src/cpu/x86/vm/assembler_x86.hpp

Mon, 09 Mar 2009 03:17:11 -0700

author
twisti
date
Mon, 09 Mar 2009 03:17:11 -0700
changeset 1059
337400e7a5dd
parent 1058
9adddb8c0fc8
child 1077
660978a2a31a
permissions
-rw-r--r--

6797305: Add LoadUB and LoadUI opcode class
Summary: Add a LoadUB (unsigned byte) and LoadUI (unsigned int) opcode class so we have these load optimizations in the first place and do not need to handle them in the matcher.
Reviewed-by: never, kvn

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class BiasedLockingCounters;
    27 // Contains all the definitions needed for x86 assembly code generation.
    29 // Calling convention
    30 class Argument VALUE_OBJ_CLASS_SPEC {
    31  public:
    32   enum {
    33 #ifdef _LP64
    34 #ifdef _WIN64
    35     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    36     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
    37 #else
    38     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    39     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
    40 #endif // _WIN64
    41     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    42     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
    43 #else
    44     n_register_parameters = 0   // 0 registers used to pass arguments
    45 #endif // _LP64
    46   };
    47 };
    50 #ifdef _LP64
    51 // Symbolically name the register arguments used by the c calling convention.
    52 // Windows is different from linux/solaris. So much for standards...
    54 #ifdef _WIN64
    56 REGISTER_DECLARATION(Register, c_rarg0, rcx);
    57 REGISTER_DECLARATION(Register, c_rarg1, rdx);
    58 REGISTER_DECLARATION(Register, c_rarg2, r8);
    59 REGISTER_DECLARATION(Register, c_rarg3, r9);
    61 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    62 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    63 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    64 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    66 #else
    68 REGISTER_DECLARATION(Register, c_rarg0, rdi);
    69 REGISTER_DECLARATION(Register, c_rarg1, rsi);
    70 REGISTER_DECLARATION(Register, c_rarg2, rdx);
    71 REGISTER_DECLARATION(Register, c_rarg3, rcx);
    72 REGISTER_DECLARATION(Register, c_rarg4, r8);
    73 REGISTER_DECLARATION(Register, c_rarg5, r9);
    75 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    76 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    77 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    78 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    79 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
    80 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
    81 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
    82 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
    84 #endif // _WIN64
    86 // Symbolically name the register arguments used by the Java calling convention.
    87 // We have control over the convention for java so we can do what we please.
    88 // What pleases us is to offset the java calling convention so that when
    89 // we call a suitable jni method the arguments are lined up and we don't
    90 // have to do little shuffling. A suitable jni method is non-static and a
    91 // small number of arguments (two fewer args on windows)
    92 //
    93 //        |-------------------------------------------------------|
    94 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
    95 //        |-------------------------------------------------------|
    96 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
    97 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
    98 //        |-------------------------------------------------------|
    99 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
   100 //        |-------------------------------------------------------|
   102 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
   103 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
   104 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
   105 // Windows runs out of register args here
   106 #ifdef _WIN64
   107 REGISTER_DECLARATION(Register, j_rarg3, rdi);
   108 REGISTER_DECLARATION(Register, j_rarg4, rsi);
   109 #else
   110 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
   111 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
   112 #endif /* _WIN64 */
   113 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
   115 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
   116 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
   117 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
   118 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
   119 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
   120 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
   121 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
   122 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
   124 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
   125 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
   127 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
   128 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
   130 #else
   131 // rscratch1 will apear in 32bit code that is dead but of course must compile
   132 // Using noreg ensures if the dead code is incorrectly live and executed it
   133 // will cause an assertion failure
   134 #define rscratch1 noreg
   136 #endif // _LP64
   138 // Address is an abstraction used to represent a memory location
   139 // using any of the amd64 addressing modes with one object.
   140 //
   141 // Note: A register location is represented via a Register, not
   142 //       via an address for efficiency & simplicity reasons.
   144 class ArrayAddress;
   146 class Address VALUE_OBJ_CLASS_SPEC {
   147  public:
   148   enum ScaleFactor {
   149     no_scale = -1,
   150     times_1  =  0,
   151     times_2  =  1,
   152     times_4  =  2,
   153     times_8  =  3,
   154     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
   155   };
   156   static ScaleFactor times(int size) {
   157     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
   158     if (size == 8)  return times_8;
   159     if (size == 4)  return times_4;
   160     if (size == 2)  return times_2;
   161     return times_1;
   162   }
   163   static int scale_size(ScaleFactor scale) {
   164     assert(scale != no_scale, "");
   165     assert(((1 << (int)times_1) == 1 &&
   166             (1 << (int)times_2) == 2 &&
   167             (1 << (int)times_4) == 4 &&
   168             (1 << (int)times_8) == 8), "");
   169     return (1 << (int)scale);
   170   }
   172  private:
   173   Register         _base;
   174   Register         _index;
   175   ScaleFactor      _scale;
   176   int              _disp;
   177   RelocationHolder _rspec;
   179   // Easily misused constructors make them private
   180   // %%% can we make these go away?
   181   NOT_LP64(Address(address loc, RelocationHolder spec);)
   182   Address(int disp, address loc, relocInfo::relocType rtype);
   183   Address(int disp, address loc, RelocationHolder spec);
   185  public:
   187  int disp() { return _disp; }
   188   // creation
   189   Address()
   190     : _base(noreg),
   191       _index(noreg),
   192       _scale(no_scale),
   193       _disp(0) {
   194   }
   196   // No default displacement otherwise Register can be implicitly
   197   // converted to 0(Register) which is quite a different animal.
   199   Address(Register base, int disp)
   200     : _base(base),
   201       _index(noreg),
   202       _scale(no_scale),
   203       _disp(disp) {
   204   }
   206   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
   207     : _base (base),
   208       _index(index),
   209       _scale(scale),
   210       _disp (disp) {
   211     assert(!index->is_valid() == (scale == Address::no_scale),
   212            "inconsistent address");
   213   }
   215   Address(Register base, RegisterConstant index, ScaleFactor scale = times_1, int disp = 0)
   216     : _base (base),
   217       _index(index.register_or_noreg()),
   218       _scale(scale),
   219       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
   220     if (!index.is_register())  scale = Address::no_scale;
   221     assert(!_index->is_valid() == (scale == Address::no_scale),
   222            "inconsistent address");
   223   }
   225   Address plus_disp(int disp) const {
   226     Address a = (*this);
   227     a._disp += disp;
   228     return a;
   229   }
   231   // The following two overloads are used in connection with the
   232   // ByteSize type (see sizes.hpp).  They simplify the use of
   233   // ByteSize'd arguments in assembly code. Note that their equivalent
   234   // for the optimized build are the member functions with int disp
   235   // argument since ByteSize is mapped to an int type in that case.
   236   //
   237   // Note: DO NOT introduce similar overloaded functions for WordSize
   238   // arguments as in the optimized mode, both ByteSize and WordSize
   239   // are mapped to the same type and thus the compiler cannot make a
   240   // distinction anymore (=> compiler errors).
   242 #ifdef ASSERT
   243   Address(Register base, ByteSize disp)
   244     : _base(base),
   245       _index(noreg),
   246       _scale(no_scale),
   247       _disp(in_bytes(disp)) {
   248   }
   250   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
   251     : _base(base),
   252       _index(index),
   253       _scale(scale),
   254       _disp(in_bytes(disp)) {
   255     assert(!index->is_valid() == (scale == Address::no_scale),
   256            "inconsistent address");
   257   }
   259   Address(Register base, RegisterConstant index, ScaleFactor scale, ByteSize disp)
   260     : _base (base),
   261       _index(index.register_or_noreg()),
   262       _scale(scale),
   263       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
   264     if (!index.is_register())  scale = Address::no_scale;
   265     assert(!_index->is_valid() == (scale == Address::no_scale),
   266            "inconsistent address");
   267   }
   269 #endif // ASSERT
   271   // accessors
   272   bool        uses(Register reg) const { return _base == reg || _index == reg; }
   273   Register    base()             const { return _base;  }
   274   Register    index()            const { return _index; }
   275   ScaleFactor scale()            const { return _scale; }
   276   int         disp()             const { return _disp;  }
   278   // Convert the raw encoding form into the form expected by the constructor for
   279   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   280   // that to noreg for the Address constructor.
