src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Wed, 06 Oct 2010 14:18:32 -0700

author
kvn
date
Wed, 06 Oct 2010 14:18:32 -0700
changeset 2187
22e4420d19f7
parent 2163
5511edd5d719
parent 2185
a3f7f95b0165
child 2203
c393f046f4c5
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
    29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    30 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    31 // fast versions of NegF/NegD and AbsF/AbsD.
    33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    35   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    36   // of 128-bits operands for SSE instructions.
    37   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
    38   // Store the value to a 128-bits operand.
    39   operand[0] = lo;
    40   operand[1] = hi;
    41   return operand;
    42 }
    44 // Buffer for 128-bits masks used by SSE instructions.
    45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    47 // Static initialization during VM startup.
    48 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    50 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    55 NEEDS_CLEANUP // remove this definitions ?
    56 const Register IC_Klass    = rax;   // where the IC klass is cached
    57 const Register SYNC_header = rax;   // synchronization header
    58 const Register SHIFT_count = rcx;   // where count for shift operations must be
    60 #define __ _masm->
    63 static void select_different_registers(Register preserve,
    64                                        Register extra,
    65                                        Register &tmp1,
    66                                        Register &tmp2) {
    67   if (tmp1 == preserve) {
    68     assert_different_registers(tmp1, tmp2, extra);
    69     tmp1 = extra;
    70   } else if (tmp2 == preserve) {
    71     assert_different_registers(tmp1, tmp2, extra);
    72     tmp2 = extra;
    73   }
    74   assert_different_registers(preserve, tmp1, tmp2);
    75 }
    79 static void select_different_registers(Register preserve,
    80                                        Register extra,
    81                                        Register &tmp1,
    82                                        Register &tmp2,
    83                                        Register &tmp3) {
    84   if (tmp1 == preserve) {
    85     assert_different_registers(tmp1, tmp2, tmp3, extra);
    86     tmp1 = extra;
    87   } else if (tmp2 == preserve) {
    88     assert_different_registers(tmp1, tmp2, tmp3, extra);
    89     tmp2 = extra;
    90   } else if (tmp3 == preserve) {
    91     assert_different_registers(tmp1, tmp2, tmp3, extra);
    92     tmp3 = extra;
    93   }
    94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
    95 }
    99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   100   if (opr->is_constant()) {
   101     LIR_Const* constant = opr->as_constant_ptr();
   102     switch (constant->type()) {
   103       case T_INT: {
   104         return true;
   105       }
   107       default:
   108         return false;
   109     }
   110   }
   111   return false;
   112 }
   115 LIR_Opr LIR_Assembler::receiverOpr() {
   116   return FrameMap::receiver_opr;
   117 }
   119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   120   return receiverOpr();
   121 }
   123 LIR_Opr LIR_Assembler::osrBufferPointer() {
   124   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   125 }
   127 //--------------fpu register translations-----------------------
   130 address LIR_Assembler::float_constant(float f) {
   131   address const_addr = __ float_constant(f);
   132   if (const_addr == NULL) {
   133     bailout("const section overflow");
   134     return __ code()->consts()->start();
   135   } else {
   136     return const_addr;
   137   }
   138 }
   141 address LIR_Assembler::double_constant(double d) {
   142   address const_addr = __ double_constant(d);
   143   if (const_addr == NULL) {
   144     bailout("const section overflow");
   145     return __ code()->consts()->start();
   146   } else {
   147     return const_addr;
   148   }
   149 }
   152 void LIR_Assembler::set_24bit_FPU() {
   153   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   154 }
   156 void LIR_Assembler::reset_FPU() {
   157   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   158 }
   160 void LIR_Assembler::fpop() {
   161   __ fpop();
   162 }
   164 void LIR_Assembler::fxch(int i) {
   165   __ fxch(i);
   166 }
   168 void LIR_Assembler::fld(int i) {
   169   __ fld_s(i);
   170 }
   172 void LIR_Assembler::ffree(int i) {
   173   __ ffree(i);
   174 }
   176 void LIR_Assembler::breakpoint() {
   177   __ int3();
   178 }
   180 void LIR_Assembler::push(LIR_Opr opr) {
   181   if (opr->is_single_cpu()) {
   182     __ push_reg(opr->as_register());
   183   } else if (opr->is_double_cpu()) {
   184     NOT_LP64(__ push_reg(opr->as_register_hi()));
   185     __ push_reg(opr->as_register_lo());
   186   } else if (opr->is_stack()) {
   187     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   188   } else if (opr->is_constant()) {
   189     LIR_Const* const_opr = opr->as_constant_ptr();
   190     if (const_opr->type() == T_OBJECT) {
   191       __ push_oop(const_opr->as_jobject());
   192     } else if (const_opr->type() == T_INT) {
   193       __ push_jint(const_opr->as_jint());
   194     } else {
   195       ShouldNotReachHere();
   196     }
   198   } else {
   199     ShouldNotReachHere();
   200   }
   201 }
   203 void LIR_Assembler::pop(LIR_Opr opr) {
   204   if (opr->is_single_cpu()) {
   205     __ pop_reg(opr->as_register());
   206   } else {
   207     ShouldNotReachHere();
   208   }
   209 }
   211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   212   return addr->base()->is_illegal() && addr->index()->is_illegal();
   213 }
   215 //-------------------------------------------
   217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   218   return as_Address(addr, rscratch1);
   219 }
   221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   222   if (addr->base()->is_illegal()) {
   223     assert(addr->index()->is_illegal(), "must be illegal too");
   224     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   225     if (! __ reachable(laddr)) {
   226       __ movptr(tmp, laddr.addr());
   227       Address res(tmp, 0);
   228       return res;
   229     } else {
   230       return __ as_Address(laddr);
   231     }
   232   }
   234   Register base = addr->base()->as_pointer_register();
   236   if (addr->index()->is_illegal()) {
   237     return Address( base, addr->disp());
   238   } else if (addr->index()->is_cpu_register()) {
   239     Register index = addr->index()->as_pointer_register();
   240     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   241   } else if (addr->index()->is_constant()) {
   242     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   243     assert(Assembler::is_simm32(addr_offset), "must be");
   245     return Address(base, addr_offset);
   246   } else {
   247     Unimplemented();
   248     return Address();
   249   }
   250 }
   253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   254   Address base = as_Address(addr);
   255   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   256 }
   259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   260   return as_Address(addr);
   261 }
   264 void LIR_Assembler::osr_entry() {
   265   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   266   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   267   ValueStack* entry_state = osr_entry->state();
   268   int number_of_locks = entry_state->locks_size();
   270   // we jump here if osr happens with the interpreter
   271   // state set up to continue at the beginning of the
   272   // loop that triggered osr - in particular, we have
   273   // the following registers setup:
   274   //
   275   // rcx: osr buffer
   276   //
   278   // build frame
   279   ciMethod* m = compilation()->method();
   280   __ build_frame(initial_frame_size_in_bytes());
   282   // OSR buffer is
   283   //
   284   // locals[nlocals-1..0]
   285   // monitors[0..number_of_locks]
   286   //
   287   // locals is a direct copy of the interpreter frame so in the osr buffer
   288   // so first slot in the local array is the last local from the interpreter
   289   // and last slot is local[0] (receiver) from the interpreter
   290   //
   291   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   292   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   293   // in the interpreter frame (the method lock if a sync method)
   295   // Initialize monitors in the compiled activation.
