src/share/vm/code/relocInfo.hpp

Mon, 25 Jun 2012 21:33:35 -0400

author
coleenp
date
Mon, 25 Jun 2012 21:33:35 -0400
changeset 3875
246d977b51f2
parent 2750
6c97c830fb6f
child 4037
da91efe96a93
permissions
-rw-r--r--

7178670: runtime/7158800/BadUtf8.java fails in SymbolTable::rehash_table
Summary: Cannot delete _buckets and HashtableEntries in shared space (CDS)
Reviewed-by: acorn, kvn, dlong, dcubed, kamg

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_CODE_RELOCINFO_HPP
    26 #define SHARE_VM_CODE_RELOCINFO_HPP
    28 #include "memory/allocation.hpp"
    29 #include "utilities/top.hpp"
    31 // Types in this file:
    32 //    relocInfo
    33 //      One element of an array of halfwords encoding compressed relocations.
    34 //      Also, the source of relocation types (relocInfo::oop_type, ...).
    35 //    Relocation
    36 //      A flyweight object representing a single relocation.
    37 //      It is fully unpacked from the compressed relocation array.
    38 //    oop_Relocation, ... (subclasses of Relocation)
    39 //      The location of some type-specific operations (oop_addr, ...).
    40 //      Also, the source of relocation specs (oop_Relocation::spec, ...).
    41 //    RelocationHolder
    42 //      A ValueObj type which acts as a union holding a Relocation object.
    43 //      Represents a relocation spec passed into a CodeBuffer during assembly.
    44 //    RelocIterator
    45 //      A StackObj which iterates over the relocations associated with
    46 //      a range of code addresses.  Can be used to operate a copy of code.
    47 //    PatchingRelocIterator
    48 //      Specialized subtype of RelocIterator which removes breakpoints
    49 //      temporarily during iteration, then restores them.
    50 //    BoundRelocation
    51 //      An _internal_ type shared by packers and unpackers of relocations.
    52 //      It pastes together a RelocationHolder with some pointers into
    53 //      code and relocInfo streams.
    56 // Notes on relocType:
    57 //
    58 // These hold enough information to read or write a value embedded in
    59 // the instructions of an CodeBlob.  They're used to update:
    60 //
    61 //   1) embedded oops     (isOop()          == true)
    62 //   2) inline caches     (isIC()           == true)
    63 //   3) runtime calls     (isRuntimeCall()  == true)
    64 //   4) internal word ref (isInternalWord() == true)
    65 //   5) external word ref (isExternalWord() == true)
    66 //
    67 // when objects move (GC) or if code moves (compacting the code heap).
    68 // They are also used to patch the code (if a call site must change)
    69 //
    70 // A relocInfo is represented in 16 bits:
    71 //   4 bits indicating the relocation type
    72 //  12 bits indicating the offset from the previous relocInfo address
    73 //
    74 // The offsets accumulate along the relocInfo stream to encode the
    75 // address within the CodeBlob, which is named RelocIterator::addr().
    76 // The address of a particular relocInfo always points to the first
    77 // byte of the relevant instruction (and not to any of its subfields
    78 // or embedded immediate constants).
    79 //
    80 // The offset value is scaled appropriately for the target machine.
    81 // (See relocInfo_<arch>.hpp for the offset scaling.)
    82 //
    83 // On some machines, there may also be a "format" field which may provide
    84 // additional information about the format of the instruction stream
    85 // at the corresponding code address.  The format value is usually zero.
    86 // Any machine (such as Intel) whose instructions can sometimes contain
    87 // more than one relocatable constant needs format codes to distinguish
    88 // which operand goes with a given relocation.
    89 //
    90 // If the target machine needs N format bits, the offset has 12-N bits,
    91 // the format is encoded between the offset and the type, and the
    92 // relocInfo_<arch>.hpp file has manifest constants for the format codes.
    93 //
    94 // If the type is "data_prefix_tag" then the offset bits are further encoded,
    95 // and in fact represent not a code-stream offset but some inline data.
    96 // The data takes the form of a counted sequence of halfwords, which
    97 // precedes the actual relocation record.  (Clients never see it directly.)
    98 // The interpetation of this extra data depends on the relocation type.
    99 //
   100 // On machines that have 32-bit immediate fields, there is usually
   101 // little need for relocation "prefix" data, because the instruction stream
   102 // is a perfectly reasonable place to store the value.  On machines in
   103 // which 32-bit values must be "split" across instructions, the relocation
   104 // data is the "true" specification of the value, which is then applied
   105 // to some field of the instruction (22 or 13 bits, on SPARC).
   106 //
   107 // Whenever the location of the CodeBlob changes, any PC-relative
   108 // relocations, and any internal_word_type relocations, must be reapplied.
   109 // After the GC runs, oop_type relocations must be reapplied.
   110 //
   111 //
   112 // Here are meanings of the types:
   113 //
   114 // relocInfo::none -- a filler record
   115 //   Value:  none
   116 //   Instruction: The corresponding code address is ignored
   117 //   Data:  Any data prefix and format code are ignored
   118 //   (This means that any relocInfo can be disabled by setting
   119 //   its type to none.  See relocInfo::remove.)
   120 //
   121 // relocInfo::oop_type -- a reference to an oop
   122 //   Value:  an oop, or else the address (handle) of an oop
   123 //   Instruction types: memory (load), set (load address)
   124 //   Data:  []       an oop stored in 4 bytes of instruction
   125 //          [n]      n is the index of an oop in the CodeBlob's oop pool
   126 //          [[N]n l] and l is a byte offset to be applied to the oop
   127 //          [Nn Ll]  both index and offset may be 32 bits if necessary
   128 //   Here is a special hack, used only by the old compiler:
   129 //          [[N]n 00] the value is the __address__ of the nth oop in the pool
   130 //   (Note that the offset allows optimal references to class variables.)
   131 //
   132 // relocInfo::internal_word_type -- an address within the same CodeBlob
   133 // relocInfo::section_word_type -- same, but can refer to another section
   134 //   Value:  an address in the CodeBlob's code or constants section
   135 //   Instruction types: memory (load), set (load address)
   136 //   Data:  []     stored in 4 bytes of instruction
   137 //          [[L]l] a relative offset (see [About Offsets] below)
   138 //   In the case of section_word_type, the offset is relative to a section
   139 //   base address, and the section number (e.g., SECT_INSTS) is encoded
   140 //   into the low two bits of the offset L.
