src/cpu/x86/vm/x86_32.ad

Fri, 19 Feb 2010 10:04:16 -0800

author
kvn
date
Fri, 19 Feb 2010 10:04:16 -0800
changeset 1709
2883969d09e7
parent 1644
e8443c7be117
child 1831
d7f654633cfe
permissions
-rw-r--r--

6910664: C2: java/util/Arrays/Sorting.java fails with DeoptimizeALot flag
Summary: Matcher::float_in_double should be true only when FPU is used for floats.
Reviewed-by: never, twisti

     1 //
     2 // Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // X86 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
    64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
    67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
    68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
    69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
    70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
    71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
    72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
    73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
    74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
    75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
    77 // Special Registers
    78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
    80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
    81 // allocator, and only shows up in the encodings.
    82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
    84 // Ok so here's the trick FPR1 is really st(0) except in the midst
    85 // of emission of assembly for a machnode. During the emission the fpu stack
    86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
    87 // the stack will not have this element so FPR1 == st(0) from the
    88 // oopMap viewpoint. This same weirdness with numbering causes
    89 // instruction encoding to have to play games with the register
    90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
    91 // where it does flt->flt moves to see an example
    92 //
    93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
    94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
    95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
    96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
    97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
    98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
    99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
   100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
   101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
   102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
   103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
   104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
   105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
   106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
   108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
   109 // Word a in each register holds a Float, words ab hold a Double.
   110 // We currently do not use the SIMD capabilities, so registers cd
   111 // are unused at the moment.
   112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
   113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
   114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
   115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
   116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
   117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
   118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
   119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
   120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
   121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
   122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
   123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
   124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
   125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
   126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
   127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
   129 // Specify priority of register selection within phases of register
   130 // allocation.  Highest priority is first.  A useful heuristic is to
   131 // give registers a low priority when they are required by machine
   132 // instructions, like EAX and EDX.  Registers which are used as
   133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
   134 // For the Intel integer registers, the equivalent Long pairs are
   135 // EDX:EAX, EBX:ECX, and EDI:EBP.
   136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
   137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
   138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
   139                     FPR6L, FPR6H, FPR7L, FPR7H );
   141 alloc_class chunk1( XMM0a, XMM0b,
   142                     XMM1a, XMM1b,
   143                     XMM2a, XMM2b,
   144                     XMM3a, XMM3b,
   145                     XMM4a, XMM4b,
   146                     XMM5a, XMM5b,
   147                     XMM6a, XMM6b,
   148                     XMM7a, XMM7b, EFLAGS);
   151 //----------Architecture Description Register Classes--------------------------
   152 // Several register classes are automatically defined based upon information in
   153 // this architecture description.
   154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   158 //
   159 // Class for all registers
   160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
   161 // Class for general registers
   162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
   163 // Class for general registers which may be used for implicit null checks on win95
   164 // Also safe for use by tailjump. We don't want to allocate in rbp,
   165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
   166 // Class of "X" registers
   167 reg_class x_reg(EBX, ECX, EDX, EAX);
   168 // Class of registers that can appear in an address with no offset.
   169 // EBP and ESP require an extra instruction byte for zero offset.
   170 // Used in fast-unlock
   171 reg_class p_reg(EDX, EDI, ESI, EBX);
   172 // Class for general registers not including ECX
   173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
   174 // Class for general registers not including EAX
   175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
   176 // Class for general registers not including EAX or EBX.
   177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
   178 // Class of EAX (for multiply and divide operations)
   179 reg_class eax_reg(EAX);
   180 // Class of EBX (for atomic add)
   181 reg_class ebx_reg(EBX);
   182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
   183 reg_class ecx_reg(ECX);
   184 // Class of EDX (for multiply and divide operations)
   185 reg_class edx_reg(EDX);
   186 // Class of EDI (for synchronization)
   187 reg_class edi_reg(EDI);
   188 // Class of ESI (for synchronization)
   189 reg_class esi_reg(ESI);
   190 // Singleton class for interpreter's stack pointer
   191 reg_class ebp_reg(EBP);
   192 // Singleton class for stack pointer
   193 reg_class sp_reg(ESP);
   194 // Singleton class for instruction pointer
   195 // reg_class ip_reg(EIP);
   196 // Singleton class for condition codes
   197 reg_class int_flags(EFLAGS);
   198 // Class of integer register pairs
   199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
   200 // Class of integer register pairs that aligns with calling convention
   201 reg_class eadx_reg( EAX,EDX );
   202 reg_class ebcx_reg( ECX,EBX );
   203 // Not AX or DX, used in divides
   204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
   206 // Floating point registers.  Notice FPR0 is not a choice.
   207 // FPR0 is not ever allocated; we use clever encodings to fake
   208 // a 2-address instructions out of Intels FP stack.
   209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
   211 // make a register class for SSE registers
   212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
   214 // make a double register class for SSE2 registers
   215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
   216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
   218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
   219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
   220                    FPR7L,FPR7H );
   222 reg_class flt_reg0( FPR1L );
   223 reg_class dbl_reg0( FPR1L,FPR1H );
   224 reg_class dbl_reg1( FPR2L,FPR2H );
   225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
   226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
   228 // XMM6 and XMM7 could be used as temporary registers for long, float and
   229 // double values for SSE2.
   230 reg_class xdb_reg6( XMM6a,XMM6b );
   231 reg_class xdb_reg7( XMM7a,XMM7b );
   232 %}
   235 //----------SOURCE BLOCK-------------------------------------------------------
   236 // This is a block of C++ code which provides values, functions, and
   237 // definitions necessary in the rest of the architecture description
   238 source_hpp %{
   239 // Must be visible to the DFA in dfa_x86_32.cpp
   240 extern bool is_operand_hi32_zero(Node* n);
   241 %}
   243 source %{
   244 #define   RELOC_IMM32    Assembler::imm_operand
   245 #define   RELOC_DISP32   Assembler::disp32_operand
   247 #define __ _masm.
   249 // How to find the high register of a Long pair, given the low register
   250 #define   HIGH_FROM_LOW(x) ((x)+2)
   252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
   253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
   254 // fast versions of NegF/NegD and AbsF/AbsD.
   256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
   257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
   258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
   259   // of 128-bits operands for SSE instructions.
   260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
   261   // Store the value to a 128-bits operand.
   262   operand[0] = lo;
   263   operand[1] = hi;
   264   return operand;
   265 }
   267 // Buffer for 128-bits masks used by SSE instructions.
   268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
   270 // Static initialization during VM startup.
   271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
   272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
   273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
   274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
   276 // Offset hacking within calls.
   277 static int pre_call_FPU_size() {
   278   if (Compile::current()->in_24_bit_fp_mode())
   279     return 6; // fldcw
   280   return 0;
   281 }
   283 static int preserve_SP_size() {
   284   return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
   285 }
   287 // !!!!! Special hack to get all type of calls to specify the byte offset
   288 //       from the start of the call to the point where the return address
   289 //       will point.
   290 int MachCallStaticJavaNode::ret_addr_offset() {
   291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
   292   if (_method_handle_invoke)
   293     offset += preserve_SP_size();
   294   return offset;
   295 }
   297 int MachCallDynamicJavaNode::ret_addr_offset() {
   298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
   299 }
   301 static int sizeof_FFree_Float_Stack_All = -1;
   303 int MachCallRuntimeNode::ret_addr_offset() {
   304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
   305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
   306 }
   308 // Indicate if the safepoint node needs the polling page as an input.
   309 // Since x86 does have absolute addressing, it doesn't.
   310 bool SafePointNode::needs_polling_address_input() {
   311   return false;
   312 }
   314 //
   315 // Compute padding required for nodes which need alignment
   316 //
   318 // The address of the call instruction needs to be 4-byte aligned to
   319 // ensure that it does not span a cache line so that it can be patched.
   320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
   321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   322   current_offset += 1;      // skip call opcode byte
   323   return round_to(current_offset, alignment_required()) - current_offset;
   324 }
   326 // The address of the call instruction needs to be 4-byte aligned to
   327 // ensure that it does not span a cache line so that it can be patched.
   328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
   329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
   331   current_offset += 1;      // skip call opcode byte
   332   return round_to(current_offset, alignment_required()) - current_offset;
   333 }
   335 // The address of the call instruction needs to be 4-byte aligned to
   336 // ensure that it does not span a cache line so that it can be patched.
   337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
   338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
   339   current_offset += 5;      // skip MOV instruction
   340   current_offset += 1;      // skip call opcode byte
   341   return round_to(current_offset, alignment_required()) - current_offset;
   342 }
   344 #ifndef PRODUCT
   345 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
   346   st->print("INT3");
   347 }
   348 #endif
   350 // EMIT_RM()
   351 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
   352   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
   353   *(cbuf.code_end()) = c;
   354   cbuf.set_code_end(cbuf.code_end() + 1);
   355 }
   357 // EMIT_CC()
   358 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
   359   unsigned char c = (unsigned char)( f1 | f2 );
   360   *(cbuf.code_end()) = c;
   361   cbuf.set_code_end(cbuf.code_end() + 1);
   362 }
   364 // EMIT_OPCODE()
   365 void emit_opcode(CodeBuffer &cbuf, int code) {
   366   *(cbuf.code_end()) = (unsigned char)code;
   367   cbuf.set_code_end(cbuf.code_end() + 1);
   368 }
   370 // EMIT_OPCODE() w/ relocation information
   371 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
   372   cbuf.relocate(cbuf.inst_mark() + offset, reloc);
   373   emit_opcode(cbuf, code);
   374 }
   376 // EMIT_D8()
   377 void emit_d8(CodeBuffer &cbuf, int d8) {
   378   *(cbuf.code_end()) = (unsigned char)d8;
   379   cbuf.set_code_end(cbuf.code_end() + 1);
   380 }
   382 // EMIT_D16()
   383 void emit_d16(CodeBuffer &cbuf, int d16) {
   384   *((short *)(cbuf.code_end())) = d16;
   385   cbuf.set_code_end(cbuf.code_end() + 2);
   386 }
   388 // EMIT_D32()
   389 void emit_d32(CodeBuffer &cbuf, int d32) {
   390   *((int *)(cbuf.code_end())) = d32;
   391   cbuf.set_code_end(cbuf.code_end() + 4);
   392 }
   394 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   395 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
   396         int format) {
   397   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   399   *((int *)(cbuf.code_end())) = d32;
   400   cbuf.set_code_end(cbuf.code_end() + 4);
   401 }
   403 // emit 32 bit value and construct relocation entry from RelocationHolder
   404 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
   405         int format) {
   406 #ifdef ASSERT
   407   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
   408     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
   409   }
   410 #endif
   411   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   413   *((int *)(cbuf.code_end())) = d32;
   414   cbuf.set_code_end(cbuf.code_end() + 4);
   415 }
   417 // Access stack slot for load or store
   418 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
   419   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
   420   if( -128 <= disp && disp <= 127 ) {
   421     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
   422     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   423     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
   424   } else {
   425     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
   426     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
   427     emit_d32(cbuf, disp);     // Displacement  // R/M byte
   428   }
   429 }
   431    // eRegI ereg, memory mem) %{    // emit_reg_mem
   432 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
   433   // There is no index & no scale, use form without SIB byte
   434   if ((index == 0x4) &&
   435       (scale == 0) && (base != ESP_enc)) {
   436     // If no displacement, mode is 0x0; unless base is [EBP]
   437     if ( (displace == 0) && (base != EBP_enc) ) {
   438       emit_rm(cbuf, 0x0, reg_encoding, base);
   439     }
   440     else {                    // If 8-bit displacement, mode 0x1
   441       if ((displace >= -128) && (displace <= 127)
   442           && !(displace_is_oop) ) {
   443         emit_rm(cbuf, 0x1, reg_encoding, base);
   444         emit_d8(cbuf, displace);
   445       }
   446       else {                  // If 32-bit displacement
   447         if (base == -1) { // Special flag for absolute address
   448           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
   449           // (manual lies; no SIB needed here)
   450           if ( displace_is_oop ) {
   451             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   452           } else {
   453             emit_d32      (cbuf, displace);
   454           }
   455         }
   456         else {                // Normal base + offset
   457           emit_rm(cbuf, 0x2, reg_encoding, base);
   458           if ( displace_is_oop ) {
   459             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   460           } else {
   461             emit_d32      (cbuf, displace);
   462           }
   463         }
   464       }
   465     }
   466   }
   467   else {                      // Else, encode with the SIB byte
   468     // If no displacement, mode is 0x0; unless base is [EBP]
   469     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
   470       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
   471       emit_rm(cbuf, scale, index, base);
   472     }
   473     else {                    // If 8-bit displacement, mode 0x1
   474       if ((displace >= -128) && (displace <= 127)
   475           && !(displace_is_oop) ) {
   476         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
   477         emit_rm(cbuf, scale, index, base);
   478         emit_d8(cbuf, displace);
   479       }
   480       else {                  // If 32-bit displacement
   481         if (base == 0x04 ) {
   482           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   483           emit_rm(cbuf, scale, index, 0x04);
   484         } else {
   485           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
   486           emit_rm(cbuf, scale, index, base);
   487         }
   488         if ( displace_is_oop ) {
   489           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
   490         } else {
   491           emit_d32      (cbuf, displace);
   492         }
   493       }
   494     }
   495   }
   496 }
   499 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   500   if( dst_encoding == src_encoding ) {
   501     // reg-reg copy, use an empty encoding
   502   } else {
   503     emit_opcode( cbuf, 0x8B );
   504     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
   505   }
   506 }
   508 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   509   if( dst_encoding == src_encoding ) {
   510     // reg-reg copy, use an empty encoding
   511   } else {
   512     MacroAssembler _masm(&cbuf);
   514     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   515   }
   516 }
   519 //=============================================================================
   520 #ifndef PRODUCT
   521 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   522   Compile* C = ra_->C;
   523   if( C->in_24_bit_fp_mode() ) {
   524     st->print("FLDCW  24 bit fpu control word");
   525     st->print_cr(""); st->print("\t");
   526   }
   528   int framesize = C->frame_slots() << LogBytesPerInt;
   529   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   530   // Remove two words for return addr and rbp,
   531   framesize -= 2*wordSize;
   533   // Calls to C2R adapters often do not accept exceptional returns.
   534   // We require that their callers must bang for them.  But be careful, because
   535   // some VM calls (such as call site linkage) can use several kilobytes of
   536   // stack.  But the stack safety zone should account for that.
   537   // See bugs 4446381, 4468289, 4497237.
   538   if (C->need_stack_bang(framesize)) {
   539     st->print_cr("# stack bang"); st->print("\t");
   540   }
   541   st->print_cr("PUSHL  EBP"); st->print("\t");
   543   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   544     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
   545     st->print_cr(""); st->print("\t");
   546     framesize -= wordSize;
   547   }
   549   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   550     if (framesize) {
   551       st->print("SUB    ESP,%d\t# Create frame",framesize);
   552     }
   553   } else {
   554     st->print("SUB    ESP,%d\t# Create frame",framesize);
   555   }
   556 }
   557 #endif
   560 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   561   Compile* C = ra_->C;
   563   if (UseSSE >= 2 && VerifyFPU) {
   564     MacroAssembler masm(&cbuf);
   565     masm.verify_FPU(0, "FPU stack must be clean on entry");
   566   }
   568   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   569   // NativeJump::patch_verified_entry will be able to patch out the entry
   570   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   571   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   572   // 6 bytes. So if we don't do the fldcw or the push then we must
   573   // use the 6 byte frame allocation even if we have no frame. :-(
   574   // If method sets FPU control word do it now
   575   if( C->in_24_bit_fp_mode() ) {
   576     MacroAssembler masm(&cbuf);
   577     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   578   }
   580   int framesize = C->frame_slots() << LogBytesPerInt;
   581   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   582   // Remove two words for return addr and rbp,
   583   framesize -= 2*wordSize;
   585   // Calls to C2R adapters often do not accept exceptional returns.
   586   // We require that their callers must bang for them.  But be careful, because
   587   // some VM calls (such as call site linkage) can use several kilobytes of
   588   // stack.  But the stack safety zone should account for that.
   589   // See bugs 4446381, 4468289, 4497237.
   590   if (C->need_stack_bang(framesize)) {
   591     MacroAssembler masm(&cbuf);
   592     masm.generate_stack_overflow_check(framesize);
   593   }
   595   // We always push rbp, so that on return to interpreter rbp, will be
   596   // restored correctly and we can correct the stack.
   597   emit_opcode(cbuf, 0x50 | EBP_enc);
   599   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
   600     emit_opcode(cbuf, 0x68); // push 0xbadb100d
   601     emit_d32(cbuf, 0xbadb100d);
   602     framesize -= wordSize;
   603   }
   605   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
   606     if (framesize) {
   607       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   608       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   609       emit_d8(cbuf, framesize);
   610     }
   611   } else {
   612     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   613     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
   614     emit_d32(cbuf, framesize);
   615   }
   616   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
   618 #ifdef ASSERT
   619   if (VerifyStackAtCalls) {
   620     Label L;
   621     MacroAssembler masm(&cbuf);
   622     masm.push(rax);
   623     masm.mov(rax, rsp);
   624     masm.andptr(rax, StackAlignmentInBytes-1);
   625     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   626     masm.pop(rax);
   627     masm.jcc(Assembler::equal, L);
   628     masm.stop("Stack is not properly aligned!");
   629     masm.bind(L);
   630   }
   631 #endif
   633 }
   635 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
   636   return MachNode::size(ra_); // too many variables; just compute it the hard way
   637 }
   639 int MachPrologNode::reloc() const {
   640   return 0; // a large enough number
   641 }
   643 //=============================================================================
   644 #ifndef PRODUCT
   645 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
   646   Compile *C = ra_->C;
   647   int framesize = C->frame_slots() << LogBytesPerInt;
   648   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   649   // Remove two words for return addr and rbp,
   650   framesize -= 2*wordSize;
   652   if( C->in_24_bit_fp_mode() ) {
   653     st->print("FLDCW  standard control word");
   654     st->cr(); st->print("\t");
   655   }
   656   if( framesize ) {
   657     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
   658     st->cr(); st->print("\t");
   659   }
   660   st->print_cr("POPL   EBP"); st->print("\t");
   661   if( do_polling() && C->is_method_compilation() ) {
   662     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
   663     st->cr(); st->print("\t");
   664   }
   665 }
   666 #endif
   668 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   669   Compile *C = ra_->C;
   671   // If method set FPU control word, restore to standard control word
   672   if( C->in_24_bit_fp_mode() ) {
   673     MacroAssembler masm(&cbuf);
   674     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   675   }
   677   int framesize = C->frame_slots() << LogBytesPerInt;
   678   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   679   // Remove two words for return addr and rbp,
   680   framesize -= 2*wordSize;
   682   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
   684   if( framesize >= 128 ) {
   685     emit_opcode(cbuf, 0x81); // add  SP, #framesize
   686     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   687     emit_d32(cbuf, framesize);
   688   }
   689   else if( framesize ) {
   690     emit_opcode(cbuf, 0x83); // add  SP, #framesize
   691     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
   692     emit_d8(cbuf, framesize);
   693   }
   695   emit_opcode(cbuf, 0x58 | EBP_enc);
   697   if( do_polling() && C->is_method_compilation() ) {
   698     cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
   699     emit_opcode(cbuf,0x85);
   700     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
   701     emit_d32(cbuf, (intptr_t)os::get_polling_page());
   702   }
   703 }
   705 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
   706   Compile *C = ra_->C;
   707   // If method set FPU control word, restore to standard control word
   708   int size = C->in_24_bit_fp_mode() ? 6 : 0;
   709   if( do_polling() && C->is_method_compilation() ) size += 6;
   711   int framesize = C->frame_slots() << LogBytesPerInt;
   712   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   713   // Remove two words for return addr and rbp,
   714   framesize -= 2*wordSize;
   716   size++; // popl rbp,
   718   if( framesize >= 128 ) {
   719     size += 6;
   720   } else {
   721     size += framesize ? 3 : 0;
   722   }
   723   return size;
   724 }
   726 int MachEpilogNode::reloc() const {
   727   return 0; // a large enough number
   728 }
   730 const Pipeline * MachEpilogNode::pipeline() const {
   731   return MachNode::pipeline_class();
   732 }
   734 int MachEpilogNode::safepoint_offset() const { return 0; }
   736 //=============================================================================
   738 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
   739 static enum RC rc_class( OptoReg::Name reg ) {
   741   if( !OptoReg::is_valid(reg)  ) return rc_bad;
   742   if (OptoReg::is_stack(reg)) return rc_stack;
   744   VMReg r = OptoReg::as_VMReg(reg);
   745   if (r->is_Register()) return rc_int;
   746   if (r->is_FloatRegister()) {
   747     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
   748     return rc_float;
   749   }
   750   assert(r->is_XMMRegister(), "must be");
   751   return rc_xmm;
   752 }
   754 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
   755                         int opcode, const char *op_str, int size, outputStream* st ) {
   756   if( cbuf ) {
   757     emit_opcode  (*cbuf, opcode );
   758     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
   759 #ifndef PRODUCT
   760   } else if( !do_size ) {
   761     if( size != 0 ) st->print("\n\t");
   762     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
   763       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
   764       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
   765     } else { // FLD, FST, PUSH, POP
   766       st->print("%s [ESP + #%d]",op_str,offset);
   767     }
   768 #endif
   769   }
   770   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   771   return size+3+offset_size;
   772 }
   774 // Helper for XMM registers.  Extra opcode bits, limited syntax.
   775 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
   776                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
   777   if( cbuf ) {
   778     if( reg_lo+1 == reg_hi ) { // double move?
   779       if( is_load && !UseXmmLoadAndClearUpper )
   780         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
   781       else
   782         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
   783     } else {
   784       emit_opcode(*cbuf, 0xF3 );
   785     }
   786     emit_opcode(*cbuf, 0x0F );
   787     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
   788       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
   789     else
   790       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
   791     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
   792 #ifndef PRODUCT
   793   } else if( !do_size ) {
   794     if( size != 0 ) st->print("\n\t");
   795     if( reg_lo+1 == reg_hi ) { // double move?
   796       if( is_load ) st->print("%s %s,[ESP + #%d]",
   797                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
   798                                Matcher::regName[reg_lo], offset);
   799       else          st->print("MOVSD  [ESP + #%d],%s",
   800                                offset, Matcher::regName[reg_lo]);
   801     } else {
   802       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
   803                                Matcher::regName[reg_lo], offset);
   804       else          st->print("MOVSS  [ESP + #%d],%s",
   805                                offset, Matcher::regName[reg_lo]);
   806     }
   807 #endif
   808   }
   809   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
   810   return size+5+offset_size;
   811 }
   814 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
   815                             int src_hi, int dst_hi, int size, outputStream* st ) {
   816   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
   817     if( cbuf ) {
   818       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
   819         emit_opcode(*cbuf, 0x66 );
   820       }
   821       emit_opcode(*cbuf, 0x0F );
   822       emit_opcode(*cbuf, 0x28 );
   823       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   824 #ifndef PRODUCT
   825     } else if( !do_size ) {
   826       if( size != 0 ) st->print("\n\t");
   827       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   828         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   829       } else {
   830         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   831       }
   832 #endif
   833     }
   834     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
   835   } else {
   836     if( cbuf ) {
   837       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
   838       emit_opcode(*cbuf, 0x0F );
   839       emit_opcode(*cbuf, 0x10 );
   840       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
   841 #ifndef PRODUCT
   842     } else if( !do_size ) {
   843       if( size != 0 ) st->print("\n\t");
   844       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
   845         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   846       } else {
   847         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
   848       }
   849 #endif
   850     }
   851     return size+4;
   852   }
   853 }
   855 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
   856   if( cbuf ) {
   857     emit_opcode(*cbuf, 0x8B );
   858     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
   859 #ifndef PRODUCT
   860   } else if( !do_size ) {
   861     if( size != 0 ) st->print("\n\t");
   862     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
   863 #endif
   864   }
   865   return size+2;
   866 }
   868 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
   869                                  int offset, int size, outputStream* st ) {
   870   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
   871     if( cbuf ) {
   872       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
   873       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
   874 #ifndef PRODUCT
   875     } else if( !do_size ) {
   876       if( size != 0 ) st->print("\n\t");
   877       st->print("FLD    %s",Matcher::regName[src_lo]);
   878 #endif
   879     }
   880     size += 2;
   881   }
   883   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
   884   const char *op_str;
   885   int op;
   886   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
   887     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
   888     op = 0xDD;
   889   } else {                   // 32-bit store
   890     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
   891     op = 0xD9;
   892     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
   893   }
   895   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
   896 }
   898 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
   899   // Get registers to move
   900   OptoReg::Name src_second = ra_->get_reg_second(in(1));
   901   OptoReg::Name src_first = ra_->get_reg_first(in(1));
   902   OptoReg::Name dst_second = ra_->get_reg_second(this );
   903   OptoReg::Name dst_first = ra_->get_reg_first(this );
   905   enum RC src_second_rc = rc_class(src_second);
   906   enum RC src_first_rc = rc_class(src_first);
   907   enum RC dst_second_rc = rc_class(dst_second);
   908   enum RC dst_first_rc = rc_class(dst_first);
   910   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
   912   // Generate spill code!
   913   int size = 0;
   915   if( src_first == dst_first && src_second == dst_second )
   916     return size;            // Self copy, no move
   918   // --------------------------------------
   919   // Check for mem-mem move.  push/pop to move.
   920   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
   921     if( src_second == dst_first ) { // overlapping stack copy ranges
   922       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
   923       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   924       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   925       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
   926     }
   927     // move low bits
   928     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
   929     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
   930     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
   931       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
   932       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
   933     }
   934     return size;
   935   }
   937   // --------------------------------------
   938   // Check for integer reg-reg copy
   939   if( src_first_rc == rc_int && dst_first_rc == rc_int )
   940     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
   942   // Check for integer store
   943   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
   944     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
   946   // Check for integer load
   947   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
   948     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
   950   // --------------------------------------
   951   // Check for float reg-reg copy
   952   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
   953     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
   954             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
   955     if( cbuf ) {
   957       // Note the mucking with the register encode to compensate for the 0/1
   958       // indexing issue mentioned in a comment in the reg_def sections
   959       // for FPR registers many lines above here.
   961       if( src_first != FPR1L_num ) {
   962         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
   963         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
   964         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
   965         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
   966      } else {
   967         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
   968         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
   969      }
   970 #ifndef PRODUCT
   971     } else if( !do_size ) {
   972       if( size != 0 ) st->print("\n\t");
   973       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
   974       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
   975 #endif
   976     }
   977     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
   978   }
   980   // Check for float store
   981   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
   982     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
   983   }
   985   // Check for float load
   986   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
   987     int offset = ra_->reg2offset(src_first);
   988     const char *op_str;
   989     int op;
   990     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
   991       op_str = "FLD_D";
   992       op = 0xDD;
   993     } else {                   // 32-bit load
   994       op_str = "FLD_S";
   995       op = 0xD9;
   996       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
   997     }
   998     if( cbuf ) {
   999       emit_opcode  (*cbuf, op );
  1000       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
  1001       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
  1002       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
  1003 #ifndef PRODUCT
  1004     } else if( !do_size ) {
  1005       if( size != 0 ) st->print("\n\t");
  1006       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
  1007 #endif
  1009     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
  1010     return size + 3+offset_size+2;
  1013   // Check for xmm reg-reg copy
  1014   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
  1015     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
  1016             (src_first+1 == src_second && dst_first+1 == dst_second),
  1017             "no non-adjacent float-moves" );
  1018     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
  1021   // Check for xmm store
  1022   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
  1023     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
  1026   // Check for float xmm load
  1027   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
  1028     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
  1031   // Copy from float reg to xmm reg
  1032   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
  1033     // copy to the top of stack from floating point reg
  1034     // and use LEA to preserve flags
  1035     if( cbuf ) {
  1036       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
  1037       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1038       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1039       emit_d8(*cbuf,0xF8);
  1040 #ifndef PRODUCT
  1041     } else if( !do_size ) {
  1042       if( size != 0 ) st->print("\n\t");
  1043       st->print("LEA    ESP,[ESP-8]");
  1044 #endif
  1046     size += 4;
  1048     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
  1050     // Copy from the temp memory to the xmm reg.
  1051     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
  1053     if( cbuf ) {
  1054       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
  1055       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
  1056       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
  1057       emit_d8(*cbuf,0x08);
  1058 #ifndef PRODUCT
  1059     } else if( !do_size ) {
  1060       if( size != 0 ) st->print("\n\t");
  1061       st->print("LEA    ESP,[ESP+8]");
  1062 #endif
  1064     size += 4;
  1065     return size;
  1068   assert( size > 0, "missed a case" );
  1070   // --------------------------------------------------------------------
  1071   // Check for second bits still needing moving.
  1072   if( src_second == dst_second )
  1073     return size;               // Self copy; no move
  1074   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1076   // Check for second word int-int move
  1077   if( src_second_rc == rc_int && dst_second_rc == rc_int )
  1078     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
  1080   // Check for second word integer store
  1081   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1082     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
  1084   // Check for second word integer load
  1085   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1086     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
  1089   Unimplemented();
  1092 #ifndef PRODUCT
  1093 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1094   implementation( NULL, ra_, false, st );
  1096 #endif
  1098 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1099   implementation( &cbuf, ra_, false, NULL );
  1102 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1103   return implementation( NULL, ra_, true, NULL );
  1106 //=============================================================================
  1107 #ifndef PRODUCT
  1108 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
  1109   st->print("NOP \t# %d bytes pad for loops and calls", _count);
  1111 #endif
  1113 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1114   MacroAssembler _masm(&cbuf);
  1115   __ nop(_count);
  1118 uint MachNopNode::size(PhaseRegAlloc *) const {
  1119   return _count;
  1123 //=============================================================================
  1124 #ifndef PRODUCT
  1125 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1126   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1127   int reg = ra_->get_reg_first(this);
  1128   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
  1130 #endif
  1132 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1133   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1134   int reg = ra_->get_encode(this);
  1135   if( offset >= 128 ) {
  1136     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1137     emit_rm(cbuf, 0x2, reg, 0x04);
  1138     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1139     emit_d32(cbuf, offset);
  1141   else {
  1142     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
  1143     emit_rm(cbuf, 0x1, reg, 0x04);
  1144     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
  1145     emit_d8(cbuf, offset);
  1149 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1150   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1151   if( offset >= 128 ) {
  1152     return 7;
  1154   else {
  1155     return 4;
  1159 //=============================================================================
  1161 // emit call stub, compiled java to interpreter
  1162 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1163   // Stub is fixed up when the corresponding call is converted from calling
  1164   // compiled code to calling interpreted code.
  1165   // mov rbx,0
  1166   // jmp -1
  1168   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1170   // Note that the code buffer's inst_mark is always relative to insts.
  1171   // That's why we must use the macroassembler to generate a stub.
  1172   MacroAssembler _masm(&cbuf);
  1174   address base =
  1175   __ start_a_stub(Compile::MAX_stubs_size);
  1176   if (base == NULL)  return;  // CodeBuffer::expand failed
  1177   // static stub relocation stores the instruction address of the call
  1178   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
  1179   // static stub relocation also tags the methodOop in the code-stream.
  1180   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
  1181   // This is recognized as unresolved by relocs/nativeInst/ic code
  1182   __ jump(RuntimeAddress(__ pc()));
  1184   __ end_a_stub();
  1185   // Update current stubs pointer and restore code_end.
  1187 // size of call stub, compiled java to interpretor
  1188 uint size_java_to_interp() {
  1189   return 10;  // movl; jmp
  1191 // relocation entries for call stub, compiled java to interpretor
  1192 uint reloc_java_to_interp() {
  1193   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1196 //=============================================================================
  1197 #ifndef PRODUCT
  1198 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
  1199   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
  1200   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
  1201   st->print_cr("\tNOP");
  1202   st->print_cr("\tNOP");
  1203   if( !OptoBreakpoint )
  1204     st->print_cr("\tNOP");
  1206 #endif
  1208 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1209   MacroAssembler masm(&cbuf);
  1210 #ifdef ASSERT
  1211   uint code_size = cbuf.code_size();
  1212 #endif
  1213   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
  1214   masm.jump_cc(Assembler::notEqual,
  1215                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1216   /* WARNING these NOPs are critical so that verified entry point is properly
  1217      aligned for patching by NativeJump::patch_verified_entry() */
  1218   int nops_cnt = 2;
  1219   if( !OptoBreakpoint ) // Leave space for int3
  1220      nops_cnt += 1;
  1221   masm.nop(nops_cnt);
  1223   assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
  1226 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1227   return OptoBreakpoint ? 11 : 12;
  1231 //=============================================================================
  1232 uint size_exception_handler() {
  1233   // NativeCall instruction size is the same as NativeJump.
  1234   // exception handler starts out as jump and can be patched to
  1235   // a call be deoptimization.  (4932387)
  1236   // Note that this value is also credited (in output.cpp) to
  1237   // the size of the code section.
  1238   return NativeJump::instruction_size;
  1241 // Emit exception handler code.  Stuff framesize into a register
  1242 // and call a VM stub routine.
  1243 int emit_exception_handler(CodeBuffer& cbuf) {
  1245   // Note that the code buffer's inst_mark is always relative to insts.
  1246   // That's why we must use the macroassembler to generate a handler.
  1247   MacroAssembler _masm(&cbuf);
  1248   address base =
  1249   __ start_a_stub(size_exception_handler());
  1250   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1251   int offset = __ offset();
  1252   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
  1253   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1254   __ end_a_stub();
  1255   return offset;
  1258 uint size_deopt_handler() {
  1259   // NativeCall instruction size is the same as NativeJump.
  1260   // exception handler starts out as jump and can be patched to
  1261   // a call be deoptimization.  (4932387)
  1262   // Note that this value is also credited (in output.cpp) to
  1263   // the size of the code section.
  1264   return 5 + NativeJump::instruction_size; // pushl(); jmp;
  1267 // Emit deopt handler code.
  1268 int emit_deopt_handler(CodeBuffer& cbuf) {
  1270   // Note that the code buffer's inst_mark is always relative to insts.
  1271   // That's why we must use the macroassembler to generate a handler.
  1272   MacroAssembler _masm(&cbuf);
  1273   address base =
  1274   __ start_a_stub(size_exception_handler());
  1275   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1276   int offset = __ offset();
  1277   InternalAddress here(__ pc());
  1278   __ pushptr(here.addr());
  1280   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1281   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1282   __ end_a_stub();
  1283   return offset;
  1287 static void emit_double_constant(CodeBuffer& cbuf, double x) {
  1288   int mark = cbuf.insts()->mark_off();
  1289   MacroAssembler _masm(&cbuf);
  1290   address double_address = __ double_constant(x);
  1291   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1292   emit_d32_reloc(cbuf,
  1293                  (int)double_address,
  1294                  internal_word_Relocation::spec(double_address),
  1295                  RELOC_DISP32);
  1298 static void emit_float_constant(CodeBuffer& cbuf, float x) {
  1299   int mark = cbuf.insts()->mark_off();
  1300   MacroAssembler _masm(&cbuf);
  1301   address float_address = __ float_constant(x);
  1302   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1303   emit_d32_reloc(cbuf,
  1304                  (int)float_address,
  1305                  internal_word_Relocation::spec(float_address),
  1306                  RELOC_DISP32);
  1310 const bool Matcher::match_rule_supported(int opcode) {
  1311   if (!has_match_rule(opcode))
  1312     return false;
  1314   return true;  // Per default match rules are supported.
  1317 int Matcher::regnum_to_fpu_offset(int regnum) {
  1318   return regnum - 32; // The FP registers are in the second chunk
  1321 bool is_positive_zero_float(jfloat f) {
  1322   return jint_cast(f) == jint_cast(0.0F);
  1325 bool is_positive_one_float(jfloat f) {
  1326   return jint_cast(f) == jint_cast(1.0F);
  1329 bool is_positive_zero_double(jdouble d) {
  1330   return jlong_cast(d) == jlong_cast(0.0);
  1333 bool is_positive_one_double(jdouble d) {
  1334   return jlong_cast(d) == jlong_cast(1.0);
  1337 // This is UltraSparc specific, true just means we have fast l2f conversion
  1338 const bool Matcher::convL2FSupported(void) {
  1339   return true;
  1342 // Vector width in bytes
  1343 const uint Matcher::vector_width_in_bytes(void) {
  1344   return UseSSE >= 2 ? 8 : 0;
  1347 // Vector ideal reg
  1348 const uint Matcher::vector_ideal_reg(void) {
  1349   return Op_RegD;
  1352 // Is this branch offset short enough that a short branch can be used?
  1353 //
  1354 // NOTE: If the platform does not provide any short branch variants, then
  1355 //       this method should return false for offset 0.
  1356 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1357   // the short version of jmpConUCF2 contains multiple branches,
  1358   // making the reach slightly less
  1359   if (rule == jmpConUCF2_rule)
  1360     return (-126 <= offset && offset <= 125);
  1361   return (-128 <= offset && offset <= 127);
  1364 const bool Matcher::isSimpleConstant64(jlong value) {
  1365   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1366   return false;
  1369 // The ecx parameter to rep stos for the ClearArray node is in dwords.
  1370 const bool Matcher::init_array_count_is_in_bytes = false;
  1372 // Threshold size for cleararray.
  1373 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1375 // Should the Matcher clone shifts on addressing modes, expecting them to
  1376 // be subsumed into complex addressing expressions or compute them into
  1377 // registers?  True for Intel but false for most RISCs
  1378 const bool Matcher::clone_shift_expressions = true;
  1380 // Is it better to copy float constants, or load them directly from memory?
  1381 // Intel can load a float constant from a direct address, requiring no
  1382 // extra registers.  Most RISCs will have to materialize an address into a
  1383 // register first, so they would do better to copy the constant from stack.
  1384 const bool Matcher::rematerialize_float_constants = true;
  1386 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1387 // needed.  Else we split the double into 2 integer pieces and move it
  1388 // piece-by-piece.  Only happens when passing doubles into C code as the
  1389 // Java calling convention forces doubles to be aligned.
  1390 const bool Matcher::misaligned_doubles_ok = true;
  1393 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1394   // Get the memory operand from the node
  1395   uint numopnds = node->num_opnds();        // Virtual call for number of operands
  1396   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
  1397   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
  1398   uint opcnt     = 1;                 // First operand
  1399   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
  1400   while( idx >= skipped+num_edges ) {
  1401     skipped += num_edges;
  1402     opcnt++;                          // Bump operand count
  1403     assert( opcnt < numopnds, "Accessing non-existent operand" );
  1404     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
  1407   MachOper *memory = node->_opnds[opcnt];
  1408   MachOper *new_memory = NULL;
  1409   switch (memory->opcode()) {
  1410   case DIRECT:
  1411   case INDOFFSET32X:
  1412     // No transformation necessary.
  1413     return;
  1414   case INDIRECT:
  1415     new_memory = new (C) indirect_win95_safeOper( );
  1416     break;
  1417   case INDOFFSET8:
  1418     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
  1419     break;
  1420   case INDOFFSET32:
  1421     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
  1422     break;
  1423   case INDINDEXOFFSET:
  1424     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
  1425     break;
  1426   case INDINDEXSCALE:
  1427     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
  1428     break;
  1429   case INDINDEXSCALEOFFSET:
  1430     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
  1431     break;
  1432   case LOAD_LONG_INDIRECT:
  1433   case LOAD_LONG_INDOFFSET32:
  1434     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
  1435     return;
  1436   default:
  1437     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
  1438     return;
  1440   node->_opnds[opcnt] = new_memory;
  1443 // Advertise here if the CPU requires explicit rounding operations
  1444 // to implement the UseStrictFP mode.
  1445 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  1447 // Are floats conerted to double when stored to stack during deoptimization?
  1448 // On x32 it is stored with convertion only when FPU is used for floats.
  1449 bool Matcher::float_in_double() { return (UseSSE == 0); }
  1451 // Do ints take an entire long register or just half?
  1452 const bool Matcher::int_in_long = false;
  1454 // Return whether or not this register is ever used as an argument.  This
  1455 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1456 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1457 // arguments in those registers not be available to the callee.
  1458 bool Matcher::can_be_java_arg( int reg ) {
  1459   if(  reg == ECX_num   || reg == EDX_num   ) return true;
  1460   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
  1461   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
  1462   return false;
  1465 bool Matcher::is_spillable_arg( int reg ) {
  1466   return can_be_java_arg(reg);
  1469 // Register for DIVI projection of divmodI
  1470 RegMask Matcher::divI_proj_mask() {
  1471   return EAX_REG_mask;
  1474 // Register for MODI projection of divmodI
  1475 RegMask Matcher::modI_proj_mask() {
  1476   return EDX_REG_mask;
  1479 // Register for DIVL projection of divmodL
  1480 RegMask Matcher::divL_proj_mask() {
  1481   ShouldNotReachHere();
  1482   return RegMask();
  1485 // Register for MODL projection of divmodL
  1486 RegMask Matcher::modL_proj_mask() {
  1487   ShouldNotReachHere();
  1488   return RegMask();
  1491 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1492   return EBP_REG_mask;
  1495 // Returns true if the high 32 bits of the value is known to be zero.
  1496 bool is_operand_hi32_zero(Node* n) {
  1497   int opc = n->Opcode();
  1498   if (opc == Op_LoadUI2L) {
  1499     return true;
  1501   if (opc == Op_AndL) {
  1502     Node* o2 = n->in(2);
  1503     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
  1504       return true;
  1507   return false;
  1510 %}
  1512 //----------ENCODING BLOCK-----------------------------------------------------
  1513 // This block specifies the encoding classes used by the compiler to output
  1514 // byte streams.  Encoding classes generate functions which are called by
  1515 // Machine Instruction Nodes in order to generate the bit encoding of the
  1516 // instruction.  Operands specify their base encoding interface with the
  1517 // interface keyword.  There are currently supported four interfaces,
  1518 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1519 // operand to generate a function which returns its register number when
  1520 // queried.   CONST_INTER causes an operand to generate a function which
  1521 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1522 // operand to generate four functions which return the Base Register, the
  1523 // Index Register, the Scale Value, and the Offset Value of the operand when
  1524 // queried.  COND_INTER causes an operand to generate six functions which
  1525 // return the encoding code (ie - encoding bits for the instruction)
  1526 // associated with each basic boolean condition for a conditional instruction.
  1527 // Instructions specify two basic values for encoding.  They use the
  1528 // ins_encode keyword to specify their encoding class (which must be one of
  1529 // the class names specified in the encoding block), and they use the
  1530 // opcode keyword to specify, in order, their primary, secondary, and
  1531 // tertiary opcode.  Only the opcode sections which a particular instruction
  1532 // needs for encoding need to be specified.
  1533 encode %{
  1534   // Build emit functions for each basic byte or larger field in the intel
  1535   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
  1536   // code in the enc_class source block.  Emit functions will live in the
  1537   // main source block for now.  In future, we can generalize this by
  1538   // adding a syntax that specifies the sizes of fields in an order,
  1539   // so that the adlc can build the emit functions automagically
  1541   // Emit primary opcode
  1542   enc_class OpcP %{
  1543     emit_opcode(cbuf, $primary);
  1544   %}
  1546   // Emit secondary opcode
  1547   enc_class OpcS %{
  1548     emit_opcode(cbuf, $secondary);
  1549   %}
  1551   // Emit opcode directly
  1552   enc_class Opcode(immI d8) %{
  1553     emit_opcode(cbuf, $d8$$constant);
  1554   %}
  1556   enc_class SizePrefix %{
  1557     emit_opcode(cbuf,0x66);
  1558   %}
  1560   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  1561     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1562   %}
  1564   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
  1565     emit_opcode(cbuf,$opcode$$constant);
  1566     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  1567   %}
  1569   enc_class mov_r32_imm0( eRegI dst ) %{
  1570     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
  1571     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
  1572   %}
  1574   enc_class cdq_enc %{
  1575     // Full implementation of Java idiv and irem; checks for
  1576     // special case as described in JVM spec., p.243 & p.271.
  1577     //
  1578     //         normal case                           special case
  1579     //
  1580     // input : rax,: dividend                         min_int
  1581     //         reg: divisor                          -1
  1582     //
  1583     // output: rax,: quotient  (= rax, idiv reg)       min_int
  1584     //         rdx: remainder (= rax, irem reg)       0
  1585     //
  1586     //  Code sequnce:
  1587     //
  1588     //  81 F8 00 00 00 80    cmp         rax,80000000h
  1589     //  0F 85 0B 00 00 00    jne         normal_case
  1590     //  33 D2                xor         rdx,edx
  1591     //  83 F9 FF             cmp         rcx,0FFh
  1592     //  0F 84 03 00 00 00    je          done
  1593     //                  normal_case:
  1594     //  99                   cdq
  1595     //  F7 F9                idiv        rax,ecx
  1596     //                  done:
  1597     //
  1598     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
  1599     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
  1600     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
  1601     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
  1602     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
  1603     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
  1604     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
  1605     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
  1606     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
  1607     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
  1608     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
  1609     // normal_case:
  1610     emit_opcode(cbuf,0x99);                                         // cdq
  1611     // idiv (note: must be emitted by the user of this rule)
  1612     // normal:
  1613   %}
  1615   // Dense encoding for older common ops
  1616   enc_class Opc_plus(immI opcode, eRegI reg) %{
  1617     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
  1618   %}
  1621   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  1622   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
  1623     // Check for 8-bit immediate, and set sign extend bit in opcode
  1624     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1625       emit_opcode(cbuf, $primary | 0x02);
  1627     else {                          // If 32-bit immediate
  1628       emit_opcode(cbuf, $primary);
  1630   %}
  1632   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
  1633     // Emit primary opcode and set sign-extend bit
  1634     // Check for 8-bit immediate, and set sign extend bit in opcode
  1635     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1636       emit_opcode(cbuf, $primary | 0x02);    }
  1637     else {                          // If 32-bit immediate
  1638       emit_opcode(cbuf, $primary);
  1640     // Emit r/m byte with secondary opcode, after primary opcode.
  1641     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1642   %}
  1644   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
  1645     // Check for 8-bit immediate, and set sign extend bit in opcode
  1646     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
  1647       $$$emit8$imm$$constant;
  1649     else {                          // If 32-bit immediate
  1650       // Output immediate
  1651       $$$emit32$imm$$constant;
  1653   %}
  1655   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
  1656     // Emit primary opcode and set sign-extend bit
  1657     // Check for 8-bit immediate, and set sign extend bit in opcode
  1658     int con = (int)$imm$$constant; // Throw away top bits
  1659     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1660     // Emit r/m byte with secondary opcode, after primary opcode.
  1661     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1662     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1663     else                               emit_d32(cbuf,con);
  1664   %}
  1666   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
  1667     // Emit primary opcode and set sign-extend bit
  1668     // Check for 8-bit immediate, and set sign extend bit in opcode
  1669     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
  1670     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
  1671     // Emit r/m byte with tertiary opcode, after primary opcode.
  1672     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
  1673     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
  1674     else                               emit_d32(cbuf,con);
  1675   %}
  1677   enc_class Lbl (label labl) %{ // JMP, CALL
  1678     Label *l = $labl$$label;
  1679     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  1680   %}
  1682   enc_class LblShort (label labl) %{ // JMP, CALL
  1683     Label *l = $labl$$label;
  1684     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
  1685     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1686     emit_d8(cbuf, disp);
  1687   %}
  1689   enc_class OpcSReg (eRegI dst) %{    // BSWAP
  1690     emit_cc(cbuf, $secondary, $dst$$reg );
  1691   %}
  1693   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
  1694     int destlo = $dst$$reg;
  1695     int desthi = HIGH_FROM_LOW(destlo);
  1696     // bswap lo
  1697     emit_opcode(cbuf, 0x0F);
  1698     emit_cc(cbuf, 0xC8, destlo);
  1699     // bswap hi
  1700     emit_opcode(cbuf, 0x0F);
  1701     emit_cc(cbuf, 0xC8, desthi);
  1702     // xchg lo and hi
  1703     emit_opcode(cbuf, 0x87);
  1704     emit_rm(cbuf, 0x3, destlo, desthi);
  1705   %}
  1707   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
  1708     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
  1709   %}
  1711   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
  1712     Label *l = $labl$$label;
  1713     $$$emit8$primary;
  1714     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1715     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
  1716   %}
  1718   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
  1719     Label *l = $labl$$label;
  1720     emit_cc(cbuf, $primary, $cop$$cmpcode);
  1721     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
  1722     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  1723     emit_d8(cbuf, disp);
  1724   %}
  1726   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
  1727     $$$emit8$primary;
  1728     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  1729   %}
  1731   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
  1732     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
  1733     emit_d8(cbuf, op >> 8 );
  1734     emit_d8(cbuf, op & 255);
  1735   %}
  1737   // emulate a CMOV with a conditional branch around a MOV
  1738   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
  1739     // Invert sense of branch from sense of CMOV
  1740     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
  1741     emit_d8( cbuf, $brOffs$$constant );
  1742   %}
  1744   enc_class enc_PartialSubtypeCheck( ) %{
  1745     Register Redi = as_Register(EDI_enc); // result register
  1746     Register Reax = as_Register(EAX_enc); // super class
  1747     Register Recx = as_Register(ECX_enc); // killed
  1748     Register Resi = as_Register(ESI_enc); // sub class
  1749     Label miss;
  1751     MacroAssembler _masm(&cbuf);
  1752     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
  1753                                      NULL, &miss,
  1754                                      /*set_cond_codes:*/ true);
  1755     if ($primary) {
  1756       __ xorptr(Redi, Redi);
  1758     __ bind(miss);
  1759   %}
  1761   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
  1762     MacroAssembler masm(&cbuf);
  1763     int start = masm.offset();
  1764     if (UseSSE >= 2) {
  1765       if (VerifyFPU) {
  1766         masm.verify_FPU(0, "must be empty in SSE2+ mode");
  1768     } else {
  1769       // External c_calling_convention expects the FPU stack to be 'clean'.
  1770       // Compiled code leaves it dirty.  Do cleanup now.
  1771       masm.empty_FPU_stack();
  1773     if (sizeof_FFree_Float_Stack_All == -1) {
  1774       sizeof_FFree_Float_Stack_All = masm.offset() - start;
  1775     } else {
  1776       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
  1778   %}
  1780   enc_class Verify_FPU_For_Leaf %{
  1781     if( VerifyFPU ) {
  1782       MacroAssembler masm(&cbuf);
  1783       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
  1785   %}
  1787   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
  1788     // This is the instruction starting address for relocation info.
  1789     cbuf.set_inst_mark();
  1790     $$$emit8$primary;
  1791     // CALL directly to the runtime
  1792     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1793                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1795     if (UseSSE >= 2) {
  1796       MacroAssembler _masm(&cbuf);
  1797       BasicType rt = tf()->return_type();
  1799       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
  1800         // A C runtime call where the return value is unused.  In SSE2+
  1801         // mode the result needs to be removed from the FPU stack.  It's
  1802         // likely that this function call could be removed by the
  1803         // optimizer if the C function is a pure function.
  1804         __ ffree(0);
  1805       } else if (rt == T_FLOAT) {
  1806         __ lea(rsp, Address(rsp, -4));
  1807         __ fstp_s(Address(rsp, 0));
  1808         __ movflt(xmm0, Address(rsp, 0));
  1809         __ lea(rsp, Address(rsp,  4));
  1810       } else if (rt == T_DOUBLE) {
  1811         __ lea(rsp, Address(rsp, -8));
  1812         __ fstp_d(Address(rsp, 0));
  1813         __ movdbl(xmm0, Address(rsp, 0));
  1814         __ lea(rsp, Address(rsp,  8));
  1817   %}
  1820   enc_class pre_call_FPU %{
  1821     // If method sets FPU control word restore it here
  1822     debug_only(int off0 = cbuf.code_size());
  1823     if( Compile::current()->in_24_bit_fp_mode() ) {
  1824       MacroAssembler masm(&cbuf);
  1825       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1827     debug_only(int off1 = cbuf.code_size());
  1828     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
  1829   %}
  1831   enc_class post_call_FPU %{
  1832     // If method sets FPU control word do it here also
  1833     if( Compile::current()->in_24_bit_fp_mode() ) {
  1834       MacroAssembler masm(&cbuf);
  1835       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  1837   %}
  1839   enc_class preserve_SP %{
  1840     debug_only(int off0 = cbuf.code_size());
  1841     MacroAssembler _masm(&cbuf);
  1842     // RBP is preserved across all calls, even compiled calls.
  1843     // Use it to preserve RSP in places where the callee might change the SP.
  1844     __ movptr(rbp, rsp);
  1845     debug_only(int off1 = cbuf.code_size());
  1846     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
  1847   %}
  1849   enc_class restore_SP %{
  1850     MacroAssembler _masm(&cbuf);
  1851     __ movptr(rsp, rbp);
  1852   %}
  1854   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  1855     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1856     // who we intended to call.
  1857     cbuf.set_inst_mark();
  1858     $$$emit8$primary;
  1859     if ( !_method ) {
  1860       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1861                      runtime_call_Relocation::spec(), RELOC_IMM32 );
  1862     } else if(_optimized_virtual) {
  1863       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1864                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
  1865     } else {
  1866       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1867                      static_call_Relocation::spec(), RELOC_IMM32 );
  1869     if( _method ) {  // Emit stub for static call
  1870       emit_java_to_interp(cbuf);
  1872   %}
  1874   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  1875     // !!!!!
  1876     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
  1877     // emit_call_dynamic_prologue( cbuf );
  1878     cbuf.set_inst_mark();
  1879     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
  1880     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
  1881     address  virtual_call_oop_addr = cbuf.inst_mark();
  1882     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  1883     // who we intended to call.
  1884     cbuf.set_inst_mark();
  1885     $$$emit8$primary;
  1886     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
  1887                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
  1888   %}
  1890   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  1891     int disp = in_bytes(methodOopDesc::from_compiled_offset());
  1892     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
  1894     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
  1895     cbuf.set_inst_mark();
  1896     $$$emit8$primary;
  1897     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
  1898     emit_d8(cbuf, disp);             // Displacement
  1900   %}
  1902   enc_class Xor_Reg (eRegI dst) %{
  1903     emit_opcode(cbuf, 0x33);
  1904     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  1905   %}
  1907 //   Following encoding is no longer used, but may be restored if calling
  1908 //   convention changes significantly.
  1909 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
  1910 //
  1911 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
  1912 //     // int ic_reg     = Matcher::inline_cache_reg();
  1913 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
  1914 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
  1915 //     // int imo_encode = Matcher::_regEncode[imo_reg];
  1916 //
  1917 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
  1918 //     // // so we load it immediately before the call
  1919 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
  1920 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
  1921 //
  1922 //     // xor rbp,ebp
  1923 //     emit_opcode(cbuf, 0x33);
  1924 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
  1925 //
  1926 //     // CALL to interpreter.