   296   //   rcx: pointer to osr buffer
   297   //
   298   // All other registers are dead at this point and the locals will be
   299   // copied into place by code emitted in the IR.
   301   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   302   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   303     int monitor_offset = BytesPerWord * method()->max_locals() +
   304       (2 * BytesPerWord) * (number_of_locks - 1);
   305     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   306     // the OSR buffer using 2 word entries: first the lock and then
   307     // the oop.
   308     for (int i = 0; i < number_of_locks; i++) {
   309       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   310 #ifdef ASSERT
   311       // verify the interpreter's monitor has a non-null object
   312       {
   313         Label L;
   314         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   315         __ jcc(Assembler::notZero, L);
   316         __ stop("locked object is NULL");
   317         __ bind(L);
   318       }
   319 #endif
   320       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   321       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   322       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   323       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   324     }
   325   }
   326 }
   329 // inline cache check; done before the frame is built.
   330 int LIR_Assembler::check_icache() {
   331   Register receiver = FrameMap::receiver_opr->as_register();
   332   Register ic_klass = IC_Klass;
   333   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   335   if (!VerifyOops) {
   336     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   337     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   338       __ nop();
   339     }
   340   }
   341   int offset = __ offset();
   342   __ inline_cache_check(receiver, IC_Klass);
   343   assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
   344   if (VerifyOops) {
   345     // force alignment after the cache check.
   346     // It's been verified to be aligned if !VerifyOops
   347     __ align(CodeEntryAlignment);
   348   }
   349   return offset;
   350 }
   353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   354   jobject o = NULL;
   355   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   356   __ movoop(reg, o);
   357   patching_epilog(patch, lir_patch_normal, reg, info);
   358 }
   361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
   362   if (exception->is_valid()) {
   363     // preserve exception
   364     // note: the monitor_exit runtime call is a leaf routine
   365     //       and cannot block => no GC can happen
   366     // The slow case (MonitorAccessStub) uses the first two stack slots
   367     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
   368     __ movptr (Address(rsp, 2*wordSize), exception);
   369   }
   371   Register obj_reg  = obj_opr->as_register();
   372   Register lock_reg = lock_opr->as_register();
   374   // setup registers (lock_reg must be rax, for lock_object)
   375   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
   376   Register hdr = lock_reg;
   377   assert(new_hdr == SYNC_header, "wrong register");
   378   lock_reg = new_hdr;
   379   // compute pointer to BasicLock
   380   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
   381   __ lea(lock_reg, lock_addr);
   382   // unlock object
   383   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
   384   // _slow_case_stubs->append(slow_case);
   385   // temporary fix: must be created after exceptionhandler, therefore as call stub
   386   _slow_case_stubs->append(slow_case);
   387   if (UseFastLocking) {
   388     // try inlined fast unlocking first, revert to slow locking if it fails
   389     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   390     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   391     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   392   } else {
   393     // always do slow unlocking
   394     // note: the slow unlocking code could be inlined here, however if we use
   395     //       slow unlocking, speed doesn't matter anyway and this solution is
   396     //       simpler and requires less duplicated code - additionally, the
   397     //       slow unlocking code is the same in either case which simplifies
   398     //       debugging
   399     __ jmp(*slow_case->entry());
   400   }
   401   // done
   402   __ bind(*slow_case->continuation());
   404   if (exception->is_valid()) {
   405     // restore exception
   406     __ movptr (exception, Address(rsp, 2 * wordSize));
   407   }
   408 }
   410 // This specifies the rsp decrement needed to build the frame
   411 int LIR_Assembler::initial_frame_size_in_bytes() {
   412   // if rounding, must let FrameMap know!
   414   // The frame_map records size in slots (32bit word)
   416   // subtract two words to account for return address and link
   417   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   418 }
   421 int LIR_Assembler::emit_exception_handler() {
   422   // if the last instruction is a call (typically to do a throw which
   423   // is coming at the end after block reordering) the return address
   424   // must still point into the code area in order to avoid assertion
   425   // failures when searching for the corresponding bci => add a nop
   426   // (was bug 5/14/1999 - gri)
   427   __ nop();
   429   // generate code for exception handler
   430   address handler_base = __ start_a_stub(exception_handler_size);
   431   if (handler_base == NULL) {
   432     // not enough space left for the handler
   433     bailout("exception handler overflow");
   434     return -1;
   435   }
   437   int offset = code_offset();
   439   // the exception oop and pc are in rax, and rdx
   440   // no other registers need to be preserved, so invalidate them
   441   __ invalidate_registers(false, true, true, false, true, true);
   443   // check that there is really an exception
   444   __ verify_not_null_oop(rax);
   446   // search an exception handler (rax: exception oop, rdx: throwing pc)
   447   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
   449   __ stop("should not reach here");
   451   assert(code_offset() - offset <= exception_handler_size, "overflow");
   452   __ end_a_stub();
   454   return offset;
   455 }
   458 // Emit the code to remove the frame from the stack in the exception
   459 // unwind path.