   281   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
   283   static Address make_array(ArrayAddress);
   285  private:
   286   bool base_needs_rex() const {
   287     return _base != noreg && _base->encoding() >= 8;
   288   }
   290   bool index_needs_rex() const {
   291     return _index != noreg &&_index->encoding() >= 8;
   292   }
   294   relocInfo::relocType reloc() const { return _rspec.type(); }
   296   friend class Assembler;
   297   friend class MacroAssembler;
   298   friend class LIR_Assembler; // base/index/scale/disp
   299 };
   301 //
   302 // AddressLiteral has been split out from Address because operands of this type
   303 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
   304 // the few instructions that need to deal with address literals are unique and the
   305 // MacroAssembler does not have to implement every instruction in the Assembler
   306 // in order to search for address literals that may need special handling depending
   307 // on the instruction and the platform. As small step on the way to merging i486/amd64
   308 // directories.
   309 //
   310 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   311   friend class ArrayAddress;
   312   RelocationHolder _rspec;
   313   // Typically we use AddressLiterals we want to use their rval
   314   // However in some situations we want the lval (effect address) of the item.
   315   // We provide a special factory for making those lvals.
   316   bool _is_lval;
   318   // If the target is far we'll need to load the ea of this to
   319   // a register to reach it. Otherwise if near we can do rip
   320   // relative addressing.
   322   address          _target;
   324  protected:
   325   // creation
   326   AddressLiteral()
   327     : _is_lval(false),
   328       _target(NULL)
   329   {}
   331   public:
   334   AddressLiteral(address target, relocInfo::relocType rtype);
   336   AddressLiteral(address target, RelocationHolder const& rspec)
   337     : _rspec(rspec),
   338       _is_lval(false),
   339       _target(target)
   340   {}
   342   AddressLiteral addr() {
   343     AddressLiteral ret = *this;
   344     ret._is_lval = true;
   345     return ret;
   346   }
   349  private:
   351   address target() { return _target; }
   352   bool is_lval() { return _is_lval; }
   354   relocInfo::relocType reloc() const { return _rspec.type(); }
   355   const RelocationHolder& rspec() const { return _rspec; }
   357   friend class Assembler;
   358   friend class MacroAssembler;
   359   friend class Address;
   360   friend class LIR_Assembler;
   361 };
   363 // Convience classes
   364 class RuntimeAddress: public AddressLiteral {
   366   public:
   368   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
   370 };
   372 class OopAddress: public AddressLiteral {
   374   public:
   376   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
   378 };
   380 class ExternalAddress: public AddressLiteral {
   382   public:
   384   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
   386 };
   388 class InternalAddress: public AddressLiteral {
   390   public:
   392   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
   394 };
   396 // x86 can do array addressing as a single operation since disp can be an absolute
   397 // address amd64 can't. We create a class that expresses the concept but does extra
   398 // magic on amd64 to get the final result
   400 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
   401   private:
   403   AddressLiteral _base;
   404   Address        _index;
   406   public:
   408   ArrayAddress() {};
   409   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
   410   AddressLiteral base() { return _base; }
   411   Address index() { return _index; }
   413 };
   415 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
   417 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
   418 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
   419 // is what you get. The Assembler is generating code into a CodeBuffer.
   421 class Assembler : public AbstractAssembler  {
   422   friend class AbstractAssembler; // for the non-virtual hack
   423   friend class LIR_Assembler; // as_Address()
   424   friend class StubGenerator;
   426  public:
   427   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
   428     zero          = 0x4,
   429     notZero       = 0x5,
   430     equal         = 0x4,
   431     notEqual      = 0x5,
   432     less          = 0xc,
   433     lessEqual     = 0xe,
   434     greater       = 0xf,
   435     greaterEqual  = 0xd,
   436     below         = 0x2,
   437     belowEqual    = 0x6,
   438     above         = 0x7,
   439     aboveEqual    = 0x3,
   440     overflow      = 0x0,
   441     noOverflow    = 0x1,
   442     carrySet      = 0x2,
   443     carryClear    = 0x3,
   444     negative      = 0x8,
   445     positive      = 0x9,
   446     parity        = 0xa,
   447     noParity      = 0xb
   448   };
   450   enum Prefix {
   451     // segment overrides
   452     CS_segment = 0x2e,
   453     SS_segment = 0x36,
   454     DS_segment = 0x3e,
   455     ES_segment = 0x26,
   456     FS_segment = 0x64,
   457     GS_segment = 0x65,
   459     REX        = 0x40,
   461     REX_B      = 0x41,
   462     REX_X      = 0x42,
   463     REX_XB     = 0x43,
   464     REX_R      = 0x44,
   465     REX_RB     = 0x45,
   466     REX_RX     = 0x46,
   467     REX_RXB    = 0x47,
   469     REX_W      = 0x48,
   471     REX_WB     = 0x49,
   472     REX_WX     = 0x4A,
   473     REX_WXB    = 0x4B,
   474     REX_WR     = 0x4C,
   475     REX_WRB    = 0x4D,
   476     REX_WRX    = 0x4E,
   477     REX_WRXB   = 0x4F
   478   };
   480   enum WhichOperand {
   481     // input to locate_operand, and format code for relocations
   482     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
   483     disp32_operand = 1,          // embedded 32-bit displacement or address
   484     call32_operand = 2,          // embedded 32-bit self-relative displacement
   485 #ifndef _LP64
   486     _WhichOperand_limit = 3
   487 #else
   488      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
   489     _WhichOperand_limit = 4
   490 #endif
   491   };
   495   // NOTE: The general philopsophy of the declarations here is that 64bit versions
   496   // of instructions are freely declared without the need for wrapping them an ifdef.
   497   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
   498   // In the .cpp file the implementations are wrapped so that they are dropped out
   499   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
   500   // to the size it was prior to merging up the 32bit and 64bit assemblers.
   501   //
   502   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
   503   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
   505 private:
   508   // 64bit prefixes
   509   int prefix_and_encode(int reg_enc, bool byteinst = false);
   510   int prefixq_and_encode(int reg_enc);
   512   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
   513   int prefixq_and_encode(int dst_enc, int src_enc);
   515   void prefix(Register reg);
   516   void prefix(Address adr);
   517   void prefixq(Address adr);
   519   void prefix(Address adr, Register reg,  bool byteinst = false);
   520   void prefixq(Address adr, Register reg);
   522   void prefix(Address adr, XMMRegister reg);
   524   void prefetch_prefix(Address src);
   526   // Helper functions for groups of instructions
   527   void emit_arith_b(int op1, int op2, Register dst, int imm8);
   529   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
   530   // only 32bit??
   531   void emit_arith(int op1, int op2, Register dst, jobject obj);
   532   void emit_arith(int op1, int op2, Register dst, Register src);
   534   void emit_operand(Register reg,
   535                     Register base, Register index, Address::ScaleFactor scale,
   536                     int disp,
   537                     RelocationHolder const& rspec,
   538                     int rip_relative_correction = 0);
   540   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
   542   // operands that only take the original 32bit registers
   543   void emit_operand32(Register reg, Address adr);
   545   void emit_operand(XMMRegister reg,
   546                     Register base, Register index, Address::ScaleFactor scale,
   547                     int disp,
   548                     RelocationHolder const& rspec);
   550   void emit_operand(XMMRegister reg, Address adr);
   552   void emit_operand(MMXRegister reg, Address adr);
   554   // workaround gcc (3.2.1-7) bug
   555   void emit_operand(Address adr, MMXRegister reg);
   558   // Immediate-to-memory forms
   559   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
   561   void emit_farith(int b1, int b2, int i);
   564  protected:
   565   #ifdef ASSERT
   566   void check_relocation(RelocationHolder const& rspec, int format);
   567   #endif
   569   inline void emit_long64(jlong x);
   571   void emit_data(jint data, relocInfo::relocType    rtype, int format);
   572   void emit_data(jint data, RelocationHolder const& rspec, int format);
   573   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
   574   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
   577   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
   579   // These are all easily abused and hence protected
   581   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec, int format = 0);
   583   // 32BIT ONLY SECTION
   584 #ifndef _LP64
   585   // Make these disappear in 64bit mode since they would never be correct
   586   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
   587   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   589   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
   591   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
   592 #else
   593   // 64BIT ONLY SECTION
   594   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
   595 #endif // _LP64
   597   // These are unique in that we are ensured by the caller that the 32bit
   598   // relative in these instructions will always be able to reach the potentially
   599   // 64bit address described by entry. Since they can take a 64bit address they
   600   // don't have the 32 suffix like the other instructions in this class.
