src/cpu/sparc/vm/sparc.ad

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 3001
faa472957b38
child 3040
c7b60b601eb4
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

     1 //
     2 // Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 // Macros to extract hi & lo halves from a long pair.
   464 // G0 is not part of any long pair, so assert on that.
   465 // Prevents accidentally using G1 instead of G0.
   466 #define LONG_HI_REG(x) (x)
   467 #define LONG_LO_REG(x) (x)
   469 %}
   471 source %{
   472 #define __ _masm.
   474 // Block initializing store
   475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
   477 // tertiary op of a LoadP or StoreP encoding
   478 #define REGP_OP true
   480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   482 static Register reg_to_register_object(int register_encoding);
   484 // Used by the DFA in dfa_sparc.cpp.
   485 // Check for being able to use a V9 branch-on-register.  Requires a
   486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   487 // extended.  Doesn't work following an integer ADD, for example, because of
   488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   490 // replace them with zero, which could become sign-extension in a different OS
   491 // release.  There's no obvious reason why an interrupt will ever fill these
   492 // bits with non-zero junk (the registers are reloaded with standard LD
   493 // instructions which either zero-fill or sign-fill).
   494 bool can_branch_register( Node *bol, Node *cmp ) {
   495   if( !BranchOnRegister ) return false;
   496 #ifdef _LP64
   497   if( cmp->Opcode() == Op_CmpP )
   498     return true;  // No problems with pointer compares
   499 #endif
   500   if( cmp->Opcode() == Op_CmpL )
   501     return true;  // No problems with long compares
   503   if( !SparcV9RegsHiBitsZero ) return false;
   504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   505       bol->as_Bool()->_test._test != BoolTest::eq )
   506      return false;
   508   // Check for comparing against a 'safe' value.  Any operation which
   509   // clears out the high word is safe.  Thus, loads and certain shifts
   510   // are safe, as are non-negative constants.  Any operation which
   511   // preserves zero bits in the high word is safe as long as each of its
   512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   513   // inputs are safe.  At present, the only important case to recognize
   514   // seems to be loads.  Constants should fold away, and shifts &
   515   // logicals can use the 'cc' forms.
   516   Node *x = cmp->in(1);
   517   if( x->is_Load() ) return true;
   518   if( x->is_Phi() ) {
   519     for( uint i = 1; i < x->req(); i++ )
   520       if( !x->in(i)->is_Load() )
   521         return false;
   522     return true;
   523   }
   524   return false;
   525 }
   527 // ****************************************************************************
   529 // REQUIRED FUNCTIONALITY
   531 // !!!!! Special hack to get all type of calls to specify the byte offset
   532 //       from the start of the call to the point where the return address
   533 //       will point.
   534 //       The "return address" is the address of the call instruction, plus 8.
   536 int MachCallStaticJavaNode::ret_addr_offset() {
   537   int offset = NativeCall::instruction_size;  // call; delay slot
   538   if (_method_handle_invoke)
   539     offset += 4;  // restore SP
   540   return offset;
   541 }
   543 int MachCallDynamicJavaNode::ret_addr_offset() {
   544   int vtable_index = this->_vtable_index;
   545   if (vtable_index < 0) {
   546     // must be invalid_vtable_index, not nonvirtual_vtable_index
   547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   548     return (NativeMovConstReg::instruction_size +
   549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   550   } else {
   551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   554     int klass_load_size;
   555     if (UseCompressedOops) {
   556       assert(Universe::heap() != NULL, "java heap should be initialized");
   557       if (Universe::narrow_oop_base() == NULL)
   558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   559       else
   560         klass_load_size = 3*BytesPerInstWord;
   561     } else {
   562       klass_load_size = 1*BytesPerInstWord;
   563     }
   564     if( Assembler::is_simm13(v_off) ) {
   565       return klass_load_size +
   566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   567              NativeCall::instruction_size);  // call; delay slot
   568     } else {
   569       return klass_load_size +
   570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   571              NativeCall::instruction_size);  // call; delay slot
   572     }
   573   }
   574 }
   576 int MachCallRuntimeNode::ret_addr_offset() {
   577 #ifdef _LP64
   578   if (MacroAssembler::is_far_target(entry_point())) {
   579     return NativeFarCall::instruction_size;
   580   } else {
   581     return NativeCall::instruction_size;
   582   }
   583 #else
   584   return NativeCall::instruction_size;  // call; delay slot
   585 #endif
   586 }
   588 // Indicate if the safepoint node needs the polling page as an input.
   589 // Since Sparc does not have absolute addressing, it does.
   590 bool SafePointNode::needs_polling_address_input() {
   591   return true;
   592 }
   594 // emit an interrupt that is caught by the debugger (for debugging compiler)
   595 void emit_break(CodeBuffer &cbuf) {
   596   MacroAssembler _masm(&cbuf);
   597   __ breakpoint_trap();
   598 }
   600 #ifndef PRODUCT
   601 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   602   st->print("TA");
   603 }
   604 #endif
   606 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   607   emit_break(cbuf);
   608 }
   610 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   611   return MachNode::size(ra_);
   612 }
   614 // Traceable jump
   615 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   616   MacroAssembler _masm(&cbuf);
   617   Register rdest = reg_to_register_object(jump_target);
   618   __ JMP(rdest, 0);
   619   __ delayed()->nop();
   620 }
   622 // Traceable jump and set exception pc
   623 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   624   MacroAssembler _masm(&cbuf);
   625   Register rdest = reg_to_register_object(jump_target);
   626   __ JMP(rdest, 0);
   627   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   628 }
   630 void emit_nop(CodeBuffer &cbuf) {
   631   MacroAssembler _masm(&cbuf);
   632   __ nop();
   633 }
   635 void emit_illtrap(CodeBuffer &cbuf) {
   636   MacroAssembler _masm(&cbuf);
   637   __ illtrap(0);
   638 }
   641 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   642   assert(n->rule() != loadUB_rule, "");
   644   intptr_t offset = 0;
   645   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   646   const Node* addr = n->get_base_and_disp(offset, adr_type);
   647   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   648   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   649   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   650   atype = atype->add_offset(offset);
   651   assert(disp32 == offset, "wrong disp32");
   652   return atype->_offset;
   653 }
   656 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   657   assert(n->rule() != loadUB_rule, "");
   659   intptr_t offset = 0;
   660   Node* addr = n->in(2);
   661   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   662   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   663     Node* a = addr->in(2/*AddPNode::Address*/);
   664     Node* o = addr->in(3/*AddPNode::Offset*/);
   665     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   666     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   667     assert(atype->isa_oop_ptr(), "still an oop");
   668   }
   669   offset = atype->is_ptr()->_offset;
   670   if (offset != Type::OffsetBot)  offset += disp32;
   671   return offset;
   672 }
   674 static inline jdouble replicate_immI(int con, int count, int width) {
   675   // Load a constant replicated "count" times with width "width"
   676   int bit_width = width * 8;
   677   jlong elt_val = con;
   678   elt_val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
   679   jlong val = elt_val;
   680   for (int i = 0; i < count - 1; i++) {
   681     val <<= bit_width;
   682     val |= elt_val;
   683   }
   684   jdouble dval = *((jdouble*) &val);  // coerce to double type
   685   return dval;
   686 }
   688 // Standard Sparc opcode form2 field breakdown
   689 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   690   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   691   int op = (f30 << 30) |
   692            (f29 << 29) |
   693            (f25 << 25) |
   694            (f22 << 22) |
   695            (f20 << 20) |
   696            (f19 << 19) |
   697            (f0  <<  0);
   698   cbuf.insts()->emit_int32(op);
   699 }
   701 // Standard Sparc opcode form2 field breakdown
   702 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   703   f0 >>= 10;           // Drop 10 bits
   704   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   705   int op = (f30 << 30) |
   706            (f25 << 25) |
   707            (f22 << 22) |
   708            (f0  <<  0);
   709   cbuf.insts()->emit_int32(op);
   710 }
   712 // Standard Sparc opcode form3 field breakdown
   713 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   714   int op = (f30 << 30) |
   715            (f25 << 25) |
   716            (f19 << 19) |
   717            (f14 << 14) |
   718            (f5  <<  5) |
   719            (f0  <<  0);
   720   cbuf.insts()->emit_int32(op);
   721 }
   723 // Standard Sparc opcode form3 field breakdown
   724 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   725   simm13 &= (1<<13)-1; // Mask to 13 bits
   726   int op = (f30 << 30) |
   727            (f25 << 25) |
   728            (f19 << 19) |
   729            (f14 << 14) |
   730            (1   << 13) | // bit to indicate immediate-mode
   731            (simm13<<0);
   732   cbuf.insts()->emit_int32(op);
   733 }
   735 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   736   simm10 &= (1<<10)-1; // Mask to 10 bits
   737   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   738 }
   740 #ifdef ASSERT
   741 // Helper function for VerifyOops in emit_form3_mem_reg
   742 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   743   warning("VerifyOops encountered unexpected instruction:");
   744   n->dump(2);
   745   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   746 }
   747 #endif
   750 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   751                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   753 #ifdef ASSERT
   754   // The following code implements the +VerifyOops feature.
   755   // It verifies oop values which are loaded into or stored out of
   756   // the current method activation.  +VerifyOops complements techniques
   757   // like ScavengeALot, because it eagerly inspects oops in transit,
   758   // as they enter or leave the stack, as opposed to ScavengeALot,
   759   // which inspects oops "at rest", in the stack or heap, at safepoints.
   760   // For this reason, +VerifyOops can sometimes detect bugs very close
   761   // to their point of creation.  It can also serve as a cross-check
   762   // on the validity of oop maps, when used toegether with ScavengeALot.
   764   // It would be good to verify oops at other points, especially
   765   // when an oop is used as a base pointer for a load or store.
   766   // This is presently difficult, because it is hard to know when
   767   // a base address is biased or not.  (If we had such information,
   768   // it would be easy and useful to make a two-argument version of
   769   // verify_oop which unbiases the base, and performs verification.)
   771   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   772   bool is_verified_oop_base  = false;
   773   bool is_verified_oop_load  = false;
   774   bool is_verified_oop_store = false;
   775   int tmp_enc = -1;
   776   if (VerifyOops && src1_enc != R_SP_enc) {
   777     // classify the op, mainly for an assert check
   778     int st_op = 0, ld_op = 0;
   779     switch (primary) {
   780     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   781     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   782     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   783     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   784     case Assembler::std_op3:  st_op = Op_StoreL; break;
   785     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   786     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   788     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   789     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   790     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   791     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   792     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   793     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   794     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   795     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   796     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   797     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   798     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   800     default: ShouldNotReachHere();
   801     }
   802     if (tertiary == REGP_OP) {
   803       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   804       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   805       else                          ShouldNotReachHere();
   806       if (st_op) {
   807         // a store
   808         // inputs are (0:control, 1:memory, 2:address, 3:value)
   809         Node* n2 = n->in(3);
   810         if (n2 != NULL) {
   811           const Type* t = n2->bottom_type();
   812           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   813         }
   814       } else {
   815         // a load
   816         const Type* t = n->bottom_type();
   817         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   818       }
   819     }
   821     if (ld_op) {
   822       // a Load
   823       // inputs are (0:control, 1:memory, 2:address)
   824       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   825           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   826           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   827           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   828           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   829           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   830           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   831           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   832           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   833           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   834           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   835           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   836           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   837           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   838           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   839           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   840           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   841           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   842           !(n->rule() == loadUB_rule)) {
   843         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   844       }
   845     } else if (st_op) {
   846       // a Store
   847       // inputs are (0:control, 1:memory, 2:address, 3:value)
   848       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   849           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   850           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   851           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   852           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   853           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   854           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   855           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   856           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   857         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   858       }
   859     }
   861     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   862       Node* addr = n->in(2);
   863       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   864         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   865         if (atype != NULL) {
   866           intptr_t offset = get_offset_from_base(n, atype, disp32);
   867           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   868           if (offset != offset_2) {
   869             get_offset_from_base(n, atype, disp32);
   870             get_offset_from_base_2(n, atype, disp32);
   871           }
   872           assert(offset == offset_2, "different offsets");
   873           if (offset == disp32) {
   874             // we now know that src1 is a true oop pointer
   875             is_verified_oop_base = true;
   876             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   877               if( primary == Assembler::ldd_op3 ) {
   878                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   879               } else {
   880                 tmp_enc = dst_enc;
   881                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   882                 assert(src1_enc != dst_enc, "");
   883               }
   884             }
   885           }
   886           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   887                        || offset == oopDesc::mark_offset_in_bytes())) {
   888                       // loading the mark should not be allowed either, but
   889                       // we don't check this since it conflicts with InlineObjectHash
   890                       // usage of LoadINode to get the mark. We could keep the
   891                       // check if we create a new LoadMarkNode
   892             // but do not verify the object before its header is initialized
   893             ShouldNotReachHere();
   894           }
   895         }
   896       }
   897     }
   898   }
   899 #endif
   901   uint instr;
   902   instr = (Assembler::ldst_op << 30)
   903         | (dst_enc        << 25)
   904         | (primary        << 19)
   905         | (src1_enc       << 14);
   907   uint index = src2_enc;
   908   int disp = disp32;
   910   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   911     disp += STACK_BIAS;
   913   // We should have a compiler bailout here rather than a guarantee.
   914   // Better yet would be some mechanism to handle variable-size matches correctly.
   915   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   917   if( disp == 0 ) {
   918     // use reg-reg form
   919     // bit 13 is already zero
   920     instr |= index;
   921   } else {
   922     // use reg-imm form
   923     instr |= 0x00002000;          // set bit 13 to one
   924     instr |= disp & 0x1FFF;
   925   }
   927   cbuf.insts()->emit_int32(instr);
   929 #ifdef ASSERT
   930   {
   931     MacroAssembler _masm(&cbuf);
   932     if (is_verified_oop_base) {
   933       __ verify_oop(reg_to_register_object(src1_enc));
   934     }
   935     if (is_verified_oop_store) {
   936       __ verify_oop(reg_to_register_object(dst_enc));
   937     }
   938     if (tmp_enc != -1) {
   939       __ mov(O7, reg_to_register_object(tmp_enc));
   940     }
   941     if (is_verified_oop_load) {
   942       __ verify_oop(reg_to_register_object(dst_enc));
   943     }
   944   }
   945 #endif
   946 }
   948 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
   949   // The method which records debug information at every safepoint
   950   // expects the call to be the first instruction in the snippet as
   951   // it creates a PcDesc structure which tracks the offset of a call
   952   // from the start of the codeBlob. This offset is computed as
   953   // code_end() - code_begin() of the code which has been emitted
   954   // so far.
   955   // In this particular case we have skirted around the problem by
   956   // putting the "mov" instruction in the delay slot but the problem
   957   // may bite us again at some other point and a cleaner/generic
   958   // solution using relocations would be needed.
   959   MacroAssembler _masm(&cbuf);
   960   __ set_inst_mark();
   962   // We flush the current window just so that there is a valid stack copy
   963   // the fact that the current window becomes active again instantly is
   964   // not a problem there is nothing live in it.
   966 #ifdef ASSERT
   967   int startpos = __ offset();
   968 #endif /* ASSERT */
   970   __ call((address)entry_point, rtype);
   972   if (preserve_g2)   __ delayed()->mov(G2, L7);
   973   else __ delayed()->nop();
   975   if (preserve_g2)   __ mov(L7, G2);
   977 #ifdef ASSERT
   978   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   979 #ifdef _LP64
   980     // Trash argument dump slots.
   981     __ set(0xb0b8ac0db0b8ac0d, G1);
   982     __ mov(G1, G5);
   983     __ stx(G1, SP, STACK_BIAS + 0x80);
   984     __ stx(G1, SP, STACK_BIAS + 0x88);
   985     __ stx(G1, SP, STACK_BIAS + 0x90);
   986     __ stx(G1, SP, STACK_BIAS + 0x98);
   987     __ stx(G1, SP, STACK_BIAS + 0xA0);
   988     __ stx(G1, SP, STACK_BIAS + 0xA8);
   989 #else // _LP64
   990     // this is also a native call, so smash the first 7 stack locations,
   991     // and the various registers
   993     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   994     // while [SP+0x44..0x58] are the argument dump slots.
   995     __ set((intptr_t)0xbaadf00d, G1);
   996     __ mov(G1, G5);
   997     __ sllx(G1, 32, G1);
   998     __ or3(G1, G5, G1);
   999     __ mov(G1, G5);
  1000     __ stx(G1, SP, 0x40);
  1001     __ stx(G1, SP, 0x48);
  1002     __ stx(G1, SP, 0x50);
  1003     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
  1004 #endif // _LP64
  1006 #endif /*ASSERT*/
  1009 //=============================================================================
  1010 // REQUIRED FUNCTIONALITY for encoding
  1011 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1012 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1015 //=============================================================================
  1016 const bool Matcher::constant_table_absolute_addressing = false;
  1017 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask;
  1019 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1020   Compile* C = ra_->C;
  1021   Compile::ConstantTable& constant_table = C->constant_table();
  1022   MacroAssembler _masm(&cbuf);
  1024   Register r = as_Register(ra_->get_encode(this));
  1025   CodeSection* cs = __ code()->consts();
  1026   int consts_size = cs->align_at_start(cs->size());
  1028   if (UseRDPCForConstantTableBase) {
  1029     // For the following RDPC logic to work correctly the consts
  1030     // section must be allocated right before the insts section.  This
  1031     // assert checks for that.  The layout and the SECT_* constants
  1032     // are defined in src/share/vm/asm/codeBuffer.hpp.
  1033     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
  1034     int offset = __ offset();
  1035     int disp;
  1037     // If the displacement from the current PC to the constant table
  1038     // base fits into simm13 we set the constant table base to the
  1039     // current PC.
  1040     if (__ is_simm13(-(consts_size + offset))) {
  1041       constant_table.set_table_base_offset(-(consts_size + offset));
  1042       disp = 0;
  1043     } else {
  1044       // If the offset of the top constant (last entry in the table)
  1045       // fits into simm13 we set the constant table base to the actual
  1046       // table base.
  1047       if (__ is_simm13(constant_table.top_offset())) {
  1048         constant_table.set_table_base_offset(0);
  1049         disp = consts_size + offset;
  1050       } else {
  1051         // Otherwise we set the constant table base in the middle of the
  1052         // constant table.
  1053         int half_consts_size = consts_size / 2;
  1054         assert(half_consts_size * 2 == consts_size, "sanity");
  1055         constant_table.set_table_base_offset(-half_consts_size);  // table base offset gets added to the load displacement.
  1056         disp = half_consts_size + offset;
  1060     __ rdpc(r);
  1062     if (disp != 0) {
  1063       assert(r != O7, "need temporary");
  1064       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
  1067   else {
  1068     // Materialize the constant table base.
  1069     assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
  1070     address baseaddr = cs->start() + -(constant_table.table_base_offset());
  1071     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
  1072     AddressLiteral base(baseaddr, rspec);
  1073     __ set(base, r);
  1077 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
  1078   if (UseRDPCForConstantTableBase) {
  1079     // This is really the worst case but generally it's only 1 instruction.
  1080     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
  1081   } else {
  1082     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
  1086 #ifndef PRODUCT
  1087 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1088   char reg[128];
  1089   ra_->dump_register(this, reg);
  1090   if (UseRDPCForConstantTableBase) {
  1091     st->print("RDPC   %s\t! constant table base", reg);
  1092   } else {
  1093     st->print("SET    &constanttable,%s\t! constant table base", reg);
  1096 #endif
  1099 //=============================================================================
  1101 #ifndef PRODUCT
  1102 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1103   Compile* C = ra_->C;
  1105   for (int i = 0; i < OptoPrologueNops; i++) {
  1106     st->print_cr("NOP"); st->print("\t");
  1109   if( VerifyThread ) {
  1110     st->print_cr("Verify_Thread"); st->print("\t");
  1113   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1115   // Calls to C2R adapters often do not accept exceptional returns.
  1116   // We require that their callers must bang for them.  But be careful, because
  1117   // some VM calls (such as call site linkage) can use several kilobytes of
  1118   // stack.  But the stack safety zone should account for that.
  1119   // See bugs 4446381, 4468289, 4497237.
  1120   if (C->need_stack_bang(framesize)) {
  1121     st->print_cr("! stack bang"); st->print("\t");
  1124   if (Assembler::is_simm13(-framesize)) {
  1125     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1126   } else {
  1127     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1128     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1129     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1133 #endif
  1135 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1136   Compile* C = ra_->C;
  1137   MacroAssembler _masm(&cbuf);
  1139   for (int i = 0; i < OptoPrologueNops; i++) {
  1140     __ nop();
  1143   __ verify_thread();
  1145   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1146   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1147   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1149   // Calls to C2R adapters often do not accept exceptional returns.
  1150   // We require that their callers must bang for them.  But be careful, because
  1151   // some VM calls (such as call site linkage) can use several kilobytes of
  1152   // stack.  But the stack safety zone should account for that.
  1153   // See bugs 4446381, 4468289, 4497237.
  1154   if (C->need_stack_bang(framesize)) {
  1155     __ generate_stack_overflow_check(framesize);
  1158   if (Assembler::is_simm13(-framesize)) {
  1159     __ save(SP, -framesize, SP);
  1160   } else {
  1161     __ sethi(-framesize & ~0x3ff, G3);
  1162     __ add(G3, -framesize & 0x3ff, G3);
  1163     __ save(SP, G3, SP);
  1165   C->set_frame_complete( __ offset() );
  1168 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1169   return MachNode::size(ra_);
  1172 int MachPrologNode::reloc() const {
  1173   return 10; // a large enough number
  1176 //=============================================================================
  1177 #ifndef PRODUCT
  1178 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1179   Compile* C = ra_->C;
  1181   if( do_polling() && ra_->C->is_method_compilation() ) {
  1182     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1183 #ifdef _LP64
  1184     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1185 #else
  1186     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1187 #endif
  1190   if( do_polling() )
  1191     st->print("RET\n\t");
  1193   st->print("RESTORE");
  1195 #endif
  1197 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1198   MacroAssembler _masm(&cbuf);
  1199   Compile* C = ra_->C;
  1201   __ verify_thread();
  1203   // If this does safepoint polling, then do it here
  1204   if( do_polling() && ra_->C->is_method_compilation() ) {
  1205     AddressLiteral polling_page(os::get_polling_page());
  1206     __ sethi(polling_page, L0);
  1207     __ relocate(relocInfo::poll_return_type);
  1208     __ ld_ptr( L0, 0, G0 );
  1211   // If this is a return, then stuff the restore in the delay slot
  1212   if( do_polling() ) {
  1213     __ ret();
  1214     __ delayed()->restore();
  1215   } else {
  1216     __ restore();
  1220 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1221   return MachNode::size(ra_);
  1224 int MachEpilogNode::reloc() const {
  1225   return 16; // a large enough number
  1228 const Pipeline * MachEpilogNode::pipeline() const {
  1229   return MachNode::pipeline_class();
  1232 int MachEpilogNode::safepoint_offset() const {
  1233   assert( do_polling(), "no return for this epilog node");
  1234   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
  1237 //=============================================================================
  1239 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1240 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1241 static enum RC rc_class( OptoReg::Name reg ) {
  1242   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1243   if (OptoReg::is_stack(reg)) return rc_stack;
  1244   VMReg r = OptoReg::as_VMReg(reg);
  1245   if (r->is_Register()) return rc_int;
  1246   assert(r->is_FloatRegister(), "must be");
  1247   return rc_float;
  1250 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1251   if( cbuf ) {
  1252     // Better yet would be some mechanism to handle variable-size matches correctly
  1253     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1254       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1255     } else {
  1256       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1259 #ifndef PRODUCT
  1260   else if( !do_size ) {
  1261     if( size != 0 ) st->print("\n\t");
  1262     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1263     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1265 #endif
  1266   return size+4;
  1269 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1270   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1271 #ifndef PRODUCT
  1272   else if( !do_size ) {
  1273     if( size != 0 ) st->print("\n\t");
  1274     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1276 #endif
  1277   return size+4;
  1280 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1281                                         PhaseRegAlloc *ra_,
  1282                                         bool do_size,
  1283                                         outputStream* st ) const {
  1284   // Get registers to move
  1285   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1286   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1287   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1288   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1290   enum RC src_second_rc = rc_class(src_second);
  1291   enum RC src_first_rc = rc_class(src_first);
  1292   enum RC dst_second_rc = rc_class(dst_second);
  1293   enum RC dst_first_rc = rc_class(dst_first);
  1295   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1297   // Generate spill code!
  1298   int size = 0;
  1300   if( src_first == dst_first && src_second == dst_second )
  1301     return size;            // Self copy, no move
  1303   // --------------------------------------
  1304   // Check for mem-mem move.  Load into unused float registers and fall into
  1305   // the float-store case.
  1306   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1307     int offset = ra_->reg2offset(src_first);
  1308     // Further check for aligned-adjacent pair, so we can use a double load
  1309     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1310       src_second    = OptoReg::Name(R_F31_num);
  1311       src_second_rc = rc_float;
  1312       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1313     } else {
  1314       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1316     src_first    = OptoReg::Name(R_F30_num);
  1317     src_first_rc = rc_float;
  1320   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1321     int offset = ra_->reg2offset(src_second);
  1322     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1323     src_second    = OptoReg::Name(R_F31_num);
  1324     src_second_rc = rc_float;
  1327   // --------------------------------------
  1328   // Check for float->int copy; requires a trip through memory
  1329   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
  1330     int offset = frame::register_save_words*wordSize;
  1331     if (cbuf) {
  1332       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1333       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1334       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1335       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1337 #ifndef PRODUCT
  1338     else if (!do_size) {
  1339       if (size != 0) st->print("\n\t");
  1340       st->print(  "SUB    R_SP,16,R_SP\n");
  1341       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1342       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1343       st->print("\tADD    R_SP,16,R_SP\n");
  1345 #endif
  1346     size += 16;
  1349   // Check for float->int copy on T4
  1350   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
  1351     // Further check for aligned-adjacent pair, so we can use a double move
  1352     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1353       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
  1354     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
  1356   // Check for int->float copy on T4
  1357   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
  1358     // Further check for aligned-adjacent pair, so we can use a double move
  1359     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
  1360       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
  1361     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
  1364   // --------------------------------------
  1365   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1366   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1367   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1368   // there.  Misaligned sources only come from native-long-returns (handled
  1369   // special below).
  1370 #ifndef _LP64
  1371   if( src_first_rc == rc_int &&     // source is already big-endian
  1372       src_second_rc != rc_bad &&    // 64-bit move
  1373       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1374     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1375     // Do the big-endian flop.
  1376     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1377     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1379 #endif
  1381   // --------------------------------------
  1382   // Check for integer reg-reg copy
  1383   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1384 #ifndef _LP64
  1385     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1386       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1387       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1388       //       operand contains the least significant word of the 64-bit value and vice versa.
  1389       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1390       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1391       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1392       if( cbuf ) {
  1393         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1394         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1395         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1396 #ifndef PRODUCT
  1397       } else if( !do_size ) {
  1398         if( size != 0 ) st->print("\n\t");
  1399         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1400         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1401         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1402 #endif
  1404       return size+12;
  1406     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1407       // returning a long value in I0/I1
  1408       // a SpillCopy must be able to target a return instruction's reg_class
  1409       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1410       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1411       //       operand contains the least significant word of the 64-bit value and vice versa.
  1412       OptoReg::Name tdest = dst_first;
  1414       if (src_first == dst_first) {
  1415         tdest = OptoReg::Name(R_O7_num);
  1416         size += 4;
  1419       if( cbuf ) {
  1420         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1421         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1422         // ShrL_reg_imm6
  1423         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1424         // ShrR_reg_imm6  src, 0, dst
  1425         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1426         if (tdest != dst_first) {
  1427           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1430 #ifndef PRODUCT
  1431       else if( !do_size ) {
  1432         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1433         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1434         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1435         if (tdest != dst_first) {
  1436           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1439 #endif // PRODUCT
  1440       return size+8;
  1442 #endif // !_LP64
  1443     // Else normal reg-reg copy
  1444     assert( src_second != dst_first, "smashed second before evacuating it" );
  1445     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1446     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1447     // This moves an aligned adjacent pair.
  1448     // See if we are done.
  1449     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1450       return size;
  1453   // Check for integer store
  1454   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1455     int offset = ra_->reg2offset(dst_first);
  1456     // Further check for aligned-adjacent pair, so we can use a double store
  1457     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1458       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1459     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1462   // Check for integer load
  1463   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1464     int offset = ra_->reg2offset(src_first);
  1465     // Further check for aligned-adjacent pair, so we can use a double load
  1466     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1467       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1468     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1471   // Check for float reg-reg copy
  1472   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1473     // Further check for aligned-adjacent pair, so we can use a double move
  1474     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1475       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1476     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1479   // Check for float store
  1480   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1481     int offset = ra_->reg2offset(dst_first);
  1482     // Further check for aligned-adjacent pair, so we can use a double store
  1483     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1484       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1485     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1488   // Check for float load
  1489   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1490     int offset = ra_->reg2offset(src_first);
  1491     // Further check for aligned-adjacent pair, so we can use a double load
  1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1493       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1494     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1497   // --------------------------------------------------------------------
  1498   // Check for hi bits still needing moving.  Only happens for misaligned
  1499   // arguments to native calls.
  1500   if( src_second == dst_second )
  1501     return size;               // Self copy; no move
  1502   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1504 #ifndef _LP64
  1505   // In the LP64 build, all registers can be moved as aligned/adjacent
  1506   // pairs, so there's never any need to move the high bits separately.
  1507   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1508   // all sorts of silly alignment problems.
  1510   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1511   // 32-bits of a 64-bit register, but are needed in low bits of another
  1512   // register (else it's a hi-bits-to-hi-bits copy which should have
  1513   // happened already as part of a 64-bit move)
  1514   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1515     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1516     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1517     // Shift src_second down to dst_second's low bits.
  1518     if( cbuf ) {
  1519       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1520 #ifndef PRODUCT
  1521     } else if( !do_size ) {
  1522       if( size != 0 ) st->print("\n\t");
  1523       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1524 #endif
  1526     return size+4;
  1529   // Check for high word integer store.  Must down-shift the hi bits
  1530   // into a temp register, then fall into the case of storing int bits.
  1531   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1532     // Shift src_second down to dst_second's low bits.
  1533     if( cbuf ) {
  1534       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1535 #ifndef PRODUCT
  1536     } else if( !do_size ) {
  1537       if( size != 0 ) st->print("\n\t");
  1538       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1539 #endif
  1541     size+=4;
  1542     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1545   // Check for high word integer load
  1546   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1547     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1549   // Check for high word integer store
  1550   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1551     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1553   // Check for high word float store
  1554   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1555     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1557 #endif // !_LP64
  1559   Unimplemented();
  1562 #ifndef PRODUCT
  1563 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1564   implementation( NULL, ra_, false, st );
  1566 #endif
  1568 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1569   implementation( &cbuf, ra_, false, NULL );
  1572 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1573   return implementation( NULL, ra_, true, NULL );
  1576 //=============================================================================
  1577 #ifndef PRODUCT
  1578 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1579   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1581 #endif
  1583 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1584   MacroAssembler _masm(&cbuf);
  1585   for(int i = 0; i < _count; i += 1) {
  1586     __ nop();
  1590 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1591   return 4 * _count;
  1595 //=============================================================================
  1596 #ifndef PRODUCT
  1597 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1598   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1599   int reg = ra_->get_reg_first(this);
  1600   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1602 #endif
  1604 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1605   MacroAssembler _masm(&cbuf);
  1606   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1607   int reg = ra_->get_encode(this);
  1609   if (Assembler::is_simm13(offset)) {
  1610      __ add(SP, offset, reg_to_register_object(reg));
  1611   } else {
  1612      __ set(offset, O7);
  1613      __ add(SP, O7, reg_to_register_object(reg));
  1617 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1618   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1619   assert(ra_ == ra_->C->regalloc(), "sanity");
  1620   return ra_->C->scratch_emit_size(this);
  1623 //=============================================================================
  1625 // emit call stub, compiled java to interpretor
  1626 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1628   // Stub is fixed up when the corresponding call is converted from calling
  1629   // compiled code to calling interpreted code.
  1630   // set (empty), G5
  1631   // jmp -1
  1633   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1635   MacroAssembler _masm(&cbuf);
  1637   address base =
  1638   __ start_a_stub(Compile::MAX_stubs_size);
  1639   if (base == NULL)  return;  // CodeBuffer::expand failed
  1641   // static stub relocation stores the instruction address of the call
  1642   __ relocate(static_stub_Relocation::spec(mark));
  1644   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1646   __ set_inst_mark();
  1647   AddressLiteral addrlit(-1);
  1648   __ JUMP(addrlit, G3, 0);
  1650   __ delayed()->nop();
  1652   // Update current stubs pointer and restore code_end.
  1653   __ end_a_stub();
  1656 // size of call stub, compiled java to interpretor
  1657 uint size_java_to_interp() {
  1658   // This doesn't need to be accurate but it must be larger or equal to
  1659   // the real size of the stub.
  1660   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1661           NativeJump::instruction_size + // sethi; jmp; nop
  1662           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1664 // relocation entries for call stub, compiled java to interpretor
  1665 uint reloc_java_to_interp() {
  1666   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1670 //=============================================================================
  1671 #ifndef PRODUCT
  1672 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1673   st->print_cr("\nUEP:");
  1674 #ifdef    _LP64
  1675   if (UseCompressedOops) {
  1676     assert(Universe::heap() != NULL, "java heap should be initialized");
  1677     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1678     st->print_cr("\tSLL    R_G5,3,R_G5");
  1679     if (Universe::narrow_oop_base() != NULL)
  1680       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1681   } else {
  1682     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1684   st->print_cr("\tCMP    R_G5,R_G3" );
  1685   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1686 #else  // _LP64
  1687   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1688   st->print_cr("\tCMP    R_G5,R_G3" );
  1689   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1690 #endif // _LP64
  1692 #endif
  1694 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1695   MacroAssembler _masm(&cbuf);
  1696   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1697   Register temp_reg   = G3;
  1698   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1700   // Load klass from receiver
  1701   __ load_klass(O0, temp_reg);
  1702   // Compare against expected klass
  1703   __ cmp(temp_reg, G5_ic_reg);
  1704   // Branch to miss code, checks xcc or icc depending
  1705   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1708 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1709   return MachNode::size(ra_);
  1713 //=============================================================================
  1715 uint size_exception_handler() {
  1716   if (TraceJumps) {
  1717     return (400); // just a guess
  1719   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1722 uint size_deopt_handler() {
  1723   if (TraceJumps) {
  1724     return (400); // just a guess
  1726   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1729 // Emit exception handler code.
  1730 int emit_exception_handler(CodeBuffer& cbuf) {
  1731   Register temp_reg = G3;
  1732   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1733   MacroAssembler _masm(&cbuf);
  1735   address base =
  1736   __ start_a_stub(size_exception_handler());
  1737   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1739   int offset = __ offset();
  1741   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1742   __ delayed()->nop();
  1744   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1746   __ end_a_stub();
  1748   return offset;
  1751 int emit_deopt_handler(CodeBuffer& cbuf) {
  1752   // Can't use any of the current frame's registers as we may have deopted
  1753   // at a poll and everything (including G3) can be live.
