src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Sat, 30 Oct 2010 13:08:23 -0700

author
jrose
date
Sat, 30 Oct 2010 13:08:23 -0700
changeset 2268
3b2dea75431e
parent 2185
a3f7f95b0165
child 2314
f95d63e2154a
permissions
-rw-r--r--

6984311: JSR 292 needs optional bootstrap method parameters
Summary: Allow CONSTANT_InvokeDynamic nodes to have any number of extra operands.
Reviewed-by: twisti

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
    28 #define __ _masm->
    31 //------------------------------------------------------------
    34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    35   if (opr->is_constant()) {
    36     LIR_Const* constant = opr->as_constant_ptr();
    37     switch (constant->type()) {
    38       case T_INT: {
    39         jint value = constant->as_jint();
    40         return Assembler::is_simm13(value);
    41       }
    43       default:
    44         return false;
    45     }
    46   }
    47   return false;
    48 }
    51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    52   switch (op->code()) {
    53     case lir_null_check:
    54     return true;
    57     case lir_add:
    58     case lir_ushr:
    59     case lir_shr:
    60     case lir_shl:
    61       // integer shifts and adds are always one instruction
    62       return op->result_opr()->is_single_cpu();
    65     case lir_move: {
    66       LIR_Op1* op1 = op->as_Op1();
    67       LIR_Opr src = op1->in_opr();
    68       LIR_Opr dst = op1->result_opr();
    70       if (src == dst) {
    71         NEEDS_CLEANUP;
    72         // this works around a problem where moves with the same src and dst
    73         // end up in the delay slot and then the assembler swallows the mov
    74         // since it has no effect and then it complains because the delay slot
    75         // is empty.  returning false stops the optimizer from putting this in
    76         // the delay slot
    77         return false;
    78       }
    80       // don't put moves involving oops into the delay slot since the VerifyOops code
    81       // will make it much larger than a single instruction.
    82       if (VerifyOops) {
    83         return false;
    84       }
    86       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    87           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
    88         return false;
    89       }
    91       if (dst->is_register()) {
    92         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
    93           return !PatchALot;
    94         } else if (src->is_single_stack()) {
    95           return true;
    96         }
    97       }
    99       if (src->is_register()) {
   100         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   101           return !PatchALot;
   102         } else if (dst->is_single_stack()) {
   103           return true;
   104         }
   105       }
   107       if (dst->is_register() &&
   108           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   109            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   110         return true;
   111       }
   113       return false;
   114     }
   116     default:
   117       return false;
   118   }
   119   ShouldNotReachHere();
   120 }
   123 LIR_Opr LIR_Assembler::receiverOpr() {
   124   return FrameMap::O0_oop_opr;
   125 }
   128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   129   return FrameMap::I0_oop_opr;
   130 }
   133 LIR_Opr LIR_Assembler::osrBufferPointer() {
   134   return FrameMap::I0_opr;
   135 }
   138 int LIR_Assembler::initial_frame_size_in_bytes() {
   139   return in_bytes(frame_map()->framesize_in_bytes());
   140 }
   143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   144 // we fetch the class of the receiver (O0) and compare it with the cached class.
   145 // If they do not match we jump to slow case.
   146 int LIR_Assembler::check_icache() {
   147   int offset = __ offset();
   148   __ inline_cache_check(O0, G5_inline_cache_reg);
   149   return offset;
   150 }
   153 void LIR_Assembler::osr_entry() {
   154   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   155   //
   156   //   1. Create a new compiled activation.
   157   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   158   //      at the osr_bci; it is not initialized.
   159   //   3. Jump to the continuation address in compiled code to resume execution.
   161   // OSR entry point
   162   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   163   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   164   ValueStack* entry_state = osr_entry->end()->state();
   165   int number_of_locks = entry_state->locks_size();
   167   // Create a frame for the compiled activation.
   168   __ build_frame(initial_frame_size_in_bytes());
   170   // OSR buffer is
   171   //
   172   // locals[nlocals-1..0]
   173   // monitors[number_of_locks-1..0]
   174   //
   175   // locals is a direct copy of the interpreter frame so in the osr buffer
   176   // so first slot in the local array is the last local from the interpreter
   177   // and last slot is local[0] (receiver) from the interpreter
   178   //
   179   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   180   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   181   // in the interpreter frame (the method lock if a sync method)
   183   // Initialize monitors in the compiled activation.
   184   //   I0: pointer to osr buffer
   185   //
   186   // All other registers are dead at this point and the locals will be
   187   // copied into place by code emitted in the IR.
   189   Register OSR_buf = osrBufferPointer()->as_register();
   190   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   191     int monitor_offset = BytesPerWord * method()->max_locals() +
   192       (2 * BytesPerWord) * (number_of_locks - 1);
   193     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   194     // the OSR buffer using 2 word entries: first the lock and then
   195     // the oop.
   196     for (int i = 0; i < number_of_locks; i++) {
   197       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   198 #ifdef ASSERT
   199       // verify the interpreter's monitor has a non-null object
   200       {
   201         Label L;
   202         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   203         __ cmp(G0, O7);
   204         __ br(Assembler::notEqual, false, Assembler::pt, L);
   205         __ delayed()->nop();
   206         __ stop("locked object is NULL");
   207         __ bind(L);
   208       }
   209 #endif // ASSERT
   210       // Copy the lock field into the compiled activation.
   211       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   212       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   213       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   214       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   215     }
   216   }
   217 }
   220 // Optimized Library calls
   221 // This is the fast version of java.lang.String.compare; it has not
   222 // OSR-entry and therefore, we generate a slow version for OSR's
   223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   224   Register str0 = left->as_register();
   225   Register str1 = right->as_register();
   227   Label Ldone;
   229   Register result = dst->as_register();
   230   {
   231     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
   232     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
   233     // Also, get string0.count-string1.count in o7 and get the condition code set
   234     // Note: some instructions have been hoisted for better instruction scheduling
   236     Register tmp0 = L0;
   237     Register tmp1 = L1;
   238     Register tmp2 = L2;
   240     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   241     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   242     int  count_offset = java_lang_String:: count_offset_in_bytes();
   244     __ ld_ptr(str0, value_offset, tmp0);
   245     __ ld(str0, offset_offset, tmp2);
   246     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   247     __ ld(str0, count_offset, str0);
   248     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   250     // str1 may be null
   251     add_debug_info_for_null_check_here(info);
   253     __ ld_ptr(str1, value_offset, tmp1);
   254     __ add(tmp0, tmp2, tmp0);
   256     __ ld(str1, offset_offset, tmp2);
   257     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   258     __ ld(str1, count_offset, str1);
   259     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   260     __ subcc(str0, str1, O7);
   261     __ add(tmp1, tmp2, tmp1);
   262   }
   264   {
   265     // Compute the minimum of the string lengths, scale it and store it in limit
   266     Register count0 = I0;
   267     Register count1 = I1;
   268     Register limit  = L3;
   270     Label Lskip;
   271     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   272     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   273     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   274     __ bind(Lskip);
   276     // If either string is empty (or both of them) the result is the difference in lengths
   277     __ cmp(limit, 0);
   278     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   279     __ delayed()->mov(O7, result);  // result is difference in lengths
   280   }
   282   {
   283     // Neither string is empty
   284     Label Lloop;
   286     Register base0 = L0;
   287     Register base1 = L1;
   288     Register chr0  = I0;
   289     Register chr1  = I1;
   290     Register limit = L3;
   292     // Shift base0 and base1 to the end of the arrays, negate limit
   293     __ add(base0, limit, base0);
   294     __ add(base1, limit, base1);
   295     __ neg(limit);  // limit = -min{string0.count, strin1.count}
   297     __ lduh(base0, limit, chr0);
   298     __ bind(Lloop);
   299     __ lduh(base1, limit, chr1);
   300     __ subcc(chr0, chr1, chr0);
   301     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   302     assert(chr0 == result, "result must be pre-placed");
   303     __ delayed()->inccc(limit, sizeof(jchar));
   304     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   305     __ delayed()->lduh(base0, limit, chr0);
   306   }
   308   // If strings are equal up to min length, return the length difference.
   309   __ mov(O7, result);
   311   // Otherwise, return the difference between the first mismatched chars.
   312   __ bind(Ldone);
   313 }
   316 // --------------------------------------------------------------------------------------------
   318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   319   if (!GenerateSynchronizationCode) return;
   321   Register obj_reg = obj_opr->as_register();
   322   Register lock_reg = lock_opr->as_register();
   324   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   325   Register reg = mon_addr.base();
   326   int offset = mon_addr.disp();
   327   // compute pointer to BasicLock
   328   if (mon_addr.is_simm13()) {
   329     __ add(reg, offset, lock_reg);
   330   }
   331   else {
   332     __ set(offset, lock_reg);
   333     __ add(reg, lock_reg, lock_reg);
   334   }
   335   // unlock object
   336   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   337   // _slow_case_stubs->append(slow_case);
   338   // temporary fix: must be created after exceptionhandler, therefore as call stub
   339   _slow_case_stubs->append(slow_case);
   340   if (UseFastLocking) {
   341     // try inlined fast unlocking first, revert to slow locking if it fails
   342     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   343     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   344     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   345   } else {
   346     // always do slow unlocking
   347     // note: the slow unlocking code could be inlined here, however if we use
   348     //       slow unlocking, speed doesn't matter anyway and this solution is
   349     //       simpler and requires less duplicated code - additionally, the
   350     //       slow unlocking code is the same in either case which simplifies
   351     //       debugging
   352     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   353     __ delayed()->nop();
   354   }
   355   // done
   356   __ bind(*slow_case->continuation());
   357 }
   360 int LIR_Assembler::emit_exception_handler() {
   361   // if the last instruction is a call (typically to do a throw which
   362   // is coming at the end after block reordering) the return address
   363   // must still point into the code area in order to avoid assertion
   364   // failures when searching for the corresponding bci => add a nop
   365   // (was bug 5/14/1999 - gri)
   366   __ nop();
   368   // generate code for exception handler
   369   ciMethod* method = compilation()->method();
   371   address handler_base = __ start_a_stub(exception_handler_size);
   373   if (handler_base == NULL) {
   374     // not enough space left for the handler
   375     bailout("exception handler overflow");
   376     return -1;
   377   }
   379   int offset = code_offset();
   381   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
   382   __ delayed()->nop();
   383   debug_only(__ stop("should have gone to the caller");)
   384   assert(code_offset() - offset <= exception_handler_size, "overflow");
   385   __ end_a_stub();
   387   return offset;
   388 }
   391 // Emit the code to remove the frame from the stack in the exception
   392 // unwind path.