   602   void call_literal(address entry, RelocationHolder const& rspec);
   603   void jmp_literal(address entry, RelocationHolder const& rspec);
   605   // Avoid using directly section
   606   // Instructions in this section are actually usable by anyone without danger
   607   // of failure but have performance issues that are addressed my enhanced
   608   // instructions which will do the proper thing base on the particular cpu.
   609   // We protect them because we don't trust you...
   611   // Don't use next inc() and dec() methods directly. INC & DEC instructions
   612   // could cause a partial flag stall since they don't set CF flag.
   613   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
   614   // which call inc() & dec() or add() & sub() in accordance with
   615   // the product flag UseIncDec value.
   617   void decl(Register dst);
   618   void decl(Address dst);
   619   void decq(Register dst);
   620   void decq(Address dst);
   622   void incl(Register dst);
   623   void incl(Address dst);
   624   void incq(Register dst);
   625   void incq(Address dst);
   627   // New cpus require use of movsd and movss to avoid partial register stall
   628   // when loading from memory. But for old Opteron use movlpd instead of movsd.
   629   // The selection is done in MacroAssembler::movdbl() and movflt().
   631   // Move Scalar Single-Precision Floating-Point Values
   632   void movss(XMMRegister dst, Address src);
   633   void movss(XMMRegister dst, XMMRegister src);
   634   void movss(Address dst, XMMRegister src);
   636   // Move Scalar Double-Precision Floating-Point Values
   637   void movsd(XMMRegister dst, Address src);
   638   void movsd(XMMRegister dst, XMMRegister src);
   639   void movsd(Address dst, XMMRegister src);
   640   void movlpd(XMMRegister dst, Address src);
   642   // New cpus require use of movaps and movapd to avoid partial register stall
   643   // when moving between registers.
   644   void movaps(XMMRegister dst, XMMRegister src);
   645   void movapd(XMMRegister dst, XMMRegister src);
   647   // End avoid using directly
   650   // Instruction prefixes
   651   void prefix(Prefix p);
   653   public:
   655   // Creation
   656   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
   658   // Decoding
   659   static address locate_operand(address inst, WhichOperand which);
   660   static address locate_next_instruction(address inst);
   662   // Utilities
   664 #ifdef _LP64
   665  static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
   666  static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
   667 #else
   668  static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
   669  static bool is_simm32(int32_t x) { return true; }
   670 #endif // LP64
   672   // Generic instructions
   673   // Does 32bit or 64bit as needed for the platform. In some sense these
   674   // belong in macro assembler but there is no need for both varieties to exist
   676   void lea(Register dst, Address src);
   678   void mov(Register dst, Register src);
   680   void pusha();
   681   void popa();
   683   void pushf();
   684   void popf();
   686   void push(int32_t imm32);
   688   void push(Register src);
   690   void pop(Register dst);
   692   // These are dummies to prevent surprise implicit conversions to Register
   693   void push(void* v);
   694   void pop(void* v);
   697   // These do register sized moves/scans
   698   void rep_mov();
   699   void rep_set();
   700   void repne_scan();
   701 #ifdef _LP64
   702   void repne_scanl();
   703 #endif
   705   // Vanilla instructions in lexical order
   707   void adcl(Register dst, int32_t imm32);
   708   void adcl(Register dst, Address src);
   709   void adcl(Register dst, Register src);
   711   void adcq(Register dst, int32_t imm32);
   712   void adcq(Register dst, Address src);
   713   void adcq(Register dst, Register src);
   716   void addl(Address dst, int32_t imm32);
   717   void addl(Address dst, Register src);
   718   void addl(Register dst, int32_t imm32);
   719   void addl(Register dst, Address src);
   720   void addl(Register dst, Register src);
   722   void addq(Address dst, int32_t imm32);
   723   void addq(Address dst, Register src);
   724   void addq(Register dst, int32_t imm32);
   725   void addq(Register dst, Address src);
   726   void addq(Register dst, Register src);
   729   void addr_nop_4();
   730   void addr_nop_5();
   731   void addr_nop_7();
   732   void addr_nop_8();
   734   // Add Scalar Double-Precision Floating-Point Values
   735   void addsd(XMMRegister dst, Address src);
   736   void addsd(XMMRegister dst, XMMRegister src);
   738   // Add Scalar Single-Precision Floating-Point Values
   739   void addss(XMMRegister dst, Address src);
   740   void addss(XMMRegister dst, XMMRegister src);
   742   void andl(Register dst, int32_t imm32);
   743   void andl(Register dst, Address src);
   744   void andl(Register dst, Register src);
   746   void andq(Register dst, int32_t imm32);
   747   void andq(Register dst, Address src);
   748   void andq(Register dst, Register src);
   751   // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
   752   void andpd(XMMRegister dst, Address src);
   753   void andpd(XMMRegister dst, XMMRegister src);
   755   void bswapl(Register reg);
   757   void bswapq(Register reg);
   759   void call(Label& L, relocInfo::relocType rtype);
   760   void call(Register reg);  // push pc; pc <- reg
   761   void call(Address adr);   // push pc; pc <- adr
   763   void cdql();
   765   void cdqq();
   767   void cld() { emit_byte(0xfc); }
   769   void clflush(Address adr);
   771   void cmovl(Condition cc, Register dst, Register src);
   772   void cmovl(Condition cc, Register dst, Address src);
   774   void cmovq(Condition cc, Register dst, Register src);
   775   void cmovq(Condition cc, Register dst, Address src);
   778   void cmpb(Address dst, int imm8);
   780   void cmpl(Address dst, int32_t imm32);
   782   void cmpl(Register dst, int32_t imm32);
   783   void cmpl(Register dst, Register src);
   784   void cmpl(Register dst, Address src);
   786   void cmpq(Address dst, int32_t imm32);
   787   void cmpq(Address dst, Register src);
   789   void cmpq(Register dst, int32_t imm32);
   790   void cmpq(Register dst, Register src);
   791   void cmpq(Register dst, Address src);
   793   // these are dummies used to catch attempting to convert NULL to Register
   794   void cmpl(Register dst, void* junk); // dummy
   795   void cmpq(Register dst, void* junk); // dummy
   797   void cmpw(Address dst, int imm16);
   799   void cmpxchg8 (Address adr);
   801   void cmpxchgl(Register reg, Address adr);
   803   void cmpxchgq(Register reg, Address adr);
   805   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
   806   void comisd(XMMRegister dst, Address src);
   808   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
   809   void comiss(XMMRegister dst, Address src);