  1754   Register temp_reg = L0;
  1755   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1756   MacroAssembler _masm(&cbuf);
  1758   address base =
  1759   __ start_a_stub(size_deopt_handler());
  1760   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1762   int offset = __ offset();
  1763   __ save_frame(0);
  1764   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1765   __ delayed()->restore();
  1767   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1769   __ end_a_stub();
  1770   return offset;
  1774 // Given a register encoding, produce a Integer Register object
  1775 static Register reg_to_register_object(int register_encoding) {
  1776   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1777   return as_Register(register_encoding);
  1780 // Given a register encoding, produce a single-precision Float Register object
  1781 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1782   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1783   return as_SingleFloatRegister(register_encoding);
  1786 // Given a register encoding, produce a double-precision Float Register object
  1787 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1788   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1789   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1790   return as_DoubleFloatRegister(register_encoding);
  1793 const bool Matcher::match_rule_supported(int opcode) {
  1794   if (!has_match_rule(opcode))
  1795     return false;
  1797   switch (opcode) {
  1798   case Op_CountLeadingZerosI:
  1799   case Op_CountLeadingZerosL:
  1800   case Op_CountTrailingZerosI:
  1801   case Op_CountTrailingZerosL:
  1802     if (!UsePopCountInstruction)
  1803       return false;
  1804     break;
  1807   return true;  // Per default match rules are supported.
  1810 int Matcher::regnum_to_fpu_offset(int regnum) {
  1811   return regnum - 32; // The FP registers are in the second chunk
  1814 #ifdef ASSERT
  1815 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1816 #endif
  1818 // Vector width in bytes
  1819 const uint Matcher::vector_width_in_bytes(void) {
  1820   return 8;
  1823 // Vector ideal reg
  1824 const uint Matcher::vector_ideal_reg(void) {
  1825   return Op_RegD;
  1828 // USII supports fxtof through the whole range of number, USIII doesn't
  1829 const bool Matcher::convL2FSupported(void) {
  1830   return VM_Version::has_fast_fxtof();
  1833 // Is this branch offset short enough that a short branch can be used?
  1834 //
  1835 // NOTE: If the platform does not provide any short branch variants, then
  1836 //       this method should return false for offset 0.
  1837 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1838   return false;
  1841 const bool Matcher::isSimpleConstant64(jlong value) {
  1842   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1843   // Depends on optimizations in MacroAssembler::setx.
  1844   int hi = (int)(value >> 32);
  1845   int lo = (int)(value & ~0);
  1846   return (hi == 0) || (hi == -1) || (lo == 0);
  1849 // No scaling for the parameter the ClearArray node.
  1850 const bool Matcher::init_array_count_is_in_bytes = true;
  1852 // Threshold size for cleararray.
  1853 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1855 // Should the Matcher clone shifts on addressing modes, expecting them to
  1856 // be subsumed into complex addressing expressions or compute them into
  1857 // registers?  True for Intel but false for most RISCs
  1858 const bool Matcher::clone_shift_expressions = false;
  1860 // Do we need to mask the count passed to shift instructions or does
  1861 // the cpu only look at the lower 5/6 bits anyway?
  1862 const bool Matcher::need_masked_shift_count = false;
  1864 bool Matcher::narrow_oop_use_complex_address() {
  1865   NOT_LP64(ShouldNotCallThis());
  1866   assert(UseCompressedOops, "only for compressed oops code");
  1867   return false;
  1870 // Is it better to copy float constants, or load them directly from memory?
  1871 // Intel can load a float constant from a direct address, requiring no
  1872 // extra registers.  Most RISCs will have to materialize an address into a
  1873 // register first, so they would do better to copy the constant from stack.
  1874 const bool Matcher::rematerialize_float_constants = false;
  1876 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1877 // needed.  Else we split the double into 2 integer pieces and move it
  1878 // piece-by-piece.  Only happens when passing doubles into C code as the
  1879 // Java calling convention forces doubles to be aligned.
  1880 #ifdef _LP64
  1881 const bool Matcher::misaligned_doubles_ok = true;
  1882 #else
  1883 const bool Matcher::misaligned_doubles_ok = false;
  1884 #endif
  1886 // No-op on SPARC.
  1887 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1890 // Advertise here if the CPU requires explicit rounding operations
  1891 // to implement the UseStrictFP mode.
  1892 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1894 // Are floats conerted to double when stored to stack during deoptimization?
  1895 // Sparc does not handle callee-save floats.
  1896 bool Matcher::float_in_double() { return false; }
  1898 // Do ints take an entire long register or just half?
  1899 // Note that we if-def off of _LP64.
  1900 // The relevant question is how the int is callee-saved.  In _LP64
  1901 // the whole long is written but de-opt'ing will have to extract
  1902 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1903 #ifdef _LP64
  1904 const bool Matcher::int_in_long = true;
  1905 #else
  1906 const bool Matcher::int_in_long = false;
  1907 #endif
  1909 // Return whether or not this register is ever used as an argument.  This
  1910 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1911 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1912 // arguments in those registers not be available to the callee.
  1913 bool Matcher::can_be_java_arg( int reg ) {
  1914   // Standard sparc 6 args in registers
  1915   if( reg == R_I0_num ||
  1916       reg == R_I1_num ||
  1917       reg == R_I2_num ||
  1918       reg == R_I3_num ||
  1919       reg == R_I4_num ||
  1920       reg == R_I5_num ) return true;
  1921 #ifdef _LP64
  1922   // 64-bit builds can pass 64-bit pointers and longs in
  1923   // the high I registers
  1924   if( reg == R_I0H_num ||
  1925       reg == R_I1H_num ||
  1926       reg == R_I2H_num ||
  1927       reg == R_I3H_num ||
  1928       reg == R_I4H_num ||
  1929       reg == R_I5H_num ) return true;
  1931   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1932     return true;
  1935 #else
  1936   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1937   // Longs cannot be passed in O regs, because O regs become I regs
  1938   // after a 'save' and I regs get their high bits chopped off on
  1939   // interrupt.
  1940   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1941   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1942 #endif
  1943   // A few float args in registers
  1944   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1946   return false;
  1949 bool Matcher::is_spillable_arg( int reg ) {
  1950   return can_be_java_arg(reg);
  1953 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
  1954   // Use hardware SDIVX instruction when it is
  1955   // faster than a code which use multiply.
  1956   return VM_Version::has_fast_idiv();
  1959 // Register for DIVI projection of divmodI
  1960 RegMask Matcher::divI_proj_mask() {
  1961   ShouldNotReachHere();
  1962   return RegMask();
  1965 // Register for MODI projection of divmodI
  1966 RegMask Matcher::modI_proj_mask() {
  1967   ShouldNotReachHere();
  1968   return RegMask();
  1971 // Register for DIVL projection of divmodL
  1972 RegMask Matcher::divL_proj_mask() {
  1973   ShouldNotReachHere();
  1974   return RegMask();
  1977 // Register for MODL projection of divmodL
  1978 RegMask Matcher::modL_proj_mask() {
  1979   ShouldNotReachHere();
  1980   return RegMask();
  1983 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1984   return L7_REGP_mask;
  1987 %}
  1990 // The intptr_t operand types, defined by textual substitution.
  1991 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1992 #ifdef _LP64
  1993 #define immX      immL
  1994 #define immX13    immL13
  1995 #define immX13m7  immL13m7
  1996 #define iRegX     iRegL
  1997 #define g1RegX    g1RegL
  1998 #else
  1999 #define immX      immI
  2000 #define immX13    immI13
  2001 #define immX13m7  immI13m7
  2002 #define iRegX     iRegI
  2003 #define g1RegX    g1RegI
  2004 #endif
  2006 //----------ENCODING BLOCK-----------------------------------------------------
  2007 // This block specifies the encoding classes used by the compiler to output
  2008 // byte streams.  Encoding classes are parameterized macros used by
  2009 // Machine Instruction Nodes in order to generate the bit encoding of the
  2010 // instruction.  Operands specify their base encoding interface with the
  2011 // interface keyword.  There are currently supported four interfaces,
  2012 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  2013 // operand to generate a function which returns its register number when
  2014 // queried.   CONST_INTER causes an operand to generate a function which
  2015 // returns the value of the constant when queried.  MEMORY_INTER causes an
  2016 // operand to generate four functions which return the Base Register, the
  2017 // Index Register, the Scale Value, and the Offset Value of the operand when
  2018 // queried.  COND_INTER causes an operand to generate six functions which
  2019 // return the encoding code (ie - encoding bits for the instruction)
  2020 // associated with each basic boolean condition for a conditional instruction.
  2021 //
  2022 // Instructions specify two basic values for encoding.  Again, a function
  2023 // is available to check if the constant displacement is an oop. They use the
  2024 // ins_encode keyword to specify their encoding classes (which must be
  2025 // a sequence of enc_class names, and their parameters, specified in
  2026 // the encoding block), and they use the
  2027 // opcode keyword to specify, in order, their primary, secondary, and
  2028 // tertiary opcode.  Only the opcode sections which a particular instruction
  2029 // needs for encoding need to be specified.
  2030 encode %{
  2031   enc_class enc_untested %{
  2032 #ifdef ASSERT
  2033     MacroAssembler _masm(&cbuf);
  2034     __ untested("encoding");
  2035 #endif
  2036   %}
  2038   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  2039     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  2040                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2041   %}
  2043   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  2044     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2045                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  2046   %}
  2048   enc_class form3_mem_prefetch_read( memory mem ) %{
  2049     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2050                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  2051   %}
  2053   enc_class form3_mem_prefetch_write( memory mem ) %{
  2054     emit_form3_mem_reg(cbuf, this, $primary, -1,
  2055                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  2056   %}
  2058   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  2059     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2060     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2061     guarantee($mem$$index == R_G0_enc, "double index?");
  2062     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  2063     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  2064     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  2065     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  2066   %}
  2068   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  2069     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  2070     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  2071     guarantee($mem$$index == R_G0_enc, "double index?");
  2072     // Load long with 2 instructions
  2073     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  2074     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  2075   %}
  2077   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  2078   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  2079     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  2080     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  2081   %}
  2083   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  2084     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2085     if( $rs2$$reg != $rd$$reg )
  2086       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  2087   %}
  2089   // Target lo half of long
  2090   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  2091     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2092     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  2093       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  2094   %}
  2096   // Source lo half of long
  2097   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  2098     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2099     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  2100       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  2101   %}
  2103   // Target hi half of long
  2104   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  2105     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  2106   %}
  2108   // Source lo half of long, and leave it sign extended.
  2109   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  2110     // Sign extend low half
  2111     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  2112   %}
  2114   // Source hi half of long, and leave it sign extended.
  2115   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2116     // Shift high half to low half
  2117     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2118   %}
  2120   // Source hi half of long
  2121   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2122     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2123     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2124       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2125   %}
  2127   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2128     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2129   %}
  2131   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2132     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2133     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2134   %}
  2136   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2137     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2138     // clear if nothing else is happening
  2139     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2140     // blt,a,pn done
  2141     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2142     // mov dst,-1 in delay slot
  2143     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2144   %}
  2146   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2147     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2148   %}
  2150   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2151     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2152   %}
  2154   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2155     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2156   %}
  2158   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2159     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2160   %}
  2162   enc_class move_return_pc_to_o1() %{
  2163     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2164   %}
  2166 #ifdef _LP64
  2167   /* %%% merge with enc_to_bool */
  2168   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2169     MacroAssembler _masm(&cbuf);
  2171     Register   src_reg = reg_to_register_object($src$$reg);
  2172     Register   dst_reg = reg_to_register_object($dst$$reg);
  2173     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2174   %}
  2175 #endif
  2177   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2178     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2179     MacroAssembler _masm(&cbuf);
  2181     Register   p_reg = reg_to_register_object($p$$reg);
  2182     Register   q_reg = reg_to_register_object($q$$reg);
  2183     Register   y_reg = reg_to_register_object($y$$reg);
  2184     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2186     __ subcc( p_reg, q_reg,   p_reg );
  2187     __ add  ( p_reg, y_reg, tmp_reg );
  2188     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2189   %}
  2191   enc_class form_d2i_helper(regD src, regF dst) %{
  2192     // fcmp %fcc0,$src,$src
  2193     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2194     // branch %fcc0 not-nan, predict taken
  2195     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2196     // fdtoi $src,$dst
  2197     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2198     // fitos $dst,$dst (if nan)
  2199     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2200     // clear $dst (if nan)
  2201     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2202     // carry on here...
  2203   %}
  2205   enc_class form_d2l_helper(regD src, regD dst) %{
  2206     // fcmp %fcc0,$src,$src  check for NAN
  2207     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2208     // branch %fcc0 not-nan, predict taken
  2209     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2210     // fdtox $src,$dst   convert in delay slot
  2211     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2212     // fxtod $dst,$dst  (if nan)
  2213     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2214     // clear $dst (if nan)
  2215     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2216     // carry on here...
  2217   %}
  2219   enc_class form_f2i_helper(regF src, regF dst) %{
  2220     // fcmps %fcc0,$src,$src
  2221     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2222     // branch %fcc0 not-nan, predict taken
  2223     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2224     // fstoi $src,$dst
  2225     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2226     // fitos $dst,$dst (if nan)
  2227     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2228     // clear $dst (if nan)
  2229     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2230     // carry on here...
  2231   %}
  2233   enc_class form_f2l_helper(regF src, regD dst) %{
  2234     // fcmps %fcc0,$src,$src
  2235     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2236     // branch %fcc0 not-nan, predict taken
  2237     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2238     // fstox $src,$dst
  2239     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2240     // fxtod $dst,$dst (if nan)
  2241     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2242     // clear $dst (if nan)
  2243     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2244     // carry on here...
  2245   %}
  2247   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2248   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2249   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2250   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2252   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2254   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2255   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2257   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2258     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2259   %}
  2261   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2262     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2263   %}
  2265   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2266     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2267   %}
  2269   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2270     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2271   %}
  2273   enc_class form3_convI2F(regF rs2, regF rd) %{
  2274     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2275   %}
  2277   // Encloding class for traceable jumps
  2278   enc_class form_jmpl(g3RegP dest) %{
  2279     emit_jmpl(cbuf, $dest$$reg);
  2280   %}
  2282   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2283     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2284   %}
  2286   enc_class form2_nop() %{
  2287     emit_nop(cbuf);
  2288   %}
  2290   enc_class form2_illtrap() %{
  2291     emit_illtrap(cbuf);
  2292   %}
  2295   // Compare longs and convert into -1, 0, 1.
  2296   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2297     // CMP $src1,$src2
  2298     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2299     // blt,a,pn done
  2300     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2301     // mov dst,-1 in delay slot
  2302     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2303     // bgt,a,pn done
  2304     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2305     // mov dst,1 in delay slot
  2306     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2307     // CLR    $dst
  2308     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2309   %}
  2311   enc_class enc_PartialSubtypeCheck() %{
  2312     MacroAssembler _masm(&cbuf);
  2313     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2314     __ delayed()->nop();
  2315   %}
  2317   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
  2318     MacroAssembler _masm(&cbuf);
  2319     Label* L = $labl$$label;
  2320     Assembler::Predict predict_taken =
  2321       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2323     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
  2324     __ delayed()->nop();
  2325   %}
  2327   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2328     MacroAssembler _masm(&cbuf);
  2329     Label* L = $labl$$label;
  2330     Assembler::Predict predict_taken =
  2331       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  2333     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
  2334     __ delayed()->nop();
  2335   %}
  2337   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2338     int op = (Assembler::arith_op << 30) |
  2339              ($dst$$reg << 25) |
  2340              (Assembler::movcc_op3 << 19) |
  2341              (1 << 18) |                    // cc2 bit for 'icc'
  2342              ($cmp$$cmpcode << 14) |
  2343              (0 << 13) |                    // select register move
  2344              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2345              ($src$$reg << 0);
  2346     cbuf.insts()->emit_int32(op);
  2347   %}
  2349   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2350     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2351     int op = (Assembler::arith_op << 30) |
  2352              ($dst$$reg << 25) |
  2353              (Assembler::movcc_op3 << 19) |
  2354              (1 << 18) |                    // cc2 bit for 'icc'
  2355              ($cmp$$cmpcode << 14) |
  2356              (1 << 13) |                    // select immediate move
  2357              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2358              (simm11 << 0);
  2359     cbuf.insts()->emit_int32(op);
  2360   %}
  2362   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2363     int op = (Assembler::arith_op << 30) |
  2364              ($dst$$reg << 25) |
  2365              (Assembler::movcc_op3 << 19) |
  2366              (0 << 18) |                    // cc2 bit for 'fccX'
  2367              ($cmp$$cmpcode << 14) |
  2368              (0 << 13) |                    // select register move
  2369              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2370              ($src$$reg << 0);
  2371     cbuf.insts()->emit_int32(op);
  2372   %}
  2374   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2375     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2376     int op = (Assembler::arith_op << 30) |
  2377              ($dst$$reg << 25) |
  2378              (Assembler::movcc_op3 << 19) |
  2379              (0 << 18) |                    // cc2 bit for 'fccX'
  2380              ($cmp$$cmpcode << 14) |
  2381              (1 << 13) |                    // select immediate move
  2382              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2383              (simm11 << 0);
  2384     cbuf.insts()->emit_int32(op);
  2385   %}
  2387   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2388     int op = (Assembler::arith_op << 30) |
  2389              ($dst$$reg << 25) |
  2390              (Assembler::fpop2_op3 << 19) |
  2391              (0 << 18) |
  2392              ($cmp$$cmpcode << 14) |
  2393              (1 << 13) |                    // select register move
  2394              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2395              ($primary << 5) |              // select single, double or quad
  2396              ($src$$reg << 0);
  2397     cbuf.insts()->emit_int32(op);
  2398   %}
  2400   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2401     int op = (Assembler::arith_op << 30) |
  2402              ($dst$$reg << 25) |
  2403              (Assembler::fpop2_op3 << 19) |
  2404              (0 << 18) |
  2405              ($cmp$$cmpcode << 14) |
  2406              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2407              ($primary << 5) |              // select single, double or quad
  2408              ($src$$reg << 0);
  2409     cbuf.insts()->emit_int32(op);
  2410   %}
  2412   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2413   // the condition comes from opcode-field instead of an argument.
  2414   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2415     int op = (Assembler::arith_op << 30) |
  2416              ($dst$$reg << 25) |
  2417              (Assembler::movcc_op3 << 19) |
  2418              (1 << 18) |                    // cc2 bit for 'icc'
  2419              ($primary << 14) |
  2420              (0 << 13) |                    // select register move
  2421              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2422              ($src$$reg << 0);
  2423     cbuf.insts()->emit_int32(op);
  2424   %}
  2426   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2427     int op = (Assembler::arith_op << 30) |
  2428              ($dst$$reg << 25) |
  2429              (Assembler::movcc_op3 << 19) |
  2430              (6 << 16) |                    // cc2 bit for 'xcc'
  2431              ($primary << 14) |
  2432              (0 << 13) |                    // select register move
  2433              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2434              ($src$$reg << 0);
  2435     cbuf.insts()->emit_int32(op);
  2436   %}
  2438   enc_class Set13( immI13 src, iRegI rd ) %{
  2439     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2440   %}
  2442   enc_class SetHi22( immI src, iRegI rd ) %{
  2443     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2444   %}
  2446   enc_class Set32( immI src, iRegI rd ) %{
  2447     MacroAssembler _masm(&cbuf);
  2448     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2449   %}
  2451   enc_class call_epilog %{
  2452     if( VerifyStackAtCalls ) {
  2453       MacroAssembler _masm(&cbuf);
  2454       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2455       Register temp_reg = G3;
  2456       __ add(SP, framesize, temp_reg);
  2457       __ cmp(temp_reg, FP);
  2458       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2460   %}
  2462   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2463   // to G1 so the register allocator will not have to deal with the misaligned register
  2464   // pair.
  2465   enc_class adjust_long_from_native_call %{
  2466 #ifndef _LP64
  2467     if (returns_long()) {
  2468       //    sllx  O0,32,O0
  2469       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2470       //    srl   O1,0,O1
  2471       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2472       //    or    O0,O1,G1
  2473       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2475 #endif
  2476   %}
  2478   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2479     // CALL directly to the runtime
  2480     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2481     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2482                     /*preserve_g2=*/true);
  2483   %}
  2485   enc_class preserve_SP %{
  2486     MacroAssembler _masm(&cbuf);
  2487     __ mov(SP, L7_mh_SP_save);
  2488   %}
  2490   enc_class restore_SP %{
  2491     MacroAssembler _masm(&cbuf);
  2492     __ mov(L7_mh_SP_save, SP);
  2493   %}
  2495   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2496     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2497     // who we intended to call.
  2498     if ( !_method ) {
  2499       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2500     } else if (_optimized_virtual) {
  2501       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2502     } else {
  2503       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2505     if( _method ) {  // Emit stub for static call
  2506       emit_java_to_interp(cbuf);
  2508   %}
  2510   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2511     MacroAssembler _masm(&cbuf);
  2512     __ set_inst_mark();
  2513     int vtable_index = this->_vtable_index;
  2514     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2515     if (vtable_index < 0) {
  2516       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2517       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2518       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2519       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2520       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2521       // !!!!!
  2522       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2523       // emit_call_dynamic_prologue( cbuf );
  2524       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2526       address  virtual_call_oop_addr = __ inst_mark();
  2527       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2528       // who we intended to call.
  2529       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2530       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2531     } else {
  2532       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2533       // Just go thru the vtable
  2534       // get receiver klass (receiver already checked for non-null)
  2535       // If we end up going thru a c2i adapter interpreter expects method in G5
  2536       int off = __ offset();
  2537       __ load_klass(O0, G3_scratch);
  2538       int klass_load_size;
  2539       if (UseCompressedOops) {
  2540         assert(Universe::heap() != NULL, "java heap should be initialized");
  2541         if (Universe::narrow_oop_base() == NULL)
  2542           klass_load_size = 2*BytesPerInstWord;
  2543         else
  2544           klass_load_size = 3*BytesPerInstWord;
  2545       } else {
  2546         klass_load_size = 1*BytesPerInstWord;
  2548       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2549       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2550       if( __ is_simm13(v_off) ) {
  2551         __ ld_ptr(G3, v_off, G5_method);
  2552       } else {
  2553         // Generate 2 instructions
  2554         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2555         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2556         // ld_ptr, set_hi, set
  2557         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2558                "Unexpected instruction size(s)");
  2559         __ ld_ptr(G3, G5_method, G5_method);
  2561       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2562       // However it may very well end up in handle_wrong_method if the
  2563       // method is abstract for the particular class.
  2564       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2565       // jump to target (either compiled code or c2iadapter)
  2566       __ jmpl(G3_scratch, G0, O7);
  2567       __ delayed()->nop();
  2569   %}
  2571   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2572     MacroAssembler _masm(&cbuf);
  2574     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2575     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2576                               // we might be calling a C2I adapter which needs it.
  2578     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2579     // Load nmethod
  2580     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2582     // CALL to compiled java, indirect the contents of G3
  2583     __ set_inst_mark();
  2584     __ callr(temp_reg, G0);
  2585     __ delayed()->nop();
  2586   %}
  2588 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2589     MacroAssembler _masm(&cbuf);
  2590     Register Rdividend = reg_to_register_object($src1$$reg);
  2591     Register Rdivisor = reg_to_register_object($src2$$reg);
  2592     Register Rresult = reg_to_register_object($dst$$reg);
  2594     __ sra(Rdivisor, 0, Rdivisor);
  2595     __ sra(Rdividend, 0, Rdividend);
  2596     __ sdivx(Rdividend, Rdivisor, Rresult);
  2597 %}
  2599 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2600     MacroAssembler _masm(&cbuf);
  2602     Register Rdividend = reg_to_register_object($src1$$reg);
  2603     int divisor = $imm$$constant;
  2604     Register Rresult = reg_to_register_object($dst$$reg);
  2606     __ sra(Rdividend, 0, Rdividend);
  2607     __ sdivx(Rdividend, divisor, Rresult);
  2608 %}
  2610 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2611     MacroAssembler _masm(&cbuf);
  2612     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2613     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2614     Register Rdst  = reg_to_register_object($dst$$reg);
  2616     __ sra( Rsrc1, 0, Rsrc1 );
  2617     __ sra( Rsrc2, 0, Rsrc2 );
  2618     __ mulx( Rsrc1, Rsrc2, Rdst );
  2619     __ srlx( Rdst, 32, Rdst );
  2620 %}
  2622 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2623     MacroAssembler _masm(&cbuf);
  2624     Register Rdividend = reg_to_register_object($src1$$reg);
  2625     Register Rdivisor = reg_to_register_object($src2$$reg);
  2626     Register Rresult = reg_to_register_object($dst$$reg);
  2627     Register Rscratch = reg_to_register_object($scratch$$reg);
  2629     assert(Rdividend != Rscratch, "");
  2630     assert(Rdivisor  != Rscratch, "");
  2632     __ sra(Rdividend, 0, Rdividend);
  2633     __ sra(Rdivisor, 0, Rdivisor);
  2634     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2635     __ mulx(Rscratch, Rdivisor, Rscratch);
  2636     __ sub(Rdividend, Rscratch, Rresult);
  2637 %}
  2639 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2640     MacroAssembler _masm(&cbuf);
  2642     Register Rdividend = reg_to_register_object($src1$$reg);
  2643     int divisor = $imm$$constant;
  2644     Register Rresult = reg_to_register_object($dst$$reg);
  2645     Register Rscratch = reg_to_register_object($scratch$$reg);
  2647     assert(Rdividend != Rscratch, "");
  2649     __ sra(Rdividend, 0, Rdividend);
  2650     __ sdivx(Rdividend, divisor, Rscratch);
  2651     __ mulx(Rscratch, divisor, Rscratch);
  2652     __ sub(Rdividend, Rscratch, Rresult);
  2653 %}
  2655 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2656     MacroAssembler _masm(&cbuf);
  2658     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2659     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2661     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2662 %}
  2664 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2665     MacroAssembler _masm(&cbuf);
  2667     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2668     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2670     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2671 %}
  2673 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2674     MacroAssembler _masm(&cbuf);
  2676     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2677     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2679     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2680 %}
  2682 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2683     MacroAssembler _masm(&cbuf);
  2685     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2686     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2688     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2689 %}
  2691 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2692     MacroAssembler _masm(&cbuf);
  2694     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2695     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2697     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2698 %}
  2700 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2701     MacroAssembler _masm(&cbuf);
  2703     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2704     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2706     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2707 %}
  2709 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2710     MacroAssembler _masm(&cbuf);
  2712     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2713     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2715     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2716 %}
  2718 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2719     MacroAssembler _masm(&cbuf);
  2721     Register Roop  = reg_to_register_object($oop$$reg);
  2722     Register Rbox  = reg_to_register_object($box$$reg);
  2723     Register Rscratch = reg_to_register_object($scratch$$reg);
  2724     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2726     assert(Roop  != Rscratch, "");
  2727     assert(Roop  != Rmark, "");
  2728     assert(Rbox  != Rscratch, "");
  2729     assert(Rbox  != Rmark, "");
  2731     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2732 %}
  2734 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2735     MacroAssembler _masm(&cbuf);
  2737     Register Roop  = reg_to_register_object($oop$$reg);
  2738     Register Rbox  = reg_to_register_object($box$$reg);
  2739     Register Rscratch = reg_to_register_object($scratch$$reg);
  2740     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2742     assert(Roop  != Rscratch, "");
  2743     assert(Roop  != Rmark, "");
  2744     assert(Rbox  != Rscratch, "");
  2745     assert(Rbox  != Rmark, "");
  2747     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2748   %}
  2750   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2751     MacroAssembler _masm(&cbuf);
  2752     Register Rmem = reg_to_register_object($mem$$reg);
  2753     Register Rold = reg_to_register_object($old$$reg);
  2754     Register Rnew = reg_to_register_object($new$$reg);
  2756     // casx_under_lock picks 1 of 3 encodings:
  2757     // For 32-bit pointers you get a 32-bit CAS
  2758     // For 64-bit pointers you get a 64-bit CASX
  2759     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2760     __ cmp( Rold, Rnew );
  2761   %}
  2763   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2764     Register Rmem = reg_to_register_object($mem$$reg);
  2765     Register Rold = reg_to_register_object($old$$reg);
  2766     Register Rnew = reg_to_register_object($new$$reg);
  2768     MacroAssembler _masm(&cbuf);
  2769     __ mov(Rnew, O7);
  2770     __ casx(Rmem, Rold, O7);
  2771     __ cmp( Rold, O7 );
  2772   %}
  2774   // raw int cas, used for compareAndSwap
  2775   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2776     Register Rmem = reg_to_register_object($mem$$reg);
  2777     Register Rold = reg_to_register_object($old$$reg);
  2778     Register Rnew = reg_to_register_object($new$$reg);
  2780     MacroAssembler _masm(&cbuf);
  2781     __ mov(Rnew, O7);
  2782     __ cas(Rmem, Rold, O7);
  2783     __ cmp( Rold, O7 );
  2784   %}
  2786   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2787     Register Rres = reg_to_register_object($res$$reg);
  2789     MacroAssembler _masm(&cbuf);
  2790     __ mov(1, Rres);
  2791     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2792   %}
  2794   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2795     Register Rres = reg_to_register_object($res$$reg);
  2797     MacroAssembler _masm(&cbuf);
  2798     __ mov(1, Rres);
  2799     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2800   %}
  2802   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2803     MacroAssembler _masm(&cbuf);
  2804     Register Rdst = reg_to_register_object($dst$$reg);
  2805     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2806                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2807     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2808                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2810     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2811     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2812   %}
  2814   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2815   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2816     MacroAssembler _masm(&cbuf);
  2817     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2818     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2819     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2821     Label loop;
  2822     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2824     // Loop and clear, walking backwards through the array.
  2825     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2826     __ bind(loop);
  2827     __ deccc(nof_bytes_tmp, 8);
  2828     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2829     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2830     // %%%% this mini-loop must not cross a cache boundary!
  2831   %}
  2834   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2835     Label Ldone, Lloop;
  2836     MacroAssembler _masm(&cbuf);
  2838     Register   str1_reg = reg_to_register_object($str1$$reg);
  2839     Register   str2_reg = reg_to_register_object($str2$$reg);
  2840     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2841     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2842     Register result_reg = reg_to_register_object($result$$reg);
  2844     assert(result_reg != str1_reg &&
  2845            result_reg != str2_reg &&
  2846            result_reg != cnt1_reg &&
  2847            result_reg != cnt2_reg ,
  2848            "need different registers");
  2850     // Compute the minimum of the string lengths(str1_reg) and the
  2851     // difference of the string lengths (stack)
  2853     // See if the lengths are different, and calculate min in str1_reg.
  2854     // Stash diff in O7 in case we need it for a tie-breaker.
  2855     Label Lskip;
  2856     __ subcc(cnt1_reg, cnt2_reg, O7);
  2857     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2858     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2859     // cnt2 is shorter, so use its count:
  2860     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2861     __ bind(Lskip);
  2863     // reallocate cnt1_reg, cnt2_reg, result_reg
  2864     // Note:  limit_reg holds the string length pre-scaled by 2
  2865     Register limit_reg =   cnt1_reg;
  2866     Register  chr2_reg =   cnt2_reg;
  2867     Register  chr1_reg = result_reg;
  2868     // str{12} are the base pointers
  2870     // Is the minimum length zero?
  2871     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2872     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2873     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2875     // Load first characters
  2876     __ lduh(str1_reg, 0, chr1_reg);
  2877     __ lduh(str2_reg, 0, chr2_reg);
  2879     // Compare first characters
  2880     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2881     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2882     assert(chr1_reg == result_reg, "result must be pre-placed");
  2883     __ delayed()->nop();
  2886       // Check after comparing first character to see if strings are equivalent
  2887       Label LSkip2;
  2888       // Check if the strings start at same location
  2889       __ cmp(str1_reg, str2_reg);
  2890       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2891       __ delayed()->nop();
  2893       // Check if the length difference is zero (in O7)
  2894       __ cmp(G0, O7);
  2895       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2896       __ delayed()->mov(G0, result_reg);  // result is zero
  2898       // Strings might not be equal
  2899       __ bind(LSkip2);
  2902     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2903     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2904     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2906     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2907     __ add(str1_reg, limit_reg, str1_reg);
  2908     __ add(str2_reg, limit_reg, str2_reg);
  2909     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2911     // Compare the rest of the characters
  2912     __ lduh(str1_reg, limit_reg, chr1_reg);
  2913     __ bind(Lloop);
  2914     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2915     __ lduh(str2_reg, limit_reg, chr2_reg);
  2916     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2917     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2918     assert(chr1_reg == result_reg, "result must be pre-placed");
  2919     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2920     // annul LDUH if branch is not taken to prevent access past end of string
  2921     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2922     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2924     // If strings are equal up to min length, return the length difference.
  2925     __ mov(O7, result_reg);
  2927     // Otherwise, return the difference between the first mismatched chars.
  2928     __ bind(Ldone);
  2929   %}
  2931 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2932     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2933     MacroAssembler _masm(&cbuf);
  2935     Register   str1_reg = reg_to_register_object($str1$$reg);
  2936     Register   str2_reg = reg_to_register_object($str2$$reg);
  2937     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2938     Register   tmp1_reg = O7;
  2939     Register result_reg = reg_to_register_object($result$$reg);
  2941     assert(result_reg != str1_reg &&
  2942            result_reg != str2_reg &&
  2943            result_reg !=  cnt_reg &&
  2944            result_reg != tmp1_reg ,
  2945            "need different registers");
  2947     __ cmp(str1_reg, str2_reg); //same char[] ?
  2948     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2949     __ delayed()->add(G0, 1, result_reg);
  2951     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
  2952     __ delayed()->add(G0, 1, result_reg); // count == 0
  2954     //rename registers
  2955     Register limit_reg =    cnt_reg;
  2956     Register  chr1_reg = result_reg;
  2957     Register  chr2_reg =   tmp1_reg;
  2959     //check for alignment and position the pointers to the ends
  2960     __ or3(str1_reg, str2_reg, chr1_reg);
  2961     __ andcc(chr1_reg, 0x3, chr1_reg);
  2962     // notZero means at least one not 4-byte aligned.
  2963     // We could optimize the case when both arrays are not aligned
  2964     // but it is not frequent case and it requires additional checks.
  2965     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2966     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2968     // Compare char[] arrays aligned to 4 bytes.
