src/share/vm/code/relocInfo.hpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 2750
6c97c830fb6f
child 5314
7875ea94bea5
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_CODE_RELOCINFO_HPP
    26 #define SHARE_VM_CODE_RELOCINFO_HPP
    28 #include "memory/allocation.hpp"
    29 #include "utilities/top.hpp"
    31 class NativeMovConstReg;
    33 // Types in this file:
    34 //    relocInfo
    35 //      One element of an array of halfwords encoding compressed relocations.
    36 //      Also, the source of relocation types (relocInfo::oop_type, ...).
    37 //    Relocation
    38 //      A flyweight object representing a single relocation.
    39 //      It is fully unpacked from the compressed relocation array.
    40 //    metadata_Relocation, ... (subclasses of Relocation)
    41 //      The location of some type-specific operations (metadata_addr, ...).
    42 //      Also, the source of relocation specs (metadata_Relocation::spec, ...).
    43 //    oop_Relocation, ... (subclasses of Relocation)
    44 //      oops in the code stream (strings, class loaders)
    45 //      Also, the source of relocation specs (oop_Relocation::spec, ...).
    46 //    RelocationHolder
    47 //      A ValueObj type which acts as a union holding a Relocation object.
    48 //      Represents a relocation spec passed into a CodeBuffer during assembly.
    49 //    RelocIterator
    50 //      A StackObj which iterates over the relocations associated with
    51 //      a range of code addresses.  Can be used to operate a copy of code.
    52 //    PatchingRelocIterator
    53 //      Specialized subtype of RelocIterator which removes breakpoints
    54 //      temporarily during iteration, then restores them.
    55 //    BoundRelocation
    56 //      An _internal_ type shared by packers and unpackers of relocations.
    57 //      It pastes together a RelocationHolder with some pointers into
    58 //      code and relocInfo streams.
    61 // Notes on relocType:
    62 //
    63 // These hold enough information to read or write a value embedded in
    64 // the instructions of an CodeBlob.  They're used to update:
    65 //
    66 //   1) embedded oops     (isOop()          == true)
    67 //   2) inline caches     (isIC()           == true)
    68 //   3) runtime calls     (isRuntimeCall()  == true)
    69 //   4) internal word ref (isInternalWord() == true)
    70 //   5) external word ref (isExternalWord() == true)
    71 //
    72 // when objects move (GC) or if code moves (compacting the code heap).
    73 // They are also used to patch the code (if a call site must change)
    74 //
    75 // A relocInfo is represented in 16 bits:
    76 //   4 bits indicating the relocation type
    77 //  12 bits indicating the offset from the previous relocInfo address
    78 //
    79 // The offsets accumulate along the relocInfo stream to encode the
    80 // address within the CodeBlob, which is named RelocIterator::addr().
    81 // The address of a particular relocInfo always points to the first
    82 // byte of the relevant instruction (and not to any of its subfields
    83 // or embedded immediate constants).
    84 //
    85 // The offset value is scaled appropriately for the target machine.
    86 // (See relocInfo_<arch>.hpp for the offset scaling.)
    87 //
    88 // On some machines, there may also be a "format" field which may provide
    89 // additional information about the format of the instruction stream
    90 // at the corresponding code address.  The format value is usually zero.
    91 // Any machine (such as Intel) whose instructions can sometimes contain
    92 // more than one relocatable constant needs format codes to distinguish
    93 // which operand goes with a given relocation.
    94 //
    95 // If the target machine needs N format bits, the offset has 12-N bits,
    96 // the format is encoded between the offset and the type, and the
    97 // relocInfo_<arch>.hpp file has manifest constants for the format codes.
    98 //
    99 // If the type is "data_prefix_tag" then the offset bits are further encoded,
   100 // and in fact represent not a code-stream offset but some inline data.
   101 // The data takes the form of a counted sequence of halfwords, which
   102 // precedes the actual relocation record.  (Clients never see it directly.)
   103 // The interpetation of this extra data depends on the relocation type.
   104 //
   105 // On machines that have 32-bit immediate fields, there is usually
   106 // little need for relocation "prefix" data, because the instruction stream
   107 // is a perfectly reasonable place to store the value.  On machines in
   108 // which 32-bit values must be "split" across instructions, the relocation
   109 // data is the "true" specification of the value, which is then applied
   110 // to some field of the instruction (22 or 13 bits, on SPARC).
   111 //
   112 // Whenever the location of the CodeBlob changes, any PC-relative
   113 // relocations, and any internal_word_type relocations, must be reapplied.
   114 // After the GC runs, oop_type relocations must be reapplied.
   115 //
   116 //
   117 // Here are meanings of the types:
   118 //
   119 // relocInfo::none -- a filler record
   120 //   Value:  none
   121 //   Instruction: The corresponding code address is ignored
   122 //   Data:  Any data prefix and format code are ignored
   123 //   (This means that any relocInfo can be disabled by setting
   124 //   its type to none.  See relocInfo::remove.)
   125 //
   126 // relocInfo::oop_type, relocInfo::metadata_type -- a reference to an oop or meta data
   127 //   Value:  an oop, or else the address (handle) of an oop
   128 //   Instruction types: memory (load), set (load address)
   129 //   Data:  []       an oop stored in 4 bytes of instruction
   130 //          [n]      n is the index of an oop in the CodeBlob's oop pool
   131 //          [[N]n l] and l is a byte offset to be applied to the oop
   132 //          [Nn Ll]  both index and offset may be 32 bits if necessary
   133 //   Here is a special hack, used only by the old compiler:
   134 //          [[N]n 00] the value is the __address__ of the nth oop in the pool
   135 //   (Note that the offset allows optimal references to class variables.)
   136 //
   137 // relocInfo::internal_word_type -- an address within the same CodeBlob
   138 // relocInfo::section_word_type -- same, but can refer to another section
   139 //   Value:  an address in the CodeBlob's code or constants section
   140 //   Instruction types: memory (load), set (load address)
   141 //   Data:  []     stored in 4 bytes of instruction
   142 //          [[L]l] a relative offset (see [About Offsets] below)
   143 //   In the case of section_word_type, the offset is relative to a section
   144 //   base address, and the section number (e.g., SECT_INSTS) is encoded
   145 //   into the low two bits of the offset L.
   146 //
   147 // relocInfo::external_word_type -- a fixed address in the runtime system
   148 //   Value:  an address
   149 //   Instruction types: memory (load), set (load address)
   150 //   Data:  []   stored in 4 bytes of instruction
   151 //          [n]  the index of a "well-known" stub (usual case on RISC)
   152 //          [Ll] a 32-bit address
   153 //
   154 // relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
   155 //   Value:  an address
   156 //   Instruction types: PC-relative call (or a PC-relative branch)
   157 //   Data:  []   stored in 4 bytes of instruction
   158 //
   159 // relocInfo::static_call_type -- a static call
   160 //   Value:  an CodeBlob, a stub, or a fixup routine
   161 //   Instruction types: a call
   162 //   Data:  []
   163 //   The identity of the callee is extracted from debugging information.