   811   // Identify processor type and features
   812   void cpuid() {
   813     emit_byte(0x0F);
   814     emit_byte(0xA2);
   815   }
   817   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
   818   void cvtsd2ss(XMMRegister dst, XMMRegister src);
   820   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
   821   void cvtsi2sdl(XMMRegister dst, Register src);
   822   void cvtsi2sdq(XMMRegister dst, Register src);
   824   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
   825   void cvtsi2ssl(XMMRegister dst, Register src);
   826   void cvtsi2ssq(XMMRegister dst, Register src);
   828   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
   829   void cvtdq2pd(XMMRegister dst, XMMRegister src);
   831   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
   832   void cvtdq2ps(XMMRegister dst, XMMRegister src);
   834   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
   835   void cvtss2sd(XMMRegister dst, XMMRegister src);
   837   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
   838   void cvttsd2sil(Register dst, Address src);
   839   void cvttsd2sil(Register dst, XMMRegister src);
   840   void cvttsd2siq(Register dst, XMMRegister src);
   842   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
   843   void cvttss2sil(Register dst, XMMRegister src);
   844   void cvttss2siq(Register dst, XMMRegister src);
   846   // Divide Scalar Double-Precision Floating-Point Values
   847   void divsd(XMMRegister dst, Address src);
   848   void divsd(XMMRegister dst, XMMRegister src);
   850   // Divide Scalar Single-Precision Floating-Point Values
   851   void divss(XMMRegister dst, Address src);
   852   void divss(XMMRegister dst, XMMRegister src);
   854   void emms();
   856   void fabs();
   858   void fadd(int i);
   860   void fadd_d(Address src);
   861   void fadd_s(Address src);
   863   // "Alternate" versions of x87 instructions place result down in FPU
   864   // stack instead of on TOS
   866   void fadda(int i); // "alternate" fadd
   867   void faddp(int i = 1);
   869   void fchs();
   871   void fcom(int i);
   873   void fcomp(int i = 1);
   874   void fcomp_d(Address src);
   875   void fcomp_s(Address src);
   877   void fcompp();
   879   void fcos();
   881   void fdecstp();
   883   void fdiv(int i);
   884   void fdiv_d(Address src);
   885   void fdivr_s(Address src);
   886   void fdiva(int i);  // "alternate" fdiv
   887   void fdivp(int i = 1);
   889   void fdivr(int i);
   890   void fdivr_d(Address src);
   891   void fdiv_s(Address src);
   893   void fdivra(int i); // "alternate" reversed fdiv
   895   void fdivrp(int i = 1);
   897   void ffree(int i = 0);
   899   void fild_d(Address adr);
   900   void fild_s(Address adr);
   902   void fincstp();
   904   void finit();
   906   void fist_s (Address adr);
   907   void fistp_d(Address adr);
   908   void fistp_s(Address adr);
   910   void fld1();
   912   void fld_d(Address adr);
   913   void fld_s(Address adr);
   914   void fld_s(int index);
   915   void fld_x(Address adr);  // extended-precision (80-bit) format
   917   void fldcw(Address src);
   919   void fldenv(Address src);
   921   void fldlg2();
   923   void fldln2();
   925   void fldz();
   927   void flog();
   928   void flog10();
   930   void fmul(int i);
   932   void fmul_d(Address src);
   933   void fmul_s(Address src);
   935   void fmula(int i);  // "alternate" fmul
   937   void fmulp(int i = 1);
   939   void fnsave(Address dst);
   941   void fnstcw(Address src);
   943   void fnstsw_ax();
   945   void fprem();
   946   void fprem1();
   948   void frstor(Address src);
   950   void fsin();
   952   void fsqrt();
   954   void fst_d(Address adr);
   955   void fst_s(Address adr);
   957   void fstp_d(Address adr);
   958   void fstp_d(int index);
   959   void fstp_s(Address adr);
   960   void fstp_x(Address adr); // extended-precision (80-bit) format
   962   void fsub(int i);
   963   void fsub_d(Address src);
   964   void fsub_s(Address src);
   966   void fsuba(int i);  // "alternate" fsub
   968   void fsubp(int i = 1);
   970   void fsubr(int i);
   971   void fsubr_d(Address src);
   972   void fsubr_s(Address src);
   974   void fsubra(int i); // "alternate" reversed fsub
   976   void fsubrp(int i = 1);
   978   void ftan();
   980   void ftst();
   982   void fucomi(int i = 1);
   983   void fucomip(int i = 1);
   985   void fwait();
   987   void fxch(int i = 1);
   989   void fxrstor(Address src);
   991   void fxsave(Address dst);
   993   void fyl2x();
   995   void hlt();
   997   void idivl(Register src);
   999   void idivq(Register src);
  1001   void imull(Register dst, Register src);
  1002   void imull(Register dst, Register src, int value);
  1004   void imulq(Register dst, Register src);
  1005   void imulq(Register dst, Register src, int value);
  1008   // jcc is the generic conditional branch generator to run-
  1009   // time routines, jcc is used for branches to labels. jcc
  1010   // takes a branch opcode (cc) and a label (L) and generates
  1011   // either a backward branch or a forward branch and links it
  1012   // to the label fixup chain. Usage:
  1013   //
  1014   // Label L;      // unbound label
  1015   // jcc(cc, L);   // forward branch to unbound label
  1016   // bind(L);      // bind label to the current pc
  1017   // jcc(cc, L);   // backward branch to bound label
  1018   // bind(L);      // illegal: a label may be bound only once
  1019   //
  1020   // Note: The same Label can be used for forward and backward branches
  1021   // but it may be bound only once.
  1023   void jcc(Condition cc, Label& L,
  1024            relocInfo::relocType rtype = relocInfo::none);
  1026   // Conditional jump to a 8-bit offset to L.
  1027   // WARNING: be very careful using this for forward jumps.  If the label is
  1028   // not bound within an 8-bit offset of this instruction, a run-time error
  1029   // will occur.
  1030   void jccb(Condition cc, Label& L);
  1032   void jmp(Address entry);    // pc <- entry
  1034   // Label operations & relative jumps (PPUM Appendix D)
  1035   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
  1037   void jmp(Register entry); // pc <- entry
  1039   // Unconditional 8-bit offset jump to L.
  1040   // WARNING: be very careful using this for forward jumps.  If the label is
  1041   // not bound within an 8-bit offset of this instruction, a run-time error
  1042   // will occur.
  1043   void jmpb(Label& L);
  1045   void ldmxcsr( Address src );
  1047   void leal(Register dst, Address src);
  1049   void leaq(Register dst, Address src);
  1051   void lfence() {
  1052     emit_byte(0x0F);
  1053     emit_byte(0xAE);
  1054     emit_byte(0xE8);
  1057   void lock();
  1059   enum Membar_mask_bits {
  1060     StoreStore = 1 << 3,
  1061     LoadStore  = 1 << 2,
  1062     StoreLoad  = 1 << 1,
  1063     LoadLoad   = 1 << 0
  1064   };
  1066   // Serializes memory.