  2969     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2970                           chr1_reg, chr2_reg, Ldone);
  2971     __ ba(Ldone);
  2972     __ delayed()->add(G0, 1, result_reg);
  2974     // char by char compare
  2975     __ bind(Lchar);
  2976     __ add(str1_reg, limit_reg, str1_reg);
  2977     __ add(str2_reg, limit_reg, str2_reg);
  2978     __ neg(limit_reg); //negate count
  2980     __ lduh(str1_reg, limit_reg, chr1_reg);
  2981     // Lchar_loop
  2982     __ bind(Lchar_loop);
  2983     __ lduh(str2_reg, limit_reg, chr2_reg);
  2984     __ cmp(chr1_reg, chr2_reg);
  2985     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  2986     __ delayed()->mov(G0, result_reg); //not equal
  2987     __ inccc(limit_reg, sizeof(jchar));
  2988     // annul LDUH if branch is not taken to prevent access past end of string
  2989     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  2990     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2992     __ add(G0, 1, result_reg);  //equal
  2994     __ bind(Ldone);
  2995   %}
  2997 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  2998     Label Lvector, Ldone, Lloop;
  2999     MacroAssembler _masm(&cbuf);
  3001     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  3002     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  3003     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  3004     Register   tmp2_reg = O7;
  3005     Register result_reg = reg_to_register_object($result$$reg);
  3007     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3008     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3010     // return true if the same array
  3011     __ cmp(ary1_reg, ary2_reg);
  3012     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3013     __ delayed()->add(G0, 1, result_reg); // equal
  3015     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3016     __ delayed()->mov(G0, result_reg);    // not equal
  3018     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3019     __ delayed()->mov(G0, result_reg);    // not equal
  3021     //load the lengths of arrays
  3022     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3023     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3025     // return false if the two arrays are not equal length
  3026     __ cmp(tmp1_reg, tmp2_reg);
  3027     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3028     __ delayed()->mov(G0, result_reg);     // not equal
  3030     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
  3031     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3033     // load array addresses
  3034     __ add(ary1_reg, base_offset, ary1_reg);
  3035     __ add(ary2_reg, base_offset, ary2_reg);
  3037     // renaming registers
  3038     Register chr1_reg  =  result_reg; // for characters in ary1
  3039     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3040     Register limit_reg =  tmp1_reg;   // length
  3042     // set byte count
  3043     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3045     // Compare char[] arrays aligned to 4 bytes.
  3046     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3047                           chr1_reg, chr2_reg, Ldone);
  3048     __ add(G0, 1, result_reg); // equals
  3050     __ bind(Ldone);
  3051   %}
  3053   enc_class enc_rethrow() %{
  3054     cbuf.set_insts_mark();
  3055     Register temp_reg = G3;
  3056     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3057     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3058     MacroAssembler _masm(&cbuf);
  3059 #ifdef ASSERT
  3060     __ save_frame(0);
  3061     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3062     __ sethi(last_rethrow_addrlit, L1);
  3063     Address addr(L1, last_rethrow_addrlit.low10());
  3064     __ get_pc(L2);
  3065     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3066     __ st_ptr(L2, addr);
  3067     __ restore();
  3068 #endif
  3069     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3070     __ delayed()->nop();
  3071   %}
  3073   enc_class emit_mem_nop() %{
  3074     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3075     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3076   %}
  3078   enc_class emit_fadd_nop() %{
  3079     // Generates the instruction FMOVS f31,f31
  3080     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3081   %}
  3083   enc_class emit_br_nop() %{
  3084     // Generates the instruction BPN,PN .
  3085     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3086   %}
  3088   enc_class enc_membar_acquire %{
  3089     MacroAssembler _masm(&cbuf);
  3090     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3091   %}
  3093   enc_class enc_membar_release %{
  3094     MacroAssembler _masm(&cbuf);
  3095     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3096   %}
  3098   enc_class enc_membar_volatile %{
  3099     MacroAssembler _masm(&cbuf);
  3100     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3101   %}
  3103   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3104     MacroAssembler _masm(&cbuf);
  3105     Register src_reg = reg_to_register_object($src$$reg);
  3106     Register dst_reg = reg_to_register_object($dst$$reg);
  3107     __ sllx(src_reg, 56, dst_reg);
  3108     __ srlx(dst_reg,  8, O7);
  3109     __ or3 (dst_reg, O7, dst_reg);
  3110     __ srlx(dst_reg, 16, O7);
  3111     __ or3 (dst_reg, O7, dst_reg);
  3112     __ srlx(dst_reg, 32, O7);
  3113     __ or3 (dst_reg, O7, dst_reg);
  3114   %}
  3116   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3117     MacroAssembler _masm(&cbuf);
  3118     Register src_reg = reg_to_register_object($src$$reg);
  3119     Register dst_reg = reg_to_register_object($dst$$reg);
  3120     __ sll(src_reg, 24, dst_reg);
  3121     __ srl(dst_reg,  8, O7);
  3122     __ or3(dst_reg, O7, dst_reg);
  3123     __ srl(dst_reg, 16, O7);
  3124     __ or3(dst_reg, O7, dst_reg);
  3125   %}
  3127   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3128     MacroAssembler _masm(&cbuf);
  3129     Register src_reg = reg_to_register_object($src$$reg);
  3130     Register dst_reg = reg_to_register_object($dst$$reg);
  3131     __ sllx(src_reg, 48, dst_reg);
  3132     __ srlx(dst_reg, 16, O7);
  3133     __ or3 (dst_reg, O7, dst_reg);
  3134     __ srlx(dst_reg, 32, O7);
  3135     __ or3 (dst_reg, O7, dst_reg);
  3136   %}
  3138   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3139     MacroAssembler _masm(&cbuf);
  3140     Register src_reg = reg_to_register_object($src$$reg);
  3141     Register dst_reg = reg_to_register_object($dst$$reg);
  3142     __ sllx(src_reg, 32, dst_reg);
  3143     __ srlx(dst_reg, 32, O7);
  3144     __ or3 (dst_reg, O7, dst_reg);
  3145   %}
  3147 %}
  3149 //----------FRAME--------------------------------------------------------------
  3150 // Definition of frame structure and management information.
  3151 //
  3152 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3153 //                             |   (to get allocators register number
  3154 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3155 //  r   CALLER     |        |
  3156 //  o     |        +--------+      pad to even-align allocators stack-slot
  3157 //  w     V        |  pad0  |        numbers; owned by CALLER
  3158 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3159 //  h     ^        |   in   |  5
  3160 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3161 //  |     |        |        |  3
  3162 //  |     |        +--------+
  3163 //  V     |        | old out|      Empty on Intel, window on Sparc
  3164 //        |    old |preserve|      Must be even aligned.
  3165 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3166 //        |        |   in   |  3   area for Intel ret address
  3167 //     Owned by    |preserve|      Empty on Sparc.
  3168 //       SELF      +--------+
  3169 //        |        |  pad2  |  2   pad to align old SP
  3170 //        |        +--------+  1
  3171 //        |        | locks  |  0
  3172 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3173 //        |        |  pad1  | 11   pad to align new SP
  3174 //        |        +--------+
  3175 //        |        |        | 10
  3176 //        |        | spills |  9   spills
  3177 //        V        |        |  8   (pad0 slot for callee)
  3178 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3179 //        ^        |  out   |  7
  3180 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3181 //     Owned by    +--------+
  3182 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3183 //        |    new |preserve|      Must be even-aligned.
  3184 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3185 //        |        |        |
  3186 //
  3187 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3188 //         known from SELF's arguments and the Java calling convention.
  3189 //         Region 6-7 is determined per call site.
  3190 // Note 2: If the calling convention leaves holes in the incoming argument
  3191 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3192 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3193 //         incoming area, as the Java calling convention is completely under
  3194 //         the control of the AD file.  Doubles can be sorted and packed to
  3195 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3196 //         varargs C calling conventions.
  3197 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3198 //         even aligned with pad0 as needed.
  3199 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3200 //         region 6-11 is even aligned; it may be padded out more so that
  3201 //         the region from SP to FP meets the minimum stack alignment.
  3203 frame %{
  3204   // What direction does stack grow in (assumed to be same for native & Java)
  3205   stack_direction(TOWARDS_LOW);
  3207   // These two registers define part of the calling convention
  3208   // between compiled code and the interpreter.
  3209   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3210   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3212   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3213   cisc_spilling_operand_name(indOffset);
  3215   // Number of stack slots consumed by a Monitor enter
  3216 #ifdef _LP64
  3217   sync_stack_slots(2);
  3218 #else
  3219   sync_stack_slots(1);
  3220 #endif
  3222   // Compiled code's Frame Pointer
  3223   frame_pointer(R_SP);
  3225   // Stack alignment requirement
  3226   stack_alignment(StackAlignmentInBytes);
  3227   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3228   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3230   // Number of stack slots between incoming argument block and the start of
  3231   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3232   // EPILOG must remove this many slots.
  3233   in_preserve_stack_slots(0);
  3235   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3236   // for calls to C.  Supports the var-args backing area for register parms.
  3237   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3238 #ifdef _LP64
  3239   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3240   varargs_C_out_slots_killed(12);
  3241 #else
  3242   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3243   varargs_C_out_slots_killed( 7);
  3244 #endif
  3246   // The after-PROLOG location of the return address.  Location of
  3247   // return address specifies a type (REG or STACK) and a number
  3248   // representing the register number (i.e. - use a register name) or
  3249   // stack slot.
  3250   return_addr(REG R_I7);          // Ret Addr is in register I7
  3252   // Body of function which returns an OptoRegs array locating
  3253   // arguments either in registers or in stack slots for calling
  3254   // java
  3255   calling_convention %{
  3256     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3258   %}
  3260   // Body of function which returns an OptoRegs array locating
  3261   // arguments either in registers or in stack slots for callin
  3262   // C.
  3263   c_calling_convention %{
  3264     // This is obviously always outgoing
  3265     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3266   %}
  3268   // Location of native (C/C++) and interpreter return values.  This is specified to
  3269   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3270   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3271   // to and from the register pairs is done by the appropriate call and epilog
  3272   // opcodes.  This simplifies the register allocator.
  3273   c_return_value %{
  3274     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3275 #ifdef     _LP64
  3276     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3277     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3278     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3279     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3280 #else  // !_LP64
  3281     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3282     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3283     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3284     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3285 #endif
  3286     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3287                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3288   %}
  3290   // Location of compiled Java return values.  Same as C
  3291   return_value %{
  3292     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3293 #ifdef     _LP64
  3294     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3295     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3296     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3297     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3298 #else  // !_LP64
  3299     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3300     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3301     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3302     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3303 #endif
  3304     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3305                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3306   %}
  3308 %}
  3311 //----------ATTRIBUTES---------------------------------------------------------
  3312 //----------Operand Attributes-------------------------------------------------
  3313 op_attrib op_cost(1);          // Required cost attribute
  3315 //----------Instruction Attributes---------------------------------------------
  3316 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3317 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3318 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3319 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3320                                 // non-matching short branch variant of some
  3321                                                             // long branch?
  3323 //----------OPERANDS-----------------------------------------------------------
  3324 // Operand definitions must precede instruction definitions for correct parsing
  3325 // in the ADLC because operands constitute user defined types which are used in
  3326 // instruction definitions.
  3328 //----------Simple Operands----------------------------------------------------
  3329 // Immediate Operands
  3330 // Integer Immediate: 32-bit
  3331 operand immI() %{
  3332   match(ConI);
  3334   op_cost(0);
  3335   // formats are generated automatically for constants and base registers
  3336   format %{ %}
  3337   interface(CONST_INTER);
  3338 %}
  3340 // Integer Immediate: 8-bit
  3341 operand immI8() %{
  3342   predicate(Assembler::is_simm(n->get_int(), 8));
  3343   match(ConI);
  3344   op_cost(0);
  3345   format %{ %}
  3346   interface(CONST_INTER);
  3347 %}
  3349 // Integer Immediate: 13-bit
  3350 operand immI13() %{
  3351   predicate(Assembler::is_simm13(n->get_int()));
  3352   match(ConI);
  3353   op_cost(0);
  3355   format %{ %}
  3356   interface(CONST_INTER);
  3357 %}
  3359 // Integer Immediate: 13-bit minus 7
  3360 operand immI13m7() %{
  3361   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3362   match(ConI);
  3363   op_cost(0);
  3365   format %{ %}
  3366   interface(CONST_INTER);
  3367 %}
  3369 // Integer Immediate: 16-bit
  3370 operand immI16() %{
  3371   predicate(Assembler::is_simm(n->get_int(), 16));
  3372   match(ConI);
  3373   op_cost(0);
  3374   format %{ %}
  3375   interface(CONST_INTER);
  3376 %}
  3378 // Unsigned (positive) Integer Immediate: 13-bit
  3379 operand immU13() %{
  3380   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3381   match(ConI);
  3382   op_cost(0);
  3384   format %{ %}
  3385   interface(CONST_INTER);
  3386 %}
  3388 // Integer Immediate: 6-bit
  3389 operand immU6() %{
  3390   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3391   match(ConI);
  3392   op_cost(0);
  3393   format %{ %}
  3394   interface(CONST_INTER);
  3395 %}
  3397 // Integer Immediate: 11-bit
  3398 operand immI11() %{
  3399   predicate(Assembler::is_simm(n->get_int(),11));
  3400   match(ConI);
  3401   op_cost(0);
  3402   format %{ %}
  3403   interface(CONST_INTER);
  3404 %}
  3406 // Integer Immediate: 0-bit
  3407 operand immI0() %{
  3408   predicate(n->get_int() == 0);
  3409   match(ConI);
  3410   op_cost(0);
  3412   format %{ %}
  3413   interface(CONST_INTER);
  3414 %}
  3416 // Integer Immediate: the value 10
  3417 operand immI10() %{
  3418   predicate(n->get_int() == 10);
  3419   match(ConI);
  3420   op_cost(0);
  3422   format %{ %}
  3423   interface(CONST_INTER);
  3424 %}
  3426 // Integer Immediate: the values 0-31
  3427 operand immU5() %{
  3428   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3429   match(ConI);
  3430   op_cost(0);
  3432   format %{ %}
  3433   interface(CONST_INTER);
  3434 %}
  3436 // Integer Immediate: the values 1-31
  3437 operand immI_1_31() %{
  3438   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3439   match(ConI);
  3440   op_cost(0);
  3442   format %{ %}
  3443   interface(CONST_INTER);
  3444 %}
  3446 // Integer Immediate: the values 32-63
  3447 operand immI_32_63() %{
  3448   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3449   match(ConI);
  3450   op_cost(0);
  3452   format %{ %}
  3453   interface(CONST_INTER);
  3454 %}
  3456 // Immediates for special shifts (sign extend)
  3458 // Integer Immediate: the value 16
  3459 operand immI_16() %{
  3460   predicate(n->get_int() == 16);
  3461   match(ConI);
  3462   op_cost(0);
  3464   format %{ %}
  3465   interface(CONST_INTER);
  3466 %}
  3468 // Integer Immediate: the value 24
  3469 operand immI_24() %{
  3470   predicate(n->get_int() == 24);
  3471   match(ConI);
  3472   op_cost(0);
  3474   format %{ %}
  3475   interface(CONST_INTER);
  3476 %}
  3478 // Integer Immediate: the value 255
  3479 operand immI_255() %{
  3480   predicate( n->get_int() == 255 );
  3481   match(ConI);
  3482   op_cost(0);
  3484   format %{ %}
  3485   interface(CONST_INTER);
  3486 %}
  3488 // Integer Immediate: the value 65535
  3489 operand immI_65535() %{
  3490   predicate(n->get_int() == 65535);
  3491   match(ConI);
  3492   op_cost(0);
  3494   format %{ %}
  3495   interface(CONST_INTER);
  3496 %}
  3498 // Long Immediate: the value FF
  3499 operand immL_FF() %{
  3500   predicate( n->get_long() == 0xFFL );
  3501   match(ConL);
  3502   op_cost(0);
  3504   format %{ %}
  3505   interface(CONST_INTER);
  3506 %}
  3508 // Long Immediate: the value FFFF
  3509 operand immL_FFFF() %{
  3510   predicate( n->get_long() == 0xFFFFL );
  3511   match(ConL);
  3512   op_cost(0);
  3514   format %{ %}
  3515   interface(CONST_INTER);
  3516 %}
  3518 // Pointer Immediate: 32 or 64-bit
  3519 operand immP() %{
  3520   match(ConP);
  3522   op_cost(5);
  3523   // formats are generated automatically for constants and base registers
  3524   format %{ %}
  3525   interface(CONST_INTER);
  3526 %}
  3528 #ifdef _LP64
  3529 // Pointer Immediate: 64-bit
  3530 operand immP_set() %{
  3531   predicate(!VM_Version::is_niagara_plus());
  3532   match(ConP);
  3534   op_cost(5);
  3535   // formats are generated automatically for constants and base registers
  3536   format %{ %}
  3537   interface(CONST_INTER);
  3538 %}
  3540 // Pointer Immediate: 64-bit
  3541 // From Niagara2 processors on a load should be better than materializing.
  3542 operand immP_load() %{
  3543   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
  3544   match(ConP);
  3546   op_cost(5);
  3547   // formats are generated automatically for constants and base registers
  3548   format %{ %}
  3549   interface(CONST_INTER);
  3550 %}
  3552 // Pointer Immediate: 64-bit
  3553 operand immP_no_oop_cheap() %{
  3554   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
  3555   match(ConP);
  3557   op_cost(5);
  3558   // formats are generated automatically for constants and base registers
  3559   format %{ %}
  3560   interface(CONST_INTER);
  3561 %}
  3562 #endif
  3564 operand immP13() %{
  3565   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3566   match(ConP);
  3567   op_cost(0);
  3569   format %{ %}
  3570   interface(CONST_INTER);
  3571 %}
  3573 operand immP0() %{
  3574   predicate(n->get_ptr() == 0);
  3575   match(ConP);
  3576   op_cost(0);
  3578   format %{ %}
  3579   interface(CONST_INTER);
  3580 %}
  3582 operand immP_poll() %{
  3583   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3584   match(ConP);
  3586   // formats are generated automatically for constants and base registers
  3587   format %{ %}
  3588   interface(CONST_INTER);
  3589 %}
  3591 // Pointer Immediate
  3592 operand immN()
  3593 %{
  3594   match(ConN);
  3596   op_cost(10);
  3597   format %{ %}
  3598   interface(CONST_INTER);
  3599 %}
  3601 // NULL Pointer Immediate
  3602 operand immN0()
  3603 %{
  3604   predicate(n->get_narrowcon() == 0);
  3605   match(ConN);
  3607   op_cost(0);
  3608   format %{ %}
  3609   interface(CONST_INTER);
  3610 %}
  3612 operand immL() %{
  3613   match(ConL);
  3614   op_cost(40);
  3615   // formats are generated automatically for constants and base registers
  3616   format %{ %}
  3617   interface(CONST_INTER);
  3618 %}
  3620 operand immL0() %{
  3621   predicate(n->get_long() == 0L);
  3622   match(ConL);
  3623   op_cost(0);
  3624   // formats are generated automatically for constants and base registers
  3625   format %{ %}
  3626   interface(CONST_INTER);
  3627 %}
  3629 // Long Immediate: 13-bit
  3630 operand immL13() %{
  3631   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3632   match(ConL);
  3633   op_cost(0);
  3635   format %{ %}
  3636   interface(CONST_INTER);
  3637 %}
  3639 // Long Immediate: 13-bit minus 7
  3640 operand immL13m7() %{
  3641   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3642   match(ConL);
  3643   op_cost(0);
  3645   format %{ %}
  3646   interface(CONST_INTER);
  3647 %}
  3649 // Long Immediate: low 32-bit mask
  3650 operand immL_32bits() %{
  3651   predicate(n->get_long() == 0xFFFFFFFFL);
  3652   match(ConL);
  3653   op_cost(0);
  3655   format %{ %}
  3656   interface(CONST_INTER);
  3657 %}
  3659 // Long Immediate: cheap (materialize in <= 3 instructions)
  3660 operand immL_cheap() %{
  3661   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
  3662   match(ConL);
  3663   op_cost(0);
  3665   format %{ %}
  3666   interface(CONST_INTER);
  3667 %}
  3669 // Long Immediate: expensive (materialize in > 3 instructions)
  3670 operand immL_expensive() %{
  3671   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
  3672   match(ConL);
  3673   op_cost(0);
  3675   format %{ %}
  3676   interface(CONST_INTER);
  3677 %}
  3679 // Double Immediate
  3680 operand immD() %{
  3681   match(ConD);
  3683   op_cost(40);
  3684   format %{ %}
  3685   interface(CONST_INTER);
  3686 %}
  3688 operand immD0() %{
  3689 #ifdef _LP64
  3690   // on 64-bit architectures this comparision is faster
  3691   predicate(jlong_cast(n->getd()) == 0);
  3692 #else
  3693   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3694 #endif
  3695   match(ConD);
  3697   op_cost(0);
  3698   format %{ %}
  3699   interface(CONST_INTER);
  3700 %}
  3702 // Float Immediate
  3703 operand immF() %{
  3704   match(ConF);
  3706   op_cost(20);
  3707   format %{ %}
  3708   interface(CONST_INTER);
  3709 %}
  3711 // Float Immediate: 0
  3712 operand immF0() %{
  3713   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3714   match(ConF);
  3716   op_cost(0);
  3717   format %{ %}
  3718   interface(CONST_INTER);
  3719 %}
  3721 // Integer Register Operands
  3722 // Integer Register
  3723 operand iRegI() %{
  3724   constraint(ALLOC_IN_RC(int_reg));
  3725   match(RegI);
  3727   match(notemp_iRegI);
  3728   match(g1RegI);
  3729   match(o0RegI);
  3730   match(iRegIsafe);
  3732   format %{ %}
  3733   interface(REG_INTER);
  3734 %}
  3736 operand notemp_iRegI() %{
  3737   constraint(ALLOC_IN_RC(notemp_int_reg));
  3738   match(RegI);
  3740   match(o0RegI);
  3742   format %{ %}
  3743   interface(REG_INTER);
  3744 %}
  3746 operand o0RegI() %{
  3747   constraint(ALLOC_IN_RC(o0_regI));
  3748   match(iRegI);
  3750   format %{ %}
  3751   interface(REG_INTER);
  3752 %}
  3754 // Pointer Register
  3755 operand iRegP() %{
  3756   constraint(ALLOC_IN_RC(ptr_reg));
  3757   match(RegP);
  3759   match(lock_ptr_RegP);
  3760   match(g1RegP);
  3761   match(g2RegP);
  3762   match(g3RegP);
  3763   match(g4RegP);
  3764   match(i0RegP);
  3765   match(o0RegP);
  3766   match(o1RegP);
  3767   match(l7RegP);
  3769   format %{ %}
  3770   interface(REG_INTER);
  3771 %}
  3773 operand sp_ptr_RegP() %{
  3774   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3775   match(RegP);
  3776   match(iRegP);
  3778   format %{ %}
  3779   interface(REG_INTER);
  3780 %}
  3782 operand lock_ptr_RegP() %{
  3783   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3784   match(RegP);
  3785   match(i0RegP);
  3786   match(o0RegP);
  3787   match(o1RegP);
  3788   match(l7RegP);
  3790   format %{ %}
  3791   interface(REG_INTER);
  3792 %}
  3794 operand g1RegP() %{
  3795   constraint(ALLOC_IN_RC(g1_regP));
  3796   match(iRegP);
  3798   format %{ %}
  3799   interface(REG_INTER);
  3800 %}
  3802 operand g2RegP() %{
  3803   constraint(ALLOC_IN_RC(g2_regP));
  3804   match(iRegP);
  3806   format %{ %}
  3807   interface(REG_INTER);
  3808 %}
  3810 operand g3RegP() %{
  3811   constraint(ALLOC_IN_RC(g3_regP));
  3812   match(iRegP);
  3814   format %{ %}
  3815   interface(REG_INTER);
  3816 %}
  3818 operand g1RegI() %{
  3819   constraint(ALLOC_IN_RC(g1_regI));
  3820   match(iRegI);
  3822   format %{ %}
  3823   interface(REG_INTER);
  3824 %}
  3826 operand g3RegI() %{
  3827   constraint(ALLOC_IN_RC(g3_regI));
  3828   match(iRegI);
  3830   format %{ %}
  3831   interface(REG_INTER);
  3832 %}
  3834 operand g4RegI() %{
  3835   constraint(ALLOC_IN_RC(g4_regI));
  3836   match(iRegI);
  3838   format %{ %}
  3839   interface(REG_INTER);
  3840 %}
  3842 operand g4RegP() %{
  3843   constraint(ALLOC_IN_RC(g4_regP));
  3844   match(iRegP);
  3846   format %{ %}
  3847   interface(REG_INTER);
  3848 %}
  3850 operand i0RegP() %{
  3851   constraint(ALLOC_IN_RC(i0_regP));
  3852   match(iRegP);
  3854   format %{ %}
  3855   interface(REG_INTER);
  3856 %}
  3858 operand o0RegP() %{
  3859   constraint(ALLOC_IN_RC(o0_regP));
  3860   match(iRegP);
  3862   format %{ %}
  3863   interface(REG_INTER);
  3864 %}
  3866 operand o1RegP() %{
  3867   constraint(ALLOC_IN_RC(o1_regP));
  3868   match(iRegP);
  3870   format %{ %}
  3871   interface(REG_INTER);
  3872 %}
  3874 operand o2RegP() %{
  3875   constraint(ALLOC_IN_RC(o2_regP));
  3876   match(iRegP);
  3878   format %{ %}
  3879   interface(REG_INTER);
  3880 %}
  3882 operand o7RegP() %{
  3883   constraint(ALLOC_IN_RC(o7_regP));
  3884   match(iRegP);
  3886   format %{ %}
  3887   interface(REG_INTER);
  3888 %}
  3890 operand l7RegP() %{
  3891   constraint(ALLOC_IN_RC(l7_regP));
  3892   match(iRegP);
  3894   format %{ %}
  3895   interface(REG_INTER);
  3896 %}
  3898 operand o7RegI() %{
  3899   constraint(ALLOC_IN_RC(o7_regI));
  3900   match(iRegI);
  3902   format %{ %}
  3903   interface(REG_INTER);
  3904 %}
  3906 operand iRegN() %{
  3907   constraint(ALLOC_IN_RC(int_reg));
  3908   match(RegN);
  3910   format %{ %}
  3911   interface(REG_INTER);
  3912 %}
  3914 // Long Register
  3915 operand iRegL() %{
  3916   constraint(ALLOC_IN_RC(long_reg));
  3917   match(RegL);
  3919   format %{ %}
  3920   interface(REG_INTER);
  3921 %}
  3923 operand o2RegL() %{
  3924   constraint(ALLOC_IN_RC(o2_regL));
  3925   match(iRegL);
  3927   format %{ %}
  3928   interface(REG_INTER);
  3929 %}
  3931 operand o7RegL() %{
  3932   constraint(ALLOC_IN_RC(o7_regL));
  3933   match(iRegL);
  3935   format %{ %}
  3936   interface(REG_INTER);
  3937 %}
  3939 operand g1RegL() %{
  3940   constraint(ALLOC_IN_RC(g1_regL));
  3941   match(iRegL);
  3943   format %{ %}
  3944   interface(REG_INTER);
  3945 %}
  3947 operand g3RegL() %{
  3948   constraint(ALLOC_IN_RC(g3_regL));
  3949   match(iRegL);
  3951   format %{ %}
  3952   interface(REG_INTER);
  3953 %}
  3955 // Int Register safe
  3956 // This is 64bit safe
  3957 operand iRegIsafe() %{
  3958   constraint(ALLOC_IN_RC(long_reg));
  3960   match(iRegI);
  3962   format %{ %}
  3963   interface(REG_INTER);
  3964 %}
  3966 // Condition Code Flag Register
  3967 operand flagsReg() %{
  3968   constraint(ALLOC_IN_RC(int_flags));
  3969   match(RegFlags);
  3971   format %{ "ccr" %} // both ICC and XCC
  3972   interface(REG_INTER);
  3973 %}
  3975 // Condition Code Register, unsigned comparisons.
  3976 operand flagsRegU() %{
  3977   constraint(ALLOC_IN_RC(int_flags));
  3978   match(RegFlags);
  3980   format %{ "icc_U" %}
  3981   interface(REG_INTER);
  3982 %}
  3984 // Condition Code Register, pointer comparisons.
  3985 operand flagsRegP() %{
  3986   constraint(ALLOC_IN_RC(int_flags));
  3987   match(RegFlags);
  3989 #ifdef _LP64
  3990   format %{ "xcc_P" %}
  3991 #else
  3992   format %{ "icc_P" %}
  3993 #endif
  3994   interface(REG_INTER);
  3995 %}
  3997 // Condition Code Register, long comparisons.
  3998 operand flagsRegL() %{
  3999   constraint(ALLOC_IN_RC(int_flags));
  4000   match(RegFlags);
  4002   format %{ "xcc_L" %}
  4003   interface(REG_INTER);
  4004 %}
  4006 // Condition Code Register, floating comparisons, unordered same as "less".
  4007 operand flagsRegF() %{
  4008   constraint(ALLOC_IN_RC(float_flags));
  4009   match(RegFlags);
  4010   match(flagsRegF0);
  4012   format %{ %}
  4013   interface(REG_INTER);
  4014 %}
  4016 operand flagsRegF0() %{
  4017   constraint(ALLOC_IN_RC(float_flag0));
  4018   match(RegFlags);
  4020   format %{ %}
  4021   interface(REG_INTER);
  4022 %}
  4025 // Condition Code Flag Register used by long compare
  4026 operand flagsReg_long_LTGE() %{
  4027   constraint(ALLOC_IN_RC(int_flags));
  4028   match(RegFlags);
  4029   format %{ "icc_LTGE" %}
  4030   interface(REG_INTER);
  4031 %}
  4032 operand flagsReg_long_EQNE() %{
  4033   constraint(ALLOC_IN_RC(int_flags));
  4034   match(RegFlags);
  4035   format %{ "icc_EQNE" %}
  4036   interface(REG_INTER);
  4037 %}
  4038 operand flagsReg_long_LEGT() %{
  4039   constraint(ALLOC_IN_RC(int_flags));
  4040   match(RegFlags);
  4041   format %{ "icc_LEGT" %}
  4042   interface(REG_INTER);
  4043 %}
  4046 operand regD() %{
  4047   constraint(ALLOC_IN_RC(dflt_reg));
  4048   match(RegD);
  4050   match(regD_low);
  4052   format %{ %}
  4053   interface(REG_INTER);
  4054 %}
  4056 operand regF() %{
  4057   constraint(ALLOC_IN_RC(sflt_reg));
  4058   match(RegF);
  4060   format %{ %}
  4061   interface(REG_INTER);
  4062 %}
  4064 operand regD_low() %{
  4065   constraint(ALLOC_IN_RC(dflt_low_reg));
  4066   match(regD);
  4068   format %{ %}
  4069   interface(REG_INTER);
  4070 %}
  4072 // Special Registers
  4074 // Method Register
  4075 operand inline_cache_regP(iRegP reg) %{
  4076   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4077   match(reg);
  4078   format %{ %}
  4079   interface(REG_INTER);
  4080 %}
  4082 operand interpreter_method_oop_regP(iRegP reg) %{
  4083   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4084   match(reg);
  4085   format %{ %}
  4086   interface(REG_INTER);
  4087 %}
  4090 //----------Complex Operands---------------------------------------------------
  4091 // Indirect Memory Reference
  4092 operand indirect(sp_ptr_RegP reg) %{
  4093   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4094   match(reg);
  4096   op_cost(100);
  4097   format %{ "[$reg]" %}
  4098   interface(MEMORY_INTER) %{
  4099     base($reg);
  4100     index(0x0);
  4101     scale(0x0);
  4102     disp(0x0);
  4103   %}
  4104 %}
  4106 // Indirect with simm13 Offset
  4107 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4108   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4109   match(AddP reg offset);
  4111   op_cost(100);
  4112   format %{ "[$reg + $offset]" %}
  4113   interface(MEMORY_INTER) %{
  4114     base($reg);
  4115     index(0x0);
  4116     scale(0x0);
  4117     disp($offset);
  4118   %}
  4119 %}
  4121 // Indirect with simm13 Offset minus 7
  4122 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4123   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4124   match(AddP reg offset);
  4126   op_cost(100);
  4127   format %{ "[$reg + $offset]" %}
  4128   interface(MEMORY_INTER) %{
  4129     base($reg);
  4130     index(0x0);
  4131     scale(0x0);
  4132     disp($offset);
  4133   %}
  4134 %}
  4136 // Note:  Intel has a swapped version also, like this:
  4137 //operand indOffsetX(iRegI reg, immP offset) %{
  4138 //  constraint(ALLOC_IN_RC(int_reg));
  4139 //  match(AddP offset reg);
  4140 //
  4141 //  op_cost(100);
  4142 //  format %{ "[$reg + $offset]" %}
  4143 //  interface(MEMORY_INTER) %{
  4144 //    base($reg);
  4145 //    index(0x0);
  4146 //    scale(0x0);
  4147 //    disp($offset);
  4148 //  %}
  4149 //%}
  4150 //// However, it doesn't make sense for SPARC, since
  4151 // we have no particularly good way to embed oops in
  4152 // single instructions.
  4154 // Indirect with Register Index
  4155 operand indIndex(iRegP addr, iRegX index) %{
  4156   constraint(ALLOC_IN_RC(ptr_reg));
  4157   match(AddP addr index);
  4159   op_cost(100);
  4160   format %{ "[$addr + $index]" %}
  4161   interface(MEMORY_INTER) %{
  4162     base($addr);
  4163     index($index);
  4164     scale(0x0);
  4165     disp(0x0);
  4166   %}
  4167 %}
  4169 //----------Special Memory Operands--------------------------------------------
  4170 // Stack Slot Operand - This operand is used for loading and storing temporary
  4171 //                      values on the stack where a match requires a value to
  4172 //                      flow through memory.
  4173 operand stackSlotI(sRegI reg) %{
  4174   constraint(ALLOC_IN_RC(stack_slots));
  4175   op_cost(100);
  4176   //match(RegI);
  4177   format %{ "[$reg]" %}
  4178   interface(MEMORY_INTER) %{
  4179     base(0xE);   // R_SP
  4180     index(0x0);
  4181     scale(0x0);
  4182     disp($reg);  // Stack Offset
  4183   %}
  4184 %}
  4186 operand stackSlotP(sRegP reg) %{
  4187   constraint(ALLOC_IN_RC(stack_slots));
  4188   op_cost(100);
  4189   //match(RegP);
  4190   format %{ "[$reg]" %}
  4191   interface(MEMORY_INTER) %{
  4192     base(0xE);   // R_SP
  4193     index(0x0);
  4194     scale(0x0);
  4195     disp($reg);  // Stack Offset
  4196   %}
  4197 %}
  4199 operand stackSlotF(sRegF reg) %{
  4200   constraint(ALLOC_IN_RC(stack_slots));
  4201   op_cost(100);
  4202   //match(RegF);
  4203   format %{ "[$reg]" %}
  4204   interface(MEMORY_INTER) %{
  4205     base(0xE);   // R_SP
  4206     index(0x0);
  4207     scale(0x0);
  4208     disp($reg);  // Stack Offset
  4209   %}
  4210 %}
  4211 operand stackSlotD(sRegD reg) %{
  4212   constraint(ALLOC_IN_RC(stack_slots));
  4213   op_cost(100);
  4214   //match(RegD);
  4215   format %{ "[$reg]" %}
  4216   interface(MEMORY_INTER) %{
  4217     base(0xE);   // R_SP
  4218     index(0x0);
  4219     scale(0x0);
  4220     disp($reg);  // Stack Offset
  4221   %}
  4222 %}
  4223 operand stackSlotL(sRegL reg) %{
  4224   constraint(ALLOC_IN_RC(stack_slots));
  4225   op_cost(100);
  4226   //match(RegL);
  4227   format %{ "[$reg]" %}
  4228   interface(MEMORY_INTER) %{
  4229     base(0xE);   // R_SP
  4230     index(0x0);
  4231     scale(0x0);
  4232     disp($reg);  // Stack Offset
  4233   %}
  4234 %}
  4236 // Operands for expressing Control Flow
  4237 // NOTE:  Label is a predefined operand which should not be redefined in
  4238 //        the AD file.  It is generically handled within the ADLC.
