src/share/vm/utilities/growableArray.hpp

Thu, 27 Jan 2011 16:11:27 -0800

author
coleenp
date
Thu, 27 Jan 2011 16:11:27 -0800
changeset 2497
3582bf76420e
parent 2314
f95d63e2154a
child 3138
f6f3bb0ee072
permissions
-rw-r--r--

6990754: Use native memory and reference counting to implement SymbolTable
Summary: move symbols from permgen into C heap and reference count them
Reviewed-by: never, acorn, jmasa, stefank

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
    26 #define SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "utilities/debug.hpp"
    31 #include "utilities/globalDefinitions.hpp"
    32 #include "utilities/top.hpp"
    34 // A growable array.
    36 /*************************************************************************/
    37 /*                                                                       */
    38 /*     WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING   */
    39 /*                                                                       */
    40 /* Should you use GrowableArrays to contain handles you must be certain  */
    41 /* the the GrowableArray does not outlive the HandleMark that contains   */
    42 /* the handles. Since GrowableArrays are typically resource allocated    */
    43 /* the following is an example of INCORRECT CODE,                        */
    44 /*                                                                       */
    45 /* ResourceMark rm;                                                      */
    46 /* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size);         */
    47 /* if (blah) {                                                           */
    48 /*    while (...) {                                                      */
    49 /*      HandleMark hm;                                                   */
    50 /*      ...                                                              */
    51 /*      Handle h(THREAD, some_oop);                                      */
    52 /*      arr->append(h);                                                  */
    53 /*    }                                                                  */
    54 /* }                                                                     */
    55 /* if (arr->length() != 0 ) {                                            */
    56 /*    oop bad_oop = arr->at(0)(); // Handle is BAD HERE.                 */
    57 /*    ...                                                                */
    58 /* }                                                                     */
    59 /*                                                                       */
    60 /* If the GrowableArrays you are creating is C_Heap allocated then it    */
    61 /* hould not old handles since the handles could trivially try and       */
    62 /* outlive their HandleMark. In some situations you might need to do     */
    63 /* this and it would be legal but be very careful and see if you can do  */
    64 /* the code in some other manner.                                        */
    65 /*                                                                       */
    66 /*************************************************************************/
    68 // To call default constructor the placement operator new() is used.
    69 // It should be empty (it only returns the passed void* pointer).
    70 // The definition of placement operator new(size_t, void*) in the <new>.
    72 #include <new>
    74 // Need the correct linkage to call qsort without warnings
    75 extern "C" {
    76   typedef int (*_sort_Fn)(const void *, const void *);
    77 }
    79 class GenericGrowableArray : public ResourceObj {
    80  protected:
    81   int    _len;          // current length
    82   int    _max;          // maximum length
    83   Arena* _arena;        // Indicates where allocation occurs:
    84                         //   0 means default ResourceArea
    85                         //   1 means on C heap
    86                         //   otherwise, allocate in _arena
    87 #ifdef ASSERT
    88   int    _nesting;      // resource area nesting at creation
    89   void   set_nesting();
    90   void   check_nesting();
    91 #else
    92 #define  set_nesting();
    93 #define  check_nesting();
    94 #endif
    96   // Where are we going to allocate memory?
    97   bool on_C_heap() { return _arena == (Arena*)1; }
    98   bool on_stack () { return _arena == NULL;      }
    99   bool on_arena () { return _arena >  (Arena*)1;  }
   101   // This GA will use the resource stack for storage if c_heap==false,
   102   // Else it will use the C heap.  Use clear_and_deallocate to avoid leaks.
   103   GenericGrowableArray(int initial_size, int initial_len, bool c_heap) {