  1927 //     cbuf.set_inst_mark();
  1928 //     $$$emit8$primary;
  1929 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
  1930 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
  1931 //   %}
  1933   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
  1934     $$$emit8$primary;
  1935     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  1936     $$$emit8$shift$$constant;
  1937   %}
  1939   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
  1940     // Load immediate does not have a zero or sign extended version
  1941     // for 8-bit immediates
  1942     emit_opcode(cbuf, 0xB8 + $dst$$reg);
  1943     $$$emit32$src$$constant;
  1944   %}
  1946   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
  1947     // Load immediate does not have a zero or sign extended version
  1948     // for 8-bit immediates
  1949     emit_opcode(cbuf, $primary + $dst$$reg);
  1950     $$$emit32$src$$constant;
  1951   %}
  1953   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
  1954     // Load immediate does not have a zero or sign extended version
  1955     // for 8-bit immediates
  1956     int dst_enc = $dst$$reg;
  1957     int src_con = $src$$constant & 0x0FFFFFFFFL;
  1958     if (src_con == 0) {
  1959       // xor dst, dst
  1960       emit_opcode(cbuf, 0x33);
  1961       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1962     } else {
  1963       emit_opcode(cbuf, $primary + dst_enc);
  1964       emit_d32(cbuf, src_con);
  1966   %}
  1968   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
  1969     // Load immediate does not have a zero or sign extended version
  1970     // for 8-bit immediates
  1971     int dst_enc = $dst$$reg + 2;
  1972     int src_con = ((julong)($src$$constant)) >> 32;
  1973     if (src_con == 0) {
  1974       // xor dst, dst
  1975       emit_opcode(cbuf, 0x33);
  1976       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
  1977     } else {
  1978       emit_opcode(cbuf, $primary + dst_enc);
  1979       emit_d32(cbuf, src_con);
  1981   %}
  1984   enc_class LdImmD (immD src) %{    // Load Immediate
  1985     if( is_positive_zero_double($src$$constant)) {
  1986       // FLDZ
  1987       emit_opcode(cbuf,0xD9);
  1988       emit_opcode(cbuf,0xEE);
  1989     } else if( is_positive_one_double($src$$constant)) {
  1990       // FLD1
  1991       emit_opcode(cbuf,0xD9);
  1992       emit_opcode(cbuf,0xE8);
  1993     } else {
  1994       emit_opcode(cbuf,0xDD);
  1995       emit_rm(cbuf, 0x0, 0x0, 0x5);
  1996       emit_double_constant(cbuf, $src$$constant);
  1998   %}
  2001   enc_class LdImmF (immF src) %{    // Load Immediate
  2002     if( is_positive_zero_float($src$$constant)) {
  2003       emit_opcode(cbuf,0xD9);
  2004       emit_opcode(cbuf,0xEE);
  2005     } else if( is_positive_one_float($src$$constant)) {
  2006       emit_opcode(cbuf,0xD9);
  2007       emit_opcode(cbuf,0xE8);
  2008     } else {
  2009       $$$emit8$primary;
  2010       // Load immediate does not have a zero or sign extended version
  2011       // for 8-bit immediates
  2012       // First load to TOS, then move to dst
  2013       emit_rm(cbuf, 0x0, 0x0, 0x5);
  2014       emit_float_constant(cbuf, $src$$constant);
  2016   %}
  2018   enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
  2019     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2020     emit_float_constant(cbuf, $con$$constant);
  2021   %}
  2023   enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
  2024     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2025     emit_double_constant(cbuf, $con$$constant);
  2026   %}
  2028   enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
  2029     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
  2030     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2031     emit_opcode(cbuf, 0x0F);
  2032     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2033     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  2034     emit_double_constant(cbuf, $con$$constant);
  2035   %}
  2037   enc_class Opc_MemImm_F(immF src) %{
  2038     cbuf.set_inst_mark();
  2039     $$$emit8$primary;
  2040     emit_rm(cbuf, 0x0, $secondary, 0x5);
  2041     emit_float_constant(cbuf, $src$$constant);
  2042   %}
  2045   enc_class MovI2X_reg(regX dst, eRegI src) %{
  2046     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2047     emit_opcode(cbuf, 0x0F );
  2048     emit_opcode(cbuf, 0x6E );
  2049     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2050   %}
  2052   enc_class MovX2I_reg(eRegI dst, regX src) %{
  2053     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
  2054     emit_opcode(cbuf, 0x0F );
  2055     emit_opcode(cbuf, 0x7E );
  2056     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2057   %}
  2059   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
  2060     { // MOVD $dst,$src.lo
  2061       emit_opcode(cbuf,0x66);
  2062       emit_opcode(cbuf,0x0F);
  2063       emit_opcode(cbuf,0x6E);
  2064       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2066     { // MOVD $tmp,$src.hi
  2067       emit_opcode(cbuf,0x66);
  2068       emit_opcode(cbuf,0x0F);
  2069       emit_opcode(cbuf,0x6E);
  2070       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  2072     { // PUNPCKLDQ $dst,$tmp
  2073       emit_opcode(cbuf,0x66);
  2074       emit_opcode(cbuf,0x0F);
  2075       emit_opcode(cbuf,0x62);
  2076       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
  2078   %}
  2080   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
  2081     { // MOVD $dst.lo,$src
  2082       emit_opcode(cbuf,0x66);
  2083       emit_opcode(cbuf,0x0F);
  2084       emit_opcode(cbuf,0x7E);
  2085       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
  2087     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
  2088       emit_opcode(cbuf,0xF2);
  2089       emit_opcode(cbuf,0x0F);
  2090       emit_opcode(cbuf,0x70);
  2091       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  2092       emit_d8(cbuf, 0x4E);
  2094     { // MOVD $dst.hi,$tmp
  2095       emit_opcode(cbuf,0x66);
  2096       emit_opcode(cbuf,0x0F);
  2097       emit_opcode(cbuf,0x7E);
  2098       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  2100   %}
  2103   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2104   enc_class enc_Copy( eRegI dst, eRegI src ) %{
  2105     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2106   %}
  2108   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
  2109     encode_Copy( cbuf, $dst$$reg, $src$$reg );
  2110   %}
  2112   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2113   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
  2114     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2115   %}
  2117   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
  2118     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2119   %}
  2121   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
  2122     $$$emit8$primary;
  2123     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2124   %}
  2126   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
  2127     $$$emit8$secondary;
  2128     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2129   %}
  2131   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2132     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2133   %}
  2135   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
  2136     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
  2137   %}
  2139   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
  2140     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
  2141   %}
  2143   enc_class Con32 (immI src) %{    // Con32(storeImmI)
  2144     // Output immediate
  2145     $$$emit32$src$$constant;
  2146   %}
  2148   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
  2149     // Output Float immediate bits
  2150     jfloat jf = $src$$constant;
  2151     int    jf_as_bits = jint_cast( jf );
  2152     emit_d32(cbuf, jf_as_bits);
  2153   %}
  2155   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
  2156     // Output Float immediate bits
  2157     jfloat jf = $src$$constant;
  2158     int    jf_as_bits = jint_cast( jf );
  2159     emit_d32(cbuf, jf_as_bits);
  2160   %}
  2162   enc_class Con16 (immI src) %{    // Con16(storeImmI)
  2163     // Output immediate
  2164     $$$emit16$src$$constant;
  2165   %}
  2167   enc_class Con_d32(immI src) %{
  2168     emit_d32(cbuf,$src$$constant);
  2169   %}
  2171   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
  2172     // Output immediate memory reference
  2173     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2174     emit_d32(cbuf, 0x00);
  2175   %}
  2177   enc_class lock_prefix( ) %{
  2178     if( os::is_MP() )
  2179       emit_opcode(cbuf,0xF0);         // [Lock]
  2180   %}
  2182   // Cmp-xchg long value.
  2183   // Note: we need to swap rbx, and rcx before and after the
  2184   //       cmpxchg8 instruction because the instruction uses
  2185   //       rcx as the high order word of the new value to store but
  2186   //       our register encoding uses rbx,.
  2187   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
  2189     // XCHG  rbx,ecx
  2190     emit_opcode(cbuf,0x87);
  2191     emit_opcode(cbuf,0xD9);
  2192     // [Lock]
  2193     if( os::is_MP() )
  2194       emit_opcode(cbuf,0xF0);
  2195     // CMPXCHG8 [Eptr]
  2196     emit_opcode(cbuf,0x0F);
  2197     emit_opcode(cbuf,0xC7);
  2198     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2199     // XCHG  rbx,ecx
  2200     emit_opcode(cbuf,0x87);
  2201     emit_opcode(cbuf,0xD9);
  2202   %}
  2204   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
  2205     // [Lock]
  2206     if( os::is_MP() )
  2207       emit_opcode(cbuf,0xF0);
  2209     // CMPXCHG [Eptr]
  2210     emit_opcode(cbuf,0x0F);
  2211     emit_opcode(cbuf,0xB1);
  2212     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
  2213   %}
  2215   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
  2216     int res_encoding = $res$$reg;
  2218     // MOV  res,0
  2219     emit_opcode( cbuf, 0xB8 + res_encoding);
  2220     emit_d32( cbuf, 0 );
  2221     // JNE,s  fail
  2222     emit_opcode(cbuf,0x75);
  2223     emit_d8(cbuf, 5 );
  2224     // MOV  res,1
  2225     emit_opcode( cbuf, 0xB8 + res_encoding);
  2226     emit_d32( cbuf, 1 );
  2227     // fail:
  2228   %}
  2230   enc_class set_instruction_start( ) %{
  2231     cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
  2232   %}
  2234   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
  2235     int reg_encoding = $ereg$$reg;
  2236     int base  = $mem$$base;
  2237     int index = $mem$$index;
  2238     int scale = $mem$$scale;
  2239     int displace = $mem$$disp;
  2240     bool disp_is_oop = $mem->disp_is_oop();
  2241     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2242   %}
  2244   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
  2245     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
  2246     int base  = $mem$$base;
  2247     int index = $mem$$index;
  2248     int scale = $mem$$scale;
  2249     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
  2250     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
  2251     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
  2252   %}
  2254   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
  2255     int r1, r2;
  2256     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2257     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2258     emit_opcode(cbuf,0x0F);
  2259     emit_opcode(cbuf,$tertiary);
  2260     emit_rm(cbuf, 0x3, r1, r2);
  2261     emit_d8(cbuf,$cnt$$constant);
  2262     emit_d8(cbuf,$primary);
  2263     emit_rm(cbuf, 0x3, $secondary, r1);
  2264     emit_d8(cbuf,$cnt$$constant);
  2265   %}
  2267   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
  2268     emit_opcode( cbuf, 0x8B ); // Move
  2269     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2270     emit_d8(cbuf,$primary);
  2271     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
  2272     emit_d8(cbuf,$cnt$$constant-32);
  2273     emit_d8(cbuf,$primary);
  2274     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
  2275     emit_d8(cbuf,31);
  2276   %}
  2278   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
  2279     int r1, r2;
  2280     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
  2281     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
  2283     emit_opcode( cbuf, 0x8B ); // Move r1,r2
  2284     emit_rm(cbuf, 0x3, r1, r2);
  2285     if( $cnt$$constant > 32 ) { // Shift, if not by zero
  2286       emit_opcode(cbuf,$primary);
  2287       emit_rm(cbuf, 0x3, $secondary, r1);
  2288       emit_d8(cbuf,$cnt$$constant-32);
  2290     emit_opcode(cbuf,0x33);  // XOR r2,r2
  2291     emit_rm(cbuf, 0x3, r2, r2);
  2292   %}
  2294   // Clone of RegMem but accepts an extra parameter to access each
  2295   // half of a double in memory; it never needs relocation info.
  2296   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
  2297     emit_opcode(cbuf,$opcode$$constant);
  2298     int reg_encoding = $rm_reg$$reg;
  2299     int base     = $mem$$base;
  2300     int index    = $mem$$index;
  2301     int scale    = $mem$$scale;
  2302     int displace = $mem$$disp + $disp_for_half$$constant;
  2303     bool disp_is_oop = false;
  2304     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2305   %}
  2307   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
  2308   //
  2309   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
  2310   // and it never needs relocation information.
  2311   // Frequently used to move data between FPU's Stack Top and memory.
  2312   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
  2313     int rm_byte_opcode = $rm_opcode$$constant;
  2314     int base     = $mem$$base;
  2315     int index    = $mem$$index;
  2316     int scale    = $mem$$scale;
  2317     int displace = $mem$$disp;
  2318     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
  2319     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
  2320   %}
  2322   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
  2323     int rm_byte_opcode = $rm_opcode$$constant;
  2324     int base     = $mem$$base;
  2325     int index    = $mem$$index;
  2326     int scale    = $mem$$scale;
  2327     int displace = $mem$$disp;
  2328     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2329     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  2330   %}
  2332   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
  2333     int reg_encoding = $dst$$reg;
  2334     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  2335     int index        = 0x04;            // 0x04 indicates no index
  2336     int scale        = 0x00;            // 0x00 indicates no scale
  2337     int displace     = $src1$$constant; // 0x00 indicates no displacement
  2338     bool disp_is_oop = false;
  2339     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2340   %}
  2342   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
  2343     // Compare dst,src
  2344     emit_opcode(cbuf,0x3B);
  2345     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2346     // jmp dst < src around move
  2347     emit_opcode(cbuf,0x7C);
  2348     emit_d8(cbuf,2);
  2349     // move dst,src
  2350     emit_opcode(cbuf,0x8B);
  2351     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2352   %}
  2354   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
  2355     // Compare dst,src
  2356     emit_opcode(cbuf,0x3B);
  2357     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2358     // jmp dst > src around move
  2359     emit_opcode(cbuf,0x7F);
  2360     emit_d8(cbuf,2);
  2361     // move dst,src
  2362     emit_opcode(cbuf,0x8B);
  2363     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  2364   %}
  2366   enc_class enc_FP_store(memory mem, regD src) %{
  2367     // If src is FPR1, we can just FST to store it.
  2368     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
  2369     int reg_encoding = 0x2; // Just store
  2370     int base  = $mem$$base;
  2371     int index = $mem$$index;
  2372     int scale = $mem$$scale;
  2373     int displace = $mem$$disp;
  2374     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  2375     if( $src$$reg != FPR1L_enc ) {
  2376       reg_encoding = 0x3;  // Store & pop
  2377       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
  2378       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2380     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
  2381     emit_opcode(cbuf,$primary);
  2382     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2383   %}
  2385   enc_class neg_reg(eRegI dst) %{
  2386     // NEG $dst
  2387     emit_opcode(cbuf,0xF7);
  2388     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
  2389   %}
  2391   enc_class setLT_reg(eCXRegI dst) %{
  2392     // SETLT $dst
  2393     emit_opcode(cbuf,0x0F);
  2394     emit_opcode(cbuf,0x9C);
  2395     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
  2396   %}
  2398   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
  2399     int tmpReg = $tmp$$reg;
  2401     // SUB $p,$q
  2402     emit_opcode(cbuf,0x2B);
  2403     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2404     // SBB $tmp,$tmp
  2405     emit_opcode(cbuf,0x1B);
  2406     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2407     // AND $tmp,$y
  2408     emit_opcode(cbuf,0x23);
  2409     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
  2410     // ADD $p,$tmp
  2411     emit_opcode(cbuf,0x03);
  2412     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2413   %}
  2415   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
  2416     int tmpReg = $tmp$$reg;
  2418     // SUB $p,$q
  2419     emit_opcode(cbuf,0x2B);
  2420     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
  2421     // SBB $tmp,$tmp
  2422     emit_opcode(cbuf,0x1B);
  2423     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  2424     // AND $tmp,$y
  2425     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
  2426     emit_opcode(cbuf,0x23);
  2427     int reg_encoding = tmpReg;
  2428     int base  = $mem$$base;
  2429     int index = $mem$$index;
  2430     int scale = $mem$$scale;
  2431     int displace = $mem$$disp;
  2432     bool disp_is_oop = $mem->disp_is_oop();
  2433     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
  2434     // ADD $p,$tmp
  2435     emit_opcode(cbuf,0x03);
  2436     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
  2437   %}
  2439   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
  2440     // TEST shift,32
  2441     emit_opcode(cbuf,0xF7);
  2442     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2443     emit_d32(cbuf,0x20);
  2444     // JEQ,s small
  2445     emit_opcode(cbuf, 0x74);
  2446     emit_d8(cbuf, 0x04);
  2447     // MOV    $dst.hi,$dst.lo
  2448     emit_opcode( cbuf, 0x8B );
  2449     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  2450     // CLR    $dst.lo
  2451     emit_opcode(cbuf, 0x33);
  2452     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
  2453 // small:
  2454     // SHLD   $dst.hi,$dst.lo,$shift
  2455     emit_opcode(cbuf,0x0F);
  2456     emit_opcode(cbuf,0xA5);
  2457     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
  2458     // SHL    $dst.lo,$shift"
  2459     emit_opcode(cbuf,0xD3);
  2460     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
  2461   %}
  2463   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
  2464     // TEST shift,32
  2465     emit_opcode(cbuf,0xF7);
  2466     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2467     emit_d32(cbuf,0x20);
  2468     // JEQ,s small
  2469     emit_opcode(cbuf, 0x74);
  2470     emit_d8(cbuf, 0x04);
  2471     // MOV    $dst.lo,$dst.hi
  2472     emit_opcode( cbuf, 0x8B );
  2473     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2474     // CLR    $dst.hi
  2475     emit_opcode(cbuf, 0x33);
  2476     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
  2477 // small:
  2478     // SHRD   $dst.lo,$dst.hi,$shift
  2479     emit_opcode(cbuf,0x0F);
  2480     emit_opcode(cbuf,0xAD);
  2481     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2482     // SHR    $dst.hi,$shift"
  2483     emit_opcode(cbuf,0xD3);
  2484     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
  2485   %}
  2487   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
  2488     // TEST shift,32
  2489     emit_opcode(cbuf,0xF7);
  2490     emit_rm(cbuf, 0x3, 0, ECX_enc);
  2491     emit_d32(cbuf,0x20);
  2492     // JEQ,s small
  2493     emit_opcode(cbuf, 0x74);
  2494     emit_d8(cbuf, 0x05);
  2495     // MOV    $dst.lo,$dst.hi
  2496     emit_opcode( cbuf, 0x8B );
  2497     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
  2498     // SAR    $dst.hi,31
  2499     emit_opcode(cbuf, 0xC1);
  2500     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
  2501     emit_d8(cbuf, 0x1F );
  2502 // small:
  2503     // SHRD   $dst.lo,$dst.hi,$shift
  2504     emit_opcode(cbuf,0x0F);
  2505     emit_opcode(cbuf,0xAD);
  2506     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
  2507     // SAR    $dst.hi,$shift"
  2508     emit_opcode(cbuf,0xD3);
  2509     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
  2510   %}
  2513   // ----------------- Encodings for floating point unit -----------------
  2514   // May leave result in FPU-TOS or FPU reg depending on opcodes
  2515   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
  2516     $$$emit8$primary;
  2517     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
  2518   %}
  2520   // Pop argument in FPR0 with FSTP ST(0)
  2521   enc_class PopFPU() %{
  2522     emit_opcode( cbuf, 0xDD );
  2523     emit_d8( cbuf, 0xD8 );
  2524   %}
  2526   // !!!!! equivalent to Pop_Reg_F
  2527   enc_class Pop_Reg_D( regD dst ) %{
  2528     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2529     emit_d8( cbuf, 0xD8+$dst$$reg );
  2530   %}
  2532   enc_class Push_Reg_D( regD dst ) %{
  2533     emit_opcode( cbuf, 0xD9 );
  2534     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
  2535   %}
  2537   enc_class strictfp_bias1( regD dst ) %{
  2538     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2539     emit_opcode( cbuf, 0x2D );
  2540     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
  2541     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2542     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2543   %}
  2545   enc_class strictfp_bias2( regD dst ) %{
  2546     emit_opcode( cbuf, 0xDB );           // FLD m80real
  2547     emit_opcode( cbuf, 0x2D );
  2548     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
  2549     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
  2550     emit_opcode( cbuf, 0xC8+$dst$$reg );
  2551   %}
  2553   // Special case for moving an integer register to a stack slot.
  2554   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2555     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
  2556   %}
  2558   // Special case for moving a register to a stack slot.
  2559   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
  2560     // Opcode already emitted
  2561     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
  2562     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
  2563     emit_d32(cbuf, $dst$$disp);   // Displacement
  2564   %}
  2566   // Push the integer in stackSlot 'src' onto FP-stack
  2567   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
  2568     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
  2569   %}
  2571   // Push the float in stackSlot 'src' onto FP-stack
  2572   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
  2573     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
  2574   %}
  2576   // Push the double in stackSlot 'src' onto FP-stack
  2577   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
  2578     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
  2579   %}
  2581   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
  2582   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
  2583     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
  2584   %}
  2586   // Same as Pop_Mem_F except for opcode
  2587   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
  2588   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
  2589     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
  2590   %}
  2592   enc_class Pop_Reg_F( regF dst ) %{
  2593     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
  2594     emit_d8( cbuf, 0xD8+$dst$$reg );
  2595   %}
  2597   enc_class Push_Reg_F( regF dst ) %{
  2598     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
  2599     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2600   %}
  2602   // Push FPU's float to a stack-slot, and pop FPU-stack
  2603   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
  2604     int pop = 0x02;
  2605     if ($src$$reg != FPR1L_enc) {
  2606       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2607       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2608       pop = 0x03;
  2610     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
  2611   %}
  2613   // Push FPU's double to a stack-slot, and pop FPU-stack
  2614   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
  2615     int pop = 0x02;
  2616     if ($src$$reg != FPR1L_enc) {
  2617       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
  2618       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2619       pop = 0x03;
  2621     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
  2622   %}
  2624   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
  2625   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
  2626     int pop = 0xD0 - 1; // -1 since we skip FLD
  2627     if ($src$$reg != FPR1L_enc) {
  2628       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
  2629       emit_d8( cbuf, 0xC0-1+$src$$reg );
  2630       pop = 0xD8;
  2632     emit_opcode( cbuf, 0xDD );
  2633     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
  2634   %}
  2637   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
  2638     MacroAssembler masm(&cbuf);
  2639     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
  2640     masm.fmul(   $src2$$reg+0);   // value at TOS
  2641     masm.fadd(   $src$$reg+0);    // value at TOS
  2642     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
  2643   %}
  2646   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
  2647     // load dst in FPR0
  2648     emit_opcode( cbuf, 0xD9 );
  2649     emit_d8( cbuf, 0xC0-1+$dst$$reg );
  2650     if ($src$$reg != FPR1L_enc) {
  2651       // fincstp
  2652       emit_opcode (cbuf, 0xD9);
  2653       emit_opcode (cbuf, 0xF7);
  2654       // swap src with FPR1:
  2655       // FXCH FPR1 with src
  2656       emit_opcode(cbuf, 0xD9);
  2657       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2658       // fdecstp
  2659       emit_opcode (cbuf, 0xD9);
  2660       emit_opcode (cbuf, 0xF6);
  2662   %}
  2664   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
  2665     // Allocate a word
  2666     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2667     emit_opcode(cbuf,0xEC);
  2668     emit_d8(cbuf,0x08);
  2670     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
  2671     emit_opcode  (cbuf, 0x0F );
  2672     emit_opcode  (cbuf, 0x11 );
  2673     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2675     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2676     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2678     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
  2679     emit_opcode  (cbuf, 0x0F );
  2680     emit_opcode  (cbuf, 0x11 );
  2681     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2683     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2684     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2686   %}
  2688   enc_class Push_ModX_encoding( regX src0, regX src1) %{
  2689     // Allocate a word
  2690     emit_opcode(cbuf,0x83);            // SUB ESP,4
  2691     emit_opcode(cbuf,0xEC);
  2692     emit_d8(cbuf,0x04);
  2694     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
  2695     emit_opcode  (cbuf, 0x0F );
  2696     emit_opcode  (cbuf, 0x11 );
  2697     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
  2699     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2700     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2702     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
  2703     emit_opcode  (cbuf, 0x0F );
  2704     emit_opcode  (cbuf, 0x11 );
  2705     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
  2707     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
  2708     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2710   %}
  2712   enc_class Push_ResultXD(regXD dst) %{
  2713     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
  2715     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
  2716     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2717     emit_opcode  (cbuf, 0x0F );
  2718     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2719     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2721     emit_opcode(cbuf,0x83);    // ADD ESP,8
  2722     emit_opcode(cbuf,0xC4);
  2723     emit_d8(cbuf,0x08);
  2724   %}
  2726   enc_class Push_ResultX(regX dst, immI d8) %{
  2727     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
  2729     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
  2730     emit_opcode  (cbuf, 0x0F );
  2731     emit_opcode  (cbuf, 0x10 );
  2732     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  2734     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
  2735     emit_opcode(cbuf,0xC4);
  2736     emit_d8(cbuf,$d8$$constant);
  2737   %}
  2739   enc_class Push_SrcXD(regXD src) %{
  2740     // Allocate a word
  2741     emit_opcode(cbuf,0x83);            // SUB ESP,8
  2742     emit_opcode(cbuf,0xEC);
  2743     emit_d8(cbuf,0x08);
  2745     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
  2746     emit_opcode  (cbuf, 0x0F );
  2747     emit_opcode  (cbuf, 0x11 );
  2748     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  2750     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2751     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2752   %}
  2754   enc_class push_stack_temp_qword() %{
  2755     emit_opcode(cbuf,0x83);     // SUB ESP,8
  2756     emit_opcode(cbuf,0xEC);
  2757     emit_d8    (cbuf,0x08);
  2758   %}
  2760   enc_class pop_stack_temp_qword() %{
  2761     emit_opcode(cbuf,0x83);     // ADD ESP,8
  2762     emit_opcode(cbuf,0xC4);
  2763     emit_d8    (cbuf,0x08);
  2764   %}
  2766   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
  2767     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
  2768     emit_opcode  (cbuf, 0x0F );
  2769     emit_opcode  (cbuf, 0x11 );
  2770     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
  2772     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
  2773     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2774   %}
  2776   // Compute X^Y using Intel's fast hardware instructions, if possible.
  2777   // Otherwise return a NaN.
  2778   enc_class pow_exp_core_encoding %{
  2779     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
  2780     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
  2781     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
  2782     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
  2783     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
  2784     emit_opcode(cbuf,0x1C);
  2785     emit_d8(cbuf,0x24);
  2786     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
  2787     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
  2788     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
  2789     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
  2790     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
  2791     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
  2792     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
  2793     emit_d32(cbuf,0xFFFFF800);
  2794     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
  2795     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
  2796     emit_d32(cbuf,1023);
  2797     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
  2798     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
  2799     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
  2800     emit_rm(cbuf,0x3,0x4,EAX_enc);
  2801     emit_d8(cbuf,20);
  2802     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
  2803     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
  2804     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
  2805     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
  2806     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
  2807     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
  2808     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
  2809     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  2810     emit_d32(cbuf,0);
  2811     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
  2812     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
  2813   %}
  2815 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
  2816 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
  2818   enc_class Push_Result_Mod_D( regD src) %{
  2819     if ($src$$reg != FPR1L_enc) {
  2820       // fincstp
  2821       emit_opcode (cbuf, 0xD9);
  2822       emit_opcode (cbuf, 0xF7);
  2823       // FXCH FPR1 with src
  2824       emit_opcode(cbuf, 0xD9);
  2825       emit_d8(cbuf, 0xC8-1+$src$$reg );
  2826       // fdecstp
  2827       emit_opcode (cbuf, 0xD9);
  2828       emit_opcode (cbuf, 0xF6);
  2830     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
  2831     // // FSTP   FPR$dst$$reg
  2832     // emit_opcode( cbuf, 0xDD );
  2833     // emit_d8( cbuf, 0xD8+$dst$$reg );
  2834   %}
  2836   enc_class fnstsw_sahf_skip_parity() %{
  2837     // fnstsw ax
  2838     emit_opcode( cbuf, 0xDF );
  2839     emit_opcode( cbuf, 0xE0 );
  2840     // sahf
  2841     emit_opcode( cbuf, 0x9E );
  2842     // jnp  ::skip
  2843     emit_opcode( cbuf, 0x7B );
  2844     emit_opcode( cbuf, 0x05 );
  2845   %}
  2847   enc_class emitModD() %{
  2848     // fprem must be iterative
  2849     // :: loop
  2850     // fprem
  2851     emit_opcode( cbuf, 0xD9 );
  2852     emit_opcode( cbuf, 0xF8 );
  2853     // wait
  2854     emit_opcode( cbuf, 0x9b );
  2855     // fnstsw ax
  2856     emit_opcode( cbuf, 0xDF );
  2857     emit_opcode( cbuf, 0xE0 );
  2858     // sahf
  2859     emit_opcode( cbuf, 0x9E );
  2860     // jp  ::loop
  2861     emit_opcode( cbuf, 0x0F );
  2862     emit_opcode( cbuf, 0x8A );
  2863     emit_opcode( cbuf, 0xF4 );
  2864     emit_opcode( cbuf, 0xFF );
  2865     emit_opcode( cbuf, 0xFF );
  2866     emit_opcode( cbuf, 0xFF );
  2867   %}
  2869   enc_class fpu_flags() %{
  2870     // fnstsw_ax
  2871     emit_opcode( cbuf, 0xDF);
  2872     emit_opcode( cbuf, 0xE0);
  2873     // test ax,0x0400
  2874     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
  2875     emit_opcode( cbuf, 0xA9 );
  2876     emit_d16   ( cbuf, 0x0400 );
  2877     // // // This sequence works, but stalls for 12-16 cycles on PPro
  2878     // // test rax,0x0400
  2879     // emit_opcode( cbuf, 0xA9 );
  2880     // emit_d32   ( cbuf, 0x00000400 );
  2881     //
  2882     // jz exit (no unordered comparison)
  2883     emit_opcode( cbuf, 0x74 );
  2884     emit_d8    ( cbuf, 0x02 );
  2885     // mov ah,1 - treat as LT case (set carry flag)
  2886     emit_opcode( cbuf, 0xB4 );
  2887     emit_d8    ( cbuf, 0x01 );
  2888     // sahf
  2889     emit_opcode( cbuf, 0x9E);
  2890   %}
  2892   enc_class cmpF_P6_fixup() %{
  2893     // Fixup the integer flags in case comparison involved a NaN
  2894     //
  2895     // JNP exit (no unordered comparison, P-flag is set by NaN)
  2896     emit_opcode( cbuf, 0x7B );
  2897     emit_d8    ( cbuf, 0x03 );
  2898     // MOV AH,1 - treat as LT case (set carry flag)
  2899     emit_opcode( cbuf, 0xB4 );
  2900     emit_d8    ( cbuf, 0x01 );
  2901     // SAHF
  2902     emit_opcode( cbuf, 0x9E);
  2903     // NOP     // target for branch to avoid branch to branch
  2904     emit_opcode( cbuf, 0x90);
  2905   %}
  2907 //     fnstsw_ax();
  2908 //     sahf();
  2909 //     movl(dst, nan_result);
  2910 //     jcc(Assembler::parity, exit);
  2911 //     movl(dst, less_result);
  2912 //     jcc(Assembler::below, exit);
  2913 //     movl(dst, equal_result);
  2914 //     jcc(Assembler::equal, exit);
  2915 //     movl(dst, greater_result);
  2917 // less_result     =  1;
  2918 // greater_result  = -1;
  2919 // equal_result    = 0;
  2920 // nan_result      = -1;
  2922   enc_class CmpF_Result(eRegI dst) %{
  2923     // fnstsw_ax();
  2924     emit_opcode( cbuf, 0xDF);
  2925     emit_opcode( cbuf, 0xE0);
  2926     // sahf
  2927     emit_opcode( cbuf, 0x9E);
  2928     // movl(dst, nan_result);
  2929     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2930     emit_d32( cbuf, -1 );
  2931     // jcc(Assembler::parity, exit);
  2932     emit_opcode( cbuf, 0x7A );
  2933     emit_d8    ( cbuf, 0x13 );
  2934     // movl(dst, less_result);
  2935     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2936     emit_d32( cbuf, -1 );
  2937     // jcc(Assembler::below, exit);
  2938     emit_opcode( cbuf, 0x72 );
  2939     emit_d8    ( cbuf, 0x0C );
  2940     // movl(dst, equal_result);
  2941     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2942     emit_d32( cbuf, 0 );
  2943     // jcc(Assembler::equal, exit);
  2944     emit_opcode( cbuf, 0x74 );
  2945     emit_d8    ( cbuf, 0x05 );
  2946     // movl(dst, greater_result);
  2947     emit_opcode( cbuf, 0xB8 + $dst$$reg);
  2948     emit_d32( cbuf, 1 );
  2949   %}
  2952   // XMM version of CmpF_Result. Because the XMM compare
  2953   // instructions set the EFLAGS directly. It becomes simpler than
  2954   // the float version above.
  2955   enc_class CmpX_Result(eRegI dst) %{
  2956     MacroAssembler _masm(&cbuf);
  2957     Label nan, inc, done;
  2959     __ jccb(Assembler::parity, nan);
  2960     __ jccb(Assembler::equal,  done);
  2961     __ jccb(Assembler::above,  inc);
  2962     __ bind(nan);
  2963     __ decrement(as_Register($dst$$reg)); // NO L qqq
  2964     __ jmpb(done);
  2965     __ bind(inc);
  2966     __ increment(as_Register($dst$$reg)); // NO L qqq
  2967     __ bind(done);
  2968   %}
  2970   // Compare the longs and set flags
  2971   // BROKEN!  Do Not use as-is
  2972   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
  2973     // CMP    $src1.hi,$src2.hi
  2974     emit_opcode( cbuf, 0x3B );
  2975     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  2976     // JNE,s  done
  2977     emit_opcode(cbuf,0x75);
  2978     emit_d8(cbuf, 2 );
  2979     // CMP    $src1.lo,$src2.lo
  2980     emit_opcode( cbuf, 0x3B );
  2981     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  2982 // done:
  2983   %}
  2985   enc_class convert_int_long( regL dst, eRegI src ) %{
  2986     // mov $dst.lo,$src
  2987     int dst_encoding = $dst$$reg;
  2988     int src_encoding = $src$$reg;
  2989     encode_Copy( cbuf, dst_encoding  , src_encoding );
  2990     // mov $dst.hi,$src
  2991     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
  2992     // sar $dst.hi,31
  2993     emit_opcode( cbuf, 0xC1 );
  2994     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
  2995     emit_d8(cbuf, 0x1F );
  2996   %}
  2998   enc_class convert_long_double( eRegL src ) %{
  2999     // push $src.hi
  3000     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  3001     // push $src.lo
  3002     emit_opcode(cbuf, 0x50+$src$$reg  );
  3003     // fild 64-bits at [SP]
  3004     emit_opcode(cbuf,0xdf);
  3005     emit_d8(cbuf, 0x6C);
  3006     emit_d8(cbuf, 0x24);
  3007     emit_d8(cbuf, 0x00);
  3008     // pop stack
  3009     emit_opcode(cbuf, 0x83); // add  SP, #8
  3010     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3011     emit_d8(cbuf, 0x8);
  3012   %}
  3014   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
  3015     // IMUL   EDX:EAX,$src1
  3016     emit_opcode( cbuf, 0xF7 );
  3017     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
  3018     // SAR    EDX,$cnt-32
  3019     int shift_count = ((int)$cnt$$constant) - 32;
  3020     if (shift_count > 0) {
  3021       emit_opcode(cbuf, 0xC1);
  3022       emit_rm(cbuf, 0x3, 7, $dst$$reg );
  3023       emit_d8(cbuf, shift_count);
  3025   %}
  3027   // this version doesn't have add sp, 8
  3028   enc_class convert_long_double2( eRegL src ) %{
  3029     // push $src.hi
  3030     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
  3031     // push $src.lo
  3032     emit_opcode(cbuf, 0x50+$src$$reg  );
  3033     // fild 64-bits at [SP]
  3034     emit_opcode(cbuf,0xdf);
  3035     emit_d8(cbuf, 0x6C);
  3036     emit_d8(cbuf, 0x24);
  3037     emit_d8(cbuf, 0x00);
  3038   %}
  3040   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
  3041     // Basic idea: long = (long)int * (long)int
  3042     // IMUL EDX:EAX, src
  3043     emit_opcode( cbuf, 0xF7 );
  3044     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
  3045   %}
  3047   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
  3048     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  3049     // MUL EDX:EAX, src
  3050     emit_opcode( cbuf, 0xF7 );
  3051     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
  3052   %}
  3054   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
  3055     // Basic idea: lo(result) = lo(x_lo * y_lo)
  3056     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  3057     // MOV    $tmp,$src.lo
  3058     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
  3059     // IMUL   $tmp,EDX
  3060     emit_opcode( cbuf, 0x0F );
  3061     emit_opcode( cbuf, 0xAF );
  3062     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3063     // MOV    EDX,$src.hi
  3064     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
  3065     // IMUL   EDX,EAX
  3066     emit_opcode( cbuf, 0x0F );
  3067     emit_opcode( cbuf, 0xAF );
  3068     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
  3069     // ADD    $tmp,EDX
  3070     emit_opcode( cbuf, 0x03 );
  3071     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3072     // MUL   EDX:EAX,$src.lo
  3073     emit_opcode( cbuf, 0xF7 );
  3074     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
  3075     // ADD    EDX,ESI
  3076     emit_opcode( cbuf, 0x03 );
  3077     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
  3078   %}
  3080   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
  3081     // Basic idea: lo(result) = lo(src * y_lo)
  3082     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
  3083     // IMUL   $tmp,EDX,$src
  3084     emit_opcode( cbuf, 0x6B );
  3085     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
  3086     emit_d8( cbuf, (int)$src$$constant );
  3087     // MOV    EDX,$src
  3088     emit_opcode(cbuf, 0xB8 + EDX_enc);
  3089     emit_d32( cbuf, (int)$src$$constant );
  3090     // MUL   EDX:EAX,EDX
  3091     emit_opcode( cbuf, 0xF7 );
  3092     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
  3093     // ADD    EDX,ESI
  3094     emit_opcode( cbuf, 0x03 );
  3095     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
  3096   %}
  3098   enc_class long_div( eRegL src1, eRegL src2 ) %{
  3099     // PUSH src1.hi
  3100     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3101     // PUSH src1.lo
  3102     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3103     // PUSH src2.hi
  3104     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3105     // PUSH src2.lo
  3106     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3107     // CALL directly to the runtime
  3108     cbuf.set_inst_mark();
  3109     emit_opcode(cbuf,0xE8);       // Call into runtime
  3110     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3111     // Restore stack
  3112     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3113     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3114     emit_d8(cbuf, 4*4);
  3115   %}
  3117   enc_class long_mod( eRegL src1, eRegL src2 ) %{
  3118     // PUSH src1.hi
  3119     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
  3120     // PUSH src1.lo
  3121     emit_opcode(cbuf,               0x50+$src1$$reg  );
  3122     // PUSH src2.hi
  3123     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
  3124     // PUSH src2.lo
  3125     emit_opcode(cbuf,               0x50+$src2$$reg  );
  3126     // CALL directly to the runtime
  3127     cbuf.set_inst_mark();
  3128     emit_opcode(cbuf,0xE8);       // Call into runtime
  3129     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3130     // Restore stack
  3131     emit_opcode(cbuf, 0x83); // add  SP, #framesize
  3132     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
  3133     emit_d8(cbuf, 4*4);
  3134   %}
  3136   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
  3137     // MOV   $tmp,$src.lo
  3138     emit_opcode(cbuf, 0x8B);
  3139     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  3140     // OR    $tmp,$src.hi
  3141     emit_opcode(cbuf, 0x0B);
  3142     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
  3143   %}
  3145   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
  3146     // CMP    $src1.lo,$src2.lo
  3147     emit_opcode( cbuf, 0x3B );
  3148     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3149     // JNE,s  skip
  3150     emit_cc(cbuf, 0x70, 0x5);
  3151     emit_d8(cbuf,2);
  3152     // CMP    $src1.hi,$src2.hi
  3153     emit_opcode( cbuf, 0x3B );
  3154     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
  3155   %}
  3157   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
  3158     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
  3159     emit_opcode( cbuf, 0x3B );
  3160     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
  3161     // MOV    $tmp,$src1.hi
  3162     emit_opcode( cbuf, 0x8B );
  3163     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
  3164     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
  3165     emit_opcode( cbuf, 0x1B );
  3166     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
  3167   %}
  3169   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
  3170     // XOR    $tmp,$tmp
  3171     emit_opcode(cbuf,0x33);  // XOR
  3172     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
  3173     // CMP    $tmp,$src.lo
  3174     emit_opcode( cbuf, 0x3B );
  3175     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
  3176     // SBB    $tmp,$src.hi
  3177     emit_opcode( cbuf, 0x1B );
  3178     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
  3179   %}
  3181  // Sniff, sniff... smells like Gnu Superoptimizer
  3182   enc_class neg_long( eRegL dst ) %{
  3183     emit_opcode(cbuf,0xF7);    // NEG hi
  3184     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3185     emit_opcode(cbuf,0xF7);    // NEG lo
  3186     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
  3187     emit_opcode(cbuf,0x83);    // SBB hi,0
  3188     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
  3189     emit_d8    (cbuf,0 );
  3190   %}
  3192   enc_class movq_ld(regXD dst, memory mem) %{
  3193     MacroAssembler _masm(&cbuf);
  3194     __ movq($dst$$XMMRegister, $mem$$Address);
  3195   %}
  3197   enc_class movq_st(memory mem, regXD src) %{
  3198     MacroAssembler _masm(&cbuf);
  3199     __ movq($mem$$Address, $src$$XMMRegister);
  3200   %}
  3202   enc_class pshufd_8x8(regX dst, regX src) %{
  3203     MacroAssembler _masm(&cbuf);
  3205     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3206     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3207     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3208   %}
  3210   enc_class pshufd_4x16(regX dst, regX src) %{
  3211     MacroAssembler _masm(&cbuf);
  3213     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3214   %}
  3216   enc_class pshufd(regXD dst, regXD src, int mode) %{
  3217     MacroAssembler _masm(&cbuf);
  3219     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3220   %}
  3222   enc_class pxor(regXD dst, regXD src) %{
  3223     MacroAssembler _masm(&cbuf);
  3225     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3226   %}
  3228   enc_class mov_i2x(regXD dst, eRegI src) %{
  3229     MacroAssembler _masm(&cbuf);
  3231     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3232   %}
  3235   // Because the transitions from emitted code to the runtime
  3236   // monitorenter/exit helper stubs are so slow it's critical that
  3237   // we inline both the stack-locking fast-path and the inflated fast path.
  3238   //
  3239   // See also: cmpFastLock and cmpFastUnlock.
  3240   //
  3241   // What follows is a specialized inline transliteration of the code
  3242   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  3243   // another option would be to emit TrySlowEnter and TrySlowExit methods
  3244   // at startup-time.  These methods would accept arguments as
  3245   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  3246   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  3247   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  3248   // In practice, however, the # of lock sites is bounded and is usually small.
  3249   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  3250   // if the processor uses simple bimodal branch predictors keyed by EIP
  3251   // Since the helper routines would be called from multiple synchronization
  3252   // sites.
  3253   //
  3254   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  3255   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  3256   // to those specialized methods.  That'd give us a mostly platform-independent
  3257   // implementation that the JITs could optimize and inline at their pleasure.
  3258   // Done correctly, the only time we'd need to cross to native could would be
  3259   // to park() or unpark() threads.  We'd also need a few more unsafe operators
  3260   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  3261   // (b) explicit barriers or fence operations.
  3262   //
  3263   // TODO:
  3264   //
  3265   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  3266   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  3267   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  3268   //    the lock operators would typically be faster than reifying Self.
  3269   //
  3270   // *  Ideally I'd define the primitives as:
  3271   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  3272   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  3273   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  3274   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  3275   //    Furthermore the register assignments are overconstrained, possibly resulting in
  3276   //    sub-optimal code near the synchronization site.
  3277   //
  3278   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  3279   //    Alternately, use a better sp-proximity test.
  3280   //
  3281   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  3282   //    Either one is sufficient to uniquely identify a thread.
  3283   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  3284   //
  3285   // *  Intrinsify notify() and notifyAll() for the common cases where the
  3286   //    object is locked by the calling thread but the waitlist is empty.
  3287   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  3288   //
  3289   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  3290   //    But beware of excessive branch density on AMD Opterons.
  3291   //
  3292   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  3293   //    or failure of the fast-path.  If the fast-path fails then we pass
  3294   //    control to the slow-path, typically in C.  In Fast_Lock and
  3295   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  3296   //    will emit a conditional branch immediately after the node.
  3297   //    So we have branches to branches and lots of ICC.ZF games.
  3298   //    Instead, it might be better to have C2 pass a "FailureLabel"
  3299   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  3300   //    will drop through the node.  ICC.ZF is undefined at exit.
  3301   //    In the case of failure, the node will branch directly to the
  3302   //    FailureLabel
  3305   // obj: object to lock
  3306   // box: on-stack box address (displaced header location) - KILLED
  3307   // rax,: tmp -- KILLED
  3308   // scr: tmp -- KILLED
  3309   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
  3311     Register objReg = as_Register($obj$$reg);
  3312     Register boxReg = as_Register($box$$reg);
  3313     Register tmpReg = as_Register($tmp$$reg);
  3314     Register scrReg = as_Register($scr$$reg);
  3316     // Ensure the register assignents are disjoint
  3317     guarantee (objReg != boxReg, "") ;
  3318     guarantee (objReg != tmpReg, "") ;
  3319     guarantee (objReg != scrReg, "") ;
  3320     guarantee (boxReg != tmpReg, "") ;
  3321     guarantee (boxReg != scrReg, "") ;
  3322     guarantee (tmpReg == as_Register(EAX_enc), "") ;
  3324     MacroAssembler masm(&cbuf);
  3326     if (_counters != NULL) {
  3327       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3329     if (EmitSync & 1) {
  3330         // set box->dhw = unused_mark (3)
  3331         // Force all sync thru slow-path: slow_enter() and slow_exit() 
  3332         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
  3333         masm.cmpptr (rsp, (int32_t)0) ;                        
  3334     } else 
  3335     if (EmitSync & 2) { 
  3336         Label DONE_LABEL ;           
  3337         if (UseBiasedLocking) {
  3338            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3339            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3342         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
  3343         masm.orptr (tmpReg, 0x1);
  3344         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
  3345         if (os::is_MP()) { masm.lock();  }
  3346         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
  3347         masm.jcc(Assembler::equal, DONE_LABEL);
  3348         // Recursive locking
  3349         masm.subptr(tmpReg, rsp);
  3350         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
  3351         masm.movptr(Address(boxReg, 0), tmpReg);
  3352         masm.bind(DONE_LABEL) ; 
  3353     } else {  
  3354       // Possible cases that we'll encounter in fast_lock 
  3355       // ------------------------------------------------
  3356       // * Inflated
  3357       //    -- unlocked
  3358       //    -- Locked
  3359       //       = by self
  3360       //       = by other
  3361       // * biased
  3362       //    -- by Self
  3363       //    -- by other
  3364       // * neutral
  3365       // * stack-locked
  3366       //    -- by self
  3367       //       = sp-proximity test hits
  3368       //       = sp-proximity test generates false-negative
  3369       //    -- by other
  3370       //
  3372       Label IsInflated, DONE_LABEL, PopDone ;
  3374       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  3375       // order to reduce the number of conditional branches in the most common cases.
  3376       // Beware -- there's a subtle invariant that fetch of the markword
  3377       // at [FETCH], below, will never observe a biased encoding (*101b).
  3378       // If this invariant is not held we risk exclusion (safety) failure.
  3379       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3380         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3383       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
  3384       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
  3385       masm.jccb  (Assembler::notZero, IsInflated) ;
  3387       // Attempt stack-locking ...
  3388       masm.orptr (tmpReg, 0x1);
  3389       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  3390       if (os::is_MP()) { masm.lock();  }
  3391       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
  3392       if (_counters != NULL) {
  3393         masm.cond_inc32(Assembler::equal,
  3394                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3396       masm.jccb (Assembler::equal, DONE_LABEL);
  3398       // Recursive locking
  3399       masm.subptr(tmpReg, rsp);
  3400       masm.andptr(tmpReg, 0xFFFFF003 );
  3401       masm.movptr(Address(boxReg, 0), tmpReg);
  3402       if (_counters != NULL) {
  3403         masm.cond_inc32(Assembler::equal,
  3404                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
  3406       masm.jmp  (DONE_LABEL) ;
  3408       masm.bind (IsInflated) ;
  3410       // The object is inflated.
  3411       //
  3412       // TODO-FIXME: eliminate the ugly use of manifest constants:
  3413       //   Use markOopDesc::monitor_value instead of "2".
  3414       //   use markOop::unused_mark() instead of "3".
  3415       // The tmpReg value is an objectMonitor reference ORed with
  3416       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  3417       // objectmonitor pointer by masking off the "2" bit or we can just
  3418       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  3419       // field offsets with "-2" to compensate for and annul the low-order tag bit.
  3420       //
  3421       // I use the latter as it avoids AGI stalls.
  3422       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  3423       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  3424       //
  3425       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  3427       // boxReg refers to the on-stack BasicLock in the current frame.
  3428       // We'd like to write:
  3429       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  3430       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  3431       // additional latency as we have another ST in the store buffer that must drain.
  3433       if (EmitSync & 8192) { 
  3434          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
  3435          masm.get_thread (scrReg) ; 
  3436          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
  3437          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  3438          if (os::is_MP()) { masm.lock(); } 
  3439          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3440       } else 
  3441       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  3442          masm.movptr(scrReg, boxReg) ; 
  3443          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
  3445          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3446          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3447             // prefetchw [eax + Offset(_owner)-2]
  3448             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3451          if ((EmitSync & 64) == 0) {
  3452            // Optimistic form: consider XORL tmpReg,tmpReg
  3453            masm.movptr(tmpReg, NULL_WORD) ; 
  3454          } else { 
  3455            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3456            // Test-And-CAS instead of CAS
  3457            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3458            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3459            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3462          // Appears unlocked - try to swing _owner from null to non-null.
  3463          // Ideally, I'd manifest "Self" with get_thread and then attempt
  3464          // to CAS the register containing Self into m->Owner.
  3465          // But we don't have enough registers, so instead we can either try to CAS
  3466          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  3467          // we later store "Self" into m->Owner.  Transiently storing a stack address
  3468          // (rsp or the address of the box) into  m->owner is harmless.
  3469          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3470          if (os::is_MP()) { masm.lock();  }
  3471          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3472          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
  3473          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3474          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
  3475          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
  3476          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
  3478          // If the CAS fails we can either retry or pass control to the slow-path.  
  3479          // We use the latter tactic.  
  3480          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3481          // If the CAS was successful ...
  3482          //   Self has acquired the lock
  3483          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3484          // Intentional fall-through into DONE_LABEL ...
  3485       } else {
  3486          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
  3487          masm.movptr(boxReg, tmpReg) ; 
  3489          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  3490          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
  3491             // prefetchw [eax + Offset(_owner)-2]
  3492             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
  3495          if ((EmitSync & 64) == 0) {
  3496            // Optimistic form
  3497            masm.xorptr  (tmpReg, tmpReg) ; 
  3498          } else { 
  3499            // Can suffer RTS->RTO upgrades on shared or cold $ lines
  3500            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
  3501            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
  3502            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
  3505          // Appears unlocked - try to swing _owner from null to non-null.
  3506          // Use either "Self" (in scr) or rsp as thread identity in _owner.
  3507          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  3508          masm.get_thread (scrReg) ;
  3509          if (os::is_MP()) { masm.lock(); }
  3510          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3512          // If the CAS fails we can either retry or pass control to the slow-path.
  3513          // We use the latter tactic.
  3514          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  3515          // If the CAS was successful ...
  3516          //   Self has acquired the lock
  3517          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  3518          // Intentional fall-through into DONE_LABEL ...
  3521       // DONE_LABEL is a hot target - we'd really like to place it at the
  3522       // start of cache line by padding with NOPs.
  3523       // See the AMD and Intel software optimization manuals for the
  3524       // most efficient "long" NOP encodings.
  3525       // Unfortunately none of our alignment mechanisms suffice.
  3526       masm.bind(DONE_LABEL);
  3528       // Avoid branch-to-branch on AMD processors
  3529       // This appears to be superstition.
  3530       if (EmitSync & 32) masm.nop() ;
  3533       // At DONE_LABEL the icc ZFlag is set as follows ...
  3534       // Fast_Unlock uses the same protocol.
  3535       // ZFlag == 1 -> Success
  3536       // ZFlag == 0 -> Failure - force control through the slow-path
  3538   %}
  3540   // obj: object to unlock
  3541   // box: box address (displaced header location), killed.  Must be EAX.
  3542   // rbx,: killed tmp; cannot be obj nor box.
  3543   //
  3544   // Some commentary on balanced locking:
  3545   //
  3546   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3547   // Methods that don't have provably balanced locking are forced to run in the
  3548   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3549   // The interpreter provides two properties:
  3550   // I1:  At return-time the interpreter automatically and quietly unlocks any
  3551   //      objects acquired the current activation (frame).  Recall that the
  3552   //      interpreter maintains an on-stack list of locks currently held by
  3553   //      a frame.
  3554   // I2:  If a method attempts to unlock an object that is not held by the
  3555   //      the frame the interpreter throws IMSX.
  3556   //
  3557   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3558   // B() doesn't have provably balanced locking so it runs in the interpreter.
  3559   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3560   // is still locked by A().
  3561   //
  3562   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3563   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3564   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3565   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3567   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
  3569     Register objReg = as_Register($obj$$reg);
  3570     Register boxReg = as_Register($box$$reg);
  3571     Register tmpReg = as_Register($tmp$$reg);
  3573     guarantee (objReg != boxReg, "") ;
  3574     guarantee (objReg != tmpReg, "") ;
  3575     guarantee (boxReg != tmpReg, "") ;
  3576     guarantee (boxReg == as_Register(EAX_enc), "") ;
  3577     MacroAssembler masm(&cbuf);
  3579     if (EmitSync & 4) {
  3580       // Disable - inhibit all inlining.  Force control through the slow-path
  3581       masm.cmpptr (rsp, 0) ; 
  3582     } else 
  3583     if (EmitSync & 8) {
  3584       Label DONE_LABEL ;
  3585       if (UseBiasedLocking) {
  3586          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3588       // classic stack-locking code ...
  3589       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3590       masm.testptr(tmpReg, tmpReg) ;
  3591       masm.jcc   (Assembler::zero, DONE_LABEL) ;
  3592       if (os::is_MP()) { masm.lock(); }
  3593       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
  3594       masm.bind(DONE_LABEL);
  3595     } else {
  3596       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3598       // Critically, the biased locking test must have precedence over
  3599       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3600       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3601          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3604       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
  3605       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3606       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3608       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
  3609       masm.jccb  (Assembler::zero, Stacked) ;
  3611       masm.bind  (Inflated) ;
  3612       // It's inflated.
  3613       // Despite our balanced locking property we still check that m->_owner == Self
  3614       // as java routines or native JNI code called by this thread might
  3615       // have released the lock.
  3616       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3617       // state in _succ so we can avoid fetching EntryList|cxq.
  3618       //
  3619       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3620       // such as recursive enter and exit -- but we have to be wary of
  3621       // I$ bloat, T$ effects and BP$ effects.
  3622       //
  3623       // If there's no contention try a 1-0 exit.  That is, exit without
  3624       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3625       // we detect and recover from the race that the 1-0 exit admits.
  3626       //
  3627       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3628       // before it STs null into _owner, releasing the lock.  Updates
  3629       // to data protected by the critical section must be visible before
  3630       // we drop the lock (and thus before any other thread could acquire
  3631       // the lock and observe the fields protected by the lock).
  3632       // IA32's memory-model is SPO, so STs are ordered with respect to
  3633       // each other and there's no need for an explicit barrier (fence).
  3634       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3636       masm.get_thread (boxReg) ;
  3637       if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
  3638         // prefetchw [ebx + Offset(_owner)-2]
  3639         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
  3642       // Note that we could employ various encoding schemes to reduce
  3643       // the number of loads below (currently 4) to just 2 or 3.
  3644       // Refer to the comments in synchronizer.cpp.
  3645       // In practice the chain of fetches doesn't seem to impact performance, however.
  3646       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  3647          // Attempt to reduce branch density - AMD's branch predictor.
  3648          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3649          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3650          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3651          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3652          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3653          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3654          masm.jmpb  (DONE_LABEL) ; 
  3655       } else { 
  3656          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
  3657          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3658          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
  3659          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3660          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3661          masm.jccb  (Assembler::notZero, CheckSucc) ; 
  3662          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3663          masm.jmpb  (DONE_LABEL) ; 
  3666       // The Following code fragment (EmitSync & 65536) improves the performance of
  3667       // contended applications and contended synchronization microbenchmarks.
  3668       // Unfortunately the emission of the code - even though not executed - causes regressions
  3669       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  3670       // with an equal number of never-executed NOPs results in the same regression.
  3671       // We leave it off by default.
  3673       if ((EmitSync & 65536) != 0) {
  3674          Label LSuccess, LGoSlowPath ;
  3676          masm.bind  (CheckSucc) ;
  3678          // Optional pre-test ... it's safe to elide this
  3679          if ((EmitSync & 16) == 0) { 
  3680             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3681             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
  3684          // We have a classic Dekker-style idiom:
  3685          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  3686          // There are a number of ways to implement the barrier:
  3687          // (1) lock:andl &m->_owner, 0
  3688          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  3689          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  3690          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  3691          // (2) If supported, an explicit MFENCE is appealing.
  3692          //     In older IA32 processors MFENCE is slower than lock:add or xchg
  3693          //     particularly if the write-buffer is full as might be the case if
  3694          //     if stores closely precede the fence or fence-equivalent instruction.
  3695          //     In more modern implementations MFENCE appears faster, however.
  3696          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  3697          //     The $lines underlying the top-of-stack should be in M-state.
  3698          //     The locked add instruction is serializing, of course.
  3699          // (4) Use xchg, which is serializing
  3700          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  3701          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  3702          //     The integer condition codes will tell us if succ was 0.