  4240 //----------Conditional Branch Operands----------------------------------------
  4241 // Comparison Op  - This is the operation of the comparison, and is limited to
  4242 //                  the following set of codes:
  4243 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4244 //
  4245 // Other attributes of the comparison, such as unsignedness, are specified
  4246 // by the comparison instruction that sets a condition code flags register.
  4247 // That result is represented by a flags operand whose subtype is appropriate
  4248 // to the unsignedness (etc.) of the comparison.
  4249 //
  4250 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4251 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4252 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4254 operand cmpOp() %{
  4255   match(Bool);
  4257   format %{ "" %}
  4258   interface(COND_INTER) %{
  4259     equal(0x1);
  4260     not_equal(0x9);
  4261     less(0x3);
  4262     greater_equal(0xB);
  4263     less_equal(0x2);
  4264     greater(0xA);
  4265   %}
  4266 %}
  4268 // Comparison Op, unsigned
  4269 operand cmpOpU() %{
  4270   match(Bool);
  4272   format %{ "u" %}
  4273   interface(COND_INTER) %{
  4274     equal(0x1);
  4275     not_equal(0x9);
  4276     less(0x5);
  4277     greater_equal(0xD);
  4278     less_equal(0x4);
  4279     greater(0xC);
  4280   %}
  4281 %}
  4283 // Comparison Op, pointer (same as unsigned)
  4284 operand cmpOpP() %{
  4285   match(Bool);
  4287   format %{ "p" %}
  4288   interface(COND_INTER) %{
  4289     equal(0x1);
  4290     not_equal(0x9);
  4291     less(0x5);
  4292     greater_equal(0xD);
  4293     less_equal(0x4);
  4294     greater(0xC);
  4295   %}
  4296 %}
  4298 // Comparison Op, branch-register encoding
  4299 operand cmpOp_reg() %{
  4300   match(Bool);
  4302   format %{ "" %}
  4303   interface(COND_INTER) %{
  4304     equal        (0x1);
  4305     not_equal    (0x5);
  4306     less         (0x3);
  4307     greater_equal(0x7);
  4308     less_equal   (0x2);
  4309     greater      (0x6);
  4310   %}
  4311 %}
  4313 // Comparison Code, floating, unordered same as less
  4314 operand cmpOpF() %{
  4315   match(Bool);
  4317   format %{ "fl" %}
  4318   interface(COND_INTER) %{
  4319     equal(0x9);
  4320     not_equal(0x1);
  4321     less(0x3);
  4322     greater_equal(0xB);
  4323     less_equal(0xE);
  4324     greater(0x6);
  4325   %}
  4326 %}
  4328 // Used by long compare
  4329 operand cmpOp_commute() %{
  4330   match(Bool);
  4332   format %{ "" %}
  4333   interface(COND_INTER) %{
  4334     equal(0x1);
  4335     not_equal(0x9);
  4336     less(0xA);
  4337     greater_equal(0x2);
  4338     less_equal(0xB);
  4339     greater(0x3);
  4340   %}
  4341 %}
  4343 //----------OPERAND CLASSES----------------------------------------------------
  4344 // Operand Classes are groups of operands that are used to simplify
  4345 // instruction definitions by not requiring the AD writer to specify separate
  4346 // instructions for every form of operand when the instruction accepts
  4347 // multiple operand types with the same basic encoding and format.  The classic
  4348 // case of this is memory operands.
  4349 opclass memory( indirect, indOffset13, indIndex );
  4350 opclass indIndexMemory( indIndex );
  4352 //----------PIPELINE-----------------------------------------------------------
  4353 pipeline %{
  4355 //----------ATTRIBUTES---------------------------------------------------------
  4356 attributes %{
  4357   fixed_size_instructions;           // Fixed size instructions
  4358   branch_has_delay_slot;             // Branch has delay slot following
  4359   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4360   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4361   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4362   instruction_fetch_units = 1;       // of 16 bytes
  4364   // List of nop instructions
  4365   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4366 %}
  4368 //----------RESOURCES----------------------------------------------------------
  4369 // Resources are the functional units available to the machine
  4370 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4372 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4373 // Pipeline Description specifies the stages in the machine's pipeline
  4375 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4377 //----------PIPELINE CLASSES---------------------------------------------------
  4378 // Pipeline Classes describe the stages in which input and output are
  4379 // referenced by the hardware pipeline.
  4381 // Integer ALU reg-reg operation
  4382 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4383     single_instruction;
  4384     dst   : E(write);
  4385     src1  : R(read);
  4386     src2  : R(read);
  4387     IALU  : R;
  4388 %}
  4390 // Integer ALU reg-reg long operation
  4391 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4392     instruction_count(2);
  4393     dst   : E(write);
  4394     src1  : R(read);
  4395     src2  : R(read);
  4396     IALU  : R;
  4397     IALU  : R;
  4398 %}
  4400 // Integer ALU reg-reg long dependent operation
  4401 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4402     instruction_count(1); multiple_bundles;
  4403     dst   : E(write);
  4404     src1  : R(read);
  4405     src2  : R(read);
  4406     cr    : E(write);
  4407     IALU  : R(2);
  4408 %}
  4410 // Integer ALU reg-imm operaion
  4411 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4412     single_instruction;
  4413     dst   : E(write);
  4414     src1  : R(read);
  4415     IALU  : R;
  4416 %}
  4418 // Integer ALU reg-reg operation with condition code
  4419 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4420     single_instruction;
  4421     dst   : E(write);
  4422     cr    : E(write);
  4423     src1  : R(read);
  4424     src2  : R(read);
  4425     IALU  : R;
  4426 %}
  4428 // Integer ALU reg-imm operation with condition code
  4429 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4430     single_instruction;
  4431     dst   : E(write);
  4432     cr    : E(write);
  4433     src1  : R(read);
  4434     IALU  : R;
  4435 %}
  4437 // Integer ALU zero-reg operation
  4438 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4439     single_instruction;
  4440     dst   : E(write);
  4441     src2  : R(read);
  4442     IALU  : R;
  4443 %}
  4445 // Integer ALU zero-reg operation with condition code only
  4446 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4447     single_instruction;
  4448     cr    : E(write);
  4449     src   : R(read);
  4450     IALU  : R;
  4451 %}
  4453 // Integer ALU reg-reg operation with condition code only
  4454 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4455     single_instruction;
  4456     cr    : E(write);
  4457     src1  : R(read);
  4458     src2  : R(read);
  4459     IALU  : R;
  4460 %}
  4462 // Integer ALU reg-imm operation with condition code only
  4463 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4464     single_instruction;
  4465     cr    : E(write);
  4466     src1  : R(read);
  4467     IALU  : R;
  4468 %}
  4470 // Integer ALU reg-reg-zero operation with condition code only
  4471 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4472     single_instruction;
  4473     cr    : E(write);
  4474     src1  : R(read);
  4475     src2  : R(read);
  4476     IALU  : R;
  4477 %}
  4479 // Integer ALU reg-imm-zero operation with condition code only
  4480 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4481     single_instruction;
  4482     cr    : E(write);
  4483     src1  : R(read);
  4484     IALU  : R;
  4485 %}
  4487 // Integer ALU reg-reg operation with condition code, src1 modified
  4488 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4489     single_instruction;
  4490     cr    : E(write);
  4491     src1  : E(write);
  4492     src1  : R(read);
  4493     src2  : R(read);
  4494     IALU  : R;
  4495 %}
  4497 // Integer ALU reg-imm operation with condition code, src1 modified
  4498 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4499     single_instruction;
  4500     cr    : E(write);
  4501     src1  : E(write);
  4502     src1  : R(read);
  4503     IALU  : R;
  4504 %}
  4506 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4507     multiple_bundles;
  4508     dst   : E(write)+4;
  4509     cr    : E(write);
  4510     src1  : R(read);
  4511     src2  : R(read);
  4512     IALU  : R(3);
  4513     BR    : R(2);
  4514 %}
  4516 // Integer ALU operation
  4517 pipe_class ialu_none(iRegI dst) %{
  4518     single_instruction;
  4519     dst   : E(write);
  4520     IALU  : R;
  4521 %}
  4523 // Integer ALU reg operation
  4524 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4525     single_instruction; may_have_no_code;
  4526     dst   : E(write);
  4527     src   : R(read);
  4528     IALU  : R;
  4529 %}
  4531 // Integer ALU reg conditional operation
  4532 // This instruction has a 1 cycle stall, and cannot execute
  4533 // in the same cycle as the instruction setting the condition
  4534 // code. We kludge this by pretending to read the condition code
  4535 // 1 cycle earlier, and by marking the functional units as busy
  4536 // for 2 cycles with the result available 1 cycle later than
  4537 // is really the case.
  4538 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4539     single_instruction;
  4540     op2_out : C(write);
  4541     op1     : R(read);
  4542     cr      : R(read);       // This is really E, with a 1 cycle stall
  4543     BR      : R(2);
  4544     MS      : R(2);
  4545 %}
  4547 #ifdef _LP64
  4548 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4549     instruction_count(1); multiple_bundles;
  4550     dst     : C(write)+1;
  4551     src     : R(read)+1;
  4552     IALU    : R(1);
  4553     BR      : E(2);
  4554     MS      : E(2);
  4555 %}
  4556 #endif
  4558 // Integer ALU reg operation
  4559 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4560     single_instruction; may_have_no_code;
  4561     dst   : E(write);
  4562     src   : R(read);
  4563     IALU  : R;
  4564 %}
  4565 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4566     single_instruction; may_have_no_code;
  4567     dst   : E(write);
  4568     src   : R(read);
  4569     IALU  : R;
  4570 %}
  4572 // Two integer ALU reg operations
  4573 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4574     instruction_count(2);
  4575     dst   : E(write);
  4576     src   : R(read);
  4577     A0    : R;
  4578     A1    : R;
  4579 %}
  4581 // Two integer ALU reg operations
  4582 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4583     instruction_count(2); may_have_no_code;
  4584     dst   : E(write);
  4585     src   : R(read);
  4586     A0    : R;
  4587     A1    : R;
  4588 %}
  4590 // Integer ALU imm operation
  4591 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4592     single_instruction;
  4593     dst   : E(write);
  4594     IALU  : R;
  4595 %}
  4597 // Integer ALU reg-reg with carry operation
  4598 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4599     single_instruction;
  4600     dst   : E(write);
  4601     src1  : R(read);
  4602     src2  : R(read);
  4603     IALU  : R;
  4604 %}
  4606 // Integer ALU cc operation
  4607 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4608     single_instruction;
  4609     dst   : E(write);
  4610     cc    : R(read);
  4611     IALU  : R;
  4612 %}
  4614 // Integer ALU cc / second IALU operation
  4615 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4616     instruction_count(1); multiple_bundles;
  4617     dst   : E(write)+1;
  4618     src   : R(read);
  4619     IALU  : R;
  4620 %}
  4622 // Integer ALU cc / second IALU operation
  4623 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4624     instruction_count(1); multiple_bundles;
  4625     dst   : E(write)+1;
  4626     p     : R(read);
  4627     q     : R(read);
  4628     IALU  : R;
  4629 %}
  4631 // Integer ALU hi-lo-reg operation
  4632 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4633     instruction_count(1); multiple_bundles;
  4634     dst   : E(write)+1;
  4635     IALU  : R(2);
  4636 %}
  4638 // Float ALU hi-lo-reg operation (with temp)
  4639 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4640     instruction_count(1); multiple_bundles;
  4641     dst   : E(write)+1;
  4642     IALU  : R(2);
  4643 %}
  4645 // Long Constant
  4646 pipe_class loadConL( iRegL dst, immL src ) %{
  4647     instruction_count(2); multiple_bundles;
  4648     dst   : E(write)+1;
  4649     IALU  : R(2);
  4650     IALU  : R(2);
  4651 %}
  4653 // Pointer Constant
  4654 pipe_class loadConP( iRegP dst, immP src ) %{
  4655     instruction_count(0); multiple_bundles;
  4656     fixed_latency(6);
  4657 %}
  4659 // Polling Address
  4660 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4661 #ifdef _LP64
  4662     instruction_count(0); multiple_bundles;
  4663     fixed_latency(6);
  4664 #else
  4665     dst   : E(write);
  4666     IALU  : R;
  4667 #endif
  4668 %}
  4670 // Long Constant small
  4671 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4672     instruction_count(2);
  4673     dst   : E(write);
  4674     IALU  : R;
  4675     IALU  : R;
  4676 %}
  4678 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4679 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4680     instruction_count(1); multiple_bundles;
  4681     src   : R(read);
  4682     dst   : M(write)+1;
  4683     IALU  : R;
  4684     MS    : E;
  4685 %}
  4687 // Integer ALU nop operation
  4688 pipe_class ialu_nop() %{
  4689     single_instruction;
  4690     IALU  : R;
  4691 %}
  4693 // Integer ALU nop operation
  4694 pipe_class ialu_nop_A0() %{
  4695     single_instruction;
  4696     A0    : R;
  4697 %}
  4699 // Integer ALU nop operation
  4700 pipe_class ialu_nop_A1() %{
  4701     single_instruction;
  4702     A1    : R;
  4703 %}
  4705 // Integer Multiply reg-reg operation
  4706 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4707     single_instruction;
  4708     dst   : E(write);
  4709     src1  : R(read);
  4710     src2  : R(read);
  4711     MS    : R(5);
  4712 %}
  4714 // Integer Multiply reg-imm operation
  4715 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4716     single_instruction;
  4717     dst   : E(write);
  4718     src1  : R(read);
  4719     MS    : R(5);
  4720 %}
  4722 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4723     single_instruction;
  4724     dst   : E(write)+4;
  4725     src1  : R(read);
  4726     src2  : R(read);
  4727     MS    : R(6);
  4728 %}
  4730 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4731     single_instruction;
  4732     dst   : E(write)+4;
  4733     src1  : R(read);
  4734     MS    : R(6);
  4735 %}
  4737 // Integer Divide reg-reg
  4738 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4739     instruction_count(1); multiple_bundles;
  4740     dst   : E(write);
  4741     temp  : E(write);
  4742     src1  : R(read);
  4743     src2  : R(read);
  4744     temp  : R(read);
  4745     MS    : R(38);
  4746 %}
  4748 // Integer Divide reg-imm
  4749 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4750     instruction_count(1); multiple_bundles;
  4751     dst   : E(write);
  4752     temp  : E(write);
  4753     src1  : R(read);
  4754     temp  : R(read);
  4755     MS    : R(38);
  4756 %}
  4758 // Long Divide
  4759 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4760     dst  : E(write)+71;
  4761     src1 : R(read);
  4762     src2 : R(read)+1;
  4763     MS   : R(70);
  4764 %}
  4766 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4767     dst  : E(write)+71;
  4768     src1 : R(read);
  4769     MS   : R(70);
  4770 %}
  4772 // Floating Point Add Float
  4773 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4774     single_instruction;
  4775     dst   : X(write);
  4776     src1  : E(read);
  4777     src2  : E(read);
  4778     FA    : R;
  4779 %}
  4781 // Floating Point Add Double
  4782 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4783     single_instruction;
  4784     dst   : X(write);
  4785     src1  : E(read);
  4786     src2  : E(read);
  4787     FA    : R;
  4788 %}
  4790 // Floating Point Conditional Move based on integer flags
  4791 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4792     single_instruction;
  4793     dst   : X(write);
  4794     src   : E(read);
  4795     cr    : R(read);
  4796     FA    : R(2);
  4797     BR    : R(2);
  4798 %}
  4800 // Floating Point Conditional Move based on integer flags
  4801 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4802     single_instruction;
  4803     dst   : X(write);
  4804     src   : E(read);
  4805     cr    : R(read);
  4806     FA    : R(2);
  4807     BR    : R(2);
  4808 %}
  4810 // Floating Point Multiply Float
  4811 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4812     single_instruction;
  4813     dst   : X(write);
  4814     src1  : E(read);
  4815     src2  : E(read);
  4816     FM    : R;
  4817 %}
  4819 // Floating Point Multiply Double
  4820 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4821     single_instruction;
  4822     dst   : X(write);
  4823     src1  : E(read);
  4824     src2  : E(read);
  4825     FM    : R;
  4826 %}
  4828 // Floating Point Divide Float
  4829 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4830     single_instruction;
  4831     dst   : X(write);
  4832     src1  : E(read);
  4833     src2  : E(read);
  4834     FM    : R;
  4835     FDIV  : C(14);
  4836 %}
  4838 // Floating Point Divide Double
  4839 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4840     single_instruction;
  4841     dst   : X(write);
  4842     src1  : E(read);
  4843     src2  : E(read);
  4844     FM    : R;
  4845     FDIV  : C(17);
  4846 %}
  4848 // Floating Point Move/Negate/Abs Float
  4849 pipe_class faddF_reg(regF dst, regF src) %{
  4850     single_instruction;
  4851     dst   : W(write);
  4852     src   : E(read);
  4853     FA    : R(1);
  4854 %}
  4856 // Floating Point Move/Negate/Abs Double
  4857 pipe_class faddD_reg(regD dst, regD src) %{
  4858     single_instruction;
  4859     dst   : W(write);
  4860     src   : E(read);
  4861     FA    : R;
  4862 %}
  4864 // Floating Point Convert F->D
  4865 pipe_class fcvtF2D(regD dst, regF src) %{
  4866     single_instruction;
  4867     dst   : X(write);
  4868     src   : E(read);
  4869     FA    : R;
  4870 %}
  4872 // Floating Point Convert I->D
  4873 pipe_class fcvtI2D(regD dst, regF src) %{
  4874     single_instruction;
  4875     dst   : X(write);
  4876     src   : E(read);
  4877     FA    : R;
  4878 %}
  4880 // Floating Point Convert LHi->D
  4881 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4882     single_instruction;
  4883     dst   : X(write);
  4884     src   : E(read);
  4885     FA    : R;
  4886 %}
  4888 // Floating Point Convert L->D
  4889 pipe_class fcvtL2D(regD dst, regF src) %{
  4890     single_instruction;
  4891     dst   : X(write);
  4892     src   : E(read);
  4893     FA    : R;
  4894 %}
  4896 // Floating Point Convert L->F
  4897 pipe_class fcvtL2F(regD dst, regF src) %{
  4898     single_instruction;
  4899     dst   : X(write);
  4900     src   : E(read);
  4901     FA    : R;
  4902 %}
  4904 // Floating Point Convert D->F
  4905 pipe_class fcvtD2F(regD dst, regF src) %{
  4906     single_instruction;
  4907     dst   : X(write);
  4908     src   : E(read);
  4909     FA    : R;
  4910 %}
  4912 // Floating Point Convert I->L
  4913 pipe_class fcvtI2L(regD dst, regF src) %{
  4914     single_instruction;
  4915     dst   : X(write);
  4916     src   : E(read);
  4917     FA    : R;
  4918 %}
  4920 // Floating Point Convert D->F
  4921 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4922     instruction_count(1); multiple_bundles;
  4923     dst   : X(write)+6;
  4924     src   : E(read);
  4925     FA    : R;
  4926 %}
  4928 // Floating Point Convert D->L
  4929 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4930     instruction_count(1); multiple_bundles;
  4931     dst   : X(write)+6;
  4932     src   : E(read);
  4933     FA    : R;
  4934 %}
  4936 // Floating Point Convert F->I
  4937 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4938     instruction_count(1); multiple_bundles;
  4939     dst   : X(write)+6;
  4940     src   : E(read);
  4941     FA    : R;
  4942 %}
  4944 // Floating Point Convert F->L
  4945 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4946     instruction_count(1); multiple_bundles;
  4947     dst   : X(write)+6;
  4948     src   : E(read);
  4949     FA    : R;
  4950 %}
  4952 // Floating Point Convert I->F
  4953 pipe_class fcvtI2F(regF dst, regF src) %{
  4954     single_instruction;
  4955     dst   : X(write);
  4956     src   : E(read);
  4957     FA    : R;
  4958 %}
  4960 // Floating Point Compare
  4961 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4962     single_instruction;
  4963     cr    : X(write);
  4964     src1  : E(read);
  4965     src2  : E(read);
  4966     FA    : R;
  4967 %}
  4969 // Floating Point Compare
  4970 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4971     single_instruction;
  4972     cr    : X(write);
  4973     src1  : E(read);
  4974     src2  : E(read);
  4975     FA    : R;
  4976 %}
  4978 // Floating Add Nop
  4979 pipe_class fadd_nop() %{
  4980     single_instruction;
  4981     FA  : R;
  4982 %}
  4984 // Integer Store to Memory
  4985 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4986     single_instruction;
  4987     mem   : R(read);
  4988     src   : C(read);
  4989     MS    : R;
  4990 %}
  4992 // Integer Store to Memory
  4993 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  4994     single_instruction;
  4995     mem   : R(read);
  4996     src   : C(read);
  4997     MS    : R;
  4998 %}
  5000 // Integer Store Zero to Memory
  5001 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  5002     single_instruction;
  5003     mem   : R(read);
  5004     MS    : R;
  5005 %}
  5007 // Special Stack Slot Store
  5008 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  5009     single_instruction;
  5010     stkSlot : R(read);
  5011     src     : C(read);
  5012     MS      : R;
  5013 %}
  5015 // Special Stack Slot Store
  5016 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  5017     instruction_count(2); multiple_bundles;
  5018     stkSlot : R(read);
  5019     src     : C(read);
  5020     MS      : R(2);
  5021 %}
  5023 // Float Store
  5024 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  5025     single_instruction;
  5026     mem : R(read);
  5027     src : C(read);
  5028     MS  : R;
  5029 %}
  5031 // Float Store
  5032 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  5033     single_instruction;
  5034     mem : R(read);
  5035     MS  : R;
  5036 %}
  5038 // Double Store
  5039 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  5040     instruction_count(1);
  5041     mem : R(read);
  5042     src : C(read);
  5043     MS  : R;
  5044 %}
  5046 // Double Store
  5047 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  5048     single_instruction;
  5049     mem : R(read);
  5050     MS  : R;
  5051 %}
  5053 // Special Stack Slot Float Store
  5054 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  5055     single_instruction;
  5056     stkSlot : R(read);
  5057     src     : C(read);
  5058     MS      : R;
  5059 %}
  5061 // Special Stack Slot Double Store
  5062 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  5063     single_instruction;
  5064     stkSlot : R(read);
  5065     src     : C(read);
  5066     MS      : R;
  5067 %}
  5069 // Integer Load (when sign bit propagation not needed)
  5070 pipe_class iload_mem(iRegI dst, memory mem) %{
  5071     single_instruction;
  5072     mem : R(read);
  5073     dst : C(write);
  5074     MS  : R;
  5075 %}
  5077 // Integer Load from stack operand
  5078 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5079     single_instruction;
  5080     mem : R(read);
  5081     dst : C(write);
  5082     MS  : R;
  5083 %}
  5085 // Integer Load (when sign bit propagation or masking is needed)
  5086 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5087     single_instruction;
  5088     mem : R(read);
  5089     dst : M(write);
  5090     MS  : R;
  5091 %}
  5093 // Float Load
  5094 pipe_class floadF_mem(regF dst, memory mem) %{
  5095     single_instruction;
  5096     mem : R(read);
  5097     dst : M(write);
  5098     MS  : R;
  5099 %}
  5101 // Float Load
  5102 pipe_class floadD_mem(regD dst, memory mem) %{
  5103     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5104     mem : R(read);
  5105     dst : M(write);
  5106     MS  : R;
  5107 %}
  5109 // Float Load
  5110 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5111     single_instruction;
  5112     stkSlot : R(read);
  5113     dst : M(write);
  5114     MS  : R;
  5115 %}
  5117 // Float Load
  5118 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5119     single_instruction;
  5120     stkSlot : R(read);
  5121     dst : M(write);
  5122     MS  : R;
  5123 %}
  5125 // Memory Nop
  5126 pipe_class mem_nop() %{
  5127     single_instruction;
  5128     MS  : R;
  5129 %}
  5131 pipe_class sethi(iRegP dst, immI src) %{
  5132     single_instruction;
  5133     dst  : E(write);
  5134     IALU : R;
  5135 %}
  5137 pipe_class loadPollP(iRegP poll) %{
  5138     single_instruction;
  5139     poll : R(read);
  5140     MS   : R;
  5141 %}
  5143 pipe_class br(Universe br, label labl) %{
  5144     single_instruction_with_delay_slot;
  5145     BR  : R;
  5146 %}
  5148 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5149     single_instruction_with_delay_slot;
  5150     cr    : E(read);
  5151     BR    : R;
  5152 %}
  5154 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5155     single_instruction_with_delay_slot;
  5156     op1 : E(read);
  5157     BR  : R;
  5158     MS  : R;
  5159 %}
  5161 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5162     single_instruction_with_delay_slot;
  5163     cr    : E(read);
  5164     BR    : R;
  5165 %}
  5167 pipe_class br_nop() %{
  5168     single_instruction;
  5169     BR  : R;
  5170 %}
  5172 pipe_class simple_call(method meth) %{
  5173     instruction_count(2); multiple_bundles; force_serialization;
  5174     fixed_latency(100);
  5175     BR  : R(1);
  5176     MS  : R(1);
  5177     A0  : R(1);
  5178 %}
  5180 pipe_class compiled_call(method meth) %{
  5181     instruction_count(1); multiple_bundles; force_serialization;
  5182     fixed_latency(100);
  5183     MS  : R(1);
  5184 %}
  5186 pipe_class call(method meth) %{
  5187     instruction_count(0); multiple_bundles; force_serialization;
  5188     fixed_latency(100);
  5189 %}
  5191 pipe_class tail_call(Universe ignore, label labl) %{
  5192     single_instruction; has_delay_slot;
  5193     fixed_latency(100);
  5194     BR  : R(1);
  5195     MS  : R(1);
  5196 %}
  5198 pipe_class ret(Universe ignore) %{
  5199     single_instruction; has_delay_slot;
  5200     BR  : R(1);
  5201     MS  : R(1);
  5202 %}
  5204 pipe_class ret_poll(g3RegP poll) %{
  5205     instruction_count(3); has_delay_slot;
  5206     poll : E(read);
  5207     MS   : R;
  5208 %}
  5210 // The real do-nothing guy
  5211 pipe_class empty( ) %{
  5212     instruction_count(0);
  5213 %}
  5215 pipe_class long_memory_op() %{
  5216     instruction_count(0); multiple_bundles; force_serialization;
  5217     fixed_latency(25);
  5218     MS  : R(1);
  5219 %}
  5221 // Check-cast
  5222 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5223     array : R(read);
  5224     match  : R(read);
  5225     IALU   : R(2);
  5226     BR     : R(2);
  5227     MS     : R;
  5228 %}
  5230 // Convert FPU flags into +1,0,-1
  5231 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5232     src1  : E(read);
  5233     src2  : E(read);
  5234     dst   : E(write);
  5235     FA    : R;
  5236     MS    : R(2);
  5237     BR    : R(2);
  5238 %}
  5240 // Compare for p < q, and conditionally add y
  5241 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5242     p     : E(read);
  5243     q     : E(read);
  5244     y     : E(read);
  5245     IALU  : R(3)
  5246 %}
  5248 // Perform a compare, then move conditionally in a branch delay slot.
  5249 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5250     src2   : E(read);
  5251     srcdst : E(read);
  5252     IALU   : R;
  5253     BR     : R;
  5254 %}
  5256 // Define the class for the Nop node
  5257 define %{
  5258    MachNop = ialu_nop;
  5259 %}
  5261 %}
  5263 //----------INSTRUCTIONS-------------------------------------------------------
  5265 //------------Special Stack Slot instructions - no match rules-----------------
  5266 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5267   // No match rule to avoid chain rule match.
  5268   effect(DEF dst, USE src);
  5269   ins_cost(MEMORY_REF_COST);
  5270   size(4);
  5271   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5272   opcode(Assembler::ldf_op3);
  5273   ins_encode(simple_form3_mem_reg(src, dst));
  5274   ins_pipe(floadF_stk);
  5275 %}
  5277 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5278   // No match rule to avoid chain rule match.
  5279   effect(DEF dst, USE src);
  5280   ins_cost(MEMORY_REF_COST);
  5281   size(4);
  5282   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5283   opcode(Assembler::lddf_op3);
  5284   ins_encode(simple_form3_mem_reg(src, dst));
  5285   ins_pipe(floadD_stk);
  5286 %}
  5288 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5289   // No match rule to avoid chain rule match.
  5290   effect(DEF dst, USE src);
  5291   ins_cost(MEMORY_REF_COST);
  5292   size(4);
  5293   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5294   opcode(Assembler::stf_op3);
  5295   ins_encode(simple_form3_mem_reg(dst, src));
  5296   ins_pipe(fstoreF_stk_reg);
  5297 %}
  5299 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5300   // No match rule to avoid chain rule match.
  5301   effect(DEF dst, USE src);
  5302   ins_cost(MEMORY_REF_COST);
  5303   size(4);
  5304   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5305   opcode(Assembler::stdf_op3);
  5306   ins_encode(simple_form3_mem_reg(dst, src));
  5307   ins_pipe(fstoreD_stk_reg);
  5308 %}
  5310 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5311   effect(DEF dst, USE src);
  5312   ins_cost(MEMORY_REF_COST*2);
  5313   size(8);
  5314   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5315             "STW    R_G0,$dst.lo" %}
  5316   opcode(Assembler::stw_op3);
  5317   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5318   ins_pipe(lstoreI_stk_reg);
  5319 %}
  5321 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5322   // No match rule to avoid chain rule match.
  5323   effect(DEF dst, USE src);
  5324   ins_cost(MEMORY_REF_COST);
  5325   size(4);
  5326   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5327   opcode(Assembler::stx_op3);
  5328   ins_encode(simple_form3_mem_reg( dst, src ) );
  5329   ins_pipe(istore_stk_reg);
  5330 %}
  5332 //---------- Chain stack slots between similar types --------
  5334 // Load integer from stack slot
  5335 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5336   match(Set dst src);
  5337   ins_cost(MEMORY_REF_COST);
  5339   size(4);
  5340   format %{ "LDUW   $src,$dst\t!stk" %}
  5341   opcode(Assembler::lduw_op3);
  5342   ins_encode(simple_form3_mem_reg( src, dst ) );
  5343   ins_pipe(iload_mem);
  5344 %}
  5346 // Store integer to stack slot
  5347 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5348   match(Set dst src);
  5349   ins_cost(MEMORY_REF_COST);
  5351   size(4);
  5352   format %{ "STW    $src,$dst\t!stk" %}
  5353   opcode(Assembler::stw_op3);
  5354   ins_encode(simple_form3_mem_reg( dst, src ) );
  5355   ins_pipe(istore_mem_reg);
  5356 %}
  5358 // Load long from stack slot
  5359 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5360   match(Set dst src);
  5362   ins_cost(MEMORY_REF_COST);
  5363   size(4);
  5364   format %{ "LDX    $src,$dst\t! long" %}
  5365   opcode(Assembler::ldx_op3);
  5366   ins_encode(simple_form3_mem_reg( src, dst ) );
  5367   ins_pipe(iload_mem);
  5368 %}
  5370 // Store long to stack slot
  5371 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5372   match(Set dst src);
  5374   ins_cost(MEMORY_REF_COST);
  5375   size(4);
  5376   format %{ "STX    $src,$dst\t! long" %}
  5377   opcode(Assembler::stx_op3);
  5378   ins_encode(simple_form3_mem_reg( dst, src ) );
  5379   ins_pipe(istore_mem_reg);
  5380 %}
  5382 #ifdef _LP64
  5383 // Load pointer from stack slot, 64-bit encoding
  5384 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5385   match(Set dst src);
  5386   ins_cost(MEMORY_REF_COST);
  5387   size(4);
  5388   format %{ "LDX    $src,$dst\t!ptr" %}
  5389   opcode(Assembler::ldx_op3);
  5390   ins_encode(simple_form3_mem_reg( src, dst ) );
  5391   ins_pipe(iload_mem);
  5392 %}
  5394 // Store pointer to stack slot
  5395 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5396   match(Set dst src);
  5397   ins_cost(MEMORY_REF_COST);
  5398   size(4);
  5399   format %{ "STX    $src,$dst\t!ptr" %}
  5400   opcode(Assembler::stx_op3);
  5401   ins_encode(simple_form3_mem_reg( dst, src ) );
  5402   ins_pipe(istore_mem_reg);
  5403 %}
  5404 #else // _LP64
  5405 // Load pointer from stack slot, 32-bit encoding
  5406 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5407   match(Set dst src);
  5408   ins_cost(MEMORY_REF_COST);
  5409   format %{ "LDUW   $src,$dst\t!ptr" %}
  5410   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5411   ins_encode(simple_form3_mem_reg( src, dst ) );
  5412   ins_pipe(iload_mem);
  5413 %}
  5415 // Store pointer to stack slot
  5416 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5417   match(Set dst src);
  5418   ins_cost(MEMORY_REF_COST);
  5419   format %{ "STW    $src,$dst\t!ptr" %}
  5420   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5421   ins_encode(simple_form3_mem_reg( dst, src ) );
  5422   ins_pipe(istore_mem_reg);
  5423 %}
  5424 #endif // _LP64
  5426 //------------Special Nop instructions for bundling - no match rules-----------
  5427 // Nop using the A0 functional unit
  5428 instruct Nop_A0() %{
  5429   ins_cost(0);
  5431   format %{ "NOP    ! Alu Pipeline" %}
  5432   opcode(Assembler::or_op3, Assembler::arith_op);
  5433   ins_encode( form2_nop() );
  5434   ins_pipe(ialu_nop_A0);
  5435 %}
  5437 // Nop using the A1 functional unit
  5438 instruct Nop_A1( ) %{
  5439   ins_cost(0);
  5441   format %{ "NOP    ! Alu Pipeline" %}
  5442   opcode(Assembler::or_op3, Assembler::arith_op);
  5443   ins_encode( form2_nop() );
  5444   ins_pipe(ialu_nop_A1);
  5445 %}
  5447 // Nop using the memory functional unit
  5448 instruct Nop_MS( ) %{
  5449   ins_cost(0);
  5451   format %{ "NOP    ! Memory Pipeline" %}
  5452   ins_encode( emit_mem_nop );
  5453   ins_pipe(mem_nop);
  5454 %}
  5456 // Nop using the floating add functional unit
  5457 instruct Nop_FA( ) %{
  5458   ins_cost(0);
  5460   format %{ "NOP    ! Floating Add Pipeline" %}
  5461   ins_encode( emit_fadd_nop );
  5462   ins_pipe(fadd_nop);
  5463 %}
  5465 // Nop using the branch functional unit
  5466 instruct Nop_BR( ) %{
  5467   ins_cost(0);
  5469   format %{ "NOP    ! Branch Pipeline" %}
  5470   ins_encode( emit_br_nop );
  5471   ins_pipe(br_nop);
  5472 %}
  5474 //----------Load/Store/Move Instructions---------------------------------------
  5475 //----------Load Instructions--------------------------------------------------
  5476 // Load Byte (8bit signed)
  5477 instruct loadB(iRegI dst, memory mem) %{
  5478   match(Set dst (LoadB mem));
  5479   ins_cost(MEMORY_REF_COST);
  5481   size(4);
  5482   format %{ "LDSB   $mem,$dst\t! byte" %}
  5483   ins_encode %{
  5484     __ ldsb($mem$$Address, $dst$$Register);
  5485   %}
  5486   ins_pipe(iload_mask_mem);
  5487 %}
  5489 // Load Byte (8bit signed) into a Long Register
  5490 instruct loadB2L(iRegL dst, memory mem) %{
  5491   match(Set dst (ConvI2L (LoadB mem)));
  5492   ins_cost(MEMORY_REF_COST);
  5494   size(4);
  5495   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5496   ins_encode %{
  5497     __ ldsb($mem$$Address, $dst$$Register);
  5498   %}
  5499   ins_pipe(iload_mask_mem);
  5500 %}
  5502 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5503 instruct loadUB(iRegI dst, memory mem) %{
  5504   match(Set dst (LoadUB mem));
  5505   ins_cost(MEMORY_REF_COST);
  5507   size(4);
  5508   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5509   ins_encode %{
  5510     __ ldub($mem$$Address, $dst$$Register);
  5511   %}
  5512   ins_pipe(iload_mem);
  5513 %}
  5515 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5516 instruct loadUB2L(iRegL dst, memory mem) %{
  5517   match(Set dst (ConvI2L (LoadUB mem)));
  5518   ins_cost(MEMORY_REF_COST);
  5520   size(4);
  5521   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5522   ins_encode %{
  5523     __ ldub($mem$$Address, $dst$$Register);
  5524   %}
  5525   ins_pipe(iload_mem);
  5526 %}
  5528 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5529 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5530   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5531   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5533   size(2*4);
  5534   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5535             "AND    $dst,$mask,$dst" %}
  5536   ins_encode %{
  5537     __ ldub($mem$$Address, $dst$$Register);
  5538     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5539   %}
  5540   ins_pipe(iload_mem);
  5541 %}
  5543 // Load Short (16bit signed)
  5544 instruct loadS(iRegI dst, memory mem) %{
  5545   match(Set dst (LoadS mem));
  5546   ins_cost(MEMORY_REF_COST);
  5548   size(4);
  5549   format %{ "LDSH   $mem,$dst\t! short" %}
  5550   ins_encode %{
  5551     __ ldsh($mem$$Address, $dst$$Register);
  5552   %}
  5553   ins_pipe(iload_mask_mem);
  5554 %}
  5556 // Load Short (16 bit signed) to Byte (8 bit signed)
  5557 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5558   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5559   ins_cost(MEMORY_REF_COST);
  5561   size(4);
  5563   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5564   ins_encode %{
  5565     __ ldsb($mem$$Address, $dst$$Register, 1);
  5566   %}
  5567   ins_pipe(iload_mask_mem);
  5568 %}
  5570 // Load Short (16bit signed) into a Long Register
  5571 instruct loadS2L(iRegL dst, memory mem) %{
  5572   match(Set dst (ConvI2L (LoadS mem)));
  5573   ins_cost(MEMORY_REF_COST);
  5575   size(4);
  5576   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5577   ins_encode %{
  5578     __ ldsh($mem$$Address, $dst$$Register);
  5579   %}
  5580   ins_pipe(iload_mask_mem);
  5581 %}
  5583 // Load Unsigned Short/Char (16bit UNsigned)
  5584 instruct loadUS(iRegI dst, memory mem) %{
  5585   match(Set dst (LoadUS mem));
  5586   ins_cost(MEMORY_REF_COST);
  5588   size(4);
  5589   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5590   ins_encode %{
  5591     __ lduh($mem$$Address, $dst$$Register);
  5592   %}
  5593   ins_pipe(iload_mem);
  5594 %}
  5596 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5597 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5598   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5599   ins_cost(MEMORY_REF_COST);
  5601   size(4);
  5602   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5603   ins_encode %{
  5604     __ ldsb($mem$$Address, $dst$$Register, 1);
  5605   %}
  5606   ins_pipe(iload_mask_mem);
  5607 %}
  5609 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5610 instruct loadUS2L(iRegL dst, memory mem) %{
  5611   match(Set dst (ConvI2L (LoadUS mem)));
  5612   ins_cost(MEMORY_REF_COST);
  5614   size(4);
  5615   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5616   ins_encode %{
  5617     __ lduh($mem$$Address, $dst$$Register);
  5618   %}
  5619   ins_pipe(iload_mem);
  5620 %}
  5622 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5623 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5624   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5625   ins_cost(MEMORY_REF_COST);
  5627   size(4);
  5628   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5629   ins_encode %{
  5630     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5631   %}
  5632   ins_pipe(iload_mem);
  5633 %}
  5635 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5636 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5637   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5638   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5640   size(2*4);
  5641   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5642             "AND    $dst,$mask,$dst" %}
  5643   ins_encode %{
  5644     Register Rdst = $dst$$Register;
  5645     __ lduh($mem$$Address, Rdst);
  5646     __ and3(Rdst, $mask$$constant, Rdst);
  5647   %}
  5648   ins_pipe(iload_mem);
  5649 %}
  5651 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5652 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5653   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5654   effect(TEMP dst, TEMP tmp);
  5655   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5657   size((3+1)*4);  // set may use two instructions.