   393 int LIR_Assembler::emit_unwind_handler() {
   394 #ifndef PRODUCT
   395   if (CommentedAssembly) {
   396     _masm->block_comment("Unwind handler");
   397   }
   398 #endif
   400   int offset = code_offset();
   402   // Fetch the exception from TLS and clear out exception related thread state
   403   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   404   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   405   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   407   __ bind(_unwind_handler_entry);
   408   __ verify_not_null_oop(O0);
   409   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   410     __ mov(O0, I0);  // Preserve the exception
   411   }
   413   // Preform needed unlocking
   414   MonitorExitStub* stub = NULL;
   415   if (method()->is_synchronized()) {
   416     monitor_address(0, FrameMap::I1_opr);
   417     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   418     __ unlock_object(I3, I2, I1, *stub->entry());
   419     __ bind(*stub->continuation());
   420   }
   422   if (compilation()->env()->dtrace_method_probes()) {
   423     __ mov(G2_thread, O0);
   424     jobject2reg(method()->constant_encoding(), O1);
   425     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   426     __ delayed()->nop();
   427   }
   429   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   430     __ mov(I0, O0);  // Restore the exception
   431   }
   433   // dispatch to the unwind logic
   434   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   435   __ delayed()->nop();
   437   // Emit the slow path assembly
   438   if (stub != NULL) {
   439     stub->emit_code(this);
   440   }
   442   return offset;
   443 }
   446 int LIR_Assembler::emit_deopt_handler() {
   447   // if the last instruction is a call (typically to do a throw which
   448   // is coming at the end after block reordering) the return address
   449   // must still point into the code area in order to avoid assertion
   450   // failures when searching for the corresponding bci => add a nop
   451   // (was bug 5/14/1999 - gri)
   452   __ nop();
   454   // generate code for deopt handler
   455   ciMethod* method = compilation()->method();
   456   address handler_base = __ start_a_stub(deopt_handler_size);
   457   if (handler_base == NULL) {
   458     // not enough space left for the handler
   459     bailout("deopt handler overflow");
   460     return -1;
   461   }
   463   int offset = code_offset();
   464   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   465   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   466   __ delayed()->nop();
   467   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   468   debug_only(__ stop("should have gone to the caller");)
   469   __ end_a_stub();
   471   return offset;
   472 }
   475 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   476   if (o == NULL) {
   477     __ set(NULL_WORD, reg);
   478   } else {
   479     int oop_index = __ oop_recorder()->find_index(o);
   480     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   481     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   482   }
   483 }
   486 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   487   // Allocate a new index in oop table to hold the oop once it's been patched
   488   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
   489   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
   491   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   492   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   493   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   494   // NULL will be dynamically patched later and the patched value may be large.  We must
   495   // therefore generate the sethi/add as a placeholders
   496   __ patchable_set(addrlit, reg);
   498   patching_epilog(patch, lir_patch_normal, reg, info);
   499 }
   502 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   503   Register Rdividend = op->in_opr1()->as_register();
   504   Register Rdivisor  = noreg;
   505   Register Rscratch  = op->in_opr3()->as_register();
   506   Register Rresult   = op->result_opr()->as_register();
   507   int divisor = -1;
   509   if (op->in_opr2()->is_register()) {
   510     Rdivisor = op->in_opr2()->as_register();
   511   } else {
   512     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   513     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   514   }
   516   assert(Rdividend != Rscratch, "");
   517   assert(Rdivisor  != Rscratch, "");
   518   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   520   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   521     // convert division by a power of two into some shifts and logical operations
   522     if (op->code() == lir_idiv) {
   523       if (divisor == 2) {
   524         __ srl(Rdividend, 31, Rscratch);
   525       } else {
   526         __ sra(Rdividend, 31, Rscratch);
   527         __ and3(Rscratch, divisor - 1, Rscratch);
   528       }
   529       __ add(Rdividend, Rscratch, Rscratch);
   530       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   531       return;
   532     } else {
   533       if (divisor == 2) {
   534         __ srl(Rdividend, 31, Rscratch);
   535       } else {
   536         __ sra(Rdividend, 31, Rscratch);
   537         __ and3(Rscratch, divisor - 1,Rscratch);
   538       }
   539       __ add(Rdividend, Rscratch, Rscratch);
   540       __ andn(Rscratch, divisor - 1,Rscratch);
   541       __ sub(Rdividend, Rscratch, Rresult);
   542       return;
   543     }
   544   }
   546   __ sra(Rdividend, 31, Rscratch);
   547   __ wry(Rscratch);
   548   if (!VM_Version::v9_instructions_work()) {
   549     // v9 doesn't require these nops
   550     __ nop();
   551     __ nop();
   552     __ nop();
   553     __ nop();
   554   }
   556   add_debug_info_for_div0_here(op->info());
   558   if (Rdivisor != noreg) {
   559     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   560   } else {
   561     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   562     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   563   }
   565   Label skip;
   566   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   567   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   568   __ bind(skip);
   570   if (op->code() == lir_irem) {
   571     if (Rdivisor != noreg) {
   572       __ smul(Rscratch, Rdivisor, Rscratch);
   573     } else {
   574       __ smul(Rscratch, divisor, Rscratch);
   575     }
   576     __ sub(Rdividend, Rscratch, Rresult);
   577   }
   578 }
   581 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   582 #ifdef ASSERT
   583   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   584   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   585   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   586 #endif
   587   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   589   if (op->cond() == lir_cond_always) {
   590     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   591   } else if (op->code() == lir_cond_float_branch) {
   592     assert(op->ublock() != NULL, "must have unordered successor");
   593     bool is_unordered = (op->ublock() == op->block());
   594     Assembler::Condition acond;
   595     switch (op->cond()) {
   596       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   597       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   598       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   599       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   600       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   601       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   602       default :                         ShouldNotReachHere();
   603     };
   605     if (!VM_Version::v9_instructions_work()) {
   606       __ nop();
   607     }
   608     __ fb( acond, false, Assembler::pn, *(op->label()));
   609   } else {
   610     assert (op->code() == lir_branch, "just checking");
   612     Assembler::Condition acond;
   613     switch (op->cond()) {
   614       case lir_cond_equal:        acond = Assembler::equal;                break;
   615       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   616       case lir_cond_less:         acond = Assembler::less;                 break;
   617       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   618       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   619       case lir_cond_greater:      acond = Assembler::greater;              break;
   620       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   621       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   622       default:                         ShouldNotReachHere();
   623     };
   625     // sparc has different condition codes for testing 32-bit
   626     // vs. 64-bit values.  We could always test xcc is we could
   627     // guarantee that 32-bit loads always sign extended but that isn't
   628     // true and since sign extension isn't free, it would impose a
   629     // slight cost.
   630 #ifdef _LP64
   631     if  (op->type() == T_INT) {
   632       __ br(acond, false, Assembler::pn, *(op->label()));
   633     } else
   634 #endif
   635       __ brx(acond, false, Assembler::pn, *(op->label()));
   636   }
   637   // The peephole pass fills the delay slot
   638 }
   641 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   642   Bytecodes::Code code = op->bytecode();
   643   LIR_Opr dst = op->result_opr();
   645   switch(code) {
   646     case Bytecodes::_i2l: {
   647       Register rlo  = dst->as_register_lo();
   648       Register rhi  = dst->as_register_hi();
   649       Register rval = op->in_opr()->as_register();
   650 #ifdef _LP64
   651       __ sra(rval, 0, rlo);
   652 #else
   653       __ mov(rval, rlo);
   654       __ sra(rval, BitsPerInt-1, rhi);
   655 #endif
   656       break;
   657     }
   658     case Bytecodes::_i2d:
   659     case Bytecodes::_i2f: {
   660       bool is_double = (code == Bytecodes::_i2d);
   661       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   662       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   663       FloatRegister rsrc = op->in_opr()->as_float_reg();
   664       if (rsrc != rdst) {
   665         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   666       }
   667       __ fitof(w, rdst, rdst);
   668       break;
   669     }
   670     case Bytecodes::_f2i:{
   671       FloatRegister rsrc = op->in_opr()->as_float_reg();
   672       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   673       Label L;
   674       // result must be 0 if value is NaN; test by comparing value to itself
   675       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   676       if (!VM_Version::v9_instructions_work()) {
   677         __ nop();
   678       }
   679       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   680       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   681       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   682       // move integer result from float register to int register
   683       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   684       __ bind (L);
   685       break;
   686     }
   687     case Bytecodes::_l2i: {
   688       Register rlo  = op->in_opr()->as_register_lo();
   689       Register rhi  = op->in_opr()->as_register_hi();
   690       Register rdst = dst->as_register();
   691 #ifdef _LP64
   692       __ sra(rlo, 0, rdst);
   693 #else
   694       __ mov(rlo, rdst);
   695 #endif
   696       break;
   697     }
   698     case Bytecodes::_d2f:
   699     case Bytecodes::_f2d: {
   700       bool is_double = (code == Bytecodes::_f2d);
   701       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   702       LIR_Opr val = op->in_opr();
   703       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   704       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   705       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   706       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   707       __ ftof(vw, dw, rval, rdst);
   708       break;
   709     }
   710     case Bytecodes::_i2s:
   711     case Bytecodes::_i2b: {
   712       Register rval = op->in_opr()->as_register();
   713       Register rdst = dst->as_register();
   714       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   715       __ sll (rval, shift, rdst);
   716       __ sra (rdst, shift, rdst);
   717       break;
   718     }
   719     case Bytecodes::_i2c: {
   720       Register rval = op->in_opr()->as_register();
   721       Register rdst = dst->as_register();
   722       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   723       __ sll (rval, shift, rdst);
   724       __ srl (rdst, shift, rdst);
   725       break;
   726     }
   728     default: ShouldNotReachHere();
   729   }
   730 }
   733 void LIR_Assembler::align_call(LIR_Code) {
   734   // do nothing since all instructions are word aligned on sparc
   735 }
   738 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   739   __ call(op->addr(), rtype);
   740   // The peephole pass fills the delay slot, add_call_info is done in
   741   // LIR_Assembler::emit_delay.
   742 }
   745 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   746   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   747   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
   748   __ relocate(rspec);
   749   __ call(op->addr(), relocInfo::none);
   750   // The peephole pass fills the delay slot, add_call_info is done in
   751   // LIR_Assembler::emit_delay.
   752 }
   755 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   756   add_debug_info_for_null_check_here(op->info());
   757   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
   758   if (__ is_simm13(op->vtable_offset())) {
   759     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   760   } else {
   761     // This will generate 2 instructions
   762     __ set(op->vtable_offset(), G5_method);
   763     // ld_ptr, set_hi, set
   764     __ ld_ptr(G3_scratch, G5_method, G5_method);
   765   }
   766   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
   767   __ callr(G3_scratch, G0);
   768   // the peephole pass fills the delay slot
   769 }
   772 // load with 32-bit displacement
   773 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
   774   int load_offset = code_offset();
   775   if (Assembler::is_simm13(disp)) {
   776     if (info != NULL) add_debug_info_for_null_check_here(info);
   777     switch(ld_type) {
   778       case T_BOOLEAN: // fall through
   779       case T_BYTE  : __ ldsb(s, disp, d); break;
   780       case T_CHAR  : __ lduh(s, disp, d); break;
   781       case T_SHORT : __ ldsh(s, disp, d); break;
   782       case T_INT   : __ ld(s, disp, d); break;
   783       case T_ADDRESS:// fall through
   784       case T_ARRAY : // fall through
   785       case T_OBJECT: __ ld_ptr(s, disp, d); break;
   786       default      : ShouldNotReachHere();
   787     }
   788   } else {
   789     __ set(disp, O7);
   790     if (info != NULL) add_debug_info_for_null_check_here(info);
   791     load_offset = code_offset();
   792     switch(ld_type) {
   793       case T_BOOLEAN: // fall through
   794       case T_BYTE  : __ ldsb(s, O7, d); break;
   795       case T_CHAR  : __ lduh(s, O7, d); break;
   796       case T_SHORT : __ ldsh(s, O7, d); break;
   797       case T_INT   : __ ld(s, O7, d); break;
   798       case T_ADDRESS:// fall through
   799       case T_ARRAY : // fall through
   800       case T_OBJECT: __ ld_ptr(s, O7, d); break;
   801       default      : ShouldNotReachHere();
   802     }
   803   }
   804   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
   805   return load_offset;
   806 }
   809 // store with 32-bit displacement
   810 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   811   if (Assembler::is_simm13(offset)) {
   812     if (info != NULL)  add_debug_info_for_null_check_here(info);
   813     switch (type) {
   814       case T_BOOLEAN: // fall through
   815       case T_BYTE  : __ stb(value, base, offset); break;
   816       case T_CHAR  : __ sth(value, base, offset); break;
   817       case T_SHORT : __ sth(value, base, offset); break;
   818       case T_INT   : __ stw(value, base, offset); break;
   819       case T_ADDRESS:// fall through
   820       case T_ARRAY : // fall through
   821       case T_OBJECT: __ st_ptr(value, base, offset); break;
   822       default      : ShouldNotReachHere();
   823     }
   824   } else {
   825     __ set(offset, O7);
   826     if (info != NULL) add_debug_info_for_null_check_here(info);
   827     switch (type) {
   828       case T_BOOLEAN: // fall through
   829       case T_BYTE  : __ stb(value, base, O7); break;
   830       case T_CHAR  : __ sth(value, base, O7); break;
   831       case T_SHORT : __ sth(value, base, O7); break;
   832       case T_INT   : __ stw(value, base, O7); break;
   833       case T_ADDRESS:// fall through
   834       case T_ARRAY : //fall through
   835       case T_OBJECT: __ st_ptr(value, base, O7); break;
   836       default      : ShouldNotReachHere();
   837     }
   838   }
   839   // Note: Do the store before verification as the code might be patched!