   460 int LIR_Assembler::emit_unwind_handler() {
   461 #ifndef PRODUCT
   462   if (CommentedAssembly) {
   463     _masm->block_comment("Unwind handler");
   464   }
   465 #endif
   467   int offset = code_offset();
   469   // Fetch the exception from TLS and clear out exception related thread state
   470   __ get_thread(rsi);
   471   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
   472   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
   473   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
   475   __ bind(_unwind_handler_entry);
   476   __ verify_not_null_oop(rax);
   477   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   478     __ mov(rsi, rax);  // Preserve the exception
   479   }
   481   // Preform needed unlocking
   482   MonitorExitStub* stub = NULL;
   483   if (method()->is_synchronized()) {
   484     monitor_address(0, FrameMap::rax_opr);
   485     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   486     __ unlock_object(rdi, rbx, rax, *stub->entry());
   487     __ bind(*stub->continuation());
   488   }
   490   if (compilation()->env()->dtrace_method_probes()) {
   491     __ get_thread(rax);
   492     __ movptr(Address(rsp, 0), rax);
   493     __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
   494     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   495   }
   497   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   498     __ mov(rax, rsi);  // Restore the exception
   499   }
   501   // remove the activation and dispatch to the unwind handler
   502   __ remove_frame(initial_frame_size_in_bytes());
   503   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   505   // Emit the slow path assembly
   506   if (stub != NULL) {
   507     stub->emit_code(this);
   508   }
   510   return offset;
   511 }
   514 int LIR_Assembler::emit_deopt_handler() {
   515   // if the last instruction is a call (typically to do a throw which
   516   // is coming at the end after block reordering) the return address
   517   // must still point into the code area in order to avoid assertion
   518   // failures when searching for the corresponding bci => add a nop
   519   // (was bug 5/14/1999 - gri)
   520   __ nop();
   522   // generate code for exception handler
   523   address handler_base = __ start_a_stub(deopt_handler_size);
   524   if (handler_base == NULL) {
   525     // not enough space left for the handler
   526     bailout("deopt handler overflow");
   527     return -1;
   528   }
   530   int offset = code_offset();
   531   InternalAddress here(__ pc());
   533   __ pushptr(here.addr());
   534   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   536   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   537   __ end_a_stub();
   539   return offset;
   540 }
   543 // This is the fast version of java.lang.String.compare; it has not
   544 // OSR-entry and therefore, we generate a slow version for OSR's
   545 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   546   __ movptr (rbx, rcx); // receiver is in rcx
   547   __ movptr (rax, arg1->as_register());
   549   // Get addresses of first characters from both Strings
   550   __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   551   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   552   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   555   // rbx, may be NULL
   556   add_debug_info_for_null_check_here(info);
   557   __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   558   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   559   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   561   // compute minimum length (in rax) and difference of lengths (on top of stack)
   562   if (VM_Version::supports_cmov()) {
   563     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   564     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   565     __ mov      (rcx, rbx);
   566     __ subptr   (rbx, rax); // subtract lengths
   567     __ push     (rbx);      // result
   568     __ cmov     (Assembler::lessEqual, rax, rcx);
   569   } else {
   570     Label L;
   571     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   572     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
   573     __ mov      (rax, rbx);
   574     __ subptr   (rbx, rcx);
   575     __ push     (rbx);
   576     __ jcc      (Assembler::lessEqual, L);
   577     __ mov      (rax, rcx);
   578     __ bind (L);
   579   }
   580   // is minimum length 0?
   581   Label noLoop, haveResult;
   582   __ testptr (rax, rax);
   583   __ jcc (Assembler::zero, noLoop);
   585   // compare first characters
   586   __ load_unsigned_short(rcx, Address(rdi, 0));
   587   __ load_unsigned_short(rbx, Address(rsi, 0));
   588   __ subl(rcx, rbx);
   589   __ jcc(Assembler::notZero, haveResult);
   590   // starting loop
   591   __ decrement(rax); // we already tested index: skip one
   592   __ jcc(Assembler::zero, noLoop);
   594   // set rsi.edi to the end of the arrays (arrays have same length)
   595   // negate the index
   597   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   598   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   599   __ negptr(rax);
   601   // compare the strings in a loop
   603   Label loop;
   604   __ align(wordSize);
   605   __ bind(loop);
   606   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   607   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   608   __ subl(rcx, rbx);
   609   __ jcc(Assembler::notZero, haveResult);
   610   __ increment(rax);
   611   __ jcc(Assembler::notZero, loop);
   613   // strings are equal up to min length
   615   __ bind(noLoop);
   616   __ pop(rax);
   617   return_op(LIR_OprFact::illegalOpr);
   619   __ bind(haveResult);
   620   // leave instruction is going to discard the TOS value
   621   __ mov (rax, rcx); // result of call is in rax,
   622 }
   625 void LIR_Assembler::return_op(LIR_Opr result) {
   626   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   627   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   628     assert(result->fpu() == 0, "result must already be on TOS");
   629   }
   631   // Pop the stack before the safepoint code
   632   __ remove_frame(initial_frame_size_in_bytes());
   634   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   636   // Note: we do not need to round double result; float result has the right precision
   637   // the poll sets the condition code, but no data registers
   638   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   639                               relocInfo::poll_return_type);
   641   // NOTE: the requires that the polling page be reachable else the reloc
   642   // goes to the movq that loads the address and not the faulting instruction
   643   // which breaks the signal handler code
   645   __ test32(rax, polling_page);
   647   __ ret(0);
   648 }
   651 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   652   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   653                               relocInfo::poll_type);
   655   if (info != NULL) {
   656     add_debug_info_for_branch(info);
   657   } else {
   658     ShouldNotReachHere();
   659   }
   661   int offset = __ offset();
   663   // NOTE: the requires that the polling page be reachable else the reloc
   664   // goes to the movq that loads the address and not the faulting instruction
   665   // which breaks the signal handler code
   667   __ test32(rax, polling_page);
   668   return offset;
   669 }
   672 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   673   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   674 }
   676 void LIR_Assembler::swap_reg(Register a, Register b) {
   677   __ xchgptr(a, b);
   678 }
   681 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   682   assert(src->is_constant(), "should not call otherwise");
   683   assert(dest->is_register(), "should not call otherwise");
   684   LIR_Const* c = src->as_constant_ptr();
   686   switch (c->type()) {
   687     case T_INT:
   688     case T_ADDRESS: {
   689       assert(patch_code == lir_patch_none, "no patching handled here");
   690       __ movl(dest->as_register(), c->as_jint());