  5658   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5659             "SET    $mask,$tmp\n\t"
  5660             "AND    $dst,$tmp,$dst" %}
  5661   ins_encode %{
  5662     Register Rdst = $dst$$Register;
  5663     Register Rtmp = $tmp$$Register;
  5664     __ lduh($mem$$Address, Rdst);
  5665     __ set($mask$$constant, Rtmp);
  5666     __ and3(Rdst, Rtmp, Rdst);
  5667   %}
  5668   ins_pipe(iload_mem);
  5669 %}
  5671 // Load Integer
  5672 instruct loadI(iRegI dst, memory mem) %{
  5673   match(Set dst (LoadI mem));
  5674   ins_cost(MEMORY_REF_COST);
  5676   size(4);
  5677   format %{ "LDUW   $mem,$dst\t! int" %}
  5678   ins_encode %{
  5679     __ lduw($mem$$Address, $dst$$Register);
  5680   %}
  5681   ins_pipe(iload_mem);
  5682 %}
  5684 // Load Integer to Byte (8 bit signed)
  5685 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5686   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5687   ins_cost(MEMORY_REF_COST);
  5689   size(4);
  5691   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5692   ins_encode %{
  5693     __ ldsb($mem$$Address, $dst$$Register, 3);
  5694   %}
  5695   ins_pipe(iload_mask_mem);
  5696 %}
  5698 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5699 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5700   match(Set dst (AndI (LoadI mem) mask));
  5701   ins_cost(MEMORY_REF_COST);
  5703   size(4);
  5705   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5706   ins_encode %{
  5707     __ ldub($mem$$Address, $dst$$Register, 3);
  5708   %}
  5709   ins_pipe(iload_mask_mem);
  5710 %}
  5712 // Load Integer to Short (16 bit signed)
  5713 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5714   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5715   ins_cost(MEMORY_REF_COST);
  5717   size(4);
  5719   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5720   ins_encode %{
  5721     __ ldsh($mem$$Address, $dst$$Register, 2);
  5722   %}
  5723   ins_pipe(iload_mask_mem);
  5724 %}
  5726 // Load Integer to Unsigned Short (16 bit UNsigned)
  5727 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5728   match(Set dst (AndI (LoadI mem) mask));
  5729   ins_cost(MEMORY_REF_COST);
  5731   size(4);
  5733   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5734   ins_encode %{
  5735     __ lduh($mem$$Address, $dst$$Register, 2);
  5736   %}
  5737   ins_pipe(iload_mask_mem);
  5738 %}
  5740 // Load Integer into a Long Register
  5741 instruct loadI2L(iRegL dst, memory mem) %{
  5742   match(Set dst (ConvI2L (LoadI mem)));
  5743   ins_cost(MEMORY_REF_COST);
  5745   size(4);
  5746   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5747   ins_encode %{
  5748     __ ldsw($mem$$Address, $dst$$Register);
  5749   %}
  5750   ins_pipe(iload_mask_mem);
  5751 %}
  5753 // Load Integer with mask 0xFF into a Long Register
  5754 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5755   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5756   ins_cost(MEMORY_REF_COST);
  5758   size(4);
  5759   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5760   ins_encode %{
  5761     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5762   %}
  5763   ins_pipe(iload_mem);
  5764 %}
  5766 // Load Integer with mask 0xFFFF into a Long Register
  5767 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5768   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5769   ins_cost(MEMORY_REF_COST);
  5771   size(4);
  5772   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5773   ins_encode %{
  5774     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5775   %}
  5776   ins_pipe(iload_mem);
  5777 %}
  5779 // Load Integer with a 13-bit mask into a Long Register
  5780 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5781   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5782   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5784   size(2*4);
  5785   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5786             "AND    $dst,$mask,$dst" %}
  5787   ins_encode %{
  5788     Register Rdst = $dst$$Register;
  5789     __ lduw($mem$$Address, Rdst);
  5790     __ and3(Rdst, $mask$$constant, Rdst);
  5791   %}
  5792   ins_pipe(iload_mem);
  5793 %}
  5795 // Load Integer with a 32-bit mask into a Long Register
  5796 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5797   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5798   effect(TEMP dst, TEMP tmp);
  5799   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5801   size((3+1)*4);  // set may use two instructions.
  5802   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5803             "SET    $mask,$tmp\n\t"
  5804             "AND    $dst,$tmp,$dst" %}
  5805   ins_encode %{
  5806     Register Rdst = $dst$$Register;
  5807     Register Rtmp = $tmp$$Register;
  5808     __ lduw($mem$$Address, Rdst);
  5809     __ set($mask$$constant, Rtmp);
  5810     __ and3(Rdst, Rtmp, Rdst);
  5811   %}
  5812   ins_pipe(iload_mem);
  5813 %}
  5815 // Load Unsigned Integer into a Long Register
  5816 instruct loadUI2L(iRegL dst, memory mem) %{
  5817   match(Set dst (LoadUI2L mem));
  5818   ins_cost(MEMORY_REF_COST);
  5820   size(4);
  5821   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5822   ins_encode %{
  5823     __ lduw($mem$$Address, $dst$$Register);
  5824   %}
  5825   ins_pipe(iload_mem);
  5826 %}
  5828 // Load Long - aligned
  5829 instruct loadL(iRegL dst, memory mem ) %{
  5830   match(Set dst (LoadL mem));
  5831   ins_cost(MEMORY_REF_COST);
  5833   size(4);
  5834   format %{ "LDX    $mem,$dst\t! long" %}
  5835   ins_encode %{
  5836     __ ldx($mem$$Address, $dst$$Register);
  5837   %}
  5838   ins_pipe(iload_mem);
  5839 %}
  5841 // Load Long - UNaligned
  5842 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5843   match(Set dst (LoadL_unaligned mem));
  5844   effect(KILL tmp);
  5845   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5846   size(16);
  5847   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5848           "\tLDUW   $mem  ,$dst\n"
  5849           "\tSLLX   #32, $dst, $dst\n"
  5850           "\tOR     $dst, R_O7, $dst" %}
  5851   opcode(Assembler::lduw_op3);
  5852   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5853   ins_pipe(iload_mem);
  5854 %}
  5856 // Load Aligned Packed Byte into a Double Register
  5857 instruct loadA8B(regD dst, memory mem) %{
  5858   match(Set dst (Load8B mem));
  5859   ins_cost(MEMORY_REF_COST);
  5860   size(4);
  5861   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5862   opcode(Assembler::lddf_op3);
  5863   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5864   ins_pipe(floadD_mem);
  5865 %}
  5867 // Load Aligned Packed Char into a Double Register
  5868 instruct loadA4C(regD dst, memory mem) %{
  5869   match(Set dst (Load4C mem));
  5870   ins_cost(MEMORY_REF_COST);
  5871   size(4);
  5872   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5873   opcode(Assembler::lddf_op3);
  5874   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5875   ins_pipe(floadD_mem);
  5876 %}
  5878 // Load Aligned Packed Short into a Double Register
  5879 instruct loadA4S(regD dst, memory mem) %{
  5880   match(Set dst (Load4S mem));
  5881   ins_cost(MEMORY_REF_COST);
  5882   size(4);
  5883   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5884   opcode(Assembler::lddf_op3);
  5885   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5886   ins_pipe(floadD_mem);
  5887 %}
  5889 // Load Aligned Packed Int into a Double Register
  5890 instruct loadA2I(regD dst, memory mem) %{
  5891   match(Set dst (Load2I mem));
  5892   ins_cost(MEMORY_REF_COST);
  5893   size(4);
  5894   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5895   opcode(Assembler::lddf_op3);
  5896   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5897   ins_pipe(floadD_mem);
  5898 %}
  5900 // Load Range
  5901 instruct loadRange(iRegI dst, memory mem) %{
  5902   match(Set dst (LoadRange mem));
  5903   ins_cost(MEMORY_REF_COST);
  5905   size(4);
  5906   format %{ "LDUW   $mem,$dst\t! range" %}
  5907   opcode(Assembler::lduw_op3);
  5908   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5909   ins_pipe(iload_mem);
  5910 %}
  5912 // Load Integer into %f register (for fitos/fitod)
  5913 instruct loadI_freg(regF dst, memory mem) %{
  5914   match(Set dst (LoadI mem));
  5915   ins_cost(MEMORY_REF_COST);
  5916   size(4);
  5918   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5919   opcode(Assembler::ldf_op3);
  5920   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5921   ins_pipe(floadF_mem);
  5922 %}
  5924 // Load Pointer
  5925 instruct loadP(iRegP dst, memory mem) %{
  5926   match(Set dst (LoadP mem));
  5927   ins_cost(MEMORY_REF_COST);
  5928   size(4);
  5930 #ifndef _LP64
  5931   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5932   ins_encode %{
  5933     __ lduw($mem$$Address, $dst$$Register);
  5934   %}
  5935 #else
  5936   format %{ "LDX    $mem,$dst\t! ptr" %}
  5937   ins_encode %{
  5938     __ ldx($mem$$Address, $dst$$Register);
  5939   %}
  5940 #endif
  5941   ins_pipe(iload_mem);
  5942 %}
  5944 // Load Compressed Pointer
  5945 instruct loadN(iRegN dst, memory mem) %{
  5946   match(Set dst (LoadN mem));
  5947   ins_cost(MEMORY_REF_COST);
  5948   size(4);
  5950   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5951   ins_encode %{
  5952     __ lduw($mem$$Address, $dst$$Register);
  5953   %}
  5954   ins_pipe(iload_mem);
  5955 %}
  5957 // Load Klass Pointer
  5958 instruct loadKlass(iRegP dst, memory mem) %{
  5959   match(Set dst (LoadKlass mem));
  5960   ins_cost(MEMORY_REF_COST);
  5961   size(4);
  5963 #ifndef _LP64
  5964   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5965   ins_encode %{
  5966     __ lduw($mem$$Address, $dst$$Register);
  5967   %}
  5968 #else
  5969   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5970   ins_encode %{
  5971     __ ldx($mem$$Address, $dst$$Register);
  5972   %}
  5973 #endif
  5974   ins_pipe(iload_mem);
  5975 %}
  5977 // Load narrow Klass Pointer
  5978 instruct loadNKlass(iRegN dst, memory mem) %{
  5979   match(Set dst (LoadNKlass mem));
  5980   ins_cost(MEMORY_REF_COST);
  5981   size(4);
  5983   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5984   ins_encode %{
  5985     __ lduw($mem$$Address, $dst$$Register);
  5986   %}
  5987   ins_pipe(iload_mem);
  5988 %}
  5990 // Load Double
  5991 instruct loadD(regD dst, memory mem) %{
  5992   match(Set dst (LoadD mem));
  5993   ins_cost(MEMORY_REF_COST);
  5995   size(4);
  5996   format %{ "LDDF   $mem,$dst" %}
  5997   opcode(Assembler::lddf_op3);
  5998   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5999   ins_pipe(floadD_mem);
  6000 %}
  6002 // Load Double - UNaligned
  6003 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  6004   match(Set dst (LoadD_unaligned mem));
  6005   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  6006   size(8);
  6007   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  6008           "\tLDF    $mem+4,$dst.lo\t!" %}
  6009   opcode(Assembler::ldf_op3);
  6010   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  6011   ins_pipe(iload_mem);
  6012 %}
  6014 // Load Float
  6015 instruct loadF(regF dst, memory mem) %{
  6016   match(Set dst (LoadF mem));
  6017   ins_cost(MEMORY_REF_COST);
  6019   size(4);
  6020   format %{ "LDF    $mem,$dst" %}
  6021   opcode(Assembler::ldf_op3);
  6022   ins_encode(simple_form3_mem_reg( mem, dst ) );
  6023   ins_pipe(floadF_mem);
  6024 %}
  6026 // Load Constant
  6027 instruct loadConI( iRegI dst, immI src ) %{
  6028   match(Set dst src);
  6029   ins_cost(DEFAULT_COST * 3/2);
  6030   format %{ "SET    $src,$dst" %}
  6031   ins_encode( Set32(src, dst) );
  6032   ins_pipe(ialu_hi_lo_reg);
  6033 %}
  6035 instruct loadConI13( iRegI dst, immI13 src ) %{
  6036   match(Set dst src);
  6038   size(4);
  6039   format %{ "MOV    $src,$dst" %}
  6040   ins_encode( Set13( src, dst ) );
  6041   ins_pipe(ialu_imm);
  6042 %}
  6044 #ifndef _LP64
  6045 instruct loadConP(iRegP dst, immP con) %{
  6046   match(Set dst con);
  6047   ins_cost(DEFAULT_COST * 3/2);
  6048   format %{ "SET    $con,$dst\t!ptr" %}
  6049   ins_encode %{
  6050     // [RGV] This next line should be generated from ADLC
  6051     if (_opnds[1]->constant_is_oop()) {
  6052       intptr_t val = $con$$constant;
  6053       __ set_oop_constant((jobject) val, $dst$$Register);
  6054     } else {          // non-oop pointers, e.g. card mark base, heap top
  6055       __ set($con$$constant, $dst$$Register);
  6057   %}
  6058   ins_pipe(loadConP);
  6059 %}
  6060 #else
  6061 instruct loadConP_set(iRegP dst, immP_set con) %{
  6062   match(Set dst con);
  6063   ins_cost(DEFAULT_COST * 3/2);
  6064   format %{ "SET    $con,$dst\t! ptr" %}
  6065   ins_encode %{
  6066     // [RGV] This next line should be generated from ADLC
  6067     if (_opnds[1]->constant_is_oop()) {
  6068       intptr_t val = $con$$constant;
  6069       __ set_oop_constant((jobject) val, $dst$$Register);
  6070     } else {          // non-oop pointers, e.g. card mark base, heap top
  6071       __ set($con$$constant, $dst$$Register);
  6073   %}
  6074   ins_pipe(loadConP);
  6075 %}
  6077 instruct loadConP_load(iRegP dst, immP_load con) %{
  6078   match(Set dst con);
  6079   ins_cost(MEMORY_REF_COST);
  6080   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
  6081   ins_encode %{
  6082     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6083     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
  6084   %}
  6085   ins_pipe(loadConP);
  6086 %}
  6088 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
  6089   match(Set dst con);
  6090   ins_cost(DEFAULT_COST * 3/2);
  6091   format %{ "SET    $con,$dst\t! non-oop ptr" %}
  6092   ins_encode %{
  6093     __ set($con$$constant, $dst$$Register);
  6094   %}
  6095   ins_pipe(loadConP);
  6096 %}
  6097 #endif // _LP64
  6099 instruct loadConP0(iRegP dst, immP0 src) %{
  6100   match(Set dst src);
  6102   size(4);
  6103   format %{ "CLR    $dst\t!ptr" %}
  6104   ins_encode %{
  6105     __ clr($dst$$Register);
  6106   %}
  6107   ins_pipe(ialu_imm);
  6108 %}
  6110 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6111   match(Set dst src);
  6112   ins_cost(DEFAULT_COST);
  6113   format %{ "SET    $src,$dst\t!ptr" %}
  6114   ins_encode %{
  6115     AddressLiteral polling_page(os::get_polling_page());
  6116     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6117   %}
  6118   ins_pipe(loadConP_poll);
  6119 %}
  6121 instruct loadConN0(iRegN dst, immN0 src) %{
  6122   match(Set dst src);
  6124   size(4);
  6125   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6126   ins_encode %{
  6127     __ clr($dst$$Register);
  6128   %}
  6129   ins_pipe(ialu_imm);
  6130 %}
  6132 instruct loadConN(iRegN dst, immN src) %{
  6133   match(Set dst src);
  6134   ins_cost(DEFAULT_COST * 3/2);
  6135   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6136   ins_encode %{
  6137     Register dst = $dst$$Register;
  6138     __ set_narrow_oop((jobject)$src$$constant, dst);
  6139   %}
  6140   ins_pipe(ialu_hi_lo_reg);
  6141 %}
  6143 // Materialize long value (predicated by immL_cheap).
  6144 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
  6145   match(Set dst con);
  6146   effect(KILL tmp);
  6147   ins_cost(DEFAULT_COST * 3);
  6148   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
  6149   ins_encode %{
  6150     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
  6151   %}
  6152   ins_pipe(loadConL);
  6153 %}
  6155 // Load long value from constant table (predicated by immL_expensive).
  6156 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
  6157   match(Set dst con);
  6158   ins_cost(MEMORY_REF_COST);
  6159   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
  6160   ins_encode %{
  6161       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
  6162     __ ldx($constanttablebase, con_offset, $dst$$Register);
  6163   %}
  6164   ins_pipe(loadConL);
  6165 %}
  6167 instruct loadConL0( iRegL dst, immL0 src ) %{
  6168   match(Set dst src);
  6169   ins_cost(DEFAULT_COST);
  6170   size(4);
  6171   format %{ "CLR    $dst\t! long" %}
  6172   ins_encode( Set13( src, dst ) );
  6173   ins_pipe(ialu_imm);
  6174 %}
  6176 instruct loadConL13( iRegL dst, immL13 src ) %{
  6177   match(Set dst src);
  6178   ins_cost(DEFAULT_COST * 2);
  6180   size(4);
  6181   format %{ "MOV    $src,$dst\t! long" %}
  6182   ins_encode( Set13( src, dst ) );
  6183   ins_pipe(ialu_imm);
  6184 %}
  6186 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
  6187   match(Set dst con);
  6188   effect(KILL tmp);
  6189   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
  6190   ins_encode %{
  6191       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6192     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
  6193   %}
  6194   ins_pipe(loadConFD);
  6195 %}
  6197 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
  6198   match(Set dst con);
  6199   effect(KILL tmp);
  6200   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
  6201   ins_encode %{
  6202     // XXX This is a quick fix for 6833573.
  6203     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
  6204     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
  6205     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  6206   %}
  6207   ins_pipe(loadConFD);
  6208 %}
  6210 // Prefetch instructions.
  6211 // Must be safe to execute with invalid address (cannot fault).
  6213 instruct prefetchr( memory mem ) %{
  6214   match( PrefetchRead mem );
  6215   ins_cost(MEMORY_REF_COST);
  6217   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6218   opcode(Assembler::prefetch_op3);
  6219   ins_encode( form3_mem_prefetch_read( mem ) );
  6220   ins_pipe(iload_mem);
  6221 %}
  6223 instruct prefetchw( memory mem ) %{
  6224   predicate(AllocatePrefetchStyle != 3 );
  6225   match( PrefetchWrite mem );
  6226   ins_cost(MEMORY_REF_COST);
  6228   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6229   opcode(Assembler::prefetch_op3);
  6230   ins_encode( form3_mem_prefetch_write( mem ) );
  6231   ins_pipe(iload_mem);
  6232 %}
  6234 // Use BIS instruction to prefetch.
  6235 instruct prefetchw_bis( memory mem ) %{
  6236   predicate(AllocatePrefetchStyle == 3);
  6237   match( PrefetchWrite mem );
  6238   ins_cost(MEMORY_REF_COST);
  6240   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
  6241   ins_encode %{
  6242      Register base = as_Register($mem$$base);
  6243      int disp = $mem$$disp;
  6244      if (disp != 0) {
  6245        __ add(base, AllocatePrefetchStepSize, base);
  6247      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
  6248   %}
  6249   ins_pipe(istore_mem_reg);
  6250 %}
  6252 //----------Store Instructions-------------------------------------------------
  6253 // Store Byte
  6254 instruct storeB(memory mem, iRegI src) %{
  6255   match(Set mem (StoreB mem src));
  6256   ins_cost(MEMORY_REF_COST);
  6258   size(4);
  6259   format %{ "STB    $src,$mem\t! byte" %}
  6260   opcode(Assembler::stb_op3);
  6261   ins_encode(simple_form3_mem_reg( mem, src ) );
  6262   ins_pipe(istore_mem_reg);
  6263 %}
  6265 instruct storeB0(memory mem, immI0 src) %{
  6266   match(Set mem (StoreB mem src));
  6267   ins_cost(MEMORY_REF_COST);
  6269   size(4);
  6270   format %{ "STB    $src,$mem\t! byte" %}
  6271   opcode(Assembler::stb_op3);
  6272   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6273   ins_pipe(istore_mem_zero);
  6274 %}
  6276 instruct storeCM0(memory mem, immI0 src) %{
  6277   match(Set mem (StoreCM mem src));
  6278   ins_cost(MEMORY_REF_COST);
  6280   size(4);
  6281   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6282   opcode(Assembler::stb_op3);
  6283   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6284   ins_pipe(istore_mem_zero);
  6285 %}
  6287 // Store Char/Short
  6288 instruct storeC(memory mem, iRegI src) %{
  6289   match(Set mem (StoreC mem src));
  6290   ins_cost(MEMORY_REF_COST);
  6292   size(4);
  6293   format %{ "STH    $src,$mem\t! short" %}
  6294   opcode(Assembler::sth_op3);
  6295   ins_encode(simple_form3_mem_reg( mem, src ) );
  6296   ins_pipe(istore_mem_reg);
  6297 %}
  6299 instruct storeC0(memory mem, immI0 src) %{
  6300   match(Set mem (StoreC mem src));
  6301   ins_cost(MEMORY_REF_COST);
  6303   size(4);
  6304   format %{ "STH    $src,$mem\t! short" %}
  6305   opcode(Assembler::sth_op3);
  6306   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6307   ins_pipe(istore_mem_zero);
  6308 %}
  6310 // Store Integer
  6311 instruct storeI(memory mem, iRegI src) %{
  6312   match(Set mem (StoreI mem src));
  6313   ins_cost(MEMORY_REF_COST);
  6315   size(4);
  6316   format %{ "STW    $src,$mem" %}
  6317   opcode(Assembler::stw_op3);
  6318   ins_encode(simple_form3_mem_reg( mem, src ) );
  6319   ins_pipe(istore_mem_reg);
  6320 %}
  6322 // Store Long
  6323 instruct storeL(memory mem, iRegL src) %{
  6324   match(Set mem (StoreL mem src));
  6325   ins_cost(MEMORY_REF_COST);
  6326   size(4);
  6327   format %{ "STX    $src,$mem\t! long" %}
  6328   opcode(Assembler::stx_op3);
  6329   ins_encode(simple_form3_mem_reg( mem, src ) );
  6330   ins_pipe(istore_mem_reg);
  6331 %}
  6333 instruct storeI0(memory mem, immI0 src) %{
  6334   match(Set mem (StoreI mem src));
  6335   ins_cost(MEMORY_REF_COST);
  6337   size(4);
  6338   format %{ "STW    $src,$mem" %}
  6339   opcode(Assembler::stw_op3);
  6340   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6341   ins_pipe(istore_mem_zero);
  6342 %}
  6344 instruct storeL0(memory mem, immL0 src) %{
  6345   match(Set mem (StoreL mem src));
  6346   ins_cost(MEMORY_REF_COST);
  6348   size(4);
  6349   format %{ "STX    $src,$mem" %}
  6350   opcode(Assembler::stx_op3);
  6351   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6352   ins_pipe(istore_mem_zero);
  6353 %}
  6355 // Store Integer from float register (used after fstoi)
  6356 instruct storeI_Freg(memory mem, regF src) %{
  6357   match(Set mem (StoreI mem src));
  6358   ins_cost(MEMORY_REF_COST);
  6360   size(4);
  6361   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6362   opcode(Assembler::stf_op3);
  6363   ins_encode(simple_form3_mem_reg( mem, src ) );
  6364   ins_pipe(fstoreF_mem_reg);
  6365 %}
  6367 // Store Pointer
  6368 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6369   match(Set dst (StoreP dst src));
  6370   ins_cost(MEMORY_REF_COST);
  6371   size(4);
  6373 #ifndef _LP64
  6374   format %{ "STW    $src,$dst\t! ptr" %}
  6375   opcode(Assembler::stw_op3, 0, REGP_OP);
  6376 #else
  6377   format %{ "STX    $src,$dst\t! ptr" %}
  6378   opcode(Assembler::stx_op3, 0, REGP_OP);
  6379 #endif
  6380   ins_encode( form3_mem_reg( dst, src ) );
  6381   ins_pipe(istore_mem_spORreg);
  6382 %}
  6384 instruct storeP0(memory dst, immP0 src) %{
  6385   match(Set dst (StoreP dst src));
  6386   ins_cost(MEMORY_REF_COST);
  6387   size(4);
  6389 #ifndef _LP64
  6390   format %{ "STW    $src,$dst\t! ptr" %}
  6391   opcode(Assembler::stw_op3, 0, REGP_OP);
  6392 #else
  6393   format %{ "STX    $src,$dst\t! ptr" %}
  6394   opcode(Assembler::stx_op3, 0, REGP_OP);
  6395 #endif
  6396   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6397   ins_pipe(istore_mem_zero);
  6398 %}
  6400 // Store Compressed Pointer
  6401 instruct storeN(memory dst, iRegN src) %{
  6402    match(Set dst (StoreN dst src));
  6403    ins_cost(MEMORY_REF_COST);
  6404    size(4);
  6406    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6407    ins_encode %{
  6408      Register base = as_Register($dst$$base);
  6409      Register index = as_Register($dst$$index);
  6410      Register src = $src$$Register;
  6411      if (index != G0) {
  6412        __ stw(src, base, index);
  6413      } else {
  6414        __ stw(src, base, $dst$$disp);
  6416    %}
  6417    ins_pipe(istore_mem_spORreg);
  6418 %}
  6420 instruct storeN0(memory dst, immN0 src) %{
  6421    match(Set dst (StoreN dst src));
  6422    ins_cost(MEMORY_REF_COST);
  6423    size(4);
  6425    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6426    ins_encode %{
  6427      Register base = as_Register($dst$$base);
  6428      Register index = as_Register($dst$$index);
  6429      if (index != G0) {
  6430        __ stw(0, base, index);
  6431      } else {
  6432        __ stw(0, base, $dst$$disp);
  6434    %}
  6435    ins_pipe(istore_mem_zero);
  6436 %}
  6438 // Store Double
  6439 instruct storeD( memory mem, regD src) %{
  6440   match(Set mem (StoreD mem src));
  6441   ins_cost(MEMORY_REF_COST);
  6443   size(4);
  6444   format %{ "STDF   $src,$mem" %}
  6445   opcode(Assembler::stdf_op3);
  6446   ins_encode(simple_form3_mem_reg( mem, src ) );
  6447   ins_pipe(fstoreD_mem_reg);
  6448 %}
  6450 instruct storeD0( memory mem, immD0 src) %{
  6451   match(Set mem (StoreD mem src));
  6452   ins_cost(MEMORY_REF_COST);
  6454   size(4);
  6455   format %{ "STX    $src,$mem" %}
  6456   opcode(Assembler::stx_op3);
  6457   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6458   ins_pipe(fstoreD_mem_zero);
  6459 %}
  6461 // Store Float
  6462 instruct storeF( memory mem, regF src) %{
  6463   match(Set mem (StoreF mem src));
  6464   ins_cost(MEMORY_REF_COST);
  6466   size(4);
  6467   format %{ "STF    $src,$mem" %}
  6468   opcode(Assembler::stf_op3);
  6469   ins_encode(simple_form3_mem_reg( mem, src ) );
  6470   ins_pipe(fstoreF_mem_reg);
  6471 %}
  6473 instruct storeF0( memory mem, immF0 src) %{
  6474   match(Set mem (StoreF mem src));
  6475   ins_cost(MEMORY_REF_COST);
  6477   size(4);
  6478   format %{ "STW    $src,$mem\t! storeF0" %}
  6479   opcode(Assembler::stw_op3);
  6480   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6481   ins_pipe(fstoreF_mem_zero);
  6482 %}
  6484 // Store Aligned Packed Bytes in Double register to memory
  6485 instruct storeA8B(memory mem, regD src) %{
  6486   match(Set mem (Store8B mem src));
  6487   ins_cost(MEMORY_REF_COST);
  6488   size(4);
  6489   format %{ "STDF   $src,$mem\t! packed8B" %}
  6490   opcode(Assembler::stdf_op3);
  6491   ins_encode(simple_form3_mem_reg( mem, src ) );
  6492   ins_pipe(fstoreD_mem_reg);
  6493 %}
  6495 // Convert oop pointer into compressed form
  6496 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6497   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6498   match(Set dst (EncodeP src));
  6499   format %{ "encode_heap_oop $src, $dst" %}
  6500   ins_encode %{
  6501     __ encode_heap_oop($src$$Register, $dst$$Register);
  6502   %}
  6503   ins_pipe(ialu_reg);
  6504 %}
  6506 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6507   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6508   match(Set dst (EncodeP src));
  6509   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6510   ins_encode %{
  6511     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6512   %}
  6513   ins_pipe(ialu_reg);
  6514 %}
  6516 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6517   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6518             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6519   match(Set dst (DecodeN src));
  6520   format %{ "decode_heap_oop $src, $dst" %}
  6521   ins_encode %{
  6522     __ decode_heap_oop($src$$Register, $dst$$Register);
  6523   %}
  6524   ins_pipe(ialu_reg);
  6525 %}
  6527 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6528   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6529             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6530   match(Set dst (DecodeN src));
  6531   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6532   ins_encode %{
  6533     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6534   %}
  6535   ins_pipe(ialu_reg);
  6536 %}
  6539 // Store Zero into Aligned Packed Bytes
  6540 instruct storeA8B0(memory mem, immI0 zero) %{
  6541   match(Set mem (Store8B mem zero));
  6542   ins_cost(MEMORY_REF_COST);
  6543   size(4);
  6544   format %{ "STX    $zero,$mem\t! packed8B" %}
  6545   opcode(Assembler::stx_op3);
  6546   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6547   ins_pipe(fstoreD_mem_zero);
  6548 %}
  6550 // Store Aligned Packed Chars/Shorts in Double register to memory
  6551 instruct storeA4C(memory mem, regD src) %{
  6552   match(Set mem (Store4C mem src));
  6553   ins_cost(MEMORY_REF_COST);
  6554   size(4);
  6555   format %{ "STDF   $src,$mem\t! packed4C" %}
  6556   opcode(Assembler::stdf_op3);
  6557   ins_encode(simple_form3_mem_reg( mem, src ) );
  6558   ins_pipe(fstoreD_mem_reg);
  6559 %}
  6561 // Store Zero into Aligned Packed Chars/Shorts
  6562 instruct storeA4C0(memory mem, immI0 zero) %{
  6563   match(Set mem (Store4C mem (Replicate4C zero)));
  6564   ins_cost(MEMORY_REF_COST);
  6565   size(4);
  6566   format %{ "STX    $zero,$mem\t! packed4C" %}
  6567   opcode(Assembler::stx_op3);
  6568   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6569   ins_pipe(fstoreD_mem_zero);
  6570 %}
  6572 // Store Aligned Packed Ints in Double register to memory
  6573 instruct storeA2I(memory mem, regD src) %{
  6574   match(Set mem (Store2I mem src));
  6575   ins_cost(MEMORY_REF_COST);
  6576   size(4);
  6577   format %{ "STDF   $src,$mem\t! packed2I" %}
  6578   opcode(Assembler::stdf_op3);
  6579   ins_encode(simple_form3_mem_reg( mem, src ) );
  6580   ins_pipe(fstoreD_mem_reg);
  6581 %}
  6583 // Store Zero into Aligned Packed Ints
  6584 instruct storeA2I0(memory mem, immI0 zero) %{
  6585   match(Set mem (Store2I mem zero));
  6586   ins_cost(MEMORY_REF_COST);
  6587   size(4);
  6588   format %{ "STX    $zero,$mem\t! packed2I" %}
  6589   opcode(Assembler::stx_op3);
  6590   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6591   ins_pipe(fstoreD_mem_zero);
  6592 %}
  6595 //----------MemBar Instructions-----------------------------------------------
  6596 // Memory barrier flavors
  6598 instruct membar_acquire() %{
  6599   match(MemBarAcquire);
  6600   ins_cost(4*MEMORY_REF_COST);
  6602   size(0);
  6603   format %{ "MEMBAR-acquire" %}
  6604   ins_encode( enc_membar_acquire );
  6605   ins_pipe(long_memory_op);
  6606 %}
  6608 instruct membar_acquire_lock() %{
  6609   match(MemBarAcquire);
  6610   predicate(Matcher::prior_fast_lock(n));
  6611   ins_cost(0);
  6613   size(0);
  6614   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6615   ins_encode( );
  6616   ins_pipe(empty);
  6617 %}
  6619 instruct membar_release() %{
  6620   match(MemBarRelease);
  6621   ins_cost(4*MEMORY_REF_COST);
  6623   size(0);
  6624   format %{ "MEMBAR-release" %}
  6625   ins_encode( enc_membar_release );
  6626   ins_pipe(long_memory_op);
  6627 %}
  6629 instruct membar_release_lock() %{
  6630   match(MemBarRelease);
  6631   predicate(Matcher::post_fast_unlock(n));
  6632   ins_cost(0);
  6634   size(0);
  6635   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6636   ins_encode( );
  6637   ins_pipe(empty);
  6638 %}
  6640 instruct membar_volatile() %{
  6641   match(MemBarVolatile);
  6642   ins_cost(4*MEMORY_REF_COST);
  6644   size(4);
  6645   format %{ "MEMBAR-volatile" %}
  6646   ins_encode( enc_membar_volatile );
  6647   ins_pipe(long_memory_op);
  6648 %}
  6650 instruct unnecessary_membar_volatile() %{
  6651   match(MemBarVolatile);
  6652   predicate(Matcher::post_store_load_barrier(n));
  6653   ins_cost(0);
  6655   size(0);
  6656   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6657   ins_encode( );
  6658   ins_pipe(empty);
  6659 %}
  6661 //----------Register Move Instructions-----------------------------------------
  6662 instruct roundDouble_nop(regD dst) %{
  6663   match(Set dst (RoundDouble dst));
  6664   ins_cost(0);
  6665   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6666   ins_encode( );
  6667   ins_pipe(empty);
  6668 %}
  6671 instruct roundFloat_nop(regF dst) %{
  6672   match(Set dst (RoundFloat dst));
  6673   ins_cost(0);
  6674   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6675   ins_encode( );
  6676   ins_pipe(empty);
  6677 %}
  6680 // Cast Index to Pointer for unsafe natives
  6681 instruct castX2P(iRegX src, iRegP dst) %{
  6682   match(Set dst (CastX2P src));
  6684   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6685   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6686   ins_pipe(ialu_reg);
  6687 %}
  6689 // Cast Pointer to Index for unsafe natives
  6690 instruct castP2X(iRegP src, iRegX dst) %{
  6691   match(Set dst (CastP2X src));
  6693   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6694   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6695   ins_pipe(ialu_reg);
  6696 %}
  6698 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6699   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6700   match(Set stkSlot src);   // chain rule
  6701   ins_cost(MEMORY_REF_COST);
  6702   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6703   opcode(Assembler::stdf_op3);
  6704   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6705   ins_pipe(fstoreD_stk_reg);
  6706 %}
  6708 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6709   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6710   match(Set dst stkSlot);   // chain rule
  6711   ins_cost(MEMORY_REF_COST);
  6712   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6713   opcode(Assembler::lddf_op3);
  6714   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6715   ins_pipe(floadD_stk);
  6716 %}
  6718 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6719   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6720   match(Set stkSlot src);   // chain rule
  6721   ins_cost(MEMORY_REF_COST);
  6722   format %{ "STF   $src,$stkSlot\t!stk" %}
  6723   opcode(Assembler::stf_op3);
  6724   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6725   ins_pipe(fstoreF_stk_reg);
  6726 %}
  6728 //----------Conditional Move---------------------------------------------------
  6729 // Conditional move
  6730 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6731   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6732   ins_cost(150);
  6733   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6734   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6735   ins_pipe(ialu_reg);
  6736 %}
  6738 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6739   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6740   ins_cost(140);
  6741   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6742   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6743   ins_pipe(ialu_imm);
  6744 %}
  6746 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6747   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6748   ins_cost(150);
  6749   size(4);
  6750   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6751   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6752   ins_pipe(ialu_reg);
  6753 %}
  6755 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6756   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6757   ins_cost(140);
  6758   size(4);
  6759   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6760   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6761   ins_pipe(ialu_imm);
  6762 %}
  6764 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6765   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6766   ins_cost(150);
  6767   size(4);
  6768   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6769   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6770   ins_pipe(ialu_reg);
  6771 %}
  6773 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6774   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6775   ins_cost(140);
  6776   size(4);
  6777   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6778   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6779   ins_pipe(ialu_imm);
  6780 %}
  6782 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6783   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6784   ins_cost(150);
  6785   size(4);
  6786   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6787   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6788   ins_pipe(ialu_reg);
  6789 %}
  6791 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6792   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6793   ins_cost(140);
  6794   size(4);
  6795   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6796   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6797   ins_pipe(ialu_imm);
  6798 %}
  6800 // Conditional move for RegN. Only cmov(reg,reg).