   164 //   //%note reloc_3
   165 //
   166 // relocInfo::virtual_call_type -- a virtual call site (which includes an inline
   167 //                                 cache)
   168 //   Value:  an CodeBlob, a stub, the interpreter, or a fixup routine
   169 //   Instruction types: a call, plus some associated set-oop instructions
   170 //   Data:  []       the associated set-oops are adjacent to the call
   171 //          [n]      n is a relative offset to the first set-oop
   172 //          [[N]n l] and l is a limit within which the set-oops occur
   173 //          [Nn Ll]  both n and l may be 32 bits if necessary
   174 //   The identity of the callee is extracted from debugging information.
   175 //
   176 // relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
   177 //
   178 //    Same info as a static_call_type. We use a special type, so the handling of
   179 //    virtuals and statics are separated.
   180 //
   181 //
   182 //   The offset n points to the first set-oop.  (See [About Offsets] below.)
   183 //   In turn, the set-oop instruction specifies or contains an oop cell devoted
   184 //   exclusively to the IC call, which can be patched along with the call.
   185 //
   186 //   The locations of any other set-oops are found by searching the relocation
   187 //   information starting at the first set-oop, and continuing until all
   188 //   relocations up through l have been inspected.  The value l is another
   189 //   relative offset.  (Both n and l are relative to the call's first byte.)
   190 //
   191 //   The limit l of the search is exclusive.  However, if it points within
   192 //   the call (e.g., offset zero), it is adjusted to point after the call and
   193 //   any associated machine-specific delay slot.
   194 //
   195 //   Since the offsets could be as wide as 32-bits, these conventions
   196 //   put no restrictions whatever upon code reorganization.
   197 //
   198 //   The compiler is responsible for ensuring that transition from a clean
   199 //   state to a monomorphic compiled state is MP-safe.  This implies that
   200 //   the system must respond well to intermediate states where a random
   201 //   subset of the set-oops has been correctly from the clean state
   202 //   upon entry to the VEP of the compiled method.  In the case of a
   203 //   machine (Intel) with a single set-oop instruction, the 32-bit
   204 //   immediate field must not straddle a unit of memory coherence.
   205 //   //%note reloc_3
   206 //
   207 // relocInfo::breakpoint_type -- a conditional breakpoint in the code
   208 //   Value:  none
   209 //   Instruction types: any whatsoever
   210 //   Data:  [b [T]t  i...]
   211 //   The b is a bit-packed word representing the breakpoint's attributes.
   212 //   The t is a target address which the breakpoint calls (when it is enabled).
   213 //   The i... is a place to store one or two instruction words overwritten
   214 //   by a trap, so that the breakpoint may be subsequently removed.
   215 //
   216 // relocInfo::static_stub_type -- an extra stub for each static_call_type
   217 //   Value:  none
   218 //   Instruction types: a virtual call:  { set_oop; jump; }
   219 //   Data:  [[N]n]  the offset of the associated static_call reloc
   220 //   This stub becomes the target of a static call which must be upgraded
   221 //   to a virtual call (because the callee is interpreted).
   222 //   See [About Offsets] below.
   223 //   //%note reloc_2
   224 //
   225 // For example:
   226 //
   227 //   INSTRUCTIONS                        RELOC: TYPE    PREFIX DATA
   228 //   ------------                               ----    -----------
   229 // sethi      %hi(myObject),  R               oop_type [n(myObject)]
   230 // ld      [R+%lo(myObject)+fldOffset], R2    oop_type [n(myObject) fldOffset]
   231 // add R2, 1, R2
   232 // st  R2, [R+%lo(myObject)+fldOffset]        oop_type [n(myObject) fldOffset]
   233 //%note reloc_1
   234 //
   235 // This uses 4 instruction words, 8 relocation halfwords,
   236 // and an entry (which is sharable) in the CodeBlob's oop pool,
   237 // for a total of 36 bytes.
   238 //
   239 // Note that the compiler is responsible for ensuring the "fldOffset" when
   240 // added to "%lo(myObject)" does not overflow the immediate fields of the
   241 // memory instructions.
   242 //
   243 //
   244 // [About Offsets] Relative offsets are supplied to this module as
   245 // positive byte offsets, but they may be internally stored scaled
   246 // and/or negated, depending on what is most compact for the target
   247 // system.  Since the object pointed to by the offset typically
   248 // precedes the relocation address, it is profitable to store
   249 // these negative offsets as positive numbers, but this decision
   250 // is internal to the relocation information abstractions.
   251 //
   253 class Relocation;
   254 class CodeBuffer;
   255 class CodeSection;
   256 class RelocIterator;
   258 class relocInfo VALUE_OBJ_CLASS_SPEC {
   259   friend class RelocIterator;
   260  public:
   261   enum relocType {
   262     none                    =  0, // Used when no relocation should be generated
   263     oop_type                =  1, // embedded oop
   264     virtual_call_type       =  2, // a standard inline cache call for a virtual send
   265     opt_virtual_call_type   =  3, // a virtual call that has been statically bound (i.e., no IC cache)
   266     static_call_type        =  4, // a static send
   267     static_stub_type        =  5, // stub-entry for static send  (takes care of interpreter case)
   268     runtime_call_type       =  6, // call to fixed external routine
   269     external_word_type      =  7, // reference to fixed external address
   270     internal_word_type      =  8, // reference within the current code blob
   271     section_word_type       =  9, // internal, but a cross-section reference
   272     poll_type               = 10, // polling instruction for safepoints
   273     poll_return_type        = 11, // polling instruction for safepoints at return
   274     breakpoint_type         = 12, // an initialization barrier or safepoint
   275     metadata_type           = 13, // metadata that used to be oops
   276     yet_unused_type_2       = 14, // Still unused
   277     data_prefix_tag         = 15, // tag for a prefix (carries data arguments)
   278     type_mask               = 15  // A mask which selects only the above values
   279   };
   281  protected:
   282   unsigned short _value;
   284   enum RawBitsToken { RAW_BITS };
   285   relocInfo(relocType type, RawBitsToken ignore, int bits)
   286     : _value((type << nontype_width) + bits) { }
   288   relocInfo(relocType type, RawBitsToken ignore, int off, int f)
   289     : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }
   291  public:
   292   // constructor
   293   relocInfo(relocType type, int offset, int format = 0)
   294 #ifndef ASSERT
   295   {
   296     (*this) = relocInfo(type, RAW_BITS, offset, format);
   297   }
   298 #else
   299   // Put a bunch of assertions out-of-line.
