src/share/vm/runtime/advancedThresholdPolicy.cpp

Fri, 28 Mar 2014 10:13:37 -0700

author
vlivanov
date
Fri, 28 Mar 2014 10:13:37 -0700
changeset 6528
248ff38d2950
parent 5151
91eba9f82325
child 6649
7150b16fda52
permissions
-rw-r--r--

8035828: Turn on @Stable support in VM
Reviewed-by: jrose, twisti

     1 /*
     2  * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "runtime/advancedThresholdPolicy.hpp"
    27 #include "runtime/simpleThresholdPolicy.inline.hpp"
    29 #ifdef TIERED
    30 // Print an event.
    31 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
    32                                              int bci, CompLevel level) {
    33   tty->print(" rate=");
    34   if (mh->prev_time() == 0) tty->print("n/a");
    35   else tty->print("%f", mh->rate());
    37   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
    38                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
    40 }
    42 void AdvancedThresholdPolicy::initialize() {
    43   // Turn on ergonomic compiler count selection
    44   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    45     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
    46   }
    47   int count = CICompilerCount;
    48   if (CICompilerCountPerCPU) {
    49     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    50     int log_cpu = log2_intptr(os::active_processor_count());
    51     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
    52     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
    53   }
    55   set_c1_count(MAX2(count / 3, 1));
    56   set_c2_count(MAX2(count - count / 3, 1));
    58   // Some inlining tuning
    59 #ifdef X86
    60   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    61     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
    62   }
    63 #endif
    65 #ifdef SPARC
    66   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
    67     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
    68   }
    69 #endif
    71   set_increase_threshold_at_ratio();
    72   set_start_time(os::javaTimeMillis());
    73 }
    75 // update_rate() is called from select_task() while holding a compile queue lock.
    76 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
    77   JavaThread* THREAD = JavaThread::current();
    78   if (is_old(m)) {
    79     // We don't remove old methods from the queue,
    80     // so we can just zero the rate.
    81     m->set_rate(0, THREAD);
    82     return;
    83   }
    85   // We don't update the rate if we've just came out of a safepoint.
    86   // delta_s is the time since last safepoint in milliseconds.
    87   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
    88   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
    89   // How many events were there since the last time?
    90   int event_count = m->invocation_count() + m->backedge_count();
    91   int delta_e = event_count - m->prev_event_count();
    93   // We should be running for at least 1ms.
    94   if (delta_s >= TieredRateUpdateMinTime) {
    95     // And we must've taken the previous point at least 1ms before.
    96     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
    97       m->set_prev_time(t, THREAD);
    98       m->set_prev_event_count(event_count, THREAD);
    99       m->set_rate((float)delta_e / (float)delta_t, THREAD); // Rate is events per millisecond
   100     } else
   101       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
   102         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
   103         m->set_rate(0, THREAD);
   104       }
   105   }
   106 }
   108 // Check if this method has been stale from a given number of milliseconds.
   109 // See select_task().
   110 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
   111   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
   112   jlong delta_t = t - m->prev_time();
   113   if (delta_t > timeout && delta_s > timeout) {
   114     int event_count = m->invocation_count() + m->backedge_count();
   115     int delta_e = event_count - m->prev_event_count();
   116     // Return true if there were no events.
   117     return delta_e == 0;
   118   }
   119   return false;
   120 }
   122 // We don't remove old methods from the compile queue even if they have
   123 // very low activity. See select_task().
   124 bool AdvancedThresholdPolicy::is_old(Method* method) {
   125   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
   126 }
   128 double AdvancedThresholdPolicy::weight(Method* method) {
   129   return (method->rate() + 1) * ((method->invocation_count() + 1) *  (method->backedge_count() + 1));
   130 }
   132 // Apply heuristics and return true if x should be compiled before y
   133 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
   134   if (x->highest_comp_level() > y->highest_comp_level()) {
   135     // recompilation after deopt
   136     return true;
   137   } else
   138     if (x->highest_comp_level() == y->highest_comp_level()) {
   139       if (weight(x) > weight(y)) {
   140         return true;
   141       }
   142     }
   143   return false;
   144 }
   146 // Is method profiled enough?