  6801 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6802   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6803   ins_cost(150);
  6804   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6805   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6806   ins_pipe(ialu_reg);
  6807 %}
  6809 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6810 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6811   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6812   ins_cost(150);
  6813   size(4);
  6814   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6815   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6816   ins_pipe(ialu_reg);
  6817 %}
  6819 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6820 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6821   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6822   ins_cost(150);
  6823   size(4);
  6824   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6825   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6826   ins_pipe(ialu_reg);
  6827 %}
  6829 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6830   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6831   ins_cost(150);
  6832   size(4);
  6833   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6834   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6835   ins_pipe(ialu_reg);
  6836 %}
  6838 // Conditional move
  6839 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6840   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6841   ins_cost(150);
  6842   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6843   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6844   ins_pipe(ialu_reg);
  6845 %}
  6847 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6848   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6849   ins_cost(140);
  6850   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6851   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6852   ins_pipe(ialu_imm);
  6853 %}
  6855 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6856 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6857   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6858   ins_cost(150);
  6860   size(4);
  6861   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6862   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6863   ins_pipe(ialu_reg);
  6864 %}
  6866 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6867   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6868   ins_cost(150);
  6870   size(4);
  6871   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6872   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6873   ins_pipe(ialu_reg);
  6874 %}
  6876 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6877   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6878   ins_cost(140);
  6880   size(4);
  6881   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6882   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6883   ins_pipe(ialu_imm);
  6884 %}
  6886 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6887   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6888   ins_cost(140);
  6890   size(4);
  6891   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6892   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6893   ins_pipe(ialu_imm);
  6894 %}
  6896 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6897   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6898   ins_cost(150);
  6899   size(4);
  6900   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6901   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6902   ins_pipe(ialu_imm);
  6903 %}
  6905 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6906   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6907   ins_cost(140);
  6908   size(4);
  6909   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6910   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6911   ins_pipe(ialu_imm);
  6912 %}
  6914 // Conditional move
  6915 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6916   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6917   ins_cost(150);
  6918   opcode(0x101);
  6919   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6920   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6921   ins_pipe(int_conditional_float_move);
  6922 %}
  6924 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6925   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6926   ins_cost(150);
  6928   size(4);
  6929   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6930   opcode(0x101);
  6931   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6932   ins_pipe(int_conditional_float_move);
  6933 %}
  6935 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6936   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6937   ins_cost(150);
  6939   size(4);
  6940   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6941   opcode(0x101);
  6942   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6943   ins_pipe(int_conditional_float_move);
  6944 %}
  6946 // Conditional move,
  6947 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6948   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6949   ins_cost(150);
  6950   size(4);
  6951   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6952   opcode(0x1);
  6953   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6954   ins_pipe(int_conditional_double_move);
  6955 %}
  6957 // Conditional move
  6958 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6959   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6960   ins_cost(150);
  6961   size(4);
  6962   opcode(0x102);
  6963   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6964   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6965   ins_pipe(int_conditional_double_move);
  6966 %}
  6968 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6969   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6970   ins_cost(150);
  6972   size(4);
  6973   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6974   opcode(0x102);
  6975   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6976   ins_pipe(int_conditional_double_move);
  6977 %}
  6979 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  6980   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6981   ins_cost(150);
  6983   size(4);
  6984   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6985   opcode(0x102);
  6986   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6987   ins_pipe(int_conditional_double_move);
  6988 %}
  6990 // Conditional move,
  6991 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6992   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6993   ins_cost(150);
  6994   size(4);
  6995   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6996   opcode(0x2);
  6997   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6998   ins_pipe(int_conditional_double_move);
  6999 %}
  7001 // Conditional move
  7002 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  7003   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7004   ins_cost(150);
  7005   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7006   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  7007   ins_pipe(ialu_reg);
  7008 %}
  7010 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  7011   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  7012   ins_cost(140);
  7013   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  7014   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  7015   ins_pipe(ialu_imm);
  7016 %}
  7018 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  7019   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7020   ins_cost(150);
  7022   size(4);
  7023   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7024   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7025   ins_pipe(ialu_reg);
  7026 %}
  7029 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  7030   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  7031   ins_cost(150);
  7033   size(4);
  7034   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  7035   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  7036   ins_pipe(ialu_reg);
  7037 %}
  7040 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  7041   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  7042   ins_cost(150);
  7044   size(4);
  7045   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  7046   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  7047   ins_pipe(ialu_reg);
  7048 %}
  7052 //----------OS and Locking Instructions----------------------------------------
  7054 // This name is KNOWN by the ADLC and cannot be changed.
  7055 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  7056 // for this guy.
  7057 instruct tlsLoadP(g2RegP dst) %{
  7058   match(Set dst (ThreadLocal));
  7060   size(0);
  7061   ins_cost(0);
  7062   format %{ "# TLS is in G2" %}
  7063   ins_encode( /*empty encoding*/ );
  7064   ins_pipe(ialu_none);
  7065 %}
  7067 instruct checkCastPP( iRegP dst ) %{
  7068   match(Set dst (CheckCastPP dst));
  7070   size(0);
  7071   format %{ "# checkcastPP of $dst" %}
  7072   ins_encode( /*empty encoding*/ );
  7073   ins_pipe(empty);
  7074 %}
  7077 instruct castPP( iRegP dst ) %{
  7078   match(Set dst (CastPP dst));
  7079   format %{ "# castPP of $dst" %}
  7080   ins_encode( /*empty encoding*/ );
  7081   ins_pipe(empty);
  7082 %}
  7084 instruct castII( iRegI dst ) %{
  7085   match(Set dst (CastII dst));
  7086   format %{ "# castII of $dst" %}
  7087   ins_encode( /*empty encoding*/ );
  7088   ins_cost(0);
  7089   ins_pipe(empty);
  7090 %}
  7092 //----------Arithmetic Instructions--------------------------------------------
  7093 // Addition Instructions
  7094 // Register Addition
  7095 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7096   match(Set dst (AddI src1 src2));
  7098   size(4);
  7099   format %{ "ADD    $src1,$src2,$dst" %}
  7100   ins_encode %{
  7101     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7102   %}
  7103   ins_pipe(ialu_reg_reg);
  7104 %}
  7106 // Immediate Addition
  7107 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7108   match(Set dst (AddI src1 src2));
  7110   size(4);
  7111   format %{ "ADD    $src1,$src2,$dst" %}
  7112   opcode(Assembler::add_op3, Assembler::arith_op);
  7113   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7114   ins_pipe(ialu_reg_imm);
  7115 %}
  7117 // Pointer Register Addition
  7118 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7119   match(Set dst (AddP src1 src2));
  7121   size(4);
  7122   format %{ "ADD    $src1,$src2,$dst" %}
  7123   opcode(Assembler::add_op3, Assembler::arith_op);
  7124   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7125   ins_pipe(ialu_reg_reg);
  7126 %}
  7128 // Pointer Immediate Addition
  7129 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7130   match(Set dst (AddP src1 src2));
  7132   size(4);
  7133   format %{ "ADD    $src1,$src2,$dst" %}
  7134   opcode(Assembler::add_op3, Assembler::arith_op);
  7135   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7136   ins_pipe(ialu_reg_imm);
  7137 %}
  7139 // Long Addition
  7140 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7141   match(Set dst (AddL src1 src2));
  7143   size(4);
  7144   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7145   opcode(Assembler::add_op3, Assembler::arith_op);
  7146   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7147   ins_pipe(ialu_reg_reg);
  7148 %}
  7150 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7151   match(Set dst (AddL src1 con));
  7153   size(4);
  7154   format %{ "ADD    $src1,$con,$dst" %}
  7155   opcode(Assembler::add_op3, Assembler::arith_op);
  7156   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7157   ins_pipe(ialu_reg_imm);
  7158 %}
  7160 //----------Conditional_store--------------------------------------------------
  7161 // Conditional-store of the updated heap-top.
  7162 // Used during allocation of the shared heap.
  7163 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7165 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7166 instruct loadPLocked(iRegP dst, memory mem) %{
  7167   match(Set dst (LoadPLocked mem));
  7168   ins_cost(MEMORY_REF_COST);
  7170 #ifndef _LP64
  7171   size(4);
  7172   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7173   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7174 #else
  7175   format %{ "LDX    $mem,$dst\t! ptr" %}
  7176   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7177 #endif
  7178   ins_encode( form3_mem_reg( mem, dst ) );
  7179   ins_pipe(iload_mem);
  7180 %}
  7182 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7183 instruct loadLLocked(iRegL dst, memory mem) %{
  7184   match(Set dst (LoadLLocked mem));
  7185   ins_cost(MEMORY_REF_COST);
  7186   size(4);
  7187   format %{ "LDX    $mem,$dst\t! long" %}
  7188   opcode(Assembler::ldx_op3);
  7189   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7190   ins_pipe(iload_mem);
  7191 %}
  7193 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7194   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7195   effect( KILL newval );
  7196   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7197             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7198   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7199   ins_pipe( long_memory_op );
  7200 %}
  7202 // Conditional-store of an int value.
  7203 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7204   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7205   effect( KILL newval );
  7206   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7207             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7208   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7209   ins_pipe( long_memory_op );
  7210 %}
  7212 // Conditional-store of a long value.
  7213 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7214   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7215   effect( KILL newval );
  7216   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7217             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7218   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7219   ins_pipe( long_memory_op );
  7220 %}
  7222 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7224 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7225   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7226   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7227   format %{
  7228             "MOV    $newval,O7\n\t"
  7229             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7230             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7231             "MOV    1,$res\n\t"
  7232             "MOVne  xcc,R_G0,$res"
  7233   %}
  7234   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7235               enc_lflags_ne_to_boolean(res) );
  7236   ins_pipe( long_memory_op );
  7237 %}
  7240 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7241   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7242   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7243   format %{
  7244             "MOV    $newval,O7\n\t"
  7245             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7246             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7247             "MOV    1,$res\n\t"
  7248             "MOVne  icc,R_G0,$res"
  7249   %}
  7250   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7251               enc_iflags_ne_to_boolean(res) );
  7252   ins_pipe( long_memory_op );
  7253 %}
  7255 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7256   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7257   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7258   format %{
  7259             "MOV    $newval,O7\n\t"
  7260             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7261             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7262             "MOV    1,$res\n\t"
  7263             "MOVne  xcc,R_G0,$res"
  7264   %}
  7265 #ifdef _LP64
  7266   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7267               enc_lflags_ne_to_boolean(res) );
  7268 #else
  7269   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7270               enc_iflags_ne_to_boolean(res) );
  7271 #endif
  7272   ins_pipe( long_memory_op );
  7273 %}
  7275 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7276   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7277   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7278   format %{
  7279             "MOV    $newval,O7\n\t"
  7280             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7281             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7282             "MOV    1,$res\n\t"
  7283             "MOVne  icc,R_G0,$res"
  7284   %}
  7285   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7286               enc_iflags_ne_to_boolean(res) );
  7287   ins_pipe( long_memory_op );
  7288 %}
  7290 //---------------------
  7291 // Subtraction Instructions
  7292 // Register Subtraction
  7293 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7294   match(Set dst (SubI src1 src2));
  7296   size(4);
  7297   format %{ "SUB    $src1,$src2,$dst" %}
  7298   opcode(Assembler::sub_op3, Assembler::arith_op);
  7299   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7300   ins_pipe(ialu_reg_reg);
  7301 %}
  7303 // Immediate Subtraction
  7304 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7305   match(Set dst (SubI src1 src2));
  7307   size(4);
  7308   format %{ "SUB    $src1,$src2,$dst" %}
  7309   opcode(Assembler::sub_op3, Assembler::arith_op);
  7310   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7311   ins_pipe(ialu_reg_imm);
  7312 %}
  7314 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7315   match(Set dst (SubI zero src2));
  7317   size(4);
  7318   format %{ "NEG    $src2,$dst" %}
  7319   opcode(Assembler::sub_op3, Assembler::arith_op);
  7320   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7321   ins_pipe(ialu_zero_reg);
  7322 %}
  7324 // Long subtraction
  7325 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7326   match(Set dst (SubL src1 src2));
  7328   size(4);
  7329   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7330   opcode(Assembler::sub_op3, Assembler::arith_op);
  7331   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7332   ins_pipe(ialu_reg_reg);
  7333 %}
  7335 // Immediate Subtraction
  7336 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7337   match(Set dst (SubL src1 con));
  7339   size(4);
  7340   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7341   opcode(Assembler::sub_op3, Assembler::arith_op);
  7342   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7343   ins_pipe(ialu_reg_imm);
  7344 %}
  7346 // Long negation
  7347 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7348   match(Set dst (SubL zero src2));
  7350   size(4);
  7351   format %{ "NEG    $src2,$dst\t! long" %}
  7352   opcode(Assembler::sub_op3, Assembler::arith_op);
  7353   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7354   ins_pipe(ialu_zero_reg);
  7355 %}
  7357 // Multiplication Instructions
  7358 // Integer Multiplication
  7359 // Register Multiplication
  7360 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7361   match(Set dst (MulI src1 src2));
  7363   size(4);
  7364   format %{ "MULX   $src1,$src2,$dst" %}
  7365   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7366   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7367   ins_pipe(imul_reg_reg);
  7368 %}
  7370 // Immediate Multiplication
  7371 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7372   match(Set dst (MulI src1 src2));
  7374   size(4);
  7375   format %{ "MULX   $src1,$src2,$dst" %}
  7376   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7377   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7378   ins_pipe(imul_reg_imm);
  7379 %}
  7381 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7382   match(Set dst (MulL src1 src2));
  7383   ins_cost(DEFAULT_COST * 5);
  7384   size(4);
  7385   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7386   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7387   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7388   ins_pipe(mulL_reg_reg);
  7389 %}
  7391 // Immediate Multiplication
  7392 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7393   match(Set dst (MulL src1 src2));
  7394   ins_cost(DEFAULT_COST * 5);
  7395   size(4);
  7396   format %{ "MULX   $src1,$src2,$dst" %}
  7397   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7398   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7399   ins_pipe(mulL_reg_imm);
  7400 %}
  7402 // Integer Division
  7403 // Register Division
  7404 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7405   match(Set dst (DivI src1 src2));
  7406   ins_cost((2+71)*DEFAULT_COST);
  7408   format %{ "SRA     $src2,0,$src2\n\t"
  7409             "SRA     $src1,0,$src1\n\t"
  7410             "SDIVX   $src1,$src2,$dst" %}
  7411   ins_encode( idiv_reg( src1, src2, dst ) );
  7412   ins_pipe(sdiv_reg_reg);
  7413 %}
  7415 // Immediate Division
  7416 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7417   match(Set dst (DivI src1 src2));
  7418   ins_cost((2+71)*DEFAULT_COST);
  7420   format %{ "SRA     $src1,0,$src1\n\t"
  7421             "SDIVX   $src1,$src2,$dst" %}
  7422   ins_encode( idiv_imm( src1, src2, dst ) );
  7423   ins_pipe(sdiv_reg_imm);
  7424 %}
  7426 //----------Div-By-10-Expansion------------------------------------------------
  7427 // Extract hi bits of a 32x32->64 bit multiply.
  7428 // Expand rule only, not matched
  7429 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7430   effect( DEF dst, USE src1, USE src2 );
  7431   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7432             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7433   ins_encode( enc_mul_hi(dst,src1,src2));
  7434   ins_pipe(sdiv_reg_reg);
  7435 %}
  7437 // Magic constant, reciprocal of 10
  7438 instruct loadConI_x66666667(iRegIsafe dst) %{
  7439   effect( DEF dst );
  7441   size(8);
  7442   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7443   ins_encode( Set32(0x66666667, dst) );
  7444   ins_pipe(ialu_hi_lo_reg);
  7445 %}
  7447 // Register Shift Right Arithmetic Long by 32-63
  7448 instruct sra_31( iRegI dst, iRegI src ) %{
  7449   effect( DEF dst, USE src );
  7450   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7451   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7452   ins_pipe(ialu_reg_reg);
  7453 %}
  7455 // Arithmetic Shift Right by 8-bit immediate
  7456 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7457   effect( DEF dst, USE src );
  7458   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7459   opcode(Assembler::sra_op3, Assembler::arith_op);
  7460   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7461   ins_pipe(ialu_reg_imm);
  7462 %}
  7464 // Integer DIV with 10
  7465 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7466   match(Set dst (DivI src div));
  7467   ins_cost((6+6)*DEFAULT_COST);
  7468   expand %{
  7469     iRegIsafe tmp1;               // Killed temps;
  7470     iRegIsafe tmp2;               // Killed temps;
  7471     iRegI tmp3;                   // Killed temps;
  7472     iRegI tmp4;                   // Killed temps;
  7473     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7474     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7475     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7476     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7477     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7478   %}
  7479 %}
  7481 // Register Long Division
  7482 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7483   match(Set dst (DivL src1 src2));
  7484   ins_cost(DEFAULT_COST*71);
  7485   size(4);
  7486   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7487   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7488   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7489   ins_pipe(divL_reg_reg);
  7490 %}
  7492 // Register Long Division
  7493 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7494   match(Set dst (DivL src1 src2));
  7495   ins_cost(DEFAULT_COST*71);
  7496   size(4);
  7497   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7498   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7499   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7500   ins_pipe(divL_reg_imm);
  7501 %}
  7503 // Integer Remainder
  7504 // Register Remainder
  7505 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7506   match(Set dst (ModI src1 src2));
  7507   effect( KILL ccr, KILL temp);
  7509   format %{ "SREM   $src1,$src2,$dst" %}
  7510   ins_encode( irem_reg(src1, src2, dst, temp) );
  7511   ins_pipe(sdiv_reg_reg);
  7512 %}
  7514 // Immediate Remainder
  7515 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7516   match(Set dst (ModI src1 src2));
  7517   effect( KILL ccr, KILL temp);
  7519   format %{ "SREM   $src1,$src2,$dst" %}
  7520   ins_encode( irem_imm(src1, src2, dst, temp) );
  7521   ins_pipe(sdiv_reg_imm);
  7522 %}
  7524 // Register Long Remainder
  7525 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7526   effect(DEF dst, USE src1, USE src2);
  7527   size(4);
  7528   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7529   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7530   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7531   ins_pipe(divL_reg_reg);
  7532 %}
  7534 // Register Long Division
  7535 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7536   effect(DEF dst, USE src1, USE src2);
  7537   size(4);
  7538   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7539   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7540   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7541   ins_pipe(divL_reg_imm);
  7542 %}
  7544 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7545   effect(DEF dst, USE src1, USE src2);
  7546   size(4);
  7547   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7548   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7549   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7550   ins_pipe(mulL_reg_reg);
  7551 %}
  7553 // Immediate Multiplication
  7554 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7555   effect(DEF dst, USE src1, USE src2);
  7556   size(4);
  7557   format %{ "MULX   $src1,$src2,$dst" %}
  7558   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7559   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7560   ins_pipe(mulL_reg_imm);
  7561 %}
  7563 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7564   effect(DEF dst, USE src1, USE src2);
  7565   size(4);
  7566   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7567   opcode(Assembler::sub_op3, Assembler::arith_op);
  7568   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7569   ins_pipe(ialu_reg_reg);
  7570 %}
  7572 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7573   effect(DEF dst, USE src1, USE src2);
  7574   size(4);
  7575   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7576   opcode(Assembler::sub_op3, Assembler::arith_op);
  7577   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7578   ins_pipe(ialu_reg_reg);
  7579 %}
  7581 // Register Long Remainder
  7582 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7583   match(Set dst (ModL src1 src2));
  7584   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7585   expand %{
  7586     iRegL tmp1;
  7587     iRegL tmp2;
  7588     divL_reg_reg_1(tmp1, src1, src2);
  7589     mulL_reg_reg_1(tmp2, tmp1, src2);
  7590     subL_reg_reg_1(dst,  src1, tmp2);
  7591   %}
  7592 %}
  7594 // Register Long Remainder
  7595 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7596   match(Set dst (ModL src1 src2));
  7597   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7598   expand %{
  7599     iRegL tmp1;
  7600     iRegL tmp2;
  7601     divL_reg_imm13_1(tmp1, src1, src2);
  7602     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7603     subL_reg_reg_2  (dst,  src1, tmp2);
  7604   %}
  7605 %}
  7607 // Integer Shift Instructions
  7608 // Register Shift Left
  7609 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7610   match(Set dst (LShiftI src1 src2));
  7612   size(4);
  7613   format %{ "SLL    $src1,$src2,$dst" %}
  7614   opcode(Assembler::sll_op3, Assembler::arith_op);
  7615   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7616   ins_pipe(ialu_reg_reg);
  7617 %}
  7619 // Register Shift Left Immediate
  7620 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7621   match(Set dst (LShiftI src1 src2));
  7623   size(4);
  7624   format %{ "SLL    $src1,$src2,$dst" %}
  7625   opcode(Assembler::sll_op3, Assembler::arith_op);
  7626   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7627   ins_pipe(ialu_reg_imm);
  7628 %}
  7630 // Register Shift Left
  7631 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7632   match(Set dst (LShiftL src1 src2));
  7634   size(4);
  7635   format %{ "SLLX   $src1,$src2,$dst" %}
  7636   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7637   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7638   ins_pipe(ialu_reg_reg);
  7639 %}
  7641 // Register Shift Left Immediate
  7642 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7643   match(Set dst (LShiftL src1 src2));
  7645   size(4);
  7646   format %{ "SLLX   $src1,$src2,$dst" %}
  7647   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7648   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7649   ins_pipe(ialu_reg_imm);
  7650 %}
  7652 // Register Arithmetic Shift Right
  7653 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7654   match(Set dst (RShiftI src1 src2));
  7655   size(4);
  7656   format %{ "SRA    $src1,$src2,$dst" %}
  7657   opcode(Assembler::sra_op3, Assembler::arith_op);
  7658   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7659   ins_pipe(ialu_reg_reg);
  7660 %}
  7662 // Register Arithmetic Shift Right Immediate
  7663 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7664   match(Set dst (RShiftI src1 src2));
  7666   size(4);
  7667   format %{ "SRA    $src1,$src2,$dst" %}
  7668   opcode(Assembler::sra_op3, Assembler::arith_op);
  7669   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7670   ins_pipe(ialu_reg_imm);
  7671 %}
  7673 // Register Shift Right Arithmatic Long
  7674 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7675   match(Set dst (RShiftL src1 src2));
  7677   size(4);
  7678   format %{ "SRAX   $src1,$src2,$dst" %}
  7679   opcode(Assembler::srax_op3, Assembler::arith_op);
  7680   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7681   ins_pipe(ialu_reg_reg);
  7682 %}
  7684 // Register Shift Left Immediate
  7685 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7686   match(Set dst (RShiftL src1 src2));
  7688   size(4);
  7689   format %{ "SRAX   $src1,$src2,$dst" %}
  7690   opcode(Assembler::srax_op3, Assembler::arith_op);
  7691   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7692   ins_pipe(ialu_reg_imm);
  7693 %}
  7695 // Register Shift Right
  7696 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7697   match(Set dst (URShiftI src1 src2));
  7699   size(4);
  7700   format %{ "SRL    $src1,$src2,$dst" %}
  7701   opcode(Assembler::srl_op3, Assembler::arith_op);
  7702   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7703   ins_pipe(ialu_reg_reg);
  7704 %}
  7706 // Register Shift Right Immediate
  7707 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7708   match(Set dst (URShiftI src1 src2));
  7710   size(4);
  7711   format %{ "SRL    $src1,$src2,$dst" %}
  7712   opcode(Assembler::srl_op3, Assembler::arith_op);
  7713   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7714   ins_pipe(ialu_reg_imm);
  7715 %}
  7717 // Register Shift Right
  7718 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7719   match(Set dst (URShiftL src1 src2));
  7721   size(4);
  7722   format %{ "SRLX   $src1,$src2,$dst" %}
  7723   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7724   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7725   ins_pipe(ialu_reg_reg);
  7726 %}
  7728 // Register Shift Right Immediate
  7729 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7730   match(Set dst (URShiftL src1 src2));
  7732   size(4);
  7733   format %{ "SRLX   $src1,$src2,$dst" %}
  7734   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7735   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7736   ins_pipe(ialu_reg_imm);
  7737 %}
  7739 // Register Shift Right Immediate with a CastP2X
  7740 #ifdef _LP64
  7741 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7742   match(Set dst (URShiftL (CastP2X src1) src2));
  7743   size(4);
  7744   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7745   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7746   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7747   ins_pipe(ialu_reg_imm);
  7748 %}
  7749 #else
  7750 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7751   match(Set dst (URShiftI (CastP2X src1) src2));
  7752   size(4);
  7753   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7754   opcode(Assembler::srl_op3, Assembler::arith_op);
  7755   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7756   ins_pipe(ialu_reg_imm);
  7757 %}
  7758 #endif
  7761 //----------Floating Point Arithmetic Instructions-----------------------------
  7763 //  Add float single precision
  7764 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7765   match(Set dst (AddF src1 src2));
  7767   size(4);
  7768   format %{ "FADDS  $src1,$src2,$dst" %}
  7769   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7770   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7771   ins_pipe(faddF_reg_reg);
  7772 %}
  7774 //  Add float double precision
  7775 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7776   match(Set dst (AddD src1 src2));
  7778   size(4);
  7779   format %{ "FADDD  $src1,$src2,$dst" %}
  7780   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7781   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7782   ins_pipe(faddD_reg_reg);
  7783 %}
  7785 //  Sub float single precision
  7786 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7787   match(Set dst (SubF src1 src2));
  7789   size(4);
  7790   format %{ "FSUBS  $src1,$src2,$dst" %}
  7791   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7792   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7793   ins_pipe(faddF_reg_reg);
  7794 %}
  7796 //  Sub float double precision
  7797 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7798   match(Set dst (SubD src1 src2));
  7800   size(4);
  7801   format %{ "FSUBD  $src1,$src2,$dst" %}
  7802   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7803   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7804   ins_pipe(faddD_reg_reg);
  7805 %}
  7807 //  Mul float single precision
  7808 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7809   match(Set dst (MulF src1 src2));
  7811   size(4);
  7812   format %{ "FMULS  $src1,$src2,$dst" %}
  7813   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7814   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7815   ins_pipe(fmulF_reg_reg);
  7816 %}
  7818 //  Mul float double precision
  7819 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7820   match(Set dst (MulD src1 src2));
  7822   size(4);
  7823   format %{ "FMULD  $src1,$src2,$dst" %}
  7824   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7825   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7826   ins_pipe(fmulD_reg_reg);
  7827 %}
  7829 //  Div float single precision
  7830 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7831   match(Set dst (DivF src1 src2));
  7833   size(4);
  7834   format %{ "FDIVS  $src1,$src2,$dst" %}
  7835   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7836   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7837   ins_pipe(fdivF_reg_reg);
  7838 %}
  7840 //  Div float double precision
  7841 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7842   match(Set dst (DivD src1 src2));
  7844   size(4);
  7845   format %{ "FDIVD  $src1,$src2,$dst" %}
  7846   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7847   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7848   ins_pipe(fdivD_reg_reg);
  7849 %}
  7851 //  Absolute float double precision
  7852 instruct absD_reg(regD dst, regD src) %{
  7853   match(Set dst (AbsD src));
  7855   format %{ "FABSd  $src,$dst" %}
  7856   ins_encode(fabsd(dst, src));
  7857   ins_pipe(faddD_reg);
  7858 %}
  7860 //  Absolute float single precision
  7861 instruct absF_reg(regF dst, regF src) %{
  7862   match(Set dst (AbsF src));
  7864   format %{ "FABSs  $src,$dst" %}
  7865   ins_encode(fabss(dst, src));
  7866   ins_pipe(faddF_reg);
  7867 %}
  7869 instruct negF_reg(regF dst, regF src) %{
  7870   match(Set dst (NegF src));
  7872   size(4);
  7873   format %{ "FNEGs  $src,$dst" %}
  7874   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7875   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7876   ins_pipe(faddF_reg);
  7877 %}
  7879 instruct negD_reg(regD dst, regD src) %{
  7880   match(Set dst (NegD src));
  7882   format %{ "FNEGd  $src,$dst" %}
  7883   ins_encode(fnegd(dst, src));
  7884   ins_pipe(faddD_reg);
  7885 %}
  7887 //  Sqrt float double precision
  7888 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7889   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7891   size(4);
  7892   format %{ "FSQRTS $src,$dst" %}
  7893   ins_encode(fsqrts(dst, src));
  7894   ins_pipe(fdivF_reg_reg);
  7895 %}
  7897 //  Sqrt float double precision
  7898 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7899   match(Set dst (SqrtD src));
  7901   size(4);
  7902   format %{ "FSQRTD $src,$dst" %}
  7903   ins_encode(fsqrtd(dst, src));
  7904   ins_pipe(fdivD_reg_reg);
  7905 %}
  7907 //----------Logical Instructions-----------------------------------------------
  7908 // And Instructions
  7909 // Register And
  7910 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7911   match(Set dst (AndI src1 src2));
  7913   size(4);
  7914   format %{ "AND    $src1,$src2,$dst" %}
  7915   opcode(Assembler::and_op3, Assembler::arith_op);
  7916   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7917   ins_pipe(ialu_reg_reg);
  7918 %}
  7920 // Immediate And
  7921 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7922   match(Set dst (AndI src1 src2));
  7924   size(4);
  7925   format %{ "AND    $src1,$src2,$dst" %}
  7926   opcode(Assembler::and_op3, Assembler::arith_op);
  7927   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7928   ins_pipe(ialu_reg_imm);
  7929 %}
  7931 // Register And Long
  7932 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7933   match(Set dst (AndL src1 src2));
  7935   ins_cost(DEFAULT_COST);
  7936   size(4);
  7937   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7938   opcode(Assembler::and_op3, Assembler::arith_op);
  7939   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7940   ins_pipe(ialu_reg_reg);
  7941 %}
  7943 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7944   match(Set dst (AndL src1 con));
  7946   ins_cost(DEFAULT_COST);
  7947   size(4);
  7948   format %{ "AND    $src1,$con,$dst\t! long" %}
  7949   opcode(Assembler::and_op3, Assembler::arith_op);
  7950   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7951   ins_pipe(ialu_reg_imm);
  7952 %}
  7954 // Or Instructions
  7955 // Register Or
  7956 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7957   match(Set dst (OrI src1 src2));
  7959   size(4);
  7960   format %{ "OR     $src1,$src2,$dst" %}
  7961   opcode(Assembler::or_op3, Assembler::arith_op);
  7962   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7963   ins_pipe(ialu_reg_reg);
  7964 %}
  7966 // Immediate Or
  7967 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7968   match(Set dst (OrI src1 src2));
  7970   size(4);
  7971   format %{ "OR     $src1,$src2,$dst" %}
  7972   opcode(Assembler::or_op3, Assembler::arith_op);
  7973   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7974   ins_pipe(ialu_reg_imm);
  7975 %}
  7977 // Register Or Long
  7978 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7979   match(Set dst (OrL src1 src2));
  7981   ins_cost(DEFAULT_COST);
  7982   size(4);
  7983   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7984   opcode(Assembler::or_op3, Assembler::arith_op);
  7985   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7986   ins_pipe(ialu_reg_reg);
  7987 %}
  7989 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7990   match(Set dst (OrL src1 con));
  7991   ins_cost(DEFAULT_COST*2);
  7993   ins_cost(DEFAULT_COST);
  7994   size(4);
  7995   format %{ "OR     $src1,$con,$dst\t! long" %}
  7996   opcode(Assembler::or_op3, Assembler::arith_op);
  7997   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7998   ins_pipe(ialu_reg_imm);
  7999 %}
  8001 #ifndef _LP64
  8003 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  8004 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  8005   match(Set dst (OrI src1 (CastP2X src2)));
  8007   size(4);
  8008   format %{ "OR     $src1,$src2,$dst" %}
  8009   opcode(Assembler::or_op3, Assembler::arith_op);
  8010   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8011   ins_pipe(ialu_reg_reg);
  8012 %}
  8014 #else
  8016 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  8017   match(Set dst (OrL src1 (CastP2X src2)));
  8019   ins_cost(DEFAULT_COST);
  8020   size(4);
  8021   format %{ "OR     $src1,$src2,$dst\t! long" %}
  8022   opcode(Assembler::or_op3, Assembler::arith_op);
  8023   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8024   ins_pipe(ialu_reg_reg);
  8025 %}
  8027 #endif
  8029 // Xor Instructions
  8030 // Register Xor
  8031 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  8032   match(Set dst (XorI src1 src2));
  8034   size(4);
  8035   format %{ "XOR    $src1,$src2,$dst" %}
  8036   opcode(Assembler::xor_op3, Assembler::arith_op);
  8037   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8038   ins_pipe(ialu_reg_reg);
  8039 %}
  8041 // Immediate Xor
  8042 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  8043   match(Set dst (XorI src1 src2));
  8045   size(4);
  8046   format %{ "XOR    $src1,$src2,$dst" %}
  8047   opcode(Assembler::xor_op3, Assembler::arith_op);
  8048   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  8049   ins_pipe(ialu_reg_imm);
  8050 %}
  8052 // Register Xor Long
  8053 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  8054   match(Set dst (XorL src1 src2));
  8056   ins_cost(DEFAULT_COST);
  8057   size(4);
  8058   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  8059   opcode(Assembler::xor_op3, Assembler::arith_op);
  8060   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  8061   ins_pipe(ialu_reg_reg);
  8062 %}
  8064 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  8065   match(Set dst (XorL src1 con));
  8067   ins_cost(DEFAULT_COST);
  8068   size(4);
  8069   format %{ "XOR    $src1,$con,$dst\t! long" %}
  8070   opcode(Assembler::xor_op3, Assembler::arith_op);
  8071   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  8072   ins_pipe(ialu_reg_imm);
  8073 %}
  8075 //----------Convert to Boolean-------------------------------------------------
  8076 // Nice hack for 32-bit tests but doesn't work for
  8077 // 64-bit pointers.