  3703          //     Since _succ and _owner should reside in the same $line and
  3704          //     we just stored into _owner, it's likely that the $line
  3705          //     remains in M-state for the lock:orl.
  3706          //
  3707          // We currently use (3), although it's likely that switching to (2)
  3708          // is correct for the future.
  3710          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
  3711          if (os::is_MP()) { 
  3712             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
  3713               masm.mfence();
  3714             } else { 
  3715               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
  3718          // Ratify _succ remains non-null
  3719          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
  3720          masm.jccb  (Assembler::notZero, LSuccess) ; 
  3722          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
  3723          if (os::is_MP()) { masm.lock(); }
  3724          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3725          masm.jccb  (Assembler::notEqual, LSuccess) ;
  3726          // Since we're low on registers we installed rsp as a placeholding in _owner.
  3727          // Now install Self over rsp.  This is safe as we're transitioning from
  3728          // non-null to non=null
  3729          masm.get_thread (boxReg) ;
  3730          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
  3731          // Intentional fall-through into LGoSlowPath ...
  3733          masm.bind  (LGoSlowPath) ; 
  3734          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3735          masm.jmpb  (DONE_LABEL) ; 
  3737          masm.bind  (LSuccess) ; 
  3738          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
  3739          masm.jmpb  (DONE_LABEL) ; 
  3742       masm.bind (Stacked) ;
  3743       // It's not inflated and it's not recursively stack-locked and it's not biased.
  3744       // It must be stack-locked.
  3745       // Try to reset the header to displaced header.
  3746       // The "box" value on the stack is stable, so we can reload
  3747       // and be assured we observe the same value as above.
  3748       masm.movptr(tmpReg, Address(boxReg, 0)) ;
  3749       if (os::is_MP()) {   masm.lock();    }
  3750       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
  3751       // Intention fall-thru into DONE_LABEL
  3754       // DONE_LABEL is a hot target - we'd really like to place it at the
  3755       // start of cache line by padding with NOPs.
  3756       // See the AMD and Intel software optimization manuals for the
  3757       // most efficient "long" NOP encodings.
  3758       // Unfortunately none of our alignment mechanisms suffice.
  3759       if ((EmitSync & 65536) == 0) {
  3760          masm.bind (CheckSucc) ;
  3762       masm.bind(DONE_LABEL);
  3764       // Avoid branch to branch on AMD processors
  3765       if (EmitSync & 32768) { masm.nop() ; }
  3767   %}
  3770   enc_class enc_pop_rdx() %{
  3771     emit_opcode(cbuf,0x5A);
  3772   %}
  3774   enc_class enc_rethrow() %{
  3775     cbuf.set_inst_mark();
  3776     emit_opcode(cbuf, 0xE9);        // jmp    entry
  3777     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
  3778                    runtime_call_Relocation::spec(), RELOC_IMM32 );
  3779   %}
  3782   // Convert a double to an int.  Java semantics require we do complex
  3783   // manglelations in the corner cases.  So we set the rounding mode to
  3784   // 'zero', store the darned double down as an int, and reset the
  3785   // rounding mode to 'nearest'.  The hardware throws an exception which
  3786   // patches up the correct value directly to the stack.
  3787   enc_class D2I_encoding( regD src ) %{
  3788     // Flip to round-to-zero mode.  We attempted to allow invalid-op
  3789     // exceptions here, so that a NAN or other corner-case value will
  3790     // thrown an exception (but normal values get converted at full speed).
  3791     // However, I2C adapters and other float-stack manglers leave pending
  3792     // invalid-op exceptions hanging.  We would have to clear them before
  3793     // enabling them and that is more expensive than just testing for the
  3794     // invalid value Intel stores down in the corner cases.
  3795     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3796     emit_opcode(cbuf,0x2D);
  3797     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3798     // Allocate a word
  3799     emit_opcode(cbuf,0x83);            // SUB ESP,4
  3800     emit_opcode(cbuf,0xEC);
  3801     emit_d8(cbuf,0x04);
  3802     // Encoding assumes a double has been pushed into FPR0.
  3803     // Store down the double as an int, popping the FPU stack
  3804     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
  3805     emit_opcode(cbuf,0x1C);
  3806     emit_d8(cbuf,0x24);
  3807     // Restore the rounding mode; mask the exception
  3808     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3809     emit_opcode(cbuf,0x2D);
  3810     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3811         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3812         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3814     // Load the converted int; adjust CPU stack
  3815     emit_opcode(cbuf,0x58);       // POP EAX
  3816     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
  3817     emit_d32   (cbuf,0x80000000); //         0x80000000
  3818     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3819     emit_d8    (cbuf,0x07);       // Size of slow_call
  3820     // Push src onto stack slow-path
  3821     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3822     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3823     // CALL directly to the runtime
  3824     cbuf.set_inst_mark();
  3825     emit_opcode(cbuf,0xE8);       // Call into runtime
  3826     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3827     // Carry on here...
  3828   %}
  3830   enc_class D2L_encoding( regD src ) %{
  3831     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
  3832     emit_opcode(cbuf,0x2D);
  3833     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3834     // Allocate a word
  3835     emit_opcode(cbuf,0x83);            // SUB ESP,8
  3836     emit_opcode(cbuf,0xEC);
  3837     emit_d8(cbuf,0x08);
  3838     // Encoding assumes a double has been pushed into FPR0.
  3839     // Store down the double as a long, popping the FPU stack
  3840     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
  3841     emit_opcode(cbuf,0x3C);
  3842     emit_d8(cbuf,0x24);
  3843     // Restore the rounding mode; mask the exception
  3844     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
  3845     emit_opcode(cbuf,0x2D);
  3846     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3847         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3848         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3850     // Load the converted int; adjust CPU stack
  3851     emit_opcode(cbuf,0x58);       // POP EAX
  3852     emit_opcode(cbuf,0x5A);       // POP EDX
  3853     emit_opcode(cbuf,0x81);       // CMP EDX,imm
  3854     emit_d8    (cbuf,0xFA);       // rdx
  3855     emit_d32   (cbuf,0x80000000); //         0x80000000
  3856     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3857     emit_d8    (cbuf,0x07+4);     // Size of slow_call
  3858     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
  3859     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
  3860     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  3861     emit_d8    (cbuf,0x07);       // Size of slow_call
  3862     // Push src onto stack slow-path
  3863     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
  3864     emit_d8    (cbuf,0xC0-1+$src$$reg );
  3865     // CALL directly to the runtime
  3866     cbuf.set_inst_mark();
  3867     emit_opcode(cbuf,0xE8);       // Call into runtime
  3868     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3869     // Carry on here...
  3870   %}
  3872   enc_class X2L_encoding( regX src ) %{
  3873     // Allocate a word
  3874     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3875     emit_opcode(cbuf,0xEC);
  3876     emit_d8(cbuf,0x08);
  3878     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3879     emit_opcode  (cbuf, 0x0F );
  3880     emit_opcode  (cbuf, 0x11 );
  3881     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3883     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3884     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3886     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3887     emit_opcode(cbuf,0x2D);
  3888     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3890     // Encoding assumes a double has been pushed into FPR0.
  3891     // Store down the double as a long, popping the FPU stack
  3892     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3893     emit_opcode(cbuf,0x3C);
  3894     emit_d8(cbuf,0x24);
  3896     // Restore the rounding mode; mask the exception
  3897     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3898     emit_opcode(cbuf,0x2D);
  3899     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3900       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3901       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3903     // Load the converted int; adjust CPU stack
  3904     emit_opcode(cbuf,0x58);      // POP EAX
  3906     emit_opcode(cbuf,0x5A);      // POP EDX
  3908     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3909     emit_d8    (cbuf,0xFA);      // rdx
  3910     emit_d32   (cbuf,0x80000000);//         0x80000000
  3912     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3913     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3915     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3916     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3918     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3919     emit_d8    (cbuf,0x13);      // Size of slow_call
  3921     // Allocate a word
  3922     emit_opcode(cbuf,0x83);      // SUB ESP,4
  3923     emit_opcode(cbuf,0xEC);
  3924     emit_d8(cbuf,0x04);
  3926     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
  3927     emit_opcode  (cbuf, 0x0F );
  3928     emit_opcode  (cbuf, 0x11 );
  3929     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3931     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
  3932     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3934     emit_opcode(cbuf,0x83);      // ADD ESP,4
  3935     emit_opcode(cbuf,0xC4);
  3936     emit_d8(cbuf,0x04);
  3938     // CALL directly to the runtime
  3939     cbuf.set_inst_mark();
  3940     emit_opcode(cbuf,0xE8);       // Call into runtime
  3941     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  3942     // Carry on here...
  3943   %}
  3945   enc_class XD2L_encoding( regXD src ) %{
  3946     // Allocate a word
  3947     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3948     emit_opcode(cbuf,0xEC);
  3949     emit_d8(cbuf,0x08);
  3951     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  3952     emit_opcode  (cbuf, 0x0F );
  3953     emit_opcode  (cbuf, 0x11 );
  3954     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  3956     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  3957     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  3959     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
  3960     emit_opcode(cbuf,0x2D);
  3961     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
  3963     // Encoding assumes a double has been pushed into FPR0.
  3964     // Store down the double as a long, popping the FPU stack
  3965     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
  3966     emit_opcode(cbuf,0x3C);
  3967     emit_d8(cbuf,0x24);
  3969     // Restore the rounding mode; mask the exception
  3970     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
  3971     emit_opcode(cbuf,0x2D);
  3972     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
  3973       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
  3974       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
  3976     // Load the converted int; adjust CPU stack
  3977     emit_opcode(cbuf,0x58);      // POP EAX
  3979     emit_opcode(cbuf,0x5A);      // POP EDX
  3981     emit_opcode(cbuf,0x81);      // CMP EDX,imm
  3982     emit_d8    (cbuf,0xFA);      // rdx
  3983     emit_d32   (cbuf,0x80000000); //         0x80000000
  3985     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3986     emit_d8    (cbuf,0x13+4);    // Size of slow_call
  3988     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
  3989     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
  3991     emit_opcode(cbuf,0x75);      // JNE around_slow_call
  3992     emit_d8    (cbuf,0x13);      // Size of slow_call
  3994     // Push src onto stack slow-path
  3995     // Allocate a word
  3996     emit_opcode(cbuf,0x83);      // SUB ESP,8
  3997     emit_opcode(cbuf,0xEC);
  3998     emit_d8(cbuf,0x08);
  4000     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
  4001     emit_opcode  (cbuf, 0x0F );
  4002     emit_opcode  (cbuf, 0x11 );
  4003     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4005     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
  4006     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4008     emit_opcode(cbuf,0x83);      // ADD ESP,8
  4009     emit_opcode(cbuf,0xC4);
  4010     emit_d8(cbuf,0x08);
  4012     // CALL directly to the runtime
  4013     cbuf.set_inst_mark();
  4014     emit_opcode(cbuf,0xE8);      // Call into runtime
  4015     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4016     // Carry on here...
  4017   %}
  4019   enc_class D2X_encoding( regX dst, regD src ) %{
  4020     // Allocate a word
  4021     emit_opcode(cbuf,0x83);            // SUB ESP,4
  4022     emit_opcode(cbuf,0xEC);
  4023     emit_d8(cbuf,0x04);
  4024     int pop = 0x02;
  4025     if ($src$$reg != FPR1L_enc) {
  4026       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
  4027       emit_d8( cbuf, 0xC0-1+$src$$reg );
  4028       pop = 0x03;
  4030     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
  4032     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
  4033     emit_opcode  (cbuf, 0x0F );
  4034     emit_opcode  (cbuf, 0x10 );
  4035     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
  4037     emit_opcode(cbuf,0x83);            // ADD ESP,4
  4038     emit_opcode(cbuf,0xC4);
  4039     emit_d8(cbuf,0x04);
  4040     // Carry on here...
  4041   %}
  4043   enc_class FX2I_encoding( regX src, eRegI dst ) %{
  4044     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
  4046     // Compare the result to see if we need to go to the slow path
  4047     emit_opcode(cbuf,0x81);       // CMP dst,imm
  4048     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
  4049     emit_d32   (cbuf,0x80000000); //         0x80000000
  4051     emit_opcode(cbuf,0x75);       // JNE around_slow_call
  4052     emit_d8    (cbuf,0x13);       // Size of slow_call
  4053     // Store xmm to a temp memory
  4054     // location and push it onto stack.
  4056     emit_opcode(cbuf,0x83);  // SUB ESP,4
  4057     emit_opcode(cbuf,0xEC);
  4058     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4060     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
  4061     emit_opcode  (cbuf, 0x0F );
  4062     emit_opcode  (cbuf, 0x11 );
  4063     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4065     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
  4066     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4068     emit_opcode(cbuf,0x83);    // ADD ESP,4
  4069     emit_opcode(cbuf,0xC4);
  4070     emit_d8(cbuf, $primary ? 0x8 : 0x4);
  4072     // CALL directly to the runtime
  4073     cbuf.set_inst_mark();
  4074     emit_opcode(cbuf,0xE8);       // Call into runtime
  4075     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
  4077     // Carry on here...
  4078   %}
  4080   enc_class X2D_encoding( regD dst, regX src ) %{
  4081     // Allocate a word
  4082     emit_opcode(cbuf,0x83);     // SUB ESP,4
  4083     emit_opcode(cbuf,0xEC);
  4084     emit_d8(cbuf,0x04);
  4086     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
  4087     emit_opcode  (cbuf, 0x0F );
  4088     emit_opcode  (cbuf, 0x11 );
  4089     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
  4091     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
  4092     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
  4094     emit_opcode(cbuf,0x83);     // ADD ESP,4
  4095     emit_opcode(cbuf,0xC4);
  4096     emit_d8(cbuf,0x04);
  4098     // Carry on here...
  4099   %}
  4101   enc_class AbsXF_encoding(regX dst) %{
  4102     address signmask_address=(address)float_signmask_pool;
  4103     // andpd:\tANDPS  $dst,[signconst]
  4104     emit_opcode(cbuf, 0x0F);
  4105     emit_opcode(cbuf, 0x54);
  4106     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4107     emit_d32(cbuf, (int)signmask_address);
  4108   %}
  4110   enc_class AbsXD_encoding(regXD dst) %{
  4111     address signmask_address=(address)double_signmask_pool;
  4112     // andpd:\tANDPD  $dst,[signconst]
  4113     emit_opcode(cbuf, 0x66);
  4114     emit_opcode(cbuf, 0x0F);
  4115     emit_opcode(cbuf, 0x54);
  4116     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4117     emit_d32(cbuf, (int)signmask_address);
  4118   %}
  4120   enc_class NegXF_encoding(regX dst) %{
  4121     address signmask_address=(address)float_signflip_pool;
  4122     // andpd:\tXORPS  $dst,[signconst]
  4123     emit_opcode(cbuf, 0x0F);
  4124     emit_opcode(cbuf, 0x57);
  4125     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4126     emit_d32(cbuf, (int)signmask_address);
  4127   %}
  4129   enc_class NegXD_encoding(regXD dst) %{
  4130     address signmask_address=(address)double_signflip_pool;
  4131     // andpd:\tXORPD  $dst,[signconst]
  4132     emit_opcode(cbuf, 0x66);
  4133     emit_opcode(cbuf, 0x0F);
  4134     emit_opcode(cbuf, 0x57);
  4135     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
  4136     emit_d32(cbuf, (int)signmask_address);
  4137   %}
  4139   enc_class FMul_ST_reg( eRegF src1 ) %{
  4140     // Operand was loaded from memory into fp ST (stack top)
  4141     // FMUL   ST,$src  /* D8 C8+i */
  4142     emit_opcode(cbuf, 0xD8);
  4143     emit_opcode(cbuf, 0xC8 + $src1$$reg);
  4144   %}
  4146   enc_class FAdd_ST_reg( eRegF src2 ) %{
  4147     // FADDP  ST,src2  /* D8 C0+i */
  4148     emit_opcode(cbuf, 0xD8);
  4149     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4150     //could use FADDP  src2,fpST  /* DE C0+i */
  4151   %}
  4153   enc_class FAddP_reg_ST( eRegF src2 ) %{
  4154     // FADDP  src2,ST  /* DE C0+i */
  4155     emit_opcode(cbuf, 0xDE);
  4156     emit_opcode(cbuf, 0xC0 + $src2$$reg);
  4157   %}
  4159   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
  4160     // Operand has been loaded into fp ST (stack top)
  4161       // FSUB   ST,$src1
  4162       emit_opcode(cbuf, 0xD8);
  4163       emit_opcode(cbuf, 0xE0 + $src1$$reg);
  4165       // FDIV
  4166       emit_opcode(cbuf, 0xD8);
  4167       emit_opcode(cbuf, 0xF0 + $src2$$reg);
  4168   %}
  4170   enc_class MulFAddF (eRegF src1, eRegF src2) %{
  4171     // Operand was loaded from memory into fp ST (stack top)
  4172     // FADD   ST,$src  /* D8 C0+i */
  4173     emit_opcode(cbuf, 0xD8);
  4174     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4176     // FMUL  ST,src2  /* D8 C*+i */
  4177     emit_opcode(cbuf, 0xD8);
  4178     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4179   %}
  4182   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
  4183     // Operand was loaded from memory into fp ST (stack top)
  4184     // FADD   ST,$src  /* D8 C0+i */
  4185     emit_opcode(cbuf, 0xD8);
  4186     emit_opcode(cbuf, 0xC0 + $src1$$reg);
  4188     // FMULP  src2,ST  /* DE C8+i */
  4189     emit_opcode(cbuf, 0xDE);
  4190     emit_opcode(cbuf, 0xC8 + $src2$$reg);
  4191   %}
  4193   // Atomically load the volatile long
  4194   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
  4195     emit_opcode(cbuf,0xDF);
  4196     int rm_byte_opcode = 0x05;
  4197     int base     = $mem$$base;
  4198     int index    = $mem$$index;
  4199     int scale    = $mem$$scale;
  4200     int displace = $mem$$disp;
  4201     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4202     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4203     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
  4204   %}
  4206   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
  4207     { // Atomic long load
  4208       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4209       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4210       emit_opcode(cbuf,0x0F);
  4211       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4212       int base     = $mem$$base;
  4213       int index    = $mem$$index;
  4214       int scale    = $mem$$scale;
  4215       int displace = $mem$$disp;
  4216       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4217       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4219     { // MOVSD $dst,$tmp ! atomic long store
  4220       emit_opcode(cbuf,0xF2);
  4221       emit_opcode(cbuf,0x0F);
  4222       emit_opcode(cbuf,0x11);
  4223       int base     = $dst$$base;
  4224       int index    = $dst$$index;
  4225       int scale    = $dst$$scale;
  4226       int displace = $dst$$disp;
  4227       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
  4228       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4230   %}
  4232   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
  4233     { // Atomic long load
  4234       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
  4235       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4236       emit_opcode(cbuf,0x0F);
  4237       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4238       int base     = $mem$$base;
  4239       int index    = $mem$$index;
  4240       int scale    = $mem$$scale;
  4241       int displace = $mem$$disp;
  4242       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4243       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4245     { // MOVD $dst.lo,$tmp
  4246       emit_opcode(cbuf,0x66);
  4247       emit_opcode(cbuf,0x0F);
  4248       emit_opcode(cbuf,0x7E);
  4249       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
  4251     { // PSRLQ $tmp,32
  4252       emit_opcode(cbuf,0x66);
  4253       emit_opcode(cbuf,0x0F);
  4254       emit_opcode(cbuf,0x73);
  4255       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
  4256       emit_d8(cbuf, 0x20);
  4258     { // MOVD $dst.hi,$tmp
  4259       emit_opcode(cbuf,0x66);
  4260       emit_opcode(cbuf,0x0F);
  4261       emit_opcode(cbuf,0x7E);
  4262       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
  4264   %}
  4266   // Volatile Store Long.  Must be atomic, so move it into
  4267   // the FP TOS and then do a 64-bit FIST.  Has to probe the
  4268   // target address before the store (for null-ptr checks)
  4269   // so the memory operand is used twice in the encoding.
  4270   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
  4271     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
  4272     cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
  4273     emit_opcode(cbuf,0xDF);
  4274     int rm_byte_opcode = 0x07;
  4275     int base     = $mem$$base;
  4276     int index    = $mem$$index;
  4277     int scale    = $mem$$scale;
  4278     int displace = $mem$$disp;
  4279     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4280     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
  4281   %}
  4283   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
  4284     { // Atomic long load
  4285       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
  4286       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  4287       emit_opcode(cbuf,0x0F);
  4288       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  4289       int base     = $src$$base;
  4290       int index    = $src$$index;
  4291       int scale    = $src$$scale;
  4292       int displace = $src$$disp;
  4293       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
  4294       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4296     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
  4297     { // MOVSD $mem,$tmp ! atomic long store
  4298       emit_opcode(cbuf,0xF2);
  4299       emit_opcode(cbuf,0x0F);
  4300       emit_opcode(cbuf,0x11);
  4301       int base     = $mem$$base;
  4302       int index    = $mem$$index;
  4303       int scale    = $mem$$scale;
  4304       int displace = $mem$$disp;
  4305       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4306       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4308   %}
  4310   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
  4311     { // MOVD $tmp,$src.lo
  4312       emit_opcode(cbuf,0x66);
  4313       emit_opcode(cbuf,0x0F);
  4314       emit_opcode(cbuf,0x6E);
  4315       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
  4317     { // MOVD $tmp2,$src.hi
  4318       emit_opcode(cbuf,0x66);
  4319       emit_opcode(cbuf,0x0F);
  4320       emit_opcode(cbuf,0x6E);
  4321       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
  4323     { // PUNPCKLDQ $tmp,$tmp2
  4324       emit_opcode(cbuf,0x66);
  4325       emit_opcode(cbuf,0x0F);
  4326       emit_opcode(cbuf,0x62);
  4327       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
  4329     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
  4330     { // MOVSD $mem,$tmp ! atomic long store
  4331       emit_opcode(cbuf,0xF2);
  4332       emit_opcode(cbuf,0x0F);
  4333       emit_opcode(cbuf,0x11);
  4334       int base     = $mem$$base;
  4335       int index    = $mem$$index;
  4336       int scale    = $mem$$scale;
  4337       int displace = $mem$$disp;
  4338       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
  4339       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
  4341   %}
  4343   // Safepoint Poll.  This polls the safepoint page, and causes an
  4344   // exception if it is not readable. Unfortunately, it kills the condition code
  4345   // in the process
  4346   // We current use TESTL [spp],EDI
  4347   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
  4349   enc_class Safepoint_Poll() %{
  4350     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
  4351     emit_opcode(cbuf,0x85);
  4352     emit_rm (cbuf, 0x0, 0x7, 0x5);
  4353     emit_d32(cbuf, (intptr_t)os::get_polling_page());
  4354   %}
  4355 %}
  4358 //----------FRAME--------------------------------------------------------------
  4359 // Definition of frame structure and management information.
  4360 //
  4361 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4362 //                             |   (to get allocators register number
  4363 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4364 //  r   CALLER     |        |
  4365 //  o     |        +--------+      pad to even-align allocators stack-slot
  4366 //  w     V        |  pad0  |        numbers; owned by CALLER
  4367 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4368 //  h     ^        |   in   |  5
  4369 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4370 //  |     |        |        |  3
  4371 //  |     |        +--------+
  4372 //  V     |        | old out|      Empty on Intel, window on Sparc
  4373 //        |    old |preserve|      Must be even aligned.
  4374 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4375 //        |        |   in   |  3   area for Intel ret address
  4376 //     Owned by    |preserve|      Empty on Sparc.
  4377 //       SELF      +--------+
  4378 //        |        |  pad2  |  2   pad to align old SP
  4379 //        |        +--------+  1
  4380 //        |        | locks  |  0
  4381 //        |        +--------+----> OptoReg::stack0(), even aligned
  4382 //        |        |  pad1  | 11   pad to align new SP
  4383 //        |        +--------+
  4384 //        |        |        | 10
  4385 //        |        | spills |  9   spills
  4386 //        V        |        |  8   (pad0 slot for callee)
  4387 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4388 //        ^        |  out   |  7
  4389 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4390 //     Owned by    +--------+
  4391 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4392 //        |    new |preserve|      Must be even-aligned.
  4393 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4394 //        |        |        |
  4395 //
  4396 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4397 //         known from SELF's arguments and the Java calling convention.
  4398 //         Region 6-7 is determined per call site.
  4399 // Note 2: If the calling convention leaves holes in the incoming argument
  4400 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4401 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4402 //         incoming area, as the Java calling convention is completely under
  4403 //         the control of the AD file.  Doubles can be sorted and packed to
  4404 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4405 //         varargs C calling conventions.
  4406 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4407 //         even aligned with pad0 as needed.
  4408 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4409 //         region 6-11 is even aligned; it may be padded out more so that
  4410 //         the region from SP to FP meets the minimum stack alignment.
  4412 frame %{
  4413   // What direction does stack grow in (assumed to be same for C & Java)
  4414   stack_direction(TOWARDS_LOW);
  4416   // These three registers define part of the calling convention
  4417   // between compiled code and the interpreter.
  4418   inline_cache_reg(EAX);                // Inline Cache Register
  4419   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
  4421   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  4422   cisc_spilling_operand_name(indOffset32);
  4424   // Number of stack slots consumed by locking an object
  4425   sync_stack_slots(1);
  4427   // Compiled code's Frame Pointer
  4428   frame_pointer(ESP);
  4429   // Interpreter stores its frame pointer in a register which is
  4430   // stored to the stack by I2CAdaptors.
  4431   // I2CAdaptors convert from interpreted java to compiled java.
  4432   interpreter_frame_pointer(EBP);
  4434   // Stack alignment requirement
  4435   // Alignment size in bytes (128-bit -> 16 bytes)
  4436   stack_alignment(StackAlignmentInBytes);
  4438   // Number of stack slots between incoming argument block and the start of
  4439   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4440   // EPILOG must remove this many slots.  Intel needs one slot for
  4441   // return address and one for rbp, (must save rbp)
  4442   in_preserve_stack_slots(2+VerifyStackAtCalls);
  4444   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4445   // for calls to C.  Supports the var-args backing area for register parms.
  4446   varargs_C_out_slots_killed(0);
  4448   // The after-PROLOG location of the return address.  Location of
  4449   // return address specifies a type (REG or STACK) and a number
  4450   // representing the register number (i.e. - use a register name) or
  4451   // stack slot.
  4452   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4453   // Otherwise, it is above the locks and verification slot and alignment word
  4454   return_addr(STACK - 1 +
  4455               round_to(1+VerifyStackAtCalls+
  4456               Compile::current()->fixed_slots(),
  4457               (StackAlignmentInBytes/wordSize)));
  4459   // Body of function which returns an integer array locating
  4460   // arguments either in registers or in stack slots.  Passed an array
  4461   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4462   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4463   // arguments for a CALLEE.  Incoming stack arguments are
  4464   // automatically biased by the preserve_stack_slots field above.
  4465   calling_convention %{
  4466     // No difference between ingoing/outgoing just pass false
  4467     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4468   %}
  4471   // Body of function which returns an integer array locating
  4472   // arguments either in registers or in stack slots.  Passed an array
  4473   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4474   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4475   // arguments for a CALLEE.  Incoming stack arguments are
  4476   // automatically biased by the preserve_stack_slots field above.
  4477   c_calling_convention %{
  4478     // This is obviously always outgoing
  4479     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4480   %}
  4482   // Location of C & interpreter return values
  4483   c_return_value %{
  4484     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4485     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4486     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4488     // in SSE2+ mode we want to keep the FPU stack clean so pretend
  4489     // that C functions return float and double results in XMM0.
  4490     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4491       return OptoRegPair(XMM0b_num,XMM0a_num);
  4492     if( ideal_reg == Op_RegF && UseSSE>=2 )
  4493       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4495     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4496   %}
  4498   // Location of return values
  4499   return_value %{
  4500     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  4501     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
  4502     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
  4503     if( ideal_reg == Op_RegD && UseSSE>=2 )
  4504       return OptoRegPair(XMM0b_num,XMM0a_num);
  4505     if( ideal_reg == Op_RegF && UseSSE>=1 )
  4506       return OptoRegPair(OptoReg::Bad,XMM0a_num);
  4507     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
  4508   %}
  4510 %}
  4512 //----------ATTRIBUTES---------------------------------------------------------
  4513 //----------Operand Attributes-------------------------------------------------
  4514 op_attrib op_cost(0);        // Required cost attribute
  4516 //----------Instruction Attributes---------------------------------------------
  4517 ins_attrib ins_cost(100);       // Required cost attribute
  4518 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4519 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4520 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  4521                                 // non-matching short branch variant of some
  4522                                                             // long branch?
  4523 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
  4524                                 // specifies the alignment that some part of the instruction (not
  4525                                 // necessarily the start) requires.  If > 1, a compute_padding()
  4526                                 // function must be provided for the instruction
  4528 //----------OPERANDS-----------------------------------------------------------
  4529 // Operand definitions must precede instruction definitions for correct parsing
  4530 // in the ADLC because operands constitute user defined types which are used in
  4531 // instruction definitions.
  4533 //----------Simple Operands----------------------------------------------------
  4534 // Immediate Operands
  4535 // Integer Immediate
  4536 operand immI() %{
  4537   match(ConI);
  4539   op_cost(10);
  4540   format %{ %}
  4541   interface(CONST_INTER);
  4542 %}
  4544 // Constant for test vs zero
  4545 operand immI0() %{
  4546   predicate(n->get_int() == 0);
  4547   match(ConI);
  4549   op_cost(0);
  4550   format %{ %}
  4551   interface(CONST_INTER);
  4552 %}
  4554 // Constant for increment
  4555 operand immI1() %{
  4556   predicate(n->get_int() == 1);
  4557   match(ConI);
  4559   op_cost(0);
  4560   format %{ %}
  4561   interface(CONST_INTER);
  4562 %}
  4564 // Constant for decrement
  4565 operand immI_M1() %{
  4566   predicate(n->get_int() == -1);
  4567   match(ConI);
  4569   op_cost(0);
  4570   format %{ %}
  4571   interface(CONST_INTER);
  4572 %}
  4574 // Valid scale values for addressing modes
  4575 operand immI2() %{
  4576   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4577   match(ConI);
  4579   format %{ %}
  4580   interface(CONST_INTER);
  4581 %}
  4583 operand immI8() %{
  4584   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
  4585   match(ConI);
  4587   op_cost(5);
  4588   format %{ %}
  4589   interface(CONST_INTER);
  4590 %}
  4592 operand immI16() %{
  4593   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4594   match(ConI);
  4596   op_cost(10);
  4597   format %{ %}
  4598   interface(CONST_INTER);
  4599 %}
  4601 // Constant for long shifts
  4602 operand immI_32() %{
  4603   predicate( n->get_int() == 32 );
  4604   match(ConI);
  4606   op_cost(0);
  4607   format %{ %}
  4608   interface(CONST_INTER);
  4609 %}
  4611 operand immI_1_31() %{
  4612   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
  4613   match(ConI);
  4615   op_cost(0);
  4616   format %{ %}
  4617   interface(CONST_INTER);
  4618 %}
  4620 operand immI_32_63() %{
  4621   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
  4622   match(ConI);
  4623   op_cost(0);
  4625   format %{ %}
  4626   interface(CONST_INTER);
  4627 %}
  4629 operand immI_1() %{
  4630   predicate( n->get_int() == 1 );
  4631   match(ConI);
  4633   op_cost(0);
  4634   format %{ %}
  4635   interface(CONST_INTER);
  4636 %}
  4638 operand immI_2() %{
  4639   predicate( n->get_int() == 2 );
  4640   match(ConI);
  4642   op_cost(0);
  4643   format %{ %}
  4644   interface(CONST_INTER);
  4645 %}
  4647 operand immI_3() %{
  4648   predicate( n->get_int() == 3 );
  4649   match(ConI);
  4651   op_cost(0);
  4652   format %{ %}
  4653   interface(CONST_INTER);
  4654 %}
  4656 // Pointer Immediate
  4657 operand immP() %{
  4658   match(ConP);
  4660   op_cost(10);
  4661   format %{ %}
  4662   interface(CONST_INTER);
  4663 %}
  4665 // NULL Pointer Immediate
  4666 operand immP0() %{
  4667   predicate( n->get_ptr() == 0 );
  4668   match(ConP);
  4669   op_cost(0);
  4671   format %{ %}
  4672   interface(CONST_INTER);
  4673 %}
  4675 // Long Immediate
  4676 operand immL() %{
  4677   match(ConL);
  4679   op_cost(20);
  4680   format %{ %}
  4681   interface(CONST_INTER);
  4682 %}
  4684 // Long Immediate zero
  4685 operand immL0() %{
  4686   predicate( n->get_long() == 0L );
  4687   match(ConL);
  4688   op_cost(0);
  4690   format %{ %}
  4691   interface(CONST_INTER);
  4692 %}
  4694 // Long Immediate zero
  4695 operand immL_M1() %{
  4696   predicate( n->get_long() == -1L );
  4697   match(ConL);
  4698   op_cost(0);
  4700   format %{ %}
  4701   interface(CONST_INTER);
  4702 %}
  4704 // Long immediate from 0 to 127.
  4705 // Used for a shorter form of long mul by 10.
  4706 operand immL_127() %{
  4707   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
  4708   match(ConL);
  4709   op_cost(0);
  4711   format %{ %}
  4712   interface(CONST_INTER);
  4713 %}
  4715 // Long Immediate: low 32-bit mask
  4716 operand immL_32bits() %{
  4717   predicate(n->get_long() == 0xFFFFFFFFL);
  4718   match(ConL);
  4719   op_cost(0);
  4721   format %{ %}
  4722   interface(CONST_INTER);
  4723 %}
  4725 // Long Immediate: low 32-bit mask
  4726 operand immL32() %{
  4727   predicate(n->get_long() == (int)(n->get_long()));
  4728   match(ConL);
  4729   op_cost(20);
  4731   format %{ %}
  4732   interface(CONST_INTER);
  4733 %}
  4735 //Double Immediate zero
  4736 operand immD0() %{
  4737   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4738   // bug that generates code such that NaNs compare equal to 0.0
  4739   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
  4740   match(ConD);
  4742   op_cost(5);
  4743   format %{ %}
  4744   interface(CONST_INTER);
  4745 %}
  4747 // Double Immediate
  4748 operand immD1() %{
  4749   predicate( UseSSE<=1 && n->getd() == 1.0 );
  4750   match(ConD);
  4752   op_cost(5);
  4753   format %{ %}
  4754   interface(CONST_INTER);
  4755 %}
  4757 // Double Immediate
  4758 operand immD() %{
  4759   predicate(UseSSE<=1);
  4760   match(ConD);
  4762   op_cost(5);
  4763   format %{ %}
  4764   interface(CONST_INTER);
  4765 %}
  4767 operand immXD() %{
  4768   predicate(UseSSE>=2);
  4769   match(ConD);
  4771   op_cost(5);
  4772   format %{ %}
  4773   interface(CONST_INTER);
  4774 %}
  4776 // Double Immediate zero
  4777 operand immXD0() %{
  4778   // Do additional (and counter-intuitive) test against NaN to work around VC++
  4779   // bug that generates code such that NaNs compare equal to 0.0 AND do not
  4780   // compare equal to -0.0.
  4781   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
  4782   match(ConD);
  4784   format %{ %}
  4785   interface(CONST_INTER);
  4786 %}
  4788 // Float Immediate zero
  4789 operand immF0() %{
  4790   predicate( UseSSE == 0 && n->getf() == 0.0 );
  4791   match(ConF);
  4793   op_cost(5);
  4794   format %{ %}
  4795   interface(CONST_INTER);
  4796 %}
  4798 // Float Immediate
  4799 operand immF() %{
  4800   predicate( UseSSE == 0 );
  4801   match(ConF);
  4803   op_cost(5);
  4804   format %{ %}
  4805   interface(CONST_INTER);
  4806 %}
  4808 // Float Immediate
  4809 operand immXF() %{
  4810   predicate(UseSSE >= 1);
  4811   match(ConF);
  4813   op_cost(5);
  4814   format %{ %}
  4815   interface(CONST_INTER);
  4816 %}
  4818 // Float Immediate zero.  Zero and not -0.0
  4819 operand immXF0() %{
  4820   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
  4821   match(ConF);
  4823   op_cost(5);
  4824   format %{ %}
  4825   interface(CONST_INTER);
  4826 %}
  4828 // Immediates for special shifts (sign extend)
  4830 // Constants for increment
  4831 operand immI_16() %{
  4832   predicate( n->get_int() == 16 );
  4833   match(ConI);
  4835   format %{ %}
  4836   interface(CONST_INTER);
  4837 %}
  4839 operand immI_24() %{
  4840   predicate( n->get_int() == 24 );
  4841   match(ConI);
  4843   format %{ %}
  4844   interface(CONST_INTER);
  4845 %}
  4847 // Constant for byte-wide masking
  4848 operand immI_255() %{
  4849   predicate( n->get_int() == 255 );
  4850   match(ConI);
  4852   format %{ %}
  4853   interface(CONST_INTER);
  4854 %}
  4856 // Constant for short-wide masking
  4857 operand immI_65535() %{
  4858   predicate(n->get_int() == 65535);
  4859   match(ConI);
  4861   format %{ %}
  4862   interface(CONST_INTER);
  4863 %}
  4865 // Register Operands
  4866 // Integer Register
  4867 operand eRegI() %{
  4868   constraint(ALLOC_IN_RC(e_reg));
  4869   match(RegI);
  4870   match(xRegI);
  4871   match(eAXRegI);
  4872   match(eBXRegI);
  4873   match(eCXRegI);
  4874   match(eDXRegI);
  4875   match(eDIRegI);
  4876   match(eSIRegI);
  4878   format %{ %}
  4879   interface(REG_INTER);
  4880 %}
  4882 // Subset of Integer Register
  4883 operand xRegI(eRegI reg) %{
  4884   constraint(ALLOC_IN_RC(x_reg));
  4885   match(reg);
  4886   match(eAXRegI);
  4887   match(eBXRegI);
  4888   match(eCXRegI);
  4889   match(eDXRegI);
  4891   format %{ %}
  4892   interface(REG_INTER);
  4893 %}
  4895 // Special Registers
  4896 operand eAXRegI(xRegI reg) %{
  4897   constraint(ALLOC_IN_RC(eax_reg));
  4898   match(reg);
  4899   match(eRegI);
  4901   format %{ "EAX" %}
  4902   interface(REG_INTER);
  4903 %}
  4905 // Special Registers
  4906 operand eBXRegI(xRegI reg) %{
  4907   constraint(ALLOC_IN_RC(ebx_reg));
  4908   match(reg);
  4909   match(eRegI);
  4911   format %{ "EBX" %}
  4912   interface(REG_INTER);
  4913 %}
  4915 operand eCXRegI(xRegI reg) %{
  4916   constraint(ALLOC_IN_RC(ecx_reg));
  4917   match(reg);
  4918   match(eRegI);
  4920   format %{ "ECX" %}
  4921   interface(REG_INTER);
  4922 %}
  4924 operand eDXRegI(xRegI reg) %{
  4925   constraint(ALLOC_IN_RC(edx_reg));
  4926   match(reg);
  4927   match(eRegI);
  4929   format %{ "EDX" %}
  4930   interface(REG_INTER);
  4931 %}
  4933 operand eDIRegI(xRegI reg) %{
  4934   constraint(ALLOC_IN_RC(edi_reg));
  4935   match(reg);
  4936   match(eRegI);
  4938   format %{ "EDI" %}
  4939   interface(REG_INTER);
  4940 %}
  4942 operand naxRegI() %{
  4943   constraint(ALLOC_IN_RC(nax_reg));
  4944   match(RegI);
  4945   match(eCXRegI);
  4946   match(eDXRegI);
  4947   match(eSIRegI);
  4948   match(eDIRegI);
  4950   format %{ %}
  4951   interface(REG_INTER);
  4952 %}
  4954 operand nadxRegI() %{
  4955   constraint(ALLOC_IN_RC(nadx_reg));
  4956   match(RegI);
  4957   match(eBXRegI);
  4958   match(eCXRegI);
  4959   match(eSIRegI);
  4960   match(eDIRegI);
  4962   format %{ %}
  4963   interface(REG_INTER);
  4964 %}
  4966 operand ncxRegI() %{
  4967   constraint(ALLOC_IN_RC(ncx_reg));
  4968   match(RegI);
  4969   match(eAXRegI);
  4970   match(eDXRegI);
  4971   match(eSIRegI);
  4972   match(eDIRegI);
  4974   format %{ %}
  4975   interface(REG_INTER);
  4976 %}
  4978 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
  4979 // //
  4980 operand eSIRegI(xRegI reg) %{
  4981    constraint(ALLOC_IN_RC(esi_reg));
  4982    match(reg);
  4983    match(eRegI);
  4985    format %{ "ESI" %}
  4986    interface(REG_INTER);
  4987 %}
  4989 // Pointer Register
  4990 operand anyRegP() %{
  4991   constraint(ALLOC_IN_RC(any_reg));
  4992   match(RegP);
  4993   match(eAXRegP);
  4994   match(eBXRegP);
  4995   match(eCXRegP);
  4996   match(eDIRegP);
  4997   match(eRegP);
  4999   format %{ %}
  5000   interface(REG_INTER);
  5001 %}
  5003 operand eRegP() %{
  5004   constraint(ALLOC_IN_RC(e_reg));
  5005   match(RegP);
  5006   match(eAXRegP);
  5007   match(eBXRegP);
  5008   match(eCXRegP);
  5009   match(eDIRegP);
  5011   format %{ %}
  5012   interface(REG_INTER);
  5013 %}
  5015 // On windows95, EBP is not safe to use for implicit null tests.
  5016 operand eRegP_no_EBP() %{
  5017   constraint(ALLOC_IN_RC(e_reg_no_rbp));
  5018   match(RegP);
  5019   match(eAXRegP);
  5020   match(eBXRegP);
  5021   match(eCXRegP);
  5022   match(eDIRegP);
  5024   op_cost(100);
  5025   format %{ %}
  5026   interface(REG_INTER);
  5027 %}
  5029 operand naxRegP() %{
  5030   constraint(ALLOC_IN_RC(nax_reg));
  5031   match(RegP);
  5032   match(eBXRegP);
  5033   match(eDXRegP);
  5034   match(eCXRegP);
  5035   match(eSIRegP);
  5036   match(eDIRegP);
  5038   format %{ %}
  5039   interface(REG_INTER);
  5040 %}
  5042 operand nabxRegP() %{
  5043   constraint(ALLOC_IN_RC(nabx_reg));
  5044   match(RegP);
  5045   match(eCXRegP);
  5046   match(eDXRegP);
  5047   match(eSIRegP);
  5048   match(eDIRegP);
  5050   format %{ %}
  5051   interface(REG_INTER);
  5052 %}
  5054 operand pRegP() %{
  5055   constraint(ALLOC_IN_RC(p_reg));
  5056   match(RegP);
  5057   match(eBXRegP);
  5058   match(eDXRegP);
  5059   match(eSIRegP);
  5060   match(eDIRegP);
  5062   format %{ %}
  5063   interface(REG_INTER);
  5064 %}
  5066 // Special Registers
  5067 // Return a pointer value
  5068 operand eAXRegP(eRegP reg) %{
  5069   constraint(ALLOC_IN_RC(eax_reg));
  5070   match(reg);
  5071   format %{ "EAX" %}
  5072   interface(REG_INTER);
  5073 %}
  5075 // Used in AtomicAdd
  5076 operand eBXRegP(eRegP reg) %{
  5077   constraint(ALLOC_IN_RC(ebx_reg));
  5078   match(reg);
  5079   format %{ "EBX" %}
  5080   interface(REG_INTER);
  5081 %}
  5083 // Tail-call (interprocedural jump) to interpreter
  5084 operand eCXRegP(eRegP reg) %{
  5085   constraint(ALLOC_IN_RC(ecx_reg));
  5086   match(reg);
  5087   format %{ "ECX" %}
  5088   interface(REG_INTER);
  5089 %}
  5091 operand eSIRegP(eRegP reg) %{
  5092   constraint(ALLOC_IN_RC(esi_reg));
  5093   match(reg);
  5094   format %{ "ESI" %}
  5095   interface(REG_INTER);
  5096 %}
  5098 // Used in rep stosw
  5099 operand eDIRegP(eRegP reg) %{
  5100   constraint(ALLOC_IN_RC(edi_reg));
  5101   match(reg);
  5102   format %{ "EDI" %}
  5103   interface(REG_INTER);
  5104 %}
  5106 operand eBPRegP() %{
  5107   constraint(ALLOC_IN_RC(ebp_reg));
  5108   match(RegP);
  5109   format %{ "EBP" %}
  5110   interface(REG_INTER);
  5111 %}
  5113 operand eRegL() %{
  5114   constraint(ALLOC_IN_RC(long_reg));
  5115   match(RegL);
  5116   match(eADXRegL);
  5118   format %{ %}
  5119   interface(REG_INTER);
  5120 %}
  5122 operand eADXRegL( eRegL reg ) %{
  5123   constraint(ALLOC_IN_RC(eadx_reg));
  5124   match(reg);
  5126   format %{ "EDX:EAX" %}
  5127   interface(REG_INTER);
  5128 %}
  5130 operand eBCXRegL( eRegL reg ) %{
  5131   constraint(ALLOC_IN_RC(ebcx_reg));
  5132   match(reg);
  5134   format %{ "EBX:ECX" %}
  5135   interface(REG_INTER);
  5136 %}
  5138 // Special case for integer high multiply
  5139 operand eADXRegL_low_only() %{
  5140   constraint(ALLOC_IN_RC(eadx_reg));
  5141   match(RegL);
  5143   format %{ "EAX" %}
  5144   interface(REG_INTER);
  5145 %}
  5147 // Flags register, used as output of compare instructions
  5148 operand eFlagsReg() %{
  5149   constraint(ALLOC_IN_RC(int_flags));
  5150   match(RegFlags);
  5152   format %{ "EFLAGS" %}
  5153   interface(REG_INTER);
  5154 %}
  5156 // Flags register, used as output of FLOATING POINT compare instructions
  5157 operand eFlagsRegU() %{
  5158   constraint(ALLOC_IN_RC(int_flags));
  5159   match(RegFlags);
  5161   format %{ "EFLAGS_U" %}
  5162   interface(REG_INTER);
  5163 %}
  5165 operand eFlagsRegUCF() %{
  5166   constraint(ALLOC_IN_RC(int_flags));
  5167   match(RegFlags);
  5168   predicate(false);
  5170   format %{ "EFLAGS_U_CF" %}
  5171   interface(REG_INTER);
  5172 %}
  5174 // Condition Code Register used by long compare
  5175 operand flagsReg_long_LTGE() %{
  5176   constraint(ALLOC_IN_RC(int_flags));
  5177   match(RegFlags);
  5178   format %{ "FLAGS_LTGE" %}
  5179   interface(REG_INTER);
  5180 %}
  5181 operand flagsReg_long_EQNE() %{
  5182   constraint(ALLOC_IN_RC(int_flags));
  5183   match(RegFlags);
  5184   format %{ "FLAGS_EQNE" %}
  5185   interface(REG_INTER);
  5186 %}
  5187 operand flagsReg_long_LEGT() %{
  5188   constraint(ALLOC_IN_RC(int_flags));
  5189   match(RegFlags);
  5190   format %{ "FLAGS_LEGT" %}
  5191   interface(REG_INTER);
  5192 %}
  5194 // Float register operands
  5195 operand regD() %{
  5196   predicate( UseSSE < 2 );
  5197   constraint(ALLOC_IN_RC(dbl_reg));
  5198   match(RegD);
  5199   match(regDPR1);
  5200   match(regDPR2);
  5201   format %{ %}
  5202   interface(REG_INTER);
  5203 %}
  5205 operand regDPR1(regD reg) %{
  5206   predicate( UseSSE < 2 );
  5207   constraint(ALLOC_IN_RC(dbl_reg0));
  5208   match(reg);
  5209   format %{ "FPR1" %}
  5210   interface(REG_INTER);
  5211 %}
  5213 operand regDPR2(regD reg) %{
  5214   predicate( UseSSE < 2 );
  5215   constraint(ALLOC_IN_RC(dbl_reg1));
  5216   match(reg);
  5217   format %{ "FPR2" %}
  5218   interface(REG_INTER);
  5219 %}
  5221 operand regnotDPR1(regD reg) %{
  5222   predicate( UseSSE < 2 );
  5223   constraint(ALLOC_IN_RC(dbl_notreg0));
  5224   match(reg);
  5225   format %{ %}
  5226   interface(REG_INTER);
  5227 %}
  5229 // XMM Double register operands
  5230 operand regXD() %{
  5231   predicate( UseSSE>=2 );
  5232   constraint(ALLOC_IN_RC(xdb_reg));
  5233   match(RegD);
  5234   match(regXD6);
  5235   match(regXD7);
  5236   format %{ %}
  5237   interface(REG_INTER);
  5238 %}
  5240 // XMM6 double register operands
  5241 operand regXD6(regXD reg) %{
  5242   predicate( UseSSE>=2 );
  5243   constraint(ALLOC_IN_RC(xdb_reg6));
  5244   match(reg);
  5245   format %{ "XMM6" %}
  5246   interface(REG_INTER);
  5247 %}
  5249 // XMM7 double register operands
  5250 operand regXD7(regXD reg) %{
  5251   predicate( UseSSE>=2 );
  5252   constraint(ALLOC_IN_RC(xdb_reg7));
  5253   match(reg);
  5254   format %{ "XMM7" %}
  5255   interface(REG_INTER);
  5256 %}
  5258 // Float register operands
  5259 operand regF() %{
  5260   predicate( UseSSE < 2 );
  5261   constraint(ALLOC_IN_RC(flt_reg));
  5262   match(RegF);
  5263   match(regFPR1);
  5264   format %{ %}
  5265   interface(REG_INTER);
  5266 %}
  5268 // Float register operands
  5269 operand regFPR1(regF reg) %{
  5270   predicate( UseSSE < 2 );
  5271   constraint(ALLOC_IN_RC(flt_reg0));
  5272   match(reg);
  5273   format %{ "FPR1" %}
  5274   interface(REG_INTER);
  5275 %}
  5277 // XMM register operands
  5278 operand regX() %{
  5279   predicate( UseSSE>=1 );
  5280   constraint(ALLOC_IN_RC(xmm_reg));
  5281   match(RegF);
  5282   format %{ %}
  5283   interface(REG_INTER);
  5284 %}
  5287 //----------Memory Operands----------------------------------------------------
  5288 // Direct Memory Operand
  5289 operand direct(immP addr) %{
  5290   match(addr);
  5292   format %{ "[$addr]" %}
  5293   interface(MEMORY_INTER) %{
  5294     base(0xFFFFFFFF);
  5295     index(0x4);
  5296     scale(0x0);
  5297     disp($addr);
  5298   %}
  5299 %}
  5301 // Indirect Memory Operand
  5302 operand indirect(eRegP reg) %{
  5303   constraint(ALLOC_IN_RC(e_reg));
  5304   match(reg);
  5306   format %{ "[$reg]" %}
  5307   interface(MEMORY_INTER) %{
  5308     base($reg);
  5309     index(0x4);
  5310     scale(0x0);
  5311     disp(0x0);
  5312   %}
  5313 %}
  5315 // Indirect Memory Plus Short Offset Operand
  5316 operand indOffset8(eRegP reg, immI8 off) %{
  5317   match(AddP reg off);
  5319   format %{ "[$reg + $off]" %}
  5320   interface(MEMORY_INTER) %{
  5321     base($reg);
  5322     index(0x4);
  5323     scale(0x0);
  5324     disp($off);
  5325   %}
  5326 %}
  5328 // Indirect Memory Plus Long Offset Operand
  5329 operand indOffset32(eRegP reg, immI off) %{
  5330   match(AddP reg off);
  5332   format %{ "[$reg + $off]" %}
  5333   interface(MEMORY_INTER) %{
  5334     base($reg);
  5335     index(0x4);
  5336     scale(0x0);
  5337     disp($off);
  5338   %}
  5339 %}
  5341 // Indirect Memory Plus Long Offset Operand
  5342 operand indOffset32X(eRegI reg, immP off) %{
  5343   match(AddP off reg);
  5345   format %{ "[$reg + $off]" %}
  5346   interface(MEMORY_INTER) %{
  5347     base($reg);
  5348     index(0x4);
  5349     scale(0x0);
  5350     disp($off);
  5351   %}
  5352 %}
  5354 // Indirect Memory Plus Index Register Plus Offset Operand
  5355 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
  5356   match(AddP (AddP reg ireg) off);
  5358   op_cost(10);
  5359   format %{"[$reg + $off + $ireg]" %}
  5360   interface(MEMORY_INTER) %{
  5361     base($reg);
  5362     index($ireg);
  5363     scale(0x0);
  5364     disp($off);
  5365   %}
  5366 %}
  5368 // Indirect Memory Plus Index Register Plus Offset Operand
  5369 operand indIndex(eRegP reg, eRegI ireg) %{
  5370   match(AddP reg ireg);
  5372   op_cost(10);
  5373   format %{"[$reg + $ireg]" %}
  5374   interface(MEMORY_INTER) %{
  5375     base($reg);
  5376     index($ireg);
  5377     scale(0x0);
  5378     disp(0x0);
  5379   %}
  5380 %}
  5382 // // -------------------------------------------------------------------------
  5383 // // 486 architecture doesn't support "scale * index + offset" with out a base
  5384 // // -------------------------------------------------------------------------
  5385 // // Scaled Memory Operands
  5386 // // Indirect Memory Times Scale Plus Offset Operand
  5387 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
  5388 //   match(AddP off (LShiftI ireg scale));
  5389 //
  5390 //   op_cost(10);
  5391 //   format %{"[$off + $ireg << $scale]" %}
  5392 //   interface(MEMORY_INTER) %{
  5393 //     base(0x4);
  5394 //     index($ireg);
  5395 //     scale($scale);
  5396 //     disp($off);
  5397 //   %}
  5398 // %}
  5400 // Indirect Memory Times Scale Plus Index Register
  5401 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
  5402   match(AddP reg (LShiftI ireg scale));
  5404   op_cost(10);
  5405   format %{"[$reg + $ireg << $scale]" %}
  5406   interface(MEMORY_INTER) %{
  5407     base($reg);
  5408     index($ireg);
  5409     scale($scale);
  5410     disp(0x0);
  5411   %}
  5412 %}
  5414 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5415 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
  5416   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5418   op_cost(10);
  5419   format %{"[$reg + $off + $ireg << $scale]" %}
  5420   interface(MEMORY_INTER) %{
  5421     base($reg);
  5422     index($ireg);
  5423     scale($scale);
  5424     disp($off);
  5425   %}
  5426 %}
  5428 //----------Load Long Memory Operands------------------------------------------
  5429 // The load-long idiom will use it's address expression again after loading
  5430 // the first word of the long.  If the load-long destination overlaps with
  5431 // registers used in the addressing expression, the 2nd half will be loaded
  5432 // from a clobbered address.  Fix this by requiring that load-long use
  5433 // address registers that do not overlap with the load-long target.
  5435 // load-long support
  5436 operand load_long_RegP() %{
  5437   constraint(ALLOC_IN_RC(esi_reg));
  5438   match(RegP);
  5439   match(eSIRegP);
  5440   op_cost(100);
  5441   format %{  %}
  5442   interface(REG_INTER);
  5443 %}
  5445 // Indirect Memory Operand Long
  5446 operand load_long_indirect(load_long_RegP reg) %{
  5447   constraint(ALLOC_IN_RC(esi_reg));
  5448   match(reg);
  5450   format %{ "[$reg]" %}
  5451   interface(MEMORY_INTER) %{
  5452     base($reg);
  5453     index(0x4);
  5454     scale(0x0);
  5455     disp(0x0);
  5456   %}
  5457 %}
  5459 // Indirect Memory Plus Long Offset Operand
  5460 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
  5461   match(AddP reg off);
  5463   format %{ "[$reg + $off]" %}
  5464   interface(MEMORY_INTER) %{
  5465     base($reg);
  5466     index(0x4);
  5467     scale(0x0);
  5468     disp($off);
  5469   %}
  5470 %}
  5472 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
  5475 //----------Special Memory Operands--------------------------------------------
  5476 // Stack Slot Operand - This operand is used for loading and storing temporary
  5477 //                      values on the stack where a match requires a value to
  5478 //                      flow through memory.