   300   ;
   301 #endif
   303   #define APPLY_TO_RELOCATIONS(visitor) \
   304     visitor(oop) \
   305     visitor(metadata) \
   306     visitor(virtual_call) \
   307     visitor(opt_virtual_call) \
   308     visitor(static_call) \
   309     visitor(static_stub) \
   310     visitor(runtime_call) \
   311     visitor(external_word) \
   312     visitor(internal_word) \
   313     visitor(poll) \
   314     visitor(poll_return) \
   315     visitor(breakpoint) \
   316     visitor(section_word) \
   319  public:
   320   enum {
   321     value_width             = sizeof(unsigned short) * BitsPerByte,
   322     type_width              = 4,   // == log2(type_mask+1)
   323     nontype_width           = value_width - type_width,
   324     datalen_width           = nontype_width-1,
   325     datalen_tag             = 1 << datalen_width,  // or-ed into _value
   326     datalen_limit           = 1 << datalen_width,
   327     datalen_mask            = (1 << datalen_width)-1
   328   };
   330   // accessors
   331  public:
   332   relocType  type()       const { return (relocType)((unsigned)_value >> nontype_width); }
   333   int  format()           const { return format_mask==0? 0: format_mask &
   334                                          ((unsigned)_value >> offset_width); }
   335   int  addr_offset()      const { assert(!is_prefix(), "must have offset");
   336                                   return (_value & offset_mask)*offset_unit; }
   338  protected:
   339   const short* data()     const { assert(is_datalen(), "must have data");
   340                                   return (const short*)(this + 1); }
   341   int          datalen()  const { assert(is_datalen(), "must have data");
   342                                   return (_value & datalen_mask); }
   343   int         immediate() const { assert(is_immediate(), "must have immed");
   344                                   return (_value & datalen_mask); }
   345  public:
   346   static int addr_unit()        { return offset_unit; }
   347   static int offset_limit()     { return (1 << offset_width) * offset_unit; }
   349   void set_type(relocType type);
   350   void set_format(int format);
   352   void remove() { set_type(none); }
   354  protected:
   355   bool is_none()                const { return type() == none; }
   356   bool is_prefix()              const { return type() == data_prefix_tag; }
   357   bool is_datalen()             const { assert(is_prefix(), "must be prefix");
   358                                         return (_value & datalen_tag) != 0; }
   359   bool is_immediate()           const { assert(is_prefix(), "must be prefix");
   360                                         return (_value & datalen_tag) == 0; }
   362  public:
   363   // Occasionally records of type relocInfo::none will appear in the stream.
   364   // We do not bother to filter these out, but clients should ignore them.
   365   // These records serve as "filler" in three ways:
   366   //  - to skip large spans of unrelocated code (this is rare)
   367   //  - to pad out the relocInfo array to the required oop alignment
   368   //  - to disable old relocation information which is no longer applicable
   370   inline friend relocInfo filler_relocInfo();
   372   // Every non-prefix relocation may be preceded by at most one prefix,
   373   // which supplies 1 or more halfwords of associated data.  Conventionally,
   374   // an int is represented by 0, 1, or 2 halfwords, depending on how
   375   // many bits are required to represent the value.  (In addition,
   376   // if the sole halfword is a 10-bit unsigned number, it is made
   377   // "immediate" in the prefix header word itself.  This optimization
   378   // is invisible outside this module.)
   380   inline friend relocInfo prefix_relocInfo(int datalen = 0);
   382  protected:
   383   // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
   384   static relocInfo immediate_relocInfo(int data0) {
   385     assert(fits_into_immediate(data0), "data0 in limits");
   386     return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
   387   }
   388   static bool fits_into_immediate(int data0) {
   389     return (data0 >= 0 && data0 < datalen_limit);
   390   }
   392  public:
   393   // Support routines for compilers.
   395   // This routine takes an infant relocInfo (unprefixed) and
   396   // edits in its prefix, if any.  It also updates dest.locs_end.
   397   void initialize(CodeSection* dest, Relocation* reloc);
   399   // This routine updates a prefix and returns the limit pointer.
   400   // It tries to compress the prefix from 32 to 16 bits, and if
   401   // successful returns a reduced "prefix_limit" pointer.
   402   relocInfo* finish_prefix(short* prefix_limit);
   404   // bit-packers for the data array:
   406   // As it happens, the bytes within the shorts are ordered natively,
   407   // but the shorts within the word are ordered big-endian.
   408   // This is an arbitrary choice, made this way mainly to ease debugging.
   409   static int data0_from_int(jint x)         { return x >> value_width; }
   410   static int data1_from_int(jint x)         { return (short)x; }
   411   static jint jint_from_data(short* data) {
   412     return (data[0] << value_width) + (unsigned short)data[1];
   413   }
   415   static jint short_data_at(int n, short* data, int datalen) {
   416     return datalen > n ? data[n] : 0;
   417   }
   419   static jint jint_data_at(int n, short* data, int datalen) {
   420     return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
   421   }
   423   // Update methods for relocation information
   424   // (since code is dynamically patched, we also need to dynamically update the relocation info)
   425   // Both methods takes old_type, so it is able to performe sanity checks on the information removed.
   426   static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
   427   static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);
   429   // Machine dependent stuff
   430 #ifdef TARGET_ARCH_x86
   431 # include "relocInfo_x86.hpp"
   432 #endif
   433 #ifdef TARGET_ARCH_sparc
   434 # include "relocInfo_sparc.hpp"
   435 #endif
   436 #ifdef TARGET_ARCH_zero
   437 # include "relocInfo_zero.hpp"
   438 #endif
   439 #ifdef TARGET_ARCH_arm
   440 # include "relocInfo_arm.hpp"
   441 #endif
   442 #ifdef TARGET_ARCH_ppc
   443 # include "relocInfo_ppc.hpp"
   444 #endif
   447  protected:
   448   // Derived constant, based on format_width which is PD:
   449   enum {
   450     offset_width       = nontype_width - format_width,
   451     offset_mask        = (1<<offset_width) - 1,
   452     format_mask        = (1<<format_width) - 1
   453   };
   454  public:
   455   enum {
   456     // Conservatively large estimate of maximum length (in shorts)
   457     // of any relocation record (probably breakpoints are largest).
   458     // Extended format is length prefix, data words, and tag/offset suffix.
   459     length_limit       = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
   460     have_format        = format_width > 0
   461   };
   462 };
   464 #define FORWARD_DECLARE_EACH_CLASS(name)              \
   465 class name##_Relocation;
   466 APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
   467 #undef FORWARD_DECLARE_EACH_CLASS
   471 inline relocInfo filler_relocInfo() {
   472   return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
   473 }
   475 inline relocInfo prefix_relocInfo(int datalen) {
   476   assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
   477   return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
   478 }
   481 // Holder for flyweight relocation objects.