   141 //
   142 // relocInfo::external_word_type -- a fixed address in the runtime system
   143 //   Value:  an address
   144 //   Instruction types: memory (load), set (load address)
   145 //   Data:  []   stored in 4 bytes of instruction
   146 //          [n]  the index of a "well-known" stub (usual case on RISC)
   147 //          [Ll] a 32-bit address
   148 //
   149 // relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
   150 //   Value:  an address
   151 //   Instruction types: PC-relative call (or a PC-relative branch)
   152 //   Data:  []   stored in 4 bytes of instruction
   153 //
   154 // relocInfo::static_call_type -- a static call
   155 //   Value:  an CodeBlob, a stub, or a fixup routine
   156 //   Instruction types: a call
   157 //   Data:  []
   158 //   The identity of the callee is extracted from debugging information.
   159 //   //%note reloc_3
   160 //
   161 // relocInfo::virtual_call_type -- a virtual call site (which includes an inline
   162 //                                 cache)
   163 //   Value:  an CodeBlob, a stub, the interpreter, or a fixup routine
   164 //   Instruction types: a call, plus some associated set-oop instructions
   165 //   Data:  []       the associated set-oops are adjacent to the call
   166 //          [n]      n is a relative offset to the first set-oop
   167 //          [[N]n l] and l is a limit within which the set-oops occur
   168 //          [Nn Ll]  both n and l may be 32 bits if necessary
   169 //   The identity of the callee is extracted from debugging information.
   170 //
   171 // relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
   172 //
   173 //    Same info as a static_call_type. We use a special type, so the handling of
   174 //    virtuals and statics are separated.
   175 //
   176 //
   177 //   The offset n points to the first set-oop.  (See [About Offsets] below.)
   178 //   In turn, the set-oop instruction specifies or contains an oop cell devoted
   179 //   exclusively to the IC call, which can be patched along with the call.
   180 //
   181 //   The locations of any other set-oops are found by searching the relocation
   182 //   information starting at the first set-oop, and continuing until all
   183 //   relocations up through l have been inspected.  The value l is another
   184 //   relative offset.  (Both n and l are relative to the call's first byte.)
   185 //
   186 //   The limit l of the search is exclusive.  However, if it points within
   187 //   the call (e.g., offset zero), it is adjusted to point after the call and
   188 //   any associated machine-specific delay slot.
   189 //
   190 //   Since the offsets could be as wide as 32-bits, these conventions
   191 //   put no restrictions whatever upon code reorganization.
   192 //
   193 //   The compiler is responsible for ensuring that transition from a clean
   194 //   state to a monomorphic compiled state is MP-safe.  This implies that
   195 //   the system must respond well to intermediate states where a random
   196 //   subset of the set-oops has been correctly from the clean state
   197 //   upon entry to the VEP of the compiled method.  In the case of a
   198 //   machine (Intel) with a single set-oop instruction, the 32-bit
   199 //   immediate field must not straddle a unit of memory coherence.
   200 //   //%note reloc_3
   201 //
   202 // relocInfo::breakpoint_type -- a conditional breakpoint in the code
   203 //   Value:  none
   204 //   Instruction types: any whatsoever
   205 //   Data:  [b [T]t  i...]
   206 //   The b is a bit-packed word representing the breakpoint's attributes.
   207 //   The t is a target address which the breakpoint calls (when it is enabled).
   208 //   The i... is a place to store one or two instruction words overwritten
   209 //   by a trap, so that the breakpoint may be subsequently removed.
   210 //
   211 // relocInfo::static_stub_type -- an extra stub for each static_call_type
   212 //   Value:  none
   213 //   Instruction types: a virtual call:  { set_oop; jump; }
   214 //   Data:  [[N]n]  the offset of the associated static_call reloc
   215 //   This stub becomes the target of a static call which must be upgraded
   216 //   to a virtual call (because the callee is interpreted).
   217 //   See [About Offsets] below.
   218 //   //%note reloc_2
   219 //
   220 // For example:
   221 //
   222 //   INSTRUCTIONS                        RELOC: TYPE    PREFIX DATA
   223 //   ------------                               ----    -----------
   224 // sethi      %hi(myObject),  R               oop_type [n(myObject)]
   225 // ld      [R+%lo(myObject)+fldOffset], R2    oop_type [n(myObject) fldOffset]
   226 // add R2, 1, R2
   227 // st  R2, [R+%lo(myObject)+fldOffset]        oop_type [n(myObject) fldOffset]
   228 //%note reloc_1
   229 //
   230 // This uses 4 instruction words, 8 relocation halfwords,
   231 // and an entry (which is sharable) in the CodeBlob's oop pool,
   232 // for a total of 36 bytes.
   233 //
   234 // Note that the compiler is responsible for ensuring the "fldOffset" when
   235 // added to "%lo(myObject)" does not overflow the immediate fields of the
   236 // memory instructions.
   237 //
   238 //
   239 // [About Offsets] Relative offsets are supplied to this module as
   240 // positive byte offsets, but they may be internally stored scaled
   241 // and/or negated, depending on what is most compact for the target
   242 // system.  Since the object pointed to by the offset typically
   243 // precedes the relocation address, it is profitable to store
   244 // these negative offsets as positive numbers, but this decision
   245 // is internal to the relocation information abstractions.
   246 //
   248 class Relocation;
   249 class CodeBuffer;
   250 class CodeSection;
   251 class RelocIterator;
   253 class relocInfo VALUE_OBJ_CLASS_SPEC {
   254   friend class RelocIterator;
   255  public:
   256   enum relocType {
   257     none                    =  0, // Used when no relocation should be generated
   258     oop_type                =  1, // embedded oop
   259     virtual_call_type       =  2, // a standard inline cache call for a virtual send
   260     opt_virtual_call_type   =  3, // a virtual call that has been statically bound (i.e., no IC cache)
   261     static_call_type        =  4, // a static send
   262     static_stub_type        =  5, // stub-entry for static send  (takes care of interpreter case)
   263     runtime_call_type       =  6, // call to fixed external routine
   264     external_word_type      =  7, // reference to fixed external address
   265     internal_word_type      =  8, // reference within the current code blob
   266     section_word_type       =  9, // internal, but a cross-section reference
   267     poll_type               = 10, // polling instruction for safepoints
   268     poll_return_type        = 11, // polling instruction for safepoints at return
   269     breakpoint_type         = 12, // an initialization barrier or safepoint
   270     yet_unused_type         = 13, // Still unused
   271     yet_unused_type_2       = 14, // Still unused
   272     data_prefix_tag         = 15, // tag for a prefix (carries data arguments)
   273     type_mask               = 15  // A mask which selects only the above values
   274   };
   276  protected:
   277   unsigned short _value;
   279   enum RawBitsToken { RAW_BITS };
   280   relocInfo(relocType type, RawBitsToken ignore, int bits)
   281     : _value((type << nontype_width) + bits) { }
   283   relocInfo(relocType type, RawBitsToken ignore, int off, int f)
   284     : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }
   286  public:
   287   // constructor
   288   relocInfo(relocType type, int offset, int format = 0)
   289 #ifndef ASSERT
   290   {
   291     (*this) = relocInfo(type, RAW_BITS, offset, format);
   292   }
   293 #else
   294   // Put a bunch of assertions out-of-line.