  5479 operand stackSlotP(sRegP reg) %{
  5480   constraint(ALLOC_IN_RC(stack_slots));
  5481   // No match rule because this operand is only generated in matching
  5482   format %{ "[$reg]" %}
  5483   interface(MEMORY_INTER) %{
  5484     base(0x4);   // ESP
  5485     index(0x4);  // No Index
  5486     scale(0x0);  // No Scale
  5487     disp($reg);  // Stack Offset
  5488   %}
  5489 %}
  5491 operand stackSlotI(sRegI reg) %{
  5492   constraint(ALLOC_IN_RC(stack_slots));
  5493   // No match rule because this operand is only generated in matching
  5494   format %{ "[$reg]" %}
  5495   interface(MEMORY_INTER) %{
  5496     base(0x4);   // ESP
  5497     index(0x4);  // No Index
  5498     scale(0x0);  // No Scale
  5499     disp($reg);  // Stack Offset
  5500   %}
  5501 %}
  5503 operand stackSlotF(sRegF reg) %{
  5504   constraint(ALLOC_IN_RC(stack_slots));
  5505   // No match rule because this operand is only generated in matching
  5506   format %{ "[$reg]" %}
  5507   interface(MEMORY_INTER) %{
  5508     base(0x4);   // ESP
  5509     index(0x4);  // No Index
  5510     scale(0x0);  // No Scale
  5511     disp($reg);  // Stack Offset
  5512   %}
  5513 %}
  5515 operand stackSlotD(sRegD reg) %{
  5516   constraint(ALLOC_IN_RC(stack_slots));
  5517   // No match rule because this operand is only generated in matching
  5518   format %{ "[$reg]" %}
  5519   interface(MEMORY_INTER) %{
  5520     base(0x4);   // ESP
  5521     index(0x4);  // No Index
  5522     scale(0x0);  // No Scale
  5523     disp($reg);  // Stack Offset
  5524   %}
  5525 %}
  5527 operand stackSlotL(sRegL reg) %{
  5528   constraint(ALLOC_IN_RC(stack_slots));
  5529   // No match rule because this operand is only generated in matching
  5530   format %{ "[$reg]" %}
  5531   interface(MEMORY_INTER) %{
  5532     base(0x4);   // ESP
  5533     index(0x4);  // No Index
  5534     scale(0x0);  // No Scale
  5535     disp($reg);  // Stack Offset
  5536   %}
  5537 %}
  5539 //----------Memory Operands - Win95 Implicit Null Variants----------------
  5540 // Indirect Memory Operand
  5541 operand indirect_win95_safe(eRegP_no_EBP reg)
  5542 %{
  5543   constraint(ALLOC_IN_RC(e_reg));
  5544   match(reg);
  5546   op_cost(100);
  5547   format %{ "[$reg]" %}
  5548   interface(MEMORY_INTER) %{
  5549     base($reg);
  5550     index(0x4);
  5551     scale(0x0);
  5552     disp(0x0);
  5553   %}
  5554 %}
  5556 // Indirect Memory Plus Short Offset Operand
  5557 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
  5558 %{
  5559   match(AddP reg off);
  5561   op_cost(100);
  5562   format %{ "[$reg + $off]" %}
  5563   interface(MEMORY_INTER) %{
  5564     base($reg);
  5565     index(0x4);
  5566     scale(0x0);
  5567     disp($off);
  5568   %}
  5569 %}
  5571 // Indirect Memory Plus Long Offset Operand
  5572 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
  5573 %{
  5574   match(AddP reg off);
  5576   op_cost(100);
  5577   format %{ "[$reg + $off]" %}
  5578   interface(MEMORY_INTER) %{
  5579     base($reg);
  5580     index(0x4);
  5581     scale(0x0);
  5582     disp($off);
  5583   %}
  5584 %}
  5586 // Indirect Memory Plus Index Register Plus Offset Operand
  5587 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
  5588 %{
  5589   match(AddP (AddP reg ireg) off);
  5591   op_cost(100);
  5592   format %{"[$reg + $off + $ireg]" %}
  5593   interface(MEMORY_INTER) %{
  5594     base($reg);
  5595     index($ireg);
  5596     scale(0x0);
  5597     disp($off);
  5598   %}
  5599 %}
  5601 // Indirect Memory Times Scale Plus Index Register
  5602 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
  5603 %{
  5604   match(AddP reg (LShiftI ireg scale));
  5606   op_cost(100);
  5607   format %{"[$reg + $ireg << $scale]" %}
  5608   interface(MEMORY_INTER) %{
  5609     base($reg);
  5610     index($ireg);
  5611     scale($scale);
  5612     disp(0x0);
  5613   %}
  5614 %}
  5616 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5617 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
  5618 %{
  5619   match(AddP (AddP reg (LShiftI ireg scale)) off);
  5621   op_cost(100);
  5622   format %{"[$reg + $off + $ireg << $scale]" %}
  5623   interface(MEMORY_INTER) %{
  5624     base($reg);
  5625     index($ireg);
  5626     scale($scale);
  5627     disp($off);
  5628   %}
  5629 %}
  5631 //----------Conditional Branch Operands----------------------------------------
  5632 // Comparison Op  - This is the operation of the comparison, and is limited to
  5633 //                  the following set of codes:
  5634 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5635 //
  5636 // Other attributes of the comparison, such as unsignedness, are specified
  5637 // by the comparison instruction that sets a condition code flags register.
  5638 // That result is represented by a flags operand whose subtype is appropriate
  5639 // to the unsignedness (etc.) of the comparison.
  5640 //
  5641 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5642 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5643 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5645 // Comparision Code
  5646 operand cmpOp() %{
  5647   match(Bool);
  5649   format %{ "" %}
  5650   interface(COND_INTER) %{
  5651     equal(0x4, "e");
  5652     not_equal(0x5, "ne");
  5653     less(0xC, "l");
  5654     greater_equal(0xD, "ge");
  5655     less_equal(0xE, "le");
  5656     greater(0xF, "g");
  5657   %}
  5658 %}
  5660 // Comparison Code, unsigned compare.  Used by FP also, with
  5661 // C2 (unordered) turned into GT or LT already.  The other bits
  5662 // C0 and C3 are turned into Carry & Zero flags.
  5663 operand cmpOpU() %{
  5664   match(Bool);
  5666   format %{ "" %}
  5667   interface(COND_INTER) %{
  5668     equal(0x4, "e");
  5669     not_equal(0x5, "ne");
  5670     less(0x2, "b");
  5671     greater_equal(0x3, "nb");
  5672     less_equal(0x6, "be");
  5673     greater(0x7, "nbe");
  5674   %}
  5675 %}
  5677 // Floating comparisons that don't require any fixup for the unordered case
  5678 operand cmpOpUCF() %{
  5679   match(Bool);
  5680   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5681             n->as_Bool()->_test._test == BoolTest::ge ||
  5682             n->as_Bool()->_test._test == BoolTest::le ||
  5683             n->as_Bool()->_test._test == BoolTest::gt);
  5684   format %{ "" %}
  5685   interface(COND_INTER) %{
  5686     equal(0x4, "e");
  5687     not_equal(0x5, "ne");
  5688     less(0x2, "b");
  5689     greater_equal(0x3, "nb");
  5690     less_equal(0x6, "be");
  5691     greater(0x7, "nbe");
  5692   %}
  5693 %}
  5696 // Floating comparisons that can be fixed up with extra conditional jumps
  5697 operand cmpOpUCF2() %{
  5698   match(Bool);
  5699   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5700             n->as_Bool()->_test._test == BoolTest::eq);
  5701   format %{ "" %}
  5702   interface(COND_INTER) %{
  5703     equal(0x4, "e");
  5704     not_equal(0x5, "ne");
  5705     less(0x2, "b");
  5706     greater_equal(0x3, "nb");
  5707     less_equal(0x6, "be");
  5708     greater(0x7, "nbe");
  5709   %}
  5710 %}
  5712 // Comparison Code for FP conditional move
  5713 operand cmpOp_fcmov() %{
  5714   match(Bool);
  5716   format %{ "" %}
  5717   interface(COND_INTER) %{
  5718     equal        (0x0C8);
  5719     not_equal    (0x1C8);
  5720     less         (0x0C0);
  5721     greater_equal(0x1C0);
  5722     less_equal   (0x0D0);
  5723     greater      (0x1D0);
  5724   %}
  5725 %}
  5727 // Comparision Code used in long compares
  5728 operand cmpOp_commute() %{
  5729   match(Bool);
  5731   format %{ "" %}
  5732   interface(COND_INTER) %{
  5733     equal(0x4, "e");
  5734     not_equal(0x5, "ne");
  5735     less(0xF, "g");
  5736     greater_equal(0xE, "le");
  5737     less_equal(0xD, "ge");
  5738     greater(0xC, "l");
  5739   %}
  5740 %}
  5742 //----------OPERAND CLASSES----------------------------------------------------
  5743 // Operand Classes are groups of operands that are used as to simplify
  5744 // instruction definitions by not requiring the AD writer to specify separate
  5745 // instructions for every form of operand when the instruction accepts
  5746 // multiple operand types with the same basic encoding and format.  The classic
  5747 // case of this is memory operands.
  5749 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
  5750                indIndex, indIndexScale, indIndexScaleOffset);
  5752 // Long memory operations are encoded in 2 instructions and a +4 offset.
  5753 // This means some kind of offset is always required and you cannot use
  5754 // an oop as the offset (done when working on static globals).
  5755 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
  5756                     indIndex, indIndexScale, indIndexScaleOffset);
  5759 //----------PIPELINE-----------------------------------------------------------
  5760 // Rules which define the behavior of the target architectures pipeline.
  5761 pipeline %{
  5763 //----------ATTRIBUTES---------------------------------------------------------
  5764 attributes %{
  5765   variable_size_instructions;        // Fixed size instructions
  5766   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5767   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5768   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5769   instruction_fetch_units = 1;       // of 16 bytes
  5771   // List of nop instructions
  5772   nops( MachNop );
  5773 %}
  5775 //----------RESOURCES----------------------------------------------------------
  5776 // Resources are the functional units available to the machine
  5778 // Generic P2/P3 pipeline
  5779 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5780 // 3 instructions decoded per cycle.
  5781 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5782 // 2 ALU op, only ALU0 handles mul/div instructions.
  5783 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5784            MS0, MS1, MEM = MS0 | MS1,
  5785            BR, FPU,
  5786            ALU0, ALU1, ALU = ALU0 | ALU1 );
  5788 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5789 // Pipeline Description specifies the stages in the machine's pipeline
  5791 // Generic P2/P3 pipeline
  5792 pipe_desc(S0, S1, S2, S3, S4, S5);
  5794 //----------PIPELINE CLASSES---------------------------------------------------
  5795 // Pipeline Classes describe the stages in which input and output are
  5796 // referenced by the hardware pipeline.
  5798 // Naming convention: ialu or fpu
  5799 // Then: _reg
  5800 // Then: _reg if there is a 2nd register
  5801 // Then: _long if it's a pair of instructions implementing a long
  5802 // Then: _fat if it requires the big decoder
  5803 //   Or: _mem if it requires the big decoder and a memory unit.
  5805 // Integer ALU reg operation
  5806 pipe_class ialu_reg(eRegI dst) %{
  5807     single_instruction;
  5808     dst    : S4(write);
  5809     dst    : S3(read);
  5810     DECODE : S0;        // any decoder
  5811     ALU    : S3;        // any alu
  5812 %}
  5814 // Long ALU reg operation
  5815 pipe_class ialu_reg_long(eRegL dst) %{
  5816     instruction_count(2);
  5817     dst    : S4(write);
  5818     dst    : S3(read);
  5819     DECODE : S0(2);     // any 2 decoders
  5820     ALU    : S3(2);     // both alus
  5821 %}
  5823 // Integer ALU reg operation using big decoder
  5824 pipe_class ialu_reg_fat(eRegI dst) %{
  5825     single_instruction;
  5826     dst    : S4(write);
  5827     dst    : S3(read);
  5828     D0     : S0;        // big decoder only
  5829     ALU    : S3;        // any alu
  5830 %}
  5832 // Long ALU reg operation using big decoder
  5833 pipe_class ialu_reg_long_fat(eRegL dst) %{
  5834     instruction_count(2);
  5835     dst    : S4(write);
  5836     dst    : S3(read);
  5837     D0     : S0(2);     // big decoder only; twice
  5838     ALU    : S3(2);     // any 2 alus
  5839 %}
  5841 // Integer ALU reg-reg operation
  5842 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
  5843     single_instruction;
  5844     dst    : S4(write);
  5845     src    : S3(read);
  5846     DECODE : S0;        // any decoder
  5847     ALU    : S3;        // any alu
  5848 %}
  5850 // Long ALU reg-reg operation
  5851 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
  5852     instruction_count(2);
  5853     dst    : S4(write);
  5854     src    : S3(read);
  5855     DECODE : S0(2);     // any 2 decoders
  5856     ALU    : S3(2);     // both alus
  5857 %}
  5859 // Integer ALU reg-reg operation
  5860 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
  5861     single_instruction;
  5862     dst    : S4(write);
  5863     src    : S3(read);
  5864     D0     : S0;        // big decoder only
  5865     ALU    : S3;        // any alu
  5866 %}
  5868 // Long ALU reg-reg operation
  5869 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
  5870     instruction_count(2);
  5871     dst    : S4(write);
  5872     src    : S3(read);
  5873     D0     : S0(2);     // big decoder only; twice
  5874     ALU    : S3(2);     // both alus
  5875 %}
  5877 // Integer ALU reg-mem operation
  5878 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
  5879     single_instruction;
  5880     dst    : S5(write);
  5881     mem    : S3(read);
  5882     D0     : S0;        // big decoder only
  5883     ALU    : S4;        // any alu
  5884     MEM    : S3;        // any mem
  5885 %}
  5887 // Long ALU reg-mem operation
  5888 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
  5889     instruction_count(2);
  5890     dst    : S5(write);
  5891     mem    : S3(read);
  5892     D0     : S0(2);     // big decoder only; twice
  5893     ALU    : S4(2);     // any 2 alus
  5894     MEM    : S3(2);     // both mems
  5895 %}
  5897 // Integer mem operation (prefetch)
  5898 pipe_class ialu_mem(memory mem)
  5899 %{
  5900     single_instruction;
  5901     mem    : S3(read);
  5902     D0     : S0;        // big decoder only
  5903     MEM    : S3;        // any mem
  5904 %}
  5906 // Integer Store to Memory
  5907 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
  5908     single_instruction;
  5909     mem    : S3(read);
  5910     src    : S5(read);
  5911     D0     : S0;        // big decoder only
  5912     ALU    : S4;        // any alu
  5913     MEM    : S3;
  5914 %}
  5916 // Long Store to Memory
  5917 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
  5918     instruction_count(2);
  5919     mem    : S3(read);
  5920     src    : S5(read);
  5921     D0     : S0(2);     // big decoder only; twice
  5922     ALU    : S4(2);     // any 2 alus
  5923     MEM    : S3(2);     // Both mems
  5924 %}
  5926 // Integer Store to Memory
  5927 pipe_class ialu_mem_imm(memory mem) %{
  5928     single_instruction;
  5929     mem    : S3(read);
  5930     D0     : S0;        // big decoder only
  5931     ALU    : S4;        // any alu
  5932     MEM    : S3;
  5933 %}
  5935 // Integer ALU0 reg-reg operation
  5936 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
  5937     single_instruction;
  5938     dst    : S4(write);
  5939     src    : S3(read);
  5940     D0     : S0;        // Big decoder only
  5941     ALU0   : S3;        // only alu0
  5942 %}
  5944 // Integer ALU0 reg-mem operation
  5945 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
  5946     single_instruction;
  5947     dst    : S5(write);
  5948     mem    : S3(read);
  5949     D0     : S0;        // big decoder only
  5950     ALU0   : S4;        // ALU0 only
  5951     MEM    : S3;        // any mem
  5952 %}
  5954 // Integer ALU reg-reg operation
  5955 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
  5956     single_instruction;
  5957     cr     : S4(write);
  5958     src1   : S3(read);
  5959     src2   : S3(read);
  5960     DECODE : S0;        // any decoder
  5961     ALU    : S3;        // any alu
  5962 %}
  5964 // Integer ALU reg-imm operation
  5965 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
  5966     single_instruction;
  5967     cr     : S4(write);
  5968     src1   : S3(read);
  5969     DECODE : S0;        // any decoder
  5970     ALU    : S3;        // any alu
  5971 %}
  5973 // Integer ALU reg-mem operation
  5974 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
  5975     single_instruction;
  5976     cr     : S4(write);
  5977     src1   : S3(read);
  5978     src2   : S3(read);
  5979     D0     : S0;        // big decoder only
  5980     ALU    : S4;        // any alu
  5981     MEM    : S3;
  5982 %}
  5984 // Conditional move reg-reg
  5985 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
  5986     instruction_count(4);
  5987     y      : S4(read);
  5988     q      : S3(read);
  5989     p      : S3(read);
  5990     DECODE : S0(4);     // any decoder
  5991 %}
  5993 // Conditional move reg-reg
  5994 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
  5995     single_instruction;
  5996     dst    : S4(write);
  5997     src    : S3(read);
  5998     cr     : S3(read);
  5999     DECODE : S0;        // any decoder
  6000 %}
  6002 // Conditional move reg-mem
  6003 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
  6004     single_instruction;
  6005     dst    : S4(write);
  6006     src    : S3(read);
  6007     cr     : S3(read);
  6008     DECODE : S0;        // any decoder
  6009     MEM    : S3;
  6010 %}
  6012 // Conditional move reg-reg long
  6013 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
  6014     single_instruction;
  6015     dst    : S4(write);
  6016     src    : S3(read);
  6017     cr     : S3(read);
  6018     DECODE : S0(2);     // any 2 decoders
  6019 %}
  6021 // Conditional move double reg-reg
  6022 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
  6023     single_instruction;
  6024     dst    : S4(write);
  6025     src    : S3(read);
  6026     cr     : S3(read);
  6027     DECODE : S0;        // any decoder
  6028 %}
  6030 // Float reg-reg operation
  6031 pipe_class fpu_reg(regD dst) %{
  6032     instruction_count(2);
  6033     dst    : S3(read);
  6034     DECODE : S0(2);     // any 2 decoders
  6035     FPU    : S3;
  6036 %}
  6038 // Float reg-reg operation
  6039 pipe_class fpu_reg_reg(regD dst, regD src) %{
  6040     instruction_count(2);
  6041     dst    : S4(write);
  6042     src    : S3(read);
  6043     DECODE : S0(2);     // any 2 decoders
  6044     FPU    : S3;
  6045 %}
  6047 // Float reg-reg operation
  6048 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
  6049     instruction_count(3);
  6050     dst    : S4(write);
  6051     src1   : S3(read);
  6052     src2   : S3(read);
  6053     DECODE : S0(3);     // any 3 decoders
  6054     FPU    : S3(2);
  6055 %}
  6057 // Float reg-reg operation
  6058 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
  6059     instruction_count(4);
  6060     dst    : S4(write);
  6061     src1   : S3(read);
  6062     src2   : S3(read);
  6063     src3   : S3(read);
  6064     DECODE : S0(4);     // any 3 decoders
  6065     FPU    : S3(2);
  6066 %}
  6068 // Float reg-reg operation
  6069 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
  6070     instruction_count(4);
  6071     dst    : S4(write);
  6072     src1   : S3(read);
  6073     src2   : S3(read);
  6074     src3   : S3(read);
  6075     DECODE : S1(3);     // any 3 decoders
  6076     D0     : S0;        // Big decoder only
  6077     FPU    : S3(2);
  6078     MEM    : S3;
  6079 %}
  6081 // Float reg-mem operation
  6082 pipe_class fpu_reg_mem(regD dst, memory mem) %{
  6083     instruction_count(2);
  6084     dst    : S5(write);
  6085     mem    : S3(read);
  6086     D0     : S0;        // big decoder only
  6087     DECODE : S1;        // any decoder for FPU POP
  6088     FPU    : S4;
  6089     MEM    : S3;        // any mem
  6090 %}
  6092 // Float reg-mem operation
  6093 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
  6094     instruction_count(3);
  6095     dst    : S5(write);
  6096     src1   : S3(read);
  6097     mem    : S3(read);
  6098     D0     : S0;        // big decoder only
  6099     DECODE : S1(2);     // any decoder for FPU POP
  6100     FPU    : S4;
  6101     MEM    : S3;        // any mem
  6102 %}
  6104 // Float mem-reg operation
  6105 pipe_class fpu_mem_reg(memory mem, regD src) %{
  6106     instruction_count(2);
  6107     src    : S5(read);
  6108     mem    : S3(read);
  6109     DECODE : S0;        // any decoder for FPU PUSH
  6110     D0     : S1;        // big decoder only
  6111     FPU    : S4;
  6112     MEM    : S3;        // any mem
  6113 %}
  6115 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
  6116     instruction_count(3);
  6117     src1   : S3(read);
  6118     src2   : S3(read);
  6119     mem    : S3(read);
  6120     DECODE : S0(2);     // any decoder for FPU PUSH
  6121     D0     : S1;        // big decoder only
  6122     FPU    : S4;
  6123     MEM    : S3;        // any mem
  6124 %}
  6126 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
  6127     instruction_count(3);
  6128     src1   : S3(read);
  6129     src2   : S3(read);
  6130     mem    : S4(read);
  6131     DECODE : S0;        // any decoder for FPU PUSH
  6132     D0     : S0(2);     // big decoder only
  6133     FPU    : S4;
  6134     MEM    : S3(2);     // any mem
  6135 %}
  6137 pipe_class fpu_mem_mem(memory dst, memory src1) %{
  6138     instruction_count(2);
  6139     src1   : S3(read);
  6140     dst    : S4(read);
  6141     D0     : S0(2);     // big decoder only
  6142     MEM    : S3(2);     // any mem
  6143 %}
  6145 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
  6146     instruction_count(3);
  6147     src1   : S3(read);
  6148     src2   : S3(read);
  6149     dst    : S4(read);
  6150     D0     : S0(3);     // big decoder only
  6151     FPU    : S4;
  6152     MEM    : S3(3);     // any mem
  6153 %}
  6155 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
  6156     instruction_count(3);
  6157     src1   : S4(read);
  6158     mem    : S4(read);
  6159     DECODE : S0;        // any decoder for FPU PUSH
  6160     D0     : S0(2);     // big decoder only
  6161     FPU    : S4;
  6162     MEM    : S3(2);     // any mem
  6163 %}
  6165 // Float load constant
  6166 pipe_class fpu_reg_con(regD dst) %{
  6167     instruction_count(2);
  6168     dst    : S5(write);
  6169     D0     : S0;        // big decoder only for the load
  6170     DECODE : S1;        // any decoder for FPU POP
  6171     FPU    : S4;
  6172     MEM    : S3;        // any mem
  6173 %}
  6175 // Float load constant
  6176 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
  6177     instruction_count(3);
  6178     dst    : S5(write);
  6179     src    : S3(read);
  6180     D0     : S0;        // big decoder only for the load
  6181     DECODE : S1(2);     // any decoder for FPU POP
  6182     FPU    : S4;
  6183     MEM    : S3;        // any mem
  6184 %}
  6186 // UnConditional branch
  6187 pipe_class pipe_jmp( label labl ) %{
  6188     single_instruction;
  6189     BR   : S3;
  6190 %}
  6192 // Conditional branch
  6193 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
  6194     single_instruction;
  6195     cr    : S1(read);
  6196     BR    : S3;
  6197 %}
  6199 // Allocation idiom
  6200 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
  6201     instruction_count(1); force_serialization;
  6202     fixed_latency(6);
  6203     heap_ptr : S3(read);
  6204     DECODE   : S0(3);
  6205     D0       : S2;
  6206     MEM      : S3;
  6207     ALU      : S3(2);
  6208     dst      : S5(write);
  6209     BR       : S5;
  6210 %}
  6212 // Generic big/slow expanded idiom
  6213 pipe_class pipe_slow(  ) %{
  6214     instruction_count(10); multiple_bundles; force_serialization;
  6215     fixed_latency(100);
  6216     D0  : S0(2);
  6217     MEM : S3(2);
  6218 %}
  6220 // The real do-nothing guy
  6221 pipe_class empty( ) %{
  6222     instruction_count(0);
  6223 %}
  6225 // Define the class for the Nop node
  6226 define %{
  6227    MachNop = empty;
  6228 %}
  6230 %}
  6232 //----------INSTRUCTIONS-------------------------------------------------------
  6233 //
  6234 // match      -- States which machine-independent subtree may be replaced
  6235 //               by this instruction.
  6236 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6237 //               selection to identify a minimum cost tree of machine
  6238 //               instructions that matches a tree of machine-independent
  6239 //               instructions.
  6240 // format     -- A string providing the disassembly for this instruction.
  6241 //               The value of an instruction's operand may be inserted
  6242 //               by referring to it with a '$' prefix.
  6243 // opcode     -- Three instruction opcodes may be provided.  These are referred
  6244 //               to within an encode class as $primary, $secondary, and $tertiary
  6245 //               respectively.  The primary opcode is commonly used to
  6246 //               indicate the type of machine instruction, while secondary
  6247 //               and tertiary are often used for prefix options or addressing
  6248 //               modes.
  6249 // ins_encode -- A list of encode classes with parameters. The encode class
  6250 //               name must have been defined in an 'enc_class' specification
  6251 //               in the encode section of the architecture description.
  6253 //----------BSWAP-Instruction--------------------------------------------------
  6254 instruct bytes_reverse_int(eRegI dst) %{
  6255   match(Set dst (ReverseBytesI dst));
  6257   format %{ "BSWAP  $dst" %}
  6258   opcode(0x0F, 0xC8);
  6259   ins_encode( OpcP, OpcSReg(dst) );
  6260   ins_pipe( ialu_reg );
  6261 %}
  6263 instruct bytes_reverse_long(eRegL dst) %{
  6264   match(Set dst (ReverseBytesL dst));
  6266   format %{ "BSWAP  $dst.lo\n\t"
  6267             "BSWAP  $dst.hi\n\t"
  6268             "XCHG   $dst.lo $dst.hi" %}
  6270   ins_cost(125);
  6271   ins_encode( bswap_long_bytes(dst) );
  6272   ins_pipe( ialu_reg_reg);
  6273 %}
  6276 //---------- Zeros Count Instructions ------------------------------------------
  6278 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6279   predicate(UseCountLeadingZerosInstruction);
  6280   match(Set dst (CountLeadingZerosI src));
  6281   effect(KILL cr);
  6283   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
  6284   ins_encode %{
  6285     __ lzcntl($dst$$Register, $src$$Register);
  6286   %}
  6287   ins_pipe(ialu_reg);
  6288 %}
  6290 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
  6291   predicate(!UseCountLeadingZerosInstruction);
  6292   match(Set dst (CountLeadingZerosI src));
  6293   effect(KILL cr);
  6295   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
  6296             "JNZ    skip\n\t"
  6297             "MOV    $dst, -1\n"
  6298       "skip:\n\t"
  6299             "NEG    $dst\n\t"
  6300             "ADD    $dst, 31" %}
  6301   ins_encode %{
  6302     Register Rdst = $dst$$Register;
  6303     Register Rsrc = $src$$Register;
  6304     Label skip;
  6305     __ bsrl(Rdst, Rsrc);
  6306     __ jccb(Assembler::notZero, skip);
  6307     __ movl(Rdst, -1);
  6308     __ bind(skip);
  6309     __ negl(Rdst);
  6310     __ addl(Rdst, BitsPerInt - 1);
  6311   %}
  6312   ins_pipe(ialu_reg);
  6313 %}
  6315 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6316   predicate(UseCountLeadingZerosInstruction);
  6317   match(Set dst (CountLeadingZerosL src));
  6318   effect(TEMP dst, KILL cr);
  6320   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
  6321             "JNC    done\n\t"
  6322             "LZCNT  $dst, $src.lo\n\t"
  6323             "ADD    $dst, 32\n"
  6324       "done:" %}
  6325   ins_encode %{
  6326     Register Rdst = $dst$$Register;
  6327     Register Rsrc = $src$$Register;
  6328     Label done;
  6329     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
  6330     __ jccb(Assembler::carryClear, done);
  6331     __ lzcntl(Rdst, Rsrc);
  6332     __ addl(Rdst, BitsPerInt);
  6333     __ bind(done);
  6334   %}
  6335   ins_pipe(ialu_reg);
  6336 %}
  6338 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
  6339   predicate(!UseCountLeadingZerosInstruction);
  6340   match(Set dst (CountLeadingZerosL src));
  6341   effect(TEMP dst, KILL cr);
  6343   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
  6344             "JZ     msw_is_zero\n\t"
  6345             "ADD    $dst, 32\n\t"
  6346             "JMP    not_zero\n"
  6347       "msw_is_zero:\n\t"
  6348             "BSR    $dst, $src.lo\n\t"
  6349             "JNZ    not_zero\n\t"
  6350             "MOV    $dst, -1\n"
  6351       "not_zero:\n\t"
  6352             "NEG    $dst\n\t"
  6353             "ADD    $dst, 63\n" %}
  6354  ins_encode %{
  6355     Register Rdst = $dst$$Register;
  6356     Register Rsrc = $src$$Register;
  6357     Label msw_is_zero;
  6358     Label not_zero;
  6359     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
  6360     __ jccb(Assembler::zero, msw_is_zero);
  6361     __ addl(Rdst, BitsPerInt);
  6362     __ jmpb(not_zero);
  6363     __ bind(msw_is_zero);
  6364     __ bsrl(Rdst, Rsrc);
  6365     __ jccb(Assembler::notZero, not_zero);
  6366     __ movl(Rdst, -1);
  6367     __ bind(not_zero);
  6368     __ negl(Rdst);
  6369     __ addl(Rdst, BitsPerLong - 1);
  6370   %}
  6371   ins_pipe(ialu_reg);
  6372 %}
  6374 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
  6375   match(Set dst (CountTrailingZerosI src));
  6376   effect(KILL cr);
  6378   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
  6379             "JNZ    done\n\t"
  6380             "MOV    $dst, 32\n"
  6381       "done:" %}
  6382   ins_encode %{
  6383     Register Rdst = $dst$$Register;
  6384     Label done;
  6385     __ bsfl(Rdst, $src$$Register);
  6386     __ jccb(Assembler::notZero, done);
  6387     __ movl(Rdst, BitsPerInt);
  6388     __ bind(done);
  6389   %}
  6390   ins_pipe(ialu_reg);
  6391 %}
  6393 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
  6394   match(Set dst (CountTrailingZerosL src));
  6395   effect(TEMP dst, KILL cr);
  6397   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
  6398             "JNZ    done\n\t"
  6399             "BSF    $dst, $src.hi\n\t"
  6400             "JNZ    msw_not_zero\n\t"
  6401             "MOV    $dst, 32\n"
  6402       "msw_not_zero:\n\t"
  6403             "ADD    $dst, 32\n"
  6404       "done:" %}
  6405   ins_encode %{
  6406     Register Rdst = $dst$$Register;
  6407     Register Rsrc = $src$$Register;
  6408     Label msw_not_zero;
  6409     Label done;
  6410     __ bsfl(Rdst, Rsrc);
  6411     __ jccb(Assembler::notZero, done);
  6412     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
  6413     __ jccb(Assembler::notZero, msw_not_zero);
  6414     __ movl(Rdst, BitsPerInt);
  6415     __ bind(msw_not_zero);
  6416     __ addl(Rdst, BitsPerInt);
  6417     __ bind(done);
  6418   %}
  6419   ins_pipe(ialu_reg);
  6420 %}
  6423 //---------- Population Count Instructions -------------------------------------
  6425 instruct popCountI(eRegI dst, eRegI src) %{
  6426   predicate(UsePopCountInstruction);
  6427   match(Set dst (PopCountI src));
  6429   format %{ "POPCNT $dst, $src" %}
  6430   ins_encode %{
  6431     __ popcntl($dst$$Register, $src$$Register);
  6432   %}
  6433   ins_pipe(ialu_reg);
  6434 %}
  6436 instruct popCountI_mem(eRegI dst, memory mem) %{
  6437   predicate(UsePopCountInstruction);
  6438   match(Set dst (PopCountI (LoadI mem)));
  6440   format %{ "POPCNT $dst, $mem" %}
  6441   ins_encode %{
  6442     __ popcntl($dst$$Register, $mem$$Address);
  6443   %}
  6444   ins_pipe(ialu_reg);
  6445 %}
  6447 // Note: Long.bitCount(long) returns an int.
  6448 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  6449   predicate(UsePopCountInstruction);
  6450   match(Set dst (PopCountL src));
  6451   effect(KILL cr, TEMP tmp, TEMP dst);
  6453   format %{ "POPCNT $dst, $src.lo\n\t"
  6454             "POPCNT $tmp, $src.hi\n\t"
  6455             "ADD    $dst, $tmp" %}
  6456   ins_encode %{
  6457     __ popcntl($dst$$Register, $src$$Register);
  6458     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  6459     __ addl($dst$$Register, $tmp$$Register);
  6460   %}
  6461   ins_pipe(ialu_reg);
  6462 %}
  6464 // Note: Long.bitCount(long) returns an int.
  6465 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
  6466   predicate(UsePopCountInstruction);
  6467   match(Set dst (PopCountL (LoadL mem)));
  6468   effect(KILL cr, TEMP tmp, TEMP dst);
  6470   format %{ "POPCNT $dst, $mem\n\t"
  6471             "POPCNT $tmp, $mem+4\n\t"
  6472             "ADD    $dst, $tmp" %}
  6473   ins_encode %{
  6474     //__ popcntl($dst$$Register, $mem$$Address$$first);
  6475     //__ popcntl($tmp$$Register, $mem$$Address$$second);
  6476     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
  6477     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
  6478     __ addl($dst$$Register, $tmp$$Register);
  6479   %}
  6480   ins_pipe(ialu_reg);
  6481 %}
  6484 //----------Load/Store/Move Instructions---------------------------------------
  6485 //----------Load Instructions--------------------------------------------------
  6486 // Load Byte (8bit signed)
  6487 instruct loadB(xRegI dst, memory mem) %{
  6488   match(Set dst (LoadB mem));
  6490   ins_cost(125);
  6491   format %{ "MOVSX8 $dst,$mem\t# byte" %}
  6493   ins_encode %{
  6494     __ movsbl($dst$$Register, $mem$$Address);
  6495   %}
  6497   ins_pipe(ialu_reg_mem);
  6498 %}
  6500 // Load Byte (8bit signed) into Long Register
  6501 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6502   match(Set dst (ConvI2L (LoadB mem)));
  6503   effect(KILL cr);
  6505   ins_cost(375);
  6506   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
  6507             "MOV    $dst.hi,$dst.lo\n\t"
  6508             "SAR    $dst.hi,7" %}
  6510   ins_encode %{
  6511     __ movsbl($dst$$Register, $mem$$Address);
  6512     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6513     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
  6514   %}
  6516   ins_pipe(ialu_reg_mem);
  6517 %}
  6519 // Load Unsigned Byte (8bit UNsigned)
  6520 instruct loadUB(xRegI dst, memory mem) %{
  6521   match(Set dst (LoadUB mem));
  6523   ins_cost(125);
  6524   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
  6526   ins_encode %{
  6527     __ movzbl($dst$$Register, $mem$$Address);
  6528   %}
  6530   ins_pipe(ialu_reg_mem);
  6531 %}
  6533 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  6534 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6535   match(Set dst (ConvI2L (LoadUB mem)));
  6536   effect(KILL cr);
  6538   ins_cost(250);
  6539   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
  6540             "XOR    $dst.hi,$dst.hi" %}
  6542   ins_encode %{
  6543     Register Rdst = $dst$$Register;
  6544     __ movzbl(Rdst, $mem$$Address);
  6545     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6546   %}
  6548   ins_pipe(ialu_reg_mem);
  6549 %}
  6551 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
  6552 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
  6553   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  6554   effect(KILL cr);
  6556   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
  6557             "XOR    $dst.hi,$dst.hi\n\t"
  6558             "AND    $dst.lo,$mask" %}
  6559   ins_encode %{
  6560     Register Rdst = $dst$$Register;
  6561     __ movzbl(Rdst, $mem$$Address);
  6562     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6563     __ andl(Rdst, $mask$$constant);
  6564   %}
  6565   ins_pipe(ialu_reg_mem);
  6566 %}
  6568 // Load Short (16bit signed)
  6569 instruct loadS(eRegI dst, memory mem) %{
  6570   match(Set dst (LoadS mem));
  6572   ins_cost(125);
  6573   format %{ "MOVSX  $dst,$mem\t# short" %}
  6575   ins_encode %{
  6576     __ movswl($dst$$Register, $mem$$Address);
  6577   %}
  6579   ins_pipe(ialu_reg_mem);
  6580 %}
  6582 // Load Short (16 bit signed) to Byte (8 bit signed)
  6583 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6584   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  6586   ins_cost(125);
  6587   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
  6588   ins_encode %{
  6589     __ movsbl($dst$$Register, $mem$$Address);
  6590   %}
  6591   ins_pipe(ialu_reg_mem);
  6592 %}
  6594 // Load Short (16bit signed) into Long Register
  6595 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6596   match(Set dst (ConvI2L (LoadS mem)));
  6597   effect(KILL cr);
  6599   ins_cost(375);
  6600   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
  6601             "MOV    $dst.hi,$dst.lo\n\t"
  6602             "SAR    $dst.hi,15" %}
  6604   ins_encode %{
  6605     __ movswl($dst$$Register, $mem$$Address);
  6606     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6607     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
  6608   %}
  6610   ins_pipe(ialu_reg_mem);
  6611 %}
  6613 // Load Unsigned Short/Char (16bit unsigned)
  6614 instruct loadUS(eRegI dst, memory mem) %{
  6615   match(Set dst (LoadUS mem));
  6617   ins_cost(125);
  6618   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
  6620   ins_encode %{
  6621     __ movzwl($dst$$Register, $mem$$Address);
  6622   %}
  6624   ins_pipe(ialu_reg_mem);
  6625 %}
  6627 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  6628 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6629   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  6631   ins_cost(125);
  6632   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
  6633   ins_encode %{
  6634     __ movsbl($dst$$Register, $mem$$Address);
  6635   %}
  6636   ins_pipe(ialu_reg_mem);
  6637 %}
  6639 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6640 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6641   match(Set dst (ConvI2L (LoadUS mem)));
  6642   effect(KILL cr);
  6644   ins_cost(250);
  6645   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
  6646             "XOR    $dst.hi,$dst.hi" %}
  6648   ins_encode %{
  6649     __ movzwl($dst$$Register, $mem$$Address);
  6650     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6651   %}
  6653   ins_pipe(ialu_reg_mem);
  6654 %}
  6656 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
  6657 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6658   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6659   effect(KILL cr);
  6661   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
  6662             "XOR    $dst.hi,$dst.hi" %}
  6663   ins_encode %{
  6664     Register Rdst = $dst$$Register;
  6665     __ movzbl(Rdst, $mem$$Address);
  6666     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6667   %}
  6668   ins_pipe(ialu_reg_mem);
  6669 %}
  6671 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
  6672 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
  6673   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  6674   effect(KILL cr);
  6676   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
  6677             "XOR    $dst.hi,$dst.hi\n\t"
  6678             "AND    $dst.lo,$mask" %}
  6679   ins_encode %{
  6680     Register Rdst = $dst$$Register;
  6681     __ movzwl(Rdst, $mem$$Address);
  6682     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6683     __ andl(Rdst, $mask$$constant);
  6684   %}
  6685   ins_pipe(ialu_reg_mem);
  6686 %}
  6688 // Load Integer
  6689 instruct loadI(eRegI dst, memory mem) %{
  6690   match(Set dst (LoadI mem));
  6692   ins_cost(125);
  6693   format %{ "MOV    $dst,$mem\t# int" %}
  6695   ins_encode %{
  6696     __ movl($dst$$Register, $mem$$Address);
  6697   %}
  6699   ins_pipe(ialu_reg_mem);
  6700 %}
  6702 // Load Integer (32 bit signed) to Byte (8 bit signed)
  6703 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
  6704   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  6706   ins_cost(125);
  6707   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
  6708   ins_encode %{
  6709     __ movsbl($dst$$Register, $mem$$Address);
  6710   %}
  6711   ins_pipe(ialu_reg_mem);
  6712 %}
  6714 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
  6715 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
  6716   match(Set dst (AndI (LoadI mem) mask));
  6718   ins_cost(125);
  6719   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
  6720   ins_encode %{
  6721     __ movzbl($dst$$Register, $mem$$Address);
  6722   %}
  6723   ins_pipe(ialu_reg_mem);
  6724 %}
  6726 // Load Integer (32 bit signed) to Short (16 bit signed)
  6727 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
  6728   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  6730   ins_cost(125);
  6731   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
  6732   ins_encode %{
  6733     __ movswl($dst$$Register, $mem$$Address);
  6734   %}
  6735   ins_pipe(ialu_reg_mem);
  6736 %}
  6738 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
  6739 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
  6740   match(Set dst (AndI (LoadI mem) mask));
  6742   ins_cost(125);
  6743   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
  6744   ins_encode %{
  6745     __ movzwl($dst$$Register, $mem$$Address);
  6746   %}
  6747   ins_pipe(ialu_reg_mem);
  6748 %}
  6750 // Load Integer into Long Register
  6751 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6752   match(Set dst (ConvI2L (LoadI mem)));
  6753   effect(KILL cr);
  6755   ins_cost(375);
  6756   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
  6757             "MOV    $dst.hi,$dst.lo\n\t"
  6758             "SAR    $dst.hi,31" %}
  6760   ins_encode %{
  6761     __ movl($dst$$Register, $mem$$Address);
  6762     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
  6763     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
  6764   %}
  6766   ins_pipe(ialu_reg_mem);
  6767 %}
  6769 // Load Integer with mask 0xFF into Long Register
  6770 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
  6771   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6772   effect(KILL cr);
  6774   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
  6775             "XOR    $dst.hi,$dst.hi" %}
  6776   ins_encode %{
  6777     Register Rdst = $dst$$Register;
  6778     __ movzbl(Rdst, $mem$$Address);
  6779     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6780   %}
  6781   ins_pipe(ialu_reg_mem);
  6782 %}
  6784 // Load Integer with mask 0xFFFF into Long Register
  6785 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
  6786   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6787   effect(KILL cr);
  6789   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
  6790             "XOR    $dst.hi,$dst.hi" %}
  6791   ins_encode %{
  6792     Register Rdst = $dst$$Register;
  6793     __ movzwl(Rdst, $mem$$Address);
  6794     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6795   %}
  6796   ins_pipe(ialu_reg_mem);
  6797 %}
  6799 // Load Integer with 32-bit mask into Long Register
  6800 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
  6801   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  6802   effect(KILL cr);
  6804   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
  6805             "XOR    $dst.hi,$dst.hi\n\t"
  6806             "AND    $dst.lo,$mask" %}
  6807   ins_encode %{
  6808     Register Rdst = $dst$$Register;
  6809     __ movl(Rdst, $mem$$Address);
  6810     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
  6811     __ andl(Rdst, $mask$$constant);
  6812   %}
  6813   ins_pipe(ialu_reg_mem);
  6814 %}
  6816 // Load Unsigned Integer into Long Register
  6817 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
  6818   match(Set dst (LoadUI2L mem));
  6819   effect(KILL cr);
  6821   ins_cost(250);
  6822   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
  6823             "XOR    $dst.hi,$dst.hi" %}
  6825   ins_encode %{
  6826     __ movl($dst$$Register, $mem$$Address);
  6827     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
  6828   %}
  6830   ins_pipe(ialu_reg_mem);
  6831 %}
  6833 // Load Long.  Cannot clobber address while loading, so restrict address
  6834 // register to ESI
  6835 instruct loadL(eRegL dst, load_long_memory mem) %{
  6836   predicate(!((LoadLNode*)n)->require_atomic_access());
  6837   match(Set dst (LoadL mem));
  6839   ins_cost(250);
  6840   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
  6841             "MOV    $dst.hi,$mem+4" %}
  6843   ins_encode %{
  6844     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
  6845     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
  6846     __ movl($dst$$Register, Amemlo);
  6847     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
  6848   %}
  6850   ins_pipe(ialu_reg_long_mem);
  6851 %}
  6853 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
  6854 // then store it down to the stack and reload on the int
  6855 // side.
  6856 instruct loadL_volatile(stackSlotL dst, memory mem) %{
  6857   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
  6858   match(Set dst (LoadL mem));
  6860   ins_cost(200);
  6861   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  6862             "FISTp  $dst" %}
  6863   ins_encode(enc_loadL_volatile(mem,dst));
  6864   ins_pipe( fpu_reg_mem );
  6865 %}
  6867 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
  6868   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6869   match(Set dst (LoadL mem));
  6870   effect(TEMP tmp);
  6871   ins_cost(180);
  6872   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6873             "MOVSD  $dst,$tmp" %}
  6874   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  6875   ins_pipe( pipe_slow );
  6876 %}
  6878 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
  6879   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
  6880   match(Set dst (LoadL mem));
  6881   effect(TEMP tmp);
  6882   ins_cost(160);
  6883   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  6884             "MOVD   $dst.lo,$tmp\n\t"
  6885             "PSRLQ  $tmp,32\n\t"
  6886             "MOVD   $dst.hi,$tmp" %}
  6887   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  6888   ins_pipe( pipe_slow );
  6889 %}
  6891 // Load Range
  6892 instruct loadRange(eRegI dst, memory mem) %{
  6893   match(Set dst (LoadRange mem));
  6895   ins_cost(125);
  6896   format %{ "MOV    $dst,$mem" %}
  6897   opcode(0x8B);
  6898   ins_encode( OpcP, RegMem(dst,mem));
  6899   ins_pipe( ialu_reg_mem );
  6900 %}
  6903 // Load Pointer
  6904 instruct loadP(eRegP dst, memory mem) %{
  6905   match(Set dst (LoadP mem));
  6907   ins_cost(125);
  6908   format %{ "MOV    $dst,$mem" %}
  6909   opcode(0x8B);
  6910   ins_encode( OpcP, RegMem(dst,mem));
  6911   ins_pipe( ialu_reg_mem );
  6912 %}
  6914 // Load Klass Pointer
  6915 instruct loadKlass(eRegP dst, memory mem) %{
  6916   match(Set dst (LoadKlass mem));
  6918   ins_cost(125);
  6919   format %{ "MOV    $dst,$mem" %}
  6920   opcode(0x8B);
  6921   ins_encode( OpcP, RegMem(dst,mem));
  6922   ins_pipe( ialu_reg_mem );
  6923 %}
  6925 // Load Double
  6926 instruct loadD(regD dst, memory mem) %{
  6927   predicate(UseSSE<=1);
  6928   match(Set dst (LoadD mem));
  6930   ins_cost(150);
  6931   format %{ "FLD_D  ST,$mem\n\t"
  6932             "FSTP   $dst" %}
  6933   opcode(0xDD);               /* DD /0 */
  6934   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6935               Pop_Reg_D(dst) );
  6936   ins_pipe( fpu_reg_mem );
  6937 %}
  6939 // Load Double to XMM
  6940 instruct loadXD(regXD dst, memory mem) %{
  6941   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
  6942   match(Set dst (LoadD mem));
  6943   ins_cost(145);
  6944   format %{ "MOVSD  $dst,$mem" %}
  6945   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6946   ins_pipe( pipe_slow );
  6947 %}
  6949 instruct loadXD_partial(regXD dst, memory mem) %{
  6950   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
  6951   match(Set dst (LoadD mem));
  6952   ins_cost(145);
  6953   format %{ "MOVLPD $dst,$mem" %}
  6954   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
  6955   ins_pipe( pipe_slow );
  6956 %}
  6958 // Load to XMM register (single-precision floating point)
  6959 // MOVSS instruction
  6960 instruct loadX(regX dst, memory mem) %{
  6961   predicate(UseSSE>=1);
  6962   match(Set dst (LoadF mem));
  6963   ins_cost(145);
  6964   format %{ "MOVSS  $dst,$mem" %}
  6965   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
  6966   ins_pipe( pipe_slow );
  6967 %}
  6969 // Load Float
  6970 instruct loadF(regF dst, memory mem) %{
  6971   predicate(UseSSE==0);
  6972   match(Set dst (LoadF mem));
  6974   ins_cost(150);
  6975   format %{ "FLD_S  ST,$mem\n\t"
  6976             "FSTP   $dst" %}
  6977   opcode(0xD9);               /* D9 /0 */
  6978   ins_encode( OpcP, RMopc_Mem(0x00,mem),
  6979               Pop_Reg_F(dst) );
  6980   ins_pipe( fpu_reg_mem );
  6981 %}
  6983 // Load Aligned Packed Byte to XMM register
  6984 instruct loadA8B(regXD dst, memory mem) %{
  6985   predicate(UseSSE>=1);
  6986   match(Set dst (Load8B mem));
  6987   ins_cost(125);
  6988   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6989   ins_encode( movq_ld(dst, mem));
  6990   ins_pipe( pipe_slow );
  6991 %}
  6993 // Load Aligned Packed Short to XMM register
  6994 instruct loadA4S(regXD dst, memory mem) %{
  6995   predicate(UseSSE>=1);
  6996   match(Set dst (Load4S mem));
  6997   ins_cost(125);
  6998   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6999   ins_encode( movq_ld(dst, mem));
  7000   ins_pipe( pipe_slow );
  7001 %}
  7003 // Load Aligned Packed Char to XMM register
  7004 instruct loadA4C(regXD dst, memory mem) %{
  7005   predicate(UseSSE>=1);
  7006   match(Set dst (Load4C mem));
  7007   ins_cost(125);
  7008   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  7009   ins_encode( movq_ld(dst, mem));
  7010   ins_pipe( pipe_slow );
  7011 %}
  7013 // Load Aligned Packed Integer to XMM register
  7014 instruct load2IU(regXD dst, memory mem) %{
  7015   predicate(UseSSE>=1);
  7016   match(Set dst (Load2I mem));
  7017   ins_cost(125);
  7018   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  7019   ins_encode( movq_ld(dst, mem));
  7020   ins_pipe( pipe_slow );
  7021 %}
  7023 // Load Aligned Packed Single to XMM
  7024 instruct loadA2F(regXD dst, memory mem) %{
  7025   predicate(UseSSE>=1);
  7026   match(Set dst (Load2F mem));
  7027   ins_cost(145);
  7028   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  7029   ins_encode( movq_ld(dst, mem));
  7030   ins_pipe( pipe_slow );
  7031 %}
  7033 // Load Effective Address
  7034 instruct leaP8(eRegP dst, indOffset8 mem) %{
  7035   match(Set dst mem);
  7037   ins_cost(110);
  7038   format %{ "LEA    $dst,$mem" %}
  7039   opcode(0x8D);
  7040   ins_encode( OpcP, RegMem(dst,mem));
  7041   ins_pipe( ialu_reg_reg_fat );
  7042 %}
  7044 instruct leaP32(eRegP dst, indOffset32 mem) %{
  7045   match(Set dst mem);
  7047   ins_cost(110);
  7048   format %{ "LEA    $dst,$mem" %}
  7049   opcode(0x8D);
  7050   ins_encode( OpcP, RegMem(dst,mem));
  7051   ins_pipe( ialu_reg_reg_fat );
  7052 %}
  7054 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
  7055   match(Set dst mem);
  7057   ins_cost(110);
  7058   format %{ "LEA    $dst,$mem" %}
  7059   opcode(0x8D);
  7060   ins_encode( OpcP, RegMem(dst,mem));
  7061   ins_pipe( ialu_reg_reg_fat );
  7062 %}
  7064 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
  7065   match(Set dst mem);
  7067   ins_cost(110);
  7068   format %{ "LEA    $dst,$mem" %}
  7069   opcode(0x8D);
  7070   ins_encode( OpcP, RegMem(dst,mem));
  7071   ins_pipe( ialu_reg_reg_fat );
  7072 %}
  7074 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
  7075   match(Set dst mem);
  7077   ins_cost(110);
  7078   format %{ "LEA    $dst,$mem" %}
  7079   opcode(0x8D);
  7080   ins_encode( OpcP, RegMem(dst,mem));
  7081   ins_pipe( ialu_reg_reg_fat );
  7082 %}
  7084 // Load Constant
  7085 instruct loadConI(eRegI dst, immI src) %{
  7086   match(Set dst src);
  7088   format %{ "MOV    $dst,$src" %}
  7089   ins_encode( LdImmI(dst, src) );
  7090   ins_pipe( ialu_reg_fat );
  7091 %}
  7093 // Load Constant zero
  7094 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
  7095   match(Set dst src);
  7096   effect(KILL cr);
  7098   ins_cost(50);
  7099   format %{ "XOR    $dst,$dst" %}
  7100   opcode(0x33);  /* + rd */
  7101   ins_encode( OpcP, RegReg( dst, dst ) );
  7102   ins_pipe( ialu_reg );
  7103 %}
  7105 instruct loadConP(eRegP dst, immP src) %{
  7106   match(Set dst src);
  7108   format %{ "MOV    $dst,$src" %}
  7109   opcode(0xB8);  /* + rd */
  7110   ins_encode( LdImmP(dst, src) );
  7111   ins_pipe( ialu_reg_fat );
  7112 %}
  7114 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
  7115   match(Set dst src);
  7116   effect(KILL cr);
  7117   ins_cost(200);
  7118   format %{ "MOV    $dst.lo,$src.lo\n\t"
  7119             "MOV    $dst.hi,$src.hi" %}
  7120   opcode(0xB8);
  7121   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
  7122   ins_pipe( ialu_reg_long_fat );
  7123 %}
  7125 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
  7126   match(Set dst src);
  7127   effect(KILL cr);
  7128   ins_cost(150);
  7129   format %{ "XOR    $dst.lo,$dst.lo\n\t"
  7130             "XOR    $dst.hi,$dst.hi" %}
  7131   opcode(0x33,0x33);
  7132   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
  7133   ins_pipe( ialu_reg_long );
  7134 %}
  7136 // The instruction usage is guarded by predicate in operand immF().
  7137 instruct loadConF(regF dst, immF src) %{
  7138   match(Set dst src);
  7139   ins_cost(125);
  7141   format %{ "FLD_S  ST,$src\n\t"
  7142             "FSTP   $dst" %}
  7143   opcode(0xD9, 0x00);       /* D9 /0 */
  7144   ins_encode(LdImmF(src), Pop_Reg_F(dst) );
  7145   ins_pipe( fpu_reg_con );
  7146 %}
  7148 // The instruction usage is guarded by predicate in operand immXF().
  7149 instruct loadConX(regX dst, immXF con) %{
  7150   match(Set dst con);
  7151   ins_cost(125);
  7152   format %{ "MOVSS  $dst,[$con]" %}
  7153   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
  7154   ins_pipe( pipe_slow );
  7155 %}
  7157 // The instruction usage is guarded by predicate in operand immXF0().
  7158 instruct loadConX0(regX dst, immXF0 src) %{
  7159   match(Set dst src);
  7160   ins_cost(100);
  7161   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
  7162   ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7163   ins_pipe( pipe_slow );
  7164 %}
  7166 // The instruction usage is guarded by predicate in operand immD().
  7167 instruct loadConD(regD dst, immD src) %{
  7168   match(Set dst src);
  7169   ins_cost(125);
  7171   format %{ "FLD_D  ST,$src\n\t"
  7172             "FSTP   $dst" %}
  7173   ins_encode(LdImmD(src), Pop_Reg_D(dst) );
  7174   ins_pipe( fpu_reg_con );
  7175 %}
  7177 // The instruction usage is guarded by predicate in operand immXD().
  7178 instruct loadConXD(regXD dst, immXD con) %{
  7179   match(Set dst con);
  7180   ins_cost(125);
  7181   format %{ "MOVSD  $dst,[$con]" %}
  7182   ins_encode(load_conXD(dst, con));
  7183   ins_pipe( pipe_slow );
  7184 %}
  7186 // The instruction usage is guarded by predicate in operand immXD0().