   104     _len = initial_len;
   105     _max = initial_size;
   106     assert(_len >= 0 && _len <= _max, "initial_len too big");
   107     _arena = (c_heap ? (Arena*)1 : NULL);
   108     set_nesting();
   109     assert(!on_C_heap() || allocated_on_C_heap(), "growable array must be on C heap if elements are");
   110     assert(!on_stack() ||
   111            (allocated_on_res_area() || allocated_on_stack()),
   112            "growable array must be on stack if elements are not on arena and not on C heap");
   113   }
   115   // This GA will use the given arena for storage.
   116   // Consider using new(arena) GrowableArray<T> to allocate the header.
   117   GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
   118     _len = initial_len;
   119     _max = initial_size;
   120     assert(_len >= 0 && _len <= _max, "initial_len too big");
   121     _arena = arena;
   122     assert(on_arena(), "arena has taken on reserved value 0 or 1");
   123     // Relax next assert to allow object allocation on resource area,
   124     // on stack or embedded into an other object.
   125     assert(allocated_on_arena() || allocated_on_stack(),
   126            "growable array must be on arena or on stack if elements are on arena");
   127   }
   129   void* raw_allocate(int elementSize);
   131   // some uses pass the Thread explicitly for speed (4990299 tuning)
   132   void* raw_allocate(Thread* thread, int elementSize) {
   133     assert(on_stack(), "fast ResourceObj path only");
   134     return (void*)resource_allocate_bytes(thread, elementSize * _max);
   135   }
   136 };
   138 template<class E> class GrowableArray : public GenericGrowableArray {
   139  private:
   140   E*     _data;         // data array
   142   void grow(int j);
   143   void raw_at_put_grow(int i, const E& p, const E& fill);
   144   void  clear_and_deallocate();
   145  public:
   146   GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) {
   147     _data = (E*)raw_allocate(thread, sizeof(E));
   148     for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
   149   }
   151   GrowableArray(int initial_size, bool C_heap = false) : GenericGrowableArray(initial_size, 0, C_heap) {
   152     _data = (E*)raw_allocate(sizeof(E));
   153     for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
   154   }
   156   GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false) : GenericGrowableArray(initial_size, initial_len, C_heap) {
   157     _data = (E*)raw_allocate(sizeof(E));
   158     int i = 0;
   159     for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
   160     for (; i < _max; i++) ::new ((void*)&_data[i]) E();
   161   }
   163   GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
   164     _data = (E*)raw_allocate(sizeof(E));
   165     int i = 0;
   166     for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
   167     for (; i < _max; i++) ::new ((void*)&_data[i]) E();
   168   }
   170   GrowableArray() : GenericGrowableArray(2, 0, false) {
   171     _data = (E*)raw_allocate(sizeof(E));
   172     ::new ((void*)&_data[0]) E();
   173     ::new ((void*)&_data[1]) E();
   174   }
   176                                 // Does nothing for resource and arena objects
   177   ~GrowableArray()              { if (on_C_heap()) clear_and_deallocate(); }
   179   void  clear()                 { _len = 0; }
   180   int   length() const          { return _len; }
   181   void  trunc_to(int l)         { assert(l <= _len,"cannot increase length"); _len = l; }
   182   bool  is_empty() const        { return _len == 0; }
   183   bool  is_nonempty() const     { return _len != 0; }
   184   bool  is_full() const         { return _len == _max; }
   185   DEBUG_ONLY(E* data_addr() const      { return _data; })
   187   void print();
   189   int append(const E& elem) {
   190     check_nesting();
   191     if (_len == _max) grow(_len);
   192     int idx = _len++;
   193     _data[idx] = elem;
   194     return idx;
   195   }
   197   void append_if_missing(const E& elem) {
   198     if (!contains(elem)) append(elem);
   199   }
   201   E at(int i) const {
   202     assert(0 <= i && i < _len, "illegal index");
   203     return _data[i];
   204   }
   206   E* adr_at(int i) const {
   207     assert(0 <= i && i < _len, "illegal index");
   208     return &_data[i];
   209   }
   211   E first() const {
   212     assert(_len > 0, "empty list");
   213     return _data[0];
   214   }
   216   E top() const {
   217     assert(_len > 0, "empty list");
   218     return _data[_len-1];
   219   }
   221   void push(const E& elem) { append(elem); }
   223   E pop() {
   224     assert(_len > 0, "empty list");
   225     return _data[--_len];
   226   }