   691       break;
   692     }
   694     case T_LONG: {
   695       assert(patch_code == lir_patch_none, "no patching handled here");
   696 #ifdef _LP64
   697       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   698 #else
   699       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   700       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   701 #endif // _LP64
   702       break;
   703     }
   705     case T_OBJECT: {
   706       if (patch_code != lir_patch_none) {
   707         jobject2reg_with_patching(dest->as_register(), info);
   708       } else {
   709         __ movoop(dest->as_register(), c->as_jobject());
   710       }
   711       break;
   712     }
   714     case T_FLOAT: {
   715       if (dest->is_single_xmm()) {
   716         if (c->is_zero_float()) {
   717           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   718         } else {
   719           __ movflt(dest->as_xmm_float_reg(),
   720                    InternalAddress(float_constant(c->as_jfloat())));
   721         }
   722       } else {
   723         assert(dest->is_single_fpu(), "must be");
   724         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   725         if (c->is_zero_float()) {
   726           __ fldz();
   727         } else if (c->is_one_float()) {
   728           __ fld1();
   729         } else {
   730           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   731         }
   732       }
   733       break;
   734     }
   736     case T_DOUBLE: {
   737       if (dest->is_double_xmm()) {
   738         if (c->is_zero_double()) {
   739           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   740         } else {
   741           __ movdbl(dest->as_xmm_double_reg(),
   742                     InternalAddress(double_constant(c->as_jdouble())));
   743         }
   744       } else {
   745         assert(dest->is_double_fpu(), "must be");
   746         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   747         if (c->is_zero_double()) {
   748           __ fldz();
   749         } else if (c->is_one_double()) {
   750           __ fld1();
   751         } else {
   752           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   753         }
   754       }
   755       break;
   756     }
   758     default:
   759       ShouldNotReachHere();
   760   }
   761 }
   763 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   764   assert(src->is_constant(), "should not call otherwise");
   765   assert(dest->is_stack(), "should not call otherwise");
   766   LIR_Const* c = src->as_constant_ptr();
   768   switch (c->type()) {
   769     case T_INT:  // fall through
   770     case T_FLOAT:
   771     case T_ADDRESS:
   772       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   773       break;
   775     case T_OBJECT:
   776       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   777       break;
   779     case T_LONG:  // fall through
   780     case T_DOUBLE:
   781 #ifdef _LP64
   782       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   783                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   784 #else
   785       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   786                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   787       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   788                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   789 #endif // _LP64
   790       break;
   792     default:
   793       ShouldNotReachHere();
   794   }
   795 }
   797 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
   798   assert(src->is_constant(), "should not call otherwise");
   799   assert(dest->is_address(), "should not call otherwise");
   800   LIR_Const* c = src->as_constant_ptr();
   801   LIR_Address* addr = dest->as_address_ptr();
   803   int null_check_here = code_offset();
   804   switch (type) {
   805     case T_INT:    // fall through
   806     case T_FLOAT:
   807     case T_ADDRESS:
   808       __ movl(as_Address(addr), c->as_jint_bits());
   809       break;
   811     case T_OBJECT:  // fall through
   812     case T_ARRAY:
   813       if (c->as_jobject() == NULL) {
   814         __ movptr(as_Address(addr), NULL_WORD);
   815       } else {
   816         if (is_literal_address(addr)) {
   817           ShouldNotReachHere();
   818           __ movoop(as_Address(addr, noreg), c->as_jobject());
   819         } else {
   820 #ifdef _LP64
   821           __ movoop(rscratch1, c->as_jobject());
   822           null_check_here = code_offset();
   823           __ movptr(as_Address_lo(addr), rscratch1);
   824 #else
   825           __ movoop(as_Address(addr), c->as_jobject());
   826 #endif
   827         }
   828       }
   829       break;
   831     case T_LONG:    // fall through
   832     case T_DOUBLE:
   833 #ifdef _LP64
   834       if (is_literal_address(addr)) {
   835         ShouldNotReachHere();
   836         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   837       } else {
   838         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   839         null_check_here = code_offset();
   840         __ movptr(as_Address_lo(addr), r10);
   841       }
   842 #else
   843       // Always reachable in 32bit so this doesn't produce useless move literal
   844       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   845       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   846 #endif // _LP64
   847       break;
   849     case T_BOOLEAN: // fall through
   850     case T_BYTE:
   851       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   852       break;
   854     case T_CHAR:    // fall through
   855     case T_SHORT:
   856       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   857       break;
   859     default:
   860       ShouldNotReachHere();
   861   };
   863   if (info != NULL) {
   864     add_debug_info_for_null_check(null_check_here, info);
   865   }
   866 }
   869 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   870   assert(src->is_register(), "should not call otherwise");
   871   assert(dest->is_register(), "should not call otherwise");
   873   // move between cpu-registers
   874   if (dest->is_single_cpu()) {
   875 #ifdef _LP64
   876     if (src->type() == T_LONG) {
   877       // Can do LONG -> OBJECT
   878       move_regs(src->as_register_lo(), dest->as_register());
   879       return;
   880     }
   881 #endif
   882     assert(src->is_single_cpu(), "must match");
   883     if (src->type() == T_OBJECT) {
   884       __ verify_oop(src->as_register());
   885     }
   886     move_regs(src->as_register(), dest->as_register());
   888   } else if (dest->is_double_cpu()) {
   889 #ifdef _LP64
   890     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   891       // Surprising to me but we can see move of a long to t_object
   892       __ verify_oop(src->as_register());
   893       move_regs(src->as_register(), dest->as_register_lo());
   894       return;
   895     }
   896 #endif
   897     assert(src->is_double_cpu(), "must match");
   898     Register f_lo = src->as_register_lo();
   899     Register f_hi = src->as_register_hi();
   900     Register t_lo = dest->as_register_lo();
   901     Register t_hi = dest->as_register_hi();
   902 #ifdef _LP64
   903     assert(f_hi == f_lo, "must be same");
   904     assert(t_hi == t_lo, "must be same");
   905     move_regs(f_lo, t_lo);
   906 #else
   907     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   910     if (f_lo == t_hi && f_hi == t_lo) {
   911       swap_reg(f_lo, f_hi);
   912     } else if (f_hi == t_lo) {
   913       assert(f_lo != t_hi, "overwriting register");
   914       move_regs(f_hi, t_hi);
   915       move_regs(f_lo, t_lo);
   916     } else {
   917       assert(f_hi != t_lo, "overwriting register");
   918       move_regs(f_lo, t_lo);
   919       move_regs(f_hi, t_hi);
   920     }
   921 #endif // LP64
   923     // special moves from fpu-register to xmm-register
   924     // necessary for method results
   925   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   926     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   927     __ fld_s(Address(rsp, 0));