   840   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
   841 }
   844 // load float with 32-bit displacement
   845 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
   846   FloatRegisterImpl::Width w;
   847   switch(ld_type) {
   848     case T_FLOAT : w = FloatRegisterImpl::S; break;
   849     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   850     default      : ShouldNotReachHere();
   851   }
   853   if (Assembler::is_simm13(disp)) {
   854     if (info != NULL) add_debug_info_for_null_check_here(info);
   855     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
   856       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
   857       __ ldf(FloatRegisterImpl::S, s, disp               , d);
   858     } else {
   859       __ ldf(w, s, disp, d);
   860     }
   861   } else {
   862     __ set(disp, O7);
   863     if (info != NULL) add_debug_info_for_null_check_here(info);
   864     __ ldf(w, s, O7, d);
   865   }
   866 }
   869 // store float with 32-bit displacement
   870 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   871   FloatRegisterImpl::Width w;
   872   switch(type) {
   873     case T_FLOAT : w = FloatRegisterImpl::S; break;
   874     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   875     default      : ShouldNotReachHere();
   876   }
   878   if (Assembler::is_simm13(offset)) {
   879     if (info != NULL) add_debug_info_for_null_check_here(info);
   880     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
   881       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
   882       __ stf(FloatRegisterImpl::S, value             , base, offset);
   883     } else {
   884       __ stf(w, value, base, offset);
   885     }
   886   } else {
   887     __ set(offset, O7);
   888     if (info != NULL) add_debug_info_for_null_check_here(info);
   889     __ stf(w, value, O7, base);
   890   }
   891 }
   894 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
   895   int store_offset;
   896   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   897     assert(!unaligned, "can't handle this");
   898     // for offsets larger than a simm13 we setup the offset in O7
   899     __ set(offset, O7);
   900     store_offset = store(from_reg, base, O7, type);
   901   } else {
   902     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   903     store_offset = code_offset();
   904     switch (type) {
   905       case T_BOOLEAN: // fall through
   906       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   907       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   908       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   909       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   910       case T_LONG  :
   911 #ifdef _LP64
   912         if (unaligned || PatchALot) {
   913           __ srax(from_reg->as_register_lo(), 32, O7);
   914           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   915           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   916         } else {
   917           __ stx(from_reg->as_register_lo(), base, offset);
   918         }
   919 #else
   920         assert(Assembler::is_simm13(offset + 4), "must be");
   921         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   922         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   923 #endif
   924         break;
   925       case T_ADDRESS:// fall through
   926       case T_ARRAY : // fall through
   927       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
   928       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   929       case T_DOUBLE:
   930         {
   931           FloatRegister reg = from_reg->as_double_reg();
   932           // split unaligned stores
   933           if (unaligned || PatchALot) {
   934             assert(Assembler::is_simm13(offset + 4), "must be");
   935             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   936             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   937           } else {
   938             __ stf(FloatRegisterImpl::D, reg, base, offset);
   939           }
   940           break;
   941         }
   942       default      : ShouldNotReachHere();
   943     }
   944   }
   945   return store_offset;
   946 }
   949 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
   950   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   951   int store_offset = code_offset();
   952   switch (type) {
   953     case T_BOOLEAN: // fall through
   954     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   955     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   956     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   957     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   958     case T_LONG  :
   959 #ifdef _LP64
   960       __ stx(from_reg->as_register_lo(), base, disp);
   961 #else
   962       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   963       __ std(from_reg->as_register_hi(), base, disp);
   964 #endif
   965       break;
   966     case T_ADDRESS:// fall through
   967     case T_ARRAY : // fall through
   968     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
   969     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   970     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   971     default      : ShouldNotReachHere();
   972   }
   973   return store_offset;
   974 }
   977 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
   978   int load_offset;
   979   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   980     assert(base != O7, "destroying register");
   981     assert(!unaligned, "can't handle this");
   982     // for offsets larger than a simm13 we setup the offset in O7
   983     __ set(offset, O7);
   984     load_offset = load(base, O7, to_reg, type);
   985   } else {
   986     load_offset = code_offset();
   987     switch(type) {
   988       case T_BOOLEAN: // fall through
   989       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   990       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   991       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   992       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   993       case T_LONG  :
   994         if (!unaligned) {
   995 #ifdef _LP64
   996           __ ldx(base, offset, to_reg->as_register_lo());
   997 #else
   998           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   999                  "must be sequential");
  1000           __ ldd(base, offset, to_reg->as_register_hi());
  1001 #endif
  1002         } else {
  1003 #ifdef _LP64
  1004           assert(base != to_reg->as_register_lo(), "can't handle this");
  1005           assert(O7 != to_reg->as_register_lo(), "can't handle this");
  1006           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
  1007           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
  1008           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
  1009           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
  1010 #else
  1011           if (base == to_reg->as_register_lo()) {
  1012             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
  1013             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
  1014           } else {
  1015             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
  1016             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
  1018 #endif
  1020         break;
  1021       case T_ADDRESS:// fall through
  1022       case T_ARRAY : // fall through
  1023       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
  1024       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
  1025       case T_DOUBLE:
  1027           FloatRegister reg = to_reg->as_double_reg();
  1028           // split unaligned loads
  1029           if (unaligned || PatchALot) {
  1030             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
  1031             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
  1032           } else {
  1033             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
  1035           break;
  1037       default      : ShouldNotReachHere();
  1039     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
  1041   return load_offset;
  1045 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
  1046   int load_offset = code_offset();
  1047   switch(type) {
  1048     case T_BOOLEAN: // fall through
  1049     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
  1050     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
  1051     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
  1052     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
  1053     case T_ADDRESS:// fall through
  1054     case T_ARRAY : // fall through
  1055     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1056     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1057     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1058     case T_LONG  :
  1059 #ifdef _LP64
  1060       __ ldx(base, disp, to_reg->as_register_lo());
  1061 #else
  1062       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1063              "must be sequential");
  1064       __ ldd(base, disp, to_reg->as_register_hi());
  1065 #endif
  1066       break;
  1067     default      : ShouldNotReachHere();
  1069   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
  1070   return load_offset;
  1074 // load/store with an Address
  1075 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
  1076   load(a.base(), a.disp() + offset, d, ld_type, info);
  1080 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1081   store(value, dest.base(), dest.disp() + offset, type, info);
  1085 // loadf/storef with an Address
  1086 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
  1087   load(a.base(), a.disp() + offset, d, ld_type, info);
  1091 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1092   store(value, dest.base(), dest.disp() + offset, type, info);
  1096 // load/store with an Address
  1097 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
  1098   load(as_Address(a), d, ld_type, info);
  1102 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1103   store(value, as_Address(dest), type, info);
  1107 // loadf/storef with an Address
  1108 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
  1109   load(as_Address(a), d, ld_type, info);
  1113 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1114   store(value, as_Address(dest), type, info);
  1118 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1119   LIR_Const* c = src->as_constant_ptr();
  1120   switch (c->type()) {
  1121     case T_INT:
  1122     case T_FLOAT:
  1123     case T_ADDRESS: {
  1124       Register src_reg = O7;
  1125       int value = c->as_jint_bits();
  1126       if (value == 0) {
  1127         src_reg = G0;
  1128       } else {
  1129         __ set(value, O7);
  1131       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1132       __ stw(src_reg, addr.base(), addr.disp());
  1133       break;
  1135     case T_OBJECT: {
  1136       Register src_reg = O7;
  1137       jobject2reg(c->as_jobject(), src_reg);
  1138       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1139       __ st_ptr(src_reg, addr.base(), addr.disp());
  1140       break;
  1142     case T_LONG:
  1143     case T_DOUBLE: {
  1144       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1146       Register tmp = O7;
  1147       int value_lo = c->as_jint_lo_bits();
  1148       if (value_lo == 0) {
  1149         tmp = G0;
  1150       } else {
  1151         __ set(value_lo, O7);
  1153       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1154       int value_hi = c->as_jint_hi_bits();
  1155       if (value_hi == 0) {
  1156         tmp = G0;
  1157       } else {
  1158         __ set(value_hi, O7);
  1160       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1161       break;
  1163     default:
  1164       Unimplemented();
  1169 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
  1170   LIR_Const* c = src->as_constant_ptr();
  1171   LIR_Address* addr     = dest->as_address_ptr();
  1172   Register base = addr->base()->as_pointer_register();
  1174   if (info != NULL) {
  1175     add_debug_info_for_null_check_here(info);
  1177   switch (c->type()) {
  1178     case T_INT:
  1179     case T_FLOAT:
  1180     case T_ADDRESS: {
  1181       LIR_Opr tmp = FrameMap::O7_opr;
  1182       int value = c->as_jint_bits();
  1183       if (value == 0) {
  1184         tmp = FrameMap::G0_opr;
  1185       } else if (Assembler::is_simm13(value)) {
  1186         __ set(value, O7);
  1188       if (addr->index()->is_valid()) {
  1189         assert(addr->disp() == 0, "must be zero");
  1190         store(tmp, base, addr->index()->as_pointer_register(), type);
  1191       } else {
  1192         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1193         store(tmp, base, addr->disp(), type);
  1195       break;
  1197     case T_LONG:
  1198     case T_DOUBLE: {
  1199       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1200       assert(Assembler::is_simm13(addr->disp()) &&
  1201              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1203       Register tmp = O7;
  1204       int value_lo = c->as_jint_lo_bits();
  1205       if (value_lo == 0) {
  1206         tmp = G0;
  1207       } else {
  1208         __ set(value_lo, O7);
  1210       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
  1211       int value_hi = c->as_jint_hi_bits();
  1212       if (value_hi == 0) {
  1213         tmp = G0;
  1214       } else {
  1215         __ set(value_hi, O7);
  1217       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
  1218       break;
  1220     case T_OBJECT: {
  1221       jobject obj = c->as_jobject();
  1222       LIR_Opr tmp;
  1223       if (obj == NULL) {
  1224         tmp = FrameMap::G0_opr;
  1225       } else {
  1226         tmp = FrameMap::O7_opr;
  1227         jobject2reg(c->as_jobject(), O7);
  1229       // handle either reg+reg or reg+disp address
  1230       if (addr->index()->is_valid()) {
  1231         assert(addr->disp() == 0, "must be zero");
  1232         store(tmp, base, addr->index()->as_pointer_register(), type);
  1233       } else {
  1234         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1235         store(tmp, base, addr->disp(), type);
  1238       break;
  1240     default:
  1241       Unimplemented();
  1246 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1247   LIR_Const* c = src->as_constant_ptr();
  1248   LIR_Opr to_reg = dest;
  1250   switch (c->type()) {
  1251     case T_INT:
  1252     case T_ADDRESS:
  1254         jint con = c->as_jint();
  1255         if (to_reg->is_single_cpu()) {
  1256           assert(patch_code == lir_patch_none, "no patching handled here");
  1257           __ set(con, to_reg->as_register());
  1258         } else {
  1259           ShouldNotReachHere();
  1260           assert(to_reg->is_single_fpu(), "wrong register kind");
  1262           __ set(con, O7);
  1263           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1264           __ st(O7, temp_slot);
  1265           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1268       break;
  1270     case T_LONG:
  1272         jlong con = c->as_jlong();
  1274         if (to_reg->is_double_cpu()) {
  1275 #ifdef _LP64
  1276           __ set(con,  to_reg->as_register_lo());
  1277 #else
  1278           __ set(low(con),  to_reg->as_register_lo());
  1279           __ set(high(con), to_reg->as_register_hi());
  1280 #endif
  1281 #ifdef _LP64
  1282         } else if (to_reg->is_single_cpu()) {
  1283           __ set(con, to_reg->as_register());
  1284 #endif
  1285         } else {
  1286           ShouldNotReachHere();
  1287           assert(to_reg->is_double_fpu(), "wrong register kind");
  1288           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1289           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1290           __ set(low(con),  O7);
  1291           __ st(O7, temp_slot_lo);
  1292           __ set(high(con), O7);
  1293           __ st(O7, temp_slot_hi);
  1294           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1297       break;
  1299     case T_OBJECT:
  1301         if (patch_code == lir_patch_none) {
  1302           jobject2reg(c->as_jobject(), to_reg->as_register());
  1303         } else {
  1304           jobject2reg_with_patching(to_reg->as_register(), info);
  1307       break;
  1309     case T_FLOAT:
  1311         address const_addr = __ float_constant(c->as_jfloat());
  1312         if (const_addr == NULL) {
  1313           bailout("const section overflow");
  1314           break;