   228   void at_put(int i, const E& elem) {
   229     assert(0 <= i && i < _len, "illegal index");
   230     _data[i] = elem;
   231   }
   233   E at_grow(int i, const E& fill = E()) {
   234     assert(0 <= i, "negative index");
   235     check_nesting();
   236     if (i >= _len) {
   237       if (i >= _max) grow(i);
   238       for (int j = _len; j <= i; j++)
   239         _data[j] = fill;
   240       _len = i+1;
   241     }
   242     return _data[i];
   243   }
   245   void at_put_grow(int i, const E& elem, const E& fill = E()) {
   246     assert(0 <= i, "negative index");
   247     check_nesting();
   248     raw_at_put_grow(i, elem, fill);
   249   }
   251   bool contains(const E& elem) const {
   252     for (int i = 0; i < _len; i++) {
   253       if (_data[i] == elem) return true;
   254     }
   255     return false;
   256   }
   258   int  find(const E& elem) const {
   259     for (int i = 0; i < _len; i++) {
   260       if (_data[i] == elem) return i;
   261     }
   262     return -1;
   263   }
   265   int  find(void* token, bool f(void*, E)) const {
   266     for (int i = 0; i < _len; i++) {
   267       if (f(token, _data[i])) return i;
   268     }
   269     return -1;
   270   }
   272   int  find_at_end(void* token, bool f(void*, E)) const {
   273     // start at the end of the array
   274     for (int i = _len-1; i >= 0; i--) {
   275       if (f(token, _data[i])) return i;
   276     }
   277     return -1;
   278   }
   280   void remove(const E& elem) {
   281     for (int i = 0; i < _len; i++) {
   282       if (_data[i] == elem) {
   283         for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
   284         _len--;
   285         return;
   286       }
   287     }
   288     ShouldNotReachHere();
   289   }
   291   void remove_at(int index) {
   292     assert(0 <= index && index < _len, "illegal index");
   293     for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
   294     _len--;
   295   }
   297   // inserts the given element before the element at index i
   298   void insert_before(const int idx, const E& elem) {
   299     check_nesting();
   300     if (_len == _max) grow(_len);
   301     for (int j = _len - 1; j >= idx; j--) {
   302       _data[j + 1] = _data[j];
   303     }
   304     _len++;
   305     _data[idx] = elem;
   306   }
   308   void appendAll(const GrowableArray<E>* l) {
   309     for (int i = 0; i < l->_len; i++) {
   310       raw_at_put_grow(_len, l->_data[i], 0);
   311     }
   312   }
   314   void sort(int f(E*,E*)) {
   315     qsort(_data, length(), sizeof(E), (_sort_Fn)f);
   316   }
   317   // sort by fixed-stride sub arrays:
   318   void sort(int f(E*,E*), int stride) {
   319     qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
   320   }
   321 };
   323 // Global GrowableArray methods (one instance in the library per each 'E' type).
   325 template<class E> void GrowableArray<E>::grow(int j) {
   326     // grow the array by doubling its size (amortized growth)
   327     int old_max = _max;
   328     if (_max == 0) _max = 1; // prevent endless loop
   329     while (j >= _max) _max = _max*2;
   330     // j < _max
   331     E* newData = (E*)raw_allocate(sizeof(E));
   332     int i = 0;
   333     for (     ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
   334     for (     ; i < _max; i++) ::new ((void*)&newData[i]) E();
   335     for (i = 0; i < old_max; i++) _data[i].~E();
   336     if (on_C_heap() && _data != NULL) {
   337       FreeHeap(_data);
   338     }
   339     _data = newData;
   340 }
   342 template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
   343     if (i >= _len) {
   344       if (i >= _max) grow(i);
   345       for (int j = _len; j < i; j++)
   346         _data[j] = fill;
   347       _len = i+1;
   348     }
   349     _data[i] = p;
   350 }
   352 // This function clears and deallocate the data in the growable array that
   353 // has been allocated on the C heap.  It's not public - called by the
   354 // destructor.
   355 template<class E> void GrowableArray<E>::clear_and_deallocate() {
   356     assert(on_C_heap(),
   357            "clear_and_deallocate should only be called when on C heap");
   358     clear();
   359     if (_data != NULL) {
   360       for (int i = 0; i < _max; i++) _data[i].~E();
   361       FreeHeap(_data);
   362       _data = NULL;
   363     }
   364 }
   366 template<class E> void GrowableArray<E>::print() {
   367     tty->print("Growable Array " INTPTR_FORMAT, this);
   368     tty->print(": length %ld (_max %ld) { ", _len, _max);
   369     for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
   370     tty->print("}\n");
   371 }
   373 #endif // SHARE_VM_UTILITIES_GROWABLEARRAY_HPP

mercurial