602 // routines); generates static stub.
   603 class CallStaticJavaNode : public CallJavaNode {
   604   virtual uint cmp( const Node &n ) const;
   605   virtual uint size_of() const; // Size is bigger
   606 public:
   607   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
   608     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   609     init_class_id(Class_CallStaticJava);
   610   }
   611   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   612                      const TypePtr* adr_type)
   613     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   614     init_class_id(Class_CallStaticJava);
   615     // This node calls a runtime stub, which often has narrow memory effects.
   616     _adr_type = adr_type;
   617   }
   618   const char *_name;            // Runtime wrapper name
   620   // If this is an uncommon trap, return the request code, else zero.
   621   int uncommon_trap_request() const;
   622   static int extract_uncommon_trap_request(const Node* call);
   624   virtual int         Opcode() const;
   625 #ifndef PRODUCT
   626   virtual void        dump_spec(outputStream *st) const;
   627 #endif
   628 };
   630 //------------------------------CallDynamicJavaNode----------------------------
   631 // Make a dispatched call using Java calling convention.
   632 class CallDynamicJavaNode : public CallJavaNode {
   633   virtual uint cmp( const Node &n ) const;
   634   virtual uint size_of() const; // Size is bigger
   635 public:
   636   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   637     init_class_id(Class_CallDynamicJava);
   638   }
   640   int _vtable_index;
   641   virtual int   Opcode() const;
   642 #ifndef PRODUCT
   643   virtual void  dump_spec(outputStream *st) const;
   644 #endif
   645 };
   647 //------------------------------CallRuntimeNode--------------------------------
   648 // Make a direct subroutine call node into compiled C++ code.
   649 class CallRuntimeNode : public CallNode {
   650   virtual uint cmp( const Node &n ) const;
   651   virtual uint size_of() const; // Size is bigger
   652 public:
   653   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   654                   const TypePtr* adr_type)
   655     : CallNode(tf, addr, adr_type),
   656       _name(name)
   657   {
   658     init_class_id(Class_CallRuntime);
   659   }
   661   const char *_name;            // Printable name, if _method is NULL
   662   virtual int   Opcode() const;
   663   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   665 #ifndef PRODUCT
   666   virtual void  dump_spec(outputStream *st) const;
   667 #endif
   668 };
   670 //------------------------------CallLeafNode-----------------------------------
   671 // Make a direct subroutine call node into compiled C++ code, without
   672 // safepoints
   673 class CallLeafNode : public CallRuntimeNode {
   674 public:
   675   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   676                const TypePtr* adr_type)
   677     : CallRuntimeNode(tf, addr, name, adr_type)
   678   {
   679     init_class_id(Class_CallLeaf);
   680   }
   681   virtual int   Opcode() const;
   682   virtual bool        guaranteed_safepoint()  { return false; }
   683 #ifndef PRODUCT
   684   virtual void  dump_spec(outputStream *st) const;
   685 #endif
   686 };
   688 //------------------------------CallLeafNoFPNode-------------------------------
   689 // CallLeafNode, not using floating point or using it in the same manner as
   690 // the generated code
   691 class CallLeafNoFPNode : public CallLeafNode {
   692 public:
   693   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   694                    const TypePtr* adr_type)
   695     : CallLeafNode(tf, addr, name, adr_type)
   696   {
   697   }
   698   virtual int   Opcode() const;
   699 };
   702 //------------------------------Allocate---------------------------------------
   703 // High-level memory allocation
   704 //
   705 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   706 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   707 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   708 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   709 //  order to differentiate the uses of the projection on the normal control path from
   710 //  those on the exception return path.
   711 //
   712 class AllocateNode : public CallNode {
   713 public:
   714   enum {
   715     // Output:
   716     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   717     // Inputs:
   718     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   719     KlassNode,                        // type (maybe dynamic) of the obj.
   720     InitialTest,                      // slow-path test (may be constant)
   721     ALength,                          // array length (or TOP if none)
   722     ParmLimit
   723   };
   725   static const TypeFunc* alloc_type() {
   726     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   727     fields[AllocSize]   = TypeInt::POS;
   728     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   729     fields[InitialTest] = TypeInt::BOOL;
   730     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
   732     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   734     // create result type (range)
   735     fields = TypeTuple::fields(1);
   736     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   738     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   740     return TypeFunc::make(domain, range);
   741   }
   743   bool _is_scalar_replaceable;  // Result of Escape Analysis
   745   virtual uint size_of() const; // Size is bigger
   746   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   747                Node *size, Node *klass_node, Node *initial_test);
   748   // Expansion modifies the JVMState, so we need to clone it
   749   virtual void  clone_jvms() {
   750     set_jvms(jvms()->clone_deep(Compile::current()));
   751   }
   752   virtual int Opcode() const;
   753   virtual uint ideal_reg() const { return Op_RegP; }
   754   virtual bool        guaranteed_safepoint()  { return false; }
   756   // allocations do not modify their arguments
   757   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
   759   // Pattern-match a possible usage of AllocateNode.
   760   // Return null if no allocation is recognized.
   761   // The operand is the pointer produced by the (possible) allocation.
   762   // It must be a projection of the Allocate or its subsequent CastPP.
   763   // (Note:  This function is defined in file graphKit.cpp, near
   764   // GraphKit::new_instance/new_array, whose output it recognizes.)
   765   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   766   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   768   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   769   // an offset, which is reported back to the caller.