  1316         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1317         AddressLiteral const_addrlit(const_addr, rspec);
  1318         if (to_reg->is_single_fpu()) {
  1319           __ patchable_sethi(const_addrlit, O7);
  1320           __ relocate(rspec);
  1321           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1323         } else {
  1324           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1326           __ set(const_addrlit, O7);
  1327           load(O7, 0, to_reg->as_register(), T_INT);
  1330       break;
  1332     case T_DOUBLE:
  1334         address const_addr = __ double_constant(c->as_jdouble());
  1335         if (const_addr == NULL) {
  1336           bailout("const section overflow");
  1337           break;
  1339         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1341         if (to_reg->is_double_fpu()) {
  1342           AddressLiteral const_addrlit(const_addr, rspec);
  1343           __ patchable_sethi(const_addrlit, O7);
  1344           __ relocate(rspec);
  1345           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1346         } else {
  1347           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1348 #ifdef _LP64
  1349           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1350 #else
  1351           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1352           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1353 #endif
  1357       break;
  1359     default:
  1360       ShouldNotReachHere();
  1364 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1365   Register reg = addr->base()->as_register();
  1366   return Address(reg, addr->disp());
  1370 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1371   switch (type) {
  1372     case T_INT:
  1373     case T_FLOAT: {
  1374       Register tmp = O7;
  1375       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1376       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1377       __ lduw(from.base(), from.disp(), tmp);
  1378       __ stw(tmp, to.base(), to.disp());
  1379       break;
  1381     case T_OBJECT: {
  1382       Register tmp = O7;
  1383       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1384       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1385       __ ld_ptr(from.base(), from.disp(), tmp);
  1386       __ st_ptr(tmp, to.base(), to.disp());
  1387       break;
  1389     case T_LONG:
  1390     case T_DOUBLE: {
  1391       Register tmp = O7;
  1392       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1393       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1394       __ lduw(from.base(), from.disp(), tmp);
  1395       __ stw(tmp, to.base(), to.disp());
  1396       __ lduw(from.base(), from.disp() + 4, tmp);
  1397       __ stw(tmp, to.base(), to.disp() + 4);
  1398       break;
  1401     default:
  1402       ShouldNotReachHere();
  1407 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1408   Address base = as_Address(addr);
  1409   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1413 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1414   Address base = as_Address(addr);
  1415   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1419 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1420                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
  1422   LIR_Address* addr = src_opr->as_address_ptr();
  1423   LIR_Opr to_reg = dest;
  1425   Register src = addr->base()->as_pointer_register();
  1426   Register disp_reg = noreg;
  1427   int disp_value = addr->disp();
  1428   bool needs_patching = (patch_code != lir_patch_none);
  1430   if (addr->base()->type() == T_OBJECT) {
  1431     __ verify_oop(src);
  1434   PatchingStub* patch = NULL;
  1435   if (needs_patching) {
  1436     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1437     assert(!to_reg->is_double_cpu() ||
  1438            patch_code == lir_patch_none ||
  1439            patch_code == lir_patch_normal, "patching doesn't match register");
  1442   if (addr->index()->is_illegal()) {
  1443     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1444       if (needs_patching) {
  1445         __ patchable_set(0, O7);
  1446       } else {
  1447         __ set(disp_value, O7);
  1449       disp_reg = O7;
  1451   } else if (unaligned || PatchALot) {
  1452     __ add(src, addr->index()->as_register(), O7);
  1453     src = O7;
  1454   } else {
  1455     disp_reg = addr->index()->as_pointer_register();
  1456     assert(disp_value == 0, "can't handle 3 operand addresses");
  1459   // remember the offset of the load.  The patching_epilog must be done
  1460   // before the call to add_debug_info, otherwise the PcDescs don't get
  1461   // entered in increasing order.
  1462   int offset = code_offset();
  1464   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1465   if (disp_reg == noreg) {
  1466     offset = load(src, disp_value, to_reg, type, unaligned);
  1467   } else {
  1468     assert(!unaligned, "can't handle this");
  1469     offset = load(src, disp_reg, to_reg, type);
  1472   if (patch != NULL) {
  1473     patching_epilog(patch, patch_code, src, info);
  1476   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1480 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1481   LIR_Address* addr = src->as_address_ptr();
  1482   Address from_addr = as_Address(addr);
  1484   if (VM_Version::has_v9()) {
  1485     __ prefetch(from_addr, Assembler::severalReads);
  1490 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1491   LIR_Address* addr = src->as_address_ptr();
  1492   Address from_addr = as_Address(addr);
  1494   if (VM_Version::has_v9()) {
  1495     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1500 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1501   Address addr;
  1502   if (src->is_single_word()) {
  1503     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1504   } else if (src->is_double_word())  {
  1505     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1508   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1509   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
  1513 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1514   Address addr;
  1515   if (dest->is_single_word()) {
  1516     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1517   } else if (dest->is_double_word())  {
  1518     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1520   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1521   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
  1525 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1526   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1527     if (from_reg->is_double_fpu()) {
  1528       // double to double moves
  1529       assert(to_reg->is_double_fpu(), "should match");
  1530       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1531     } else {
  1532       // float to float moves
  1533       assert(to_reg->is_single_fpu(), "should match");
  1534       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1536   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1537     if (from_reg->is_double_cpu()) {
  1538 #ifdef _LP64
  1539       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1540 #else
  1541       assert(to_reg->is_double_cpu() &&
  1542              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1543              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1544              "should both be long and not overlap");
  1545       // long to long moves
  1546       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1547       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1548 #endif
  1549 #ifdef _LP64
  1550     } else if (to_reg->is_double_cpu()) {
  1551       // int to int moves
  1552       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1553 #endif
  1554     } else {
  1555       // int to int moves
  1556       __ mov(from_reg->as_register(), to_reg->as_register());
  1558   } else {
  1559     ShouldNotReachHere();
  1561   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1562     __ verify_oop(to_reg->as_register());
  1567 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1568                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1569                             bool unaligned) {
  1570   LIR_Address* addr = dest->as_address_ptr();
  1572   Register src = addr->base()->as_pointer_register();
  1573   Register disp_reg = noreg;
  1574   int disp_value = addr->disp();
  1575   bool needs_patching = (patch_code != lir_patch_none);
  1577   if (addr->base()->is_oop_register()) {
  1578     __ verify_oop(src);
  1581   PatchingStub* patch = NULL;
  1582   if (needs_patching) {
  1583     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1584     assert(!from_reg->is_double_cpu() ||
  1585            patch_code == lir_patch_none ||
  1586            patch_code == lir_patch_normal, "patching doesn't match register");
  1589   if (addr->index()->is_illegal()) {
  1590     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1591       if (needs_patching) {
  1592         __ patchable_set(0, O7);
  1593       } else {
  1594         __ set(disp_value, O7);
  1596       disp_reg = O7;
  1598   } else if (unaligned || PatchALot) {
  1599     __ add(src, addr->index()->as_register(), O7);
  1600     src = O7;
  1601   } else {
  1602     disp_reg = addr->index()->as_pointer_register();
  1603     assert(disp_value == 0, "can't handle 3 operand addresses");
  1606   // remember the offset of the store.  The patching_epilog must be done
  1607   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1608   // entered in increasing order.
  1609   int offset;
  1611   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1612   if (disp_reg == noreg) {
  1613     offset = store(from_reg, src, disp_value, type, unaligned);
  1614   } else {
  1615     assert(!unaligned, "can't handle this");
  1616     offset = store(from_reg, src, disp_reg, type);
  1619   if (patch != NULL) {
  1620     patching_epilog(patch, patch_code, src, info);
  1623   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1627 void LIR_Assembler::return_op(LIR_Opr result) {
  1628   // the poll may need a register so just pick one that isn't the return register
  1629 #if defined(TIERED) && !defined(_LP64)
  1630   if (result->type_field() == LIR_OprDesc::long_type) {
  1631     // Must move the result to G1
  1632     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1633     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1634     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1635     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1636 #ifdef ASSERT
  1637     // mangle it so any problems will show up
  1638     __ set(0xdeadbeef, I0);
  1639     __ set(0xdeadbeef, I1);
  1640 #endif
  1642 #endif // TIERED
  1643   __ set((intptr_t)os::get_polling_page(), L0);
  1644   __ relocate(relocInfo::poll_return_type);
  1645   __ ld_ptr(L0, 0, G0);
  1646   __ ret();
  1647   __ delayed()->restore();
  1651 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1652   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1653   if (info != NULL) {
  1654     add_debug_info_for_branch(info);
  1655   } else {
  1656     __ relocate(relocInfo::poll_type);
  1659   int offset = __ offset();
  1660   __ ld_ptr(tmp->as_register(), 0, G0);
  1662   return offset;
  1666 void LIR_Assembler::emit_static_call_stub() {
  1667   address call_pc = __ pc();
  1668   address stub = __ start_a_stub(call_stub_size);
  1669   if (stub == NULL) {
  1670     bailout("static call stub overflow");
  1671     return;
  1674   int start = __ offset();
  1675   __ relocate(static_stub_Relocation::spec(call_pc));
  1677   __ set_oop(NULL, G5);
  1678   // must be set to -1 at code generation time
  1679   AddressLiteral addrlit(-1);
  1680   __ jump_to(addrlit, G3);
  1681   __ delayed()->nop();
  1683   assert(__ offset() - start <= call_stub_size, "stub too big");
  1684   __ end_a_stub();
  1688 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1689   if (opr1->is_single_fpu()) {
  1690     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1691   } else if (opr1->is_double_fpu()) {
  1692     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1693   } else if (opr1->is_single_cpu()) {
  1694     if (opr2->is_constant()) {
  1695       switch (opr2->as_constant_ptr()->type()) {
  1696         case T_INT:
  1697           { jint con = opr2->as_constant_ptr()->as_jint();
  1698             if (Assembler::is_simm13(con)) {
  1699               __ cmp(opr1->as_register(), con);
  1700             } else {
  1701               __ set(con, O7);
  1702               __ cmp(opr1->as_register(), O7);
  1705           break;
  1707         case T_OBJECT:
  1708           // there are only equal/notequal comparisions on objects
  1709           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1710             if (con == NULL) {
  1711               __ cmp(opr1->as_register(), 0);
  1712             } else {
  1713               jobject2reg(con, O7);
  1714               __ cmp(opr1->as_register(), O7);
  1717           break;
  1719         default:
  1720           ShouldNotReachHere();
  1721           break;
  1723     } else {
  1724       if (opr2->is_address()) {
  1725         LIR_Address * addr = opr2->as_address_ptr();
  1726         BasicType type = addr->type();
  1727         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1728         else                    __ ld(as_Address(addr), O7);
  1729         __ cmp(opr1->as_register(), O7);
  1730       } else {
  1731         __ cmp(opr1->as_register(), opr2->as_register());
  1734   } else if (opr1->is_double_cpu()) {
  1735     Register xlo = opr1->as_register_lo();
  1736     Register xhi = opr1->as_register_hi();
  1737     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1738       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1739 #ifdef _LP64
  1740       __ orcc(xhi, G0, G0);
  1741 #else
  1742       __ orcc(xhi, xlo, G0);
  1743 #endif
  1744     } else if (opr2->is_register()) {
  1745       Register ylo = opr2->as_register_lo();
  1746       Register yhi = opr2->as_register_hi();
  1747 #ifdef _LP64
  1748       __ cmp(xlo, ylo);
  1749 #else
  1750       __ subcc(xlo, ylo, xlo);
  1751       __ subccc(xhi, yhi, xhi);
  1752       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1753         __ orcc(xhi, xlo, G0);
  1755 #endif
  1756     } else {
  1757       ShouldNotReachHere();
  1759   } else if (opr1->is_address()) {
  1760     LIR_Address * addr = opr1->as_address_ptr();
  1761     BasicType type = addr->type();
  1762     assert (opr2->is_constant(), "Checking");
  1763     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1764     else                    __ ld(as_Address(addr), O7);
  1765     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1766   } else {
  1767     ShouldNotReachHere();
  1772 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1773   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1774     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1775     if (left->is_single_fpu()) {
  1776       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1777     } else if (left->is_double_fpu()) {
  1778       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1779     } else {
  1780       ShouldNotReachHere();
  1782   } else if (code == lir_cmp_l2i) {
  1783 #ifdef _LP64
  1784     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1785 #else
  1786     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1787             right->as_register_hi(), right->as_register_lo(),
  1788             dst->as_register());
  1789 #endif
  1790   } else {
  1791     ShouldNotReachHere();
  1796 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1798   Assembler::Condition acond;
  1799   switch (condition) {
  1800     case lir_cond_equal:        acond = Assembler::equal;        break;
  1801     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1802     case lir_cond_less:         acond = Assembler::less;         break;
  1803     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1804     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1805     case lir_cond_greater:      acond = Assembler::greater;      break;
  1806     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1807     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1808     default:                         ShouldNotReachHere();
  1809   };
  1811   if (opr1->is_constant() && opr1->type() == T_INT) {
  1812     Register dest = result->as_register();
  1813     // load up first part of constant before branch
  1814     // and do the rest in the delay slot.