   295   ;
   296 #endif
   298   #define APPLY_TO_RELOCATIONS(visitor) \
   299     visitor(oop) \
   300     visitor(virtual_call) \
   301     visitor(opt_virtual_call) \
   302     visitor(static_call) \
   303     visitor(static_stub) \
   304     visitor(runtime_call) \
   305     visitor(external_word) \
   306     visitor(internal_word) \
   307     visitor(poll) \
   308     visitor(poll_return) \
   309     visitor(breakpoint) \
   310     visitor(section_word) \
   313  public:
   314   enum {
   315     value_width             = sizeof(unsigned short) * BitsPerByte,
   316     type_width              = 4,   // == log2(type_mask+1)
   317     nontype_width           = value_width - type_width,
   318     datalen_width           = nontype_width-1,
   319     datalen_tag             = 1 << datalen_width,  // or-ed into _value
   320     datalen_limit           = 1 << datalen_width,
   321     datalen_mask            = (1 << datalen_width)-1
   322   };
   324   // accessors
   325  public:
   326   relocType  type()       const { return (relocType)((unsigned)_value >> nontype_width); }
   327   int  format()           const { return format_mask==0? 0: format_mask &
   328                                          ((unsigned)_value >> offset_width); }
   329   int  addr_offset()      const { assert(!is_prefix(), "must have offset");
   330                                   return (_value & offset_mask)*offset_unit; }
   332  protected:
   333   const short* data()     const { assert(is_datalen(), "must have data");
   334                                   return (const short*)(this + 1); }
   335   int          datalen()  const { assert(is_datalen(), "must have data");
   336                                   return (_value & datalen_mask); }
   337   int         immediate() const { assert(is_immediate(), "must have immed");
   338                                   return (_value & datalen_mask); }
   339  public:
   340   static int addr_unit()        { return offset_unit; }
   341   static int offset_limit()     { return (1 << offset_width) * offset_unit; }
   343   void set_type(relocType type);
   344   void set_format(int format);
   346   void remove() { set_type(none); }
   348  protected:
   349   bool is_none()                const { return type() == none; }
   350   bool is_prefix()              const { return type() == data_prefix_tag; }
   351   bool is_datalen()             const { assert(is_prefix(), "must be prefix");
   352                                         return (_value & datalen_tag) != 0; }
   353   bool is_immediate()           const { assert(is_prefix(), "must be prefix");
   354                                         return (_value & datalen_tag) == 0; }
   356  public:
   357   // Occasionally records of type relocInfo::none will appear in the stream.
   358   // We do not bother to filter these out, but clients should ignore them.
   359   // These records serve as "filler" in three ways:
   360   //  - to skip large spans of unrelocated code (this is rare)
   361   //  - to pad out the relocInfo array to the required oop alignment
   362   //  - to disable old relocation information which is no longer applicable
   364   inline friend relocInfo filler_relocInfo();
   366   // Every non-prefix relocation may be preceded by at most one prefix,
   367   // which supplies 1 or more halfwords of associated data.  Conventionally,
   368   // an int is represented by 0, 1, or 2 halfwords, depending on how
   369   // many bits are required to represent the value.  (In addition,
   370   // if the sole halfword is a 10-bit unsigned number, it is made
   371   // "immediate" in the prefix header word itself.  This optimization
   372   // is invisible outside this module.)
   374   inline friend relocInfo prefix_relocInfo(int datalen = 0);
   376  protected:
   377   // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
   378   static relocInfo immediate_relocInfo(int data0) {
   379     assert(fits_into_immediate(data0), "data0 in limits");
   380     return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
   381   }
   382   static bool fits_into_immediate(int data0) {
   383     return (data0 >= 0 && data0 < datalen_limit);
   384   }
   386  public:
   387   // Support routines for compilers.
   389   // This routine takes an infant relocInfo (unprefixed) and
   390   // edits in its prefix, if any.  It also updates dest.locs_end.
   391   void initialize(CodeSection* dest, Relocation* reloc);
   393   // This routine updates a prefix and returns the limit pointer.
   394   // It tries to compress the prefix from 32 to 16 bits, and if
   395   // successful returns a reduced "prefix_limit" pointer.
   396   relocInfo* finish_prefix(short* prefix_limit);
   398   // bit-packers for the data array:
   400   // As it happens, the bytes within the shorts are ordered natively,
   401   // but the shorts within the word are ordered big-endian.
   402   // This is an arbitrary choice, made this way mainly to ease debugging.
   403   static int data0_from_int(jint x)         { return x >> value_width; }
   404   static int data1_from_int(jint x)         { return (short)x; }
   405   static jint jint_from_data(short* data) {
   406     return (data[0] << value_width) + (unsigned short)data[1];
   407   }
   409   static jint short_data_at(int n, short* data, int datalen) {
   410     return datalen > n ? data[n] : 0;
   411   }
   413   static jint jint_data_at(int n, short* data, int datalen) {
   414     return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
   415   }
   417   // Update methods for relocation information
   418   // (since code is dynamically patched, we also need to dynamically update the relocation info)
   419   // Both methods takes old_type, so it is able to performe sanity checks on the information removed.
   420   static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
   421   static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);
   423   // Machine dependent stuff
   424 #ifdef TARGET_ARCH_x86
   425 # include "relocInfo_x86.hpp"
   426 #endif
   427 #ifdef TARGET_ARCH_sparc
   428 # include "relocInfo_sparc.hpp"
   429 #endif
   430 #ifdef TARGET_ARCH_zero
   431 # include "relocInfo_zero.hpp"
   432 #endif
   433 #ifdef TARGET_ARCH_arm
   434 # include "relocInfo_arm.hpp"
   435 #endif
   436 #ifdef TARGET_ARCH_ppc
   437 # include "relocInfo_ppc.hpp"
   438 #endif
   441  protected:
   442   // Derived constant, based on format_width which is PD:
   443   enum {
   444     offset_width       = nontype_width - format_width,
   445     offset_mask        = (1<<offset_width) - 1,
   446     format_mask        = (1<<format_width) - 1
   447   };
   448  public:
   449   enum {
   450     // Conservatively large estimate of maximum length (in shorts)
   451     // of any relocation record (probably breakpoints are largest).