  7187 instruct loadConXD0(regXD dst, immXD0 src) %{
  7188   match(Set dst src);
  7189   ins_cost(100);
  7190   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
  7191   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
  7192   ins_pipe( pipe_slow );
  7193 %}
  7195 // Load Stack Slot
  7196 instruct loadSSI(eRegI dst, stackSlotI src) %{
  7197   match(Set dst src);
  7198   ins_cost(125);
  7200   format %{ "MOV    $dst,$src" %}
  7201   opcode(0x8B);
  7202   ins_encode( OpcP, RegMem(dst,src));
  7203   ins_pipe( ialu_reg_mem );
  7204 %}
  7206 instruct loadSSL(eRegL dst, stackSlotL src) %{
  7207   match(Set dst src);
  7209   ins_cost(200);
  7210   format %{ "MOV    $dst,$src.lo\n\t"
  7211             "MOV    $dst+4,$src.hi" %}
  7212   opcode(0x8B, 0x8B);
  7213   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
  7214   ins_pipe( ialu_mem_long_reg );
  7215 %}
  7217 // Load Stack Slot
  7218 instruct loadSSP(eRegP dst, stackSlotP src) %{
  7219   match(Set dst src);
  7220   ins_cost(125);
  7222   format %{ "MOV    $dst,$src" %}
  7223   opcode(0x8B);
  7224   ins_encode( OpcP, RegMem(dst,src));
  7225   ins_pipe( ialu_reg_mem );
  7226 %}
  7228 // Load Stack Slot
  7229 instruct loadSSF(regF dst, stackSlotF src) %{
  7230   match(Set dst src);
  7231   ins_cost(125);
  7233   format %{ "FLD_S  $src\n\t"
  7234             "FSTP   $dst" %}
  7235   opcode(0xD9);               /* D9 /0, FLD m32real */
  7236   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7237               Pop_Reg_F(dst) );
  7238   ins_pipe( fpu_reg_mem );
  7239 %}
  7241 // Load Stack Slot
  7242 instruct loadSSD(regD dst, stackSlotD src) %{
  7243   match(Set dst src);
  7244   ins_cost(125);
  7246   format %{ "FLD_D  $src\n\t"
  7247             "FSTP   $dst" %}
  7248   opcode(0xDD);               /* DD /0, FLD m64real */
  7249   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
  7250               Pop_Reg_D(dst) );
  7251   ins_pipe( fpu_reg_mem );
  7252 %}
  7254 // Prefetch instructions.
  7255 // Must be safe to execute with invalid address (cannot fault).
  7257 instruct prefetchr0( memory mem ) %{
  7258   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7259   match(PrefetchRead mem);
  7260   ins_cost(0);
  7261   size(0);
  7262   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
  7263   ins_encode();
  7264   ins_pipe(empty);
  7265 %}
  7267 instruct prefetchr( memory mem ) %{
  7268   predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
  7269   match(PrefetchRead mem);
  7270   ins_cost(100);
  7272   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
  7273   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
  7274   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7275   ins_pipe(ialu_mem);
  7276 %}
  7278 instruct prefetchrNTA( memory mem ) %{
  7279   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
  7280   match(PrefetchRead mem);
  7281   ins_cost(100);
  7283   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
  7284   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7285   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7286   ins_pipe(ialu_mem);
  7287 %}
  7289 instruct prefetchrT0( memory mem ) %{
  7290   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
  7291   match(PrefetchRead mem);
  7292   ins_cost(100);
  7294   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
  7295   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7296   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7297   ins_pipe(ialu_mem);
  7298 %}
  7300 instruct prefetchrT2( memory mem ) %{
  7301   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
  7302   match(PrefetchRead mem);
  7303   ins_cost(100);
  7305   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
  7306   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7307   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7308   ins_pipe(ialu_mem);
  7309 %}
  7311 instruct prefetchw0( memory mem ) %{
  7312   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
  7313   match(PrefetchWrite mem);
  7314   ins_cost(0);
  7315   size(0);
  7316   format %{ "Prefetch (non-SSE is empty encoding)" %}
  7317   ins_encode();
  7318   ins_pipe(empty);
  7319 %}
  7321 instruct prefetchw( memory mem ) %{
  7322   predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
  7323   match( PrefetchWrite mem );
  7324   ins_cost(100);
  7326   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
  7327   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  7328   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7329   ins_pipe(ialu_mem);
  7330 %}
  7332 instruct prefetchwNTA( memory mem ) %{
  7333   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
  7334   match(PrefetchWrite mem);
  7335   ins_cost(100);
  7337   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
  7338   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  7339   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
  7340   ins_pipe(ialu_mem);
  7341 %}
  7343 instruct prefetchwT0( memory mem ) %{
  7344   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
  7345   match(PrefetchWrite mem);
  7346   ins_cost(100);
  7348   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
  7349   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  7350   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
  7351   ins_pipe(ialu_mem);
  7352 %}
  7354 instruct prefetchwT2( memory mem ) %{
  7355   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
  7356   match(PrefetchWrite mem);
  7357   ins_cost(100);
  7359   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
  7360   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  7361   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
  7362   ins_pipe(ialu_mem);
  7363 %}
  7365 //----------Store Instructions-------------------------------------------------
  7367 // Store Byte
  7368 instruct storeB(memory mem, xRegI src) %{
  7369   match(Set mem (StoreB mem src));
  7371   ins_cost(125);
  7372   format %{ "MOV8   $mem,$src" %}
  7373   opcode(0x88);
  7374   ins_encode( OpcP, RegMem( src, mem ) );
  7375   ins_pipe( ialu_mem_reg );
  7376 %}
  7378 // Store Char/Short
  7379 instruct storeC(memory mem, eRegI src) %{
  7380   match(Set mem (StoreC mem src));
  7382   ins_cost(125);
  7383   format %{ "MOV16  $mem,$src" %}
  7384   opcode(0x89, 0x66);
  7385   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
  7386   ins_pipe( ialu_mem_reg );
  7387 %}
  7389 // Store Integer
  7390 instruct storeI(memory mem, eRegI src) %{
  7391   match(Set mem (StoreI mem src));
  7393   ins_cost(125);
  7394   format %{ "MOV    $mem,$src" %}
  7395   opcode(0x89);
  7396   ins_encode( OpcP, RegMem( src, mem ) );
  7397   ins_pipe( ialu_mem_reg );
  7398 %}
  7400 // Store Long
  7401 instruct storeL(long_memory mem, eRegL src) %{
  7402   predicate(!((StoreLNode*)n)->require_atomic_access());
  7403   match(Set mem (StoreL mem src));
  7405   ins_cost(200);
  7406   format %{ "MOV    $mem,$src.lo\n\t"
  7407             "MOV    $mem+4,$src.hi" %}
  7408   opcode(0x89, 0x89);
  7409   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
  7410   ins_pipe( ialu_mem_long_reg );
  7411 %}
  7413 // Store Long to Integer
  7414 instruct storeL2I(memory mem, eRegL src) %{
  7415   match(Set mem (StoreI mem (ConvL2I src)));
  7417   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
  7418   ins_encode %{
  7419     __ movl($mem$$Address, $src$$Register);
  7420   %}
  7421   ins_pipe(ialu_mem_reg);
  7422 %}
  7424 // Volatile Store Long.  Must be atomic, so move it into
  7425 // the FP TOS and then do a 64-bit FIST.  Has to probe the
  7426 // target address before the store (for null-ptr checks)
  7427 // so the memory operand is used twice in the encoding.
  7428 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
  7429   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
  7430   match(Set mem (StoreL mem src));
  7431   effect( KILL cr );
  7432   ins_cost(400);
  7433   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7434             "FILD   $src\n\t"
  7435             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
  7436   opcode(0x3B);
  7437   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
  7438   ins_pipe( fpu_reg_mem );
  7439 %}
  7441 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
  7442   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7443   match(Set mem (StoreL mem src));
  7444   effect( TEMP tmp, KILL cr );
  7445   ins_cost(380);
  7446   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7447             "MOVSD  $tmp,$src\n\t"
  7448             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7449   opcode(0x3B);
  7450   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
  7451   ins_pipe( pipe_slow );
  7452 %}
  7454 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
  7455   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
  7456   match(Set mem (StoreL mem src));
  7457   effect( TEMP tmp2 , TEMP tmp, KILL cr );
  7458   ins_cost(360);
  7459   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
  7460             "MOVD   $tmp,$src.lo\n\t"
  7461             "MOVD   $tmp2,$src.hi\n\t"
  7462             "PUNPCKLDQ $tmp,$tmp2\n\t"
  7463             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
  7464   opcode(0x3B);
  7465   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
  7466   ins_pipe( pipe_slow );
  7467 %}
  7469 // Store Pointer; for storing unknown oops and raw pointers
  7470 instruct storeP(memory mem, anyRegP src) %{
  7471   match(Set mem (StoreP mem src));
  7473   ins_cost(125);
  7474   format %{ "MOV    $mem,$src" %}
  7475   opcode(0x89);
  7476   ins_encode( OpcP, RegMem( src, mem ) );
  7477   ins_pipe( ialu_mem_reg );
  7478 %}
  7480 // Store Integer Immediate
  7481 instruct storeImmI(memory mem, immI src) %{
  7482   match(Set mem (StoreI mem src));
  7484   ins_cost(150);
  7485   format %{ "MOV    $mem,$src" %}
  7486   opcode(0xC7);               /* C7 /0 */
  7487   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7488   ins_pipe( ialu_mem_imm );
  7489 %}
  7491 // Store Short/Char Immediate
  7492 instruct storeImmI16(memory mem, immI16 src) %{
  7493   predicate(UseStoreImmI16);
  7494   match(Set mem (StoreC mem src));
  7496   ins_cost(150);
  7497   format %{ "MOV16  $mem,$src" %}
  7498   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
  7499   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
  7500   ins_pipe( ialu_mem_imm );
  7501 %}
  7503 // Store Pointer Immediate; null pointers or constant oops that do not
  7504 // need card-mark barriers.
  7505 instruct storeImmP(memory mem, immP src) %{
  7506   match(Set mem (StoreP mem src));
  7508   ins_cost(150);
  7509   format %{ "MOV    $mem,$src" %}
  7510   opcode(0xC7);               /* C7 /0 */
  7511   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
  7512   ins_pipe( ialu_mem_imm );
  7513 %}
  7515 // Store Byte Immediate
  7516 instruct storeImmB(memory mem, immI8 src) %{
  7517   match(Set mem (StoreB mem src));
  7519   ins_cost(150);
  7520   format %{ "MOV8   $mem,$src" %}
  7521   opcode(0xC6);               /* C6 /0 */
  7522   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7523   ins_pipe( ialu_mem_imm );
  7524 %}
  7526 // Store Aligned Packed Byte XMM register to memory
  7527 instruct storeA8B(memory mem, regXD src) %{
  7528   predicate(UseSSE>=1);
  7529   match(Set mem (Store8B mem src));
  7530   ins_cost(145);
  7531   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  7532   ins_encode( movq_st(mem, src));
  7533   ins_pipe( pipe_slow );
  7534 %}
  7536 // Store Aligned Packed Char/Short XMM register to memory
  7537 instruct storeA4C(memory mem, regXD src) %{
  7538   predicate(UseSSE>=1);
  7539   match(Set mem (Store4C mem src));
  7540   ins_cost(145);
  7541   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  7542   ins_encode( movq_st(mem, src));
  7543   ins_pipe( pipe_slow );
  7544 %}
  7546 // Store Aligned Packed Integer XMM register to memory
  7547 instruct storeA2I(memory mem, regXD src) %{
  7548   predicate(UseSSE>=1);
  7549   match(Set mem (Store2I mem src));
  7550   ins_cost(145);
  7551   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  7552   ins_encode( movq_st(mem, src));
  7553   ins_pipe( pipe_slow );
  7554 %}
  7556 // Store CMS card-mark Immediate
  7557 instruct storeImmCM(memory mem, immI8 src) %{
  7558   match(Set mem (StoreCM mem src));
  7560   ins_cost(150);
  7561   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
  7562   opcode(0xC6);               /* C6 /0 */
  7563   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
  7564   ins_pipe( ialu_mem_imm );
  7565 %}
  7567 // Store Double
  7568 instruct storeD( memory mem, regDPR1 src) %{
  7569   predicate(UseSSE<=1);
  7570   match(Set mem (StoreD mem src));
  7572   ins_cost(100);
  7573   format %{ "FST_D  $mem,$src" %}
  7574   opcode(0xDD);       /* DD /2 */
  7575   ins_encode( enc_FP_store(mem,src) );
  7576   ins_pipe( fpu_mem_reg );
  7577 %}
  7579 // Store double does rounding on x86
  7580 instruct storeD_rounded( memory mem, regDPR1 src) %{
  7581   predicate(UseSSE<=1);
  7582   match(Set mem (StoreD mem (RoundDouble src)));
  7584   ins_cost(100);
  7585   format %{ "FST_D  $mem,$src\t# round" %}
  7586   opcode(0xDD);       /* DD /2 */
  7587   ins_encode( enc_FP_store(mem,src) );
  7588   ins_pipe( fpu_mem_reg );
  7589 %}
  7591 // Store XMM register to memory (double-precision floating points)
  7592 // MOVSD instruction
  7593 instruct storeXD(memory mem, regXD src) %{
  7594   predicate(UseSSE>=2);
  7595   match(Set mem (StoreD mem src));
  7596   ins_cost(95);
  7597   format %{ "MOVSD  $mem,$src" %}
  7598   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7599   ins_pipe( pipe_slow );
  7600 %}
  7602 // Store XMM register to memory (single-precision floating point)
  7603 // MOVSS instruction
  7604 instruct storeX(memory mem, regX src) %{
  7605   predicate(UseSSE>=1);
  7606   match(Set mem (StoreF mem src));
  7607   ins_cost(95);
  7608   format %{ "MOVSS  $mem,$src" %}
  7609   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
  7610   ins_pipe( pipe_slow );
  7611 %}
  7613 // Store Aligned Packed Single Float XMM register to memory
  7614 instruct storeA2F(memory mem, regXD src) %{
  7615   predicate(UseSSE>=1);
  7616   match(Set mem (Store2F mem src));
  7617   ins_cost(145);
  7618   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  7619   ins_encode( movq_st(mem, src));
  7620   ins_pipe( pipe_slow );
  7621 %}
  7623 // Store Float
  7624 instruct storeF( memory mem, regFPR1 src) %{
  7625   predicate(UseSSE==0);
  7626   match(Set mem (StoreF mem src));
  7628   ins_cost(100);
  7629   format %{ "FST_S  $mem,$src" %}
  7630   opcode(0xD9);       /* D9 /2 */
  7631   ins_encode( enc_FP_store(mem,src) );
  7632   ins_pipe( fpu_mem_reg );
  7633 %}
  7635 // Store Float does rounding on x86
  7636 instruct storeF_rounded( memory mem, regFPR1 src) %{
  7637   predicate(UseSSE==0);
  7638   match(Set mem (StoreF mem (RoundFloat src)));
  7640   ins_cost(100);
  7641   format %{ "FST_S  $mem,$src\t# round" %}
  7642   opcode(0xD9);       /* D9 /2 */
  7643   ins_encode( enc_FP_store(mem,src) );
  7644   ins_pipe( fpu_mem_reg );
  7645 %}
  7647 // Store Float does rounding on x86
  7648 instruct storeF_Drounded( memory mem, regDPR1 src) %{
  7649   predicate(UseSSE<=1);
  7650   match(Set mem (StoreF mem (ConvD2F src)));
  7652   ins_cost(100);
  7653   format %{ "FST_S  $mem,$src\t# D-round" %}
  7654   opcode(0xD9);       /* D9 /2 */
  7655   ins_encode( enc_FP_store(mem,src) );
  7656   ins_pipe( fpu_mem_reg );
  7657 %}
  7659 // Store immediate Float value (it is faster than store from FPU register)
  7660 // The instruction usage is guarded by predicate in operand immF().
  7661 instruct storeF_imm( memory mem, immF src) %{
  7662   match(Set mem (StoreF mem src));
  7664   ins_cost(50);
  7665   format %{ "MOV    $mem,$src\t# store float" %}
  7666   opcode(0xC7);               /* C7 /0 */
  7667   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
  7668   ins_pipe( ialu_mem_imm );
  7669 %}
  7671 // Store immediate Float value (it is faster than store from XMM register)
  7672 // The instruction usage is guarded by predicate in operand immXF().
  7673 instruct storeX_imm( memory mem, immXF src) %{
  7674   match(Set mem (StoreF mem src));
  7676   ins_cost(50);
  7677   format %{ "MOV    $mem,$src\t# store float" %}
  7678   opcode(0xC7);               /* C7 /0 */
  7679   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
  7680   ins_pipe( ialu_mem_imm );
  7681 %}
  7683 // Store Integer to stack slot
  7684 instruct storeSSI(stackSlotI dst, eRegI src) %{
  7685   match(Set dst src);
  7687   ins_cost(100);
  7688   format %{ "MOV    $dst,$src" %}
  7689   opcode(0x89);
  7690   ins_encode( OpcPRegSS( dst, src ) );
  7691   ins_pipe( ialu_mem_reg );
  7692 %}
  7694 // Store Integer to stack slot
  7695 instruct storeSSP(stackSlotP dst, eRegP src) %{
  7696   match(Set dst src);
  7698   ins_cost(100);
  7699   format %{ "MOV    $dst,$src" %}
  7700   opcode(0x89);
  7701   ins_encode( OpcPRegSS( dst, src ) );
  7702   ins_pipe( ialu_mem_reg );
  7703 %}
  7705 // Store Long to stack slot
  7706 instruct storeSSL(stackSlotL dst, eRegL src) %{
  7707   match(Set dst src);
  7709   ins_cost(200);
  7710   format %{ "MOV    $dst,$src.lo\n\t"
  7711             "MOV    $dst+4,$src.hi" %}
  7712   opcode(0x89, 0x89);
  7713   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
  7714   ins_pipe( ialu_mem_long_reg );
  7715 %}
  7717 //----------MemBar Instructions-----------------------------------------------
  7718 // Memory barrier flavors
  7720 instruct membar_acquire() %{
  7721   match(MemBarAcquire);
  7722   ins_cost(400);
  7724   size(0);
  7725   format %{ "MEMBAR-acquire ! (empty encoding)" %}
  7726   ins_encode();
  7727   ins_pipe(empty);
  7728 %}
  7730 instruct membar_acquire_lock() %{
  7731   match(MemBarAcquire);
  7732   predicate(Matcher::prior_fast_lock(n));
  7733   ins_cost(0);
  7735   size(0);
  7736   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7737   ins_encode( );
  7738   ins_pipe(empty);
  7739 %}
  7741 instruct membar_release() %{
  7742   match(MemBarRelease);
  7743   ins_cost(400);
  7745   size(0);
  7746   format %{ "MEMBAR-release ! (empty encoding)" %}
  7747   ins_encode( );
  7748   ins_pipe(empty);
  7749 %}
  7751 instruct membar_release_lock() %{
  7752   match(MemBarRelease);
  7753   predicate(Matcher::post_fast_unlock(n));
  7754   ins_cost(0);
  7756   size(0);
  7757   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7758   ins_encode( );
  7759   ins_pipe(empty);
  7760 %}
  7762 instruct membar_volatile(eFlagsReg cr) %{
  7763   match(MemBarVolatile);
  7764   effect(KILL cr);
  7765   ins_cost(400);
  7767   format %{ 
  7768     $$template
  7769     if (os::is_MP()) {
  7770       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
  7771     } else {
  7772       $$emit$$"MEMBAR-volatile ! (empty encoding)"
  7774   %}
  7775   ins_encode %{
  7776     __ membar(Assembler::StoreLoad);
  7777   %}
  7778   ins_pipe(pipe_slow);
  7779 %}
  7781 instruct unnecessary_membar_volatile() %{
  7782   match(MemBarVolatile);
  7783   predicate(Matcher::post_store_load_barrier(n));
  7784   ins_cost(0);
  7786   size(0);
  7787   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7788   ins_encode( );
  7789   ins_pipe(empty);
  7790 %}
  7792 //----------Move Instructions--------------------------------------------------
  7793 instruct castX2P(eAXRegP dst, eAXRegI src) %{
  7794   match(Set dst (CastX2P src));
  7795   format %{ "# X2P  $dst, $src" %}
  7796   ins_encode( /*empty encoding*/ );
  7797   ins_cost(0);
  7798   ins_pipe(empty);
  7799 %}
  7801 instruct castP2X(eRegI dst, eRegP src ) %{
  7802   match(Set dst (CastP2X src));
  7803   ins_cost(50);
  7804   format %{ "MOV    $dst, $src\t# CastP2X" %}
  7805   ins_encode( enc_Copy( dst, src) );
  7806   ins_pipe( ialu_reg_reg );
  7807 %}
  7809 //----------Conditional Move---------------------------------------------------
  7810 // Conditional move
  7811 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
  7812   predicate(VM_Version::supports_cmov() );
  7813   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7814   ins_cost(200);
  7815   format %{ "CMOV$cop $dst,$src" %}
  7816   opcode(0x0F,0x40);
  7817   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7818   ins_pipe( pipe_cmov_reg );
  7819 %}
  7821 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
  7822   predicate(VM_Version::supports_cmov() );
  7823   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7824   ins_cost(200);
  7825   format %{ "CMOV$cop $dst,$src" %}
  7826   opcode(0x0F,0x40);
  7827   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7828   ins_pipe( pipe_cmov_reg );
  7829 %}
  7831 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
  7832   predicate(VM_Version::supports_cmov() );
  7833   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7834   ins_cost(200);
  7835   expand %{
  7836     cmovI_regU(cop, cr, dst, src);
  7837   %}
  7838 %}
  7840 // Conditional move
  7841 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
  7842   predicate(VM_Version::supports_cmov() );
  7843   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7844   ins_cost(250);
  7845   format %{ "CMOV$cop $dst,$src" %}
  7846   opcode(0x0F,0x40);
  7847   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7848   ins_pipe( pipe_cmov_mem );
  7849 %}
  7851 // Conditional move
  7852 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
  7853   predicate(VM_Version::supports_cmov() );
  7854   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7855   ins_cost(250);
  7856   format %{ "CMOV$cop $dst,$src" %}
  7857   opcode(0x0F,0x40);
  7858   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7859   ins_pipe( pipe_cmov_mem );
  7860 %}
  7862 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
  7863   predicate(VM_Version::supports_cmov() );
  7864   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7865   ins_cost(250);
  7866   expand %{
  7867     cmovI_memU(cop, cr, dst, src);
  7868   %}
  7869 %}
  7871 // Conditional move
  7872 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7873   predicate(VM_Version::supports_cmov() );
  7874   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7875   ins_cost(200);
  7876   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7877   opcode(0x0F,0x40);
  7878   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7879   ins_pipe( pipe_cmov_reg );
  7880 %}
  7882 // Conditional move (non-P6 version)
  7883 // Note:  a CMoveP is generated for  stubs and native wrappers
  7884 //        regardless of whether we are on a P6, so we
  7885 //        emulate a cmov here
  7886 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
  7887   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7888   ins_cost(300);
  7889   format %{ "Jn$cop   skip\n\t"
  7890           "MOV    $dst,$src\t# pointer\n"
  7891       "skip:" %}
  7892   opcode(0x8b);
  7893   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
  7894   ins_pipe( pipe_cmov_reg );
  7895 %}
  7897 // Conditional move
  7898 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
  7899   predicate(VM_Version::supports_cmov() );
  7900   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7901   ins_cost(200);
  7902   format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7903   opcode(0x0F,0x40);
  7904   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
  7905   ins_pipe( pipe_cmov_reg );
  7906 %}
  7908 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
  7909   predicate(VM_Version::supports_cmov() );
  7910   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7911   ins_cost(200);
  7912   expand %{
  7913     cmovP_regU(cop, cr, dst, src);
  7914   %}
  7915 %}
  7917 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7918 // correctly meets the two pointer arguments; one is an incoming
  7919 // register but the other is a memory operand.  ALSO appears to
  7920 // be buggy with implicit null checks.
  7921 //
  7922 //// Conditional move
  7923 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
  7924 //  predicate(VM_Version::supports_cmov() );
  7925 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7926 //  ins_cost(250);
  7927 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7928 //  opcode(0x0F,0x40);
  7929 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7930 //  ins_pipe( pipe_cmov_mem );
  7931 //%}
  7932 //
  7933 //// Conditional move
  7934 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
  7935 //  predicate(VM_Version::supports_cmov() );
  7936 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7937 //  ins_cost(250);
  7938 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7939 //  opcode(0x0F,0x40);
  7940 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
  7941 //  ins_pipe( pipe_cmov_mem );
  7942 //%}
  7944 // Conditional move
  7945 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
  7946   predicate(UseSSE<=1);
  7947   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7948   ins_cost(200);
  7949   format %{ "FCMOV$cop $dst,$src\t# double" %}
  7950   opcode(0xDA);
  7951   ins_encode( enc_cmov_d(cop,src) );
  7952   ins_pipe( pipe_cmovD_reg );
  7953 %}
  7955 // Conditional move
  7956 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
  7957   predicate(UseSSE==0);
  7958   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7959   ins_cost(200);
  7960   format %{ "FCMOV$cop $dst,$src\t# float" %}
  7961   opcode(0xDA);
  7962   ins_encode( enc_cmov_d(cop,src) );
  7963   ins_pipe( pipe_cmovD_reg );
  7964 %}
  7966 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7967 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
  7968   predicate(UseSSE<=1);
  7969   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7970   ins_cost(200);
  7971   format %{ "Jn$cop   skip\n\t"
  7972             "MOV    $dst,$src\t# double\n"
  7973       "skip:" %}
  7974   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7975   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
  7976   ins_pipe( pipe_cmovD_reg );
  7977 %}
  7979 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
  7980 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
  7981   predicate(UseSSE==0);
  7982   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7983   ins_cost(200);
  7984   format %{ "Jn$cop    skip\n\t"
  7985             "MOV    $dst,$src\t# float\n"
  7986       "skip:" %}
  7987   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
  7988   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
  7989   ins_pipe( pipe_cmovD_reg );
  7990 %}
  7992 // No CMOVE with SSE/SSE2
  7993 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
  7994   predicate (UseSSE>=1);
  7995   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7996   ins_cost(200);
  7997   format %{ "Jn$cop   skip\n\t"
  7998             "MOVSS  $dst,$src\t# float\n"
  7999       "skip:" %}
  8000   ins_encode %{
  8001     Label skip;
  8002     // Invert sense of branch from sense of CMOV
  8003     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8004     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8005     __ bind(skip);
  8006   %}
  8007   ins_pipe( pipe_slow );
  8008 %}
  8010 // No CMOVE with SSE/SSE2
  8011 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
  8012   predicate (UseSSE>=2);
  8013   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8014   ins_cost(200);
  8015   format %{ "Jn$cop   skip\n\t"
  8016             "MOVSD  $dst,$src\t# float\n"
  8017       "skip:" %}
  8018   ins_encode %{
  8019     Label skip;
  8020     // Invert sense of branch from sense of CMOV
  8021     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8022     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8023     __ bind(skip);
  8024   %}
  8025   ins_pipe( pipe_slow );
  8026 %}
  8028 // unsigned version
  8029 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
  8030   predicate (UseSSE>=1);
  8031   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8032   ins_cost(200);
  8033   format %{ "Jn$cop   skip\n\t"
  8034             "MOVSS  $dst,$src\t# float\n"
  8035       "skip:" %}
  8036   ins_encode %{
  8037     Label skip;
  8038     // Invert sense of branch from sense of CMOV
  8039     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8040     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
  8041     __ bind(skip);
  8042   %}
  8043   ins_pipe( pipe_slow );
  8044 %}
  8046 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
  8047   predicate (UseSSE>=1);
  8048   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  8049   ins_cost(200);
  8050   expand %{
  8051     fcmovX_regU(cop, cr, dst, src);
  8052   %}
  8053 %}
  8055 // unsigned version
  8056 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
  8057   predicate (UseSSE>=2);
  8058   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8059   ins_cost(200);
  8060   format %{ "Jn$cop   skip\n\t"
  8061             "MOVSD  $dst,$src\t# float\n"
  8062       "skip:" %}
  8063   ins_encode %{
  8064     Label skip;
  8065     // Invert sense of branch from sense of CMOV
  8066     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
  8067     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
  8068     __ bind(skip);
  8069   %}
  8070   ins_pipe( pipe_slow );
  8071 %}
  8073 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
  8074   predicate (UseSSE>=2);
  8075   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  8076   ins_cost(200);
  8077   expand %{
  8078     fcmovXD_regU(cop, cr, dst, src);
  8079   %}
  8080 %}
  8082 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
  8083   predicate(VM_Version::supports_cmov() );
  8084   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8085   ins_cost(200);
  8086   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8087             "CMOV$cop $dst.hi,$src.hi" %}
  8088   opcode(0x0F,0x40);
  8089   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8090   ins_pipe( pipe_cmov_reg_long );
  8091 %}
  8093 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
  8094   predicate(VM_Version::supports_cmov() );
  8095   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8096   ins_cost(200);
  8097   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
  8098             "CMOV$cop $dst.hi,$src.hi" %}
  8099   opcode(0x0F,0x40);
  8100   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
  8101   ins_pipe( pipe_cmov_reg_long );
  8102 %}
  8104 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
  8105   predicate(VM_Version::supports_cmov() );
  8106   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  8107   ins_cost(200);
  8108   expand %{
  8109     cmovL_regU(cop, cr, dst, src);
  8110   %}
  8111 %}
  8113 //----------Arithmetic Instructions--------------------------------------------
  8114 //----------Addition Instructions----------------------------------------------
  8115 // Integer Addition Instructions
  8116 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8117   match(Set dst (AddI dst src));
  8118   effect(KILL cr);
  8120   size(2);
  8121   format %{ "ADD    $dst,$src" %}
  8122   opcode(0x03);
  8123   ins_encode( OpcP, RegReg( dst, src) );
  8124   ins_pipe( ialu_reg_reg );
  8125 %}
  8127 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8128   match(Set dst (AddI dst src));
  8129   effect(KILL cr);
  8131   format %{ "ADD    $dst,$src" %}
  8132   opcode(0x81, 0x00); /* /0 id */
  8133   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8134   ins_pipe( ialu_reg );
  8135 %}
  8137 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  8138   predicate(UseIncDec);
  8139   match(Set dst (AddI dst src));
  8140   effect(KILL cr);
  8142   size(1);
  8143   format %{ "INC    $dst" %}
  8144   opcode(0x40); /*  */
  8145   ins_encode( Opc_plus( primary, dst ) );
  8146   ins_pipe( ialu_reg );
  8147 %}
  8149 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
  8150   match(Set dst (AddI src0 src1));
  8151   ins_cost(110);
  8153   format %{ "LEA    $dst,[$src0 + $src1]" %}
  8154   opcode(0x8D); /* 0x8D /r */
  8155   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8156   ins_pipe( ialu_reg_reg );
  8157 %}
  8159 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
  8160   match(Set dst (AddP src0 src1));
  8161   ins_cost(110);
  8163   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
  8164   opcode(0x8D); /* 0x8D /r */
  8165   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
  8166   ins_pipe( ialu_reg_reg );
  8167 %}
  8169 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
  8170   predicate(UseIncDec);
  8171   match(Set dst (AddI dst src));
  8172   effect(KILL cr);
  8174   size(1);
  8175   format %{ "DEC    $dst" %}
  8176   opcode(0x48); /*  */
  8177   ins_encode( Opc_plus( primary, dst ) );
  8178   ins_pipe( ialu_reg );
  8179 %}
  8181 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
  8182   match(Set dst (AddP dst src));
  8183   effect(KILL cr);
  8185   size(2);
  8186   format %{ "ADD    $dst,$src" %}
  8187   opcode(0x03);
  8188   ins_encode( OpcP, RegReg( dst, src) );
  8189   ins_pipe( ialu_reg_reg );
  8190 %}
  8192 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
  8193   match(Set dst (AddP dst src));
  8194   effect(KILL cr);
  8196   format %{ "ADD    $dst,$src" %}
  8197   opcode(0x81,0x00); /* Opcode 81 /0 id */
  8198   // ins_encode( RegImm( dst, src) );
  8199   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8200   ins_pipe( ialu_reg );
  8201 %}
  8203 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8204   match(Set dst (AddI dst (LoadI src)));
  8205   effect(KILL cr);
  8207   ins_cost(125);
  8208   format %{ "ADD    $dst,$src" %}
  8209   opcode(0x03);
  8210   ins_encode( OpcP, RegMem( dst, src) );
  8211   ins_pipe( ialu_reg_mem );
  8212 %}
  8214 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8215   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8216   effect(KILL cr);
  8218   ins_cost(150);
  8219   format %{ "ADD    $dst,$src" %}
  8220   opcode(0x01);  /* Opcode 01 /r */
  8221   ins_encode( OpcP, RegMem( src, dst ) );
  8222   ins_pipe( ialu_mem_reg );
  8223 %}
  8225 // Add Memory with Immediate
  8226 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8227   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8228   effect(KILL cr);
  8230   ins_cost(125);
  8231   format %{ "ADD    $dst,$src" %}
  8232   opcode(0x81);               /* Opcode 81 /0 id */
  8233   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
  8234   ins_pipe( ialu_mem_imm );
  8235 %}
  8237 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
  8238   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8239   effect(KILL cr);
  8241   ins_cost(125);
  8242   format %{ "INC    $dst" %}
  8243   opcode(0xFF);               /* Opcode FF /0 */
  8244   ins_encode( OpcP, RMopc_Mem(0x00,dst));
  8245   ins_pipe( ialu_mem_imm );
  8246 %}
  8248 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
  8249   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  8250   effect(KILL cr);
  8252   ins_cost(125);
  8253   format %{ "DEC    $dst" %}
  8254   opcode(0xFF);               /* Opcode FF /1 */
  8255   ins_encode( OpcP, RMopc_Mem(0x01,dst));
  8256   ins_pipe( ialu_mem_imm );
  8257 %}
  8260 instruct checkCastPP( eRegP dst ) %{
  8261   match(Set dst (CheckCastPP dst));
  8263   size(0);
  8264   format %{ "#checkcastPP of $dst" %}
  8265   ins_encode( /*empty encoding*/ );
  8266   ins_pipe( empty );
  8267 %}
  8269 instruct castPP( eRegP dst ) %{
  8270   match(Set dst (CastPP dst));
  8271   format %{ "#castPP of $dst" %}
  8272   ins_encode( /*empty encoding*/ );
  8273   ins_pipe( empty );
  8274 %}
  8276 instruct castII( eRegI dst ) %{
  8277   match(Set dst (CastII dst));
  8278   format %{ "#castII of $dst" %}
  8279   ins_encode( /*empty encoding*/ );
  8280   ins_cost(0);
  8281   ins_pipe( empty );
  8282 %}
  8285 // Load-locked - same as a regular pointer load when used with compare-swap
  8286 instruct loadPLocked(eRegP dst, memory mem) %{
  8287   match(Set dst (LoadPLocked mem));
  8289   ins_cost(125);
  8290   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
  8291   opcode(0x8B);
  8292   ins_encode( OpcP, RegMem(dst,mem));
  8293   ins_pipe( ialu_reg_mem );
  8294 %}
  8296 // LoadLong-locked - same as a volatile long load when used with compare-swap
  8297 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
  8298   predicate(UseSSE<=1);
  8299   match(Set dst (LoadLLocked mem));
  8301   ins_cost(200);
  8302   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
  8303             "FISTp  $dst" %}
  8304   ins_encode(enc_loadL_volatile(mem,dst));
  8305   ins_pipe( fpu_reg_mem );
  8306 %}
  8308 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
  8309   predicate(UseSSE>=2);
  8310   match(Set dst (LoadLLocked mem));
  8311   effect(TEMP tmp);
  8312   ins_cost(180);
  8313   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8314             "MOVSD  $dst,$tmp" %}
  8315   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
  8316   ins_pipe( pipe_slow );
  8317 %}
  8319 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
  8320   predicate(UseSSE>=2);
  8321   match(Set dst (LoadLLocked mem));
  8322   effect(TEMP tmp);
  8323   ins_cost(160);
  8324   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
  8325             "MOVD   $dst.lo,$tmp\n\t"
  8326             "PSRLQ  $tmp,32\n\t"
  8327             "MOVD   $dst.hi,$tmp" %}
  8328   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
  8329   ins_pipe( pipe_slow );
  8330 %}
  8332 // Conditional-store of the updated heap-top.
  8333 // Used during allocation of the shared heap.
  8334 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  8335 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
  8336   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  8337   // EAX is killed if there is contention, but then it's also unused.
  8338   // In the common case of no contention, EAX holds the new oop address.
  8339   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
  8340   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
  8341   ins_pipe( pipe_cmpxchg );
  8342 %}
  8344 // Conditional-store of an int value.
  8345 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
  8346 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
  8347   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  8348   effect(KILL oldval);
  8349   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
  8350   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
  8351   ins_pipe( pipe_cmpxchg );
  8352 %}
  8354 // Conditional-store of a long value.
  8355 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
  8356 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8357   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  8358   effect(KILL oldval);
  8359   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
  8360             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
  8361             "XCHG   EBX,ECX"
  8362   %}
  8363   ins_encode %{
  8364     // Note: we need to swap rbx, and rcx before and after the
  8365     //       cmpxchg8 instruction because the instruction uses
  8366     //       rcx as the high order word of the new value to store but
  8367     //       our register encoding uses rbx.
  8368     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8369     if( os::is_MP() )
  8370       __ lock();
  8371     __ cmpxchg8($mem$$Address);
  8372     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
  8373   %}
  8374   ins_pipe( pipe_cmpxchg );
  8375 %}
  8377 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  8379 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
  8380   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  8381   effect(KILL cr, KILL oldval);
  8382   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8383             "MOV    $res,0\n\t"
  8384             "JNE,s  fail\n\t"
  8385             "MOV    $res,1\n"
  8386           "fail:" %}
  8387   ins_encode( enc_cmpxchg8(mem_ptr),
  8388               enc_flags_ne_to_boolean(res) );
  8389   ins_pipe( pipe_cmpxchg );
  8390 %}
  8392 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
  8393   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  8394   effect(KILL cr, KILL oldval);
  8395   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8396             "MOV    $res,0\n\t"
  8397             "JNE,s  fail\n\t"
  8398             "MOV    $res,1\n"
  8399           "fail:" %}
  8400   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8401   ins_pipe( pipe_cmpxchg );
  8402 %}
  8404 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
  8405   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8406   effect(KILL cr, KILL oldval);
  8407   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
  8408             "MOV    $res,0\n\t"
  8409             "JNE,s  fail\n\t"
  8410             "MOV    $res,1\n"
  8411           "fail:" %}
  8412   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
  8413   ins_pipe( pipe_cmpxchg );
  8414 %}
  8416 //----------Subtraction Instructions-------------------------------------------
  8417 // Integer Subtraction Instructions
  8418 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8419   match(Set dst (SubI dst src));
  8420   effect(KILL cr);
  8422   size(2);
  8423   format %{ "SUB    $dst,$src" %}
  8424   opcode(0x2B);
  8425   ins_encode( OpcP, RegReg( dst, src) );
  8426   ins_pipe( ialu_reg_reg );
  8427 %}
  8429 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8430   match(Set dst (SubI dst src));
  8431   effect(KILL cr);
  8433   format %{ "SUB    $dst,$src" %}
  8434   opcode(0x81,0x05);  /* Opcode 81 /5 */
  8435   // ins_encode( RegImm( dst, src) );
  8436   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8437   ins_pipe( ialu_reg );
  8438 %}
  8440 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8441   match(Set dst (SubI dst (LoadI src)));
  8442   effect(KILL cr);
  8444   ins_cost(125);
  8445   format %{ "SUB    $dst,$src" %}
  8446   opcode(0x2B);
  8447   ins_encode( OpcP, RegMem( dst, src) );
  8448   ins_pipe( ialu_reg_mem );
  8449 %}
  8451 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8452   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8453   effect(KILL cr);
  8455   ins_cost(150);
  8456   format %{ "SUB    $dst,$src" %}
  8457   opcode(0x29);  /* Opcode 29 /r */
  8458   ins_encode( OpcP, RegMem( src, dst ) );
  8459   ins_pipe( ialu_mem_reg );
  8460 %}
  8462 // Subtract from a pointer
  8463 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
  8464   match(Set dst (AddP dst (SubI zero src)));
  8465   effect(KILL cr);
  8467   size(2);
  8468   format %{ "SUB    $dst,$src" %}
  8469   opcode(0x2B);
  8470   ins_encode( OpcP, RegReg( dst, src) );
  8471   ins_pipe( ialu_reg_reg );
  8472 %}
  8474 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
  8475   match(Set dst (SubI zero dst));
  8476   effect(KILL cr);
  8478   size(2);
  8479   format %{ "NEG    $dst" %}
  8480   opcode(0xF7,0x03);  // Opcode F7 /3
  8481   ins_encode( OpcP, RegOpc( dst ) );
  8482   ins_pipe( ialu_reg );
  8483 %}
  8486 //----------Multiplication/Division Instructions-------------------------------
  8487 // Integer Multiplication Instructions
  8488 // Multiply Register
  8489 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8490   match(Set dst (MulI dst src));
  8491   effect(KILL cr);
  8493   size(3);
  8494   ins_cost(300);
  8495   format %{ "IMUL   $dst,$src" %}
  8496   opcode(0xAF, 0x0F);
  8497   ins_encode( OpcS, OpcP, RegReg( dst, src) );
  8498   ins_pipe( ialu_reg_reg_alu0 );
  8499 %}
  8501 // Multiply 32-bit Immediate
  8502 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
  8503   match(Set dst (MulI src imm));
  8504   effect(KILL cr);
  8506   ins_cost(300);
  8507   format %{ "IMUL   $dst,$src,$imm" %}
  8508   opcode(0x69);  /* 69 /r id */
  8509   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
  8510   ins_pipe( ialu_reg_reg_alu0 );
  8511 %}
  8513 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
  8514   match(Set dst src);
  8515   effect(KILL cr);
  8517   // Note that this is artificially increased to make it more expensive than loadConL
  8518   ins_cost(250);
  8519   format %{ "MOV    EAX,$src\t// low word only" %}
  8520   opcode(0xB8);
  8521   ins_encode( LdImmL_Lo(dst, src) );
  8522   ins_pipe( ialu_reg_fat );
  8523 %}
  8525 // Multiply by 32-bit Immediate, taking the shifted high order results
  8526 //  (special case for shift by 32)
  8527 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
  8528   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8529   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8530              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8531              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8532   effect(USE src1, KILL cr);
  8534   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8535   ins_cost(0*100 + 1*400 - 150);
  8536   format %{ "IMUL   EDX:EAX,$src1" %}
  8537   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8538   ins_pipe( pipe_slow );
  8539 %}
  8541 // Multiply by 32-bit Immediate, taking the shifted high order results
  8542 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
  8543   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
  8544   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
  8545              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
  8546              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
  8547   effect(USE src1, KILL cr);
  8549   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
  8550   ins_cost(1*100 + 1*400 - 150);
  8551   format %{ "IMUL   EDX:EAX,$src1\n\t"
  8552             "SAR    EDX,$cnt-32" %}
  8553   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
  8554   ins_pipe( pipe_slow );
  8555 %}
  8557 // Multiply Memory 32-bit Immediate
  8558 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
  8559   match(Set dst (MulI (LoadI src) imm));
  8560   effect(KILL cr);
  8562   ins_cost(300);
  8563   format %{ "IMUL   $dst,$src,$imm" %}
  8564   opcode(0x69);  /* 69 /r id */
  8565   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
  8566   ins_pipe( ialu_reg_mem_alu0 );
  8567 %}
  8569 // Multiply Memory
  8570 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
  8571   match(Set dst (MulI dst (LoadI src)));
  8572   effect(KILL cr);
  8574   ins_cost(350);
  8575   format %{ "IMUL   $dst,$src" %}
  8576   opcode(0xAF, 0x0F);
  8577   ins_encode( OpcS, OpcP, RegMem( dst, src) );
  8578   ins_pipe( ialu_reg_mem_alu0 );
  8579 %}
  8581 // Multiply Register Int to Long
  8582 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
  8583   // Basic Idea: long = (long)int * (long)int
  8584   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
  8585   effect(DEF dst, USE src, USE src1, KILL flags);
  8587   ins_cost(300);
  8588   format %{ "IMUL   $dst,$src1" %}
  8590   ins_encode( long_int_multiply( dst, src1 ) );
  8591   ins_pipe( ialu_reg_reg_alu0 );
  8592 %}
  8594 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
  8595   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
  8596   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
  8597   effect(KILL flags);
  8599   ins_cost(300);
  8600   format %{ "MUL    $dst,$src1" %}
  8602   ins_encode( long_uint_multiply(dst, src1) );
  8603   ins_pipe( ialu_reg_reg_alu0 );
  8604 %}
  8606 // Multiply Register Long
  8607 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8608   match(Set dst (MulL dst src));
  8609   effect(KILL cr, TEMP tmp);
  8610   ins_cost(4*100+3*400);
  8611 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8612 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  8613   format %{ "MOV    $tmp,$src.lo\n\t"
  8614             "IMUL   $tmp,EDX\n\t"
  8615             "MOV    EDX,$src.hi\n\t"
  8616             "IMUL   EDX,EAX\n\t"
  8617             "ADD    $tmp,EDX\n\t"
  8618             "MUL    EDX:EAX,$src.lo\n\t"
  8619             "ADD    EDX,$tmp" %}
  8620   ins_encode( long_multiply( dst, src, tmp ) );
  8621   ins_pipe( pipe_slow );
  8622 %}
  8624 // Multiply Register Long where the left operand's high 32 bits are zero
  8625 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8626   predicate(is_operand_hi32_zero(n->in(1)));
  8627   match(Set dst (MulL dst src));
  8628   effect(KILL cr, TEMP tmp);
  8629   ins_cost(2*100+2*400);
  8630 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8631 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
  8632   format %{ "MOV    $tmp,$src.hi\n\t"
  8633             "IMUL   $tmp,EAX\n\t"
  8634             "MUL    EDX:EAX,$src.lo\n\t"
  8635             "ADD    EDX,$tmp" %}
  8636   ins_encode %{
  8637     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
  8638     __ imull($tmp$$Register, rax);
  8639     __ mull($src$$Register);
  8640     __ addl(rdx, $tmp$$Register);
  8641   %}
  8642   ins_pipe( pipe_slow );
  8643 %}
  8645 // Multiply Register Long where the right operand's high 32 bits are zero
  8646 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
  8647   predicate(is_operand_hi32_zero(n->in(2)));
  8648   match(Set dst (MulL dst src));
  8649   effect(KILL cr, TEMP tmp);
  8650   ins_cost(2*100+2*400);
  8651 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8652 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
  8653   format %{ "MOV    $tmp,$src.lo\n\t"
  8654             "IMUL   $tmp,EDX\n\t"
  8655             "MUL    EDX:EAX,$src.lo\n\t"
  8656             "ADD    EDX,$tmp" %}
  8657   ins_encode %{
  8658     __ movl($tmp$$Register, $src$$Register);
  8659     __ imull($tmp$$Register, rdx);
  8660     __ mull($src$$Register);
  8661     __ addl(rdx, $tmp$$Register);
  8662   %}
  8663   ins_pipe( pipe_slow );
  8664 %}
  8666 // Multiply Register Long where the left and the right operands' high 32 bits are zero
  8667 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
  8668   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
  8669   match(Set dst (MulL dst src));
  8670   effect(KILL cr);
  8671   ins_cost(1*400);
  8672 // Basic idea: lo(result) = lo(x_lo * y_lo)
  8673 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
  8674   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
  8675   ins_encode %{
  8676     __ mull($src$$Register);
  8677   %}
  8678   ins_pipe( pipe_slow );
  8679 %}
  8681 // Multiply Register Long by small constant
  8682 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
  8683   match(Set dst (MulL dst src));
  8684   effect(KILL cr, TEMP tmp);
  8685   ins_cost(2*100+2*400);
  8686   size(12);
  8687 // Basic idea: lo(result) = lo(src * EAX)
  8688 //             hi(result) = hi(src * EAX) + lo(src * EDX)
  8689   format %{ "IMUL   $tmp,EDX,$src\n\t"
  8690             "MOV    EDX,$src\n\t"
  8691             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
  8692             "ADD    EDX,$tmp" %}
  8693   ins_encode( long_multiply_con( dst, src, tmp ) );
  8694   ins_pipe( pipe_slow );
  8695 %}
  8697 // Integer DIV with Register
  8698 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8699   match(Set rax (DivI rax div));
  8700   effect(KILL rdx, KILL cr);
  8701   size(26);
  8702   ins_cost(30*100+10*100);
  8703   format %{ "CMP    EAX,0x80000000\n\t"
  8704             "JNE,s  normal\n\t"
  8705             "XOR    EDX,EDX\n\t"
  8706             "CMP    ECX,-1\n\t"
  8707             "JE,s   done\n"
  8708     "normal: CDQ\n\t"
  8709             "IDIV   $div\n\t"
  8710     "done:"        %}
  8711   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8712   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8713   ins_pipe( ialu_reg_reg_alu0 );
  8714 %}
  8716 // Divide Register Long
  8717 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8718   match(Set dst (DivL src1 src2));
  8719   effect( KILL cr, KILL cx, KILL bx );
  8720   ins_cost(10000);
  8721   format %{ "PUSH   $src1.hi\n\t"
  8722             "PUSH   $src1.lo\n\t"
  8723             "PUSH   $src2.hi\n\t"
  8724             "PUSH   $src2.lo\n\t"
  8725             "CALL   SharedRuntime::ldiv\n\t"
  8726             "ADD    ESP,16" %}
  8727   ins_encode( long_div(src1,src2) );
  8728   ins_pipe( pipe_slow );
  8729 %}
  8731 // Integer DIVMOD with Register, both quotient and mod results
  8732 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
  8733   match(DivModI rax div);
  8734   effect(KILL cr);
  8735   size(26);
  8736   ins_cost(30*100+10*100);
  8737   format %{ "CMP    EAX,0x80000000\n\t"
  8738             "JNE,s  normal\n\t"
  8739             "XOR    EDX,EDX\n\t"
  8740             "CMP    ECX,-1\n\t"
  8741             "JE,s   done\n"
  8742     "normal: CDQ\n\t"
  8743             "IDIV   $div\n\t"
  8744     "done:"        %}
  8745   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8746   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8747   ins_pipe( pipe_slow );
  8748 %}
  8750 // Integer MOD with Register
  8751 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
  8752   match(Set rdx (ModI rax div));
  8753   effect(KILL rax, KILL cr);
  8755   size(26);
  8756   ins_cost(300);
  8757   format %{ "CDQ\n\t"
  8758             "IDIV   $div" %}
  8759   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8760   ins_encode( cdq_enc, OpcP, RegOpc(div) );
  8761   ins_pipe( ialu_reg_reg_alu0 );
  8762 %}
  8764 // Remainder Register Long
  8765 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
  8766   match(Set dst (ModL src1 src2));
  8767   effect( KILL cr, KILL cx, KILL bx );
  8768   ins_cost(10000);
  8769   format %{ "PUSH   $src1.hi\n\t"
  8770             "PUSH   $src1.lo\n\t"
  8771             "PUSH   $src2.hi\n\t"
  8772             "PUSH   $src2.lo\n\t"
  8773             "CALL   SharedRuntime::lrem\n\t"
  8774             "ADD    ESP,16" %}
  8775   ins_encode( long_mod(src1,src2) );
  8776   ins_pipe( pipe_slow );
  8777 %}
  8779 // Integer Shift Instructions
  8780 // Shift Left by one
  8781 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8782   match(Set dst (LShiftI dst shift));
  8783   effect(KILL cr);
  8785   size(2);
  8786   format %{ "SHL    $dst,$shift" %}
  8787   opcode(0xD1, 0x4);  /* D1 /4 */
  8788   ins_encode( OpcP, RegOpc( dst ) );
  8789   ins_pipe( ialu_reg );
  8790 %}
  8792 // Shift Left by 8-bit immediate
  8793 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8794   match(Set dst (LShiftI dst shift));
  8795   effect(KILL cr);
  8797   size(3);
  8798   format %{ "SHL    $dst,$shift" %}
  8799   opcode(0xC1, 0x4);  /* C1 /4 ib */
  8800   ins_encode( RegOpcImm( dst, shift) );
  8801   ins_pipe( ialu_reg );
  8802 %}
  8804 // Shift Left by variable
  8805 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8806   match(Set dst (LShiftI dst shift));
  8807   effect(KILL cr);
  8809   size(2);
  8810   format %{ "SHL    $dst,$shift" %}
  8811   opcode(0xD3, 0x4);  /* D3 /4 */
  8812   ins_encode( OpcP, RegOpc( dst ) );
  8813   ins_pipe( ialu_reg_reg );
  8814 %}
  8816 // Arithmetic shift right by one
  8817 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8818   match(Set dst (RShiftI dst shift));
  8819   effect(KILL cr);
  8821   size(2);
  8822   format %{ "SAR    $dst,$shift" %}
  8823   opcode(0xD1, 0x7);  /* D1 /7 */
  8824   ins_encode( OpcP, RegOpc( dst ) );
  8825   ins_pipe( ialu_reg );
  8826 %}
  8828 // Arithmetic shift right by one
  8829 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
  8830   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8831   effect(KILL cr);
  8832   format %{ "SAR    $dst,$shift" %}
  8833   opcode(0xD1, 0x7);  /* D1 /7 */
  8834   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
  8835   ins_pipe( ialu_mem_imm );
  8836 %}
  8838 // Arithmetic Shift Right by 8-bit immediate
  8839 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8840   match(Set dst (RShiftI dst shift));
  8841   effect(KILL cr);
  8843   size(3);
  8844   format %{ "SAR    $dst,$shift" %}
  8845   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8846   ins_encode( RegOpcImm( dst, shift ) );
  8847   ins_pipe( ialu_mem_imm );
  8848 %}
  8850 // Arithmetic Shift Right by 8-bit immediate
  8851 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
  8852   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8853   effect(KILL cr);
  8855   format %{ "SAR    $dst,$shift" %}
  8856   opcode(0xC1, 0x7);  /* C1 /7 ib */
  8857   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
  8858   ins_pipe( ialu_mem_imm );
  8859 %}
  8861 // Arithmetic Shift Right by variable
  8862 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8863   match(Set dst (RShiftI dst shift));
  8864   effect(KILL cr);
  8866   size(2);
  8867   format %{ "SAR    $dst,$shift" %}
  8868   opcode(0xD3, 0x7);  /* D3 /7 */
  8869   ins_encode( OpcP, RegOpc( dst ) );
  8870   ins_pipe( ialu_reg_reg );
  8871 %}
  8873 // Logical shift right by one
  8874 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  8875   match(Set dst (URShiftI dst shift));
  8876   effect(KILL cr);
  8878   size(2);
  8879   format %{ "SHR    $dst,$shift" %}
  8880   opcode(0xD1, 0x5);  /* D1 /5 */
  8881   ins_encode( OpcP, RegOpc( dst ) );
  8882   ins_pipe( ialu_reg );
  8883 %}
  8885 // Logical Shift Right by 8-bit immediate
  8886 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
  8887   match(Set dst (URShiftI dst shift));
  8888   effect(KILL cr);
  8890   size(3);
  8891   format %{ "SHR    $dst,$shift" %}
  8892   opcode(0xC1, 0x5);  /* C1 /5 ib */
  8893   ins_encode( RegOpcImm( dst, shift) );
  8894   ins_pipe( ialu_reg );
  8895 %}
  8898 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8899 // This idiom is used by the compiler for the i2b bytecode.
  8900 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
  8901   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8903   size(3);
  8904   format %{ "MOVSX  $dst,$src :8" %}
  8905   ins_encode %{
  8906     __ movsbl($dst$$Register, $src$$Register);
  8907   %}
  8908   ins_pipe(ialu_reg_reg);
  8909 %}
  8911 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8912 // This idiom is used by the compiler the i2s bytecode.