  1815     if (!Assembler::is_simm13(opr1->as_jint())) {
  1816       __ sethi(opr1->as_jint(), dest);
  1818   } else if (opr1->is_constant()) {
  1819     const2reg(opr1, result, lir_patch_none, NULL);
  1820   } else if (opr1->is_register()) {
  1821     reg2reg(opr1, result);
  1822   } else if (opr1->is_stack()) {
  1823     stack2reg(opr1, result, result->type());
  1824   } else {
  1825     ShouldNotReachHere();
  1827   Label skip;
  1828   __ br(acond, false, Assembler::pt, skip);
  1829   if (opr1->is_constant() && opr1->type() == T_INT) {
  1830     Register dest = result->as_register();
  1831     if (Assembler::is_simm13(opr1->as_jint())) {
  1832       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1833     } else {
  1834       // the sethi has been done above, so just put in the low 10 bits
  1835       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1837   } else {
  1838     // can't do anything useful in the delay slot
  1839     __ delayed()->nop();
  1841   if (opr2->is_constant()) {
  1842     const2reg(opr2, result, lir_patch_none, NULL);
  1843   } else if (opr2->is_register()) {
  1844     reg2reg(opr2, result);
  1845   } else if (opr2->is_stack()) {
  1846     stack2reg(opr2, result, result->type());
  1847   } else {
  1848     ShouldNotReachHere();
  1850   __ bind(skip);
  1854 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1855   assert(info == NULL, "unused on this code path");
  1856   assert(left->is_register(), "wrong items state");
  1857   assert(dest->is_register(), "wrong items state");
  1859   if (right->is_register()) {
  1860     if (dest->is_float_kind()) {
  1862       FloatRegister lreg, rreg, res;
  1863       FloatRegisterImpl::Width w;
  1864       if (right->is_single_fpu()) {
  1865         w = FloatRegisterImpl::S;
  1866         lreg = left->as_float_reg();
  1867         rreg = right->as_float_reg();
  1868         res  = dest->as_float_reg();
  1869       } else {
  1870         w = FloatRegisterImpl::D;
  1871         lreg = left->as_double_reg();
  1872         rreg = right->as_double_reg();
  1873         res  = dest->as_double_reg();
  1876       switch (code) {
  1877         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1878         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1879         case lir_mul: // fall through
  1880         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1881         case lir_div: // fall through
  1882         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1883         default: ShouldNotReachHere();
  1886     } else if (dest->is_double_cpu()) {
  1887 #ifdef _LP64
  1888       Register dst_lo = dest->as_register_lo();
  1889       Register op1_lo = left->as_pointer_register();
  1890       Register op2_lo = right->as_pointer_register();
  1892       switch (code) {
  1893         case lir_add:
  1894           __ add(op1_lo, op2_lo, dst_lo);
  1895           break;
  1897         case lir_sub:
  1898           __ sub(op1_lo, op2_lo, dst_lo);
  1899           break;
  1901         default: ShouldNotReachHere();
  1903 #else
  1904       Register op1_lo = left->as_register_lo();
  1905       Register op1_hi = left->as_register_hi();
  1906       Register op2_lo = right->as_register_lo();
  1907       Register op2_hi = right->as_register_hi();
  1908       Register dst_lo = dest->as_register_lo();
  1909       Register dst_hi = dest->as_register_hi();
  1911       switch (code) {
  1912         case lir_add:
  1913           __ addcc(op1_lo, op2_lo, dst_lo);
  1914           __ addc (op1_hi, op2_hi, dst_hi);
  1915           break;
  1917         case lir_sub:
  1918           __ subcc(op1_lo, op2_lo, dst_lo);
  1919           __ subc (op1_hi, op2_hi, dst_hi);
  1920           break;
  1922         default: ShouldNotReachHere();
  1924 #endif
  1925     } else {
  1926       assert (right->is_single_cpu(), "Just Checking");
  1928       Register lreg = left->as_register();
  1929       Register res  = dest->as_register();
  1930       Register rreg = right->as_register();
  1931       switch (code) {
  1932         case lir_add:  __ add  (lreg, rreg, res); break;
  1933         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1934         case lir_mul:  __ mult (lreg, rreg, res); break;
  1935         default: ShouldNotReachHere();
  1938   } else {
  1939     assert (right->is_constant(), "must be constant");
  1941     if (dest->is_single_cpu()) {
  1942       Register lreg = left->as_register();
  1943       Register res  = dest->as_register();
  1944       int    simm13 = right->as_constant_ptr()->as_jint();
  1946       switch (code) {
  1947         case lir_add:  __ add  (lreg, simm13, res); break;
  1948         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1949         case lir_mul:  __ mult (lreg, simm13, res); break;
  1950         default: ShouldNotReachHere();
  1952     } else {
  1953       Register lreg = left->as_pointer_register();
  1954       Register res  = dest->as_register_lo();
  1955       long con = right->as_constant_ptr()->as_jlong();
  1956       assert(Assembler::is_simm13(con), "must be simm13");
  1958       switch (code) {
  1959         case lir_add:  __ add  (lreg, (int)con, res); break;
  1960         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1961         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1962         default: ShouldNotReachHere();
  1969 void LIR_Assembler::fpop() {
  1970   // do nothing
  1974 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1975   switch (code) {
  1976     case lir_sin:
  1977     case lir_tan:
  1978     case lir_cos: {
  1979       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1980       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1981       break;
  1983     case lir_sqrt: {
  1984       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1985       FloatRegister src_reg = value->as_double_reg();
  1986       FloatRegister dst_reg = dest->as_double_reg();
  1987       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1988       break;
  1990     case lir_abs: {
  1991       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1992       FloatRegister src_reg = value->as_double_reg();
  1993       FloatRegister dst_reg = dest->as_double_reg();
  1994       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1995       break;
  1997     default: {
  1998       ShouldNotReachHere();
  1999       break;
  2005 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  2006   if (right->is_constant()) {
  2007     if (dest->is_single_cpu()) {
  2008       int simm13 = right->as_constant_ptr()->as_jint();
  2009       switch (code) {
  2010         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  2011         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  2012         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  2013         default: ShouldNotReachHere();
  2015     } else {
  2016       long c = right->as_constant_ptr()->as_jlong();
  2017       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  2018       int simm13 = (int)c;
  2019       switch (code) {
  2020         case lir_logic_and:
  2021 #ifndef _LP64
  2022           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2023 #endif
  2024           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2025           break;
  2027         case lir_logic_or:
  2028 #ifndef _LP64
  2029           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2030 #endif
  2031           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2032           break;
  2034         case lir_logic_xor:
  2035 #ifndef _LP64
  2036           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2037 #endif
  2038           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2039           break;
  2041         default: ShouldNotReachHere();
  2044   } else {
  2045     assert(right->is_register(), "right should be in register");
  2047     if (dest->is_single_cpu()) {
  2048       switch (code) {
  2049         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2050         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  2051         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2052         default: ShouldNotReachHere();
  2054     } else {
  2055 #ifdef _LP64
  2056       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  2057                                                                         left->as_register_lo();
  2058       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  2059                                                                           right->as_register_lo();
  2061       switch (code) {
  2062         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  2063         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2064         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2065         default: ShouldNotReachHere();
  2067 #else
  2068       switch (code) {
  2069         case lir_logic_and:
  2070           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2071           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2072           break;
  2074         case lir_logic_or:
  2075           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2076           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2077           break;
  2079         case lir_logic_xor:
  2080           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2081           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2082           break;
  2084         default: ShouldNotReachHere();
  2086 #endif
  2092 int LIR_Assembler::shift_amount(BasicType t) {
  2093   int elem_size = type2aelembytes(t);
  2094   switch (elem_size) {
  2095     case 1 : return 0;
  2096     case 2 : return 1;
  2097     case 4 : return 2;
  2098     case 8 : return 3;
  2100   ShouldNotReachHere();
  2101   return -1;
  2105 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2106   assert(exceptionOop->as_register() == Oexception, "should match");
  2107   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2109   info->add_register_oop(exceptionOop);
  2111   // reuse the debug info from the safepoint poll for the throw op itself
  2112   address pc_for_athrow  = __ pc();
  2113   int pc_for_athrow_offset = __ offset();
  2114   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2115   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2116   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2118   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2119   __ delayed()->nop();
  2123 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2124   assert(exceptionOop->as_register() == Oexception, "should match");
  2126   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2127   __ delayed()->nop();
  2131 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2132   Register src = op->src()->as_register();
  2133   Register dst = op->dst()->as_register();
  2134   Register src_pos = op->src_pos()->as_register();
  2135   Register dst_pos = op->dst_pos()->as_register();
  2136   Register length  = op->length()->as_register();
  2137   Register tmp = op->tmp()->as_register();
  2138   Register tmp2 = O7;
  2140   int flags = op->flags();
  2141   ciArrayKlass* default_type = op->expected_type();
  2142   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2143   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2145   // set up the arraycopy stub information
  2146   ArrayCopyStub* stub = op->stub();
  2148   // always do stub if no type information is available.  it's ok if
  2149   // the known type isn't loaded since the code sanity checks
  2150   // in debug mode and the type isn't required when we know the exact type
  2151   // also check that the type is an array type.