   928   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   929     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   930     __ fld_d(Address(rsp, 0));
   931   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   932     __ fstp_s(Address(rsp, 0));
   933     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   934   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   935     __ fstp_d(Address(rsp, 0));
   936     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   938     // move between xmm-registers
   939   } else if (dest->is_single_xmm()) {
   940     assert(src->is_single_xmm(), "must match");
   941     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   942   } else if (dest->is_double_xmm()) {
   943     assert(src->is_double_xmm(), "must match");
   944     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   946     // move between fpu-registers (no instruction necessary because of fpu-stack)
   947   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   948     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   949     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   950   } else {
   951     ShouldNotReachHere();
   952   }
   953 }
   955 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   956   assert(src->is_register(), "should not call otherwise");
   957   assert(dest->is_stack(), "should not call otherwise");
   959   if (src->is_single_cpu()) {
   960     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   961     if (type == T_OBJECT || type == T_ARRAY) {
   962       __ verify_oop(src->as_register());
   963       __ movptr (dst, src->as_register());
   964     } else {
   965       __ movl (dst, src->as_register());
   966     }
   968   } else if (src->is_double_cpu()) {
   969     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   970     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   971     __ movptr (dstLO, src->as_register_lo());
   972     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   974   } else if (src->is_single_xmm()) {
   975     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   976     __ movflt(dst_addr, src->as_xmm_float_reg());
   978   } else if (src->is_double_xmm()) {
   979     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   980     __ movdbl(dst_addr, src->as_xmm_double_reg());
   982   } else if (src->is_single_fpu()) {
   983     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   984     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   985     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   986     else                   __ fst_s  (dst_addr);
   988   } else if (src->is_double_fpu()) {
   989     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   990     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   991     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   992     else                   __ fst_d  (dst_addr);
   994   } else {
   995     ShouldNotReachHere();
   996   }
   997 }
  1000 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
  1001   LIR_Address* to_addr = dest->as_address_ptr();
  1002   PatchingStub* patch = NULL;
  1004   if (type == T_ARRAY || type == T_OBJECT) {
  1005     __ verify_oop(src->as_register());
  1007   if (patch_code != lir_patch_none) {
  1008     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1009     Address toa = as_Address(to_addr);
  1010     assert(toa.disp() != 0, "must have");
  1012   if (info != NULL) {
  1013     add_debug_info_for_null_check_here(info);
  1016   switch (type) {
  1017     case T_FLOAT: {
  1018       if (src->is_single_xmm()) {
  1019         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
  1020       } else {
  1021         assert(src->is_single_fpu(), "must be");
  1022         assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1023         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
  1024         else                    __ fst_s (as_Address(to_addr));
  1026       break;
  1029     case T_DOUBLE: {
  1030       if (src->is_double_xmm()) {
  1031         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1032       } else {
  1033         assert(src->is_double_fpu(), "must be");
  1034         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1035         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1036         else                    __ fst_d (as_Address(to_addr));
  1038       break;
  1041     case T_ADDRESS: // fall through
  1042     case T_ARRAY:   // fall through
  1043     case T_OBJECT:  // fall through
  1044 #ifdef _LP64
  1045       __ movptr(as_Address(to_addr), src->as_register());
  1046       break;
  1047 #endif // _LP64
  1048     case T_INT:
  1049       __ movl(as_Address(to_addr), src->as_register());
  1050       break;
  1052     case T_LONG: {
  1053       Register from_lo = src->as_register_lo();
  1054       Register from_hi = src->as_register_hi();
  1055 #ifdef _LP64
  1056       __ movptr(as_Address_lo(to_addr), from_lo);
  1057 #else
  1058       Register base = to_addr->base()->as_register();
  1059       Register index = noreg;
  1060       if (to_addr->index()->is_register()) {
  1061         index = to_addr->index()->as_register();
  1063       if (base == from_lo || index == from_lo) {
  1064         assert(base != from_hi, "can't be");
  1065         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1066         __ movl(as_Address_hi(to_addr), from_hi);
  1067         if (patch != NULL) {
  1068           patching_epilog(patch, lir_patch_high, base, info);
  1069           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1070           patch_code = lir_patch_low;
  1072         __ movl(as_Address_lo(to_addr), from_lo);
  1073       } else {
  1074         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1075         __ movl(as_Address_lo(to_addr), from_lo);
  1076         if (patch != NULL) {
  1077           patching_epilog(patch, lir_patch_low, base, info);
  1078           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1079           patch_code = lir_patch_high;
  1081         __ movl(as_Address_hi(to_addr), from_hi);
  1083 #endif // _LP64
  1084       break;
  1087     case T_BYTE:    // fall through
  1088     case T_BOOLEAN: {
  1089       Register src_reg = src->as_register();
  1090       Address dst_addr = as_Address(to_addr);
  1091       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1092       __ movb(dst_addr, src_reg);
  1093       break;
  1096     case T_CHAR:    // fall through
  1097     case T_SHORT:
  1098       __ movw(as_Address(to_addr), src->as_register());
  1099       break;
  1101     default:
  1102       ShouldNotReachHere();
  1105   if (patch_code != lir_patch_none) {
  1106     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1111 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1112   assert(src->is_stack(), "should not call otherwise");
  1113   assert(dest->is_register(), "should not call otherwise");
  1115   if (dest->is_single_cpu()) {
  1116     if (type == T_ARRAY || type == T_OBJECT) {
  1117       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1118       __ verify_oop(dest->as_register());
  1119     } else {
  1120       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1123   } else if (dest->is_double_cpu()) {
  1124     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1125     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1126     __ movptr(dest->as_register_lo(), src_addr_LO);
  1127     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1129   } else if (dest->is_single_xmm()) {
  1130     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1131     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1133   } else if (dest->is_double_xmm()) {
  1134     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1135     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1137   } else if (dest->is_single_fpu()) {
  1138     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1139     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1140     __ fld_s(src_addr);
  1142   } else if (dest->is_double_fpu()) {