   482 // Although the flyweight subclasses are of varying sizes,
   483 // the holder is "one size fits all".
   484 class RelocationHolder VALUE_OBJ_CLASS_SPEC {
   485   friend class Relocation;
   486   friend class CodeSection;
   488  private:
   489   // this preallocated memory must accommodate all subclasses of Relocation
   490   // (this number is assertion-checked in Relocation::operator new)
   491   enum { _relocbuf_size = 5 };
   492   void* _relocbuf[ _relocbuf_size ];
   494  public:
   495   Relocation* reloc() const { return (Relocation*) &_relocbuf[0]; }
   496   inline relocInfo::relocType type() const;
   498   // Add a constant offset to a relocation.  Helper for class Address.
   499   RelocationHolder plus(int offset) const;
   501   inline RelocationHolder();                // initializes type to none
   503   inline RelocationHolder(Relocation* r);   // make a copy
   505   static const RelocationHolder none;
   506 };
   508 // A RelocIterator iterates through the relocation information of a CodeBlob.
   509 // It is a variable BoundRelocation which is able to take on successive
   510 // values as it is advanced through a code stream.
   511 // Usage:
   512 //   RelocIterator iter(nm);
   513 //   while (iter.next()) {
   514 //     iter.reloc()->some_operation();
   515 //   }
   516 // or:
   517 //   RelocIterator iter(nm);
   518 //   while (iter.next()) {
   519 //     switch (iter.type()) {
   520 //      case relocInfo::oop_type          :
   521 //      case relocInfo::ic_type           :
   522 //      case relocInfo::prim_type         :
   523 //      case relocInfo::uncommon_type     :
   524 //      case relocInfo::runtime_call_type :
   525 //      case relocInfo::internal_word_type:
   526 //      case relocInfo::external_word_type:
   527 //      ...
   528 //     }
   529 //   }
   531 class RelocIterator : public StackObj {
   532   enum { SECT_LIMIT = 3 };  // must be equal to CodeBuffer::SECT_LIMIT, checked in ctor
   533   friend class Relocation;
   534   friend class relocInfo;       // for change_reloc_info_for_address only
   535   typedef relocInfo::relocType relocType;
   537  private:
   538   address    _limit;   // stop producing relocations after this _addr
   539   relocInfo* _current; // the current relocation information
   540   relocInfo* _end;     // end marker; we're done iterating when _current == _end
   541   nmethod*   _code;    // compiled method containing _addr
   542   address    _addr;    // instruction to which the relocation applies
   543   short      _databuf; // spare buffer for compressed data
   544   short*     _data;    // pointer to the relocation's data
   545   short      _datalen; // number of halfwords in _data
   546   char       _format;  // position within the instruction
   548   // Base addresses needed to compute targets of section_word_type relocs.
   549   address    _section_start[SECT_LIMIT];
   550   address    _section_end  [SECT_LIMIT];
   552   void set_has_current(bool b) {
   553     _datalen = !b ? -1 : 0;
   554     debug_only(_data = NULL);
   555   }
   556   void set_current(relocInfo& ri) {
   557     _current = &ri;
   558     set_has_current(true);
   559   }
   561   RelocationHolder _rh; // where the current relocation is allocated
   563   relocInfo* current() const { assert(has_current(), "must have current");
   564                                return _current; }
   566   void set_limits(address begin, address limit);
   568   void advance_over_prefix();    // helper method
   570   void initialize_misc();
   572   void initialize(nmethod* nm, address begin, address limit);
   574   friend class PatchingRelocIterator;
   575   // make an uninitialized one, for PatchingRelocIterator:
   576   RelocIterator() { initialize_misc(); }
   578  public:
   579   // constructor
   580   RelocIterator(nmethod* nm,     address begin = NULL, address limit = NULL);
   581   RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL);
   583   // get next reloc info, return !eos
   584   bool next() {
   585     _current++;
   586     assert(_current <= _end, "must not overrun relocInfo");
   587     if (_current == _end) {
   588       set_has_current(false);
   589       return false;
   590     }
   591     set_has_current(true);
   593     if (_current->is_prefix()) {
   594       advance_over_prefix();
   595       assert(!current()->is_prefix(), "only one prefix at a time");
   596     }
   598     _addr += _current->addr_offset();
   600     if (_limit != NULL && _addr >= _limit) {
   601       set_has_current(false);
   602       return false;
   603     }
   605     if (relocInfo::have_format)  _format = current()->format();
   606     return true;
   607   }
   609   // accessors
   610   address      limit()        const { return _limit; }
   611   void     set_limit(address x);
   612   relocType    type()         const { return current()->type(); }
   613   int          format()       const { return (relocInfo::have_format) ? current()->format() : 0; }
   614   address      addr()         const { return _addr; }
   615   nmethod*     code()         const { return _code; }
   616   short*       data()         const { return _data; }
   617   int          datalen()      const { return _datalen; }
   618   bool     has_current()      const { return _datalen >= 0; }
   620   void       set_addr(address addr) { _addr = addr; }
   621   bool   addr_in_const()      const;
   623   address section_start(int n) const {
   624     assert(_section_start[n], "must be initialized");
   625     return _section_start[n];
   626   }
   627   address section_end(int n) const {
   628     assert(_section_end[n], "must be initialized");
   629     return _section_end[n];
   630   }
   632   // The address points to the affected displacement part of the instruction.
   633   // For RISC, this is just the whole instruction.
   634   // For Intel, this is an unaligned 32-bit word.
   636   // type-specific relocation accessors:  oop_Relocation* oop_reloc(), etc.
   637   #define EACH_TYPE(name)                               \
   638   inline name##_Relocation* name##_reloc();
   639   APPLY_TO_RELOCATIONS(EACH_TYPE)
   640   #undef EACH_TYPE
   641   // generic relocation accessor; switches on type to call the above
   642   Relocation* reloc();
   644   // CodeBlob's have relocation indexes for faster random access:
   645   static int locs_and_index_size(int code_size, int locs_size);
   646   // Store an index into [dest_start+dest_count..dest_end).
   647   // At dest_start[0..dest_count] is the actual relocation information.
   648   // Everything else up to dest_end is free space for the index.
   649   static void create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end);
   651 #ifndef PRODUCT
   652  public:
   653   void print();
   654   void print_current();
   655 #endif
   656 };
   659 // A Relocation is a flyweight object allocated within a RelocationHolder.
   660 // It represents the relocation data of relocation record.
   661 // So, the RelocIterator unpacks relocInfos into Relocations.
   663 class Relocation VALUE_OBJ_CLASS_SPEC {
   664   friend class RelocationHolder;
   665   friend class RelocIterator;
   667  private:
   668   static void guarantee_size();
   670   // When a relocation has been created by a RelocIterator,
   671   // this field is non-null.  It allows the relocation to know
   672   // its context, such as the address to which it applies.