   147 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
   148   MethodData* mdo = method->method_data();
   149   if (mdo != NULL) {
   150     int i = mdo->invocation_count_delta();
   151     int b = mdo->backedge_count_delta();
   152     return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
   153   }
   154   return false;
   155 }
   157 // Called with the queue locked and with at least one element
   158 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
   159   CompileTask *max_task = NULL;
   160   Method* max_method = NULL;
   161   jlong t = os::javaTimeMillis();
   162   // Iterate through the queue and find a method with a maximum rate.
   163   for (CompileTask* task = compile_queue->first(); task != NULL;) {
   164     CompileTask* next_task = task->next();
   165     Method* method = task->method();
   166     MethodData* mdo = method->method_data();
   167     update_rate(t, method);
   168     if (max_task == NULL) {
   169       max_task = task;
   170       max_method = method;
   171     } else {
   172       // If a method has been stale for some time, remove it from the queue.
   173       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
   174         if (PrintTieredEvents) {
   175           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
   176         }
   177         CompileTaskWrapper ctw(task); // Frees the task
   178         compile_queue->remove(task);
   179         method->clear_queued_for_compilation();
   180         task = next_task;
   181         continue;
   182       }
   184       // Select a method with a higher rate
   185       if (compare_methods(method, max_method)) {
   186         max_task = task;
   187         max_method = method;
   188       }
   189     }
   190     task = next_task;
   191   }
   193   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
   194       && is_method_profiled(max_method)) {
   195     max_task->set_comp_level(CompLevel_limited_profile);
   196     if (PrintTieredEvents) {
   197       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
   198     }
   199   }
   201   return max_task;
   202 }
   204 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
   205   double queue_size = CompileBroker::queue_size(level);
   206   int comp_count = compiler_count(level);
   207   double k = queue_size / (feedback_k * comp_count) + 1;
   209   // Increase C1 compile threshold when the code cache is filled more
   210   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
   211   // The main intention is to keep enough free space for C2 compiled code
   212   // to achieve peak performance if the code cache is under stress.
   213   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
   214     double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
   215     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
   216       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
   217     }
   218   }
   219   return k;
   220 }
   222 // Call and loop predicates determine whether a transition to a higher
   223 // compilation level should be performed (pointers to predicate functions
   224 // are passed to common()).
   225 // Tier?LoadFeedback is basically a coefficient that determines of
   226 // how many methods per compiler thread can be in the queue before
   227 // the threshold values double.
   228 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
   229   switch(cur_level) {
   230   case CompLevel_none:
   231   case CompLevel_limited_profile: {
   232     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   233     return loop_predicate_helper<CompLevel_none>(i, b, k);
   234   }
   235   case CompLevel_full_profile: {
   236     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   237     return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
   238   }
   239   default:
   240     return true;
   241   }
   242 }
   244 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
   245   switch(cur_level) {
   246   case CompLevel_none:
   247   case CompLevel_limited_profile: {
   248     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
   249     return call_predicate_helper<CompLevel_none>(i, b, k);
   250   }
   251   case CompLevel_full_profile: {
   252     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
   253     return call_predicate_helper<CompLevel_full_profile>(i, b, k);
   254   }
   255   default:
   256     return true;
   257   }
   258 }
   260 // If a method is old enough and is still in the interpreter we would want to
   261 // start profiling without waiting for the compiled method to arrive.
   262 // We also take the load on compilers into the account.
   263 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
   264   if (cur_level == CompLevel_none &&
   265       CompileBroker::queue_size(CompLevel_full_optimization) <=
   266       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   267     int i = method->invocation_count();
   268     int b = method->backedge_count();
   269     double k = Tier0ProfilingStartPercentage / 100.0;
   270     return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
   271   }
   272   return false;
   273 }
   275 // Inlining control: if we're compiling a profiled method with C1 and the callee
   276 // is known to have OSRed in a C2 version, don't inline it.