  1143     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1144     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1145     __ fld_d(src_addr);
  1147   } else {
  1148     ShouldNotReachHere();
  1153 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1154   if (src->is_single_stack()) {
  1155     if (type == T_OBJECT || type == T_ARRAY) {
  1156       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1157       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1158     } else {
  1159 #ifndef _LP64
  1160       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1161       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1162 #else
  1163       //no pushl on 64bits
  1164       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1165       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1166 #endif
  1169   } else if (src->is_double_stack()) {
  1170 #ifdef _LP64
  1171     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1172     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1173 #else
  1174     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1175     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1176     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1177     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1178     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1179 #endif // _LP64
  1181   } else {
  1182     ShouldNotReachHere();
  1187 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
  1188   assert(src->is_address(), "should not call otherwise");
  1189   assert(dest->is_register(), "should not call otherwise");
  1191   LIR_Address* addr = src->as_address_ptr();
  1192   Address from_addr = as_Address(addr);
  1194   switch (type) {
  1195     case T_BOOLEAN: // fall through
  1196     case T_BYTE:    // fall through
  1197     case T_CHAR:    // fall through
  1198     case T_SHORT:
  1199       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1200         // on pre P6 processors we may get partial register stalls
  1201         // so blow away the value of to_rinfo before loading a
  1202         // partial word into it.  Do it here so that it precedes
  1203         // the potential patch point below.
  1204         __ xorptr(dest->as_register(), dest->as_register());
  1206       break;
  1209   PatchingStub* patch = NULL;
  1210   if (patch_code != lir_patch_none) {
  1211     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1212     assert(from_addr.disp() != 0, "must have");
  1214   if (info != NULL) {
  1215     add_debug_info_for_null_check_here(info);
  1218   switch (type) {
  1219     case T_FLOAT: {
  1220       if (dest->is_single_xmm()) {
  1221         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1222       } else {
  1223         assert(dest->is_single_fpu(), "must be");
  1224         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1225         __ fld_s(from_addr);
  1227       break;
  1230     case T_DOUBLE: {
  1231       if (dest->is_double_xmm()) {
  1232         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1233       } else {
  1234         assert(dest->is_double_fpu(), "must be");
  1235         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1236         __ fld_d(from_addr);
  1238       break;
  1241     case T_ADDRESS: // fall through
  1242     case T_OBJECT:  // fall through
  1243     case T_ARRAY:   // fall through
  1244 #ifdef _LP64
  1245       __ movptr(dest->as_register(), from_addr);
  1246       break;
  1247 #endif // _L64
  1248     case T_INT:
  1249       __ movl(dest->as_register(), from_addr);
  1250       break;
  1252     case T_LONG: {
  1253       Register to_lo = dest->as_register_lo();
  1254       Register to_hi = dest->as_register_hi();
  1255 #ifdef _LP64
  1256       __ movptr(to_lo, as_Address_lo(addr));
  1257 #else
  1258       Register base = addr->base()->as_register();
  1259       Register index = noreg;
  1260       if (addr->index()->is_register()) {
  1261         index = addr->index()->as_register();
  1263       if ((base == to_lo && index == to_hi) ||
  1264           (base == to_hi && index == to_lo)) {
  1265         // addresses with 2 registers are only formed as a result of
  1266         // array access so this code will never have to deal with
  1267         // patches or null checks.
  1268         assert(info == NULL && patch == NULL, "must be");
  1269         __ lea(to_hi, as_Address(addr));
  1270         __ movl(to_lo, Address(to_hi, 0));
  1271         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1272       } else if (base == to_lo || index == to_lo) {
  1273         assert(base != to_hi, "can't be");
  1274         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1275         __ movl(to_hi, as_Address_hi(addr));
  1276         if (patch != NULL) {
  1277           patching_epilog(patch, lir_patch_high, base, info);
  1278           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1279           patch_code = lir_patch_low;
  1281         __ movl(to_lo, as_Address_lo(addr));
  1282       } else {
  1283         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1284         __ movl(to_lo, as_Address_lo(addr));
  1285         if (patch != NULL) {
  1286           patching_epilog(patch, lir_patch_low, base, info);
  1287           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1288           patch_code = lir_patch_high;
  1290         __ movl(to_hi, as_Address_hi(addr));
  1292 #endif // _LP64
  1293       break;
  1296     case T_BOOLEAN: // fall through
  1297     case T_BYTE: {
  1298       Register dest_reg = dest->as_register();
  1299       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1300       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1301         __ movsbl(dest_reg, from_addr);
  1302       } else {
  1303         __ movb(dest_reg, from_addr);
  1304         __ shll(dest_reg, 24);
  1305         __ sarl(dest_reg, 24);
  1307       break;
  1310     case T_CHAR: {
  1311       Register dest_reg = dest->as_register();
  1312       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1313       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1314         __ movzwl(dest_reg, from_addr);
  1315       } else {
  1316         __ movw(dest_reg, from_addr);
  1318       break;
  1321     case T_SHORT: {
  1322       Register dest_reg = dest->as_register();
  1323       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1324         __ movswl(dest_reg, from_addr);
  1325       } else {
  1326         __ movw(dest_reg, from_addr);
  1327         __ shll(dest_reg, 16);
  1328         __ sarl(dest_reg, 16);
  1330       break;
  1333     default:
  1334       ShouldNotReachHere();
  1337   if (patch != NULL) {
  1338     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1341   if (type == T_ARRAY || type == T_OBJECT) {
  1342     __ verify_oop(dest->as_register());
  1347 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1348   LIR_Address* addr = src->as_address_ptr();
  1349   Address from_addr = as_Address(addr);
  1351   if (VM_Version::supports_sse()) {
  1352     switch (ReadPrefetchInstr) {
  1353       case 0:
  1354         __ prefetchnta(from_addr); break;
  1355       case 1:
  1356         __ prefetcht0(from_addr); break;
  1357       case 2:
  1358         __ prefetcht2(from_addr); break;
  1359       default:
  1360         ShouldNotReachHere(); break;
  1362   } else if (VM_Version::supports_3dnow()) {
  1363     __ prefetchr(from_addr);
  1368 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1369   LIR_Address* addr = src->as_address_ptr();
  1370   Address from_addr = as_Address(addr);
  1372   if (VM_Version::supports_sse()) {
  1373     switch (AllocatePrefetchInstr) {
  1374       case 0:
  1375         __ prefetchnta(from_addr); break;
  1376       case 1:
  1377         __ prefetcht0(from_addr); break;
  1378       case 2:
  1379         __ prefetcht2(from_addr); break;
  1380       case 3:
  1381         __ prefetchw(from_addr); break;
  1382       default:
  1383         ShouldNotReachHere(); break;
  1385   } else if (VM_Version::supports_3dnow()) {
  1386     __ prefetchw(from_addr);