   452     // Extended format is length prefix, data words, and tag/offset suffix.
   453     length_limit       = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
   454     have_format        = format_width > 0
   455   };
   456 };
   458 #define FORWARD_DECLARE_EACH_CLASS(name)              \
   459 class name##_Relocation;
   460 APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
   461 #undef FORWARD_DECLARE_EACH_CLASS
   465 inline relocInfo filler_relocInfo() {
   466   return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
   467 }
   469 inline relocInfo prefix_relocInfo(int datalen) {
   470   assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
   471   return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
   472 }
   475 // Holder for flyweight relocation objects.
   476 // Although the flyweight subclasses are of varying sizes,
   477 // the holder is "one size fits all".
   478 class RelocationHolder VALUE_OBJ_CLASS_SPEC {
   479   friend class Relocation;
   480   friend class CodeSection;
   482  private:
   483   // this preallocated memory must accommodate all subclasses of Relocation
   484   // (this number is assertion-checked in Relocation::operator new)
   485   enum { _relocbuf_size = 5 };
   486   void* _relocbuf[ _relocbuf_size ];
   488  public:
   489   Relocation* reloc() const { return (Relocation*) &_relocbuf[0]; }
   490   inline relocInfo::relocType type() const;
   492   // Add a constant offset to a relocation.  Helper for class Address.
   493   RelocationHolder plus(int offset) const;
   495   inline RelocationHolder();                // initializes type to none
   497   inline RelocationHolder(Relocation* r);   // make a copy
   499   static const RelocationHolder none;
   500 };
   502 // A RelocIterator iterates through the relocation information of a CodeBlob.
   503 // It is a variable BoundRelocation which is able to take on successive
   504 // values as it is advanced through a code stream.
   505 // Usage:
   506 //   RelocIterator iter(nm);
   507 //   while (iter.next()) {
   508 //     iter.reloc()->some_operation();
   509 //   }
   510 // or:
   511 //   RelocIterator iter(nm);
   512 //   while (iter.next()) {
   513 //     switch (iter.type()) {
   514 //      case relocInfo::oop_type          :
   515 //      case relocInfo::ic_type           :
   516 //      case relocInfo::prim_type         :
   517 //      case relocInfo::uncommon_type     :
   518 //      case relocInfo::runtime_call_type :
   519 //      case relocInfo::internal_word_type:
   520 //      case relocInfo::external_word_type:
   521 //      ...
   522 //     }
   523 //   }
   525 class RelocIterator : public StackObj {
   526   enum { SECT_LIMIT = 3 };  // must be equal to CodeBuffer::SECT_LIMIT, checked in ctor
   527   friend class Relocation;
   528   friend class relocInfo;       // for change_reloc_info_for_address only
   529   typedef relocInfo::relocType relocType;
   531  private:
   532   address    _limit;   // stop producing relocations after this _addr
   533   relocInfo* _current; // the current relocation information
   534   relocInfo* _end;     // end marker; we're done iterating when _current == _end
   535   nmethod*   _code;    // compiled method containing _addr
   536   address    _addr;    // instruction to which the relocation applies
   537   short      _databuf; // spare buffer for compressed data
   538   short*     _data;    // pointer to the relocation's data
   539   short      _datalen; // number of halfwords in _data
   540   char       _format;  // position within the instruction
   542   // Base addresses needed to compute targets of section_word_type relocs.
   543   address    _section_start[SECT_LIMIT];
   544   address    _section_end  [SECT_LIMIT];
   546   void set_has_current(bool b) {
   547     _datalen = !b ? -1 : 0;
   548     debug_only(_data = NULL);
   549   }
   550   void set_current(relocInfo& ri) {
   551     _current = &ri;
   552     set_has_current(true);
   553   }
   555   RelocationHolder _rh; // where the current relocation is allocated
   557   relocInfo* current() const { assert(has_current(), "must have current");
   558                                return _current; }
   560   void set_limits(address begin, address limit);
   562   void advance_over_prefix();    // helper method
   564   void initialize_misc();
   566   void initialize(nmethod* nm, address begin, address limit);
   568   friend class PatchingRelocIterator;
   569   // make an uninitialized one, for PatchingRelocIterator:
   570   RelocIterator() { initialize_misc(); }
   572  public:
   573   // constructor
   574   RelocIterator(nmethod* nm,     address begin = NULL, address limit = NULL);
   575   RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL);
   577   // get next reloc info, return !eos
   578   bool next() {
   579     _current++;
   580     assert(_current <= _end, "must not overrun relocInfo");
   581     if (_current == _end) {
   582       set_has_current(false);
   583       return false;
   584     }
   585     set_has_current(true);
   587     if (_current->is_prefix()) {
   588       advance_over_prefix();
   589       assert(!current()->is_prefix(), "only one prefix at a time");
   590     }
   592     _addr += _current->addr_offset();
   594     if (_limit != NULL && _addr >= _limit) {
   595       set_has_current(false);
   596       return false;
   597     }
   599     if (relocInfo::have_format)  _format = current()->format();
   600     return true;
   601   }
   603   // accessors
   604   address      limit()        const { return _limit; }
   605   void     set_limit(address x);
   606   relocType    type()         const { return current()->type(); }
   607   int          format()       const { return (relocInfo::have_format) ? current()->format() : 0; }
   608   address      addr()         const { return _addr; }
   609   nmethod*     code()         const { return _code; }
   610   short*       data()         const { return _data; }
   611   int          datalen()      const { return _datalen; }
   612   bool     has_current()      const { return _datalen >= 0; }
   614   void       set_addr(address addr) { _addr = addr; }
   615   bool   addr_in_const()      const;
   617   address section_start(int n) const {
   618     assert(_section_start[n], "must be initialized");
   619     return _section_start[n];
   620   }
   621   address section_end(int n) const {
   622     assert(_section_end[n], "must be initialized");
   623     return _section_end[n];
   624   }
   626   // The address points to the affected displacement part of the instruction.
   627   // For RISC, this is just the whole instruction.
   628   // For Intel, this is an unaligned 32-bit word.
   630   // type-specific relocation accessors:  oop_Relocation* oop_reloc(), etc.
   631   #define EACH_TYPE(name)                               \
   632   inline name##_Relocation* name##_reloc();
   633   APPLY_TO_RELOCATIONS(EACH_TYPE)
   634   #undef EACH_TYPE
   635   // generic relocation accessor; switches on type to call the above
   636   Relocation* reloc();
   638   // CodeBlob's have relocation indexes for faster random access:
   639   static int locs_and_index_size(int code_size, int locs_size);
   640   // Store an index into [dest_start+dest_count..dest_end).