  8913 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
  8914   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8916   size(3);
  8917   format %{ "MOVSX  $dst,$src :16" %}
  8918   ins_encode %{
  8919     __ movswl($dst$$Register, $src$$Register);
  8920   %}
  8921   ins_pipe(ialu_reg_reg);
  8922 %}
  8925 // Logical Shift Right by variable
  8926 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
  8927   match(Set dst (URShiftI dst shift));
  8928   effect(KILL cr);
  8930   size(2);
  8931   format %{ "SHR    $dst,$shift" %}
  8932   opcode(0xD3, 0x5);  /* D3 /5 */
  8933   ins_encode( OpcP, RegOpc( dst ) );
  8934   ins_pipe( ialu_reg_reg );
  8935 %}
  8938 //----------Logical Instructions-----------------------------------------------
  8939 //----------Integer Logical Instructions---------------------------------------
  8940 // And Instructions
  8941 // And Register with Register
  8942 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  8943   match(Set dst (AndI dst src));
  8944   effect(KILL cr);
  8946   size(2);
  8947   format %{ "AND    $dst,$src" %}
  8948   opcode(0x23);
  8949   ins_encode( OpcP, RegReg( dst, src) );
  8950   ins_pipe( ialu_reg_reg );
  8951 %}
  8953 // And Register with Immediate
  8954 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  8955   match(Set dst (AndI dst src));
  8956   effect(KILL cr);
  8958   format %{ "AND    $dst,$src" %}
  8959   opcode(0x81,0x04);  /* Opcode 81 /4 */
  8960   // ins_encode( RegImm( dst, src) );
  8961   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  8962   ins_pipe( ialu_reg );
  8963 %}
  8965 // And Register with Memory
  8966 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  8967   match(Set dst (AndI dst (LoadI src)));
  8968   effect(KILL cr);
  8970   ins_cost(125);
  8971   format %{ "AND    $dst,$src" %}
  8972   opcode(0x23);
  8973   ins_encode( OpcP, RegMem( dst, src) );
  8974   ins_pipe( ialu_reg_mem );
  8975 %}
  8977 // And Memory with Register
  8978 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  8979   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8980   effect(KILL cr);
  8982   ins_cost(150);
  8983   format %{ "AND    $dst,$src" %}
  8984   opcode(0x21);  /* Opcode 21 /r */
  8985   ins_encode( OpcP, RegMem( src, dst ) );
  8986   ins_pipe( ialu_mem_reg );
  8987 %}
  8989 // And Memory with Immediate
  8990 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  8991   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  8992   effect(KILL cr);
  8994   ins_cost(125);
  8995   format %{ "AND    $dst,$src" %}
  8996   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
  8997   // ins_encode( MemImm( dst, src) );
  8998   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  8999   ins_pipe( ialu_mem_imm );
  9000 %}
  9002 // Or Instructions
  9003 // Or Register with Register
  9004 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9005   match(Set dst (OrI dst src));
  9006   effect(KILL cr);
  9008   size(2);
  9009   format %{ "OR     $dst,$src" %}
  9010   opcode(0x0B);
  9011   ins_encode( OpcP, RegReg( dst, src) );
  9012   ins_pipe( ialu_reg_reg );
  9013 %}
  9015 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
  9016   match(Set dst (OrI dst (CastP2X src)));
  9017   effect(KILL cr);
  9019   size(2);
  9020   format %{ "OR     $dst,$src" %}
  9021   opcode(0x0B);
  9022   ins_encode( OpcP, RegReg( dst, src) );
  9023   ins_pipe( ialu_reg_reg );
  9024 %}
  9027 // Or Register with Immediate
  9028 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9029   match(Set dst (OrI dst src));
  9030   effect(KILL cr);
  9032   format %{ "OR     $dst,$src" %}
  9033   opcode(0x81,0x01);  /* Opcode 81 /1 id */
  9034   // ins_encode( RegImm( dst, src) );
  9035   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9036   ins_pipe( ialu_reg );
  9037 %}
  9039 // Or Register with Memory
  9040 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9041   match(Set dst (OrI dst (LoadI src)));
  9042   effect(KILL cr);
  9044   ins_cost(125);
  9045   format %{ "OR     $dst,$src" %}
  9046   opcode(0x0B);
  9047   ins_encode( OpcP, RegMem( dst, src) );
  9048   ins_pipe( ialu_reg_mem );
  9049 %}
  9051 // Or Memory with Register
  9052 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9053   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9054   effect(KILL cr);
  9056   ins_cost(150);
  9057   format %{ "OR     $dst,$src" %}
  9058   opcode(0x09);  /* Opcode 09 /r */
  9059   ins_encode( OpcP, RegMem( src, dst ) );
  9060   ins_pipe( ialu_mem_reg );
  9061 %}
  9063 // Or Memory with Immediate
  9064 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9065   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9066   effect(KILL cr);
  9068   ins_cost(125);
  9069   format %{ "OR     $dst,$src" %}
  9070   opcode(0x81,0x1);  /* Opcode 81 /1 id */
  9071   // ins_encode( MemImm( dst, src) );
  9072   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9073   ins_pipe( ialu_mem_imm );
  9074 %}
  9076 // ROL/ROR
  9077 // ROL expand
  9078 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9079   effect(USE_DEF dst, USE shift, KILL cr);
  9081   format %{ "ROL    $dst, $shift" %}
  9082   opcode(0xD1, 0x0); /* Opcode D1 /0 */
  9083   ins_encode( OpcP, RegOpc( dst ));
  9084   ins_pipe( ialu_reg );
  9085 %}
  9087 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9088   effect(USE_DEF dst, USE shift, KILL cr);
  9090   format %{ "ROL    $dst, $shift" %}
  9091   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
  9092   ins_encode( RegOpcImm(dst, shift) );
  9093   ins_pipe(ialu_reg);
  9094 %}
  9096 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
  9097   effect(USE_DEF dst, USE shift, KILL cr);
  9099   format %{ "ROL    $dst, $shift" %}
  9100   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
  9101   ins_encode(OpcP, RegOpc(dst));
  9102   ins_pipe( ialu_reg_reg );
  9103 %}
  9104 // end of ROL expand
  9106 // ROL 32bit by one once
  9107 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
  9108   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9110   expand %{
  9111     rolI_eReg_imm1(dst, lshift, cr);
  9112   %}
  9113 %}
  9115 // ROL 32bit var by imm8 once
  9116 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
  9117   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9118   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9120   expand %{
  9121     rolI_eReg_imm8(dst, lshift, cr);
  9122   %}
  9123 %}
  9125 // ROL 32bit var by var once
  9126 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9127   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  9129   expand %{
  9130     rolI_eReg_CL(dst, shift, cr);
  9131   %}
  9132 %}
  9134 // ROL 32bit var by var once
  9135 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9136   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  9138   expand %{
  9139     rolI_eReg_CL(dst, shift, cr);
  9140   %}
  9141 %}
  9143 // ROR expand
  9144 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
  9145   effect(USE_DEF dst, USE shift, KILL cr);
  9147   format %{ "ROR    $dst, $shift" %}
  9148   opcode(0xD1,0x1);  /* Opcode D1 /1 */
  9149   ins_encode( OpcP, RegOpc( dst ) );
  9150   ins_pipe( ialu_reg );
  9151 %}
  9153 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
  9154   effect (USE_DEF dst, USE shift, KILL cr);
  9156   format %{ "ROR    $dst, $shift" %}
  9157   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
  9158   ins_encode( RegOpcImm(dst, shift) );
  9159   ins_pipe( ialu_reg );
  9160 %}
  9162 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
  9163   effect(USE_DEF dst, USE shift, KILL cr);
  9165   format %{ "ROR    $dst, $shift" %}
  9166   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
  9167   ins_encode(OpcP, RegOpc(dst));
  9168   ins_pipe( ialu_reg_reg );
  9169 %}
  9170 // end of ROR expand
  9172 // ROR right once
  9173 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
  9174   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9176   expand %{
  9177     rorI_eReg_imm1(dst, rshift, cr);
  9178   %}
  9179 %}
  9181 // ROR 32bit by immI8 once
  9182 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
  9183   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9184   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9186   expand %{
  9187     rorI_eReg_imm8(dst, rshift, cr);
  9188   %}
  9189 %}
  9191 // ROR 32bit var by var once
  9192 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
  9193   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  9195   expand %{
  9196     rorI_eReg_CL(dst, shift, cr);
  9197   %}
  9198 %}
  9200 // ROR 32bit var by var once
  9201 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
  9202   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  9204   expand %{
  9205     rorI_eReg_CL(dst, shift, cr);
  9206   %}
  9207 %}
  9209 // Xor Instructions
  9210 // Xor Register with Register
  9211 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
  9212   match(Set dst (XorI dst src));
  9213   effect(KILL cr);
  9215   size(2);
  9216   format %{ "XOR    $dst,$src" %}
  9217   opcode(0x33);
  9218   ins_encode( OpcP, RegReg( dst, src) );
  9219   ins_pipe( ialu_reg_reg );
  9220 %}
  9222 // Xor Register with Immediate -1
  9223 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
  9224   match(Set dst (XorI dst imm));  
  9226   size(2);
  9227   format %{ "NOT    $dst" %}  
  9228   ins_encode %{
  9229      __ notl($dst$$Register);
  9230   %}
  9231   ins_pipe( ialu_reg );
  9232 %}
  9234 // Xor Register with Immediate
  9235 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
  9236   match(Set dst (XorI dst src));
  9237   effect(KILL cr);
  9239   format %{ "XOR    $dst,$src" %}
  9240   opcode(0x81,0x06);  /* Opcode 81 /6 id */
  9241   // ins_encode( RegImm( dst, src) );
  9242   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
  9243   ins_pipe( ialu_reg );
  9244 %}
  9246 // Xor Register with Memory
  9247 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
  9248   match(Set dst (XorI dst (LoadI src)));
  9249   effect(KILL cr);
  9251   ins_cost(125);
  9252   format %{ "XOR    $dst,$src" %}
  9253   opcode(0x33);
  9254   ins_encode( OpcP, RegMem(dst, src) );
  9255   ins_pipe( ialu_reg_mem );
  9256 %}
  9258 // Xor Memory with Register
  9259 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
  9260   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9261   effect(KILL cr);
  9263   ins_cost(150);
  9264   format %{ "XOR    $dst,$src" %}
  9265   opcode(0x31);  /* Opcode 31 /r */
  9266   ins_encode( OpcP, RegMem( src, dst ) );
  9267   ins_pipe( ialu_mem_reg );
  9268 %}
  9270 // Xor Memory with Immediate
  9271 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
  9272   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9273   effect(KILL cr);
  9275   ins_cost(125);
  9276   format %{ "XOR    $dst,$src" %}
  9277   opcode(0x81,0x6);  /* Opcode 81 /6 id */
  9278   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
  9279   ins_pipe( ialu_mem_imm );
  9280 %}
  9282 //----------Convert Int to Boolean---------------------------------------------
  9284 instruct movI_nocopy(eRegI dst, eRegI src) %{
  9285   effect( DEF dst, USE src );
  9286   format %{ "MOV    $dst,$src" %}
  9287   ins_encode( enc_Copy( dst, src) );
  9288   ins_pipe( ialu_reg_reg );
  9289 %}
  9291 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9292   effect( USE_DEF dst, USE src, KILL cr );
  9294   size(4);
  9295   format %{ "NEG    $dst\n\t"
  9296             "ADC    $dst,$src" %}
  9297   ins_encode( neg_reg(dst),
  9298               OpcRegReg(0x13,dst,src) );
  9299   ins_pipe( ialu_reg_reg_long );
  9300 %}
  9302 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
  9303   match(Set dst (Conv2B src));
  9305   expand %{
  9306     movI_nocopy(dst,src);
  9307     ci2b(dst,src,cr);
  9308   %}
  9309 %}
  9311 instruct movP_nocopy(eRegI dst, eRegP src) %{
  9312   effect( DEF dst, USE src );
  9313   format %{ "MOV    $dst,$src" %}
  9314   ins_encode( enc_Copy( dst, src) );
  9315   ins_pipe( ialu_reg_reg );
  9316 %}
  9318 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9319   effect( USE_DEF dst, USE src, KILL cr );
  9320   format %{ "NEG    $dst\n\t"
  9321             "ADC    $dst,$src" %}
  9322   ins_encode( neg_reg(dst),
  9323               OpcRegReg(0x13,dst,src) );
  9324   ins_pipe( ialu_reg_reg_long );
  9325 %}
  9327 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
  9328   match(Set dst (Conv2B src));
  9330   expand %{
  9331     movP_nocopy(dst,src);
  9332     cp2b(dst,src,cr);
  9333   %}
  9334 %}
  9336 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
  9337   match(Set dst (CmpLTMask p q));
  9338   effect( KILL cr );
  9339   ins_cost(400);
  9341   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
  9342   format %{ "XOR    $dst,$dst\n\t"
  9343             "CMP    $p,$q\n\t"
  9344             "SETlt  $dst\n\t"
  9345             "NEG    $dst" %}
  9346   ins_encode( OpcRegReg(0x33,dst,dst),
  9347               OpcRegReg(0x3B,p,q),
  9348               setLT_reg(dst), neg_reg(dst) );
  9349   ins_pipe( pipe_slow );
  9350 %}
  9352 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
  9353   match(Set dst (CmpLTMask dst zero));
  9354   effect( DEF dst, KILL cr );
  9355   ins_cost(100);
  9357   format %{ "SAR    $dst,31" %}
  9358   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9359   ins_encode( RegOpcImm( dst, 0x1F ) );
  9360   ins_pipe( ialu_reg );
  9361 %}
  9364 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
  9365   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9366   effect( KILL tmp, KILL cr );
  9367   ins_cost(400);
  9368   // annoyingly, $tmp has no edges so you cant ask for it in
  9369   // any format or encoding
  9370   format %{ "SUB    $p,$q\n\t"
  9371             "SBB    ECX,ECX\n\t"
  9372             "AND    ECX,$y\n\t"
  9373             "ADD    $p,ECX" %}
  9374   ins_encode( enc_cmpLTP(p,q,y,tmp) );
  9375   ins_pipe( pipe_cmplt );
  9376 %}
  9378 /* If I enable this, I encourage spilling in the inner loop of compress.
  9379 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
  9380   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9381   effect( USE_KILL tmp, KILL cr );
  9382   ins_cost(400);
  9384   format %{ "SUB    $p,$q\n\t"
  9385             "SBB    ECX,ECX\n\t"
  9386             "AND    ECX,$y\n\t"
  9387             "ADD    $p,ECX" %}
  9388   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9389 %}
  9390 */
  9392 //----------Long Instructions------------------------------------------------
  9393 // Add Long Register with Register
  9394 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9395   match(Set dst (AddL dst src));
  9396   effect(KILL cr);
  9397   ins_cost(200);
  9398   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9399             "ADC    $dst.hi,$src.hi" %}
  9400   opcode(0x03, 0x13);
  9401   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9402   ins_pipe( ialu_reg_reg_long );
  9403 %}
  9405 // Add Long Register with Immediate
  9406 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9407   match(Set dst (AddL dst src));
  9408   effect(KILL cr);
  9409   format %{ "ADD    $dst.lo,$src.lo\n\t"
  9410             "ADC    $dst.hi,$src.hi" %}
  9411   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
  9412   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9413   ins_pipe( ialu_reg_long );
  9414 %}
  9416 // Add Long Register with Memory
  9417 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9418   match(Set dst (AddL dst (LoadL mem)));
  9419   effect(KILL cr);
  9420   ins_cost(125);
  9421   format %{ "ADD    $dst.lo,$mem\n\t"
  9422             "ADC    $dst.hi,$mem+4" %}
  9423   opcode(0x03, 0x13);
  9424   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9425   ins_pipe( ialu_reg_long_mem );
  9426 %}
  9428 // Subtract Long Register with Register.
  9429 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9430   match(Set dst (SubL dst src));
  9431   effect(KILL cr);
  9432   ins_cost(200);
  9433   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9434             "SBB    $dst.hi,$src.hi" %}
  9435   opcode(0x2B, 0x1B);
  9436   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
  9437   ins_pipe( ialu_reg_reg_long );
  9438 %}
  9440 // Subtract Long Register with Immediate
  9441 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9442   match(Set dst (SubL dst src));
  9443   effect(KILL cr);
  9444   format %{ "SUB    $dst.lo,$src.lo\n\t"
  9445             "SBB    $dst.hi,$src.hi" %}
  9446   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
  9447   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9448   ins_pipe( ialu_reg_long );
  9449 %}
  9451 // Subtract Long Register with Memory
  9452 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9453   match(Set dst (SubL dst (LoadL mem)));
  9454   effect(KILL cr);
  9455   ins_cost(125);
  9456   format %{ "SUB    $dst.lo,$mem\n\t"
  9457             "SBB    $dst.hi,$mem+4" %}
  9458   opcode(0x2B, 0x1B);
  9459   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9460   ins_pipe( ialu_reg_long_mem );
  9461 %}
  9463 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
  9464   match(Set dst (SubL zero dst));
  9465   effect(KILL cr);
  9466   ins_cost(300);
  9467   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
  9468   ins_encode( neg_long(dst) );
  9469   ins_pipe( ialu_reg_reg_long );
  9470 %}
  9472 // And Long Register with Register
  9473 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9474   match(Set dst (AndL dst src));
  9475   effect(KILL cr);
  9476   format %{ "AND    $dst.lo,$src.lo\n\t"
  9477             "AND    $dst.hi,$src.hi" %}
  9478   opcode(0x23,0x23);
  9479   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9480   ins_pipe( ialu_reg_reg_long );
  9481 %}
  9483 // And Long Register with Immediate
  9484 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9485   match(Set dst (AndL dst src));
  9486   effect(KILL cr);
  9487   format %{ "AND    $dst.lo,$src.lo\n\t"
  9488             "AND    $dst.hi,$src.hi" %}
  9489   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
  9490   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9491   ins_pipe( ialu_reg_long );
  9492 %}
  9494 // And Long Register with Memory
  9495 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9496   match(Set dst (AndL dst (LoadL mem)));
  9497   effect(KILL cr);
  9498   ins_cost(125);
  9499   format %{ "AND    $dst.lo,$mem\n\t"
  9500             "AND    $dst.hi,$mem+4" %}
  9501   opcode(0x23, 0x23);
  9502   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9503   ins_pipe( ialu_reg_long_mem );
  9504 %}
  9506 // Or Long Register with Register
  9507 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9508   match(Set dst (OrL dst src));
  9509   effect(KILL cr);
  9510   format %{ "OR     $dst.lo,$src.lo\n\t"
  9511             "OR     $dst.hi,$src.hi" %}
  9512   opcode(0x0B,0x0B);
  9513   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9514   ins_pipe( ialu_reg_reg_long );
  9515 %}
  9517 // Or Long Register with Immediate
  9518 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9519   match(Set dst (OrL dst src));
  9520   effect(KILL cr);
  9521   format %{ "OR     $dst.lo,$src.lo\n\t"
  9522             "OR     $dst.hi,$src.hi" %}
  9523   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
  9524   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9525   ins_pipe( ialu_reg_long );
  9526 %}
  9528 // Or Long Register with Memory
  9529 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9530   match(Set dst (OrL dst (LoadL mem)));
  9531   effect(KILL cr);
  9532   ins_cost(125);
  9533   format %{ "OR     $dst.lo,$mem\n\t"
  9534             "OR     $dst.hi,$mem+4" %}
  9535   opcode(0x0B,0x0B);
  9536   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9537   ins_pipe( ialu_reg_long_mem );
  9538 %}
  9540 // Xor Long Register with Register
  9541 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
  9542   match(Set dst (XorL dst src));
  9543   effect(KILL cr);
  9544   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9545             "XOR    $dst.hi,$src.hi" %}
  9546   opcode(0x33,0x33);
  9547   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
  9548   ins_pipe( ialu_reg_reg_long );
  9549 %}
  9551 // Xor Long Register with Immediate -1
  9552 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
  9553   match(Set dst (XorL dst imm));  
  9554   format %{ "NOT    $dst.lo\n\t"
  9555             "NOT    $dst.hi" %}
  9556   ins_encode %{
  9557      __ notl($dst$$Register);
  9558      __ notl(HIGH_FROM_LOW($dst$$Register));
  9559   %}
  9560   ins_pipe( ialu_reg_long );
  9561 %}
  9563 // Xor Long Register with Immediate
  9564 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
  9565   match(Set dst (XorL dst src));
  9566   effect(KILL cr);
  9567   format %{ "XOR    $dst.lo,$src.lo\n\t"
  9568             "XOR    $dst.hi,$src.hi" %}
  9569   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
  9570   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
  9571   ins_pipe( ialu_reg_long );
  9572 %}
  9574 // Xor Long Register with Memory
  9575 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
  9576   match(Set dst (XorL dst (LoadL mem)));
  9577   effect(KILL cr);
  9578   ins_cost(125);
  9579   format %{ "XOR    $dst.lo,$mem\n\t"
  9580             "XOR    $dst.hi,$mem+4" %}
  9581   opcode(0x33,0x33);
  9582   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
  9583   ins_pipe( ialu_reg_long_mem );
  9584 %}
  9586 // Shift Left Long by 1
  9587 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
  9588   predicate(UseNewLongLShift);
  9589   match(Set dst (LShiftL dst cnt));
  9590   effect(KILL cr);
  9591   ins_cost(100);
  9592   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9593             "ADC    $dst.hi,$dst.hi" %}
  9594   ins_encode %{
  9595     __ addl($dst$$Register,$dst$$Register);
  9596     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9597   %}
  9598   ins_pipe( ialu_reg_long );
  9599 %}
  9601 // Shift Left Long by 2
  9602 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
  9603   predicate(UseNewLongLShift);
  9604   match(Set dst (LShiftL dst cnt));
  9605   effect(KILL cr);
  9606   ins_cost(100);
  9607   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9608             "ADC    $dst.hi,$dst.hi\n\t" 
  9609             "ADD    $dst.lo,$dst.lo\n\t"
  9610             "ADC    $dst.hi,$dst.hi" %}
  9611   ins_encode %{
  9612     __ addl($dst$$Register,$dst$$Register);
  9613     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9614     __ addl($dst$$Register,$dst$$Register);
  9615     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9616   %}
  9617   ins_pipe( ialu_reg_long );
  9618 %}
  9620 // Shift Left Long by 3
  9621 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
  9622   predicate(UseNewLongLShift);
  9623   match(Set dst (LShiftL dst cnt));
  9624   effect(KILL cr);
  9625   ins_cost(100);
  9626   format %{ "ADD    $dst.lo,$dst.lo\n\t"
  9627             "ADC    $dst.hi,$dst.hi\n\t" 
  9628             "ADD    $dst.lo,$dst.lo\n\t"
  9629             "ADC    $dst.hi,$dst.hi\n\t" 
  9630             "ADD    $dst.lo,$dst.lo\n\t"
  9631             "ADC    $dst.hi,$dst.hi" %}
  9632   ins_encode %{
  9633     __ addl($dst$$Register,$dst$$Register);
  9634     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9635     __ addl($dst$$Register,$dst$$Register);
  9636     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9637     __ addl($dst$$Register,$dst$$Register);
  9638     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
  9639   %}
  9640   ins_pipe( ialu_reg_long );
  9641 %}
  9643 // Shift Left Long by 1-31
  9644 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9645   match(Set dst (LShiftL dst cnt));
  9646   effect(KILL cr);
  9647   ins_cost(200);
  9648   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
  9649             "SHL    $dst.lo,$cnt" %}
  9650   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
  9651   ins_encode( move_long_small_shift(dst,cnt) );
  9652   ins_pipe( ialu_reg_long );
  9653 %}
  9655 // Shift Left Long by 32-63
  9656 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9657   match(Set dst (LShiftL dst cnt));
  9658   effect(KILL cr);
  9659   ins_cost(300);
  9660   format %{ "MOV    $dst.hi,$dst.lo\n"
  9661           "\tSHL    $dst.hi,$cnt-32\n"
  9662           "\tXOR    $dst.lo,$dst.lo" %}
  9663   opcode(0xC1, 0x4);  /* C1 /4 ib */
  9664   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9665   ins_pipe( ialu_reg_long );
  9666 %}
  9668 // Shift Left Long by variable
  9669 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9670   match(Set dst (LShiftL dst shift));
  9671   effect(KILL cr);
  9672   ins_cost(500+200);
  9673   size(17);
  9674   format %{ "TEST   $shift,32\n\t"
  9675             "JEQ,s  small\n\t"
  9676             "MOV    $dst.hi,$dst.lo\n\t"
  9677             "XOR    $dst.lo,$dst.lo\n"
  9678     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
  9679             "SHL    $dst.lo,$shift" %}
  9680   ins_encode( shift_left_long( dst, shift ) );
  9681   ins_pipe( pipe_slow );
  9682 %}
  9684 // Shift Right Long by 1-31
  9685 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9686   match(Set dst (URShiftL dst cnt));
  9687   effect(KILL cr);
  9688   ins_cost(200);
  9689   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9690             "SHR    $dst.hi,$cnt" %}
  9691   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
  9692   ins_encode( move_long_small_shift(dst,cnt) );
  9693   ins_pipe( ialu_reg_long );
  9694 %}
  9696 // Shift Right Long by 32-63
  9697 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9698   match(Set dst (URShiftL dst cnt));
  9699   effect(KILL cr);
  9700   ins_cost(300);
  9701   format %{ "MOV    $dst.lo,$dst.hi\n"
  9702           "\tSHR    $dst.lo,$cnt-32\n"
  9703           "\tXOR    $dst.hi,$dst.hi" %}
  9704   opcode(0xC1, 0x5);  /* C1 /5 ib */
  9705   ins_encode( move_long_big_shift_clr(dst,cnt) );
  9706   ins_pipe( ialu_reg_long );
  9707 %}
  9709 // Shift Right Long by variable
  9710 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9711   match(Set dst (URShiftL dst shift));
  9712   effect(KILL cr);
  9713   ins_cost(600);
  9714   size(17);
  9715   format %{ "TEST   $shift,32\n\t"
  9716             "JEQ,s  small\n\t"
  9717             "MOV    $dst.lo,$dst.hi\n\t"
  9718             "XOR    $dst.hi,$dst.hi\n"
  9719     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9720             "SHR    $dst.hi,$shift" %}
  9721   ins_encode( shift_right_long( dst, shift ) );
  9722   ins_pipe( pipe_slow );
  9723 %}
  9725 // Shift Right Long by 1-31
  9726 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
  9727   match(Set dst (RShiftL dst cnt));
  9728   effect(KILL cr);
  9729   ins_cost(200);
  9730   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
  9731             "SAR    $dst.hi,$cnt" %}
  9732   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
  9733   ins_encode( move_long_small_shift(dst,cnt) );
  9734   ins_pipe( ialu_reg_long );
  9735 %}
  9737 // Shift Right Long by 32-63
  9738 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
  9739   match(Set dst (RShiftL dst cnt));
  9740   effect(KILL cr);
  9741   ins_cost(300);
  9742   format %{ "MOV    $dst.lo,$dst.hi\n"
  9743           "\tSAR    $dst.lo,$cnt-32\n"
  9744           "\tSAR    $dst.hi,31" %}
  9745   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9746   ins_encode( move_long_big_shift_sign(dst,cnt) );
  9747   ins_pipe( ialu_reg_long );
  9748 %}
  9750 // Shift Right arithmetic Long by variable
  9751 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
  9752   match(Set dst (RShiftL dst shift));
  9753   effect(KILL cr);
  9754   ins_cost(600);
  9755   size(18);
  9756   format %{ "TEST   $shift,32\n\t"
  9757             "JEQ,s  small\n\t"
  9758             "MOV    $dst.lo,$dst.hi\n\t"
  9759             "SAR    $dst.hi,31\n"
  9760     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
  9761             "SAR    $dst.hi,$shift" %}
  9762   ins_encode( shift_right_arith_long( dst, shift ) );
  9763   ins_pipe( pipe_slow );
  9764 %}
  9767 //----------Double Instructions------------------------------------------------
  9768 // Double Math
  9770 // Compare & branch
  9772 // P6 version of float compare, sets condition codes in EFLAGS
  9773 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9774   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9775   match(Set cr (CmpD src1 src2));
  9776   effect(KILL rax);
  9777   ins_cost(150);
  9778   format %{ "FLD    $src1\n\t"
  9779             "FUCOMIP ST,$src2  // P6 instruction\n\t"
  9780             "JNP    exit\n\t"
  9781             "MOV    ah,1       // saw a NaN, set CF\n\t"
  9782             "SAHF\n"
  9783      "exit:\tNOP               // avoid branch to branch" %}
  9784   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9785   ins_encode( Push_Reg_D(src1),
  9786               OpcP, RegOpc(src2),
  9787               cmpF_P6_fixup );
  9788   ins_pipe( pipe_slow );
  9789 %}
  9791 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
  9792   predicate(VM_Version::supports_cmov() && UseSSE <=1);
  9793   match(Set cr (CmpD src1 src2));
  9794   ins_cost(150);
  9795   format %{ "FLD    $src1\n\t"
  9796             "FUCOMIP ST,$src2  // P6 instruction" %}
  9797   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
  9798   ins_encode( Push_Reg_D(src1),
  9799               OpcP, RegOpc(src2));
  9800   ins_pipe( pipe_slow );
  9801 %}
  9803 // Compare & branch
  9804 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
  9805   predicate(UseSSE<=1);
  9806   match(Set cr (CmpD src1 src2));
  9807   effect(KILL rax);
  9808   ins_cost(200);
  9809   format %{ "FLD    $src1\n\t"
  9810             "FCOMp  $src2\n\t"
  9811             "FNSTSW AX\n\t"
  9812             "TEST   AX,0x400\n\t"
  9813             "JZ,s   flags\n\t"
  9814             "MOV    AH,1\t# unordered treat as LT\n"
  9815     "flags:\tSAHF" %}
  9816   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9817   ins_encode( Push_Reg_D(src1),
  9818               OpcP, RegOpc(src2),
  9819               fpu_flags);
  9820   ins_pipe( pipe_slow );
  9821 %}
  9823 // Compare vs zero into -1,0,1
  9824 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
  9825   predicate(UseSSE<=1);
  9826   match(Set dst (CmpD3 src1 zero));
  9827   effect(KILL cr, KILL rax);
  9828   ins_cost(280);
  9829   format %{ "FTSTD  $dst,$src1" %}
  9830   opcode(0xE4, 0xD9);
  9831   ins_encode( Push_Reg_D(src1),
  9832               OpcS, OpcP, PopFPU,
  9833               CmpF_Result(dst));
  9834   ins_pipe( pipe_slow );
  9835 %}
  9837 // Compare into -1,0,1
  9838 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
  9839   predicate(UseSSE<=1);
  9840   match(Set dst (CmpD3 src1 src2));
  9841   effect(KILL cr, KILL rax);
  9842   ins_cost(300);
  9843   format %{ "FCMPD  $dst,$src1,$src2" %}
  9844   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
  9845   ins_encode( Push_Reg_D(src1),
  9846               OpcP, RegOpc(src2),
  9847               CmpF_Result(dst));
  9848   ins_pipe( pipe_slow );
  9849 %}
  9851 // float compare and set condition codes in EFLAGS by XMM regs
  9852 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
  9853   predicate(UseSSE>=2);
  9854   match(Set cr (CmpD dst src));
  9855   effect(KILL rax);
  9856   ins_cost(125);
  9857   format %{ "COMISD $dst,$src\n"
  9858           "\tJNP    exit\n"
  9859           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9860           "\tSAHF\n"
  9861      "exit:\tNOP               // avoid branch to branch" %}
  9862   opcode(0x66, 0x0F, 0x2F);
  9863   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
  9864   ins_pipe( pipe_slow );
  9865 %}
  9867 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
  9868   predicate(UseSSE>=2);
  9869   match(Set cr (CmpD dst src));
  9870   ins_cost(100);
  9871   format %{ "COMISD $dst,$src" %}
  9872   opcode(0x66, 0x0F, 0x2F);
  9873   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
  9874   ins_pipe( pipe_slow );
  9875 %}
  9877 // float compare and set condition codes in EFLAGS by XMM regs
  9878 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
  9879   predicate(UseSSE>=2);
  9880   match(Set cr (CmpD dst (LoadD src)));
  9881   effect(KILL rax);
  9882   ins_cost(145);
  9883   format %{ "COMISD $dst,$src\n"
  9884           "\tJNP    exit\n"
  9885           "\tMOV    ah,1       // saw a NaN, set CF\n"
  9886           "\tSAHF\n"
  9887      "exit:\tNOP               // avoid branch to branch" %}
  9888   opcode(0x66, 0x0F, 0x2F);
  9889   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
  9890   ins_pipe( pipe_slow );
  9891 %}
  9893 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
  9894   predicate(UseSSE>=2);
  9895   match(Set cr (CmpD dst (LoadD src)));
  9896   ins_cost(100);
  9897   format %{ "COMISD $dst,$src" %}
  9898   opcode(0x66, 0x0F, 0x2F);
  9899   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
  9900   ins_pipe( pipe_slow );
  9901 %}
  9903 // Compare into -1,0,1 in XMM
  9904 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
  9905   predicate(UseSSE>=2);
  9906   match(Set dst (CmpD3 src1 src2));
  9907   effect(KILL cr);
  9908   ins_cost(255);
  9909   format %{ "XOR    $dst,$dst\n"
  9910           "\tCOMISD $src1,$src2\n"
  9911           "\tJP,s   nan\n"
  9912           "\tJEQ,s  exit\n"
  9913           "\tJA,s   inc\n"
  9914       "nan:\tDEC    $dst\n"
  9915           "\tJMP,s  exit\n"
  9916       "inc:\tINC    $dst\n"
  9917       "exit:"
  9918                 %}
  9919   opcode(0x66, 0x0F, 0x2F);
  9920   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
  9921              CmpX_Result(dst));
  9922   ins_pipe( pipe_slow );
  9923 %}
  9925 // Compare into -1,0,1 in XMM and memory
  9926 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
  9927   predicate(UseSSE>=2);
  9928   match(Set dst (CmpD3 src1 (LoadD mem)));
  9929   effect(KILL cr);
  9930   ins_cost(275);
  9931   format %{ "COMISD $src1,$mem\n"
  9932           "\tMOV    $dst,0\t\t# do not blow flags\n"
  9933           "\tJP,s   nan\n"
  9934           "\tJEQ,s  exit\n"
  9935           "\tJA,s   inc\n"
  9936       "nan:\tDEC    $dst\n"
  9937           "\tJMP,s  exit\n"
  9938       "inc:\tINC    $dst\n"
  9939       "exit:"
  9940                 %}
  9941   opcode(0x66, 0x0F, 0x2F);
  9942   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
  9943              LdImmI(dst,0x0), CmpX_Result(dst));
  9944   ins_pipe( pipe_slow );
  9945 %}
  9948 instruct subD_reg(regD dst, regD src) %{
  9949   predicate (UseSSE <=1);
  9950   match(Set dst (SubD dst src));
  9952   format %{ "FLD    $src\n\t"
  9953             "DSUBp  $dst,ST" %}
  9954   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
  9955   ins_cost(150);
  9956   ins_encode( Push_Reg_D(src),
  9957               OpcP, RegOpc(dst) );
  9958   ins_pipe( fpu_reg_reg );
  9959 %}
  9961 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
  9962   predicate (UseSSE <=1);
  9963   match(Set dst (RoundDouble (SubD src1 src2)));
  9964   ins_cost(250);
  9966   format %{ "FLD    $src2\n\t"
  9967             "DSUB   ST,$src1\n\t"
  9968             "FSTP_D $dst\t# D-round" %}
  9969   opcode(0xD8, 0x5);
  9970   ins_encode( Push_Reg_D(src2),
  9971               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
  9972   ins_pipe( fpu_mem_reg_reg );
  9973 %}
  9976 instruct subD_reg_mem(regD dst, memory src) %{
  9977   predicate (UseSSE <=1);
  9978   match(Set dst (SubD dst (LoadD src)));
  9979   ins_cost(150);
  9981   format %{ "FLD    $src\n\t"
  9982             "DSUBp  $dst,ST" %}
  9983   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
  9984   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
  9985               OpcP, RegOpc(dst) );
  9986   ins_pipe( fpu_reg_mem );
  9987 %}
  9989 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
  9990   predicate (UseSSE<=1);
  9991   match(Set dst (AbsD src));
  9992   ins_cost(100);
  9993   format %{ "FABS" %}
  9994   opcode(0xE1, 0xD9);
  9995   ins_encode( OpcS, OpcP );
  9996   ins_pipe( fpu_reg_reg );
  9997 %}
  9999 instruct absXD_reg( regXD dst ) %{
 10000   predicate(UseSSE>=2);
 10001   match(Set dst (AbsD dst));
 10002   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
 10003   ins_encode( AbsXD_encoding(dst));
 10004   ins_pipe( pipe_slow );
 10005 %}
 10007 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
 10008   predicate(UseSSE<=1);
 10009   match(Set dst (NegD src));
 10010   ins_cost(100);
 10011   format %{ "FCHS" %}
 10012   opcode(0xE0, 0xD9);
 10013   ins_encode( OpcS, OpcP );
 10014   ins_pipe( fpu_reg_reg );
 10015 %}
 10017 instruct negXD_reg( regXD dst ) %{
 10018   predicate(UseSSE>=2);
 10019   match(Set dst (NegD dst));
 10020   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
 10021   ins_encode %{
 10022      __ xorpd($dst$$XMMRegister,
 10023               ExternalAddress((address)double_signflip_pool));
 10024   %}
 10025   ins_pipe( pipe_slow );
 10026 %}
 10028 instruct addD_reg(regD dst, regD src) %{
 10029   predicate(UseSSE<=1);
 10030   match(Set dst (AddD dst src));
 10031   format %{ "FLD    $src\n\t"
 10032             "DADD   $dst,ST" %}
 10033   size(4);
 10034   ins_cost(150);
 10035   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10036   ins_encode( Push_Reg_D(src),
 10037               OpcP, RegOpc(dst) );
 10038   ins_pipe( fpu_reg_reg );
 10039 %}
 10042 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10043   predicate(UseSSE<=1);
 10044   match(Set dst (RoundDouble (AddD src1 src2)));
 10045   ins_cost(250);
 10047   format %{ "FLD    $src2\n\t"
 10048             "DADD   ST,$src1\n\t"
 10049             "FSTP_D $dst\t# D-round" %}
 10050   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
 10051   ins_encode( Push_Reg_D(src2),
 10052               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
 10053   ins_pipe( fpu_mem_reg_reg );
 10054 %}
 10057 instruct addD_reg_mem(regD dst, memory src) %{
 10058   predicate(UseSSE<=1);
 10059   match(Set dst (AddD dst (LoadD src)));
 10060   ins_cost(150);
 10062   format %{ "FLD    $src\n\t"
 10063             "DADDp  $dst,ST" %}
 10064   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
 10065   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10066               OpcP, RegOpc(dst) );
 10067   ins_pipe( fpu_reg_mem );
 10068 %}
 10070 // add-to-memory
 10071 instruct addD_mem_reg(memory dst, regD src) %{
 10072   predicate(UseSSE<=1);
 10073   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
 10074   ins_cost(150);
 10076   format %{ "FLD_D  $dst\n\t"
 10077             "DADD   ST,$src\n\t"
 10078             "FST_D  $dst" %}
 10079   opcode(0xDD, 0x0);
 10080   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
 10081               Opcode(0xD8), RegOpc(src),
 10082               set_instruction_start,
 10083               Opcode(0xDD), RMopc_Mem(0x03,dst) );
 10084   ins_pipe( fpu_reg_mem );
 10085 %}
 10087 instruct addD_reg_imm1(regD dst, immD1 src) %{
 10088   predicate(UseSSE<=1);
 10089   match(Set dst (AddD dst src));
 10090   ins_cost(125);
 10091   format %{ "FLD1\n\t"
 10092             "DADDp  $dst,ST" %}
 10093   opcode(0xDE, 0x00);
 10094   ins_encode( LdImmD(src),
 10095               OpcP, RegOpc(dst) );
 10096   ins_pipe( fpu_reg );
 10097 %}
 10099 instruct addD_reg_imm(regD dst, immD src) %{
 10100   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10101   match(Set dst (AddD dst src));
 10102   ins_cost(200);
 10103   format %{ "FLD_D  [$src]\n\t"
 10104             "DADDp  $dst,ST" %}
 10105   opcode(0xDE, 0x00);       /* DE /0 */
 10106   ins_encode( LdImmD(src),
 10107               OpcP, RegOpc(dst));
 10108   ins_pipe( fpu_reg_mem );
 10109 %}
 10111 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
 10112   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
 10113   match(Set dst (RoundDouble (AddD src con)));
 10114   ins_cost(200);
 10115   format %{ "FLD_D  [$con]\n\t"
 10116             "DADD   ST,$src\n\t"
 10117             "FSTP_D $dst\t# D-round" %}
 10118   opcode(0xD8, 0x00);       /* D8 /0 */
 10119   ins_encode( LdImmD(con),
 10120               OpcP, RegOpc(src), Pop_Mem_D(dst));
 10121   ins_pipe( fpu_mem_reg_con );
 10122 %}
 10124 // Add two double precision floating point values in xmm
 10125 instruct addXD_reg(regXD dst, regXD src) %{
 10126   predicate(UseSSE>=2);
 10127   match(Set dst (AddD dst src));
 10128   format %{ "ADDSD  $dst,$src" %}
 10129   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 10130   ins_pipe( pipe_slow );
 10131 %}
 10133 instruct addXD_imm(regXD dst, immXD con) %{
 10134   predicate(UseSSE>=2);
 10135   match(Set dst (AddD dst con));
 10136   format %{ "ADDSD  $dst,[$con]" %}
 10137   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
 10138   ins_pipe( pipe_slow );
 10139 %}
 10141 instruct addXD_mem(regXD dst, memory mem) %{
 10142   predicate(UseSSE>=2);
 10143   match(Set dst (AddD dst (LoadD mem)));
 10144   format %{ "ADDSD  $dst,$mem" %}
 10145   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
 10146   ins_pipe( pipe_slow );
 10147 %}
 10149 // Sub two double precision floating point values in xmm
 10150 instruct subXD_reg(regXD dst, regXD src) %{
 10151   predicate(UseSSE>=2);
 10152   match(Set dst (SubD dst src));
 10153   format %{ "SUBSD  $dst,$src" %}
 10154   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 10155   ins_pipe( pipe_slow );
 10156 %}
 10158 instruct subXD_imm(regXD dst, immXD con) %{
 10159   predicate(UseSSE>=2);
 10160   match(Set dst (SubD dst con));
 10161   format %{ "SUBSD  $dst,[$con]" %}
 10162   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
 10163   ins_pipe( pipe_slow );
 10164 %}
 10166 instruct subXD_mem(regXD dst, memory mem) %{
 10167   predicate(UseSSE>=2);
 10168   match(Set dst (SubD dst (LoadD mem)));
 10169   format %{ "SUBSD  $dst,$mem" %}
 10170   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 10171   ins_pipe( pipe_slow );
 10172 %}
 10174 // Mul two double precision floating point values in xmm
 10175 instruct mulXD_reg(regXD dst, regXD src) %{
 10176   predicate(UseSSE>=2);
 10177   match(Set dst (MulD dst src));
 10178   format %{ "MULSD  $dst,$src" %}
 10179   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 10180   ins_pipe( pipe_slow );
 10181 %}
 10183 instruct mulXD_imm(regXD dst, immXD con) %{
 10184   predicate(UseSSE>=2);
 10185   match(Set dst (MulD dst con));
 10186   format %{ "MULSD  $dst,[$con]" %}
 10187   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
 10188   ins_pipe( pipe_slow );
 10189 %}
 10191 instruct mulXD_mem(regXD dst, memory mem) %{
 10192   predicate(UseSSE>=2);
 10193   match(Set dst (MulD dst (LoadD mem)));
 10194   format %{ "MULSD  $dst,$mem" %}
 10195   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 10196   ins_pipe( pipe_slow );
 10197 %}
 10199 // Div two double precision floating point values in xmm
 10200 instruct divXD_reg(regXD dst, regXD src) %{
 10201   predicate(UseSSE>=2);
 10202   match(Set dst (DivD dst src));
 10203   format %{ "DIVSD  $dst,$src" %}
 10204   opcode(0xF2, 0x0F, 0x5E);
 10205   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 10206   ins_pipe( pipe_slow );
 10207 %}
 10209 instruct divXD_imm(regXD dst, immXD con) %{
 10210   predicate(UseSSE>=2);
 10211   match(Set dst (DivD dst con));
 10212   format %{ "DIVSD  $dst,[$con]" %}
 10213   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
 10214   ins_pipe( pipe_slow );
 10215 %}
 10217 instruct divXD_mem(regXD dst, memory mem) %{
 10218   predicate(UseSSE>=2);
 10219   match(Set dst (DivD dst (LoadD mem)));
 10220   format %{ "DIVSD  $dst,$mem" %}
 10221   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 10222   ins_pipe( pipe_slow );
 10223 %}
 10226 instruct mulD_reg(regD dst, regD src) %{
 10227   predicate(UseSSE<=1);
 10228   match(Set dst (MulD dst src));
 10229   format %{ "FLD    $src\n\t"
 10230             "DMULp  $dst,ST" %}
 10231   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10232   ins_cost(150);
 10233   ins_encode( Push_Reg_D(src),
 10234               OpcP, RegOpc(dst) );
 10235   ins_pipe( fpu_reg_reg );
 10236 %}
 10238 // Strict FP instruction biases argument before multiply then
 10239 // biases result to avoid double rounding of subnormals.
 10240 //
 10241 // scale arg1 by multiplying arg1 by 2^(-15360)
 10242 // load arg2
 10243 // multiply scaled arg1 by arg2
 10244 // rescale product by 2^(15360)
 10245 //
 10246 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
 10247   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10248   match(Set dst (MulD dst src));
 10249   ins_cost(1);   // Select this instruction for all strict FP double multiplies
 10251   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10252             "DMULp  $dst,ST\n\t"
 10253             "FLD    $src\n\t"
 10254             "DMULp  $dst,ST\n\t"
 10255             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10256             "DMULp  $dst,ST\n\t" %}
 10257   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
 10258   ins_encode( strictfp_bias1(dst),
 10259               Push_Reg_D(src),
 10260               OpcP, RegOpc(dst),
 10261               strictfp_bias2(dst) );
 10262   ins_pipe( fpu_reg_reg );
 10263 %}
 10265 instruct mulD_reg_imm(regD dst, immD src) %{
 10266   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
 10267   match(Set dst (MulD dst src));
 10268   ins_cost(200);
 10269   format %{ "FLD_D  [$src]\n\t"
 10270             "DMULp  $dst,ST" %}
 10271   opcode(0xDE, 0x1); /* DE /1 */
 10272   ins_encode( LdImmD(src),
 10273               OpcP, RegOpc(dst) );
 10274   ins_pipe( fpu_reg_mem );
 10275 %}
 10278 instruct mulD_reg_mem(regD dst, memory src) %{
 10279   predicate( UseSSE<=1 );
 10280   match(Set dst (MulD dst (LoadD src)));
 10281   ins_cost(200);
 10282   format %{ "FLD_D  $src\n\t"
 10283             "DMULp  $dst,ST" %}
 10284   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
 10285   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 10286               OpcP, RegOpc(dst) );
 10287   ins_pipe( fpu_reg_mem );
 10288 %}
 10290 //
 10291 // Cisc-alternate to reg-reg multiply
 10292 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
 10293   predicate( UseSSE<=1 );
 10294   match(Set dst (MulD src (LoadD mem)));
 10295   ins_cost(250);
 10296   format %{ "FLD_D  $mem\n\t"
 10297             "DMUL   ST,$src\n\t"
 10298             "FSTP_D $dst" %}
 10299   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
 10300   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
 10301               OpcReg_F(src),
 10302               Pop_Reg_D(dst) );
 10303   ins_pipe( fpu_reg_reg_mem );
 10304 %}
 10307 // MACRO3 -- addD a mulD
 10308 // This instruction is a '2-address' instruction in that the result goes
 10309 // back to src2.  This eliminates a move from the macro; possibly the
 10310 // register allocator will have to add it back (and maybe not).
 10311 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
 10312   predicate( UseSSE<=1 );
 10313   match(Set src2 (AddD (MulD src0 src1) src2));
 10314   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10315             "DMUL   ST,$src1\n\t"
 10316             "DADDp  $src2,ST" %}
 10317   ins_cost(250);
 10318   opcode(0xDD); /* LoadD DD /0 */
 10319   ins_encode( Push_Reg_F(src0),
 10320               FMul_ST_reg(src1),
 10321               FAddP_reg_ST(src2) );
 10322   ins_pipe( fpu_reg_reg_reg );
 10323 %}
 10326 // MACRO3 -- subD a mulD
 10327 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
 10328   predicate( UseSSE<=1 );
 10329   match(Set src2 (SubD (MulD src0 src1) src2));
 10330   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
 10331             "DMUL   ST,$src1\n\t"
 10332             "DSUBRp $src2,ST" %}
 10333   ins_cost(250);
 10334   ins_encode( Push_Reg_F(src0),
 10335               FMul_ST_reg(src1),
 10336               Opcode(0xDE), Opc_plus(0xE0,src2));
 10337   ins_pipe( fpu_reg_reg_reg );
 10338 %}
 10341 instruct divD_reg(regD dst, regD src) %{
 10342   predicate( UseSSE<=1 );
 10343   match(Set dst (DivD dst src));
 10345   format %{ "FLD    $src\n\t"
 10346             "FDIVp  $dst,ST" %}
 10347   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10348   ins_cost(150);
 10349   ins_encode( Push_Reg_D(src),
 10350               OpcP, RegOpc(dst) );
 10351   ins_pipe( fpu_reg_reg );
 10352 %}
 10354 // Strict FP instruction biases argument before division then
 10355 // biases result, to avoid double rounding of subnormals.