  1067   void membar(Membar_mask_bits order_constraint) {
  1068     // We only have to handle StoreLoad and LoadLoad
  1069     if (order_constraint & StoreLoad) {
  1070       // MFENCE subsumes LFENCE
  1071       mfence();
  1072     } /* [jk] not needed currently: else if (order_constraint & LoadLoad) {
  1073          lfence();
  1074     } */
  1077   void mfence();
  1079   // Moves
  1081   void mov64(Register dst, int64_t imm64);
  1083   void movb(Address dst, Register src);
  1084   void movb(Address dst, int imm8);
  1085   void movb(Register dst, Address src);
  1087   void movdl(XMMRegister dst, Register src);
  1088   void movdl(Register dst, XMMRegister src);
  1090   // Move Double Quadword
  1091   void movdq(XMMRegister dst, Register src);
  1092   void movdq(Register dst, XMMRegister src);
  1094   // Move Aligned Double Quadword
  1095   void movdqa(Address     dst, XMMRegister src);
  1096   void movdqa(XMMRegister dst, Address src);
  1097   void movdqa(XMMRegister dst, XMMRegister src);
  1099   // Move Unaligned Double Quadword
  1100   void movdqu(Address     dst, XMMRegister src);
  1101   void movdqu(XMMRegister dst, Address src);
  1102   void movdqu(XMMRegister dst, XMMRegister src);
  1104   void movl(Register dst, int32_t imm32);
  1105   void movl(Address dst, int32_t imm32);
  1106   void movl(Register dst, Register src);
  1107   void movl(Register dst, Address src);
  1108   void movl(Address dst, Register src);
  1110   // These dummies prevent using movl from converting a zero (like NULL) into Register
  1111   // by giving the compiler two choices it can't resolve
  1113   void movl(Address  dst, void* junk);
  1114   void movl(Register dst, void* junk);
  1116 #ifdef _LP64
  1117   void movq(Register dst, Register src);
  1118   void movq(Register dst, Address src);
  1119   void movq(Address dst, Register src);
  1120 #endif
  1122   void movq(Address     dst, MMXRegister src );
  1123   void movq(MMXRegister dst, Address src );
  1125 #ifdef _LP64
  1126   // These dummies prevent using movq from converting a zero (like NULL) into Register
  1127   // by giving the compiler two choices it can't resolve
  1129   void movq(Address  dst, void* dummy);
  1130   void movq(Register dst, void* dummy);
  1131 #endif
  1133   // Move Quadword
  1134   void movq(Address     dst, XMMRegister src);
  1135   void movq(XMMRegister dst, Address src);
  1137   void movsbl(Register dst, Address src);
  1138   void movsbl(Register dst, Register src);
  1140 #ifdef _LP64
  1141   void movsbq(Register dst, Address src);
  1142   void movsbq(Register dst, Register src);
  1144   // Move signed 32bit immediate to 64bit extending sign
  1145   void movslq(Address dst, int32_t imm64);
  1146   void movslq(Register dst, int32_t imm64);
  1148   void movslq(Register dst, Address src);
  1149   void movslq(Register dst, Register src);
  1150   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
  1151 #endif
  1153   void movswl(Register dst, Address src);
  1154   void movswl(Register dst, Register src);
  1156 #ifdef _LP64
  1157   void movswq(Register dst, Address src);
  1158   void movswq(Register dst, Register src);
  1159 #endif
  1161   void movw(Address dst, int imm16);
  1162   void movw(Register dst, Address src);
  1163   void movw(Address dst, Register src);
  1165   void movzbl(Register dst, Address src);
  1166   void movzbl(Register dst, Register src);
  1168 #ifdef _LP64
  1169   void movzbq(Register dst, Address src);
  1170   void movzbq(Register dst, Register src);
  1171 #endif
  1173   void movzwl(Register dst, Address src);
  1174   void movzwl(Register dst, Register src);
  1176 #ifdef _LP64
  1177   void movzwq(Register dst, Address src);
  1178   void movzwq(Register dst, Register src);
  1179 #endif
  1181   void mull(Address src);
  1182   void mull(Register src);
  1184   // Multiply Scalar Double-Precision Floating-Point Values
  1185   void mulsd(XMMRegister dst, Address src);
  1186   void mulsd(XMMRegister dst, XMMRegister src);
  1188   // Multiply Scalar Single-Precision Floating-Point Values
  1189   void mulss(XMMRegister dst, Address src);
  1190   void mulss(XMMRegister dst, XMMRegister src);
  1192   void negl(Register dst);
  1194 #ifdef _LP64
  1195   void negq(Register dst);
  1196 #endif
  1198   void nop(int i = 1);
  1200   void notl(Register dst);
  1202 #ifdef _LP64
  1203   void notq(Register dst);
  1204 #endif
  1206   void orl(Address dst, int32_t imm32);
  1207   void orl(Register dst, int32_t imm32);
  1208   void orl(Register dst, Address src);
  1209   void orl(Register dst, Register src);
  1211   void orq(Address dst, int32_t imm32);
  1212   void orq(Register dst, int32_t imm32);
  1213   void orq(Register dst, Address src);
  1214   void orq(Register dst, Register src);
  1216   void popl(Address dst);
  1218 #ifdef _LP64
  1219   void popq(Address dst);
  1220 #endif
  1222   // Prefetches (SSE, SSE2, 3DNOW only)
  1224   void prefetchnta(Address src);
  1225   void prefetchr(Address src);
  1226   void prefetcht0(Address src);
  1227   void prefetcht1(Address src);
  1228   void prefetcht2(Address src);
  1229   void prefetchw(Address src);
  1231   // Shuffle Packed Doublewords
  1232   void pshufd(XMMRegister dst, XMMRegister src, int mode);
  1233   void pshufd(XMMRegister dst, Address src,     int mode);
  1235   // Shuffle Packed Low Words
  1236   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  1237   void pshuflw(XMMRegister dst, Address src,     int mode);
  1239   // Shift Right Logical Quadword Immediate
  1240   void psrlq(XMMRegister dst, int shift);
  1242   // Interleave Low Bytes
  1243   void punpcklbw(XMMRegister dst, XMMRegister src);
  1245   void pushl(Address src);
  1247   void pushq(Address src);
  1249   // Xor Packed Byte Integer Values
  1250   void pxor(XMMRegister dst, Address src);
  1251   void pxor(XMMRegister dst, XMMRegister src);
  1253   void rcll(Register dst, int imm8);
  1255   void rclq(Register dst, int imm8);
  1257   void ret(int imm16);
  1259   void sahf();
  1261   void sarl(Register dst, int imm8);
  1262   void sarl(Register dst);
  1264   void sarq(Register dst, int imm8);
  1265   void sarq(Register dst);
  1267   void sbbl(Address dst, int32_t imm32);
  1268   void sbbl(Register dst, int32_t imm32);
  1269   void sbbl(Register dst, Address src);
  1270   void sbbl(Register dst, Register src);
  1272   void sbbq(Address dst, int32_t imm32);
  1273   void sbbq(Register dst, int32_t imm32);
  1274   void sbbq(Register dst, Address src);
  1275   void sbbq(Register dst, Register src);
  1277   void setb(Condition cc, Register dst);
  1279   void shldl(Register dst, Register src);
  1281   void shll(Register dst, int imm8);
  1282   void shll(Register dst);
  1284   void shlq(Register dst, int imm8);
  1285   void shlq(Register dst);
  1287   void shrdl(Register dst, Register src);
  1289   void shrl(Register dst, int imm8);
  1290   void shrl(Register dst);
  1292   void shrq(Register dst, int imm8);
  1293   void shrq(Register dst);
  1295   void smovl(); // QQQ generic?
  1297   // Compute Square Root of Scalar Double-Precision Floating-Point Value
  1298   void sqrtsd(XMMRegister dst, Address src);
  1299   void sqrtsd(XMMRegister dst, XMMRegister src);
  1301   void std() { emit_byte(0xfd); }
  1303   void stmxcsr( Address dst );
  1305   void subl(Address dst, int32_t imm32);
  1306   void subl(Address dst, Register src);
  1307   void subl(Register dst, int32_t imm32);
  1308   void subl(Register dst, Address src);
  1309   void subl(Register dst, Register src);
  1311   void subq(Address dst, int32_t imm32);
  1312   void subq(Address dst, Register src);
  1313   void subq(Register dst, int32_t imm32);
  1314   void subq(Register dst, Address src);
  1315   void subq(Register dst, Register src);
  1318   // Subtract Scalar Double-Precision Floating-Point Values
  1319   void subsd(XMMRegister dst, Address src);
  1320   void subsd(XMMRegister dst, XMMRegister src);
  1322   // Subtract Scalar Single-Precision Floating-Point Values
  1323   void subss(XMMRegister dst, Address src);
  1324   void subss(XMMRegister dst, XMMRegister src);
  1326   void testb(Register dst, int imm8);
  1328   void testl(Register dst, int32_t imm32);
  1329   void testl(Register dst, Register src);
  1330   void testl(Register dst, Address src);
  1332   void testq(Register dst, int32_t imm32);
  1333   void testq(Register dst, Register src);
  1336   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  1337   void ucomisd(XMMRegister dst, Address src);
  1338   void ucomisd(XMMRegister dst, XMMRegister src);
  1340   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  1341   void ucomiss(XMMRegister dst, Address src);
  1342   void ucomiss(XMMRegister dst, XMMRegister src);
  1344   void xaddl(Address dst, Register src);
  1346   void xaddq(Address dst, Register src);
  1348   void xchgl(Register reg, Address adr);
  1349   void xchgl(Register dst, Register src);
  1351   void xchgq(Register reg, Address adr);
  1352   void xchgq(Register dst, Register src);
  1354   void xorl(Register dst, int32_t imm32);
  1355   void xorl(Register dst, Address src);
  1356   void xorl(Register dst, Register src);
  1358   void xorq(Register dst, Address src);
  1359   void xorq(Register dst, Register src);
  1361   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  1362   void xorpd(XMMRegister dst, Address src);
  1363   void xorpd(XMMRegister dst, XMMRegister src);
  1365   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  1366   void xorps(XMMRegister dst, Address src);
  1367   void xorps(XMMRegister dst, XMMRegister src);
  1369   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
  1370 };
  1373 // MacroAssembler extends Assembler by frequently used macros.