   641   // At dest_start[0..dest_count] is the actual relocation information.
   642   // Everything else up to dest_end is free space for the index.
   643   static void create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end);
   645 #ifndef PRODUCT
   646  public:
   647   void print();
   648   void print_current();
   649 #endif
   650 };
   653 // A Relocation is a flyweight object allocated within a RelocationHolder.
   654 // It represents the relocation data of relocation record.
   655 // So, the RelocIterator unpacks relocInfos into Relocations.
   657 class Relocation VALUE_OBJ_CLASS_SPEC {
   658   friend class RelocationHolder;
   659   friend class RelocIterator;
   661  private:
   662   static void guarantee_size();
   664   // When a relocation has been created by a RelocIterator,
   665   // this field is non-null.  It allows the relocation to know
   666   // its context, such as the address to which it applies.
   667   RelocIterator* _binding;
   669  protected:
   670   RelocIterator* binding() const {
   671     assert(_binding != NULL, "must be bound");
   672     return _binding;
   673   }
   674   void set_binding(RelocIterator* b) {
   675     assert(_binding == NULL, "must be unbound");
   676     _binding = b;
   677     assert(_binding != NULL, "must now be bound");
   678   }
   680   Relocation() {
   681     _binding = NULL;
   682   }
   684   static RelocationHolder newHolder() {
   685     return RelocationHolder();
   686   }
   688  public:
   689   void* operator new(size_t size, const RelocationHolder& holder) {
   690     if (size > sizeof(holder._relocbuf)) guarantee_size();
   691     assert((void* const *)holder.reloc() == &holder._relocbuf[0], "ptrs must agree");
   692     return holder.reloc();
   693   }
   695   // make a generic relocation for a given type (if possible)
   696   static RelocationHolder spec_simple(relocInfo::relocType rtype);
   698   // here is the type-specific hook which writes relocation data:
   699   virtual void pack_data_to(CodeSection* dest) { }
   701   // here is the type-specific hook which reads (unpacks) relocation data:
   702   virtual void unpack_data() {
   703     assert(datalen()==0 || type()==relocInfo::none, "no data here");
   704   }
   706   static bool is_reloc_index(intptr_t index) {
   707     return 0 < index && index < os::vm_page_size();
   708   }
   710  protected:
   711   // Helper functions for pack_data_to() and unpack_data().
   713   // Most of the compression logic is confined here.
   714   // (The "immediate data" mechanism of relocInfo works independently
   715   // of this stuff, and acts to further compress most 1-word data prefixes.)
   717   // A variable-width int is encoded as a short if it will fit in 16 bits.
   718   // The decoder looks at datalen to decide whether to unpack short or jint.
   719   // Most relocation records are quite simple, containing at most two ints.
   721   static bool is_short(jint x) { return x == (short)x; }
   722   static short* add_short(short* p, int x)  { *p++ = x; return p; }
   723   static short* add_jint (short* p, jint x) {
   724     *p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
   725     return p;
   726   }
   727   static short* add_var_int(short* p, jint x) {   // add a variable-width int
   728     if (is_short(x))  p = add_short(p, x);
   729     else              p = add_jint (p, x);
   730     return p;
   731   }
   733   static short* pack_1_int_to(short* p, jint x0) {
   734     // Format is one of:  [] [x] [Xx]
   735     if (x0 != 0)  p = add_var_int(p, x0);
   736     return p;
   737   }
   738   int unpack_1_int() {
   739     assert(datalen() <= 2, "too much data");
   740     return relocInfo::jint_data_at(0, data(), datalen());
   741   }
   743   // With two ints, the short form is used only if both ints are short.
   744   short* pack_2_ints_to(short* p, jint x0, jint x1) {
   745     // Format is one of:  [] [x y?] [Xx Y?y]
   746     if (x0 == 0 && x1 == 0) {
   747       // no halfwords needed to store zeroes
   748     } else if (is_short(x0) && is_short(x1)) {
   749       // 1-2 halfwords needed to store shorts
   750       p = add_short(p, x0); if (x1!=0) p = add_short(p, x1);
   751     } else {
   752       // 3-4 halfwords needed to store jints
   753       p = add_jint(p, x0);             p = add_var_int(p, x1);
   754     }
   755     return p;
   756   }
   757   void unpack_2_ints(jint& x0, jint& x1) {
   758     int    dlen = datalen();
   759     short* dp  = data();
   760     if (dlen <= 2) {
   761       x0 = relocInfo::short_data_at(0, dp, dlen);
   762       x1 = relocInfo::short_data_at(1, dp, dlen);
   763     } else {
   764       assert(dlen <= 4, "too much data");
   765       x0 = relocInfo::jint_data_at(0, dp, dlen);
   766       x1 = relocInfo::jint_data_at(2, dp, dlen);
   767     }
   768   }
   770  protected:
   771   // platform-dependent utilities for decoding and patching instructions
   772   void       pd_set_data_value       (address x, intptr_t off, bool verify_only = false); // a set or mem-ref
   773   void       pd_verify_data_value    (address x, intptr_t off) { pd_set_data_value(x, off, true); }
   774   address    pd_call_destination     (address orig_addr = NULL);
   775   void       pd_set_call_destination (address x);
   776   void       pd_swap_in_breakpoint   (address x, short* instrs, int instrlen);
   777   void       pd_swap_out_breakpoint  (address x, short* instrs, int instrlen);
   778   static int pd_breakpoint_size      ();
   780   // this extracts the address of an address in the code stream instead of the reloc data
   781   address* pd_address_in_code       ();
   783   // this extracts an address from the code stream instead of the reloc data
   784   address  pd_get_address_from_code ();
   786   // these convert from byte offsets, to scaled offsets, to addresses
   787   static jint scaled_offset(address x, address base) {
   788     int byte_offset = x - base;
   789     int offset = -byte_offset / relocInfo::addr_unit();
   790     assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
   791     return offset;
   792   }
   793   static jint scaled_offset_null_special(address x, address base) {
   794     // Some relocations treat offset=0 as meaning NULL.
   795     // Handle this extra convention carefully.