  2152   // We also, for now, always call the stub if the barrier set requires a
  2153   // write_ref_pre barrier (which the stub does, but none of the optimized
  2154   // cases currently does).
  2155   if (op->expected_type() == NULL ||
  2156       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
  2157     __ mov(src,     O0);
  2158     __ mov(src_pos, O1);
  2159     __ mov(dst,     O2);
  2160     __ mov(dst_pos, O3);
  2161     __ mov(length,  O4);
  2162     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2164     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
  2165     __ delayed()->nop();
  2166     __ bind(*stub->continuation());
  2167     return;
  2170   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2172   // make sure src and dst are non-null and load array length
  2173   if (flags & LIR_OpArrayCopy::src_null_check) {
  2174     __ tst(src);
  2175     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2176     __ delayed()->nop();
  2179   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2180     __ tst(dst);
  2181     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2182     __ delayed()->nop();
  2185   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2186     // test src_pos register
  2187     __ tst(src_pos);
  2188     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2189     __ delayed()->nop();
  2192   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2193     // test dst_pos register
  2194     __ tst(dst_pos);
  2195     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2196     __ delayed()->nop();
  2199   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2200     // make sure length isn't negative
  2201     __ tst(length);
  2202     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2203     __ delayed()->nop();
  2206   if (flags & LIR_OpArrayCopy::src_range_check) {
  2207     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2208     __ add(length, src_pos, tmp);
  2209     __ cmp(tmp2, tmp);
  2210     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2211     __ delayed()->nop();
  2214   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2215     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2216     __ add(length, dst_pos, tmp);
  2217     __ cmp(tmp2, tmp);
  2218     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2219     __ delayed()->nop();
  2222   if (flags & LIR_OpArrayCopy::type_check) {
  2223     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2224     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2225     __ cmp(tmp, tmp2);
  2226     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2227     __ delayed()->nop();
  2230 #ifdef ASSERT
  2231   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2232     // Sanity check the known type with the incoming class.  For the
  2233     // primitive case the types must match exactly with src.klass and
  2234     // dst.klass each exactly matching the default type.  For the
  2235     // object array case, if no type check is needed then either the
  2236     // dst type is exactly the expected type and the src type is a
  2237     // subtype which we can't check or src is the same array as dst
  2238     // but not necessarily exactly of type default_type.
  2239     Label known_ok, halt;
  2240     jobject2reg(op->expected_type()->constant_encoding(), tmp);
  2241     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2242     if (basic_type != T_OBJECT) {
  2243       __ cmp(tmp, tmp2);
  2244       __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2245       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2246       __ cmp(tmp, tmp2);
  2247       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2248       __ delayed()->nop();
  2249     } else {
  2250       __ cmp(tmp, tmp2);
  2251       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2252       __ delayed()->cmp(src, dst);
  2253       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2254       __ delayed()->nop();
  2256     __ bind(halt);
  2257     __ stop("incorrect type information in arraycopy");
  2258     __ bind(known_ok);
  2260 #endif
  2262   int shift = shift_amount(basic_type);
  2264   Register src_ptr = O0;
  2265   Register dst_ptr = O1;
  2266   Register len     = O2;
  2268   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2269   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
  2270   if (shift == 0) {
  2271     __ add(src_ptr, src_pos, src_ptr);
  2272   } else {
  2273     __ sll(src_pos, shift, tmp);
  2274     __ add(src_ptr, tmp, src_ptr);
  2277   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2278   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
  2279   if (shift == 0) {
  2280     __ add(dst_ptr, dst_pos, dst_ptr);
  2281   } else {
  2282     __ sll(dst_pos, shift, tmp);
  2283     __ add(dst_ptr, tmp, dst_ptr);
  2286   if (basic_type != T_OBJECT) {
  2287     if (shift == 0) {
  2288       __ mov(length, len);
  2289     } else {
  2290       __ sll(length, shift, len);
  2292     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
  2293   } else {
  2294     // oop_arraycopy takes a length in number of elements, so don't scale it.
  2295     __ mov(length, len);
  2296     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
  2299   __ bind(*stub->continuation());
  2303 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2304   if (dest->is_single_cpu()) {
  2305 #ifdef _LP64
  2306     if (left->type() == T_OBJECT) {
  2307       switch (code) {
  2308         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2309         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2310         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2311         default: ShouldNotReachHere();
  2313     } else
  2314 #endif
  2315       switch (code) {
  2316         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2317         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2318         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2319         default: ShouldNotReachHere();
  2321   } else {
  2322 #ifdef _LP64
  2323     switch (code) {
  2324       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2325       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2326       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2327       default: ShouldNotReachHere();
  2329 #else
  2330     switch (code) {
  2331       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2332       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2333       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2334       default: ShouldNotReachHere();
  2336 #endif
  2341 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2342 #ifdef _LP64
  2343   if (left->type() == T_OBJECT) {
  2344     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2345     Register l = left->as_register();
  2346     Register d = dest->as_register_lo();
  2347     switch (code) {
  2348       case lir_shl:  __ sllx  (l, count, d); break;
  2349       case lir_shr:  __ srax  (l, count, d); break;
  2350       case lir_ushr: __ srlx  (l, count, d); break;
  2351       default: ShouldNotReachHere();
  2353     return;
  2355 #endif
  2357   if (dest->is_single_cpu()) {
  2358     count = count & 0x1F; // Java spec
  2359     switch (code) {
  2360       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2361       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2362       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2363       default: ShouldNotReachHere();
  2365   } else if (dest->is_double_cpu()) {
  2366     count = count & 63; // Java spec
  2367     switch (code) {
  2368       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2369       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2370       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2371       default: ShouldNotReachHere();
  2373   } else {
  2374     ShouldNotReachHere();
  2379 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2380   assert(op->tmp1()->as_register()  == G1 &&
  2381          op->tmp2()->as_register()  == G3 &&
  2382          op->tmp3()->as_register()  == G4 &&
  2383          op->obj()->as_register()   == O0 &&
  2384          op->klass()->as_register() == G5, "must be");
  2385   if (op->init_check()) {
  2386     __ ld(op->klass()->as_register(),
  2387           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
  2388           op->tmp1()->as_register());
  2389     add_debug_info_for_null_check_here(op->stub()->info());
  2390     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
  2391     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2392     __ delayed()->nop();
  2394   __ allocate_object(op->obj()->as_register(),
  2395                      op->tmp1()->as_register(),
  2396                      op->tmp2()->as_register(),
  2397                      op->tmp3()->as_register(),
  2398                      op->header_size(),
  2399                      op->object_size(),
  2400                      op->klass()->as_register(),
  2401                      *op->stub()->entry());
  2402   __ bind(*op->stub()->continuation());
  2403   __ verify_oop(op->obj()->as_register());
  2407 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2408   assert(op->tmp1()->as_register()  == G1 &&
  2409          op->tmp2()->as_register()  == G3 &&
  2410          op->tmp3()->as_register()  == G4 &&
  2411          op->tmp4()->as_register()  == O1 &&
  2412          op->klass()->as_register() == G5, "must be");
  2413   if (UseSlowPath ||
  2414       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2415       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2416     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2417     __ delayed()->nop();
  2418   } else {
  2419     __ allocate_array(op->obj()->as_register(),
  2420                       op->len()->as_register(),
  2421                       op->tmp1()->as_register(),
  2422                       op->tmp2()->as_register(),
  2423                       op->tmp3()->as_register(),
  2424                       arrayOopDesc::header_size(op->type()),
  2425                       type2aelembytes(op->type()),
  2426                       op->klass()->as_register(),
  2427                       *op->stub()->entry());
  2429   __ bind(*op->stub()->continuation());
  2433 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
  2434                                         ciMethodData *md, ciProfileData *data,
  2435                                         Register recv, Register tmp1, Label* update_done) {
  2436   uint i;
  2437   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2438     Label next_test;
  2439     // See if the receiver is receiver[n].
  2440     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2441                           mdo_offset_bias);
  2442     __ ld_ptr(receiver_addr, tmp1);
  2443     __ verify_oop(tmp1);
  2444     __ cmp(recv, tmp1);
  2445     __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2446     __ delayed()->nop();
  2447     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2448                       mdo_offset_bias);
  2449     __ ld_ptr(data_addr, tmp1);
  2450     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2451     __ st_ptr(tmp1, data_addr);
  2452     __ ba(false, *update_done);
  2453     __ delayed()->nop();
  2454     __ bind(next_test);
  2457   // Didn't find receiver; find next empty slot and fill it in
  2458   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2459     Label next_test;
  2460     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2461                       mdo_offset_bias);
  2462     load(recv_addr, tmp1, T_OBJECT);
  2463     __ br_notnull(tmp1, false, Assembler::pt, next_test);
  2464     __ delayed()->nop();
  2465     __ st_ptr(recv, recv_addr);
  2466     __ set(DataLayout::counter_increment, tmp1);
  2467     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2468               mdo_offset_bias);
  2469     __ ba(false, *update_done);
  2470     __ delayed()->nop();
  2471     __ bind(next_test);
  2476 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
  2477                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
  2478   md = method->method_data();
  2479   if (md == NULL) {
  2480     bailout("out of memory building methodDataOop");
  2481     return;
  2483   data = md->bci_to_data(bci);
  2484   assert(data != NULL,       "need data for checkcast");
  2485   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  2486   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2487     // The offset is large so bias the mdo by the base of the slot so
  2488     // that the ld can use simm13s to reference the slots of the data
  2489     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2493 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  2494   // we always need a stub for the failure case.