   673   RelocIterator* _binding;
   675  protected:
   676   RelocIterator* binding() const {
   677     assert(_binding != NULL, "must be bound");
   678     return _binding;
   679   }
   680   void set_binding(RelocIterator* b) {
   681     assert(_binding == NULL, "must be unbound");
   682     _binding = b;
   683     assert(_binding != NULL, "must now be bound");
   684   }
   686   Relocation() {
   687     _binding = NULL;
   688   }
   690   static RelocationHolder newHolder() {
   691     return RelocationHolder();
   692   }
   694  public:
   695   void* operator new(size_t size, const RelocationHolder& holder) {
   696     if (size > sizeof(holder._relocbuf)) guarantee_size();
   697     assert((void* const *)holder.reloc() == &holder._relocbuf[0], "ptrs must agree");
   698     return holder.reloc();
   699   }
   701   // make a generic relocation for a given type (if possible)
   702   static RelocationHolder spec_simple(relocInfo::relocType rtype);
   704   // here is the type-specific hook which writes relocation data:
   705   virtual void pack_data_to(CodeSection* dest) { }
   707   // here is the type-specific hook which reads (unpacks) relocation data:
   708   virtual void unpack_data() {
   709     assert(datalen()==0 || type()==relocInfo::none, "no data here");
   710   }
   712   static bool is_reloc_index(intptr_t index) {
   713     return 0 < index && index < os::vm_page_size();
   714   }
   716  protected:
   717   // Helper functions for pack_data_to() and unpack_data().
   719   // Most of the compression logic is confined here.
   720   // (The "immediate data" mechanism of relocInfo works independently
   721   // of this stuff, and acts to further compress most 1-word data prefixes.)
   723   // A variable-width int is encoded as a short if it will fit in 16 bits.
   724   // The decoder looks at datalen to decide whether to unpack short or jint.
   725   // Most relocation records are quite simple, containing at most two ints.
   727   static bool is_short(jint x) { return x == (short)x; }
   728   static short* add_short(short* p, int x)  { *p++ = x; return p; }
   729   static short* add_jint (short* p, jint x) {
   730     *p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
   731     return p;
   732   }
   733   static short* add_var_int(short* p, jint x) {   // add a variable-width int
   734     if (is_short(x))  p = add_short(p, x);
   735     else              p = add_jint (p, x);
   736     return p;
   737   }
   739   static short* pack_1_int_to(short* p, jint x0) {
   740     // Format is one of:  [] [x] [Xx]
   741     if (x0 != 0)  p = add_var_int(p, x0);
   742     return p;
   743   }
   744   int unpack_1_int() {
   745     assert(datalen() <= 2, "too much data");
   746     return relocInfo::jint_data_at(0, data(), datalen());
   747   }
   749   // With two ints, the short form is used only if both ints are short.
   750   short* pack_2_ints_to(short* p, jint x0, jint x1) {
   751     // Format is one of:  [] [x y?] [Xx Y?y]
   752     if (x0 == 0 && x1 == 0) {
   753       // no halfwords needed to store zeroes
   754     } else if (is_short(x0) && is_short(x1)) {
   755       // 1-2 halfwords needed to store shorts
   756       p = add_short(p, x0); if (x1!=0) p = add_short(p, x1);
   757     } else {
   758       // 3-4 halfwords needed to store jints
   759       p = add_jint(p, x0);             p = add_var_int(p, x1);
   760     }
   761     return p;
   762   }
   763   void unpack_2_ints(jint& x0, jint& x1) {
   764     int    dlen = datalen();
   765     short* dp  = data();
   766     if (dlen <= 2) {
   767       x0 = relocInfo::short_data_at(0, dp, dlen);
   768       x1 = relocInfo::short_data_at(1, dp, dlen);
   769     } else {
   770       assert(dlen <= 4, "too much data");
   771       x0 = relocInfo::jint_data_at(0, dp, dlen);
   772       x1 = relocInfo::jint_data_at(2, dp, dlen);
   773     }
   774   }
   776  protected:
   777   // platform-dependent utilities for decoding and patching instructions
   778   void       pd_set_data_value       (address x, intptr_t off, bool verify_only = false); // a set or mem-ref
   779   void       pd_verify_data_value    (address x, intptr_t off) { pd_set_data_value(x, off, true); }
   780   address    pd_call_destination     (address orig_addr = NULL);
   781   void       pd_set_call_destination (address x);
   782   void       pd_swap_in_breakpoint   (address x, short* instrs, int instrlen);
   783   void       pd_swap_out_breakpoint  (address x, short* instrs, int instrlen);
   784   static int pd_breakpoint_size      ();
   786   // this extracts the address of an address in the code stream instead of the reloc data
   787   address* pd_address_in_code       ();
   789   // this extracts an address from the code stream instead of the reloc data
   790   address  pd_get_address_from_code ();
   792   // these convert from byte offsets, to scaled offsets, to addresses
   793   static jint scaled_offset(address x, address base) {
   794     int byte_offset = x - base;
   795     int offset = -byte_offset / relocInfo::addr_unit();
   796     assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
   797     return offset;
   798   }
   799   static jint scaled_offset_null_special(address x, address base) {
   800     // Some relocations treat offset=0 as meaning NULL.
   801     // Handle this extra convention carefully.
   802     if (x == NULL)  return 0;
   803     assert(x != base, "offset must not be zero");
   804     return scaled_offset(x, base);
   805   }
   806   static address address_from_scaled_offset(jint offset, address base) {
   807     int byte_offset = -( offset * relocInfo::addr_unit() );
   808     return base + byte_offset;
   809   }
   811   // these convert between indexes and addresses in the runtime system
   812   static int32_t runtime_address_to_index(address runtime_address);
   813   static address index_to_runtime_address(int32_t index);
   815   // helpers for mapping between old and new addresses after a move or resize
   816   address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
   817   address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
   818   void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
   820  public:
   821   // accessors which only make sense for a bound Relocation
   822   address  addr()         const { return binding()->addr(); }
   823   nmethod* code()         const { return binding()->code(); }
   824   bool     addr_in_const() const { return binding()->addr_in_const(); }
   825  protected:
   826   short*   data()         const { return binding()->data(); }
   827   int      datalen()      const { return binding()->datalen(); }
   828   int      format()       const { return binding()->format(); }
   830  public:
   831   virtual relocInfo::relocType type()            { return relocInfo::none; }
   833   // is it a call instruction?
   834   virtual bool is_call()                         { return false; }
   836   // is it a data movement instruction?
   837   virtual bool is_data()                         { return false; }
   839   // some relocations can compute their own values
   840   virtual address  value();
   842   // all relocations are able to reassert their values
   843   virtual void set_value(address x);
   845   virtual void clear_inline_cache()              { }
   847   // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
   848   // ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is
   849   // probably a reasonable assumption, since empty caches simplifies code reloacation.