  1374 //
  1375 // Instructions for which a 'better' code sequence exists depending
  1376 // on arguments should also go in here.
  1378 class MacroAssembler: public Assembler {
  1379   friend class LIR_Assembler;
  1380   friend class Runtime1;      // as_Address()
  1381  protected:
  1383   Address as_Address(AddressLiteral adr);
  1384   Address as_Address(ArrayAddress adr);
  1386   // Support for VM calls
  1387   //
  1388   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1389   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1390   // additional registers when doing a VM call).
  1391 #ifdef CC_INTERP
  1392   // c++ interpreter never wants to use interp_masm version of call_VM
  1393   #define VIRTUAL
  1394 #else
  1395   #define VIRTUAL virtual
  1396 #endif
  1398   VIRTUAL void call_VM_leaf_base(
  1399     address entry_point,               // the entry point
  1400     int     number_of_arguments        // the number of arguments to pop after the call
  1401   );
  1403   // This is the base routine called by the different versions of call_VM. The interpreter
  1404   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1405   // additional registers when doing a VM call).
  1406   //
  1407   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  1408   // returns the register which contains the thread upon return. If a thread register has been
  1409   // specified, the return value will correspond to that register. If no last_java_sp is specified
  1410   // (noreg) than rsp will be used instead.
  1411   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  1412     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  1413     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  1414     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  1415     address  entry_point,              // the entry point
  1416     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  1417     bool     check_exceptions          // whether to check for pending exceptions after return
  1418   );
  1420   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1421   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1422   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  1423   virtual void check_and_handle_popframe(Register java_thread);
  1424   virtual void check_and_handle_earlyret(Register java_thread);
  1426   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  1428   // helpers for FPU flag access
  1429   // tmp is a temporary register, if none is available use noreg
  1430   void save_rax   (Register tmp);
  1431   void restore_rax(Register tmp);
  1433  public:
  1434   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1436   // Support for NULL-checks
  1437   //
  1438   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1439   // If the accessed location is M[reg + offset] and the offset is known, provide the
  1440   // offset. No explicit code generation is needed if the offset is within a certain
  1441   // range (0 <= offset <= page_size).
  1443   void null_check(Register reg, int offset = -1);
  1444   static bool needs_explicit_null_check(intptr_t offset);
  1446   // Required platform-specific helpers for Label::patch_instructions.
  1447   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1448   void pd_patch_instruction(address branch, address target);
  1449 #ifndef PRODUCT
  1450   static void pd_print_patched_instruction(address branch);
  1451 #endif
  1453   // The following 4 methods return the offset of the appropriate move instruction
  1455   // Support for fast byte/short loading with zero extension (depending on particular CPU)
  1456   int load_unsigned_byte(Register dst, Address src);
  1457   int load_unsigned_short(Register dst, Address src);
  1459   // Support for fast byte/short loading with sign extension (depending on particular CPU)
  1460   int load_signed_byte(Register dst, Address src);
  1461   int load_signed_short(Register dst, Address src);
  1463   // Support for sign-extension (hi:lo = extend_sign(lo))
  1464   void extend_sign(Register hi, Register lo);
  1466   // Loading values by size and signed-ness
  1467   void load_sized_value(Register dst, Address src, int size_in_bytes, bool is_signed);
  1469   // Support for inc/dec with optimal instruction selection depending on value
  1471   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  1472   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
  1474   void decrementl(Address dst, int value = 1);
  1475   void decrementl(Register reg, int value = 1);
  1477   void decrementq(Register reg, int value = 1);
  1478   void decrementq(Address dst, int value = 1);
  1480   void incrementl(Address dst, int value = 1);
  1481   void incrementl(Register reg, int value = 1);
  1483   void incrementq(Register reg, int value = 1);
  1484   void incrementq(Address dst, int value = 1);
  1487   // Support optimal SSE move instructions.
  1488   void movflt(XMMRegister dst, XMMRegister src) {
  1489     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
  1490     else                       { movss (dst, src); return; }
  1492   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  1493   void movflt(XMMRegister dst, AddressLiteral src);
  1494   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
  1496   void movdbl(XMMRegister dst, XMMRegister src) {
  1497     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
  1498     else                       { movsd (dst, src); return; }
  1501   void movdbl(XMMRegister dst, AddressLiteral src);
  1503   void movdbl(XMMRegister dst, Address src) {
  1504     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
  1505     else                         { movlpd(dst, src); return; }
  1507   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
  1509   void incrementl(AddressLiteral dst);
  1510   void incrementl(ArrayAddress dst);
  1512   // Alignment
  1513   void align(int modulus);
  1515   // Misc
  1516   void fat_nop(); // 5 byte nop
  1518   // Stack frame creation/removal
  1519   void enter();
  1520   void leave();
  1522   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  1523   // The pointer will be loaded into the thread register.
  1524   void get_thread(Register thread);
  1527   // Support for VM calls
  1528   //
  1529   // It is imperative that all calls into the VM are handled via the call_VM macros.
  1530   // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1531   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1534   void call_VM(Register oop_result,
  1535                address entry_point,
  1536                bool check_exceptions = true);
  1537   void call_VM(Register oop_result,
  1538                address entry_point,
  1539                Register arg_1,
  1540                bool check_exceptions = true);
  1541   void call_VM(Register oop_result,
  1542                address entry_point,
  1543                Register arg_1, Register arg_2,
  1544                bool check_exceptions = true);
  1545   void call_VM(Register oop_result,
  1546                address entry_point,
  1547                Register arg_1, Register arg_2, Register arg_3,
  1548                bool check_exceptions = true);
  1550   // Overloadings with last_Java_sp
  1551   void call_VM(Register oop_result,
  1552                Register last_java_sp,
  1553                address entry_point,
  1554                int number_of_arguments = 0,
  1555                bool check_exceptions = true);
  1556   void call_VM(Register oop_result,
  1557                Register last_java_sp,
  1558                address entry_point,
  1559                Register arg_1, bool
  1560                check_exceptions = true);
  1561   void call_VM(Register oop_result,
  1562                Register last_java_sp,
  1563                address entry_point,
  1564                Register arg_1, Register arg_2,
  1565                bool check_exceptions = true);
  1566   void call_VM(Register oop_result,
  1567                Register last_java_sp,
  1568                address entry_point,
  1569                Register arg_1, Register arg_2, Register arg_3,
  1570                bool check_exceptions = true);
  1572   void call_VM_leaf(address entry_point,
  1573                     int number_of_arguments = 0);
  1574   void call_VM_leaf(address entry_point,
  1575                     Register arg_1);
  1576   void call_VM_leaf(address entry_point,
  1577                     Register arg_1, Register arg_2);
  1578   void call_VM_leaf(address entry_point,
  1579                     Register arg_1, Register arg_2, Register arg_3);
  1581   // last Java Frame (fills frame anchor)
  1582   void set_last_Java_frame(Register thread,
  1583                            Register last_java_sp,
  1584                            Register last_java_fp,
  1585                            address last_java_pc);
  1587   // thread in the default location (r15_thread on 64bit)
  1588   void set_last_Java_frame(Register last_java_sp,
  1589                            Register last_java_fp,
  1590                            address last_java_pc);
  1592   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
  1594   // thread in the default location (r15_thread on 64bit)
  1595   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
  1597   // Stores
  1598   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  1599   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
  1601   void g1_write_barrier_pre(Register obj,
  1602 #ifndef _LP64
  1603                             Register thread,
  1604 #endif
  1605                             Register tmp,
  1606                             Register tmp2,
  1607                             bool     tosca_live);
  1608   void g1_write_barrier_post(Register store_addr,
  1609                              Register new_val,
  1610 #ifndef _LP64
  1611                              Register thread,
  1612 #endif
  1613                              Register tmp,
  1614                              Register tmp2);
  1617   // split store_check(Register obj) to enhance instruction interleaving
  1618   void store_check_part_1(Register obj);
  1619   void store_check_part_2(Register obj);
  1621   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  1622   void c2bool(Register x);
  1624   // C++ bool manipulation
  1626   void movbool(Register dst, Address src);
  1627   void movbool(Address dst, bool boolconst);
  1628   void movbool(Address dst, Register src);
  1629   void testbool(Register dst);
  1631   // oop manipulations
  1632   void load_klass(Register dst, Register src);
  1633   void store_klass(Register dst, Register src);
  1635   void load_prototype_header(Register dst, Register src);
  1637 #ifdef _LP64
  1638   void store_klass_gap(Register dst, Register src);
  1640   void load_heap_oop(Register dst, Address src);
  1641   void store_heap_oop(Address dst, Register src);
  1642   void encode_heap_oop(Register r);
  1643   void decode_heap_oop(Register r);
  1644   void encode_heap_oop_not_null(Register r);
  1645   void decode_heap_oop_not_null(Register r);
  1646   void encode_heap_oop_not_null(Register dst, Register src);
  1647   void decode_heap_oop_not_null(Register dst, Register src);
  1649   void set_narrow_oop(Register dst, jobject obj);
  1651   // if heap base register is used - reinit it with the correct value
  1652   void reinit_heapbase();
  1653 #endif // _LP64
  1655   // Int division/remainder for Java
  1656   // (as idivl, but checks for special case as described in JVM spec.)