  2495   CodeStub* stub = op->stub();
  2496   Register obj = op->object()->as_register();
  2497   Register k_RInfo = op->tmp1()->as_register();
  2498   Register klass_RInfo = op->tmp2()->as_register();
  2499   Register dst = op->result_opr()->as_register();
  2500   Register Rtmp1 = op->tmp3()->as_register();
  2501   ciKlass* k = op->klass();
  2504   if (obj == k_RInfo) {
  2505     k_RInfo = klass_RInfo;
  2506     klass_RInfo = obj;
  2509   ciMethodData* md;
  2510   ciProfileData* data;
  2511   int mdo_offset_bias = 0;
  2512   if (op->should_profile()) {
  2513     ciMethod* method = op->profiled_method();
  2514     assert(method != NULL, "Should have method");
  2515     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2517     Label not_null;
  2518     __ br_notnull(obj, false, Assembler::pn, not_null);
  2519     __ delayed()->nop();
  2520     Register mdo      = k_RInfo;
  2521     Register data_val = Rtmp1;
  2522     jobject2reg(md->constant_encoding(), mdo);
  2523     if (mdo_offset_bias > 0) {
  2524       __ set(mdo_offset_bias, data_val);
  2525       __ add(mdo, data_val, mdo);
  2527     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2528     __ ldub(flags_addr, data_val);
  2529     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2530     __ stb(data_val, flags_addr);
  2531     __ ba(false, *obj_is_null);
  2532     __ delayed()->nop();
  2533     __ bind(not_null);
  2534   } else {
  2535     __ br_null(obj, false, Assembler::pn, *obj_is_null);
  2536     __ delayed()->nop();
  2539   Label profile_cast_failure, profile_cast_success;
  2540   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  2541   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  2543   // patching may screw with our temporaries on sparc,
  2544   // so let's do it before loading the class
  2545   if (k->is_loaded()) {
  2546     jobject2reg(k->constant_encoding(), k_RInfo);
  2547   } else {
  2548     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2550   assert(obj != k_RInfo, "must be different");
  2552   // get object class
  2553   // not a safepoint as obj null check happens earlier
  2554   load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2555   if (op->fast_check()) {
  2556     assert_different_registers(klass_RInfo, k_RInfo);
  2557     __ cmp(k_RInfo, klass_RInfo);
  2558     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
  2559     __ delayed()->nop();
  2560   } else {
  2561     bool need_slow_path = true;
  2562     if (k->is_loaded()) {
  2563       if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2564         need_slow_path = false;
  2565       // perform the fast part of the checking logic
  2566       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2567                                        (need_slow_path ? success_target : NULL),
  2568                                        failure_target, NULL,
  2569                                        RegisterOrConstant(k->super_check_offset()));
  2570     } else {
  2571       // perform the fast part of the checking logic
  2572       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
  2573                                        failure_target, NULL);
  2575     if (need_slow_path) {
  2576       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2577       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2578       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2579       __ delayed()->nop();
  2580       __ cmp(G3, 0);
  2581       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2582       __ delayed()->nop();
  2583       // Fall through to success case
  2587   if (op->should_profile()) {
  2588     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2589     assert_different_registers(obj, mdo, recv, tmp1);
  2590     __ bind(profile_cast_success);
  2591     jobject2reg(md->constant_encoding(), mdo);
  2592     if (mdo_offset_bias > 0) {
  2593       __ set(mdo_offset_bias, tmp1);
  2594       __ add(mdo, tmp1, mdo);
  2596     load(Address(obj, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
  2597     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
  2598     // Jump over the failure case
  2599     __ ba(false, *success);
  2600     __ delayed()->nop();
  2601     // Cast failure case
  2602     __ bind(profile_cast_failure);
  2603     jobject2reg(md->constant_encoding(), mdo);
  2604     if (mdo_offset_bias > 0) {
  2605       __ set(mdo_offset_bias, tmp1);
  2606       __ add(mdo, tmp1, mdo);
  2608     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2609     __ ld_ptr(data_addr, tmp1);
  2610     __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2611     __ st_ptr(tmp1, data_addr);
  2612     __ ba(false, *failure);
  2613     __ delayed()->nop();
  2615   __ ba(false, *success);
  2616   __ delayed()->nop();
  2619 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2620   LIR_Code code = op->code();
  2621   if (code == lir_store_check) {
  2622     Register value = op->object()->as_register();
  2623     Register array = op->array()->as_register();
  2624     Register k_RInfo = op->tmp1()->as_register();
  2625     Register klass_RInfo = op->tmp2()->as_register();
  2626     Register Rtmp1 = op->tmp3()->as_register();
  2628     __ verify_oop(value);
  2629     CodeStub* stub = op->stub();
  2630     // check if it needs to be profiled
  2631     ciMethodData* md;
  2632     ciProfileData* data;
  2633     int mdo_offset_bias = 0;
  2634     if (op->should_profile()) {
  2635       ciMethod* method = op->profiled_method();
  2636       assert(method != NULL, "Should have method");
  2637       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2639     Label profile_cast_success, profile_cast_failure, done;
  2640     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  2641     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  2643     if (op->should_profile()) {
  2644       Label not_null;
  2645       __ br_notnull(value, false, Assembler::pn, not_null);
  2646       __ delayed()->nop();
  2647       Register mdo      = k_RInfo;
  2648       Register data_val = Rtmp1;
  2649       jobject2reg(md->constant_encoding(), mdo);
  2650       if (mdo_offset_bias > 0) {
  2651         __ set(mdo_offset_bias, data_val);
  2652         __ add(mdo, data_val, mdo);
  2654       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2655       __ ldub(flags_addr, data_val);
  2656       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2657       __ stb(data_val, flags_addr);
  2658       __ ba(false, done);
  2659       __ delayed()->nop();
  2660       __ bind(not_null);
  2661     } else {
  2662       __ br_null(value, false, Assembler::pn, done);
  2663       __ delayed()->nop();
  2665     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
  2666     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2668     // get instance klass
  2669     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
  2670     // perform the fast part of the checking logic
  2671     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
  2673     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2674     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2675     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2676     __ delayed()->nop();
  2677     __ cmp(G3, 0);
  2678     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2679     __ delayed()->nop();
  2680     // fall through to the success case
  2682     if (op->should_profile()) {
  2683       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2684       assert_different_registers(value, mdo, recv, tmp1);
  2685       __ bind(profile_cast_success);
  2686       jobject2reg(md->constant_encoding(), mdo);
  2687       if (mdo_offset_bias > 0) {
  2688         __ set(mdo_offset_bias, tmp1);
  2689         __ add(mdo, tmp1, mdo);
  2691       load(Address(value, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
  2692       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
  2693       __ ba(false, done);
  2694       __ delayed()->nop();
  2695       // Cast failure case
  2696       __ bind(profile_cast_failure);
  2697       jobject2reg(md->constant_encoding(), mdo);
  2698       if (mdo_offset_bias > 0) {
  2699         __ set(mdo_offset_bias, tmp1);
  2700         __ add(mdo, tmp1, mdo);
  2702       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2703       __ ld_ptr(data_addr, tmp1);
  2704       __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2705       __ st_ptr(tmp1, data_addr);
  2706       __ ba(false, *stub->entry());
  2707       __ delayed()->nop();
  2709     __ bind(done);
  2710   } else if (code == lir_checkcast) {
  2711     Register obj = op->object()->as_register();
  2712     Register dst = op->result_opr()->as_register();
  2713     Label success;
  2714     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  2715     __ bind(success);
  2716     __ mov(obj, dst);
  2717   } else if (code == lir_instanceof) {
  2718     Register obj = op->object()->as_register();
  2719     Register dst = op->result_opr()->as_register();
  2720     Label success, failure, done;
  2721     emit_typecheck_helper(op, &success, &failure, &failure);
  2722     __ bind(failure);
  2723     __ set(0, dst);
  2724     __ ba(false, done);
  2725     __ delayed()->nop();
  2726     __ bind(success);
  2727     __ set(1, dst);
  2728     __ bind(done);
  2729   } else {
  2730     ShouldNotReachHere();
  2736 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2737   if (op->code() == lir_cas_long) {
  2738     assert(VM_Version::supports_cx8(), "wrong machine");
  2739     Register addr = op->addr()->as_pointer_register();
  2740     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2741     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2742     Register new_value_lo = op->new_value()->as_register_lo();
  2743     Register new_value_hi = op->new_value()->as_register_hi();
  2744     Register t1 = op->tmp1()->as_register();
  2745     Register t2 = op->tmp2()->as_register();
  2746 #ifdef _LP64
  2747     __ mov(cmp_value_lo, t1);
  2748     __ mov(new_value_lo, t2);
  2749 #else
  2750     // move high and low halves of long values into single registers
  2751     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2752     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2753     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2754     __ sllx(new_value_hi, 32, t2);
  2755     __ srl(new_value_lo, 0, new_value_lo);
  2756     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2757 #endif
  2758     // perform the compare and swap operation
  2759     __ casx(addr, t1, t2);
  2760     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2761     // overwritten with the original value in "addr" and will be equal to t1.
  2762     __ cmp(t1, t2);
  2764   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2765     Register addr = op->addr()->as_pointer_register();
  2766     Register cmp_value = op->cmp_value()->as_register();
  2767     Register new_value = op->new_value()->as_register();
  2768     Register t1 = op->tmp1()->as_register();
  2769     Register t2 = op->tmp2()->as_register();
  2770     __ mov(cmp_value, t1);
  2771     __ mov(new_value, t2);
  2772 #ifdef _LP64
  2773     if (op->code() == lir_cas_obj) {
  2774       __ casx(addr, t1, t2);
  2775     } else
  2776 #endif
  2778         __ cas(addr, t1, t2);
  2780     __ cmp(t1, t2);
  2781   } else {
  2782     Unimplemented();
  2786 void LIR_Assembler::set_24bit_FPU() {
  2787   Unimplemented();
  2791 void LIR_Assembler::reset_FPU() {
  2792   Unimplemented();
  2796 void LIR_Assembler::breakpoint() {
  2797   __ breakpoint_trap();
  2801 void LIR_Assembler::push(LIR_Opr opr) {
  2802   Unimplemented();
  2806 void LIR_Assembler::pop(LIR_Opr opr) {
  2807   Unimplemented();
  2811 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2812   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2813   Register dst = dst_opr->as_register();
  2814   Register reg = mon_addr.base();
  2815   int offset = mon_addr.disp();
  2816   // compute pointer to BasicLock
  2817   if (mon_addr.is_simm13()) {
  2818     __ add(reg, offset, dst);
  2819   } else {
  2820     __ set(offset, dst);
  2821     __ add(dst, reg, dst);
  2826 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2827   Register obj = op->obj_opr()->as_register();
  2828   Register hdr = op->hdr_opr()->as_register();
  2829   Register lock = op->lock_opr()->as_register();
  2831   // obj may not be an oop
  2832   if (op->code() == lir_lock) {
  2833     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2834     if (UseFastLocking) {
  2835       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2836       // add debug info for NullPointerException only if one is possible
  2837       if (op->info() != NULL) {
  2838         add_debug_info_for_null_check_here(op->info());
  2840       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2841     } else {
  2842       // always do slow locking
  2843       // note: the slow locking code could be inlined here, however if we use
  2844       //       slow locking, speed doesn't matter anyway and this solution is
  2845       //       simpler and requires less duplicated code - additionally, the
  2846       //       slow locking code is the same in either case which simplifies
  2847       //       debugging
  2848       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2849       __ delayed()->nop();
  2851   } else {
  2852     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2853     if (UseFastLocking) {
  2854       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2855       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2856     } else {
  2857       // always do slow unlocking
  2858       // note: the slow unlocking code could be inlined here, however if we use
  2859       //       slow unlocking, speed doesn't matter anyway and this solution is
  2860       //       simpler and requires less duplicated code - additionally, the
  2861       //       slow unlocking code is the same in either case which simplifies
  2862       //       debugging
  2863       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2864       __ delayed()->nop();
  2867   __ bind(*op->stub()->continuation());
  2871 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2872   ciMethod* method = op->profiled_method();
  2873   int bci          = op->profiled_bci();
  2875   // Update counter for all call types
  2876   ciMethodData* md = method->method_data();
  2877   if (md == NULL) {
  2878     bailout("out of memory building methodDataOop");
  2879     return;
  2881   ciProfileData* data = md->bci_to_data(bci);
  2882   assert(data->is_CounterData(), "need CounterData for calls");
  2883   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  2884   Register mdo  = op->mdo()->as_register();
  2885 #ifdef _LP64
  2886   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
  2887   Register tmp1 = op->tmp1()->as_register_lo();
  2888 #else
  2889   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  2890   Register tmp1 = op->tmp1()->as_register();
  2891 #endif
  2892   jobject2reg(md->constant_encoding(), mdo);
  2893   int mdo_offset_bias = 0;
  2894   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  2895                             data->size_in_bytes())) {
  2896     // The offset is large so bias the mdo by the base of the slot so
  2897     // that the ld can use simm13s to reference the slots of the data
  2898     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  2899     __ set(mdo_offset_bias, O7);
  2900     __ add(mdo, O7, mdo);
  2903   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2904   Bytecodes::Code bc = method->java_code_at_bci(bci);
  2905   // Perform additional virtual call profiling for invokevirtual and
  2906   // invokeinterface bytecodes
  2907   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  2908       C1ProfileVirtualCalls) {
  2909     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  2910     Register recv = op->recv()->as_register();
  2911     assert_different_registers(mdo, tmp1, recv);
  2912     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  2913     ciKlass* known_klass = op->known_holder();
  2914     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  2915       // We know the type that will be seen at this call site; we can
  2916       // statically update the methodDataOop rather than needing to do
  2917       // dynamic tests on the receiver type
  2919       // NOTE: we should probably put a lock around this search to
  2920       // avoid collisions by concurrent compilations
  2921       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  2922       uint i;
  2923       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2924         ciKlass* receiver = vc_data->receiver(i);
  2925         if (known_klass->equals(receiver)) {
  2926           Address data_addr(mdo, md->byte_offset_of_slot(data,
  2927                                                          VirtualCallData::receiver_count_offset(i)) -
  2928                             mdo_offset_bias);
  2929           __ ld_ptr(data_addr, tmp1);
  2930           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2931           __ st_ptr(tmp1, data_addr);
  2932           return;
  2936       // Receiver type not found in profile data; select an empty slot
  2938       // Note that this is less efficient than it should be because it
  2939       // always does a write to the receiver part of the
  2940       // VirtualCallData rather than just the first time
  2941       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2942         ciKlass* receiver = vc_data->receiver(i);
  2943         if (receiver == NULL) {
  2944           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2945                             mdo_offset_bias);
  2946           jobject2reg(known_klass->constant_encoding(), tmp1);
  2947           __ st_ptr(tmp1, recv_addr);
  2948           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2949                             mdo_offset_bias);
  2950           __ ld_ptr(data_addr, tmp1);
  2951           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2952           __ st_ptr(tmp1, data_addr);
  2953           return;
  2956     } else {
  2957       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
  2958       Label update_done;
  2959       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
  2960       // Receiver did not match any saved receiver and there is no empty row for it.