  1391 NEEDS_CLEANUP; // This could be static?
  1392 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1393   int elem_size = type2aelembytes(type);
  1394   switch (elem_size) {
  1395     case 1: return Address::times_1;
  1396     case 2: return Address::times_2;
  1397     case 4: return Address::times_4;
  1398     case 8: return Address::times_8;
  1400   ShouldNotReachHere();
  1401   return Address::no_scale;
  1405 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1406   switch (op->code()) {
  1407     case lir_idiv:
  1408     case lir_irem:
  1409       arithmetic_idiv(op->code(),
  1410                       op->in_opr1(),
  1411                       op->in_opr2(),
  1412                       op->in_opr3(),
  1413                       op->result_opr(),
  1414                       op->info());
  1415       break;
  1416     default:      ShouldNotReachHere(); break;
  1420 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1421 #ifdef ASSERT
  1422   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1423   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1424   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1425 #endif
  1427   if (op->cond() == lir_cond_always) {
  1428     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1429     __ jmp (*(op->label()));
  1430   } else {
  1431     Assembler::Condition acond = Assembler::zero;
  1432     if (op->code() == lir_cond_float_branch) {
  1433       assert(op->ublock() != NULL, "must have unordered successor");
  1434       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1435       switch(op->cond()) {
  1436         case lir_cond_equal:        acond = Assembler::equal;      break;
  1437         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1438         case lir_cond_less:         acond = Assembler::below;      break;
  1439         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1440         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1441         case lir_cond_greater:      acond = Assembler::above;      break;
  1442         default:                         ShouldNotReachHere();
  1444     } else {
  1445       switch (op->cond()) {
  1446         case lir_cond_equal:        acond = Assembler::equal;       break;
  1447         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1448         case lir_cond_less:         acond = Assembler::less;        break;
  1449         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1450         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1451         case lir_cond_greater:      acond = Assembler::greater;     break;
  1452         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1453         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1454         default:                         ShouldNotReachHere();
  1457     __ jcc(acond,*(op->label()));
  1461 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1462   LIR_Opr src  = op->in_opr();
  1463   LIR_Opr dest = op->result_opr();
  1465   switch (op->bytecode()) {
  1466     case Bytecodes::_i2l:
  1467 #ifdef _LP64
  1468       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1469 #else
  1470       move_regs(src->as_register(), dest->as_register_lo());
  1471       move_regs(src->as_register(), dest->as_register_hi());
  1472       __ sarl(dest->as_register_hi(), 31);
  1473 #endif // LP64
  1474       break;
  1476     case Bytecodes::_l2i:
  1477       move_regs(src->as_register_lo(), dest->as_register());
  1478       break;
  1480     case Bytecodes::_i2b:
  1481       move_regs(src->as_register(), dest->as_register());
  1482       __ sign_extend_byte(dest->as_register());
  1483       break;
  1485     case Bytecodes::_i2c:
  1486       move_regs(src->as_register(), dest->as_register());
  1487       __ andl(dest->as_register(), 0xFFFF);
  1488       break;
  1490     case Bytecodes::_i2s:
  1491       move_regs(src->as_register(), dest->as_register());
  1492       __ sign_extend_short(dest->as_register());
  1493       break;
  1496     case Bytecodes::_f2d:
  1497     case Bytecodes::_d2f:
  1498       if (dest->is_single_xmm()) {
  1499         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1500       } else if (dest->is_double_xmm()) {
  1501         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1502       } else {
  1503         assert(src->fpu() == dest->fpu(), "register must be equal");
  1504         // do nothing (float result is rounded later through spilling)
  1506       break;
  1508     case Bytecodes::_i2f:
  1509     case Bytecodes::_i2d:
  1510       if (dest->is_single_xmm()) {
  1511         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1512       } else if (dest->is_double_xmm()) {
  1513         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1514       } else {
  1515         assert(dest->fpu() == 0, "result must be on TOS");
  1516         __ movl(Address(rsp, 0), src->as_register());
  1517         __ fild_s(Address(rsp, 0));
  1519       break;
  1521     case Bytecodes::_f2i:
  1522     case Bytecodes::_d2i:
  1523       if (src->is_single_xmm()) {
  1524         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1525       } else if (src->is_double_xmm()) {
  1526         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1527       } else {
  1528         assert(src->fpu() == 0, "input must be on TOS");
  1529         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1530         __ fist_s(Address(rsp, 0));
  1531         __ movl(dest->as_register(), Address(rsp, 0));
  1532         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1535       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1536       assert(op->stub() != NULL, "stub required");
  1537       __ cmpl(dest->as_register(), 0x80000000);
  1538       __ jcc(Assembler::equal, *op->stub()->entry());
  1539       __ bind(*op->stub()->continuation());
  1540       break;
  1542     case Bytecodes::_l2f:
  1543     case Bytecodes::_l2d:
  1544       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1545       assert(dest->fpu() == 0, "result must be on TOS");
  1547       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1548       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1549       __ fild_d(Address(rsp, 0));
  1550       // float result is rounded later through spilling
  1551       break;
  1553     case Bytecodes::_f2l:
  1554     case Bytecodes::_d2l:
  1555       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1556       assert(src->fpu() == 0, "input must be on TOS");