   796     if (x == NULL)  return 0;
   797     assert(x != base, "offset must not be zero");
   798     return scaled_offset(x, base);
   799   }
   800   static address address_from_scaled_offset(jint offset, address base) {
   801     int byte_offset = -( offset * relocInfo::addr_unit() );
   802     return base + byte_offset;
   803   }
   805   // these convert between indexes and addresses in the runtime system
   806   static int32_t runtime_address_to_index(address runtime_address);
   807   static address index_to_runtime_address(int32_t index);
   809   // helpers for mapping between old and new addresses after a move or resize
   810   address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
   811   address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
   812   void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
   814  public:
   815   // accessors which only make sense for a bound Relocation
   816   address  addr()         const { return binding()->addr(); }
   817   nmethod* code()         const { return binding()->code(); }
   818   bool     addr_in_const() const { return binding()->addr_in_const(); }
   819  protected:
   820   short*   data()         const { return binding()->data(); }
   821   int      datalen()      const { return binding()->datalen(); }
   822   int      format()       const { return binding()->format(); }
   824  public:
   825   virtual relocInfo::relocType type()            { return relocInfo::none; }
   827   // is it a call instruction?
   828   virtual bool is_call()                         { return false; }
   830   // is it a data movement instruction?
   831   virtual bool is_data()                         { return false; }
   833   // some relocations can compute their own values
   834   virtual address  value();
   836   // all relocations are able to reassert their values
   837   virtual void set_value(address x);
   839   virtual void clear_inline_cache()              { }
   841   // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
   842   // ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is
   843   // probably a reasonable assumption, since empty caches simplifies code reloacation.
   844   virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
   846   void print();
   847 };
   850 // certain inlines must be deferred until class Relocation is defined:
   852 inline RelocationHolder::RelocationHolder() {
   853   // initialize the vtbl, just to keep things type-safe
   854   new(*this) Relocation();
   855 }
   858 inline RelocationHolder::RelocationHolder(Relocation* r) {
   859   // wordwise copy from r (ok if it copies garbage after r)
   860   for (int i = 0; i < _relocbuf_size; i++) {
   861     _relocbuf[i] = ((void**)r)[i];
   862   }
   863 }
   866 relocInfo::relocType RelocationHolder::type() const {
   867   return reloc()->type();
   868 }
   870 // A DataRelocation always points at a memory or load-constant instruction..
   871 // It is absolute on most machines, and the constant is split on RISCs.
   872 // The specific subtypes are oop, external_word, and internal_word.
   873 // By convention, the "value" does not include a separately reckoned "offset".
   874 class DataRelocation : public Relocation {
   875  public:
   876   bool          is_data()                      { return true; }
   878   // both target and offset must be computed somehow from relocation data
   879   virtual int    offset()                      { return 0; }
   880   address         value()                      = 0;
   881   void        set_value(address x)             { set_value(x, offset()); }
   882   void        set_value(address x, intptr_t o) {
   883     if (addr_in_const())
   884       *(address*)addr() = x;
   885     else
   886       pd_set_data_value(x, o);
   887   }
   888   void        verify_value(address x) {
   889     if (addr_in_const())
   890       assert(*(address*)addr() == x, "must agree");
   891     else
   892       pd_verify_data_value(x, offset());
   893   }
   895   // The "o" (displacement) argument is relevant only to split relocations
   896   // on RISC machines.  In some CPUs (SPARC), the set-hi and set-lo ins'ns
   897   // can encode more than 32 bits between them.  This allows compilers to
   898   // share set-hi instructions between addresses that differ by a small
   899   // offset (e.g., different static variables in the same class).
   900   // On such machines, the "x" argument to set_value on all set-lo
   901   // instructions must be the same as the "x" argument for the
   902   // corresponding set-hi instructions.  The "o" arguments for the
   903   // set-hi instructions are ignored, and must not affect the high-half
   904   // immediate constant.  The "o" arguments for the set-lo instructions are
   905   // added into the low-half immediate constant, and must not overflow it.
   906 };
   908 // A CallRelocation always points at a call instruction.
   909 // It is PC-relative on most machines.
   910 class CallRelocation : public Relocation {
   911  public:
   912   bool is_call() { return true; }
   914   address  destination()                    { return pd_call_destination(); }
   915   void     set_destination(address x); // pd_set_call_destination
   917   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
   918   address  value()                          { return destination();  }
   919   void     set_value(address x)             { set_destination(x); }
   920 };
   922 class oop_Relocation : public DataRelocation {
   923   relocInfo::relocType type() { return relocInfo::oop_type; }
   925  public:
   926   // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
   927   // an oop in the CodeBlob's oop pool
   928   static RelocationHolder spec(int oop_index, int offset = 0) {
   929     assert(oop_index > 0, "must be a pool-resident oop");
   930     RelocationHolder rh = newHolder();
   931     new(rh) oop_Relocation(oop_index, offset);
   932     return rh;
   933   }
   934   // an oop in the instruction stream
   935   static RelocationHolder spec_for_immediate() {
   936     const int oop_index = 0;
   937     const int offset    = 0;    // if you want an offset, use the oop pool
   938     RelocationHolder rh = newHolder();
   939     new(rh) oop_Relocation(oop_index, offset);
   940     return rh;
   941   }
   943  private:
   944   jint _oop_index;                  // if > 0, index into CodeBlob::oop_at
   945   jint _offset;                     // byte offset to apply to the oop itself
   947   oop_Relocation(int oop_index, int offset) {
   948     _oop_index = oop_index; _offset = offset;
   949   }
   951   friend class RelocIterator;
   952   oop_Relocation() { }
   954  public:
   955   int oop_index() { return _oop_index; }
   956   int offset()    { return _offset; }
   958   // data is packed in "2_ints" format:  [i o] or [Ii Oo]
   959   void pack_data_to(CodeSection* dest);
   960   void unpack_data();
   962   void fix_oop_relocation();        // reasserts oop value
   964   void verify_oop_relocation();
   966   address value()  { return (address) *oop_addr(); }
   968   bool oop_is_immediate()  { return oop_index() == 0; }
   970   oop* oop_addr();                  // addr or &pool[jint_data]
   971   oop  oop_value();                 // *oop_addr
   972   // Note:  oop_value transparently converts Universe::non_oop_word to NULL.
   973 };
   975 class virtual_call_Relocation : public CallRelocation {
   976   relocInfo::relocType type() { return relocInfo::virtual_call_type; }
   978  public:
   979   // "first_oop" points to the first associated set-oop.
   980   // The oop_limit helps find the last associated set-oop.
   981   // (See comments at the top of this file.)
   982   static RelocationHolder spec(address first_oop, address oop_limit = NULL) {
   983     RelocationHolder rh = newHolder();
   984     new(rh) virtual_call_Relocation(first_oop, oop_limit);
   985     return rh;
   986   }
   988   virtual_call_Relocation(address first_oop, address oop_limit) {
   989     _first_oop = first_oop; _oop_limit = oop_limit;
   990     assert(first_oop != NULL, "first oop address must be specified");
   991   }
   993  private:
   994   address _first_oop;               // location of first set-oop instruction
   995   address _oop_limit;               // search limit for set-oop instructions
   997   friend class RelocIterator;
   998   virtual_call_Relocation() { }
  1001  public:
  1002   address first_oop();
  1003   address oop_limit();
  1005   // data is packed as scaled offsets in "2_ints" format:  [f l] or [Ff Ll]
  1006   // oop_limit is set to 0 if the limit falls somewhere within the call.