  8078 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  8079   match(Set dst (Conv2B src));
  8080   effect( KILL ccr );
  8081   ins_cost(DEFAULT_COST*2);
  8082   format %{ "CMP    R_G0,$src\n\t"
  8083             "ADDX   R_G0,0,$dst" %}
  8084   ins_encode( enc_to_bool( src, dst ) );
  8085   ins_pipe(ialu_reg_ialu);
  8086 %}
  8088 #ifndef _LP64
  8089 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  8090   match(Set dst (Conv2B src));
  8091   effect( KILL ccr );
  8092   ins_cost(DEFAULT_COST*2);
  8093   format %{ "CMP    R_G0,$src\n\t"
  8094             "ADDX   R_G0,0,$dst" %}
  8095   ins_encode( enc_to_bool( src, dst ) );
  8096   ins_pipe(ialu_reg_ialu);
  8097 %}
  8098 #else
  8099 instruct convP2B( iRegI dst, iRegP src ) %{
  8100   match(Set dst (Conv2B src));
  8101   ins_cost(DEFAULT_COST*2);
  8102   format %{ "MOV    $src,$dst\n\t"
  8103             "MOVRNZ $src,1,$dst" %}
  8104   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8105   ins_pipe(ialu_clr_and_mover);
  8106 %}
  8107 #endif
  8109 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
  8110   match(Set dst (CmpLTMask src zero));
  8111   effect(KILL ccr);
  8112   size(4);
  8113   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
  8114   ins_encode %{
  8115     __ sra($src$$Register, 31, $dst$$Register);
  8116   %}
  8117   ins_pipe(ialu_reg_imm);
  8118 %}
  8120 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8121   match(Set dst (CmpLTMask p q));
  8122   effect( KILL ccr );
  8123   ins_cost(DEFAULT_COST*4);
  8124   format %{ "CMP    $p,$q\n\t"
  8125             "MOV    #0,$dst\n\t"
  8126             "BLT,a  .+8\n\t"
  8127             "MOV    #-1,$dst" %}
  8128   ins_encode( enc_ltmask(p,q,dst) );
  8129   ins_pipe(ialu_reg_reg_ialu);
  8130 %}
  8132 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8133   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8134   effect(KILL ccr, TEMP tmp);
  8135   ins_cost(DEFAULT_COST*3);
  8137   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8138             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8139             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8140   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8141   ins_pipe( cadd_cmpltmask );
  8142 %}
  8145 //-----------------------------------------------------------------
  8146 // Direct raw moves between float and general registers using VIS3.
  8148 //  ins_pipe(faddF_reg);
  8149 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
  8150   predicate(UseVIS >= 3);
  8151   match(Set dst (MoveF2I src));
  8153   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
  8154   ins_encode %{
  8155     __ movstouw($src$$FloatRegister, $dst$$Register);
  8156   %}
  8157   ins_pipe(ialu_reg_reg);
  8158 %}
  8160 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
  8161   predicate(UseVIS >= 3);
  8162   match(Set dst (MoveI2F src));
  8164   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
  8165   ins_encode %{
  8166     __ movwtos($src$$Register, $dst$$FloatRegister);
  8167   %}
  8168   ins_pipe(ialu_reg_reg);
  8169 %}
  8171 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
  8172   predicate(UseVIS >= 3);
  8173   match(Set dst (MoveD2L src));
  8175   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
  8176   ins_encode %{
  8177     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
  8178   %}
  8179   ins_pipe(ialu_reg_reg);
  8180 %}
  8182 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
  8183   predicate(UseVIS >= 3);
  8184   match(Set dst (MoveL2D src));
  8186   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
  8187   ins_encode %{
  8188     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
  8189   %}
  8190   ins_pipe(ialu_reg_reg);
  8191 %}
  8194 // Raw moves between float and general registers using stack.
  8196 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8197   match(Set dst (MoveF2I src));
  8198   effect(DEF dst, USE src);
  8199   ins_cost(MEMORY_REF_COST);
  8201   size(4);
  8202   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8203   opcode(Assembler::lduw_op3);
  8204   ins_encode(simple_form3_mem_reg( src, dst ) );
  8205   ins_pipe(iload_mem);
  8206 %}
  8208 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8209   match(Set dst (MoveI2F src));
  8210   effect(DEF dst, USE src);
  8211   ins_cost(MEMORY_REF_COST);
  8213   size(4);
  8214   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8215   opcode(Assembler::ldf_op3);
  8216   ins_encode(simple_form3_mem_reg(src, dst));
  8217   ins_pipe(floadF_stk);
  8218 %}
  8220 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8221   match(Set dst (MoveD2L src));
  8222   effect(DEF dst, USE src);
  8223   ins_cost(MEMORY_REF_COST);
  8225   size(4);
  8226   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8227   opcode(Assembler::ldx_op3);
  8228   ins_encode(simple_form3_mem_reg( src, dst ) );
  8229   ins_pipe(iload_mem);
  8230 %}
  8232 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8233   match(Set dst (MoveL2D src));
  8234   effect(DEF dst, USE src);
  8235   ins_cost(MEMORY_REF_COST);
  8237   size(4);
  8238   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8239   opcode(Assembler::lddf_op3);
  8240   ins_encode(simple_form3_mem_reg(src, dst));
  8241   ins_pipe(floadD_stk);
  8242 %}
  8244 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8245   match(Set dst (MoveF2I src));
  8246   effect(DEF dst, USE src);
  8247   ins_cost(MEMORY_REF_COST);
  8249   size(4);
  8250   format %{ "STF   $src,$dst\t! MoveF2I" %}
  8251   opcode(Assembler::stf_op3);
  8252   ins_encode(simple_form3_mem_reg(dst, src));
  8253   ins_pipe(fstoreF_stk_reg);
  8254 %}
  8256 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8257   match(Set dst (MoveI2F src));
  8258   effect(DEF dst, USE src);
  8259   ins_cost(MEMORY_REF_COST);
  8261   size(4);
  8262   format %{ "STW    $src,$dst\t! MoveI2F" %}
  8263   opcode(Assembler::stw_op3);
  8264   ins_encode(simple_form3_mem_reg( dst, src ) );
  8265   ins_pipe(istore_mem_reg);
  8266 %}
  8268 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8269   match(Set dst (MoveD2L src));
  8270   effect(DEF dst, USE src);
  8271   ins_cost(MEMORY_REF_COST);
  8273   size(4);
  8274   format %{ "STDF   $src,$dst\t! MoveD2L" %}
  8275   opcode(Assembler::stdf_op3);
  8276   ins_encode(simple_form3_mem_reg(dst, src));
  8277   ins_pipe(fstoreD_stk_reg);
  8278 %}
  8280 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8281   match(Set dst (MoveL2D src));
  8282   effect(DEF dst, USE src);
  8283   ins_cost(MEMORY_REF_COST);
  8285   size(4);
  8286   format %{ "STX    $src,$dst\t! MoveL2D" %}
  8287   opcode(Assembler::stx_op3);
  8288   ins_encode(simple_form3_mem_reg( dst, src ) );
  8289   ins_pipe(istore_mem_reg);
  8290 %}
  8293 //----------Arithmetic Conversion Instructions---------------------------------
  8294 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8296 instruct convD2F_reg(regF dst, regD src) %{
  8297   match(Set dst (ConvD2F src));
  8298   size(4);
  8299   format %{ "FDTOS  $src,$dst" %}
  8300   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8301   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8302   ins_pipe(fcvtD2F);
  8303 %}
  8306 // Convert a double to an int in a float register.
  8307 // If the double is a NAN, stuff a zero in instead.
  8308 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8309   effect(DEF dst, USE src, KILL fcc0);
  8310   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8311             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8312             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8313             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8314             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8315       "skip:" %}
  8316   ins_encode(form_d2i_helper(src,dst));
  8317   ins_pipe(fcvtD2I);
  8318 %}
  8320 instruct convD2I_stk(stackSlotI dst, regD src) %{
  8321   match(Set dst (ConvD2I src));
  8322   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8323   expand %{
  8324     regF tmp;
  8325     convD2I_helper(tmp, src);
  8326     regF_to_stkI(dst, tmp);
  8327   %}
  8328 %}
  8330 instruct convD2I_reg(iRegI dst, regD src) %{
  8331   predicate(UseVIS >= 3);
  8332   match(Set dst (ConvD2I src));
  8333   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8334   expand %{
  8335     regF tmp;
  8336     convD2I_helper(tmp, src);
  8337     MoveF2I_reg_reg(dst, tmp);
  8338   %}
  8339 %}
  8342 // Convert a double to a long in a double register.
  8343 // If the double is a NAN, stuff a zero in instead.
  8344 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8345   effect(DEF dst, USE src, KILL fcc0);
  8346   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8347             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8348             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8349             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8350             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8351       "skip:" %}
  8352   ins_encode(form_d2l_helper(src,dst));
  8353   ins_pipe(fcvtD2L);
  8354 %}
  8356 instruct convD2L_stk(stackSlotL dst, regD src) %{
  8357   match(Set dst (ConvD2L src));
  8358   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8359   expand %{
  8360     regD tmp;
  8361     convD2L_helper(tmp, src);
  8362     regD_to_stkL(dst, tmp);
  8363   %}
  8364 %}
  8366 instruct convD2L_reg(iRegL dst, regD src) %{
  8367   predicate(UseVIS >= 3);
  8368   match(Set dst (ConvD2L src));
  8369   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8370   expand %{
  8371     regD tmp;
  8372     convD2L_helper(tmp, src);
  8373     MoveD2L_reg_reg(dst, tmp);
  8374   %}
  8375 %}
  8378 instruct convF2D_reg(regD dst, regF src) %{
  8379   match(Set dst (ConvF2D src));
  8380   format %{ "FSTOD  $src,$dst" %}
  8381   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8382   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8383   ins_pipe(fcvtF2D);
  8384 %}
  8387 // Convert a float to an int in a float register.
  8388 // If the float is a NAN, stuff a zero in instead.
  8389 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8390   effect(DEF dst, USE src, KILL fcc0);
  8391   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8392             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8393             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8394             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8395             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8396       "skip:" %}
  8397   ins_encode(form_f2i_helper(src,dst));
  8398   ins_pipe(fcvtF2I);
  8399 %}
  8401 instruct convF2I_stk(stackSlotI dst, regF src) %{
  8402   match(Set dst (ConvF2I src));
  8403   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8404   expand %{
  8405     regF tmp;
  8406     convF2I_helper(tmp, src);
  8407     regF_to_stkI(dst, tmp);
  8408   %}
  8409 %}
  8411 instruct convF2I_reg(iRegI dst, regF src) %{
  8412   predicate(UseVIS >= 3);
  8413   match(Set dst (ConvF2I src));
  8414   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8415   expand %{
  8416     regF tmp;
  8417     convF2I_helper(tmp, src);
  8418     MoveF2I_reg_reg(dst, tmp);
  8419   %}
  8420 %}
  8423 // Convert a float to a long in a float register.
  8424 // If the float is a NAN, stuff a zero in instead.
  8425 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8426   effect(DEF dst, USE src, KILL fcc0);
  8427   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8428             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8429             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8430             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8431             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8432       "skip:" %}
  8433   ins_encode(form_f2l_helper(src,dst));
  8434   ins_pipe(fcvtF2L);
  8435 %}
  8437 instruct convF2L_stk(stackSlotL dst, regF src) %{
  8438   match(Set dst (ConvF2L src));
  8439   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8440   expand %{
  8441     regD tmp;
  8442     convF2L_helper(tmp, src);
  8443     regD_to_stkL(dst, tmp);
  8444   %}
  8445 %}
  8447 instruct convF2L_reg(iRegL dst, regF src) %{
  8448   predicate(UseVIS >= 3);
  8449   match(Set dst (ConvF2L src));
  8450   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
  8451   expand %{
  8452     regD tmp;
  8453     convF2L_helper(tmp, src);
  8454     MoveD2L_reg_reg(dst, tmp);
  8455   %}
  8456 %}
  8459 instruct convI2D_helper(regD dst, regF tmp) %{
  8460   effect(USE tmp, DEF dst);
  8461   format %{ "FITOD  $tmp,$dst" %}
  8462   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8463   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8464   ins_pipe(fcvtI2D);
  8465 %}
  8467 instruct convI2D_stk(stackSlotI src, regD dst) %{
  8468   match(Set dst (ConvI2D src));
  8469   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8470   expand %{
  8471     regF tmp;
  8472     stkI_to_regF(tmp, src);
  8473     convI2D_helper(dst, tmp);
  8474   %}
  8475 %}
  8477 instruct convI2D_reg(regD_low dst, iRegI src) %{
  8478   predicate(UseVIS >= 3);
  8479   match(Set dst (ConvI2D src));
  8480   expand %{
  8481     regF tmp;
  8482     MoveI2F_reg_reg(tmp, src);
  8483     convI2D_helper(dst, tmp);
  8484   %}
  8485 %}
  8487 instruct convI2D_mem(regD_low dst, memory mem) %{
  8488   match(Set dst (ConvI2D (LoadI mem)));
  8489   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8490   size(8);
  8491   format %{ "LDF    $mem,$dst\n\t"
  8492             "FITOD  $dst,$dst" %}
  8493   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8494   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8495   ins_pipe(floadF_mem);
  8496 %}
  8499 instruct convI2F_helper(regF dst, regF tmp) %{
  8500   effect(DEF dst, USE tmp);
  8501   format %{ "FITOS  $tmp,$dst" %}
  8502   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8503   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8504   ins_pipe(fcvtI2F);
  8505 %}
  8507 instruct convI2F_stk(regF dst, stackSlotI src) %{
  8508   match(Set dst (ConvI2F src));
  8509   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8510   expand %{
  8511     regF tmp;
  8512     stkI_to_regF(tmp,src);
  8513     convI2F_helper(dst, tmp);
  8514   %}
  8515 %}
  8517 instruct convI2F_reg(regF dst, iRegI src) %{
  8518   predicate(UseVIS >= 3);
  8519   match(Set dst (ConvI2F src));
  8520   ins_cost(DEFAULT_COST);
  8521   expand %{
  8522     regF tmp;
  8523     MoveI2F_reg_reg(tmp, src);
  8524     convI2F_helper(dst, tmp);
  8525   %}
  8526 %}
  8528 instruct convI2F_mem( regF dst, memory mem ) %{
  8529   match(Set dst (ConvI2F (LoadI mem)));
  8530   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8531   size(8);
  8532   format %{ "LDF    $mem,$dst\n\t"
  8533             "FITOS  $dst,$dst" %}
  8534   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8535   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8536   ins_pipe(floadF_mem);
  8537 %}
  8540 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8541   match(Set dst (ConvI2L src));
  8542   size(4);
  8543   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8544   opcode(Assembler::sra_op3, Assembler::arith_op);
  8545   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8546   ins_pipe(ialu_reg_reg);
  8547 %}
  8549 // Zero-extend convert int to long
  8550 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8551   match(Set dst (AndL (ConvI2L src) mask) );
  8552   size(4);
  8553   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8554   opcode(Assembler::srl_op3, Assembler::arith_op);
  8555   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8556   ins_pipe(ialu_reg_reg);
  8557 %}
  8559 // Zero-extend long
  8560 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8561   match(Set dst (AndL src mask) );
  8562   size(4);
  8563   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8564   opcode(Assembler::srl_op3, Assembler::arith_op);
  8565   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8566   ins_pipe(ialu_reg_reg);
  8567 %}
  8570 //-----------
  8571 // Long to Double conversion using V8 opcodes.
  8572 // Still useful because cheetah traps and becomes
  8573 // amazingly slow for some common numbers.
  8575 // Magic constant, 0x43300000
  8576 instruct loadConI_x43300000(iRegI dst) %{
  8577   effect(DEF dst);
  8578   size(4);
  8579   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8580   ins_encode(SetHi22(0x43300000, dst));
  8581   ins_pipe(ialu_none);
  8582 %}
  8584 // Magic constant, 0x41f00000
  8585 instruct loadConI_x41f00000(iRegI dst) %{
  8586   effect(DEF dst);
  8587   size(4);
  8588   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8589   ins_encode(SetHi22(0x41f00000, dst));
  8590   ins_pipe(ialu_none);
  8591 %}
  8593 // Construct a double from two float halves
  8594 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8595   effect(DEF dst, USE src1, USE src2);
  8596   size(8);
  8597   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8598             "FMOVS  $src2.lo,$dst.lo" %}
  8599   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8600   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8601   ins_pipe(faddD_reg_reg);
  8602 %}
  8604 // Convert integer in high half of a double register (in the lower half of
  8605 // the double register file) to double
  8606 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8607   effect(DEF dst, USE src);
  8608   size(4);
  8609   format %{ "FITOD  $src,$dst" %}
  8610   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8611   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8612   ins_pipe(fcvtLHi2D);
  8613 %}
  8615 // Add float double precision
  8616 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8617   effect(DEF dst, USE src1, USE src2);
  8618   size(4);
  8619   format %{ "FADDD  $src1,$src2,$dst" %}
  8620   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8621   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8622   ins_pipe(faddD_reg_reg);
  8623 %}
  8625 // Sub float double precision
  8626 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8627   effect(DEF dst, USE src1, USE src2);
  8628   size(4);
  8629   format %{ "FSUBD  $src1,$src2,$dst" %}
  8630   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8631   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8632   ins_pipe(faddD_reg_reg);
  8633 %}
  8635 // Mul float double precision
  8636 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8637   effect(DEF dst, USE src1, USE src2);
  8638   size(4);
  8639   format %{ "FMULD  $src1,$src2,$dst" %}
  8640   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8641   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8642   ins_pipe(fmulD_reg_reg);
  8643 %}
  8645 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8646   match(Set dst (ConvL2D src));
  8647   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8649   expand %{
  8650     regD_low   tmpsrc;
  8651     iRegI      ix43300000;
  8652     iRegI      ix41f00000;
  8653     stackSlotL lx43300000;
  8654     stackSlotL lx41f00000;
  8655     regD_low   dx43300000;
  8656     regD       dx41f00000;
  8657     regD       tmp1;
  8658     regD_low   tmp2;
  8659     regD       tmp3;
  8660     regD       tmp4;
  8662     stkL_to_regD(tmpsrc, src);
  8664     loadConI_x43300000(ix43300000);
  8665     loadConI_x41f00000(ix41f00000);
  8666     regI_to_stkLHi(lx43300000, ix43300000);
  8667     regI_to_stkLHi(lx41f00000, ix41f00000);
  8668     stkL_to_regD(dx43300000, lx43300000);
  8669     stkL_to_regD(dx41f00000, lx41f00000);
  8671     convI2D_regDHi_regD(tmp1, tmpsrc);
  8672     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8673     subD_regD_regD(tmp3, tmp2, dx43300000);
  8674     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8675     addD_regD_regD(dst, tmp3, tmp4);
  8676   %}
  8677 %}
  8679 // Long to Double conversion using fast fxtof
  8680 instruct convL2D_helper(regD dst, regD tmp) %{
  8681   effect(DEF dst, USE tmp);
  8682   size(4);
  8683   format %{ "FXTOD  $tmp,$dst" %}
  8684   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8685   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8686   ins_pipe(fcvtL2D);
  8687 %}
  8689 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
  8690   predicate(VM_Version::has_fast_fxtof());
  8691   match(Set dst (ConvL2D src));
  8692   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8693   expand %{
  8694     regD tmp;
  8695     stkL_to_regD(tmp, src);
  8696     convL2D_helper(dst, tmp);
  8697   %}
  8698 %}
  8700 instruct convL2D_reg(regD dst, iRegL src) %{
  8701   predicate(UseVIS >= 3);
  8702   match(Set dst (ConvL2D src));
  8703   expand %{
  8704     regD tmp;
  8705     MoveL2D_reg_reg(tmp, src);
  8706     convL2D_helper(dst, tmp);
  8707   %}
  8708 %}
  8710 // Long to Float conversion using fast fxtof
  8711 instruct convL2F_helper(regF dst, regD tmp) %{
  8712   effect(DEF dst, USE tmp);
  8713   size(4);
  8714   format %{ "FXTOS  $tmp,$dst" %}
  8715   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8716   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8717   ins_pipe(fcvtL2F);
  8718 %}
  8720 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
  8721   match(Set dst (ConvL2F src));
  8722   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8723   expand %{
  8724     regD tmp;
  8725     stkL_to_regD(tmp, src);
  8726     convL2F_helper(dst, tmp);
  8727   %}
  8728 %}
  8730 instruct convL2F_reg(regF dst, iRegL src) %{
  8731   predicate(UseVIS >= 3);
  8732   match(Set dst (ConvL2F src));
  8733   ins_cost(DEFAULT_COST);
  8734   expand %{
  8735     regD tmp;
  8736     MoveL2D_reg_reg(tmp, src);
  8737     convL2F_helper(dst, tmp);
  8738   %}
  8739 %}
  8741 //-----------
  8743 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8744   match(Set dst (ConvL2I src));
  8745 #ifndef _LP64
  8746   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8747   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8748   ins_pipe(ialu_move_reg_I_to_L);
  8749 #else
  8750   size(4);
  8751   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8752   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8753   ins_pipe(ialu_reg);
  8754 #endif
  8755 %}
  8757 // Register Shift Right Immediate
  8758 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8759   match(Set dst (ConvL2I (RShiftL src cnt)));
  8761   size(4);
  8762   format %{ "SRAX   $src,$cnt,$dst" %}
  8763   opcode(Assembler::srax_op3, Assembler::arith_op);
  8764   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8765   ins_pipe(ialu_reg_imm);
  8766 %}
  8768 // Replicate scalar to packed byte values in Double register
  8769 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8770   effect(DEF dst, USE src);
  8771   format %{ "SLLX  $src,56,$dst\n\t"
  8772             "SRLX  $dst, 8,O7\n\t"
  8773             "OR    $dst,O7,$dst\n\t"
  8774             "SRLX  $dst,16,O7\n\t"
  8775             "OR    $dst,O7,$dst\n\t"
  8776             "SRLX  $dst,32,O7\n\t"
  8777             "OR    $dst,O7,$dst\t! replicate8B" %}
  8778   ins_encode( enc_repl8b(src, dst));
  8779   ins_pipe(ialu_reg);
  8780 %}
  8782 // Replicate scalar to packed byte values in Double register
  8783 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8784   match(Set dst (Replicate8B src));
  8785   expand %{
  8786     iRegL tmp;
  8787     Repl8B_reg_helper(tmp, src);
  8788     regL_to_stkD(dst, tmp);
  8789   %}
  8790 %}
  8792 // Replicate scalar constant to packed byte values in Double register
  8793 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
  8794   match(Set dst (Replicate8B con));
  8795   effect(KILL tmp);
  8796   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
  8797   ins_encode %{
  8798     // XXX This is a quick fix for 6833573.
  8799     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
  8800     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
  8801     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8802   %}
  8803   ins_pipe(loadConFD);
  8804 %}
  8806 // Replicate scalar to packed char values into stack slot
  8807 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8808   effect(DEF dst, USE src);
  8809   format %{ "SLLX  $src,48,$dst\n\t"
  8810             "SRLX  $dst,16,O7\n\t"
  8811             "OR    $dst,O7,$dst\n\t"
  8812             "SRLX  $dst,32,O7\n\t"
  8813             "OR    $dst,O7,$dst\t! replicate4C" %}
  8814   ins_encode( enc_repl4s(src, dst) );
  8815   ins_pipe(ialu_reg);
  8816 %}
  8818 // Replicate scalar to packed char values into stack slot
  8819 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8820   match(Set dst (Replicate4C src));
  8821   expand %{
  8822     iRegL tmp;
  8823     Repl4C_reg_helper(tmp, src);
  8824     regL_to_stkD(dst, tmp);
  8825   %}
  8826 %}
  8828 // Replicate scalar constant to packed char values in Double register
  8829 instruct Repl4C_immI(regD dst, immI con, o7RegI tmp) %{
  8830   match(Set dst (Replicate4C con));
  8831   effect(KILL tmp);
  8832   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4C($con)" %}
  8833   ins_encode %{
  8834     // XXX This is a quick fix for 6833573.
  8835     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8836     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8837     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8838   %}
  8839   ins_pipe(loadConFD);
  8840 %}
  8842 // Replicate scalar to packed short values into stack slot
  8843 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8844   effect(DEF dst, USE src);
  8845   format %{ "SLLX  $src,48,$dst\n\t"
  8846             "SRLX  $dst,16,O7\n\t"
  8847             "OR    $dst,O7,$dst\n\t"
  8848             "SRLX  $dst,32,O7\n\t"
  8849             "OR    $dst,O7,$dst\t! replicate4S" %}
  8850   ins_encode( enc_repl4s(src, dst) );
  8851   ins_pipe(ialu_reg);
  8852 %}
  8854 // Replicate scalar to packed short values into stack slot
  8855 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8856   match(Set dst (Replicate4S src));
  8857   expand %{
  8858     iRegL tmp;
  8859     Repl4S_reg_helper(tmp, src);
  8860     regL_to_stkD(dst, tmp);
  8861   %}
  8862 %}
  8864 // Replicate scalar constant to packed short values in Double register
  8865 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
  8866   match(Set dst (Replicate4S con));
  8867   effect(KILL tmp);
  8868   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
  8869   ins_encode %{
  8870     // XXX This is a quick fix for 6833573.
  8871     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
  8872     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
  8873     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8874   %}
  8875   ins_pipe(loadConFD);
  8876 %}
  8878 // Replicate scalar to packed int values in Double register
  8879 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8880   effect(DEF dst, USE src);
  8881   format %{ "SLLX  $src,32,$dst\n\t"
  8882             "SRLX  $dst,32,O7\n\t"
  8883             "OR    $dst,O7,$dst\t! replicate2I" %}
  8884   ins_encode( enc_repl2i(src, dst));
  8885   ins_pipe(ialu_reg);
  8886 %}
  8888 // Replicate scalar to packed int values in Double register
  8889 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8890   match(Set dst (Replicate2I src));
  8891   expand %{
  8892     iRegL tmp;
  8893     Repl2I_reg_helper(tmp, src);
  8894     regL_to_stkD(dst, tmp);
  8895   %}
  8896 %}
  8898 // Replicate scalar zero constant to packed int values in Double register
  8899 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
  8900   match(Set dst (Replicate2I con));
  8901   effect(KILL tmp);
  8902   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
  8903   ins_encode %{
  8904     // XXX This is a quick fix for 6833573.
  8905     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
  8906     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
  8907     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
  8908   %}
  8909   ins_pipe(loadConFD);
  8910 %}
  8912 //----------Control Flow Instructions------------------------------------------
  8913 // Compare Instructions
  8914 // Compare Integers
  8915 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8916   match(Set icc (CmpI op1 op2));
  8917   effect( DEF icc, USE op1, USE op2 );
  8919   size(4);
  8920   format %{ "CMP    $op1,$op2" %}
  8921   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8922   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8923   ins_pipe(ialu_cconly_reg_reg);
  8924 %}
  8926 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8927   match(Set icc (CmpU op1 op2));
  8929   size(4);
  8930   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8931   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8932   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8933   ins_pipe(ialu_cconly_reg_reg);
  8934 %}
  8936 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8937   match(Set icc (CmpI op1 op2));
  8938   effect( DEF icc, USE op1 );
  8940   size(4);
  8941   format %{ "CMP    $op1,$op2" %}
  8942   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8943   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8944   ins_pipe(ialu_cconly_reg_imm);
  8945 %}
  8947 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8948   match(Set icc (CmpI (AndI op1 op2) zero));
  8950   size(4);
  8951   format %{ "BTST   $op2,$op1" %}
  8952   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8953   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8954   ins_pipe(ialu_cconly_reg_reg_zero);
  8955 %}
  8957 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8958   match(Set icc (CmpI (AndI op1 op2) zero));
  8960   size(4);
  8961   format %{ "BTST   $op2,$op1" %}
  8962   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8963   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8964   ins_pipe(ialu_cconly_reg_imm_zero);
  8965 %}
  8967 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8968   match(Set xcc (CmpL op1 op2));
  8969   effect( DEF xcc, USE op1, USE op2 );
  8971   size(4);
  8972   format %{ "CMP    $op1,$op2\t\t! long" %}
  8973   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8974   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8975   ins_pipe(ialu_cconly_reg_reg);
  8976 %}
  8978 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8979   match(Set xcc (CmpL op1 con));
  8980   effect( DEF xcc, USE op1, USE con );
  8982   size(4);
  8983   format %{ "CMP    $op1,$con\t\t! long" %}
  8984   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8985   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8986   ins_pipe(ialu_cconly_reg_reg);
  8987 %}
  8989 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8990   match(Set xcc (CmpL (AndL op1 op2) zero));
  8991   effect( DEF xcc, USE op1, USE op2 );
  8993   size(4);
  8994   format %{ "BTST   $op1,$op2\t\t! long" %}
  8995   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8996   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8997   ins_pipe(ialu_cconly_reg_reg);
  8998 %}
  9000 // useful for checking the alignment of a pointer:
  9001 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  9002   match(Set xcc (CmpL (AndL op1 con) zero));
  9003   effect( DEF xcc, USE op1, USE con );
  9005   size(4);
  9006   format %{ "BTST   $op1,$con\t\t! long" %}
  9007   opcode(Assembler::andcc_op3, Assembler::arith_op);
  9008   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  9009   ins_pipe(ialu_cconly_reg_reg);
  9010 %}
  9012 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  9013   match(Set icc (CmpU op1 op2));
  9015   size(4);
  9016   format %{ "CMP    $op1,$op2\t! unsigned" %}
  9017   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9018   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9019   ins_pipe(ialu_cconly_reg_imm);
  9020 %}
  9022 // Compare Pointers
  9023 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  9024   match(Set pcc (CmpP op1 op2));
  9026   size(4);
  9027   format %{ "CMP    $op1,$op2\t! ptr" %}
  9028   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9029   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9030   ins_pipe(ialu_cconly_reg_reg);
  9031 %}
  9033 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  9034   match(Set pcc (CmpP op1 op2));
  9036   size(4);
  9037   format %{ "CMP    $op1,$op2\t! ptr" %}
  9038   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9039   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9040   ins_pipe(ialu_cconly_reg_imm);
  9041 %}
  9043 // Compare Narrow oops
  9044 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  9045   match(Set icc (CmpN op1 op2));
  9047   size(4);
  9048   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9049   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9050   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  9051   ins_pipe(ialu_cconly_reg_reg);
  9052 %}
  9054 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  9055   match(Set icc (CmpN op1 op2));
  9057   size(4);
  9058   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  9059   opcode(Assembler::subcc_op3, Assembler::arith_op);
  9060   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  9061   ins_pipe(ialu_cconly_reg_imm);
  9062 %}
  9064 //----------Max and Min--------------------------------------------------------
  9065 // Min Instructions
  9066 // Conditional move for min
  9067 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9068   effect( USE_DEF op2, USE op1, USE icc );
  9070   size(4);
  9071   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  9072   opcode(Assembler::less);
  9073   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9074   ins_pipe(ialu_reg_flags);
  9075 %}
  9077 // Min Register with Register.