   277 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
   278   CompLevel comp_level = (CompLevel)env->comp_level();
   279   if (comp_level == CompLevel_full_profile ||
   280       comp_level == CompLevel_limited_profile) {
   281     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
   282   }
   283   return false;
   284 }
   286 // Create MDO if necessary.
   287 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
   288   if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
   289   if (mh->method_data() == NULL) {
   290     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
   291   }
   292 }
   295 /*
   296  * Method states:
   297  *   0 - interpreter (CompLevel_none)
   298  *   1 - pure C1 (CompLevel_simple)
   299  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
   300  *   3 - C1 with full profiling (CompLevel_full_profile)
   301  *   4 - C2 (CompLevel_full_optimization)
   302  *
   303  * Common state transition patterns:
   304  * a. 0 -> 3 -> 4.
   305  *    The most common path. But note that even in this straightforward case
   306  *    profiling can start at level 0 and finish at level 3.
   307  *
   308  * b. 0 -> 2 -> 3 -> 4.
   309  *    This case occures when the load on C2 is deemed too high. So, instead of transitioning
   310  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
   311  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
   312  *
   313  * c. 0 -> (3->2) -> 4.
   314  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
   315  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
   316  *    of the method to 2, because it'll allow it to run much faster without full profiling while c2
   317  *    is compiling.
   318  *
   319  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
   320  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
   321  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
   322  *
   323  * e. 0 -> 4.
   324  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
   325  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
   326  *    the compiled version already exists).
   327  *
   328  * Note that since state 0 can be reached from any other state via deoptimization different loops
   329  * are possible.
   330  *
   331  */
   333 // Common transition function. Given a predicate determines if a method should transition to another level.
   334 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
   335   CompLevel next_level = cur_level;
   336   int i = method->invocation_count();
   337   int b = method->backedge_count();
   339   if (is_trivial(method)) {
   340     next_level = CompLevel_simple;
   341   } else {
   342     switch(cur_level) {
   343     case CompLevel_none:
   344       // If we were at full profile level, would we switch to full opt?
   345       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
   346         next_level = CompLevel_full_optimization;
   347       } else if ((this->*p)(i, b, cur_level)) {
   348         // C1-generated fully profiled code is about 30% slower than the limited profile
   349         // code that has only invocation and backedge counters. The observation is that
   350         // if C2 queue is large enough we can spend too much time in the fully profiled code
   351         // while waiting for C2 to pick the method from the queue. To alleviate this problem
   352         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
   353         // we choose to compile a limited profiled version and then recompile with full profiling
   354         // when the load on C2 goes down.
   355         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
   356                                  Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
   357           next_level = CompLevel_limited_profile;
   358         } else {
   359           next_level = CompLevel_full_profile;
   360         }
   361       }
   362       break;
   363     case CompLevel_limited_profile:
   364       if (is_method_profiled(method)) {
   365         // Special case: we got here because this method was fully profiled in the interpreter.
   366         next_level = CompLevel_full_optimization;
   367       } else {
   368         MethodData* mdo = method->method_data();
   369         if (mdo != NULL) {
   370           if (mdo->would_profile()) {
   371             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
   372                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
   373                                      (this->*p)(i, b, cur_level))) {
   374               next_level = CompLevel_full_profile;
   375             }
   376           } else {
   377             next_level = CompLevel_full_optimization;
   378           }
   379         }
   380       }
   381       break;
   382     case CompLevel_full_profile:
   383       {
   384         MethodData* mdo = method->method_data();
   385         if (mdo != NULL) {
   386           if (mdo->would_profile()) {
   387             int mdo_i = mdo->invocation_count_delta();
   388             int mdo_b = mdo->backedge_count_delta();
   389             if ((this->*p)(mdo_i, mdo_b, cur_level)) {
   390               next_level = CompLevel_full_optimization;
   391             }
   392           } else {
   393             next_level = CompLevel_full_optimization;
   394           }
   395         }
   396       }
   397       break;
   398     }
   399   }
   400   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
   401 }
   403 // Determine if a method should be compiled with a normal entry point at a different level.