  1007   // When unpacking, a zero oop_limit is taken to refer to the end of the call.
  1008   // (This has the effect of bringing in the call's delay slot on SPARC.)
  1009   void pack_data_to(CodeSection* dest);
  1010   void unpack_data();
  1012   void clear_inline_cache();
  1014   // Figure out where an ic_call is hiding, given a set-oop or call.
  1015   // Either ic_call or first_oop must be non-null; the other is deduced.
  1016   // Code if non-NULL must be the nmethod, else it is deduced.
  1017   // The address of the patchable oop is also deduced.
  1018   // The returned iterator will enumerate over the oops and the ic_call,
  1019   // as well as any other relocations that happen to be in that span of code.
  1020   // Recognize relevant set_oops with:  oop_reloc()->oop_addr() == oop_addr.
  1021   static RelocIterator parse_ic(nmethod* &nm, address &ic_call, address &first_oop, oop* &oop_addr, bool *is_optimized);
  1022 };
  1025 class opt_virtual_call_Relocation : public CallRelocation {
  1026   relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; }
  1028  public:
  1029   static RelocationHolder spec() {
  1030     RelocationHolder rh = newHolder();
  1031     new(rh) opt_virtual_call_Relocation();
  1032     return rh;
  1035  private:
  1036   friend class RelocIterator;
  1037   opt_virtual_call_Relocation() { }
  1039  public:
  1040   void clear_inline_cache();
  1042   // find the matching static_stub
  1043   address static_stub();
  1044 };
  1047 class static_call_Relocation : public CallRelocation {
  1048   relocInfo::relocType type() { return relocInfo::static_call_type; }
  1050  public:
  1051   static RelocationHolder spec() {
  1052     RelocationHolder rh = newHolder();
  1053     new(rh) static_call_Relocation();
  1054     return rh;
  1057  private:
  1058   friend class RelocIterator;
  1059   static_call_Relocation() { }
  1061  public:
  1062   void clear_inline_cache();
  1064   // find the matching static_stub
  1065   address static_stub();
  1066 };
  1068 class static_stub_Relocation : public Relocation {
  1069   relocInfo::relocType type() { return relocInfo::static_stub_type; }
  1071  public:
  1072   static RelocationHolder spec(address static_call) {
  1073     RelocationHolder rh = newHolder();
  1074     new(rh) static_stub_Relocation(static_call);
  1075     return rh;
  1078  private:
  1079   address _static_call;             // location of corresponding static_call
  1081   static_stub_Relocation(address static_call) {
  1082     _static_call = static_call;
  1085   friend class RelocIterator;
  1086   static_stub_Relocation() { }
  1088  public:
  1089   void clear_inline_cache();
  1091   address static_call() { return _static_call; }
  1093   // data is packed as a scaled offset in "1_int" format:  [c] or [Cc]
  1094   void pack_data_to(CodeSection* dest);
  1095   void unpack_data();
  1096 };
  1098 class runtime_call_Relocation : public CallRelocation {
  1099   relocInfo::relocType type() { return relocInfo::runtime_call_type; }
  1101  public:
  1102   static RelocationHolder spec() {
  1103     RelocationHolder rh = newHolder();
  1104     new(rh) runtime_call_Relocation();
  1105     return rh;
  1108  private:
  1109   friend class RelocIterator;
  1110   runtime_call_Relocation() { }
  1112  public:
  1113 };
  1115 class external_word_Relocation : public DataRelocation {
  1116   relocInfo::relocType type() { return relocInfo::external_word_type; }
  1118  public:
  1119   static RelocationHolder spec(address target) {
  1120     assert(target != NULL, "must not be null");
  1121     RelocationHolder rh = newHolder();
  1122     new(rh) external_word_Relocation(target);
  1123     return rh;
  1126   // Use this one where all 32/64 bits of the target live in the code stream.
  1127   // The target must be an intptr_t, and must be absolute (not relative).
  1128   static RelocationHolder spec_for_immediate() {
  1129     RelocationHolder rh = newHolder();
  1130     new(rh) external_word_Relocation(NULL);
  1131     return rh;
  1134   // Some address looking values aren't safe to treat as relocations
  1135   // and should just be treated as constants.
  1136   static bool can_be_relocated(address target) {
  1137     return target != NULL && !is_reloc_index((intptr_t)target);
  1140  private:
  1141   address _target;                  // address in runtime
  1143   external_word_Relocation(address target) {
  1144     _target = target;
  1147   friend class RelocIterator;
  1148   external_word_Relocation() { }
  1150  public:
  1151   // data is packed as a well-known address in "1_int" format:  [a] or [Aa]
  1152   // The function runtime_address_to_index is used to turn full addresses
  1153   // to short indexes, if they are pre-registered by the stub mechanism.
  1154   // If the "a" value is 0 (i.e., _target is NULL), the address is stored
  1155   // in the code stream.  See external_word_Relocation::target().
  1156   void pack_data_to(CodeSection* dest);
  1157   void unpack_data();
  1159   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1160   address  target();        // if _target==NULL, fetch addr from code stream
  1161   address  value()          { return target(); }
  1162 };
  1164 class internal_word_Relocation : public DataRelocation {
  1165   relocInfo::relocType type() { return relocInfo::internal_word_type; }
  1167  public:
  1168   static RelocationHolder spec(address target) {
  1169     assert(target != NULL, "must not be null");
  1170     RelocationHolder rh = newHolder();
  1171     new(rh) internal_word_Relocation(target);
  1172     return rh;
  1175   // use this one where all the bits of the target can fit in the code stream:
  1176   static RelocationHolder spec_for_immediate() {
  1177     RelocationHolder rh = newHolder();
  1178     new(rh) internal_word_Relocation(NULL);
  1179     return rh;
  1182   internal_word_Relocation(address target) {
  1183     _target  = target;
  1184     _section = -1;  // self-relative
  1187  protected:
  1188   address _target;                  // address in CodeBlob
  1189   int     _section;                 // section providing base address, if any
  1191   friend class RelocIterator;
  1192   internal_word_Relocation() { }
  1194   // bit-width of LSB field in packed offset, if section >= 0
  1195   enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
  1197  public:
  1198   // data is packed as a scaled offset in "1_int" format:  [o] or [Oo]
  1199   // If the "o" value is 0 (i.e., _target is NULL), the offset is stored
  1200   // in the code stream.  See internal_word_Relocation::target().