   850   virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
   852   void print();
   853 };
   856 // certain inlines must be deferred until class Relocation is defined:
   858 inline RelocationHolder::RelocationHolder() {
   859   // initialize the vtbl, just to keep things type-safe
   860   new(*this) Relocation();
   861 }
   864 inline RelocationHolder::RelocationHolder(Relocation* r) {
   865   // wordwise copy from r (ok if it copies garbage after r)
   866   for (int i = 0; i < _relocbuf_size; i++) {
   867     _relocbuf[i] = ((void**)r)[i];
   868   }
   869 }
   872 relocInfo::relocType RelocationHolder::type() const {
   873   return reloc()->type();
   874 }
   876 // A DataRelocation always points at a memory or load-constant instruction..
   877 // It is absolute on most machines, and the constant is split on RISCs.
   878 // The specific subtypes are oop, external_word, and internal_word.
   879 // By convention, the "value" does not include a separately reckoned "offset".
   880 class DataRelocation : public Relocation {
   881  public:
   882   bool          is_data()                      { return true; }
   884   // both target and offset must be computed somehow from relocation data
   885   virtual int    offset()                      { return 0; }
   886   address         value()                      = 0;
   887   void        set_value(address x)             { set_value(x, offset()); }
   888   void        set_value(address x, intptr_t o) {
   889     if (addr_in_const())
   890       *(address*)addr() = x;
   891     else
   892       pd_set_data_value(x, o);
   893   }
   894   void        verify_value(address x) {
   895     if (addr_in_const())
   896       assert(*(address*)addr() == x, "must agree");
   897     else
   898       pd_verify_data_value(x, offset());
   899   }
   901   // The "o" (displacement) argument is relevant only to split relocations
   902   // on RISC machines.  In some CPUs (SPARC), the set-hi and set-lo ins'ns
   903   // can encode more than 32 bits between them.  This allows compilers to
   904   // share set-hi instructions between addresses that differ by a small
   905   // offset (e.g., different static variables in the same class).
   906   // On such machines, the "x" argument to set_value on all set-lo
   907   // instructions must be the same as the "x" argument for the
   908   // corresponding set-hi instructions.  The "o" arguments for the
   909   // set-hi instructions are ignored, and must not affect the high-half
   910   // immediate constant.  The "o" arguments for the set-lo instructions are
   911   // added into the low-half immediate constant, and must not overflow it.
   912 };
   914 // A CallRelocation always points at a call instruction.
   915 // It is PC-relative on most machines.
   916 class CallRelocation : public Relocation {
   917  public:
   918   bool is_call() { return true; }
   920   address  destination()                    { return pd_call_destination(); }
   921   void     set_destination(address x); // pd_set_call_destination
   923   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
   924   address  value()                          { return destination();  }
   925   void     set_value(address x)             { set_destination(x); }
   926 };
   928 class oop_Relocation : public DataRelocation {
   929   relocInfo::relocType type() { return relocInfo::oop_type; }
   931  public:
   932   // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
   933   // an oop in the CodeBlob's oop pool
   934   static RelocationHolder spec(int oop_index, int offset = 0) {
   935     assert(oop_index > 0, "must be a pool-resident oop");
   936     RelocationHolder rh = newHolder();
   937     new(rh) oop_Relocation(oop_index, offset);
   938     return rh;
   939   }
   940   // an oop in the instruction stream
   941   static RelocationHolder spec_for_immediate() {
   942     const int oop_index = 0;
   943     const int offset    = 0;    // if you want an offset, use the oop pool
   944     RelocationHolder rh = newHolder();
   945     new(rh) oop_Relocation(oop_index, offset);
   946     return rh;
   947   }
   949  private:
   950   jint _oop_index;                  // if > 0, index into CodeBlob::oop_at
   951   jint _offset;                     // byte offset to apply to the oop itself
   953   oop_Relocation(int oop_index, int offset) {
   954     _oop_index = oop_index; _offset = offset;
   955   }
   957   friend class RelocIterator;
   958   oop_Relocation() { }
   960  public:
   961   int oop_index() { return _oop_index; }
   962   int offset()    { return _offset; }
   964   // data is packed in "2_ints" format:  [i o] or [Ii Oo]
   965   void pack_data_to(CodeSection* dest);
   966   void unpack_data();
   968   void fix_oop_relocation();        // reasserts oop value
   970   void verify_oop_relocation();
   972   address value()  { return (address) *oop_addr(); }
   974   bool oop_is_immediate()  { return oop_index() == 0; }
   976   oop* oop_addr();                  // addr or &pool[jint_data]
   977   oop  oop_value();                 // *oop_addr
   978   // Note:  oop_value transparently converts Universe::non_oop_word to NULL.
   979 };
   982 // copy of oop_Relocation for now but may delete stuff in both/either
   983 class metadata_Relocation : public DataRelocation {
   984   relocInfo::relocType type() { return relocInfo::metadata_type; }
   986  public:
   987   // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
   988   // an metadata in the CodeBlob's metadata pool
   989   static RelocationHolder spec(int metadata_index, int offset = 0) {
   990     assert(metadata_index > 0, "must be a pool-resident metadata");
   991     RelocationHolder rh = newHolder();
   992     new(rh) metadata_Relocation(metadata_index, offset);
   993     return rh;
   994   }
   995   // an metadata in the instruction stream
   996   static RelocationHolder spec_for_immediate() {
   997     const int metadata_index = 0;
   998     const int offset    = 0;    // if you want an offset, use the metadata pool
   999     RelocationHolder rh = newHolder();
  1000     new(rh) metadata_Relocation(metadata_index, offset);
  1001     return rh;
  1004  private:
  1005   jint _metadata_index;            // if > 0, index into nmethod::metadata_at
  1006   jint _offset;                     // byte offset to apply to the metadata itself
  1008   metadata_Relocation(int metadata_index, int offset) {
  1009     _metadata_index = metadata_index; _offset = offset;
  1012   friend class RelocIterator;
  1013   metadata_Relocation() { }
  1015   // Fixes a Metadata pointer in the code. Most platforms embeds the
  1016   // Metadata pointer in the code at compile time so this is empty
  1017   // for them.
  1018   void pd_fix_value(address x);
  1020  public:
  1021   int metadata_index() { return _metadata_index; }
  1022   int offset()    { return _offset; }
  1024   // data is packed in "2_ints" format:  [i o] or [Ii Oo]
  1025   void pack_data_to(CodeSection* dest);
  1026   void unpack_data();
  1028   void fix_metadata_relocation();        // reasserts metadata value
  1030   void verify_metadata_relocation();
  1032   address value()  { return (address) *metadata_addr(); }
  1034   bool metadata_is_immediate()  { return metadata_index() == 0; }
  1036   Metadata**   metadata_addr();                  // addr or &pool[jint_data]
  1037   Metadata*    metadata_value();                 // *metadata_addr
  1038   // Note:  metadata_value transparently converts Universe::non_metadata_word to NULL.