 10356 //
 10357 // scale dividend by multiplying dividend by 2^(-15360)
 10358 // load divisor
 10359 // divide scaled dividend by divisor
 10360 // rescale quotient by 2^(15360)
 10361 //
 10362 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
 10363   predicate (UseSSE<=1);
 10364   match(Set dst (DivD dst src));
 10365   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
 10366   ins_cost(01);
 10368   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
 10369             "DMULp  $dst,ST\n\t"
 10370             "FLD    $src\n\t"
 10371             "FDIVp  $dst,ST\n\t"
 10372             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
 10373             "DMULp  $dst,ST\n\t" %}
 10374   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 10375   ins_encode( strictfp_bias1(dst),
 10376               Push_Reg_D(src),
 10377               OpcP, RegOpc(dst),
 10378               strictfp_bias2(dst) );
 10379   ins_pipe( fpu_reg_reg );
 10380 %}
 10382 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
 10383   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
 10384   match(Set dst (RoundDouble (DivD src1 src2)));
 10386   format %{ "FLD    $src1\n\t"
 10387             "FDIV   ST,$src2\n\t"
 10388             "FSTP_D $dst\t# D-round" %}
 10389   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
 10390   ins_encode( Push_Reg_D(src1),
 10391               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
 10392   ins_pipe( fpu_mem_reg_reg );
 10393 %}
 10396 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
 10397   predicate(UseSSE<=1);
 10398   match(Set dst (ModD dst src));
 10399   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 10401   format %{ "DMOD   $dst,$src" %}
 10402   ins_cost(250);
 10403   ins_encode(Push_Reg_Mod_D(dst, src),
 10404               emitModD(),
 10405               Push_Result_Mod_D(src),
 10406               Pop_Reg_D(dst));
 10407   ins_pipe( pipe_slow );
 10408 %}
 10410 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
 10411   predicate(UseSSE>=2);
 10412   match(Set dst (ModD src0 src1));
 10413   effect(KILL rax, KILL cr);
 10415   format %{ "SUB    ESP,8\t # DMOD\n"
 10416           "\tMOVSD  [ESP+0],$src1\n"
 10417           "\tFLD_D  [ESP+0]\n"
 10418           "\tMOVSD  [ESP+0],$src0\n"
 10419           "\tFLD_D  [ESP+0]\n"
 10420      "loop:\tFPREM\n"
 10421           "\tFWAIT\n"
 10422           "\tFNSTSW AX\n"
 10423           "\tSAHF\n"
 10424           "\tJP     loop\n"
 10425           "\tFSTP_D [ESP+0]\n"
 10426           "\tMOVSD  $dst,[ESP+0]\n"
 10427           "\tADD    ESP,8\n"
 10428           "\tFSTP   ST0\t # Restore FPU Stack"
 10429     %}
 10430   ins_cost(250);
 10431   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
 10432   ins_pipe( pipe_slow );
 10433 %}
 10435 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
 10436   predicate (UseSSE<=1);
 10437   match(Set dst (SinD src));
 10438   ins_cost(1800);
 10439   format %{ "DSIN   $dst" %}
 10440   opcode(0xD9, 0xFE);
 10441   ins_encode( OpcP, OpcS );
 10442   ins_pipe( pipe_slow );
 10443 %}
 10445 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
 10446   predicate (UseSSE>=2);
 10447   match(Set dst (SinD dst));
 10448   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10449   ins_cost(1800);
 10450   format %{ "DSIN   $dst" %}
 10451   opcode(0xD9, 0xFE);
 10452   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10453   ins_pipe( pipe_slow );
 10454 %}
 10456 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
 10457   predicate (UseSSE<=1);
 10458   match(Set dst (CosD src));
 10459   ins_cost(1800);
 10460   format %{ "DCOS   $dst" %}
 10461   opcode(0xD9, 0xFF);
 10462   ins_encode( OpcP, OpcS );
 10463   ins_pipe( pipe_slow );
 10464 %}
 10466 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
 10467   predicate (UseSSE>=2);
 10468   match(Set dst (CosD dst));
 10469   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10470   ins_cost(1800);
 10471   format %{ "DCOS   $dst" %}
 10472   opcode(0xD9, 0xFF);
 10473   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10474   ins_pipe( pipe_slow );
 10475 %}
 10477 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
 10478   predicate (UseSSE<=1);
 10479   match(Set dst(TanD src));
 10480   format %{ "DTAN   $dst" %}
 10481   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
 10482               Opcode(0xDD), Opcode(0xD8));   // fstp st
 10483   ins_pipe( pipe_slow );
 10484 %}
 10486 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
 10487   predicate (UseSSE>=2);
 10488   match(Set dst(TanD dst));
 10489   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10490   format %{ "DTAN   $dst" %}
 10491   ins_encode( Push_SrcXD(dst),
 10492               Opcode(0xD9), Opcode(0xF2),    // fptan
 10493               Opcode(0xDD), Opcode(0xD8),   // fstp st
 10494               Push_ResultXD(dst) );
 10495   ins_pipe( pipe_slow );
 10496 %}
 10498 instruct atanD_reg(regD dst, regD src) %{
 10499   predicate (UseSSE<=1);
 10500   match(Set dst(AtanD dst src));
 10501   format %{ "DATA   $dst,$src" %}
 10502   opcode(0xD9, 0xF3);
 10503   ins_encode( Push_Reg_D(src),
 10504               OpcP, OpcS, RegOpc(dst) );
 10505   ins_pipe( pipe_slow );
 10506 %}
 10508 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10509   predicate (UseSSE>=2);
 10510   match(Set dst(AtanD dst src));
 10511   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
 10512   format %{ "DATA   $dst,$src" %}
 10513   opcode(0xD9, 0xF3);
 10514   ins_encode( Push_SrcXD(src),
 10515               OpcP, OpcS, Push_ResultXD(dst) );
 10516   ins_pipe( pipe_slow );
 10517 %}
 10519 instruct sqrtD_reg(regD dst, regD src) %{
 10520   predicate (UseSSE<=1);
 10521   match(Set dst (SqrtD src));
 10522   format %{ "DSQRT  $dst,$src" %}
 10523   opcode(0xFA, 0xD9);
 10524   ins_encode( Push_Reg_D(src),
 10525               OpcS, OpcP, Pop_Reg_D(dst) );
 10526   ins_pipe( pipe_slow );
 10527 %}
 10529 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10530   predicate (UseSSE<=1);
 10531   match(Set Y (PowD X Y));  // Raise X to the Yth power
 10532   effect(KILL rax, KILL rbx, KILL rcx);
 10533   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10534             "FLD_D  $X\n\t"
 10535             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10537             "FDUP   \t\t\t# Q Q\n\t"
 10538             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10539             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10540             "FISTP  dword [ESP]\n\t"
 10541             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10542             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10543             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10544             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10545             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10546             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10547             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10548             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10549             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10550             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10551             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10552             "MOV    [ESP+0],0\n\t"
 10553             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10555             "ADD    ESP,8"
 10556              %}
 10557   ins_encode( push_stack_temp_qword,
 10558               Push_Reg_D(X),
 10559               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10560               pow_exp_core_encoding,
 10561               pop_stack_temp_qword);
 10562   ins_pipe( pipe_slow );
 10563 %}
 10565 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
 10566   predicate (UseSSE>=2);
 10567   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
 10568   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
 10569   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
 10570             "MOVSD  [ESP],$src1\n\t"
 10571             "FLD    FPR1,$src1\n\t"
 10572             "MOVSD  [ESP],$src0\n\t"
 10573             "FLD    FPR1,$src0\n\t"
 10574             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
 10576             "FDUP   \t\t\t# Q Q\n\t"
 10577             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10578             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10579             "FISTP  dword [ESP]\n\t"
 10580             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10581             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10582             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10583             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10584             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10585             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10586             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10587             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10588             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10589             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10590             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10591             "MOV    [ESP+0],0\n\t"
 10592             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10594             "FST_D  [ESP]\n\t"
 10595             "MOVSD  $dst,[ESP]\n\t"
 10596             "ADD    ESP,8"
 10597              %}
 10598   ins_encode( push_stack_temp_qword,
 10599               push_xmm_to_fpr1(src1),
 10600               push_xmm_to_fpr1(src0),
 10601               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10602               pow_exp_core_encoding,
 10603               Push_ResultXD(dst) );
 10604   ins_pipe( pipe_slow );
 10605 %}
 10608 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10609   predicate (UseSSE<=1);
 10610   match(Set dpr1 (ExpD dpr1));
 10611   effect(KILL rax, KILL rbx, KILL rcx);
 10612   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
 10613             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10614             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
 10616             "FDUP   \t\t\t# Q Q\n\t"
 10617             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10618             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10619             "FISTP  dword [ESP]\n\t"
 10620             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10621             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10622             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10623             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10624             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10625             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10626             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10627             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10628             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10629             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10630             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10631             "MOV    [ESP+0],0\n\t"
 10632             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10634             "ADD    ESP,8"
 10635              %}
 10636   ins_encode( push_stack_temp_qword,
 10637               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10638               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10639               pow_exp_core_encoding,
 10640               pop_stack_temp_qword);
 10641   ins_pipe( pipe_slow );
 10642 %}
 10644 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
 10645   predicate (UseSSE>=2);
 10646   match(Set dst (ExpD src));
 10647   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
 10648   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
 10649             "MOVSD  [ESP],$src\n\t"
 10650             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
 10651             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
 10653             "FDUP   \t\t\t# Q Q\n\t"
 10654             "FRNDINT\t\t\t# int(Q) Q\n\t"
 10655             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
 10656             "FISTP  dword [ESP]\n\t"
 10657             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
 10658             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
 10659             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
 10660             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
 10661             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
 10662             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
 10663             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
 10664             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
 10665             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
 10666             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
 10667             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
 10668             "MOV    [ESP+0],0\n\t"
 10669             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
 10671             "FST_D  [ESP]\n\t"
 10672             "MOVSD  $dst,[ESP]\n\t"
 10673             "ADD    ESP,8"
 10674              %}
 10675   ins_encode( Push_SrcXD(src),
 10676               Opcode(0xD9), Opcode(0xEA),   // fldl2e
 10677               Opcode(0xDE), Opcode(0xC9),   // fmulp
 10678               pow_exp_core_encoding,
 10679               Push_ResultXD(dst) );
 10680   ins_pipe( pipe_slow );
 10681 %}
 10685 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
 10686   predicate (UseSSE<=1);
 10687   // The source Double operand on FPU stack
 10688   match(Set dst (Log10D src));
 10689   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10690   // fxch         ; swap ST(0) with ST(1)
 10691   // fyl2x        ; compute log_10(2) * log_2(x)
 10692   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10693             "FXCH   \n\t"
 10694             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10695          %}
 10696   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10697               Opcode(0xD9), Opcode(0xC9),   // fxch
 10698               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10700   ins_pipe( pipe_slow );
 10701 %}
 10703 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10704   predicate (UseSSE>=2);
 10705   effect(KILL cr);
 10706   match(Set dst (Log10D src));
 10707   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10708   // fyl2x        ; compute log_10(2) * log_2(x)
 10709   format %{ "FLDLG2 \t\t\t#Log10\n\t"
 10710             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
 10711          %}
 10712   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10713               Push_SrcXD(src),
 10714               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10715               Push_ResultXD(dst));
 10717   ins_pipe( pipe_slow );
 10718 %}
 10720 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
 10721   predicate (UseSSE<=1);
 10722   // The source Double operand on FPU stack
 10723   match(Set dst (LogD src));
 10724   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10725   // fxch         ; swap ST(0) with ST(1)
 10726   // fyl2x        ; compute log_e(2) * log_2(x)
 10727   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10728             "FXCH   \n\t"
 10729             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10730          %}
 10731   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10732               Opcode(0xD9), Opcode(0xC9),   // fxch
 10733               Opcode(0xD9), Opcode(0xF1));  // fyl2x
 10735   ins_pipe( pipe_slow );
 10736 %}
 10738 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
 10739   predicate (UseSSE>=2);
 10740   effect(KILL cr);
 10741   // The source and result Double operands in XMM registers
 10742   match(Set dst (LogD src));
 10743   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10744   // fyl2x        ; compute log_e(2) * log_2(x)
 10745   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
 10746             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
 10747          %}
 10748   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10749               Push_SrcXD(src),
 10750               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10751               Push_ResultXD(dst));
 10752   ins_pipe( pipe_slow );
 10753 %}
 10755 //-------------Float Instructions-------------------------------
 10756 // Float Math
 10758 // Code for float compare:
 10759 //     fcompp();
 10760 //     fwait(); fnstsw_ax();
 10761 //     sahf();
 10762 //     movl(dst, unordered_result);
 10763 //     jcc(Assembler::parity, exit);
 10764 //     movl(dst, less_result);
 10765 //     jcc(Assembler::below, exit);
 10766 //     movl(dst, equal_result);
 10767 //     jcc(Assembler::equal, exit);
 10768 //     movl(dst, greater_result);
 10769 //   exit:
 10771 // P6 version of float compare, sets condition codes in EFLAGS
 10772 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10773   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10774   match(Set cr (CmpF src1 src2));
 10775   effect(KILL rax);
 10776   ins_cost(150);
 10777   format %{ "FLD    $src1\n\t"
 10778             "FUCOMIP ST,$src2  // P6 instruction\n\t"
 10779             "JNP    exit\n\t"
 10780             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
 10781             "SAHF\n"
 10782      "exit:\tNOP               // avoid branch to branch" %}
 10783   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10784   ins_encode( Push_Reg_D(src1),
 10785               OpcP, RegOpc(src2),
 10786               cmpF_P6_fixup );
 10787   ins_pipe( pipe_slow );
 10788 %}
 10790 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
 10791   predicate(VM_Version::supports_cmov() && UseSSE == 0);
 10792   match(Set cr (CmpF src1 src2));
 10793   ins_cost(100);
 10794   format %{ "FLD    $src1\n\t"
 10795             "FUCOMIP ST,$src2  // P6 instruction" %}
 10796   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
 10797   ins_encode( Push_Reg_D(src1),
 10798               OpcP, RegOpc(src2));
 10799   ins_pipe( pipe_slow );
 10800 %}
 10803 // Compare & branch
 10804 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
 10805   predicate(UseSSE == 0);
 10806   match(Set cr (CmpF src1 src2));
 10807   effect(KILL rax);
 10808   ins_cost(200);
 10809   format %{ "FLD    $src1\n\t"
 10810             "FCOMp  $src2\n\t"
 10811             "FNSTSW AX\n\t"
 10812             "TEST   AX,0x400\n\t"
 10813             "JZ,s   flags\n\t"
 10814             "MOV    AH,1\t# unordered treat as LT\n"
 10815     "flags:\tSAHF" %}
 10816   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10817   ins_encode( Push_Reg_D(src1),
 10818               OpcP, RegOpc(src2),
 10819               fpu_flags);
 10820   ins_pipe( pipe_slow );
 10821 %}
 10823 // Compare vs zero into -1,0,1
 10824 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
 10825   predicate(UseSSE == 0);
 10826   match(Set dst (CmpF3 src1 zero));
 10827   effect(KILL cr, KILL rax);
 10828   ins_cost(280);
 10829   format %{ "FTSTF  $dst,$src1" %}
 10830   opcode(0xE4, 0xD9);
 10831   ins_encode( Push_Reg_D(src1),
 10832               OpcS, OpcP, PopFPU,
 10833               CmpF_Result(dst));
 10834   ins_pipe( pipe_slow );
 10835 %}
 10837 // Compare into -1,0,1
 10838 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 10839   predicate(UseSSE == 0);
 10840   match(Set dst (CmpF3 src1 src2));
 10841   effect(KILL cr, KILL rax);
 10842   ins_cost(300);
 10843   format %{ "FCMPF  $dst,$src1,$src2" %}
 10844   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
 10845   ins_encode( Push_Reg_D(src1),
 10846               OpcP, RegOpc(src2),
 10847               CmpF_Result(dst));
 10848   ins_pipe( pipe_slow );
 10849 %}
 10851 // float compare and set condition codes in EFLAGS by XMM regs
 10852 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
 10853   predicate(UseSSE>=1);
 10854   match(Set cr (CmpF dst src));
 10855   effect(KILL rax);
 10856   ins_cost(145);
 10857   format %{ "COMISS $dst,$src\n"
 10858           "\tJNP    exit\n"
 10859           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10860           "\tSAHF\n"
 10861      "exit:\tNOP               // avoid branch to branch" %}
 10862   opcode(0x0F, 0x2F);
 10863   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
 10864   ins_pipe( pipe_slow );
 10865 %}
 10867 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
 10868   predicate(UseSSE>=1);
 10869   match(Set cr (CmpF dst src));
 10870   ins_cost(100);
 10871   format %{ "COMISS $dst,$src" %}
 10872   opcode(0x0F, 0x2F);
 10873   ins_encode(OpcP, OpcS, RegReg(dst, src));
 10874   ins_pipe( pipe_slow );
 10875 %}
 10877 // float compare and set condition codes in EFLAGS by XMM regs
 10878 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
 10879   predicate(UseSSE>=1);
 10880   match(Set cr (CmpF dst (LoadF src)));
 10881   effect(KILL rax);
 10882   ins_cost(165);
 10883   format %{ "COMISS $dst,$src\n"
 10884           "\tJNP    exit\n"
 10885           "\tMOV    ah,1       // saw a NaN, set CF\n"
 10886           "\tSAHF\n"
 10887      "exit:\tNOP               // avoid branch to branch" %}
 10888   opcode(0x0F, 0x2F);
 10889   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
 10890   ins_pipe( pipe_slow );
 10891 %}
 10893 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
 10894   predicate(UseSSE>=1);
 10895   match(Set cr (CmpF dst (LoadF src)));
 10896   ins_cost(100);
 10897   format %{ "COMISS $dst,$src" %}
 10898   opcode(0x0F, 0x2F);
 10899   ins_encode(OpcP, OpcS, RegMem(dst, src));
 10900   ins_pipe( pipe_slow );
 10901 %}
 10903 // Compare into -1,0,1 in XMM
 10904 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
 10905   predicate(UseSSE>=1);
 10906   match(Set dst (CmpF3 src1 src2));
 10907   effect(KILL cr);
 10908   ins_cost(255);
 10909   format %{ "XOR    $dst,$dst\n"
 10910           "\tCOMISS $src1,$src2\n"
 10911           "\tJP,s   nan\n"
 10912           "\tJEQ,s  exit\n"
 10913           "\tJA,s   inc\n"
 10914       "nan:\tDEC    $dst\n"
 10915           "\tJMP,s  exit\n"
 10916       "inc:\tINC    $dst\n"
 10917       "exit:"
 10918                 %}
 10919   opcode(0x0F, 0x2F);
 10920   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
 10921   ins_pipe( pipe_slow );
 10922 %}
 10924 // Compare into -1,0,1 in XMM and memory
 10925 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
 10926   predicate(UseSSE>=1);
 10927   match(Set dst (CmpF3 src1 (LoadF mem)));
 10928   effect(KILL cr);
 10929   ins_cost(275);
 10930   format %{ "COMISS $src1,$mem\n"
 10931           "\tMOV    $dst,0\t\t# do not blow flags\n"
 10932           "\tJP,s   nan\n"
 10933           "\tJEQ,s  exit\n"
 10934           "\tJA,s   inc\n"
 10935       "nan:\tDEC    $dst\n"
 10936           "\tJMP,s  exit\n"
 10937       "inc:\tINC    $dst\n"
 10938       "exit:"
 10939                 %}
 10940   opcode(0x0F, 0x2F);
 10941   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
 10942   ins_pipe( pipe_slow );
 10943 %}
 10945 // Spill to obtain 24-bit precision
 10946 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
 10947   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10948   match(Set dst (SubF src1 src2));
 10950   format %{ "FSUB   $dst,$src1 - $src2" %}
 10951   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
 10952   ins_encode( Push_Reg_F(src1),
 10953               OpcReg_F(src2),
 10954               Pop_Mem_F(dst) );
 10955   ins_pipe( fpu_mem_reg_reg );
 10956 %}
 10957 //
 10958 // This instruction does not round to 24-bits
 10959 instruct subF_reg(regF dst, regF src) %{
 10960   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10961   match(Set dst (SubF dst src));
 10963   format %{ "FSUB   $dst,$src" %}
 10964   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
 10965   ins_encode( Push_Reg_F(src),
 10966               OpcP, RegOpc(dst) );
 10967   ins_pipe( fpu_reg_reg );
 10968 %}
 10970 // Spill to obtain 24-bit precision
 10971 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
 10972   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 10973   match(Set dst (AddF src1 src2));
 10975   format %{ "FADD   $dst,$src1,$src2" %}
 10976   opcode(0xD8, 0x0); /* D8 C0+i */
 10977   ins_encode( Push_Reg_F(src2),
 10978               OpcReg_F(src1),
 10979               Pop_Mem_F(dst) );
 10980   ins_pipe( fpu_mem_reg_reg );
 10981 %}
 10982 //
 10983 // This instruction does not round to 24-bits
 10984 instruct addF_reg(regF dst, regF src) %{
 10985   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 10986   match(Set dst (AddF dst src));
 10988   format %{ "FLD    $src\n\t"
 10989             "FADDp  $dst,ST" %}
 10990   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
 10991   ins_encode( Push_Reg_F(src),
 10992               OpcP, RegOpc(dst) );
 10993   ins_pipe( fpu_reg_reg );
 10994 %}
 10996 // Add two single precision floating point values in xmm
 10997 instruct addX_reg(regX dst, regX src) %{
 10998   predicate(UseSSE>=1);
 10999   match(Set dst (AddF dst src));
 11000   format %{ "ADDSS  $dst,$src" %}
 11001   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
 11002   ins_pipe( pipe_slow );
 11003 %}
 11005 instruct addX_imm(regX dst, immXF con) %{
 11006   predicate(UseSSE>=1);
 11007   match(Set dst (AddF dst con));
 11008   format %{ "ADDSS  $dst,[$con]" %}
 11009   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
 11010   ins_pipe( pipe_slow );
 11011 %}
 11013 instruct addX_mem(regX dst, memory mem) %{
 11014   predicate(UseSSE>=1);
 11015   match(Set dst (AddF dst (LoadF mem)));
 11016   format %{ "ADDSS  $dst,$mem" %}
 11017   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
 11018   ins_pipe( pipe_slow );
 11019 %}
 11021 // Subtract two single precision floating point values in xmm
 11022 instruct subX_reg(regX dst, regX src) %{
 11023   predicate(UseSSE>=1);
 11024   match(Set dst (SubF dst src));
 11025   format %{ "SUBSS  $dst,$src" %}
 11026   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
 11027   ins_pipe( pipe_slow );
 11028 %}
 11030 instruct subX_imm(regX dst, immXF con) %{
 11031   predicate(UseSSE>=1);
 11032   match(Set dst (SubF dst con));
 11033   format %{ "SUBSS  $dst,[$con]" %}
 11034   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
 11035   ins_pipe( pipe_slow );
 11036 %}
 11038 instruct subX_mem(regX dst, memory mem) %{
 11039   predicate(UseSSE>=1);
 11040   match(Set dst (SubF dst (LoadF mem)));
 11041   format %{ "SUBSS  $dst,$mem" %}
 11042   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
 11043   ins_pipe( pipe_slow );
 11044 %}
 11046 // Multiply two single precision floating point values in xmm
 11047 instruct mulX_reg(regX dst, regX src) %{
 11048   predicate(UseSSE>=1);
 11049   match(Set dst (MulF dst src));
 11050   format %{ "MULSS  $dst,$src" %}
 11051   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
 11052   ins_pipe( pipe_slow );
 11053 %}
 11055 instruct mulX_imm(regX dst, immXF con) %{
 11056   predicate(UseSSE>=1);
 11057   match(Set dst (MulF dst con));
 11058   format %{ "MULSS  $dst,[$con]" %}
 11059   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
 11060   ins_pipe( pipe_slow );
 11061 %}
 11063 instruct mulX_mem(regX dst, memory mem) %{
 11064   predicate(UseSSE>=1);
 11065   match(Set dst (MulF dst (LoadF mem)));
 11066   format %{ "MULSS  $dst,$mem" %}
 11067   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
 11068   ins_pipe( pipe_slow );
 11069 %}
 11071 // Divide two single precision floating point values in xmm
 11072 instruct divX_reg(regX dst, regX src) %{
 11073   predicate(UseSSE>=1);
 11074   match(Set dst (DivF dst src));
 11075   format %{ "DIVSS  $dst,$src" %}
 11076   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
 11077   ins_pipe( pipe_slow );
 11078 %}
 11080 instruct divX_imm(regX dst, immXF con) %{
 11081   predicate(UseSSE>=1);
 11082   match(Set dst (DivF dst con));
 11083   format %{ "DIVSS  $dst,[$con]" %}
 11084   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
 11085   ins_pipe( pipe_slow );
 11086 %}
 11088 instruct divX_mem(regX dst, memory mem) %{
 11089   predicate(UseSSE>=1);
 11090   match(Set dst (DivF dst (LoadF mem)));
 11091   format %{ "DIVSS  $dst,$mem" %}
 11092   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
 11093   ins_pipe( pipe_slow );
 11094 %}
 11096 // Get the square root of a single precision floating point values in xmm
 11097 instruct sqrtX_reg(regX dst, regX src) %{
 11098   predicate(UseSSE>=1);
 11099   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 11100   format %{ "SQRTSS $dst,$src" %}
 11101   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11102   ins_pipe( pipe_slow );
 11103 %}
 11105 instruct sqrtX_mem(regX dst, memory mem) %{
 11106   predicate(UseSSE>=1);
 11107   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
 11108   format %{ "SQRTSS $dst,$mem" %}
 11109   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11110   ins_pipe( pipe_slow );
 11111 %}
 11113 // Get the square root of a double precision floating point values in xmm
 11114 instruct sqrtXD_reg(regXD dst, regXD src) %{
 11115   predicate(UseSSE>=2);
 11116   match(Set dst (SqrtD src));
 11117   format %{ "SQRTSD $dst,$src" %}
 11118   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
 11119   ins_pipe( pipe_slow );
 11120 %}
 11122 instruct sqrtXD_mem(regXD dst, memory mem) %{
 11123   predicate(UseSSE>=2);
 11124   match(Set dst (SqrtD (LoadD mem)));
 11125   format %{ "SQRTSD $dst,$mem" %}
 11126   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
 11127   ins_pipe( pipe_slow );
 11128 %}
 11130 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
 11131   predicate(UseSSE==0);
 11132   match(Set dst (AbsF src));
 11133   ins_cost(100);
 11134   format %{ "FABS" %}
 11135   opcode(0xE1, 0xD9);
 11136   ins_encode( OpcS, OpcP );
 11137   ins_pipe( fpu_reg_reg );
 11138 %}
 11140 instruct absX_reg(regX dst ) %{
 11141   predicate(UseSSE>=1);
 11142   match(Set dst (AbsF dst));
 11143   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
 11144   ins_encode( AbsXF_encoding(dst));
 11145   ins_pipe( pipe_slow );
 11146 %}
 11148 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
 11149   predicate(UseSSE==0);
 11150   match(Set dst (NegF src));
 11151   ins_cost(100);
 11152   format %{ "FCHS" %}
 11153   opcode(0xE0, 0xD9);
 11154   ins_encode( OpcS, OpcP );
 11155   ins_pipe( fpu_reg_reg );
 11156 %}
 11158 instruct negX_reg( regX dst ) %{
 11159   predicate(UseSSE>=1);
 11160   match(Set dst (NegF dst));
 11161   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
 11162   ins_encode( NegXF_encoding(dst));
 11163   ins_pipe( pipe_slow );
 11164 %}
 11166 // Cisc-alternate to addF_reg
 11167 // Spill to obtain 24-bit precision
 11168 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11169   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11170   match(Set dst (AddF src1 (LoadF src2)));
 11172   format %{ "FLD    $src2\n\t"
 11173             "FADD   ST,$src1\n\t"
 11174             "FSTP_S $dst" %}
 11175   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11176   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11177               OpcReg_F(src1),
 11178               Pop_Mem_F(dst) );
 11179   ins_pipe( fpu_mem_reg_mem );
 11180 %}
 11181 //
 11182 // Cisc-alternate to addF_reg
 11183 // This instruction does not round to 24-bits
 11184 instruct addF_reg_mem(regF dst, memory src) %{
 11185   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11186   match(Set dst (AddF dst (LoadF src)));
 11188   format %{ "FADD   $dst,$src" %}
 11189   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
 11190   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
 11191               OpcP, RegOpc(dst) );
 11192   ins_pipe( fpu_reg_mem );
 11193 %}
 11195 // // Following two instructions for _222_mpegaudio
 11196 // Spill to obtain 24-bit precision
 11197 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
 11198   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11199   match(Set dst (AddF src1 src2));
 11201   format %{ "FADD   $dst,$src1,$src2" %}
 11202   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11203   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
 11204               OpcReg_F(src2),
 11205               Pop_Mem_F(dst) );
 11206   ins_pipe( fpu_mem_reg_mem );
 11207 %}
 11209 // Cisc-spill variant
 11210 // Spill to obtain 24-bit precision
 11211 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
 11212   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11213   match(Set dst (AddF src1 (LoadF src2)));
 11215   format %{ "FADD   $dst,$src1,$src2 cisc" %}
 11216   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
 11217   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11218               set_instruction_start,
 11219               OpcP, RMopc_Mem(secondary,src1),
 11220               Pop_Mem_F(dst) );
 11221   ins_pipe( fpu_mem_mem_mem );
 11222 %}
 11224 // Spill to obtain 24-bit precision
 11225 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11226   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11227   match(Set dst (AddF src1 src2));
 11229   format %{ "FADD   $dst,$src1,$src2" %}
 11230   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
 11231   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11232               set_instruction_start,
 11233               OpcP, RMopc_Mem(secondary,src1),
 11234               Pop_Mem_F(dst) );
 11235   ins_pipe( fpu_mem_mem_mem );
 11236 %}
 11239 // Spill to obtain 24-bit precision
 11240 instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11241   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11242   match(Set dst (AddF src1 src2));
 11243   format %{ "FLD    $src1\n\t"
 11244             "FADD   $src2\n\t"
 11245             "FSTP_S $dst"  %}
 11246   opcode(0xD8, 0x00);       /* D8 /0 */
 11247   ins_encode( Push_Reg_F(src1),
 11248               Opc_MemImm_F(src2),
 11249               Pop_Mem_F(dst));
 11250   ins_pipe( fpu_mem_reg_con );
 11251 %}
 11252 //
 11253 // This instruction does not round to 24-bits
 11254 instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
 11255   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11256   match(Set dst (AddF src1 src2));
 11257   format %{ "FLD    $src1\n\t"
 11258             "FADD   $src2\n\t"
 11259             "FSTP_S $dst"  %}
 11260   opcode(0xD8, 0x00);       /* D8 /0 */
 11261   ins_encode( Push_Reg_F(src1),
 11262               Opc_MemImm_F(src2),
 11263               Pop_Reg_F(dst));
 11264   ins_pipe( fpu_reg_reg_con );
 11265 %}
 11267 // Spill to obtain 24-bit precision
 11268 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11269   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11270   match(Set dst (MulF src1 src2));
 11272   format %{ "FLD    $src1\n\t"
 11273             "FMUL   $src2\n\t"
 11274             "FSTP_S $dst"  %}
 11275   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
 11276   ins_encode( Push_Reg_F(src1),
 11277               OpcReg_F(src2),
 11278               Pop_Mem_F(dst) );
 11279   ins_pipe( fpu_mem_reg_reg );
 11280 %}
 11281 //
 11282 // This instruction does not round to 24-bits
 11283 instruct mulF_reg(regF dst, regF src1, regF src2) %{
 11284   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11285   match(Set dst (MulF src1 src2));
 11287   format %{ "FLD    $src1\n\t"
 11288             "FMUL   $src2\n\t"
 11289             "FSTP_S $dst"  %}
 11290   opcode(0xD8, 0x1); /* D8 C8+i */
 11291   ins_encode( Push_Reg_F(src2),
 11292               OpcReg_F(src1),
 11293               Pop_Reg_F(dst) );
 11294   ins_pipe( fpu_reg_reg_reg );
 11295 %}
 11298 // Spill to obtain 24-bit precision
 11299 // Cisc-alternate to reg-reg multiply
 11300 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
 11301   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11302   match(Set dst (MulF src1 (LoadF src2)));
 11304   format %{ "FLD_S  $src2\n\t"
 11305             "FMUL   $src1\n\t"
 11306             "FSTP_S $dst"  %}
 11307   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
 11308   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11309               OpcReg_F(src1),
 11310               Pop_Mem_F(dst) );
 11311   ins_pipe( fpu_mem_reg_mem );
 11312 %}
 11313 //
 11314 // This instruction does not round to 24-bits
 11315 // Cisc-alternate to reg-reg multiply
 11316 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
 11317   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11318   match(Set dst (MulF src1 (LoadF src2)));
 11320   format %{ "FMUL   $dst,$src1,$src2" %}
 11321   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
 11322   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11323               OpcReg_F(src1),
 11324               Pop_Reg_F(dst) );
 11325   ins_pipe( fpu_reg_reg_mem );
 11326 %}
 11328 // Spill to obtain 24-bit precision
 11329 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
 11330   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11331   match(Set dst (MulF src1 src2));
 11333   format %{ "FMUL   $dst,$src1,$src2" %}
 11334   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
 11335   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
 11336               set_instruction_start,
 11337               OpcP, RMopc_Mem(secondary,src1),
 11338               Pop_Mem_F(dst) );
 11339   ins_pipe( fpu_mem_mem_mem );
 11340 %}
 11342 // Spill to obtain 24-bit precision
 11343 instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
 11344   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11345   match(Set dst (MulF src1 src2));
 11347   format %{ "FMULc $dst,$src1,$src2" %}
 11348   opcode(0xD8, 0x1);  /* D8 /1*/
 11349   ins_encode( Push_Reg_F(src1),
 11350               Opc_MemImm_F(src2),
 11351               Pop_Mem_F(dst));
 11352   ins_pipe( fpu_mem_reg_con );
 11353 %}
 11354 //
 11355 // This instruction does not round to 24-bits
 11356 instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
 11357   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11358   match(Set dst (MulF src1 src2));
 11360   format %{ "FMULc $dst. $src1, $src2" %}
 11361   opcode(0xD8, 0x1);  /* D8 /1*/
 11362   ins_encode( Push_Reg_F(src1),
 11363               Opc_MemImm_F(src2),
 11364               Pop_Reg_F(dst));
 11365   ins_pipe( fpu_reg_reg_con );
 11366 %}
 11369 //
 11370 // MACRO1 -- subsume unshared load into mulF
 11371 // This instruction does not round to 24-bits
 11372 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
 11373   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11374   match(Set dst (MulF (LoadF mem1) src));
 11376   format %{ "FLD    $mem1    ===MACRO1===\n\t"
 11377             "FMUL   ST,$src\n\t"
 11378             "FSTP   $dst" %}
 11379   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
 11380   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
 11381               OpcReg_F(src),
 11382               Pop_Reg_F(dst) );
 11383   ins_pipe( fpu_reg_reg_mem );
 11384 %}
 11385 //
 11386 // MACRO2 -- addF a mulF which subsumed an unshared load
 11387 // This instruction does not round to 24-bits
 11388 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
 11389   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11390   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
 11391   ins_cost(95);
 11393   format %{ "FLD    $mem1     ===MACRO2===\n\t"
 11394             "FMUL   ST,$src1  subsume mulF left load\n\t"
 11395             "FADD   ST,$src2\n\t"
 11396             "FSTP   $dst" %}
 11397   opcode(0xD9); /* LoadF D9 /0 */
 11398   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
 11399               FMul_ST_reg(src1),
 11400               FAdd_ST_reg(src2),
 11401               Pop_Reg_F(dst) );
 11402   ins_pipe( fpu_reg_mem_reg_reg );
 11403 %}
 11405 // MACRO3 -- addF a mulF
 11406 // This instruction does not round to 24-bits.  It is a '2-address'
 11407 // instruction in that the result goes back to src2.  This eliminates
 11408 // a move from the macro; possibly the register allocator will have
 11409 // to add it back (and maybe not).
 11410 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
 11411   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11412   match(Set src2 (AddF (MulF src0 src1) src2));
 11414   format %{ "FLD    $src0     ===MACRO3===\n\t"
 11415             "FMUL   ST,$src1\n\t"
 11416             "FADDP  $src2,ST" %}
 11417   opcode(0xD9); /* LoadF D9 /0 */
 11418   ins_encode( Push_Reg_F(src0),
 11419               FMul_ST_reg(src1),
 11420               FAddP_reg_ST(src2) );
 11421   ins_pipe( fpu_reg_reg_reg );
 11422 %}
 11424 // MACRO4 -- divF subF
 11425 // This instruction does not round to 24-bits
 11426 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
 11427   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11428   match(Set dst (DivF (SubF src2 src1) src3));
 11430   format %{ "FLD    $src2   ===MACRO4===\n\t"
 11431             "FSUB   ST,$src1\n\t"
 11432             "FDIV   ST,$src3\n\t"
 11433             "FSTP  $dst" %}
 11434   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11435   ins_encode( Push_Reg_F(src2),
 11436               subF_divF_encode(src1,src3),
 11437               Pop_Reg_F(dst) );
 11438   ins_pipe( fpu_reg_reg_reg_reg );
 11439 %}
 11441 // Spill to obtain 24-bit precision
 11442 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
 11443   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
 11444   match(Set dst (DivF src1 src2));
 11446   format %{ "FDIV   $dst,$src1,$src2" %}
 11447   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
 11448   ins_encode( Push_Reg_F(src1),
 11449               OpcReg_F(src2),
 11450               Pop_Mem_F(dst) );
 11451   ins_pipe( fpu_mem_reg_reg );
 11452 %}
 11453 //
 11454 // This instruction does not round to 24-bits
 11455 instruct divF_reg(regF dst, regF src) %{
 11456   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11457   match(Set dst (DivF dst src));
 11459   format %{ "FDIV   $dst,$src" %}
 11460   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
 11461   ins_encode( Push_Reg_F(src),
 11462               OpcP, RegOpc(dst) );
 11463   ins_pipe( fpu_reg_reg );
 11464 %}
 11467 // Spill to obtain 24-bit precision
 11468 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
 11469   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11470   match(Set dst (ModF src1 src2));
 11471   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11473   format %{ "FMOD   $dst,$src1,$src2" %}
 11474   ins_encode( Push_Reg_Mod_D(src1, src2),
 11475               emitModD(),
 11476               Push_Result_Mod_D(src2),
 11477               Pop_Mem_F(dst));
 11478   ins_pipe( pipe_slow );
 11479 %}
 11480 //
 11481 // This instruction does not round to 24-bits
 11482 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
 11483   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11484   match(Set dst (ModF dst src));
 11485   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
 11487   format %{ "FMOD   $dst,$src" %}
 11488   ins_encode(Push_Reg_Mod_D(dst, src),
 11489               emitModD(),
 11490               Push_Result_Mod_D(src),
 11491               Pop_Reg_F(dst));
 11492   ins_pipe( pipe_slow );
 11493 %}
 11495 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
 11496   predicate(UseSSE>=1);
 11497   match(Set dst (ModF src0 src1));
 11498   effect(KILL rax, KILL cr);
 11499   format %{ "SUB    ESP,4\t # FMOD\n"
 11500           "\tMOVSS  [ESP+0],$src1\n"
 11501           "\tFLD_S  [ESP+0]\n"
 11502           "\tMOVSS  [ESP+0],$src0\n"
 11503           "\tFLD_S  [ESP+0]\n"
 11504      "loop:\tFPREM\n"
 11505           "\tFWAIT\n"
 11506           "\tFNSTSW AX\n"
 11507           "\tSAHF\n"
 11508           "\tJP     loop\n"
 11509           "\tFSTP_S [ESP+0]\n"
 11510           "\tMOVSS  $dst,[ESP+0]\n"
 11511           "\tADD    ESP,4\n"
 11512           "\tFSTP   ST0\t # Restore FPU Stack"
 11513     %}
 11514   ins_cost(250);
 11515   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
 11516   ins_pipe( pipe_slow );
 11517 %}
 11520 //----------Arithmetic Conversion Instructions---------------------------------
 11521 // The conversions operations are all Alpha sorted.  Please keep it that way!
 11523 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
 11524   predicate(UseSSE==0);
 11525   match(Set dst (RoundFloat src));
 11526   ins_cost(125);
 11527   format %{ "FST_S  $dst,$src\t# F-round" %}
 11528   ins_encode( Pop_Mem_Reg_F(dst, src) );
 11529   ins_pipe( fpu_mem_reg );
 11530 %}
 11532 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
 11533   predicate(UseSSE<=1);
 11534   match(Set dst (RoundDouble src));
 11535   ins_cost(125);
 11536   format %{ "FST_D  $dst,$src\t# D-round" %}
 11537   ins_encode( Pop_Mem_Reg_D(dst, src) );
 11538   ins_pipe( fpu_mem_reg );
 11539 %}
 11541 // Force rounding to 24-bit precision and 6-bit exponent
 11542 instruct convD2F_reg(stackSlotF dst, regD src) %{
 11543   predicate(UseSSE==0);
 11544   match(Set dst (ConvD2F src));
 11545   format %{ "FST_S  $dst,$src\t# F-round" %}
 11546   expand %{
 11547     roundFloat_mem_reg(dst,src);
 11548   %}
 11549 %}
 11551 // Force rounding to 24-bit precision and 6-bit exponent
 11552 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
 11553   predicate(UseSSE==1);
 11554   match(Set dst (ConvD2F src));
 11555   effect( KILL cr );
 11556   format %{ "SUB    ESP,4\n\t"
 11557             "FST_S  [ESP],$src\t# F-round\n\t"
 11558             "MOVSS  $dst,[ESP]\n\t"
 11559             "ADD ESP,4" %}
 11560   ins_encode( D2X_encoding(dst, src) );
 11561   ins_pipe( pipe_slow );
 11562 %}
 11564 // Force rounding double precision to single precision
 11565 instruct convXD2X_reg(regX dst, regXD src) %{
 11566   predicate(UseSSE>=2);
 11567   match(Set dst (ConvD2F src));
 11568   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
 11569   opcode(0xF2, 0x0F, 0x5A);
 11570   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11571   ins_pipe( pipe_slow );
 11572 %}
 11574 instruct convF2D_reg_reg(regD dst, regF src) %{
 11575   predicate(UseSSE==0);
 11576   match(Set dst (ConvF2D src));
 11577   format %{ "FST_S  $dst,$src\t# D-round" %}
 11578   ins_encode( Pop_Reg_Reg_D(dst, src));
 11579   ins_pipe( fpu_reg_reg );
 11580 %}
 11582 instruct convF2D_reg(stackSlotD dst, regF src) %{
 11583   predicate(UseSSE==1);
 11584   match(Set dst (ConvF2D src));
 11585   format %{ "FST_D  $dst,$src\t# D-round" %}
 11586   expand %{
 11587     roundDouble_mem_reg(dst,src);
 11588   %}
 11589 %}
 11591 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
 11592   predicate(UseSSE==1);
 11593   match(Set dst (ConvF2D src));
 11594   effect( KILL cr );
 11595   format %{ "SUB    ESP,4\n\t"
 11596             "MOVSS  [ESP] $src\n\t"
 11597             "FLD_S  [ESP]\n\t"
 11598             "ADD    ESP,4\n\t"
 11599             "FSTP   $dst\t# D-round" %}
 11600   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
 11601   ins_pipe( pipe_slow );
 11602 %}
 11604 instruct convX2XD_reg(regXD dst, regX src) %{
 11605   predicate(UseSSE>=2);
 11606   match(Set dst (ConvF2D src));
 11607   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
 11608   opcode(0xF3, 0x0F, 0x5A);
 11609   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11610   ins_pipe( pipe_slow );
 11611 %}
 11613 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11614 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
 11615   predicate(UseSSE<=1);
 11616   match(Set dst (ConvD2I src));
 11617   effect( KILL tmp, KILL cr );
 11618   format %{ "FLD    $src\t# Convert double to int \n\t"
 11619             "FLDCW  trunc mode\n\t"
 11620             "SUB    ESP,4\n\t"
 11621             "FISTp  [ESP + #0]\n\t"
 11622             "FLDCW  std/24-bit mode\n\t"
 11623             "POP    EAX\n\t"
 11624             "CMP    EAX,0x80000000\n\t"
 11625             "JNE,s  fast\n\t"
 11626             "FLD_D  $src\n\t"
 11627             "CALL   d2i_wrapper\n"
 11628       "fast:" %}
 11629   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
 11630   ins_pipe( pipe_slow );
 11631 %}
 11633 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
 11634 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
 11635   predicate(UseSSE>=2);
 11636   match(Set dst (ConvD2I src));
 11637   effect( KILL tmp, KILL cr );
 11638   format %{ "CVTTSD2SI $dst, $src\n\t"
 11639             "CMP    $dst,0x80000000\n\t"
 11640             "JNE,s  fast\n\t"
 11641             "SUB    ESP, 8\n\t"
 11642             "MOVSD  [ESP], $src\n\t"
 11643             "FLD_D  [ESP]\n\t"
 11644             "ADD    ESP, 8\n\t"
 11645             "CALL   d2i_wrapper\n"
 11646       "fast:" %}
 11647   opcode(0x1); // double-precision conversion
 11648   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11649   ins_pipe( pipe_slow );
 11650 %}
 11652 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
 11653   predicate(UseSSE<=1);
 11654   match(Set dst (ConvD2L src));
 11655   effect( KILL cr );
 11656   format %{ "FLD    $src\t# Convert double to long\n\t"
 11657             "FLDCW  trunc mode\n\t"
 11658             "SUB    ESP,8\n\t"
 11659             "FISTp  [ESP + #0]\n\t"
 11660             "FLDCW  std/24-bit mode\n\t"
 11661             "POP    EAX\n\t"
 11662             "POP    EDX\n\t"
 11663             "CMP    EDX,0x80000000\n\t"
 11664             "JNE,s  fast\n\t"
 11665             "TEST   EAX,EAX\n\t"
 11666             "JNE,s  fast\n\t"
 11667             "FLD    $src\n\t"
 11668             "CALL   d2l_wrapper\n"
 11669       "fast:" %}
 11670   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
 11671   ins_pipe( pipe_slow );
 11672 %}
 11674 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11675 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
 11676   predicate (UseSSE>=2);
 11677   match(Set dst (ConvD2L src));
 11678   effect( KILL cr );
 11679   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
 11680             "MOVSD  [ESP],$src\n\t"
 11681             "FLD_D  [ESP]\n\t"
 11682             "FLDCW  trunc mode\n\t"
 11683             "FISTp  [ESP + #0]\n\t"
 11684             "FLDCW  std/24-bit mode\n\t"
 11685             "POP    EAX\n\t"
 11686             "POP    EDX\n\t"
 11687             "CMP    EDX,0x80000000\n\t"
 11688             "JNE,s  fast\n\t"
 11689             "TEST   EAX,EAX\n\t"
 11690             "JNE,s  fast\n\t"
 11691             "SUB    ESP,8\n\t"
 11692             "MOVSD  [ESP],$src\n\t"
 11693             "FLD_D  [ESP]\n\t"
 11694             "CALL   d2l_wrapper\n"
 11695       "fast:" %}
 11696   ins_encode( XD2L_encoding(src) );
 11697   ins_pipe( pipe_slow );
 11698 %}
 11700 // Convert a double to an int.  Java semantics require we do complex
 11701 // manglations in the corner cases.  So we set the rounding mode to
 11702 // 'zero', store the darned double down as an int, and reset the
 11703 // rounding mode to 'nearest'.  The hardware stores a flag value down
 11704 // if we would overflow or converted a NAN; we check for this and
 11705 // and go the slow path if needed.
 11706 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
 11707   predicate(UseSSE==0);
 11708   match(Set dst (ConvF2I src));
 11709   effect( KILL tmp, KILL cr );
 11710   format %{ "FLD    $src\t# Convert float to int \n\t"
 11711             "FLDCW  trunc mode\n\t"
 11712             "SUB    ESP,4\n\t"
 11713             "FISTp  [ESP + #0]\n\t"
 11714             "FLDCW  std/24-bit mode\n\t"
 11715             "POP    EAX\n\t"
 11716             "CMP    EAX,0x80000000\n\t"
 11717             "JNE,s  fast\n\t"
 11718             "FLD    $src\n\t"
 11719             "CALL   d2i_wrapper\n"
 11720       "fast:" %}
 11721   // D2I_encoding works for F2I
 11722   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
 11723   ins_pipe( pipe_slow );
 11724 %}
 11726 // Convert a float in xmm to an int reg.
 11727 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
 11728   predicate(UseSSE>=1);
 11729   match(Set dst (ConvF2I src));
 11730   effect( KILL tmp, KILL cr );
 11731   format %{ "CVTTSS2SI $dst, $src\n\t"
 11732             "CMP    $dst,0x80000000\n\t"
 11733             "JNE,s  fast\n\t"
 11734             "SUB    ESP, 4\n\t"
 11735             "MOVSS  [ESP], $src\n\t"
 11736             "FLD    [ESP]\n\t"
 11737             "ADD    ESP, 4\n\t"
 11738             "CALL   d2i_wrapper\n"
 11739       "fast:" %}
 11740   opcode(0x0); // single-precision conversion
 11741   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
 11742   ins_pipe( pipe_slow );
 11743 %}
 11745 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
 11746   predicate(UseSSE==0);
 11747   match(Set dst (ConvF2L src));
 11748   effect( KILL cr );
 11749   format %{ "FLD    $src\t# Convert float to long\n\t"
 11750             "FLDCW  trunc mode\n\t"
 11751             "SUB    ESP,8\n\t"
 11752             "FISTp  [ESP + #0]\n\t"
 11753             "FLDCW  std/24-bit mode\n\t"
 11754             "POP    EAX\n\t"
 11755             "POP    EDX\n\t"
 11756             "CMP    EDX,0x80000000\n\t"
 11757             "JNE,s  fast\n\t"
 11758             "TEST   EAX,EAX\n\t"
 11759             "JNE,s  fast\n\t"
 11760             "FLD    $src\n\t"
 11761             "CALL   d2l_wrapper\n"
 11762       "fast:" %}
 11763   // D2L_encoding works for F2L
 11764   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
 11765   ins_pipe( pipe_slow );
 11766 %}
 11768 // XMM lacks a float/double->long conversion, so use the old FPU stack.
 11769 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
 11770   predicate (UseSSE>=1);
 11771   match(Set dst (ConvF2L src));
 11772   effect( KILL cr );
 11773   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
 11774             "MOVSS  [ESP],$src\n\t"
 11775             "FLD_S  [ESP]\n\t"
 11776             "FLDCW  trunc mode\n\t"
 11777             "FISTp  [ESP + #0]\n\t"
 11778             "FLDCW  std/24-bit mode\n\t"
 11779             "POP    EAX\n\t"
 11780             "POP    EDX\n\t"
 11781             "CMP    EDX,0x80000000\n\t"
 11782             "JNE,s  fast\n\t"
 11783             "TEST   EAX,EAX\n\t"
 11784             "JNE,s  fast\n\t"
 11785             "SUB    ESP,4\t# Convert float to long\n\t"
 11786             "MOVSS  [ESP],$src\n\t"
 11787             "FLD_S  [ESP]\n\t"
 11788             "ADD    ESP,4\n\t"
 11789             "CALL   d2l_wrapper\n"
 11790       "fast:" %}
 11791   ins_encode( X2L_encoding(src) );
 11792   ins_pipe( pipe_slow );
 11793 %}
 11795 instruct convI2D_reg(regD dst, stackSlotI src) %{
 11796   predicate( UseSSE<=1 );
 11797   match(Set dst (ConvI2D src));
 11798   format %{ "FILD   $src\n\t"
 11799             "FSTP   $dst" %}
 11800   opcode(0xDB, 0x0);  /* DB /0 */
 11801   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
 11802   ins_pipe( fpu_reg_mem );
 11803 %}
 11805 instruct convI2XD_reg(regXD dst, eRegI src) %{
 11806   predicate( UseSSE>=2 && !UseXmmI2D );
 11807   match(Set dst (ConvI2D src));
 11808   format %{ "CVTSI2SD $dst,$src" %}
 11809   opcode(0xF2, 0x0F, 0x2A);
 11810   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11811   ins_pipe( pipe_slow );
 11812 %}
 11814 instruct convI2XD_mem(regXD dst, memory mem) %{
 11815   predicate( UseSSE>=2 );
 11816   match(Set dst (ConvI2D (LoadI mem)));
 11817   format %{ "CVTSI2SD $dst,$mem" %}
 11818   opcode(0xF2, 0x0F, 0x2A);
 11819   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
 11820   ins_pipe( pipe_slow );
 11821 %}
 11823 instruct convXI2XD_reg(regXD dst, eRegI src)
 11824 %{
 11825   predicate( UseSSE>=2 && UseXmmI2D );
 11826   match(Set dst (ConvI2D src));
 11828   format %{ "MOVD  $dst,$src\n\t"
 11829             "CVTDQ2PD $dst,$dst\t# i2d" %}
 11830   ins_encode %{
 11831     __ movdl($dst$$XMMRegister, $src$$Register);
 11832     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 11833   %}
 11834   ins_pipe(pipe_slow); // XXX
 11835 %}
 11837 instruct convI2D_mem(regD dst, memory mem) %{
 11838   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
 11839   match(Set dst (ConvI2D (LoadI mem)));
 11840   format %{ "FILD   $mem\n\t"
 11841             "FSTP   $dst" %}
 11842   opcode(0xDB);      /* DB /0 */
 11843   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11844               Pop_Reg_D(dst));
 11845   ins_pipe( fpu_reg_mem );
 11846 %}
 11848 // Convert a byte to a float; no rounding step needed.
 11849 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
 11850   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
 11851   match(Set dst (ConvI2F src));
 11852   format %{ "FILD   $src\n\t"
 11853             "FSTP   $dst" %}
 11855   opcode(0xDB, 0x0);  /* DB /0 */
 11856   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
 11857   ins_pipe( fpu_reg_mem );
 11858 %}
 11860 // In 24-bit mode, force exponent rounding by storing back out
 11861 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
 11862   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11863   match(Set dst (ConvI2F src));
 11864   ins_cost(200);
 11865   format %{ "FILD   $src\n\t"
 11866             "FSTP_S $dst" %}
 11867   opcode(0xDB, 0x0);  /* DB /0 */
 11868   ins_encode( Push_Mem_I(src),
 11869               Pop_Mem_F(dst));
 11870   ins_pipe( fpu_mem_mem );
 11871 %}
 11873 // In 24-bit mode, force exponent rounding by storing back out
 11874 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
 11875   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
 11876   match(Set dst (ConvI2F (LoadI mem)));
 11877   ins_cost(200);
 11878   format %{ "FILD   $mem\n\t"
 11879             "FSTP_S $dst" %}
 11880   opcode(0xDB);  /* DB /0 */
 11881   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11882               Pop_Mem_F(dst));
 11883   ins_pipe( fpu_mem_mem );
 11884 %}
 11886 // This instruction does not round to 24-bits
 11887 instruct convI2F_reg(regF dst, stackSlotI src) %{
 11888   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11889   match(Set dst (ConvI2F src));
 11890   format %{ "FILD   $src\n\t"
 11891             "FSTP   $dst" %}
 11892   opcode(0xDB, 0x0);  /* DB /0 */
 11893   ins_encode( Push_Mem_I(src),
 11894               Pop_Reg_F(dst));
 11895   ins_pipe( fpu_reg_mem );
 11896 %}
 11898 // This instruction does not round to 24-bits
 11899 instruct convI2F_mem(regF dst, memory mem) %{
 11900   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
 11901   match(Set dst (ConvI2F (LoadI mem)));
 11902   format %{ "FILD   $mem\n\t"
 11903             "FSTP   $dst" %}
 11904   opcode(0xDB);      /* DB /0 */
 11905   ins_encode( OpcP, RMopc_Mem(0x00,mem),
 11906               Pop_Reg_F(dst));
 11907   ins_pipe( fpu_reg_mem );
 11908 %}
 11910 // Convert an int to a float in xmm; no rounding step needed.