  1201   // If _section is not -1, it is appended to the low bits of the offset.
  1202   void pack_data_to(CodeSection* dest);
  1203   void unpack_data();
  1205   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1206   address  target();        // if _target==NULL, fetch addr from code stream
  1207   int      section()        { return _section;   }
  1208   address  value()          { return target();   }
  1209 };
  1211 class section_word_Relocation : public internal_word_Relocation {
  1212   relocInfo::relocType type() { return relocInfo::section_word_type; }
  1214  public:
  1215   static RelocationHolder spec(address target, int section) {
  1216     RelocationHolder rh = newHolder();
  1217     new(rh) section_word_Relocation(target, section);
  1218     return rh;
  1221   section_word_Relocation(address target, int section) {
  1222     assert(target != NULL, "must not be null");
  1223     assert(section >= 0, "must be a valid section");
  1224     _target  = target;
  1225     _section = section;
  1228   //void pack_data_to -- inherited
  1229   void unpack_data();
  1231  private:
  1232   friend class RelocIterator;
  1233   section_word_Relocation() { }
  1234 };
  1237 class poll_Relocation : public Relocation {
  1238   bool          is_data()                      { return true; }
  1239   relocInfo::relocType type() { return relocInfo::poll_type; }
  1240   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1241 };
  1243 class poll_return_Relocation : public Relocation {
  1244   bool          is_data()                      { return true; }
  1245   relocInfo::relocType type() { return relocInfo::poll_return_type; }
  1246   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1247 };
  1250 class breakpoint_Relocation : public Relocation {
  1251   relocInfo::relocType type() { return relocInfo::breakpoint_type; }
  1253   enum {
  1254     // attributes which affect the interpretation of the data:
  1255     removable_attr = 0x0010,   // buffer [i...] allows for undoing the trap
  1256     internal_attr  = 0x0020,   // the target is an internal addr (local stub)
  1257     settable_attr  = 0x0040,   // the target is settable
  1259     // states which can change over time:
  1260     enabled_state  = 0x0100,   // breakpoint must be active in running code
  1261     active_state   = 0x0200,   // breakpoint instruction actually in code
  1263     kind_mask      = 0x000F,   // mask for extracting kind
  1264     high_bit       = 0x4000    // extra bit which is always set
  1265   };
  1267  public:
  1268   enum {
  1269     // kinds:
  1270     initialization = 1,
  1271     safepoint      = 2
  1272   };
  1274   // If target is NULL, 32 bits are reserved for a later set_target().
  1275   static RelocationHolder spec(int kind, address target = NULL, bool internal_target = false) {
  1276     RelocationHolder rh = newHolder();
  1277     new(rh) breakpoint_Relocation(kind, target, internal_target);
  1278     return rh;
  1281  private:
  1282   // We require every bits value to NOT to fit into relocInfo::datalen_width,
  1283   // because we are going to actually store state in the reloc, and so
  1284   // cannot allow it to be compressed (and hence copied by the iterator).
  1286   short   _bits;                  // bit-encoded kind, attrs, & state
  1287   address _target;
  1289   breakpoint_Relocation(int kind, address target, bool internal_target);
  1291   friend class RelocIterator;
  1292   breakpoint_Relocation() { }
  1294   short    bits()       const { return _bits; }
  1295   short&   live_bits()  const { return data()[0]; }
  1296   short*   instrs()     const { return data() + datalen() - instrlen(); }
  1297   int      instrlen()   const { return removable() ? pd_breakpoint_size() : 0; }
  1299   void set_bits(short x) {
  1300     assert(live_bits() == _bits, "must be the only mutator of reloc info");
  1301     live_bits() = _bits = x;
  1304  public:
  1305   address  target()     const;
  1306   void set_target(address x);
  1308   int  kind()           const { return  bits() & kind_mask; }
  1309   bool enabled()        const { return (bits() &  enabled_state) != 0; }
  1310   bool active()         const { return (bits() &   active_state) != 0; }
  1311   bool internal()       const { return (bits() &  internal_attr) != 0; }
  1312   bool removable()      const { return (bits() & removable_attr) != 0; }
  1313   bool settable()       const { return (bits() &  settable_attr) != 0; }
  1315   void set_enabled(bool b);     // to activate, you must also say set_active
  1316   void set_active(bool b);      // actually inserts bpt (must be enabled 1st)
  1318   // data is packed as 16 bits, followed by the target (1 or 2 words), followed
  1319   // if necessary by empty storage for saving away original instruction bytes.
  1320   void pack_data_to(CodeSection* dest);
  1321   void unpack_data();
  1323   // during certain operations, breakpoints must be out of the way:
  1324   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
  1325     assert(!active(), "cannot perform relocation on enabled breakpoints");
  1327 };
  1330 // We know all the xxx_Relocation classes, so now we can define these:
  1331 #define EACH_CASE(name)                                         \
  1332 inline name##_Relocation* RelocIterator::name##_reloc() {       \
  1333   assert(type() == relocInfo::name##_type, "type must agree");  \
  1334   /* The purpose of the placed "new" is to re-use the same */   \
  1335   /* stack storage for each new iteration. */                   \
  1336   name##_Relocation* r = new(_rh) name##_Relocation();          \
  1337   r->set_binding(this);                                         \
  1338   r->name##_Relocation::unpack_data();                          \
  1339   return r;                                                     \
  1341 APPLY_TO_RELOCATIONS(EACH_CASE);
  1342 #undef EACH_CASE
  1344 inline RelocIterator::RelocIterator(nmethod* nm, address begin, address limit) {
  1345   initialize(nm, begin, limit);
  1348 // if you are going to patch code, you should use this subclass of
  1349 // RelocIterator
  1350 class PatchingRelocIterator : public RelocIterator {
  1351  private:
  1352   RelocIterator _init_state;
  1354   void prepass();               // deactivates all breakpoints
  1355   void postpass();              // reactivates all enabled breakpoints
  1357   // do not copy these puppies; it would have unpredictable side effects
  1358   // these are private and have no bodies defined because they should not be called
  1359   PatchingRelocIterator(const RelocIterator&);
  1360   void        operator=(const RelocIterator&);
  1362  public:
  1363   PatchingRelocIterator(nmethod* nm, address begin = NULL, address limit = NULL)
  1364     : RelocIterator(nm, begin, limit)                { prepass();  }
  1366   ~PatchingRelocIterator()                           { postpass(); }
  1367 };
  1369 #endif // SHARE_VM_CODE_RELOCINFO_HPP

mercurial