   770   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   771   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   772                                         intptr_t& offset);
   774   // Dig the klass operand out of a (possible) allocation site.
   775   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   776     AllocateNode* allo = Ideal_allocation(ptr, phase);
   777     return (allo == NULL) ? NULL : allo->in(KlassNode);
   778   }
   780   // Conservatively small estimate of offset of first non-header byte.
   781   int minimum_header_size() {
   782     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
   783                                 instanceOopDesc::base_offset_in_bytes();
   784   }
   786   // Return the corresponding initialization barrier (or null if none).
   787   // Walks out edges to find it...
   788   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   789   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   790   InitializeNode* initialization();
   792   // Convenience for initialization->maybe_set_complete(phase)
   793   bool maybe_set_complete(PhaseGVN* phase);
   794 };
   796 //------------------------------AllocateArray---------------------------------
   797 //
   798 // High-level array allocation
   799 //
   800 class AllocateArrayNode : public AllocateNode {
   801 public:
   802   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   803                     Node* size, Node* klass_node, Node* initial_test,
   804                     Node* count_val
   805                     )
   806     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   807                    initial_test)
   808   {
   809     init_class_id(Class_AllocateArray);
   810     set_req(AllocateNode::ALength,        count_val);
   811   }
   812   virtual int Opcode() const;
   813   virtual uint size_of() const; // Size is bigger
   814   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   816   // Dig the length operand out of a array allocation site.
   817   Node* Ideal_length() {
   818     return in(AllocateNode::ALength);
   819   }
   821   // Dig the length operand out of a array allocation site and narrow the
   822   // type with a CastII, if necesssary
   823   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
   825   // Pattern-match a possible usage of AllocateArrayNode.
   826   // Return null if no allocation is recognized.
   827   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   828     AllocateNode* allo = Ideal_allocation(ptr, phase);
   829     return (allo == NULL || !allo->is_AllocateArray())
   830            ? NULL : allo->as_AllocateArray();
   831   }
   832 };
   834 //------------------------------AbstractLockNode-----------------------------------
   835 class AbstractLockNode: public CallNode {
   836 private:
   837   bool _eliminate;    // indicates this lock can be safely eliminated
   838   bool _coarsened;    // indicates this lock was coarsened
   839 #ifndef PRODUCT
   840   NamedCounter* _counter;
   841 #endif
   843 protected:
   844   // helper functions for lock elimination
   845   //
   847   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   848                             GrowableArray<AbstractLockNode*> &lock_ops);
   849   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   850                                        GrowableArray<AbstractLockNode*> &lock_ops);
   851   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   852                                GrowableArray<AbstractLockNode*> &lock_ops);
   853   LockNode *find_matching_lock(UnlockNode* unlock);
   856 public:
   857   AbstractLockNode(const TypeFunc *tf)
   858     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   859       _coarsened(false),
   860       _eliminate(false)
   861   {
   862 #ifndef PRODUCT
   863     _counter = NULL;
   864 #endif
   865   }
   866   virtual int Opcode() const = 0;
   867   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   868   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   869   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   870   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   872   virtual uint size_of() const { return sizeof(*this); }
   874   bool is_eliminated()         {return _eliminate; }
   875   // mark node as eliminated and update the counter if there is one
   876   void set_eliminated();
   878   bool is_coarsened()  { return _coarsened; }
   879   void set_coarsened() { _coarsened = true; }
   881   // locking does not modify its arguments
   882   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
   884 #ifndef PRODUCT
   885   void create_lock_counter(JVMState* s);
   886   NamedCounter* counter() const { return _counter; }
   887 #endif
   888 };
   890 //------------------------------Lock---------------------------------------
   891 // High-level lock operation
   892 //
   893 // This is a subclass of CallNode because it is a macro node which gets expanded
   894 // into a code sequence containing a call.  This node takes 3 "parameters":
   895 //    0  -  object to lock
   896 //    1 -   a BoxLockNode
   897 //    2 -   a FastLockNode
   898 //
   899 class LockNode : public AbstractLockNode {
   900 public:
   902   static const TypeFunc *lock_type() {
   903     // create input type (domain)
   904     const Type **fields = TypeTuple::fields(3);
   905     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   906     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
   907     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
   908     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
   910     // create result type (range)
   911     fields = TypeTuple::fields(0);
   913     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   915     return TypeFunc::make(domain,range);
   916   }
   918   virtual int Opcode() const;
   919   virtual uint size_of() const; // Size is bigger
   920   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   921     init_class_id(Class_Lock);
   922     init_flags(Flag_is_macro);
   923     C->add_macro_node(this);
   924   }
   925   virtual bool        guaranteed_safepoint()  { return false; }
   927   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   928   // Expansion modifies the JVMState, so we need to clone it
   929   virtual void  clone_jvms() {
   930     set_jvms(jvms()->clone_deep(Compile::current()));
   931   }
   932 };
   934 //------------------------------Unlock---------------------------------------
   935 // High-level unlock operation
   936 class UnlockNode : public AbstractLockNode {
   937 public:
   938   virtual int Opcode() const;
   939   virtual uint size_of() const; // Size is bigger
   940   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
   941     init_class_id(Class_Unlock);
   942     init_flags(Flag_is_macro);
   943     C->add_macro_node(this);
   944   }
   945   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   946   // unlock is never a safepoint
   947   virtual bool        guaranteed_safepoint()  { return false; }
   948 };
   950 #endif // SHARE_VM_OPTO_CALLNODE_HPP

mercurial