  2961       // Increment total counter to indicate polymorphic case.
  2962       __ ld_ptr(counter_addr, tmp1);
  2963       __ add(tmp1, DataLayout::counter_increment, tmp1);
  2964       __ st_ptr(tmp1, counter_addr);
  2966       __ bind(update_done);
  2968   } else {
  2969     // Static call
  2970     __ ld_ptr(counter_addr, tmp1);
  2971     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2972     __ st_ptr(tmp1, counter_addr);
  2976 void LIR_Assembler::align_backward_branch_target() {
  2977   __ align(OptoLoopAlignment);
  2981 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  2982   // make sure we are expecting a delay
  2983   // this has the side effect of clearing the delay state
  2984   // so we can use _masm instead of _masm->delayed() to do the
  2985   // code generation.
  2986   __ delayed();
  2988   // make sure we only emit one instruction
  2989   int offset = code_offset();
  2990   op->delay_op()->emit_code(this);
  2991 #ifdef ASSERT
  2992   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  2993     op->delay_op()->print();
  2995   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  2996          "only one instruction can go in a delay slot");
  2997 #endif
  2999   // we may also be emitting the call info for the instruction
  3000   // which we are the delay slot of.
  3001   CodeEmitInfo* call_info = op->call_info();
  3002   if (call_info) {
  3003     add_call_info(code_offset(), call_info);
  3006   if (VerifyStackAtCalls) {
  3007     _masm->sub(FP, SP, O7);
  3008     _masm->cmp(O7, initial_frame_size_in_bytes());
  3009     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  3014 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3015   assert(left->is_register(), "can only handle registers");
  3017   if (left->is_single_cpu()) {
  3018     __ neg(left->as_register(), dest->as_register());
  3019   } else if (left->is_single_fpu()) {
  3020     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  3021   } else if (left->is_double_fpu()) {
  3022     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  3023   } else {
  3024     assert (left->is_double_cpu(), "Must be a long");
  3025     Register Rlow = left->as_register_lo();
  3026     Register Rhi = left->as_register_hi();
  3027 #ifdef _LP64
  3028     __ sub(G0, Rlow, dest->as_register_lo());
  3029 #else
  3030     __ subcc(G0, Rlow, dest->as_register_lo());
  3031     __ subc (G0, Rhi,  dest->as_register_hi());
  3032 #endif
  3037 void LIR_Assembler::fxch(int i) {
  3038   Unimplemented();
  3041 void LIR_Assembler::fld(int i) {
  3042   Unimplemented();
  3045 void LIR_Assembler::ffree(int i) {
  3046   Unimplemented();
  3049 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  3050                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3052   // if tmp is invalid, then the function being called doesn't destroy the thread
  3053   if (tmp->is_valid()) {
  3054     __ save_thread(tmp->as_register());
  3056   __ call(dest, relocInfo::runtime_call_type);
  3057   __ delayed()->nop();
  3058   if (info != NULL) {
  3059     add_call_info_here(info);
  3061   if (tmp->is_valid()) {
  3062     __ restore_thread(tmp->as_register());
  3065 #ifdef ASSERT
  3066   __ verify_thread();
  3067 #endif // ASSERT
  3071 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3072 #ifdef _LP64
  3073   ShouldNotReachHere();
  3074 #endif
  3076   NEEDS_CLEANUP;
  3077   if (type == T_LONG) {
  3078     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3080     // (extended to allow indexed as well as constant displaced for JSR-166)
  3081     Register idx = noreg; // contains either constant offset or index
  3083     int disp = mem_addr->disp();
  3084     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3085       if (!Assembler::is_simm13(disp)) {
  3086         idx = O7;
  3087         __ set(disp, idx);
  3089     } else {
  3090       assert(disp == 0, "not both indexed and disp");
  3091       idx = mem_addr->index()->as_register();
  3094     int null_check_offset = -1;
  3096     Register base = mem_addr->base()->as_register();
  3097     if (src->is_register() && dest->is_address()) {
  3098       // G4 is high half, G5 is low half
  3099       if (VM_Version::v9_instructions_work()) {
  3100         // clear the top bits of G5, and scale up G4
  3101         __ srl (src->as_register_lo(),  0, G5);
  3102         __ sllx(src->as_register_hi(), 32, G4);
  3103         // combine the two halves into the 64 bits of G4
  3104         __ or3(G4, G5, G4);
  3105         null_check_offset = __ offset();
  3106         if (idx == noreg) {
  3107           __ stx(G4, base, disp);
  3108         } else {
  3109           __ stx(G4, base, idx);
  3111       } else {
  3112         __ mov (src->as_register_hi(), G4);
  3113         __ mov (src->as_register_lo(), G5);
  3114         null_check_offset = __ offset();
  3115         if (idx == noreg) {
  3116           __ std(G4, base, disp);
  3117         } else {
  3118           __ std(G4, base, idx);
  3121     } else if (src->is_address() && dest->is_register()) {
  3122       null_check_offset = __ offset();
  3123       if (VM_Version::v9_instructions_work()) {
  3124         if (idx == noreg) {
  3125           __ ldx(base, disp, G5);
  3126         } else {
  3127           __ ldx(base, idx, G5);
  3129         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3130         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3131       } else {
  3132         if (idx == noreg) {
  3133           __ ldd(base, disp, G4);
  3134         } else {
  3135           __ ldd(base, idx, G4);
  3137         // G4 is high half, G5 is low half
  3138         __ mov (G4, dest->as_register_hi());
  3139         __ mov (G5, dest->as_register_lo());
  3141     } else {
  3142       Unimplemented();
  3144     if (info != NULL) {
  3145       add_debug_info_for_null_check(null_check_offset, info);
  3148   } else {
  3149     // use normal move for all other volatiles since they don't need
  3150     // special handling to remain atomic.
  3151     move_op(src, dest, type, lir_patch_none, info, false, false);
  3155 void LIR_Assembler::membar() {
  3156   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3157   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3160 void LIR_Assembler::membar_acquire() {
  3161   // no-op on TSO
  3164 void LIR_Assembler::membar_release() {
  3165   // no-op on TSO
  3168 // Pack two sequential registers containing 32 bit values
  3169 // into a single 64 bit register.
  3170 // src and src->successor() are packed into dst
  3171 // src and dst may be the same register.
  3172 // Note: src is destroyed
  3173 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
  3174   Register rs = src->as_register();
  3175   Register rd = dst->as_register_lo();
  3176   __ sllx(rs, 32, rs);
  3177   __ srl(rs->successor(), 0, rs->successor());
  3178   __ or3(rs, rs->successor(), rd);
  3181 // Unpack a 64 bit value in a register into
  3182 // two sequential registers.
  3183 // src is unpacked into dst and dst->successor()
  3184 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
  3185   Register rs = src->as_register_lo();
  3186   Register rd = dst->as_register_hi();
  3187   assert_different_registers(rs, rd, rd->successor());
  3188   __ srlx(rs, 32, rd);
  3189   __ srl (rs,  0, rd->successor());
  3193 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3194   LIR_Address* addr = addr_opr->as_address_ptr();
  3195   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3197   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
  3201 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3202   assert(result_reg->is_register(), "check");
  3203   __ mov(G2_thread, result_reg->as_register());
  3207 void LIR_Assembler::peephole(LIR_List* lir) {
  3208   LIR_OpList* inst = lir->instructions_list();
  3209   for (int i = 0; i < inst->length(); i++) {
  3210     LIR_Op* op = inst->at(i);
  3211     switch (op->code()) {
  3212       case lir_cond_float_branch:
  3213       case lir_branch: {
  3214         LIR_OpBranch* branch = op->as_OpBranch();
  3215         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3216         LIR_Op* delay_op = NULL;
  3217         // we'd like to be able to pull following instructions into
  3218         // this slot but we don't know enough to do it safely yet so
  3219         // only optimize block to block control flow.
  3220         if (LIRFillDelaySlots && branch->block()) {
  3221           LIR_Op* prev = inst->at(i - 1);
  3222           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3223             // swap previous instruction into delay slot
  3224             inst->at_put(i - 1, op);
  3225             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3226 #ifndef PRODUCT
  3227             if (LIRTracePeephole) {
  3228               tty->print_cr("delayed");
  3229               inst->at(i - 1)->print();
  3230               inst->at(i)->print();
  3231               tty->cr();
  3233 #endif
  3234             continue;
  3238         if (!delay_op) {
  3239           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3241         inst->insert_before(i + 1, delay_op);
  3242         break;
  3244       case lir_static_call:
  3245       case lir_virtual_call:
  3246       case lir_icvirtual_call:
  3247       case lir_optvirtual_call:
  3248       case lir_dynamic_call: {
  3249         LIR_Op* prev = inst->at(i - 1);
  3250         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3251             (op->code() != lir_virtual_call ||
  3252              !prev->result_opr()->is_single_cpu() ||
  3253              prev->result_opr()->as_register() != O0) &&
  3254             LIR_Assembler::is_single_instruction(prev)) {
  3255           // Only moves without info can be put into the delay slot.
  3256           // Also don't allow the setup of the receiver in the delay
  3257           // slot for vtable calls.
  3258           inst->at_put(i - 1, op);
  3259           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3260 #ifndef PRODUCT
  3261           if (LIRTracePeephole) {
  3262             tty->print_cr("delayed");
  3263             inst->at(i - 1)->print();
  3264             inst->at(i)->print();
  3265             tty->cr();
  3267 #endif
  3268         } else {
  3269           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3270           inst->insert_before(i + 1, delay_op);
  3271           i++;
  3274 #if defined(TIERED) && !defined(_LP64)
  3275         // fixup the return value from G1 to O0/O1 for long returns.
  3276         // It's done here instead of in LIRGenerator because there's
  3277         // such a mismatch between the single reg and double reg
  3278         // calling convention.
  3279         LIR_OpJavaCall* callop = op->as_OpJavaCall();
  3280         if (callop->result_opr() == FrameMap::out_long_opr) {
  3281           LIR_OpJavaCall* call;
  3282           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
  3283           for (int a = 0; a < arguments->length(); a++) {
  3284             arguments[a] = callop->arguments()[a];
  3286           if (op->code() == lir_virtual_call) {
  3287             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3288                                       callop->vtable_offset(), arguments, callop->info());
  3289           } else {
  3290             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3291                                       callop->addr(), arguments, callop->info());
  3293           inst->at_put(i - 1, call);
  3294           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
  3295                                                  T_LONG, lir_patch_none, NULL));
  3297 #endif
  3298         break;
  3307 #undef __

mercurial