  9078 instruct minI_eReg(iRegI op1, iRegI op2) %{
  9079   match(Set op2 (MinI op1 op2));
  9080   ins_cost(DEFAULT_COST*2);
  9081   expand %{
  9082     flagsReg icc;
  9083     compI_iReg(icc,op1,op2);
  9084     cmovI_reg_lt(op2,op1,icc);
  9085   %}
  9086 %}
  9088 // Max Instructions
  9089 // Conditional move for max
  9090 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  9091   effect( USE_DEF op2, USE op1, USE icc );
  9092   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  9093   opcode(Assembler::greater);
  9094   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  9095   ins_pipe(ialu_reg_flags);
  9096 %}
  9098 // Max Register with Register
  9099 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  9100   match(Set op2 (MaxI op1 op2));
  9101   ins_cost(DEFAULT_COST*2);
  9102   expand %{
  9103     flagsReg icc;
  9104     compI_iReg(icc,op1,op2);
  9105     cmovI_reg_gt(op2,op1,icc);
  9106   %}
  9107 %}
  9110 //----------Float Compares----------------------------------------------------
  9111 // Compare floating, generate condition code
  9112 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  9113   match(Set fcc (CmpF src1 src2));
  9115   size(4);
  9116   format %{ "FCMPs  $fcc,$src1,$src2" %}
  9117   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  9118   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  9119   ins_pipe(faddF_fcc_reg_reg_zero);
  9120 %}
  9122 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  9123   match(Set fcc (CmpD src1 src2));
  9125   size(4);
  9126   format %{ "FCMPd  $fcc,$src1,$src2" %}
  9127   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  9128   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  9129   ins_pipe(faddD_fcc_reg_reg_zero);
  9130 %}
  9133 // Compare floating, generate -1,0,1
  9134 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  9135   match(Set dst (CmpF3 src1 src2));
  9136   effect(KILL fcc0);
  9137   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9138   format %{ "fcmpl  $dst,$src1,$src2" %}
  9139   // Primary = float
  9140   opcode( true );
  9141   ins_encode( floating_cmp( dst, src1, src2 ) );
  9142   ins_pipe( floating_cmp );
  9143 %}
  9145 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  9146   match(Set dst (CmpD3 src1 src2));
  9147   effect(KILL fcc0);
  9148   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  9149   format %{ "dcmpl  $dst,$src1,$src2" %}
  9150   // Primary = double (not float)
  9151   opcode( false );
  9152   ins_encode( floating_cmp( dst, src1, src2 ) );
  9153   ins_pipe( floating_cmp );
  9154 %}
  9156 //----------Branches---------------------------------------------------------
  9157 // Jump
  9158 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  9159 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  9160   match(Jump switch_val);
  9162   ins_cost(350);
  9164   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
  9165              "LD     [O7 + $switch_val], O7\n\t"
  9166              "JUMP   O7"
  9167          %}
  9168   ins_encode %{
  9169     // Calculate table address into a register.
  9170     Register table_reg;
  9171     Register label_reg = O7;
  9172     if (constant_offset() == 0) {
  9173       table_reg = $constanttablebase;
  9174     } else {
  9175       table_reg = O7;
  9176       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
  9177       __ add($constanttablebase, con_offset, table_reg);
  9180     // Jump to base address + switch value
  9181     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
  9182     __ jmp(label_reg, G0);
  9183     __ delayed()->nop();
  9184   %}
  9185   ins_pc_relative(1);
  9186   ins_pipe(ialu_reg_reg);
  9187 %}
  9189 // Direct Branch.  Use V8 version with longer range.
  9190 instruct branch(label labl) %{
  9191   match(Goto);
  9192   effect(USE labl);
  9194   size(8);
  9195   ins_cost(BRANCH_COST);
  9196   format %{ "BA     $labl" %}
  9197   ins_encode %{
  9198     Label* L = $labl$$label;
  9199     __ ba(*L);
  9200     __ delayed()->nop();
  9201   %}
  9202   ins_pc_relative(1);
  9203   ins_pipe(br);
  9204 %}
  9206 // Conditional Direct Branch
  9207 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  9208   match(If cmp icc);
  9209   effect(USE labl);
  9211   size(8);
  9212   ins_cost(BRANCH_COST);
  9213   format %{ "BP$cmp   $icc,$labl" %}
  9214   // Prim = bits 24-22, Secnd = bits 31-30
  9215   ins_encode( enc_bp( labl, cmp, icc ) );
  9216   ins_pc_relative(1);
  9217   ins_pipe(br_cc);
  9218 %}
  9220 // Branch-on-register tests all 64 bits.  We assume that values
  9221 // in 64-bit registers always remains zero or sign extended
  9222 // unless our code munges the high bits.  Interrupts can chop
  9223 // the high order bits to zero or sign at any time.
  9224 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  9225   match(If cmp (CmpI op1 zero));
  9226   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9227   effect(USE labl);
  9229   size(8);
  9230   ins_cost(BRANCH_COST);
  9231   format %{ "BR$cmp   $op1,$labl" %}
  9232   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9233   ins_pc_relative(1);
  9234   ins_pipe(br_reg);
  9235 %}
  9237 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  9238   match(If cmp (CmpP op1 null));
  9239   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9240   effect(USE labl);
  9242   size(8);
  9243   ins_cost(BRANCH_COST);
  9244   format %{ "BR$cmp   $op1,$labl" %}
  9245   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9246   ins_pc_relative(1);
  9247   ins_pipe(br_reg);
  9248 %}
  9250 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  9251   match(If cmp (CmpL op1 zero));
  9252   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  9253   effect(USE labl);
  9255   size(8);
  9256   ins_cost(BRANCH_COST);
  9257   format %{ "BR$cmp   $op1,$labl" %}
  9258   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9259   ins_pc_relative(1);
  9260   ins_pipe(br_reg);
  9261 %}
  9263 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9264   match(If cmp icc);
  9265   effect(USE labl);
  9267   format %{ "BP$cmp  $icc,$labl" %}
  9268   // Prim = bits 24-22, Secnd = bits 31-30
  9269   ins_encode( enc_bp( labl, cmp, icc ) );
  9270   ins_pc_relative(1);
  9271   ins_pipe(br_cc);
  9272 %}
  9274 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9275   match(If cmp pcc);
  9276   effect(USE labl);
  9278   size(8);
  9279   ins_cost(BRANCH_COST);
  9280   format %{ "BP$cmp  $pcc,$labl" %}
  9281   ins_encode %{
  9282     Label* L = $labl$$label;
  9283     Assembler::Predict predict_taken =
  9284       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9286     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
  9287     __ delayed()->nop();
  9288   %}
  9289   ins_pc_relative(1);
  9290   ins_pipe(br_cc);
  9291 %}
  9293 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9294   match(If cmp fcc);
  9295   effect(USE labl);
  9297   size(8);
  9298   ins_cost(BRANCH_COST);
  9299   format %{ "FBP$cmp $fcc,$labl" %}
  9300   ins_encode %{
  9301     Label* L = $labl$$label;
  9302     Assembler::Predict predict_taken =
  9303       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9305     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
  9306     __ delayed()->nop();
  9307   %}
  9308   ins_pc_relative(1);
  9309   ins_pipe(br_fcc);
  9310 %}
  9312 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9313   match(CountedLoopEnd cmp icc);
  9314   effect(USE labl);
  9316   size(8);
  9317   ins_cost(BRANCH_COST);
  9318   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9319   // Prim = bits 24-22, Secnd = bits 31-30
  9320   ins_encode( enc_bp( labl, cmp, icc ) );
  9321   ins_pc_relative(1);
  9322   ins_pipe(br_cc);
  9323 %}
  9325 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9326   match(CountedLoopEnd cmp icc);
  9327   effect(USE labl);
  9329   size(8);
  9330   ins_cost(BRANCH_COST);
  9331   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9332   // Prim = bits 24-22, Secnd = bits 31-30
  9333   ins_encode( enc_bp( labl, cmp, icc ) );
  9334   ins_pc_relative(1);
  9335   ins_pipe(br_cc);
  9336 %}
  9338 // ============================================================================
  9339 // Long Compare
  9340 //
  9341 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9342 // is tricky.  The flavor of compare used depends on whether we are testing
  9343 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9344 // The GE test is the negated LT test.  The LE test can be had by commuting
  9345 // the operands (yielding a GE test) and then negating; negate again for the
  9346 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9347 // NE test is negated from that.
  9349 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9350 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9351 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9352 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9353 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9354 // foo match ends up with the wrong leaf.  One fix is to not match both
  9355 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9356 // both forms beat the trinary form of long-compare and both are very useful
  9357 // on Intel which has so few registers.
  9359 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9360   match(If cmp xcc);
  9361   effect(USE labl);
  9363   size(8);
  9364   ins_cost(BRANCH_COST);
  9365   format %{ "BP$cmp   $xcc,$labl" %}
  9366   ins_encode %{
  9367     Label* L = $labl$$label;
  9368     Assembler::Predict predict_taken =
  9369       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
  9371     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
  9372     __ delayed()->nop();
  9373   %}
  9374   ins_pc_relative(1);
  9375   ins_pipe(br_cc);
  9376 %}
  9378 // Manifest a CmpL3 result in an integer register.  Very painful.
  9379 // This is the test to avoid.
  9380 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9381   match(Set dst (CmpL3 src1 src2) );
  9382   effect( KILL ccr );
  9383   ins_cost(6*DEFAULT_COST);
  9384   size(24);
  9385   format %{ "CMP    $src1,$src2\t\t! long\n"
  9386           "\tBLT,a,pn done\n"
  9387           "\tMOV    -1,$dst\t! delay slot\n"
  9388           "\tBGT,a,pn done\n"
  9389           "\tMOV    1,$dst\t! delay slot\n"
  9390           "\tCLR    $dst\n"
  9391     "done:"     %}
  9392   ins_encode( cmpl_flag(src1,src2,dst) );
  9393   ins_pipe(cmpL_reg);
  9394 %}
  9396 // Conditional move
  9397 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9398   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9399   ins_cost(150);
  9400   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9401   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9402   ins_pipe(ialu_reg);
  9403 %}
  9405 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9406   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9407   ins_cost(140);
  9408   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9409   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9410   ins_pipe(ialu_imm);
  9411 %}
  9413 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9414   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9415   ins_cost(150);
  9416   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9417   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9418   ins_pipe(ialu_reg);
  9419 %}
  9421 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9422   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9423   ins_cost(140);
  9424   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9425   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9426   ins_pipe(ialu_imm);
  9427 %}
  9429 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9430   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9431   ins_cost(150);
  9432   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9433   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9434   ins_pipe(ialu_reg);
  9435 %}
  9437 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9438   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9439   ins_cost(150);
  9440   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9441   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9442   ins_pipe(ialu_reg);
  9443 %}
  9445 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9446   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9447   ins_cost(140);
  9448   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9449   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9450   ins_pipe(ialu_imm);
  9451 %}
  9453 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9454   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9455   ins_cost(150);
  9456   opcode(0x101);
  9457   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9458   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9459   ins_pipe(int_conditional_float_move);
  9460 %}
  9462 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9463   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9464   ins_cost(150);
  9465   opcode(0x102);
  9466   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9467   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9468   ins_pipe(int_conditional_float_move);
  9469 %}
  9471 // ============================================================================
  9472 // Safepoint Instruction
  9473 instruct safePoint_poll(iRegP poll) %{
  9474   match(SafePoint poll);
  9475   effect(USE poll);
  9477   size(4);
  9478 #ifdef _LP64
  9479   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9480 #else
  9481   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9482 #endif
  9483   ins_encode %{
  9484     __ relocate(relocInfo::poll_type);
  9485     __ ld_ptr($poll$$Register, 0, G0);
  9486   %}
  9487   ins_pipe(loadPollP);
  9488 %}
  9490 // ============================================================================
  9491 // Call Instructions
  9492 // Call Java Static Instruction
  9493 instruct CallStaticJavaDirect( method meth ) %{
  9494   match(CallStaticJava);
  9495   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9496   effect(USE meth);
  9498   size(8);
  9499   ins_cost(CALL_COST);
  9500   format %{ "CALL,static  ; NOP ==> " %}
  9501   ins_encode( Java_Static_Call( meth ), call_epilog );
  9502   ins_pc_relative(1);
  9503   ins_pipe(simple_call);
  9504 %}
  9506 // Call Java Static Instruction (method handle version)
  9507 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9508   match(CallStaticJava);
  9509   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9510   effect(USE meth, KILL l7_mh_SP_save);
  9512   size(8);
  9513   ins_cost(CALL_COST);
  9514   format %{ "CALL,static/MethodHandle" %}
  9515   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9516   ins_pc_relative(1);
  9517   ins_pipe(simple_call);
  9518 %}
  9520 // Call Java Dynamic Instruction
  9521 instruct CallDynamicJavaDirect( method meth ) %{
  9522   match(CallDynamicJava);
  9523   effect(USE meth);
  9525   ins_cost(CALL_COST);
  9526   format %{ "SET    (empty),R_G5\n\t"
  9527             "CALL,dynamic  ; NOP ==> " %}
  9528   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9529   ins_pc_relative(1);
  9530   ins_pipe(call);
  9531 %}
  9533 // Call Runtime Instruction
  9534 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9535   match(CallRuntime);
  9536   effect(USE meth, KILL l7);
  9537   ins_cost(CALL_COST);
  9538   format %{ "CALL,runtime" %}
  9539   ins_encode( Java_To_Runtime( meth ),
  9540               call_epilog, adjust_long_from_native_call );
  9541   ins_pc_relative(1);
  9542   ins_pipe(simple_call);
  9543 %}
  9545 // Call runtime without safepoint - same as CallRuntime
  9546 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9547   match(CallLeaf);
  9548   effect(USE meth, KILL l7);
  9549   ins_cost(CALL_COST);
  9550   format %{ "CALL,runtime leaf" %}
  9551   ins_encode( Java_To_Runtime( meth ),
  9552               call_epilog,
  9553               adjust_long_from_native_call );
  9554   ins_pc_relative(1);
  9555   ins_pipe(simple_call);
  9556 %}
  9558 // Call runtime without safepoint - same as CallLeaf
  9559 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9560   match(CallLeafNoFP);
  9561   effect(USE meth, KILL l7);
  9562   ins_cost(CALL_COST);
  9563   format %{ "CALL,runtime leaf nofp" %}
  9564   ins_encode( Java_To_Runtime( meth ),
  9565               call_epilog,
  9566               adjust_long_from_native_call );
  9567   ins_pc_relative(1);
  9568   ins_pipe(simple_call);
  9569 %}
  9571 // Tail Call; Jump from runtime stub to Java code.
  9572 // Also known as an 'interprocedural jump'.
  9573 // Target of jump will eventually return to caller.
  9574 // TailJump below removes the return address.
  9575 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9576   match(TailCall jump_target method_oop );
  9578   ins_cost(CALL_COST);
  9579   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9580   ins_encode(form_jmpl(jump_target));
  9581   ins_pipe(tail_call);
  9582 %}
  9585 // Return Instruction
  9586 instruct Ret() %{
  9587   match(Return);
  9589   // The epilogue node did the ret already.
  9590   size(0);
  9591   format %{ "! return" %}
  9592   ins_encode();
  9593   ins_pipe(empty);
  9594 %}
  9597 // Tail Jump; remove the return address; jump to target.
  9598 // TailCall above leaves the return address around.
  9599 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9600 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9601 // "restore" before this instruction (in Epilogue), we need to materialize it
  9602 // in %i0.
  9603 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9604   match( TailJump jump_target ex_oop );
  9605   ins_cost(CALL_COST);
  9606   format %{ "! discard R_O7\n\t"
  9607             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9608   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9609   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9610   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9611   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9612   ins_pipe(tail_call);
  9613 %}
  9615 // Create exception oop: created by stack-crawling runtime code.
  9616 // Created exception is now available to this handler, and is setup
  9617 // just prior to jumping to this handler.  No code emitted.
  9618 instruct CreateException( o0RegP ex_oop )
  9619 %{
  9620   match(Set ex_oop (CreateEx));
  9621   ins_cost(0);
  9623   size(0);
  9624   // use the following format syntax
  9625   format %{ "! exception oop is in R_O0; no code emitted" %}
  9626   ins_encode();
  9627   ins_pipe(empty);
  9628 %}
  9631 // Rethrow exception:
  9632 // The exception oop will come in the first argument position.
  9633 // Then JUMP (not call) to the rethrow stub code.
  9634 instruct RethrowException()
  9635 %{
  9636   match(Rethrow);
  9637   ins_cost(CALL_COST);
  9639   // use the following format syntax
  9640   format %{ "Jmp    rethrow_stub" %}
  9641   ins_encode(enc_rethrow);
  9642   ins_pipe(tail_call);
  9643 %}
  9646 // Die now
  9647 instruct ShouldNotReachHere( )
  9648 %{
  9649   match(Halt);
  9650   ins_cost(CALL_COST);
  9652   size(4);
  9653   // Use the following format syntax
  9654   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  9655   ins_encode( form2_illtrap() );
  9656   ins_pipe(tail_call);
  9657 %}
  9659 // ============================================================================
  9660 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  9661 // array for an instance of the superklass.  Set a hidden internal cache on a
  9662 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  9663 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  9664 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  9665   match(Set index (PartialSubtypeCheck sub super));
  9666   effect( KILL pcc, KILL o7 );
  9667   ins_cost(DEFAULT_COST*10);
  9668   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  9669   ins_encode( enc_PartialSubtypeCheck() );
  9670   ins_pipe(partial_subtype_check_pipe);
  9671 %}
  9673 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  9674   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  9675   effect( KILL idx, KILL o7 );
  9676   ins_cost(DEFAULT_COST*10);
  9677   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  9678   ins_encode( enc_PartialSubtypeCheck() );
  9679   ins_pipe(partial_subtype_check_pipe);
  9680 %}
  9683 // ============================================================================
  9684 // inlined locking and unlocking
  9686 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9687   match(Set pcc (FastLock object box));
  9689   effect(KILL scratch, TEMP scratch2);
  9690   ins_cost(100);
  9692   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9693   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  9694   ins_pipe(long_memory_op);
  9695 %}
  9698 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9699   match(Set pcc (FastUnlock object box));
  9700   effect(KILL scratch, TEMP scratch2);
  9701   ins_cost(100);
  9703   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9704   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  9705   ins_pipe(long_memory_op);
  9706 %}
  9708 // Count and Base registers are fixed because the allocator cannot
  9709 // kill unknown registers.  The encodings are generic.
  9710 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  9711   match(Set dummy (ClearArray cnt base));
  9712   effect(TEMP temp, KILL ccr);
  9713   ins_cost(300);
  9714   format %{ "MOV    $cnt,$temp\n"
  9715     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  9716     "        BRge   loop\t\t! Clearing loop\n"
  9717     "        STX    G0,[$base+$temp]\t! delay slot" %}
  9718   ins_encode( enc_Clear_Array(cnt, base, temp) );
  9719   ins_pipe(long_memory_op);
  9720 %}
  9722 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
  9723                         o7RegI tmp, flagsReg ccr) %{
  9724   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9725   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
  9726   ins_cost(300);
  9727   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
  9728   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
  9729   ins_pipe(long_memory_op);
  9730 %}
  9732 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
  9733                        o7RegI tmp, flagsReg ccr) %{
  9734   match(Set result (StrEquals (Binary str1 str2) cnt));
  9735   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
  9736   ins_cost(300);
  9737   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
  9738   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
  9739   ins_pipe(long_memory_op);
  9740 %}
  9742 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
  9743                       o7RegI tmp2, flagsReg ccr) %{
  9744   match(Set result (AryEq ary1 ary2));
  9745   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
  9746   ins_cost(300);
  9747   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
  9748   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
  9749   ins_pipe(long_memory_op);
  9750 %}
  9753 //---------- Zeros Count Instructions ------------------------------------------
  9755 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
  9756   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9757   match(Set dst (CountLeadingZerosI src));
  9758   effect(TEMP dst, TEMP tmp, KILL cr);
  9760   // x |= (x >> 1);
  9761   // x |= (x >> 2);
  9762   // x |= (x >> 4);
  9763   // x |= (x >> 8);
  9764   // x |= (x >> 16);
  9765   // return (WORDBITS - popc(x));
  9766   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
  9767             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
  9768             "OR      $dst,$tmp,$dst\n\t"
  9769             "SRL     $dst,2,$tmp\n\t"
  9770             "OR      $dst,$tmp,$dst\n\t"
  9771             "SRL     $dst,4,$tmp\n\t"
  9772             "OR      $dst,$tmp,$dst\n\t"
  9773             "SRL     $dst,8,$tmp\n\t"
  9774             "OR      $dst,$tmp,$dst\n\t"
  9775             "SRL     $dst,16,$tmp\n\t"
  9776             "OR      $dst,$tmp,$dst\n\t"
  9777             "POPC    $dst,$dst\n\t"
  9778             "MOV     32,$tmp\n\t"
  9779             "SUB     $tmp,$dst,$dst" %}
  9780   ins_encode %{
  9781     Register Rdst = $dst$$Register;
  9782     Register Rsrc = $src$$Register;
  9783     Register Rtmp = $tmp$$Register;
  9784     __ srl(Rsrc, 1,    Rtmp);
  9785     __ srl(Rsrc, 0,    Rdst);
  9786     __ or3(Rdst, Rtmp, Rdst);
  9787     __ srl(Rdst, 2,    Rtmp);
  9788     __ or3(Rdst, Rtmp, Rdst);
  9789     __ srl(Rdst, 4,    Rtmp);
  9790     __ or3(Rdst, Rtmp, Rdst);
  9791     __ srl(Rdst, 8,    Rtmp);
  9792     __ or3(Rdst, Rtmp, Rdst);
  9793     __ srl(Rdst, 16,   Rtmp);
  9794     __ or3(Rdst, Rtmp, Rdst);
  9795     __ popc(Rdst, Rdst);
  9796     __ mov(BitsPerInt, Rtmp);
  9797     __ sub(Rtmp, Rdst, Rdst);
  9798   %}
  9799   ins_pipe(ialu_reg);
  9800 %}
  9802 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
  9803   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9804   match(Set dst (CountLeadingZerosL src));
  9805   effect(TEMP dst, TEMP tmp, KILL cr);
  9807   // x |= (x >> 1);
  9808   // x |= (x >> 2);
  9809   // x |= (x >> 4);
  9810   // x |= (x >> 8);
  9811   // x |= (x >> 16);
  9812   // x |= (x >> 32);
  9813   // return (WORDBITS - popc(x));
  9814   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
  9815             "OR      $src,$tmp,$dst\n\t"
  9816             "SRLX    $dst,2,$tmp\n\t"
  9817             "OR      $dst,$tmp,$dst\n\t"
  9818             "SRLX    $dst,4,$tmp\n\t"
  9819             "OR      $dst,$tmp,$dst\n\t"
  9820             "SRLX    $dst,8,$tmp\n\t"
  9821             "OR      $dst,$tmp,$dst\n\t"
  9822             "SRLX    $dst,16,$tmp\n\t"
  9823             "OR      $dst,$tmp,$dst\n\t"
  9824             "SRLX    $dst,32,$tmp\n\t"
  9825             "OR      $dst,$tmp,$dst\n\t"
  9826             "POPC    $dst,$dst\n\t"
  9827             "MOV     64,$tmp\n\t"
  9828             "SUB     $tmp,$dst,$dst" %}
  9829   ins_encode %{
  9830     Register Rdst = $dst$$Register;
  9831     Register Rsrc = $src$$Register;
  9832     Register Rtmp = $tmp$$Register;
  9833     __ srlx(Rsrc, 1,    Rtmp);
  9834     __ or3( Rsrc, Rtmp, Rdst);
  9835     __ srlx(Rdst, 2,    Rtmp);
  9836     __ or3( Rdst, Rtmp, Rdst);
  9837     __ srlx(Rdst, 4,    Rtmp);
  9838     __ or3( Rdst, Rtmp, Rdst);
  9839     __ srlx(Rdst, 8,    Rtmp);
  9840     __ or3( Rdst, Rtmp, Rdst);
  9841     __ srlx(Rdst, 16,   Rtmp);
  9842     __ or3( Rdst, Rtmp, Rdst);
  9843     __ srlx(Rdst, 32,   Rtmp);
  9844     __ or3( Rdst, Rtmp, Rdst);
  9845     __ popc(Rdst, Rdst);
  9846     __ mov(BitsPerLong, Rtmp);
  9847     __ sub(Rtmp, Rdst, Rdst);
  9848   %}
  9849   ins_pipe(ialu_reg);
  9850 %}
  9852 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
  9853   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9854   match(Set dst (CountTrailingZerosI src));
  9855   effect(TEMP dst, KILL cr);
  9857   // return popc(~x & (x - 1));
  9858   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
  9859             "ANDN    $dst,$src,$dst\n\t"
  9860             "SRL     $dst,R_G0,$dst\n\t"
  9861             "POPC    $dst,$dst" %}
  9862   ins_encode %{
  9863     Register Rdst = $dst$$Register;
  9864     Register Rsrc = $src$$Register;
  9865     __ sub(Rsrc, 1, Rdst);
  9866     __ andn(Rdst, Rsrc, Rdst);
  9867     __ srl(Rdst, G0, Rdst);
  9868     __ popc(Rdst, Rdst);
  9869   %}
  9870   ins_pipe(ialu_reg);
  9871 %}
  9873 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
  9874   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9875   match(Set dst (CountTrailingZerosL src));
  9876   effect(TEMP dst, KILL cr);
  9878   // return popc(~x & (x - 1));
  9879   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
  9880             "ANDN    $dst,$src,$dst\n\t"
  9881             "POPC    $dst,$dst" %}
  9882   ins_encode %{
  9883     Register Rdst = $dst$$Register;
  9884     Register Rsrc = $src$$Register;
  9885     __ sub(Rsrc, 1, Rdst);
  9886     __ andn(Rdst, Rsrc, Rdst);
  9887     __ popc(Rdst, Rdst);
  9888   %}
  9889   ins_pipe(ialu_reg);
  9890 %}
  9893 //---------- Population Count Instructions -------------------------------------
  9895 instruct popCountI(iRegI dst, iRegI src) %{
  9896   predicate(UsePopCountInstruction);
  9897   match(Set dst (PopCountI src));
  9899   format %{ "POPC   $src, $dst" %}
  9900   ins_encode %{
  9901     __ popc($src$$Register, $dst$$Register);
  9902   %}
  9903   ins_pipe(ialu_reg);
  9904 %}
  9906 // Note: Long.bitCount(long) returns an int.
  9907 instruct popCountL(iRegI dst, iRegL src) %{
  9908   predicate(UsePopCountInstruction);
  9909   match(Set dst (PopCountL src));
  9911   format %{ "POPC   $src, $dst" %}
  9912   ins_encode %{
  9913     __ popc($src$$Register, $dst$$Register);
  9914   %}
  9915   ins_pipe(ialu_reg);
  9916 %}
  9919 // ============================================================================
  9920 //------------Bytes reverse--------------------------------------------------
  9922 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  9923   match(Set dst (ReverseBytesI src));
  9925   // Op cost is artificially doubled to make sure that load or store
  9926   // instructions are preferred over this one which requires a spill
  9927   // onto a stack slot.
  9928   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9929   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9931   ins_encode %{
  9932     __ set($src$$disp + STACK_BIAS, O7);
  9933     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9934   %}
  9935   ins_pipe( iload_mem );
  9936 %}
  9938 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  9939   match(Set dst (ReverseBytesL src));
  9941   // Op cost is artificially doubled to make sure that load or store
  9942   // instructions are preferred over this one which requires a spill
  9943   // onto a stack slot.
  9944   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9945   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9947   ins_encode %{
  9948     __ set($src$$disp + STACK_BIAS, O7);
  9949     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9950   %}
  9951   ins_pipe( iload_mem );
  9952 %}
  9954 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
  9955   match(Set dst (ReverseBytesUS src));
  9957   // Op cost is artificially doubled to make sure that load or store
  9958   // instructions are preferred over this one which requires a spill
  9959   // onto a stack slot.
  9960   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9961   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
  9963   ins_encode %{
  9964     // the value was spilled as an int so bias the load
  9965     __ set($src$$disp + STACK_BIAS + 2, O7);
  9966     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9967   %}
  9968   ins_pipe( iload_mem );
  9969 %}
  9971 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
  9972   match(Set dst (ReverseBytesS src));
  9974   // Op cost is artificially doubled to make sure that load or store
  9975   // instructions are preferred over this one which requires a spill
  9976   // onto a stack slot.
  9977   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9978   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
  9980   ins_encode %{
  9981     // the value was spilled as an int so bias the load
  9982     __ set($src$$disp + STACK_BIAS + 2, O7);
  9983     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9984   %}
  9985   ins_pipe( iload_mem );
  9986 %}
  9988 // Load Integer reversed byte order
  9989 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
  9990   match(Set dst (ReverseBytesI (LoadI src)));
  9992   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9993   size(4);
  9994   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9996   ins_encode %{
  9997     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9998   %}
  9999   ins_pipe(iload_mem);
 10000 %}
 10002 // Load Long - aligned and reversed
 10003 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
 10004   match(Set dst (ReverseBytesL (LoadL src)));
 10006   ins_cost(MEMORY_REF_COST);
 10007   size(4);
 10008   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
 10010   ins_encode %{
 10011     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10012   %}
 10013   ins_pipe(iload_mem);
 10014 %}
 10016 // Load unsigned short / char reversed byte order
 10017 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
 10018   match(Set dst (ReverseBytesUS (LoadUS src)));
 10020   ins_cost(MEMORY_REF_COST);
 10021   size(4);
 10022   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
 10024   ins_encode %{
 10025     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10026   %}
 10027   ins_pipe(iload_mem);
 10028 %}
 10030 // Load short reversed byte order
 10031 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
 10032   match(Set dst (ReverseBytesS (LoadS src)));
 10034   ins_cost(MEMORY_REF_COST);
 10035   size(4);
 10036   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
 10038   ins_encode %{
 10039     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
 10040   %}
 10041   ins_pipe(iload_mem);
 10042 %}
 10044 // Store Integer reversed byte order
 10045 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
 10046   match(Set dst (StoreI dst (ReverseBytesI src)));
 10048   ins_cost(MEMORY_REF_COST);
 10049   size(4);
 10050   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
 10052   ins_encode %{
 10053     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10054   %}
 10055   ins_pipe(istore_mem_reg);
 10056 %}
 10058 // Store Long reversed byte order
 10059 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
 10060   match(Set dst (StoreL dst (ReverseBytesL src)));
 10062   ins_cost(MEMORY_REF_COST);
 10063   size(4);
 10064   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
 10066   ins_encode %{
 10067     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10068   %}
 10069   ins_pipe(istore_mem_reg);
 10070 %}
 10072 // Store unsighed short/char reversed byte order
 10073 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
 10074   match(Set dst (StoreC dst (ReverseBytesUS src)));
 10076   ins_cost(MEMORY_REF_COST);
 10077   size(4);
 10078   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10080   ins_encode %{
 10081     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10082   %}
 10083   ins_pipe(istore_mem_reg);
 10084 %}
 10086 // Store short reversed byte order
 10087 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
 10088   match(Set dst (StoreC dst (ReverseBytesS src)));
 10090   ins_cost(MEMORY_REF_COST);
 10091   size(4);
 10092   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
 10094   ins_encode %{
 10095     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
 10096   %}
 10097   ins_pipe(istore_mem_reg);
 10098 %}
 10100 //----------PEEPHOLE RULES-----------------------------------------------------
 10101 // These must follow all instruction definitions as they use the names
 10102 // defined in the instructions definitions.
 10103 //
 10104 // peepmatch ( root_instr_name [preceding_instruction]* );
 10105 //
 10106 // peepconstraint %{
 10107 // (instruction_number.operand_name relational_op instruction_number.operand_name
 10108 //  [, ...] );
 10109 // // instruction numbers are zero-based using left to right order in peepmatch
 10110 //
 10111 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 10112 // // provide an instruction_number.operand_name for each operand that appears
 10113 // // in the replacement instruction's match rule
 10114 //
 10115 // ---------VM FLAGS---------------------------------------------------------
 10116 //
 10117 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 10118 //
 10119 // Each peephole rule is given an identifying number starting with zero and
 10120 // increasing by one in the order seen by the parser.  An individual peephole
 10121 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 10122 // on the command-line.
 10123 //
 10124 // ---------CURRENT LIMITATIONS----------------------------------------------
 10125 //
 10126 // Only match adjacent instructions in same basic block
 10127 // Only equality constraints
 10128 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 10129 // Only one replacement instruction
 10130 //
 10131 // ---------EXAMPLE----------------------------------------------------------
 10132 //
 10133 // // pertinent parts of existing instructions in architecture description
 10134 // instruct movI(eRegI dst, eRegI src) %{
 10135 //   match(Set dst (CopyI src));
 10136 // %}
 10137 //
 10138 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 10139 //   match(Set dst (AddI dst src));
 10140 //   effect(KILL cr);
 10141 // %}
 10142 //
 10143 // // Change (inc mov) to lea
 10144 // peephole %{
 10145 //   // increment preceeded by register-register move
 10146 //   peepmatch ( incI_eReg movI );
 10147 //   // require that the destination register of the increment
 10148 //   // match the destination register of the move
 10149 //   peepconstraint ( 0.dst == 1.dst );
 10150 //   // construct a replacement instruction that sets
 10151 //   // the destination to ( move's source register + one )
 10152 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
 10153 // %}
 10154 //
 10156 // // Change load of spilled value to only a spill
 10157 // instruct storeI(memory mem, eRegI src) %{
 10158 //   match(Set mem (StoreI mem src));
 10159 // %}
 10160 //
 10161 // instruct loadI(eRegI dst, memory mem) %{
 10162 //   match(Set dst (LoadI mem));
 10163 // %}
 10164 //
 10165 // peephole %{
 10166 //   peepmatch ( loadI storeI );
 10167 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 10168 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 10169 // %}
 10171 //----------SMARTSPILL RULES---------------------------------------------------
 10172 // These must follow all instruction definitions as they use the names
 10173 // defined in the instructions definitions.
 10174 //
 10175 // SPARC will probably not have any of these rules due to RISC instruction set.
 10177 //----------PIPELINE-----------------------------------------------------------
 10178 // Rules which define the behavior of the target architectures pipeline.

mercurial