   404 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
   405   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
   406                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
   407   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
   409   // If OSR method level is greater than the regular method level, the levels should be
   410   // equalized by raising the regular method level in order to avoid OSRs during each
   411   // invocation of the method.
   412   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
   413     MethodData* mdo = method->method_data();
   414     guarantee(mdo != NULL, "MDO should not be NULL");
   415     if (mdo->invocation_count() >= 1) {
   416       next_level = CompLevel_full_optimization;
   417     }
   418   } else {
   419     next_level = MAX2(osr_level, next_level);
   420   }
   421   return next_level;
   422 }
   424 // Determine if we should do an OSR compilation of a given method.
   425 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
   426   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
   427   if (cur_level == CompLevel_none) {
   428     // If there is a live OSR method that means that we deopted to the interpreter
   429     // for the transition.
   430     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
   431     if (osr_level > CompLevel_none) {
   432       return osr_level;
   433     }
   434   }
   435   return next_level;
   436 }
   438 // Update the rate and submit compile
   439 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
   440   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
   441   update_rate(os::javaTimeMillis(), mh());
   442   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
   443 }
   445 // Handle the invocation event.
   446 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
   447                                                       CompLevel level, nmethod* nm, JavaThread* thread) {
   448   if (should_create_mdo(mh(), level)) {
   449     create_mdo(mh, thread);
   450   }
   451   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
   452     CompLevel next_level = call_event(mh(), level);
   453     if (next_level != level) {
   454       compile(mh, InvocationEntryBci, next_level, thread);
   455     }
   456   }
   457 }
   459 // Handle the back branch event. Notice that we can compile the method
   460 // with a regular entry from here.
   461 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
   462                                                        int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
   463   if (should_create_mdo(mh(), level)) {
   464     create_mdo(mh, thread);
   465   }
   466   // Check if MDO should be created for the inlined method
   467   if (should_create_mdo(imh(), level)) {
   468     create_mdo(imh, thread);
   469   }
   471   if (is_compilation_enabled()) {
   472     CompLevel next_osr_level = loop_event(imh(), level);
   473     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
   474     // At the very least compile the OSR version
   475     if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_osr_level != level) {
   476       compile(imh, bci, next_osr_level, thread);
   477     }
   479     // Use loop event as an opportunity to also check if there's been
   480     // enough calls.
   481     CompLevel cur_level, next_level;
   482     if (mh() != imh()) { // If there is an enclosing method
   483       guarantee(nm != NULL, "Should have nmethod here");
   484       cur_level = comp_level(mh());
   485       next_level = call_event(mh(), cur_level);
   487       if (max_osr_level == CompLevel_full_optimization) {
   488         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
   489         bool make_not_entrant = false;
   490         if (nm->is_osr_method()) {
   491           // This is an osr method, just make it not entrant and recompile later if needed
   492           make_not_entrant = true;
   493         } else {
   494           if (next_level != CompLevel_full_optimization) {
   495             // next_level is not full opt, so we need to recompile the
   496             // enclosing method without the inlinee
   497             cur_level = CompLevel_none;
   498             make_not_entrant = true;
   499           }
   500         }
   501         if (make_not_entrant) {
   502           if (PrintTieredEvents) {
   503             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
   504             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
   505           }
   506           nm->make_not_entrant();
   507         }
   508       }
   509       if (!CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
   510         // Fix up next_level if necessary to avoid deopts
   511         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
   512           next_level = CompLevel_full_profile;
   513         }
   514         if (cur_level != next_level) {
   515           compile(mh, InvocationEntryBci, next_level, thread);
   516         }
   517       }
   518     } else {
   519       cur_level = comp_level(imh());
   520       next_level = call_event(imh(), cur_level);
   521       if (!CompileBroker::compilation_is_in_queue(imh, bci) && next_level != cur_level) {
   522         compile(imh, InvocationEntryBci, next_level, thread);
   523       }
   524     }
   525   }
   526 }
   528 #endif // TIERED

mercurial