  1039 };
  1042 class virtual_call_Relocation : public CallRelocation {
  1043   relocInfo::relocType type() { return relocInfo::virtual_call_type; }
  1045  public:
  1046   // "cached_value" points to the first associated set-oop.
  1047   // The oop_limit helps find the last associated set-oop.
  1048   // (See comments at the top of this file.)
  1049   static RelocationHolder spec(address cached_value) {
  1050     RelocationHolder rh = newHolder();
  1051     new(rh) virtual_call_Relocation(cached_value);
  1052     return rh;
  1055   virtual_call_Relocation(address cached_value) {
  1056     _cached_value = cached_value;
  1057     assert(cached_value != NULL, "first oop address must be specified");
  1060  private:
  1061   address _cached_value;               // location of set-value instruction
  1063   friend class RelocIterator;
  1064   virtual_call_Relocation() { }
  1067  public:
  1068   address cached_value();
  1070   // data is packed as scaled offsets in "2_ints" format:  [f l] or [Ff Ll]
  1071   // oop_limit is set to 0 if the limit falls somewhere within the call.
  1072   // When unpacking, a zero oop_limit is taken to refer to the end of the call.
  1073   // (This has the effect of bringing in the call's delay slot on SPARC.)
  1074   void pack_data_to(CodeSection* dest);
  1075   void unpack_data();
  1077   void clear_inline_cache();
  1078 };
  1081 class opt_virtual_call_Relocation : public CallRelocation {
  1082   relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; }
  1084  public:
  1085   static RelocationHolder spec() {
  1086     RelocationHolder rh = newHolder();
  1087     new(rh) opt_virtual_call_Relocation();
  1088     return rh;
  1091  private:
  1092   friend class RelocIterator;
  1093   opt_virtual_call_Relocation() { }
  1095  public:
  1096   void clear_inline_cache();
  1098   // find the matching static_stub
  1099   address static_stub();
  1100 };
  1103 class static_call_Relocation : public CallRelocation {
  1104   relocInfo::relocType type() { return relocInfo::static_call_type; }
  1106  public:
  1107   static RelocationHolder spec() {
  1108     RelocationHolder rh = newHolder();
  1109     new(rh) static_call_Relocation();
  1110     return rh;
  1113  private:
  1114   friend class RelocIterator;
  1115   static_call_Relocation() { }
  1117  public:
  1118   void clear_inline_cache();
  1120   // find the matching static_stub
  1121   address static_stub();
  1122 };
  1124 class static_stub_Relocation : public Relocation {
  1125   relocInfo::relocType type() { return relocInfo::static_stub_type; }
  1127  public:
  1128   static RelocationHolder spec(address static_call) {
  1129     RelocationHolder rh = newHolder();
  1130     new(rh) static_stub_Relocation(static_call);
  1131     return rh;
  1134  private:
  1135   address _static_call;             // location of corresponding static_call
  1137   static_stub_Relocation(address static_call) {
  1138     _static_call = static_call;
  1141   friend class RelocIterator;
  1142   static_stub_Relocation() { }
  1144  public:
  1145   void clear_inline_cache();
  1147   address static_call() { return _static_call; }
  1149   // data is packed as a scaled offset in "1_int" format:  [c] or [Cc]
  1150   void pack_data_to(CodeSection* dest);
  1151   void unpack_data();
  1152 };
  1154 class runtime_call_Relocation : public CallRelocation {
  1155   relocInfo::relocType type() { return relocInfo::runtime_call_type; }
  1157  public:
  1158   static RelocationHolder spec() {
  1159     RelocationHolder rh = newHolder();
  1160     new(rh) runtime_call_Relocation();
  1161     return rh;
  1164  private:
  1165   friend class RelocIterator;
  1166   runtime_call_Relocation() { }
  1168  public:
  1169 };
  1171 class external_word_Relocation : public DataRelocation {
  1172   relocInfo::relocType type() { return relocInfo::external_word_type; }
  1174  public:
  1175   static RelocationHolder spec(address target) {
  1176     assert(target != NULL, "must not be null");
  1177     RelocationHolder rh = newHolder();
  1178     new(rh) external_word_Relocation(target);
  1179     return rh;
  1182   // Use this one where all 32/64 bits of the target live in the code stream.
  1183   // The target must be an intptr_t, and must be absolute (not relative).
  1184   static RelocationHolder spec_for_immediate() {
  1185     RelocationHolder rh = newHolder();
  1186     new(rh) external_word_Relocation(NULL);
  1187     return rh;
  1190   // Some address looking values aren't safe to treat as relocations
  1191   // and should just be treated as constants.
  1192   static bool can_be_relocated(address target) {
  1193     return target != NULL && !is_reloc_index((intptr_t)target);
  1196  private:
  1197   address _target;                  // address in runtime
  1199   external_word_Relocation(address target) {
  1200     _target = target;
  1203   friend class RelocIterator;
  1204   external_word_Relocation() { }
  1206  public:
  1207   // data is packed as a well-known address in "1_int" format:  [a] or [Aa]
  1208   // The function runtime_address_to_index is used to turn full addresses
  1209   // to short indexes, if they are pre-registered by the stub mechanism.
  1210   // If the "a" value is 0 (i.e., _target is NULL), the address is stored
  1211   // in the code stream.  See external_word_Relocation::target().
  1212   void pack_data_to(CodeSection* dest);
  1213   void unpack_data();
  1215   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1216   address  target();        // if _target==NULL, fetch addr from code stream
  1217   address  value()          { return target(); }
  1218 };
  1220 class internal_word_Relocation : public DataRelocation {
  1221   relocInfo::relocType type() { return relocInfo::internal_word_type; }
  1223  public:
  1224   static RelocationHolder spec(address target) {
  1225     assert(target != NULL, "must not be null");
  1226     RelocationHolder rh = newHolder();
  1227     new(rh) internal_word_Relocation(target);
  1228     return rh;
  1231   // use this one where all the bits of the target can fit in the code stream:
  1232   static RelocationHolder spec_for_immediate() {
  1233     RelocationHolder rh = newHolder();
  1234     new(rh) internal_word_Relocation(NULL);
  1235     return rh;
  1238   internal_word_Relocation(address target) {
  1239     _target  = target;
  1240     _section = -1;  // self-relative
  1243  protected:
  1244   address _target;                  // address in CodeBlob
  1245   int     _section;                 // section providing base address, if any
  1247   friend class RelocIterator;
  1248   internal_word_Relocation() { }
  1250   // bit-width of LSB field in packed offset, if section >= 0
  1251   enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
  1253  public:
  1254   // data is packed as a scaled offset in "1_int" format:  [o] or [Oo]
  1255   // If the "o" value is 0 (i.e., _target is NULL), the offset is stored
  1256   // in the code stream.  See internal_word_Relocation::target().