  1657   // returns idivl instruction offset for implicit exception handling
  1658   int corrected_idivl(Register reg);
  1660   // Long division/remainder for Java
  1661   // (as idivq, but checks for special case as described in JVM spec.)
  1662   // returns idivq instruction offset for implicit exception handling
  1663   int corrected_idivq(Register reg);
  1665   void int3();
  1667   // Long operation macros for a 32bit cpu
  1668   // Long negation for Java
  1669   void lneg(Register hi, Register lo);
  1671   // Long multiplication for Java
  1672   // (destroys contents of eax, ebx, ecx and edx)
  1673   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
  1675   // Long shifts for Java
  1676   // (semantics as described in JVM spec.)
  1677   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  1678   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
  1680   // Long compare for Java
  1681   // (semantics as described in JVM spec.)
  1682   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
  1685   // misc
  1687   // Sign extension
  1688   void sign_extend_short(Register reg);
  1689   void sign_extend_byte(Register reg);
  1691   // Division by power of 2, rounding towards 0
  1692   void division_with_shift(Register reg, int shift_value);
  1694   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  1695   //
  1696   // CF (corresponds to C0) if x < y
  1697   // PF (corresponds to C2) if unordered
  1698   // ZF (corresponds to C3) if x = y
  1699   //
  1700   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1701   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  1702   void fcmp(Register tmp);
  1703   // Variant of the above which allows y to be further down the stack
  1704   // and which only pops x and y if specified. If pop_right is
  1705   // specified then pop_left must also be specified.
  1706   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
  1708   // Floating-point comparison for Java
  1709   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  1710   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1711   // (semantics as described in JVM spec.)
  1712   void fcmp2int(Register dst, bool unordered_is_less);
  1713   // Variant of the above which allows y to be further down the stack
  1714   // and which only pops x and y if specified. If pop_right is
  1715   // specified then pop_left must also be specified.
  1716   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
  1718   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  1719   // tmp is a temporary register, if none is available use noreg
  1720   void fremr(Register tmp);
  1723   // same as fcmp2int, but using SSE2
  1724   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1725   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1727   // Inlined sin/cos generator for Java; must not use CPU instruction
  1728   // directly on Intel as it does not have high enough precision
  1729   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  1730   // number of FPU stack slots in use; all but the topmost will
  1731   // require saving if a slow case is necessary. Assumes argument is
  1732   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  1733   // this code.
  1734   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
  1736   // branch to L if FPU flag C2 is set/not set
  1737   // tmp is a temporary register, if none is available use noreg
  1738   void jC2 (Register tmp, Label& L);
  1739   void jnC2(Register tmp, Label& L);
  1741   // Pop ST (ffree & fincstp combined)
  1742   void fpop();
  1744   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1745   void push_fTOS();
  1747   // pops double TOS element from CPU stack and pushes on FPU stack
  1748   void pop_fTOS();
  1750   void empty_FPU_stack();
  1752   void push_IU_state();
  1753   void pop_IU_state();
  1755   void push_FPU_state();
  1756   void pop_FPU_state();
  1758   void push_CPU_state();
  1759   void pop_CPU_state();
  1761   // Round up to a power of two
  1762   void round_to(Register reg, int modulus);
  1764   // Callee saved registers handling
  1765   void push_callee_saved_registers();
  1766   void pop_callee_saved_registers();
  1768   // allocation
  1769   void eden_allocate(
  1770     Register obj,                      // result: pointer to object after successful allocation
  1771     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1772     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1773     Register t1,                       // temp register
  1774     Label&   slow_case                 // continuation point if fast allocation fails
  1775   );
  1776   void tlab_allocate(
  1777     Register obj,                      // result: pointer to object after successful allocation
  1778     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1779     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1780     Register t1,                       // temp register
  1781     Register t2,                       // temp register
  1782     Label&   slow_case                 // continuation point if fast allocation fails
  1783   );
  1784   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
  1786   // interface method calling
  1787   void lookup_interface_method(Register recv_klass,
  1788                                Register intf_klass,
  1789                                RegisterConstant itable_index,
  1790                                Register method_result,
  1791                                Register scan_temp,
  1792                                Label& no_such_interface);
  1794   //----
  1795   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
  1797   // Debugging
  1799   // only if +VerifyOops
  1800   void verify_oop(Register reg, const char* s = "broken oop");
  1801   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
  1803   // only if +VerifyFPU
  1804   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  1806   // prints msg, dumps registers and stops execution
  1807   void stop(const char* msg);
  1809   // prints msg and continues
  1810   void warn(const char* msg);
  1812   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  1813   static void debug64(char* msg, int64_t pc, int64_t regs[]);
  1815   void os_breakpoint();
  1817   void untested()                                { stop("untested"); }
  1819   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }
  1821   void should_not_reach_here()                   { stop("should not reach here"); }
  1823   void print_CPU_state();
  1825   // Stack overflow checking
  1826   void bang_stack_with_offset(int offset) {
  1827     // stack grows down, caller passes positive offset
  1828     assert(offset > 0, "must bang with negative offset");
  1829     movl(Address(rsp, (-offset)), rax);
  1832   // Writes to stack successive pages until offset reached to check for
  1833   // stack overflow + shadow pages.  Also, clobbers tmp
  1834   void bang_stack_size(Register size, Register tmp);
  1836   virtual RegisterConstant delayed_value(intptr_t* delayed_value_addr,
  1837                                          Register tmp,
  1838                                          int offset);
  1840   // Support for serializing memory accesses between threads
  1841   void serialize_memory(Register thread, Register tmp);
  1843   void verify_tlab();
  1845   // Biased locking support
  1846   // lock_reg and obj_reg must be loaded up with the appropriate values.
  1847   // swap_reg must be rax, and is killed.
  1848   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  1849   // be killed; if not supplied, push/pop will be used internally to
  1850   // allocate a temporary (inefficient, avoid if possible).