 11911 instruct convI2X_reg(regX dst, eRegI src) %{
 11912   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
 11913   match(Set dst (ConvI2F src));
 11914   format %{ "CVTSI2SS $dst, $src" %}
 11916   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
 11917   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
 11918   ins_pipe( pipe_slow );
 11919 %}
 11921  instruct convXI2X_reg(regX dst, eRegI src)
 11922 %{
 11923   predicate( UseSSE>=2 && UseXmmI2F );
 11924   match(Set dst (ConvI2F src));
 11926   format %{ "MOVD  $dst,$src\n\t"
 11927             "CVTDQ2PS $dst,$dst\t# i2f" %}
 11928   ins_encode %{
 11929     __ movdl($dst$$XMMRegister, $src$$Register);
 11930     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 11931   %}
 11932   ins_pipe(pipe_slow); // XXX
 11933 %}
 11935 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
 11936   match(Set dst (ConvI2L src));
 11937   effect(KILL cr);
 11938   ins_cost(375);
 11939   format %{ "MOV    $dst.lo,$src\n\t"
 11940             "MOV    $dst.hi,$src\n\t"
 11941             "SAR    $dst.hi,31" %}
 11942   ins_encode(convert_int_long(dst,src));
 11943   ins_pipe( ialu_reg_reg_long );
 11944 %}
 11946 // Zero-extend convert int to long
 11947 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
 11948   match(Set dst (AndL (ConvI2L src) mask) );
 11949   effect( KILL flags );
 11950   ins_cost(250);
 11951   format %{ "MOV    $dst.lo,$src\n\t"
 11952             "XOR    $dst.hi,$dst.hi" %}
 11953   opcode(0x33); // XOR
 11954   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11955   ins_pipe( ialu_reg_reg_long );
 11956 %}
 11958 // Zero-extend long
 11959 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
 11960   match(Set dst (AndL src mask) );
 11961   effect( KILL flags );
 11962   ins_cost(250);
 11963   format %{ "MOV    $dst.lo,$src.lo\n\t"
 11964             "XOR    $dst.hi,$dst.hi\n\t" %}
 11965   opcode(0x33); // XOR
 11966   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
 11967   ins_pipe( ialu_reg_reg_long );
 11968 %}
 11970 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
 11971   predicate (UseSSE<=1);
 11972   match(Set dst (ConvL2D src));
 11973   effect( KILL cr );
 11974   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11975             "PUSH   $src.lo\n\t"
 11976             "FILD   ST,[ESP + #0]\n\t"
 11977             "ADD    ESP,8\n\t"
 11978             "FSTP_D $dst\t# D-round" %}
 11979   opcode(0xDF, 0x5);  /* DF /5 */
 11980   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
 11981   ins_pipe( pipe_slow );
 11982 %}
 11984 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
 11985   predicate (UseSSE>=2);
 11986   match(Set dst (ConvL2D src));
 11987   effect( KILL cr );
 11988   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
 11989             "PUSH   $src.lo\n\t"
 11990             "FILD_D [ESP]\n\t"
 11991             "FSTP_D [ESP]\n\t"
 11992             "MOVSD  $dst,[ESP]\n\t"
 11993             "ADD    ESP,8" %}
 11994   opcode(0xDF, 0x5);  /* DF /5 */
 11995   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
 11996   ins_pipe( pipe_slow );
 11997 %}
 11999 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
 12000   predicate (UseSSE>=1);
 12001   match(Set dst (ConvL2F src));
 12002   effect( KILL cr );
 12003   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12004             "PUSH   $src.lo\n\t"
 12005             "FILD_D [ESP]\n\t"
 12006             "FSTP_S [ESP]\n\t"
 12007             "MOVSS  $dst,[ESP]\n\t"
 12008             "ADD    ESP,8" %}
 12009   opcode(0xDF, 0x5);  /* DF /5 */
 12010   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
 12011   ins_pipe( pipe_slow );
 12012 %}
 12014 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
 12015   match(Set dst (ConvL2F src));
 12016   effect( KILL cr );
 12017   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
 12018             "PUSH   $src.lo\n\t"
 12019             "FILD   ST,[ESP + #0]\n\t"
 12020             "ADD    ESP,8\n\t"
 12021             "FSTP_S $dst\t# F-round" %}
 12022   opcode(0xDF, 0x5);  /* DF /5 */
 12023   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
 12024   ins_pipe( pipe_slow );
 12025 %}
 12027 instruct convL2I_reg( eRegI dst, eRegL src ) %{
 12028   match(Set dst (ConvL2I src));
 12029   effect( DEF dst, USE src );
 12030   format %{ "MOV    $dst,$src.lo" %}
 12031   ins_encode(enc_CopyL_Lo(dst,src));
 12032   ins_pipe( ialu_reg_reg );
 12033 %}
 12036 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
 12037   match(Set dst (MoveF2I src));
 12038   effect( DEF dst, USE src );
 12039   ins_cost(100);
 12040   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
 12041   opcode(0x8B);
 12042   ins_encode( OpcP, RegMem(dst,src));
 12043   ins_pipe( ialu_reg_mem );
 12044 %}
 12046 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 12047   predicate(UseSSE==0);
 12048   match(Set dst (MoveF2I src));
 12049   effect( DEF dst, USE src );
 12051   ins_cost(125);
 12052   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
 12053   ins_encode( Pop_Mem_Reg_F(dst, src) );
 12054   ins_pipe( fpu_mem_reg );
 12055 %}
 12057 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
 12058   predicate(UseSSE>=1);
 12059   match(Set dst (MoveF2I src));
 12060   effect( DEF dst, USE src );
 12062   ins_cost(95);
 12063   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
 12064   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
 12065   ins_pipe( pipe_slow );
 12066 %}
 12068 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
 12069   predicate(UseSSE>=2);
 12070   match(Set dst (MoveF2I src));
 12071   effect( DEF dst, USE src );
 12072   ins_cost(85);
 12073   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
 12074   ins_encode( MovX2I_reg(dst, src));
 12075   ins_pipe( pipe_slow );
 12076 %}
 12078 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
 12079   match(Set dst (MoveI2F src));
 12080   effect( DEF dst, USE src );
 12082   ins_cost(100);
 12083   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
 12084   opcode(0x89);
 12085   ins_encode( OpcPRegSS( dst, src ) );
 12086   ins_pipe( ialu_mem_reg );
 12087 %}
 12090 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 12091   predicate(UseSSE==0);
 12092   match(Set dst (MoveI2F src));
 12093   effect(DEF dst, USE src);
 12095   ins_cost(125);
 12096   format %{ "FLD_S  $src\n\t"
 12097             "FSTP   $dst\t# MoveI2F_stack_reg" %}
 12098   opcode(0xD9);               /* D9 /0, FLD m32real */
 12099   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12100               Pop_Reg_F(dst) );
 12101   ins_pipe( fpu_reg_mem );
 12102 %}
 12104 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
 12105   predicate(UseSSE>=1);
 12106   match(Set dst (MoveI2F src));
 12107   effect( DEF dst, USE src );
 12109   ins_cost(95);
 12110   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
 12111   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12112   ins_pipe( pipe_slow );
 12113 %}
 12115 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
 12116   predicate(UseSSE>=2);
 12117   match(Set dst (MoveI2F src));
 12118   effect( DEF dst, USE src );
 12120   ins_cost(85);
 12121   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
 12122   ins_encode( MovI2X_reg(dst, src) );
 12123   ins_pipe( pipe_slow );
 12124 %}
 12126 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
 12127   match(Set dst (MoveD2L src));
 12128   effect(DEF dst, USE src);
 12130   ins_cost(250);
 12131   format %{ "MOV    $dst.lo,$src\n\t"
 12132             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
 12133   opcode(0x8B, 0x8B);
 12134   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
 12135   ins_pipe( ialu_mem_long_reg );
 12136 %}
 12138 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 12139   predicate(UseSSE<=1);
 12140   match(Set dst (MoveD2L src));
 12141   effect(DEF dst, USE src);
 12143   ins_cost(125);
 12144   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
 12145   ins_encode( Pop_Mem_Reg_D(dst, src) );
 12146   ins_pipe( fpu_mem_reg );
 12147 %}
 12149 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
 12150   predicate(UseSSE>=2);
 12151   match(Set dst (MoveD2L src));
 12152   effect(DEF dst, USE src);
 12153   ins_cost(95);
 12155   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
 12156   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
 12157   ins_pipe( pipe_slow );
 12158 %}
 12160 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
 12161   predicate(UseSSE>=2);
 12162   match(Set dst (MoveD2L src));
 12163   effect(DEF dst, USE src, TEMP tmp);
 12164   ins_cost(85);
 12165   format %{ "MOVD   $dst.lo,$src\n\t"
 12166             "PSHUFLW $tmp,$src,0x4E\n\t"
 12167             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
 12168   ins_encode( MovXD2L_reg(dst, src, tmp) );
 12169   ins_pipe( pipe_slow );
 12170 %}
 12172 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
 12173   match(Set dst (MoveL2D src));
 12174   effect(DEF dst, USE src);
 12176   ins_cost(200);
 12177   format %{ "MOV    $dst,$src.lo\n\t"
 12178             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
 12179   opcode(0x89, 0x89);
 12180   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
 12181   ins_pipe( ialu_mem_long_reg );
 12182 %}
 12185 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 12186   predicate(UseSSE<=1);
 12187   match(Set dst (MoveL2D src));
 12188   effect(DEF dst, USE src);
 12189   ins_cost(125);
 12191   format %{ "FLD_D  $src\n\t"
 12192             "FSTP   $dst\t# MoveL2D_stack_reg" %}
 12193   opcode(0xDD);               /* DD /0, FLD m64real */
 12194   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
 12195               Pop_Reg_D(dst) );
 12196   ins_pipe( fpu_reg_mem );
 12197 %}
 12200 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
 12201   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
 12202   match(Set dst (MoveL2D src));
 12203   effect(DEF dst, USE src);
 12205   ins_cost(95);
 12206   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12207   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
 12208   ins_pipe( pipe_slow );
 12209 %}
 12211 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
 12212   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
 12213   match(Set dst (MoveL2D src));
 12214   effect(DEF dst, USE src);
 12216   ins_cost(95);
 12217   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
 12218   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
 12219   ins_pipe( pipe_slow );
 12220 %}
 12222 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
 12223   predicate(UseSSE>=2);
 12224   match(Set dst (MoveL2D src));
 12225   effect(TEMP dst, USE src, TEMP tmp);
 12226   ins_cost(85);
 12227   format %{ "MOVD   $dst,$src.lo\n\t"
 12228             "MOVD   $tmp,$src.hi\n\t"
 12229             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
 12230   ins_encode( MovL2XD_reg(dst, src, tmp) );
 12231   ins_pipe( pipe_slow );
 12232 %}
 12234 // Replicate scalar to packed byte (1 byte) values in xmm
 12235 instruct Repl8B_reg(regXD dst, regXD src) %{
 12236   predicate(UseSSE>=2);
 12237   match(Set dst (Replicate8B src));
 12238   format %{ "MOVDQA  $dst,$src\n\t"
 12239             "PUNPCKLBW $dst,$dst\n\t"
 12240             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12241   ins_encode( pshufd_8x8(dst, src));
 12242   ins_pipe( pipe_slow );
 12243 %}
 12245 // Replicate scalar to packed byte (1 byte) values in xmm
 12246 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
 12247   predicate(UseSSE>=2);
 12248   match(Set dst (Replicate8B src));
 12249   format %{ "MOVD    $dst,$src\n\t"
 12250             "PUNPCKLBW $dst,$dst\n\t"
 12251             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 12252   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 12253   ins_pipe( pipe_slow );
 12254 %}
 12256 // Replicate scalar zero to packed byte (1 byte) values in xmm
 12257 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
 12258   predicate(UseSSE>=2);
 12259   match(Set dst (Replicate8B zero));
 12260   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 12261   ins_encode( pxor(dst, dst));
 12262   ins_pipe( fpu_reg_reg );
 12263 %}
 12265 // Replicate scalar to packed shore (2 byte) values in xmm
 12266 instruct Repl4S_reg(regXD dst, regXD src) %{
 12267   predicate(UseSSE>=2);
 12268   match(Set dst (Replicate4S src));
 12269   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 12270   ins_encode( pshufd_4x16(dst, src));
 12271   ins_pipe( fpu_reg_reg );
 12272 %}
 12274 // Replicate scalar to packed shore (2 byte) values in xmm
 12275 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
 12276   predicate(UseSSE>=2);
 12277   match(Set dst (Replicate4S src));
 12278   format %{ "MOVD    $dst,$src\n\t"
 12279             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 12280   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12281   ins_pipe( fpu_reg_reg );
 12282 %}
 12284 // Replicate scalar zero to packed short (2 byte) values in xmm
 12285 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
 12286   predicate(UseSSE>=2);
 12287   match(Set dst (Replicate4S zero));
 12288   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 12289   ins_encode( pxor(dst, dst));
 12290   ins_pipe( fpu_reg_reg );
 12291 %}
 12293 // Replicate scalar to packed char (2 byte) values in xmm
 12294 instruct Repl4C_reg(regXD dst, regXD src) %{
 12295   predicate(UseSSE>=2);
 12296   match(Set dst (Replicate4C src));
 12297   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 12298   ins_encode( pshufd_4x16(dst, src));
 12299   ins_pipe( fpu_reg_reg );
 12300 %}
 12302 // Replicate scalar to packed char (2 byte) values in xmm
 12303 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
 12304   predicate(UseSSE>=2);
 12305   match(Set dst (Replicate4C src));
 12306   format %{ "MOVD    $dst,$src\n\t"
 12307             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 12308   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 12309   ins_pipe( fpu_reg_reg );
 12310 %}
 12312 // Replicate scalar zero to packed char (2 byte) values in xmm
 12313 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
 12314   predicate(UseSSE>=2);
 12315   match(Set dst (Replicate4C zero));
 12316   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 12317   ins_encode( pxor(dst, dst));
 12318   ins_pipe( fpu_reg_reg );
 12319 %}
 12321 // Replicate scalar to packed integer (4 byte) values in xmm
 12322 instruct Repl2I_reg(regXD dst, regXD src) %{
 12323   predicate(UseSSE>=2);
 12324   match(Set dst (Replicate2I src));
 12325   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 12326   ins_encode( pshufd(dst, src, 0x00));
 12327   ins_pipe( fpu_reg_reg );
 12328 %}
 12330 // Replicate scalar to packed integer (4 byte) values in xmm
 12331 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
 12332   predicate(UseSSE>=2);
 12333   match(Set dst (Replicate2I src));
 12334   format %{ "MOVD   $dst,$src\n\t"
 12335             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 12336   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 12337   ins_pipe( fpu_reg_reg );
 12338 %}
 12340 // Replicate scalar zero to packed integer (2 byte) values in xmm
 12341 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
 12342   predicate(UseSSE>=2);
 12343   match(Set dst (Replicate2I zero));
 12344   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 12345   ins_encode( pxor(dst, dst));
 12346   ins_pipe( fpu_reg_reg );
 12347 %}
 12349 // Replicate scalar to packed single precision floating point values in xmm
 12350 instruct Repl2F_reg(regXD dst, regXD src) %{
 12351   predicate(UseSSE>=2);
 12352   match(Set dst (Replicate2F src));
 12353   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12354   ins_encode( pshufd(dst, src, 0xe0));
 12355   ins_pipe( fpu_reg_reg );
 12356 %}
 12358 // Replicate scalar to packed single precision floating point values in xmm
 12359 instruct Repl2F_regX(regXD dst, regX src) %{
 12360   predicate(UseSSE>=2);
 12361   match(Set dst (Replicate2F src));
 12362   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 12363   ins_encode( pshufd(dst, src, 0xe0));
 12364   ins_pipe( fpu_reg_reg );
 12365 %}
 12367 // Replicate scalar to packed single precision floating point values in xmm
 12368 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
 12369   predicate(UseSSE>=2);
 12370   match(Set dst (Replicate2F zero));
 12371   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 12372   ins_encode( pxor(dst, dst));
 12373   ins_pipe( fpu_reg_reg );
 12374 %}
 12376 // =======================================================================
 12377 // fast clearing of an array
 12378 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
 12379   match(Set dummy (ClearArray cnt base));
 12380   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 12381   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
 12382             "XOR    EAX,EAX\n\t"
 12383             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
 12384   opcode(0,0x4);
 12385   ins_encode( Opcode(0xD1), RegOpc(ECX),
 12386               OpcRegReg(0x33,EAX,EAX),
 12387               Opcode(0xF3), Opcode(0xAB) );
 12388   ins_pipe( pipe_slow );
 12389 %}
 12391 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eBXRegI cnt2,
 12392                         eAXRegI result, regXD tmp1, regXD tmp2, eFlagsReg cr) %{
 12393   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 12394   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
 12396   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
 12397   ins_encode %{
 12398     __ string_compare($str1$$Register, $str2$$Register,
 12399                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12400                       $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12401   %}
 12402   ins_pipe( pipe_slow );
 12403 %}
 12405 // fast string equals
 12406 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
 12407                        regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
 12408   match(Set result (StrEquals (Binary str1 str2) cnt));
 12409   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
 12411   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
 12412   ins_encode %{
 12413     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
 12414                           $cnt$$Register, $result$$Register, $tmp3$$Register,
 12415                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12416   %}
 12417   ins_pipe( pipe_slow );
 12418 %}
 12420 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
 12421                         eBXRegI result, regXD tmp1, eCXRegI tmp2, eFlagsReg cr) %{
 12422   predicate(UseSSE42Intrinsics);
 12423   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
 12424   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
 12426   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp2, $tmp1" %}
 12427   ins_encode %{
 12428     __ string_indexof($str1$$Register, $str2$$Register,
 12429                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
 12430                       $tmp1$$XMMRegister, $tmp2$$Register);
 12431   %}
 12432   ins_pipe( pipe_slow );
 12433 %}
 12435 // fast array equals
 12436 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
 12437                       regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
 12438 %{
 12439   match(Set result (AryEq ary1 ary2));
 12440   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
 12441   //ins_cost(300);
 12443   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
 12444   ins_encode %{
 12445     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
 12446                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
 12447                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
 12448   %}
 12449   ins_pipe( pipe_slow );
 12450 %}
 12452 //----------Control Flow Instructions------------------------------------------
 12453 // Signed compare Instructions
 12454 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
 12455   match(Set cr (CmpI op1 op2));
 12456   effect( DEF cr, USE op1, USE op2 );
 12457   format %{ "CMP    $op1,$op2" %}
 12458   opcode(0x3B);  /* Opcode 3B /r */
 12459   ins_encode( OpcP, RegReg( op1, op2) );
 12460   ins_pipe( ialu_cr_reg_reg );
 12461 %}
 12463 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
 12464   match(Set cr (CmpI op1 op2));
 12465   effect( DEF cr, USE op1 );
 12466   format %{ "CMP    $op1,$op2" %}
 12467   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12468   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
 12469   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12470   ins_pipe( ialu_cr_reg_imm );
 12471 %}
 12473 // Cisc-spilled version of cmpI_eReg
 12474 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
 12475   match(Set cr (CmpI op1 (LoadI op2)));
 12477   format %{ "CMP    $op1,$op2" %}
 12478   ins_cost(500);
 12479   opcode(0x3B);  /* Opcode 3B /r */
 12480   ins_encode( OpcP, RegMem( op1, op2) );
 12481   ins_pipe( ialu_cr_reg_mem );
 12482 %}
 12484 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
 12485   match(Set cr (CmpI src zero));
 12486   effect( DEF cr, USE src );
 12488   format %{ "TEST   $src,$src" %}
 12489   opcode(0x85);
 12490   ins_encode( OpcP, RegReg( src, src ) );
 12491   ins_pipe( ialu_cr_reg_imm );
 12492 %}
 12494 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
 12495   match(Set cr (CmpI (AndI src con) zero));
 12497   format %{ "TEST   $src,$con" %}
 12498   opcode(0xF7,0x00);
 12499   ins_encode( OpcP, RegOpc(src), Con32(con) );
 12500   ins_pipe( ialu_cr_reg_imm );
 12501 %}
 12503 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
 12504   match(Set cr (CmpI (AndI src mem) zero));
 12506   format %{ "TEST   $src,$mem" %}
 12507   opcode(0x85);
 12508   ins_encode( OpcP, RegMem( src, mem ) );
 12509   ins_pipe( ialu_cr_reg_mem );
 12510 %}
 12512 // Unsigned compare Instructions; really, same as signed except they
 12513 // produce an eFlagsRegU instead of eFlagsReg.
 12514 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
 12515   match(Set cr (CmpU op1 op2));
 12517   format %{ "CMPu   $op1,$op2" %}
 12518   opcode(0x3B);  /* Opcode 3B /r */
 12519   ins_encode( OpcP, RegReg( op1, op2) );
 12520   ins_pipe( ialu_cr_reg_reg );
 12521 %}
 12523 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
 12524   match(Set cr (CmpU op1 op2));
 12526   format %{ "CMPu   $op1,$op2" %}
 12527   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12528   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12529   ins_pipe( ialu_cr_reg_imm );
 12530 %}
 12532 // // Cisc-spilled version of cmpU_eReg
 12533 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
 12534   match(Set cr (CmpU op1 (LoadI op2)));
 12536   format %{ "CMPu   $op1,$op2" %}
 12537   ins_cost(500);
 12538   opcode(0x3B);  /* Opcode 3B /r */
 12539   ins_encode( OpcP, RegMem( op1, op2) );
 12540   ins_pipe( ialu_cr_reg_mem );
 12541 %}
 12543 // // Cisc-spilled version of cmpU_eReg
 12544 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
 12545 //  match(Set cr (CmpU (LoadI op1) op2));
 12546 //
 12547 //  format %{ "CMPu   $op1,$op2" %}
 12548 //  ins_cost(500);
 12549 //  opcode(0x39);  /* Opcode 39 /r */
 12550 //  ins_encode( OpcP, RegMem( op1, op2) );
 12551 //%}
 12553 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
 12554   match(Set cr (CmpU src zero));
 12556   format %{ "TESTu  $src,$src" %}
 12557   opcode(0x85);
 12558   ins_encode( OpcP, RegReg( src, src ) );
 12559   ins_pipe( ialu_cr_reg_imm );
 12560 %}
 12562 // Unsigned pointer compare Instructions
 12563 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
 12564   match(Set cr (CmpP op1 op2));
 12566   format %{ "CMPu   $op1,$op2" %}
 12567   opcode(0x3B);  /* Opcode 3B /r */
 12568   ins_encode( OpcP, RegReg( op1, op2) );
 12569   ins_pipe( ialu_cr_reg_reg );
 12570 %}
 12572 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
 12573   match(Set cr (CmpP op1 op2));
 12575   format %{ "CMPu   $op1,$op2" %}
 12576   opcode(0x81,0x07);  /* Opcode 81 /7 */
 12577   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
 12578   ins_pipe( ialu_cr_reg_imm );
 12579 %}
 12581 // // Cisc-spilled version of cmpP_eReg
 12582 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
 12583   match(Set cr (CmpP op1 (LoadP op2)));
 12585   format %{ "CMPu   $op1,$op2" %}
 12586   ins_cost(500);
 12587   opcode(0x3B);  /* Opcode 3B /r */
 12588   ins_encode( OpcP, RegMem( op1, op2) );
 12589   ins_pipe( ialu_cr_reg_mem );
 12590 %}
 12592 // // Cisc-spilled version of cmpP_eReg
 12593 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
 12594 //  match(Set cr (CmpP (LoadP op1) op2));
 12595 //
 12596 //  format %{ "CMPu   $op1,$op2" %}
 12597 //  ins_cost(500);
 12598 //  opcode(0x39);  /* Opcode 39 /r */
 12599 //  ins_encode( OpcP, RegMem( op1, op2) );
 12600 //%}
 12602 // Compare raw pointer (used in out-of-heap check).
 12603 // Only works because non-oop pointers must be raw pointers
 12604 // and raw pointers have no anti-dependencies.
 12605 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
 12606   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
 12607   match(Set cr (CmpP op1 (LoadP op2)));
 12609   format %{ "CMPu   $op1,$op2" %}
 12610   opcode(0x3B);  /* Opcode 3B /r */
 12611   ins_encode( OpcP, RegMem( op1, op2) );
 12612   ins_pipe( ialu_cr_reg_mem );
 12613 %}
 12615 //
 12616 // This will generate a signed flags result. This should be ok
 12617 // since any compare to a zero should be eq/neq.
 12618 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
 12619   match(Set cr (CmpP src zero));
 12621   format %{ "TEST   $src,$src" %}
 12622   opcode(0x85);
 12623   ins_encode( OpcP, RegReg( src, src ) );
 12624   ins_pipe( ialu_cr_reg_imm );
 12625 %}
 12627 // Cisc-spilled version of testP_reg
 12628 // This will generate a signed flags result. This should be ok
 12629 // since any compare to a zero should be eq/neq.
 12630 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
 12631   match(Set cr (CmpP (LoadP op) zero));
 12633   format %{ "TEST   $op,0xFFFFFFFF" %}
 12634   ins_cost(500);
 12635   opcode(0xF7);               /* Opcode F7 /0 */
 12636   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
 12637   ins_pipe( ialu_cr_reg_imm );
 12638 %}
 12640 // Yanked all unsigned pointer compare operations.
 12641 // Pointer compares are done with CmpP which is already unsigned.
 12643 //----------Max and Min--------------------------------------------------------
 12644 // Min Instructions
 12645 ////
 12646 //   *** Min and Max using the conditional move are slower than the
 12647 //   *** branch version on a Pentium III.
 12648 // // Conditional move for min
 12649 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12650 //  effect( USE_DEF op2, USE op1, USE cr );
 12651 //  format %{ "CMOVlt $op2,$op1\t! min" %}
 12652 //  opcode(0x4C,0x0F);
 12653 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12654 //  ins_pipe( pipe_cmov_reg );
 12655 //%}
 12656 //
 12657 //// Min Register with Register (P6 version)
 12658 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12659 //  predicate(VM_Version::supports_cmov() );
 12660 //  match(Set op2 (MinI op1 op2));
 12661 //  ins_cost(200);
 12662 //  expand %{
 12663 //    eFlagsReg cr;
 12664 //    compI_eReg(cr,op1,op2);
 12665 //    cmovI_reg_lt(op2,op1,cr);
 12666 //  %}
 12667 //%}
 12669 // Min Register with Register (generic version)
 12670 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12671   match(Set dst (MinI dst src));
 12672   effect(KILL flags);
 12673   ins_cost(300);
 12675   format %{ "MIN    $dst,$src" %}
 12676   opcode(0xCC);
 12677   ins_encode( min_enc(dst,src) );
 12678   ins_pipe( pipe_slow );
 12679 %}
 12681 // Max Register with Register
 12682 //   *** Min and Max using the conditional move are slower than the
 12683 //   *** branch version on a Pentium III.
 12684 // // Conditional move for max
 12685 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
 12686 //  effect( USE_DEF op2, USE op1, USE cr );
 12687 //  format %{ "CMOVgt $op2,$op1\t! max" %}
 12688 //  opcode(0x4F,0x0F);
 12689 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
 12690 //  ins_pipe( pipe_cmov_reg );
 12691 //%}
 12692 //
 12693 // // Max Register with Register (P6 version)
 12694 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
 12695 //  predicate(VM_Version::supports_cmov() );
 12696 //  match(Set op2 (MaxI op1 op2));
 12697 //  ins_cost(200);
 12698 //  expand %{
 12699 //    eFlagsReg cr;
 12700 //    compI_eReg(cr,op1,op2);
 12701 //    cmovI_reg_gt(op2,op1,cr);
 12702 //  %}
 12703 //%}
 12705 // Max Register with Register (generic version)
 12706 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
 12707   match(Set dst (MaxI dst src));
 12708   effect(KILL flags);
 12709   ins_cost(300);
 12711   format %{ "MAX    $dst,$src" %}
 12712   opcode(0xCC);
 12713   ins_encode( max_enc(dst,src) );
 12714   ins_pipe( pipe_slow );
 12715 %}
 12717 // ============================================================================
 12718 // Branch Instructions
 12719 // Jump Table
 12720 instruct jumpXtnd(eRegI switch_val) %{
 12721   match(Jump switch_val);
 12722   ins_cost(350);
 12724   format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
 12726   ins_encode %{
 12727     address table_base  = __ address_table_constant(_index2label);
 12729     // Jump to Address(table_base + switch_reg)
 12730     InternalAddress table(table_base);
 12731     Address index(noreg, $switch_val$$Register, Address::times_1);
 12732     __ jump(ArrayAddress(table, index));
 12733   %}
 12734   ins_pc_relative(1);
 12735   ins_pipe(pipe_jmp);
 12736 %}
 12738 // Jump Direct - Label defines a relative address from JMP+1
 12739 instruct jmpDir(label labl) %{
 12740   match(Goto);
 12741   effect(USE labl);
 12743   ins_cost(300);
 12744   format %{ "JMP    $labl" %}
 12745   size(5);
 12746   opcode(0xE9);
 12747   ins_encode( OpcP, Lbl( labl ) );
 12748   ins_pipe( pipe_jmp );
 12749   ins_pc_relative(1);
 12750 %}
 12752 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12753 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
 12754   match(If cop cr);
 12755   effect(USE labl);
 12757   ins_cost(300);
 12758   format %{ "J$cop    $labl" %}
 12759   size(6);
 12760   opcode(0x0F, 0x80);
 12761   ins_encode( Jcc( cop, labl) );
 12762   ins_pipe( pipe_jcc );
 12763   ins_pc_relative(1);
 12764 %}
 12766 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12767 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
 12768   match(CountedLoopEnd cop cr);
 12769   effect(USE labl);
 12771   ins_cost(300);
 12772   format %{ "J$cop    $labl\t# Loop end" %}
 12773   size(6);
 12774   opcode(0x0F, 0x80);
 12775   ins_encode( Jcc( cop, labl) );
 12776   ins_pipe( pipe_jcc );
 12777   ins_pc_relative(1);
 12778 %}
 12780 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12781 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12782   match(CountedLoopEnd cop cmp);
 12783   effect(USE labl);
 12785   ins_cost(300);
 12786   format %{ "J$cop,u  $labl\t# Loop end" %}
 12787   size(6);
 12788   opcode(0x0F, 0x80);
 12789   ins_encode( Jcc( cop, labl) );
 12790   ins_pipe( pipe_jcc );
 12791   ins_pc_relative(1);
 12792 %}
 12794 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12795   match(CountedLoopEnd cop cmp);
 12796   effect(USE labl);
 12798   ins_cost(200);
 12799   format %{ "J$cop,u  $labl\t# Loop end" %}
 12800   size(6);
 12801   opcode(0x0F, 0x80);
 12802   ins_encode( Jcc( cop, labl) );
 12803   ins_pipe( pipe_jcc );
 12804   ins_pc_relative(1);
 12805 %}
 12807 // Jump Direct Conditional - using unsigned comparison
 12808 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12809   match(If cop cmp);
 12810   effect(USE labl);
 12812   ins_cost(300);
 12813   format %{ "J$cop,u  $labl" %}
 12814   size(6);
 12815   opcode(0x0F, 0x80);
 12816   ins_encode(Jcc(cop, labl));
 12817   ins_pipe(pipe_jcc);
 12818   ins_pc_relative(1);
 12819 %}
 12821 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12822   match(If cop cmp);
 12823   effect(USE labl);
 12825   ins_cost(200);
 12826   format %{ "J$cop,u  $labl" %}
 12827   size(6);
 12828   opcode(0x0F, 0x80);
 12829   ins_encode(Jcc(cop, labl));
 12830   ins_pipe(pipe_jcc);
 12831   ins_pc_relative(1);
 12832 %}
 12834 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 12835   match(If cop cmp);
 12836   effect(USE labl);
 12838   ins_cost(200);
 12839   format %{ $$template
 12840     if ($cop$$cmpcode == Assembler::notEqual) {
 12841       $$emit$$"JP,u   $labl\n\t"
 12842       $$emit$$"J$cop,u   $labl"
 12843     } else {
 12844       $$emit$$"JP,u   done\n\t"
 12845       $$emit$$"J$cop,u   $labl\n\t"
 12846       $$emit$$"done:"
 12848   %}
 12849   size(12);
 12850   opcode(0x0F, 0x80);
 12851   ins_encode %{
 12852     Label* l = $labl$$label;
 12853     $$$emit8$primary;
 12854     emit_cc(cbuf, $secondary, Assembler::parity);
 12855     int parity_disp = -1;
 12856     bool ok = false;
 12857     if ($cop$$cmpcode == Assembler::notEqual) {
 12858        // the two jumps 6 bytes apart so the jump distances are too
 12859        parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12860     } else if ($cop$$cmpcode == Assembler::equal) {
 12861        parity_disp = 6;
 12862        ok = true;
 12863     } else {
 12864        ShouldNotReachHere();
 12866     emit_d32(cbuf, parity_disp);
 12867     $$$emit8$primary;
 12868     emit_cc(cbuf, $secondary, $cop$$cmpcode);
 12869     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 12870     emit_d32(cbuf, disp);
 12871   %}
 12872   ins_pipe(pipe_jcc);
 12873   ins_pc_relative(1);
 12874 %}
 12876 // ============================================================================
 12877 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
 12878 // array for an instance of the superklass.  Set a hidden internal cache on a
 12879 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
 12880 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
 12881 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
 12882   match(Set result (PartialSubtypeCheck sub super));
 12883   effect( KILL rcx, KILL cr );
 12885   ins_cost(1100);  // slightly larger than the next version
 12886   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12887             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12888             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12889             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12890             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
 12891             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
 12892             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
 12893      "miss:\t" %}
 12895   opcode(0x1); // Force a XOR of EDI
 12896   ins_encode( enc_PartialSubtypeCheck() );
 12897   ins_pipe( pipe_slow );
 12898 %}
 12900 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
 12901   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 12902   effect( KILL rcx, KILL result );
 12904   ins_cost(1000);
 12905   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
 12906             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
 12907             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
 12908             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
 12909             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
 12910             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
 12911      "miss:\t" %}
 12913   opcode(0x0);  // No need to XOR EDI
 12914   ins_encode( enc_PartialSubtypeCheck() );
 12915   ins_pipe( pipe_slow );
 12916 %}
 12918 // ============================================================================
 12919 // Branch Instructions -- short offset versions
 12920 //
 12921 // These instructions are used to replace jumps of a long offset (the default
 12922 // match) with jumps of a shorter offset.  These instructions are all tagged
 12923 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 12924 // match rules in general matching.  Instead, the ADLC generates a conversion
 12925 // method in the MachNode which can be used to do in-place replacement of the
 12926 // long variant with the shorter variant.  The compiler will determine if a
 12927 // branch can be taken by the is_short_branch_offset() predicate in the machine
 12928 // specific code section of the file.
 12930 // Jump Direct - Label defines a relative address from JMP+1
 12931 instruct jmpDir_short(label labl) %{
 12932   match(Goto);
 12933   effect(USE labl);
 12935   ins_cost(300);
 12936   format %{ "JMP,s  $labl" %}
 12937   size(2);
 12938   opcode(0xEB);
 12939   ins_encode( OpcP, LblShort( labl ) );
 12940   ins_pipe( pipe_jmp );
 12941   ins_pc_relative(1);
 12942   ins_short_branch(1);
 12943 %}
 12945 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12946 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12947   match(If cop cr);
 12948   effect(USE labl);
 12950   ins_cost(300);
 12951   format %{ "J$cop,s  $labl" %}
 12952   size(2);
 12953   opcode(0x70);
 12954   ins_encode( JccShort( cop, labl) );
 12955   ins_pipe( pipe_jcc );
 12956   ins_pc_relative(1);
 12957   ins_short_branch(1);
 12958 %}
 12960 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12961 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
 12962   match(CountedLoopEnd cop cr);
 12963   effect(USE labl);
 12965   ins_cost(300);
 12966   format %{ "J$cop,s  $labl\t# Loop end" %}
 12967   size(2);
 12968   opcode(0x70);
 12969   ins_encode( JccShort( cop, labl) );
 12970   ins_pipe( pipe_jcc );
 12971   ins_pc_relative(1);
 12972   ins_short_branch(1);
 12973 %}
 12975 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 12976 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 12977   match(CountedLoopEnd cop cmp);
 12978   effect(USE labl);
 12980   ins_cost(300);
 12981   format %{ "J$cop,us $labl\t# Loop end" %}
 12982   size(2);
 12983   opcode(0x70);
 12984   ins_encode( JccShort( cop, labl) );
 12985   ins_pipe( pipe_jcc );
 12986   ins_pc_relative(1);
 12987   ins_short_branch(1);
 12988 %}
 12990 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 12991   match(CountedLoopEnd cop cmp);
 12992   effect(USE labl);
 12994   ins_cost(300);
 12995   format %{ "J$cop,us $labl\t# Loop end" %}
 12996   size(2);
 12997   opcode(0x70);
 12998   ins_encode( JccShort( cop, labl) );
 12999   ins_pipe( pipe_jcc );
 13000   ins_pc_relative(1);
 13001   ins_short_branch(1);
 13002 %}
 13004 // Jump Direct Conditional - using unsigned comparison
 13005 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
 13006   match(If cop cmp);
 13007   effect(USE labl);
 13009   ins_cost(300);
 13010   format %{ "J$cop,us $labl" %}
 13011   size(2);
 13012   opcode(0x70);
 13013   ins_encode( JccShort( cop, labl) );
 13014   ins_pipe( pipe_jcc );
 13015   ins_pc_relative(1);
 13016   ins_short_branch(1);
 13017 %}
 13019 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
 13020   match(If cop cmp);
 13021   effect(USE labl);
 13023   ins_cost(300);
 13024   format %{ "J$cop,us $labl" %}
 13025   size(2);
 13026   opcode(0x70);
 13027   ins_encode( JccShort( cop, labl) );
 13028   ins_pipe( pipe_jcc );
 13029   ins_pc_relative(1);
 13030   ins_short_branch(1);
 13031 %}
 13033 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
 13034   match(If cop cmp);
 13035   effect(USE labl);
 13037   ins_cost(300);
 13038   format %{ $$template
 13039     if ($cop$$cmpcode == Assembler::notEqual) {
 13040       $$emit$$"JP,u,s   $labl\n\t"
 13041       $$emit$$"J$cop,u,s   $labl"
 13042     } else {
 13043       $$emit$$"JP,u,s   done\n\t"
 13044       $$emit$$"J$cop,u,s  $labl\n\t"
 13045       $$emit$$"done:"
 13047   %}
 13048   size(4);
 13049   opcode(0x70);
 13050   ins_encode %{
 13051     Label* l = $labl$$label;
 13052     emit_cc(cbuf, $primary, Assembler::parity);
 13053     int parity_disp = -1;
 13054     if ($cop$$cmpcode == Assembler::notEqual) {
 13055       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 13056     } else if ($cop$$cmpcode == Assembler::equal) {
 13057       parity_disp = 2;
 13058     } else {
 13059       ShouldNotReachHere();
 13061     emit_d8(cbuf, parity_disp);
 13062     emit_cc(cbuf, $primary, $cop$$cmpcode);
 13063     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 13064     emit_d8(cbuf, disp);
 13065     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
 13066     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
 13067   %}
 13068   ins_pipe(pipe_jcc);
 13069   ins_pc_relative(1);
 13070   ins_short_branch(1);
 13071 %}
 13073 // ============================================================================
 13074 // Long Compare
 13075 //
 13076 // Currently we hold longs in 2 registers.  Comparing such values efficiently
 13077 // is tricky.  The flavor of compare used depends on whether we are testing
 13078 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
 13079 // The GE test is the negated LT test.  The LE test can be had by commuting
 13080 // the operands (yielding a GE test) and then negating; negate again for the
 13081 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
 13082 // NE test is negated from that.
 13084 // Due to a shortcoming in the ADLC, it mixes up expressions like:
 13085 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
 13086 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
 13087 // are collapsed internally in the ADLC's dfa-gen code.  The match for
 13088 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
 13089 // foo match ends up with the wrong leaf.  One fix is to not match both
 13090 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
 13091 // both forms beat the trinary form of long-compare and both are very useful
 13092 // on Intel which has so few registers.
 13094 // Manifest a CmpL result in an integer register.  Very painful.
 13095 // This is the test to avoid.
 13096 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
 13097   match(Set dst (CmpL3 src1 src2));
 13098   effect( KILL flags );
 13099   ins_cost(1000);
 13100   format %{ "XOR    $dst,$dst\n\t"
 13101             "CMP    $src1.hi,$src2.hi\n\t"
 13102             "JLT,s  m_one\n\t"
 13103             "JGT,s  p_one\n\t"
 13104             "CMP    $src1.lo,$src2.lo\n\t"
 13105             "JB,s   m_one\n\t"
 13106             "JEQ,s  done\n"
 13107     "p_one:\tINC    $dst\n\t"
 13108             "JMP,s  done\n"
 13109     "m_one:\tDEC    $dst\n"
 13110      "done:" %}
 13111   ins_encode %{
 13112     Label p_one, m_one, done;
 13113     __ xorptr($dst$$Register, $dst$$Register);
 13114     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
 13115     __ jccb(Assembler::less,    m_one);
 13116     __ jccb(Assembler::greater, p_one);
 13117     __ cmpl($src1$$Register, $src2$$Register);
 13118     __ jccb(Assembler::below,   m_one);
 13119     __ jccb(Assembler::equal,   done);
 13120     __ bind(p_one);
 13121     __ incrementl($dst$$Register);
 13122     __ jmpb(done);
 13123     __ bind(m_one);
 13124     __ decrementl($dst$$Register);
 13125     __ bind(done);
 13126   %}
 13127   ins_pipe( pipe_slow );
 13128 %}
 13130 //======
 13131 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13132 // compares.  Can be used for LE or GT compares by reversing arguments.
 13133 // NOT GOOD FOR EQ/NE tests.
 13134 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
 13135   match( Set flags (CmpL src zero ));
 13136   ins_cost(100);
 13137   format %{ "TEST   $src.hi,$src.hi" %}
 13138   opcode(0x85);
 13139   ins_encode( OpcP, RegReg_Hi2( src, src ) );
 13140   ins_pipe( ialu_cr_reg_reg );
 13141 %}
 13143 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
 13144 // compares.  Can be used for LE or GT compares by reversing arguments.
 13145 // NOT GOOD FOR EQ/NE tests.
 13146 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13147   match( Set flags (CmpL src1 src2 ));
 13148   effect( TEMP tmp );
 13149   ins_cost(300);
 13150   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13151             "MOV    $tmp,$src1.hi\n\t"
 13152             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
 13153   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
 13154   ins_pipe( ialu_cr_reg_reg );
 13155 %}
 13157 // Long compares reg < zero/req OR reg >= zero/req.
 13158 // Just a wrapper for a normal branch, plus the predicate test.
 13159 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
 13160   match(If cmp flags);
 13161   effect(USE labl);
 13162   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13163   expand %{
 13164     jmpCon(cmp,flags,labl);    // JLT or JGE...
 13165   %}
 13166 %}
 13168 // Compare 2 longs and CMOVE longs.
 13169 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
 13170   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13171   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13172   ins_cost(400);
 13173   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13174             "CMOV$cmp $dst.hi,$src.hi" %}
 13175   opcode(0x0F,0x40);
 13176   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13177   ins_pipe( pipe_cmov_reg_long );
 13178 %}
 13180 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
 13181   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13182   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13183   ins_cost(500);
 13184   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13185             "CMOV$cmp $dst.hi,$src.hi" %}
 13186   opcode(0x0F,0x40);
 13187   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13188   ins_pipe( pipe_cmov_reg_long );
 13189 %}
 13191 // Compare 2 longs and CMOVE ints.
 13192 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
 13193   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13194   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13195   ins_cost(200);
 13196   format %{ "CMOV$cmp $dst,$src" %}
 13197   opcode(0x0F,0x40);
 13198   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13199   ins_pipe( pipe_cmov_reg );
 13200 %}
 13202 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
 13203   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13204   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13205   ins_cost(250);
 13206   format %{ "CMOV$cmp $dst,$src" %}
 13207   opcode(0x0F,0x40);
 13208   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13209   ins_pipe( pipe_cmov_mem );
 13210 %}
 13212 // Compare 2 longs and CMOVE ints.
 13213 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
 13214   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
 13215   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13216   ins_cost(200);
 13217   format %{ "CMOV$cmp $dst,$src" %}
 13218   opcode(0x0F,0x40);
 13219   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13220   ins_pipe( pipe_cmov_reg );
 13221 %}
 13223 // Compare 2 longs and CMOVE doubles
 13224 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
 13225   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13226   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13227   ins_cost(200);
 13228   expand %{
 13229     fcmovD_regS(cmp,flags,dst,src);
 13230   %}
 13231 %}
 13233 // Compare 2 longs and CMOVE doubles
 13234 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
 13235   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13236   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13237   ins_cost(200);
 13238   expand %{
 13239     fcmovXD_regS(cmp,flags,dst,src);
 13240   %}
 13241 %}
 13243 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
 13244   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13245   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13246   ins_cost(200);
 13247   expand %{
 13248     fcmovF_regS(cmp,flags,dst,src);
 13249   %}
 13250 %}
 13252 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
 13253   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
 13254   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13255   ins_cost(200);
 13256   expand %{
 13257     fcmovX_regS(cmp,flags,dst,src);
 13258   %}
 13259 %}
 13261 //======
 13262 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13263 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13264   match( Set flags (CmpL src zero ));
 13265   effect(TEMP tmp);
 13266   ins_cost(200);
 13267   format %{ "MOV    $tmp,$src.lo\n\t"
 13268             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
 13269   ins_encode( long_cmp_flags0( src, tmp ) );
 13270   ins_pipe( ialu_reg_reg_long );
 13271 %}
 13273 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
 13274 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
 13275   match( Set flags (CmpL src1 src2 ));
 13276   ins_cost(200+300);
 13277   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
 13278             "JNE,s  skip\n\t"
 13279             "CMP    $src1.hi,$src2.hi\n\t"
 13280      "skip:\t" %}
 13281   ins_encode( long_cmp_flags1( src1, src2 ) );
 13282   ins_pipe( ialu_cr_reg_reg );
 13283 %}
 13285 // Long compare reg == zero/reg OR reg != zero/reg
 13286 // Just a wrapper for a normal branch, plus the predicate test.
 13287 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
 13288   match(If cmp flags);
 13289   effect(USE labl);
 13290   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13291   expand %{
 13292     jmpCon(cmp,flags,labl);    // JEQ or JNE...
 13293   %}
 13294 %}
 13296 // Compare 2 longs and CMOVE longs.
 13297 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
 13298   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13299   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13300   ins_cost(400);
 13301   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13302             "CMOV$cmp $dst.hi,$src.hi" %}
 13303   opcode(0x0F,0x40);
 13304   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13305   ins_pipe( pipe_cmov_reg_long );
 13306 %}
 13308 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
 13309   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13310   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13311   ins_cost(500);
 13312   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13313             "CMOV$cmp $dst.hi,$src.hi" %}
 13314   opcode(0x0F,0x40);
 13315   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13316   ins_pipe( pipe_cmov_reg_long );
 13317 %}
 13319 // Compare 2 longs and CMOVE ints.
 13320 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
 13321   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13322   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13323   ins_cost(200);
 13324   format %{ "CMOV$cmp $dst,$src" %}
 13325   opcode(0x0F,0x40);
 13326   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13327   ins_pipe( pipe_cmov_reg );
 13328 %}
 13330 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
 13331   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13332   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13333   ins_cost(250);
 13334   format %{ "CMOV$cmp $dst,$src" %}
 13335   opcode(0x0F,0x40);
 13336   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13337   ins_pipe( pipe_cmov_mem );
 13338 %}
 13340 // Compare 2 longs and CMOVE ints.
 13341 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
 13342   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
 13343   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13344   ins_cost(200);
 13345   format %{ "CMOV$cmp $dst,$src" %}
 13346   opcode(0x0F,0x40);
 13347   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13348   ins_pipe( pipe_cmov_reg );
 13349 %}
 13351 // Compare 2 longs and CMOVE doubles
 13352 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
 13353   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13354   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13355   ins_cost(200);
 13356   expand %{
 13357     fcmovD_regS(cmp,flags,dst,src);
 13358   %}
 13359 %}
 13361 // Compare 2 longs and CMOVE doubles
 13362 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
 13363   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13364   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13365   ins_cost(200);
 13366   expand %{
 13367     fcmovXD_regS(cmp,flags,dst,src);
 13368   %}
 13369 %}
 13371 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
 13372   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13373   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13374   ins_cost(200);
 13375   expand %{
 13376     fcmovF_regS(cmp,flags,dst,src);
 13377   %}
 13378 %}
 13380 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
 13381   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
 13382   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13383   ins_cost(200);
 13384   expand %{
 13385     fcmovX_regS(cmp,flags,dst,src);
 13386   %}
 13387 %}
 13389 //======
 13390 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13391 // Same as cmpL_reg_flags_LEGT except must negate src
 13392 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
 13393   match( Set flags (CmpL src zero ));
 13394   effect( TEMP tmp );
 13395   ins_cost(300);
 13396   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
 13397             "CMP    $tmp,$src.lo\n\t"
 13398             "SBB    $tmp,$src.hi\n\t" %}
 13399   ins_encode( long_cmp_flags3(src, tmp) );
 13400   ins_pipe( ialu_reg_reg_long );
 13401 %}
 13403 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
 13404 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
 13405 // requires a commuted test to get the same result.
 13406 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
 13407   match( Set flags (CmpL src1 src2 ));
 13408   effect( TEMP tmp );
 13409   ins_cost(300);
 13410   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
 13411             "MOV    $tmp,$src2.hi\n\t"
 13412             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
 13413   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
 13414   ins_pipe( ialu_cr_reg_reg );
 13415 %}
 13417 // Long compares reg < zero/req OR reg >= zero/req.
 13418 // Just a wrapper for a normal branch, plus the predicate test
 13419 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
 13420   match(If cmp flags);
 13421   effect(USE labl);
 13422   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
 13423   ins_cost(300);
 13424   expand %{
 13425     jmpCon(cmp,flags,labl);    // JGT or JLE...
 13426   %}
 13427 %}
 13429 // Compare 2 longs and CMOVE longs.
 13430 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
 13431   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
 13432   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13433   ins_cost(400);
 13434   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13435             "CMOV$cmp $dst.hi,$src.hi" %}
 13436   opcode(0x0F,0x40);
 13437   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
 13438   ins_pipe( pipe_cmov_reg_long );
 13439 %}
 13441 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
 13442   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
 13443   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13444   ins_cost(500);
 13445   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
 13446             "CMOV$cmp $dst.hi,$src.hi+4" %}
 13447   opcode(0x0F,0x40);
 13448   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
 13449   ins_pipe( pipe_cmov_reg_long );
 13450 %}
 13452 // Compare 2 longs and CMOVE ints.
 13453 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
 13454   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13455   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
 13456   ins_cost(200);
 13457   format %{ "CMOV$cmp $dst,$src" %}
 13458   opcode(0x0F,0x40);
 13459   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13460   ins_pipe( pipe_cmov_reg );
 13461 %}
 13463 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
 13464   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13465   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
 13466   ins_cost(250);
 13467   format %{ "CMOV$cmp $dst,$src" %}
 13468   opcode(0x0F,0x40);
 13469   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
 13470   ins_pipe( pipe_cmov_mem );
 13471 %}
 13473 // Compare 2 longs and CMOVE ptrs.
 13474 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
 13475   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
 13476   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
 13477   ins_cost(200);
 13478   format %{ "CMOV$cmp $dst,$src" %}
 13479   opcode(0x0F,0x40);
 13480   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
 13481   ins_pipe( pipe_cmov_reg );
 13482 %}
 13484 // Compare 2 longs and CMOVE doubles
 13485 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
 13486   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13487   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13488   ins_cost(200);
 13489   expand %{
 13490     fcmovD_regS(cmp,flags,dst,src);
 13491   %}
 13492 %}
 13494 // Compare 2 longs and CMOVE doubles
 13495 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
 13496   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13497   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
 13498   ins_cost(200);
 13499   expand %{
 13500     fcmovXD_regS(cmp,flags,dst,src);
 13501   %}
 13502 %}
 13504 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
 13505   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13506   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13507   ins_cost(200);
 13508   expand %{
 13509     fcmovF_regS(cmp,flags,dst,src);
 13510   %}
 13511 %}
 13514 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
 13515   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
 13516   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
 13517   ins_cost(200);
 13518   expand %{
 13519     fcmovX_regS(cmp,flags,dst,src);
 13520   %}
 13521 %}
 13524 // ============================================================================
 13525 // Procedure Call/Return Instructions
 13526 // Call Java Static Instruction
 13527 // Note: If this code changes, the corresponding ret_addr_offset() and
 13528 //       compute_padding() functions will have to be adjusted.
 13529 instruct CallStaticJavaDirect(method meth) %{
 13530   match(CallStaticJava);
 13531   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13532   effect(USE meth);
 13534   ins_cost(300);
 13535   format %{ "CALL,static " %}
 13536   opcode(0xE8); /* E8 cd */
 13537   ins_encode( pre_call_FPU,
 13538               Java_Static_Call( meth ),
 13539               call_epilog,
 13540               post_call_FPU );
 13541   ins_pipe( pipe_slow );
 13542   ins_pc_relative(1);
 13543   ins_alignment(4);
 13544 %}
 13546 // Call Java Static Instruction (method handle version)
 13547 // Note: If this code changes, the corresponding ret_addr_offset() and
 13548 //       compute_padding() functions will have to be adjusted.
 13549 instruct CallStaticJavaHandle(method meth, eBPRegP ebp) %{
 13550   match(CallStaticJava);
 13551   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 13552   effect(USE meth);
 13553   // EBP is saved by all callees (for interpreter stack correction).
 13554   // We use it here for a similar purpose, in {preserve,restore}_SP.
 13556   ins_cost(300);
 13557   format %{ "CALL,static/MethodHandle " %}
 13558   opcode(0xE8); /* E8 cd */
 13559   ins_encode( pre_call_FPU,
 13560               preserve_SP,
 13561               Java_Static_Call( meth ),
 13562               restore_SP,
 13563               call_epilog,
 13564               post_call_FPU );
 13565   ins_pipe( pipe_slow );
 13566   ins_pc_relative(1);
 13567   ins_alignment(4);
 13568 %}
 13570 // Call Java Dynamic Instruction
 13571 // Note: If this code changes, the corresponding ret_addr_offset() and
 13572 //       compute_padding() functions will have to be adjusted.
 13573 instruct CallDynamicJavaDirect(method meth) %{
 13574   match(CallDynamicJava);
 13575   effect(USE meth);
 13577   ins_cost(300);
 13578   format %{ "MOV    EAX,(oop)-1\n\t"
 13579             "CALL,dynamic" %}
 13580   opcode(0xE8); /* E8 cd */
 13581   ins_encode( pre_call_FPU,
 13582               Java_Dynamic_Call( meth ),
 13583               call_epilog,
 13584               post_call_FPU );
 13585   ins_pipe( pipe_slow );
 13586   ins_pc_relative(1);
 13587   ins_alignment(4);
 13588 %}
 13590 // Call Runtime Instruction
 13591 instruct CallRuntimeDirect(method meth) %{
 13592   match(CallRuntime );
 13593   effect(USE meth);
 13595   ins_cost(300);
 13596   format %{ "CALL,runtime " %}
 13597   opcode(0xE8); /* E8 cd */
 13598   // Use FFREEs to clear entries in float stack
 13599   ins_encode( pre_call_FPU,
 13600               FFree_Float_Stack_All,
 13601               Java_To_Runtime( meth ),
 13602               post_call_FPU );
 13603   ins_pipe( pipe_slow );
 13604   ins_pc_relative(1);
 13605 %}
 13607 // Call runtime without safepoint
 13608 instruct CallLeafDirect(method meth) %{
 13609   match(CallLeaf);
 13610   effect(USE meth);
 13612   ins_cost(300);
 13613   format %{ "CALL_LEAF,runtime " %}
 13614   opcode(0xE8); /* E8 cd */
 13615   ins_encode( pre_call_FPU,
 13616               FFree_Float_Stack_All,
 13617               Java_To_Runtime( meth ),
 13618               Verify_FPU_For_Leaf, post_call_FPU );
 13619   ins_pipe( pipe_slow );
 13620   ins_pc_relative(1);
 13621 %}
 13623 instruct CallLeafNoFPDirect(method meth) %{
 13624   match(CallLeafNoFP);
 13625   effect(USE meth);
 13627   ins_cost(300);
 13628   format %{ "CALL_LEAF_NOFP,runtime " %}
 13629   opcode(0xE8); /* E8 cd */
 13630   ins_encode(Java_To_Runtime(meth));
 13631   ins_pipe( pipe_slow );
 13632   ins_pc_relative(1);
 13633 %}
 13636 // Return Instruction
 13637 // Remove the return address & jump to it.
 13638 instruct Ret() %{
 13639   match(Return);
 13640   format %{ "RET" %}
 13641   opcode(0xC3);
 13642   ins_encode(OpcP);
 13643   ins_pipe( pipe_jmp );
 13644 %}
 13646 // Tail Call; Jump from runtime stub to Java code.
 13647 // Also known as an 'interprocedural jump'.
 13648 // Target of jump will eventually return to caller.
 13649 // TailJump below removes the return address.
 13650 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
 13651   match(TailCall jump_target method_oop );
 13652   ins_cost(300);
 13653   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
 13654   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13655   ins_encode( OpcP, RegOpc(jump_target) );
 13656   ins_pipe( pipe_jmp );
 13657 %}
 13660 // Tail Jump; remove the return address; jump to target.
 13661 // TailCall above leaves the return address around.
 13662 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
 13663   match( TailJump jump_target ex_oop );
 13664   ins_cost(300);
 13665   format %{ "POP    EDX\t# pop return address into dummy\n\t"
 13666             "JMP    $jump_target " %}
 13667   opcode(0xFF, 0x4);  /* Opcode FF /4 */
 13668   ins_encode( enc_pop_rdx,
 13669               OpcP, RegOpc(jump_target) );
 13670   ins_pipe( pipe_jmp );
 13671 %}
 13673 // Create exception oop: created by stack-crawling runtime code.
 13674 // Created exception is now available to this handler, and is setup
 13675 // just prior to jumping to this handler.  No code emitted.
 13676 instruct CreateException( eAXRegP ex_oop )
 13677 %{
 13678   match(Set ex_oop (CreateEx));
 13680   size(0);
 13681   // use the following format syntax
 13682   format %{ "# exception oop is in EAX; no code emitted" %}
 13683   ins_encode();
 13684   ins_pipe( empty );
 13685 %}
 13688 // Rethrow exception:
 13689 // The exception oop will come in the first argument position.
 13690 // Then JUMP (not call) to the rethrow stub code.
 13691 instruct RethrowException()
 13692 %{
 13693   match(Rethrow);
 13695   // use the following format syntax
 13696   format %{ "JMP    rethrow_stub" %}
 13697   ins_encode(enc_rethrow);
 13698   ins_pipe( pipe_jmp );
 13699 %}
 13701 // inlined locking and unlocking
 13704 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
 13705   match( Set cr (FastLock object box) );
 13706   effect( TEMP tmp, TEMP scr );
 13707   ins_cost(300);
 13708   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
 13709   ins_encode( Fast_Lock(object,box,tmp,scr) );
 13710   ins_pipe( pipe_slow );
 13711   ins_pc_relative(1);
 13712 %}
 13714 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
 13715   match( Set cr (FastUnlock object box) );
 13716   effect( TEMP tmp );
 13717   ins_cost(300);
 13718   format %{ "FASTUNLOCK $object, $box, $tmp" %}
 13719   ins_encode( Fast_Unlock(object,box,tmp) );
 13720   ins_pipe( pipe_slow );
 13721   ins_pc_relative(1);
 13722 %}
 13726 // ============================================================================
 13727 // Safepoint Instruction
 13728 instruct safePoint_poll(eFlagsReg cr) %{
 13729   match(SafePoint);
 13730   effect(KILL cr);
 13732   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
 13733   // On SPARC that might be acceptable as we can generate the address with
 13734   // just a sethi, saving an or.  By polling at offset 0 we can end up
 13735   // putting additional pressure on the index-0 in the D$.  Because of
 13736   // alignment (just like the situation at hand) the lower indices tend
 13737   // to see more traffic.  It'd be better to change the polling address
 13738   // to offset 0 of the last $line in the polling page.
 13740   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
 13741   ins_cost(125);
 13742   size(6) ;
 13743   ins_encode( Safepoint_Poll() );
 13744   ins_pipe( ialu_reg_mem );
 13745 %}
 13747 //----------PEEPHOLE RULES-----------------------------------------------------
 13748 // These must follow all instruction definitions as they use the names
 13749 // defined in the instructions definitions.
 13750 //
 13751 // peepmatch ( root_instr_name [preceding_instruction]* );
 13752 //
 13753 // peepconstraint %{
 13754 // (instruction_number.operand_name relational_op instruction_number.operand_name
 13755 //  [, ...] );
 13756 // // instruction numbers are zero-based using left to right order in peepmatch
 13757 //
 13758 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 13759 // // provide an instruction_number.operand_name for each operand that appears
 13760 // // in the replacement instruction's match rule
 13761 //
 13762 // ---------VM FLAGS---------------------------------------------------------
 13763 //
 13764 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 13765 //
 13766 // Each peephole rule is given an identifying number starting with zero and
 13767 // increasing by one in the order seen by the parser.  An individual peephole
 13768 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 13769 // on the command-line.
 13770 //
 13771 // ---------CURRENT LIMITATIONS----------------------------------------------
 13772 //
 13773 // Only match adjacent instructions in same basic block
 13774 // Only equality constraints
 13775 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 13776 // Only one replacement instruction
 13777 //
 13778 // ---------EXAMPLE----------------------------------------------------------
 13779 //
 13780 // // pertinent parts of existing instructions in architecture description
 13781 // instruct movI(eRegI dst, eRegI src) %{
 13782 //   match(Set dst (CopyI src));
 13783 // %}
 13784 //
 13785 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 13786 //   match(Set dst (AddI dst src));
 13787 //   effect(KILL cr);
 13788 // %}
 13789 //
 13790 // // Change (inc mov) to lea
 13791 // peephole %{
 13792 //   // increment preceeded by register-register move
 13793 //   peepmatch ( incI_eReg movI );
 13794 //   // require that the destination register of the increment
 13795 //   // match the destination register of the move
 13796 //   peepconstraint ( 0.dst == 1.dst );
 13797 //   // construct a replacement instruction that sets
 13798 //   // the destination to ( move's source register + one )
 13799 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13800 // %}
 13801 //
 13802 // Implementation no longer uses movX instructions since
 13803 // machine-independent system no longer uses CopyX nodes.
 13804 //
 13805 // peephole %{
 13806 //   peepmatch ( incI_eReg movI );
 13807 //   peepconstraint ( 0.dst == 1.dst );
 13808 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13809 // %}
 13810 //
 13811 // peephole %{
 13812 //   peepmatch ( decI_eReg movI );
 13813 //   peepconstraint ( 0.dst == 1.dst );
 13814 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13815 // %}
 13816 //
 13817 // peephole %{
 13818 //   peepmatch ( addI_eReg_imm movI );
 13819 //   peepconstraint ( 0.dst == 1.dst );
 13820 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 13821 // %}
 13822 //
 13823 // peephole %{
 13824 //   peepmatch ( addP_eReg_imm movP );
 13825 //   peepconstraint ( 0.dst == 1.dst );
 13826 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 13827 // %}
 13829 // // Change load of spilled value to only a spill
 13830 // instruct storeI(memory mem, eRegI src) %{
 13831 //   match(Set mem (StoreI mem src));
 13832 // %}
 13833 //
 13834 // instruct loadI(eRegI dst, memory mem) %{
 13835 //   match(Set dst (LoadI mem));
 13836 // %}
 13837 //
 13838 peephole %{
 13839   peepmatch ( loadI storeI );
 13840   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 13841   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 13842 %}
 13844 //----------SMARTSPILL RULES---------------------------------------------------
 13845 // These must follow all instruction definitions as they use the names
 13846 // defined in the instructions definitions.

mercurial