  1257   // If _section is not -1, it is appended to the low bits of the offset.
  1258   void pack_data_to(CodeSection* dest);
  1259   void unpack_data();
  1261   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1262   address  target();        // if _target==NULL, fetch addr from code stream
  1263   int      section()        { return _section;   }
  1264   address  value()          { return target();   }
  1265 };
  1267 class section_word_Relocation : public internal_word_Relocation {
  1268   relocInfo::relocType type() { return relocInfo::section_word_type; }
  1270  public:
  1271   static RelocationHolder spec(address target, int section) {
  1272     RelocationHolder rh = newHolder();
  1273     new(rh) section_word_Relocation(target, section);
  1274     return rh;
  1277   section_word_Relocation(address target, int section) {
  1278     assert(target != NULL, "must not be null");
  1279     assert(section >= 0, "must be a valid section");
  1280     _target  = target;
  1281     _section = section;
  1284   //void pack_data_to -- inherited
  1285   void unpack_data();
  1287  private:
  1288   friend class RelocIterator;
  1289   section_word_Relocation() { }
  1290 };
  1293 class poll_Relocation : public Relocation {
  1294   bool          is_data()                      { return true; }
  1295   relocInfo::relocType type() { return relocInfo::poll_type; }
  1296   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1297 };
  1299 class poll_return_Relocation : public Relocation {
  1300   bool          is_data()                      { return true; }
  1301   relocInfo::relocType type() { return relocInfo::poll_return_type; }
  1302   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
  1303 };
  1306 class breakpoint_Relocation : public Relocation {
  1307   relocInfo::relocType type() { return relocInfo::breakpoint_type; }
  1309   enum {
  1310     // attributes which affect the interpretation of the data:
  1311     removable_attr = 0x0010,   // buffer [i...] allows for undoing the trap
  1312     internal_attr  = 0x0020,   // the target is an internal addr (local stub)
  1313     settable_attr  = 0x0040,   // the target is settable
  1315     // states which can change over time:
  1316     enabled_state  = 0x0100,   // breakpoint must be active in running code
  1317     active_state   = 0x0200,   // breakpoint instruction actually in code
  1319     kind_mask      = 0x000F,   // mask for extracting kind
  1320     high_bit       = 0x4000    // extra bit which is always set
  1321   };
  1323  public:
  1324   enum {
  1325     // kinds:
  1326     initialization = 1,
  1327     safepoint      = 2
  1328   };
  1330   // If target is NULL, 32 bits are reserved for a later set_target().
  1331   static RelocationHolder spec(int kind, address target = NULL, bool internal_target = false) {
  1332     RelocationHolder rh = newHolder();
  1333     new(rh) breakpoint_Relocation(kind, target, internal_target);
  1334     return rh;
  1337  private:
  1338   // We require every bits value to NOT to fit into relocInfo::datalen_width,
  1339   // because we are going to actually store state in the reloc, and so
  1340   // cannot allow it to be compressed (and hence copied by the iterator).
  1342   short   _bits;                  // bit-encoded kind, attrs, & state
  1343   address _target;
  1345   breakpoint_Relocation(int kind, address target, bool internal_target);
  1347   friend class RelocIterator;
  1348   breakpoint_Relocation() { }
  1350   short    bits()       const { return _bits; }
  1351   short&   live_bits()  const { return data()[0]; }
  1352   short*   instrs()     const { return data() + datalen() - instrlen(); }
  1353   int      instrlen()   const { return removable() ? pd_breakpoint_size() : 0; }
  1355   void set_bits(short x) {
  1356     assert(live_bits() == _bits, "must be the only mutator of reloc info");
  1357     live_bits() = _bits = x;
  1360  public:
  1361   address  target()     const;
  1362   void set_target(address x);
  1364   int  kind()           const { return  bits() & kind_mask; }
  1365   bool enabled()        const { return (bits() &  enabled_state) != 0; }
  1366   bool active()         const { return (bits() &   active_state) != 0; }
  1367   bool internal()       const { return (bits() &  internal_attr) != 0; }
  1368   bool removable()      const { return (bits() & removable_attr) != 0; }
  1369   bool settable()       const { return (bits() &  settable_attr) != 0; }
  1371   void set_enabled(bool b);     // to activate, you must also say set_active
  1372   void set_active(bool b);      // actually inserts bpt (must be enabled 1st)
  1374   // data is packed as 16 bits, followed by the target (1 or 2 words), followed
  1375   // if necessary by empty storage for saving away original instruction bytes.
  1376   void pack_data_to(CodeSection* dest);
  1377   void unpack_data();
  1379   // during certain operations, breakpoints must be out of the way:
  1380   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
  1381     assert(!active(), "cannot perform relocation on enabled breakpoints");
  1383 };
  1386 // We know all the xxx_Relocation classes, so now we can define these:
  1387 #define EACH_CASE(name)                                         \
  1388 inline name##_Relocation* RelocIterator::name##_reloc() {       \
  1389   assert(type() == relocInfo::name##_type, "type must agree");  \
  1390   /* The purpose of the placed "new" is to re-use the same */   \
  1391   /* stack storage for each new iteration. */                   \
  1392   name##_Relocation* r = new(_rh) name##_Relocation();          \
  1393   r->set_binding(this);                                         \
  1394   r->name##_Relocation::unpack_data();                          \
  1395   return r;                                                     \
  1397 APPLY_TO_RELOCATIONS(EACH_CASE);
  1398 #undef EACH_CASE
  1400 inline RelocIterator::RelocIterator(nmethod* nm, address begin, address limit) {
  1401   initialize(nm, begin, limit);
  1404 // if you are going to patch code, you should use this subclass of
  1405 // RelocIterator
  1406 class PatchingRelocIterator : public RelocIterator {
  1407  private:
  1408   RelocIterator _init_state;
  1410   void prepass();               // deactivates all breakpoints
  1411   void postpass();              // reactivates all enabled breakpoints
  1413   // do not copy these puppies; it would have unpredictable side effects
  1414   // these are private and have no bodies defined because they should not be called
  1415   PatchingRelocIterator(const RelocIterator&);
  1416   void        operator=(const RelocIterator&);
  1418  public:
  1419   PatchingRelocIterator(nmethod* nm, address begin = NULL, address limit = NULL)
  1420     : RelocIterator(nm, begin, limit)                { prepass();  }
  1422   ~PatchingRelocIterator()                           { postpass(); }
  1423 };
  1425 #endif // SHARE_VM_CODE_RELOCINFO_HPP

mercurial