  1851   // Optional slow case is for implementations (interpreter and C1) which branch to
  1852   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  1853   // Returns offset of first potentially-faulting instruction for null
  1854   // check info (currently consumed only by C1). If
  1855   // swap_reg_contains_mark is true then returns -1 as it is assumed
  1856   // the calling code has already passed any potential faults.
  1857   int biased_locking_enter(Register lock_reg, Register obj_reg,
  1858                            Register swap_reg, Register tmp_reg,
  1859                            bool swap_reg_contains_mark,
  1860                            Label& done, Label* slow_case = NULL,
  1861                            BiasedLockingCounters* counters = NULL);
  1862   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
  1865   Condition negate_condition(Condition cond);
  1867   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  1868   // operands. In general the names are modified to avoid hiding the instruction in Assembler
  1869   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  1870   // here in MacroAssembler. The major exception to this rule is call
  1872   // Arithmetics
  1875   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  1876   void addptr(Address dst, Register src);
  1878   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  1879   void addptr(Register dst, int32_t src);
  1880   void addptr(Register dst, Register src);
  1882   void andptr(Register dst, int32_t src);
  1883   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
  1885   void cmp8(AddressLiteral src1, int imm);
  1887   // renamed to drag out the casting of address to int32_t/intptr_t
  1888   void cmp32(Register src1, int32_t imm);
  1890   void cmp32(AddressLiteral src1, int32_t imm);
  1891   // compare reg - mem, or reg - &mem
  1892   void cmp32(Register src1, AddressLiteral src2);
  1894   void cmp32(Register src1, Address src2);
  1896 #ifndef _LP64
  1897   void cmpoop(Address dst, jobject obj);
  1898   void cmpoop(Register dst, jobject obj);
  1899 #endif // _LP64
  1901   // NOTE src2 must be the lval. This is NOT an mem-mem compare
  1902   void cmpptr(Address src1, AddressLiteral src2);
  1904   void cmpptr(Register src1, AddressLiteral src2);
  1906   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1907   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1908   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1910   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1911   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1913   // cmp64 to avoild hiding cmpq
  1914   void cmp64(Register src1, AddressLiteral src);
  1916   void cmpxchgptr(Register reg, Address adr);
  1918   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
  1921   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
  1924   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
  1926   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
  1928   void shlptr(Register dst, int32_t shift);
  1929   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
  1931   void shrptr(Register dst, int32_t shift);
  1932   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
  1934   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  1935   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
  1937   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  1939   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  1940   void subptr(Register dst, int32_t src);
  1941   void subptr(Register dst, Register src);
  1944   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  1945   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  1947   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  1948   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  1950   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
  1954   // Helper functions for statistics gathering.
  1955   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  1956   void cond_inc32(Condition cond, AddressLiteral counter_addr);
  1957   // Unconditional atomic increment.
  1958   void atomic_incl(AddressLiteral counter_addr);
  1960   void lea(Register dst, AddressLiteral adr);
  1961   void lea(Address dst, AddressLiteral adr);
  1962   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
  1964   void leal32(Register dst, Address src) { leal(dst, src); }
  1966   void test32(Register src1, AddressLiteral src2);
  1968   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  1969   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  1970   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  1972   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  1973   void testptr(Register src1, Register src2);
  1975   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  1976   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  1978   // Calls
  1980   void call(Label& L, relocInfo::relocType rtype);
  1981   void call(Register entry);
  1983   // NOTE: this call tranfers to the effective address of entry NOT
  1984   // the address contained by entry. This is because this is more natural
  1985   // for jumps/calls.
  1986   void call(AddressLiteral entry);
  1988   // Jumps
  1990   // NOTE: these jumps tranfer to the effective address of dst NOT
  1991   // the address contained by dst. This is because this is more natural
  1992   // for jumps/calls.
  1993   void jump(AddressLiteral dst);
  1994   void jump_cc(Condition cc, AddressLiteral dst);
  1996   // 32bit can do a case table jump in one instruction but we no longer allow the base
  1997   // to be installed in the Address class. This jump will tranfers to the address
  1998   // contained in the location described by entry (not the address of entry)
  1999   void jump(ArrayAddress entry);
  2001   // Floating
  2003   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  2004   void andpd(XMMRegister dst, AddressLiteral src);
  2006   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  2007   void comiss(XMMRegister dst, AddressLiteral src);
  2009   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  2010   void comisd(XMMRegister dst, AddressLiteral src);
  2012   void fldcw(Address src) { Assembler::fldcw(src); }
  2013   void fldcw(AddressLiteral src);
  2015   void fld_s(int index)   { Assembler::fld_s(index); }
  2016   void fld_s(Address src) { Assembler::fld_s(src); }
  2017   void fld_s(AddressLiteral src);
  2019   void fld_d(Address src) { Assembler::fld_d(src); }
  2020   void fld_d(AddressLiteral src);
  2022   void fld_x(Address src) { Assembler::fld_x(src); }
  2023   void fld_x(AddressLiteral src);
  2025   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  2026   void ldmxcsr(AddressLiteral src);
  2028 private:
  2029   // these are private because users should be doing movflt/movdbl
  2031   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  2032   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  2033   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  2034   void movss(XMMRegister dst, AddressLiteral src);
  2036   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
  2037   void movlpd(XMMRegister dst, AddressLiteral src);
  2039 public:
  2041   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  2042   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  2043   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  2044   void movsd(XMMRegister dst, AddressLiteral src);
  2046   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  2047   void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
  2048   void ucomiss(XMMRegister dst, AddressLiteral src);
  2050   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  2051   void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
  2052   void ucomisd(XMMRegister dst, AddressLiteral src);
  2054   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  2055   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  2056   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  2057   void xorpd(XMMRegister dst, AddressLiteral src);
  2059   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  2060   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  2061   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  2062   void xorps(XMMRegister dst, AddressLiteral src);
  2064   // Data
  2066   void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2068   void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2069   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  2071   void movoop(Register dst, jobject obj);
  2072   void movoop(Address dst, jobject obj);
  2074   void movptr(ArrayAddress dst, Register src);
  2075   // can this do an lea?
  2076   void movptr(Register dst, ArrayAddress src);
  2078   void movptr(Register dst, Address src);
  2080   void movptr(Register dst, AddressLiteral src);
  2082   void movptr(Register dst, intptr_t src);
  2083   void movptr(Register dst, Register src);
  2084   void movptr(Address dst, intptr_t src);
  2086   void movptr(Address dst, Register src);
  2088 #ifdef _LP64
  2089   // Generally the next two are only used for moving NULL
  2090   // Although there are situations in initializing the mark word where
  2091   // they could be used. They are dangerous.
  2093   // They only exist on LP64 so that int32_t and intptr_t are not the same
  2094   // and we have ambiguous declarations.
  2096   void movptr(Address dst, int32_t imm32);
  2097   void movptr(Register dst, int32_t imm32);
  2098 #endif // _LP64
  2100   // to avoid hiding movl
  2101   void mov32(AddressLiteral dst, Register src);
  2102   void mov32(Register dst, AddressLiteral src);
  2104   // to avoid hiding movb
  2105   void movbyte(ArrayAddress dst, int src);
  2107   // Can push value or effective address
  2108   void pushptr(AddressLiteral src);
  2110   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  2111   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  2113   void pushoop(jobject obj);
  2115   // sign extend as need a l to ptr sized element
  2116   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  2117   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  2120 #undef VIRTUAL
  2122 };
  2124 /**
  2125  * class SkipIfEqual:
  2127  * Instantiating this class will result in assembly code being output that will
  2128  * jump around any code emitted between the creation of the instance and it's
  2129  * automatic destruction at the end of a scope block, depending on the value of
  2130  * the flag passed to the constructor, which will be checked at run-time.
  2131  */
  2132 class SkipIfEqual {
  2133  private:
  2134   MacroAssembler* _masm;
  2135   Label _label;
  2137  public:
  2138    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  2139    ~SkipIfEqual();
  2140 };
  2142 #ifdef ASSERT
  2143 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  2144 #endif

mercurial