  1557       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1559       // instruction sequence too long to inline it here
  1561         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1563       break;
  1565     default: ShouldNotReachHere();
  1569 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1570   if (op->init_check()) {
  1571     __ cmpl(Address(op->klass()->as_register(),
  1572                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
  1573             instanceKlass::fully_initialized);
  1574     add_debug_info_for_null_check_here(op->stub()->info());
  1575     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1577   __ allocate_object(op->obj()->as_register(),
  1578                      op->tmp1()->as_register(),
  1579                      op->tmp2()->as_register(),
  1580                      op->header_size(),
  1581                      op->object_size(),
  1582                      op->klass()->as_register(),
  1583                      *op->stub()->entry());
  1584   __ bind(*op->stub()->continuation());
  1587 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1588   if (UseSlowPath ||
  1589       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1590       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1591     __ jmp(*op->stub()->entry());
  1592   } else {
  1593     Register len =  op->len()->as_register();
  1594     Register tmp1 = op->tmp1()->as_register();
  1595     Register tmp2 = op->tmp2()->as_register();
  1596     Register tmp3 = op->tmp3()->as_register();
  1597     if (len == tmp1) {
  1598       tmp1 = tmp3;
  1599     } else if (len == tmp2) {
  1600       tmp2 = tmp3;
  1601     } else if (len == tmp3) {
  1602       // everything is ok
  1603     } else {
  1604       __ mov(tmp3, len);
  1606     __ allocate_array(op->obj()->as_register(),
  1607                       len,
  1608                       tmp1,
  1609                       tmp2,
  1610                       arrayOopDesc::header_size(op->type()),
  1611                       array_element_size(op->type()),
  1612                       op->klass()->as_register(),
  1613                       *op->stub()->entry());
  1615   __ bind(*op->stub()->continuation());
  1618 void LIR_Assembler::type_profile_helper(Register mdo,
  1619                                         ciMethodData *md, ciProfileData *data,
  1620                                         Register recv, Label* update_done) {
  1621   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1622     Label next_test;
  1623     // See if the receiver is receiver[n].
  1624     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
  1625     __ jccb(Assembler::notEqual, next_test);
  1626     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
  1627     __ addptr(data_addr, DataLayout::counter_increment);
  1628     __ jmp(*update_done);
  1629     __ bind(next_test);
  1632   // Didn't find receiver; find next empty slot and fill it in
  1633   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1634     Label next_test;
  1635     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
  1636     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
  1637     __ jccb(Assembler::notEqual, next_test);
  1638     __ movptr(recv_addr, recv);
  1639     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
  1640     __ jmp(*update_done);
  1641     __ bind(next_test);
  1645 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1646   // we always need a stub for the failure case.
  1647   CodeStub* stub = op->stub();
  1648   Register obj = op->object()->as_register();
  1649   Register k_RInfo = op->tmp1()->as_register();
  1650   Register klass_RInfo = op->tmp2()->as_register();
  1651   Register dst = op->result_opr()->as_register();
  1652   ciKlass* k = op->klass();
  1653   Register Rtmp1 = noreg;
  1655   // check if it needs to be profiled
  1656   ciMethodData* md;
  1657   ciProfileData* data;
  1659   if (op->should_profile()) {
  1660     ciMethod* method = op->profiled_method();
  1661     assert(method != NULL, "Should have method");
  1662     int bci = op->profiled_bci();
  1663     md = method->method_data();
  1664     if (md == NULL) {
  1665       bailout("out of memory building methodDataOop");
  1666       return;
  1668     data = md->bci_to_data(bci);
  1669     assert(data != NULL,                "need data for type check");
  1670     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1672   Label profile_cast_success, profile_cast_failure;
  1673   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1674   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1676   if (obj == k_RInfo) {
  1677     k_RInfo = dst;
  1678   } else if (obj == klass_RInfo) {
  1679     klass_RInfo = dst;
  1681   if (k->is_loaded()) {
  1682     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1683   } else {
  1684     Rtmp1 = op->tmp3()->as_register();
  1685     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1688   assert_different_registers(obj, k_RInfo, klass_RInfo);
  1689   if (!k->is_loaded()) {
  1690     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1691   } else {
  1692 #ifdef _LP64
  1693     __ movoop(k_RInfo, k->constant_encoding());
  1694 #endif // _LP64
  1696   assert(obj != k_RInfo, "must be different");
  1698   __ cmpptr(obj, (int32_t)NULL_WORD);
  1699   if (op->should_profile()) {
  1700     Label not_null;
  1701     __ jccb(Assembler::notEqual, not_null);
  1702     // Object is null; update MDO and exit
  1703     Register mdo  = klass_RInfo;
  1704     __ movoop(mdo, md->constant_encoding());
  1705     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1706     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1707     __ orl(data_addr, header_bits);
  1708     __ jmp(*obj_is_null);
  1709     __ bind(not_null);
  1710   } else {
  1711     __ jcc(Assembler::equal, *obj_is_null);
  1713   __ verify_oop(obj);
  1715   if (op->fast_check()) {
  1716     // get object class
  1717     // not a safepoint as obj null check happens earlier
  1718     if (k->is_loaded()) {
  1719 #ifdef _LP64
  1720       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1721 #else
  1722       __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1723 #endif // _LP64
  1724     } else {
  1725       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1727     __ jcc(Assembler::notEqual, *failure_target);
  1728     // successful cast, fall through to profile or jump
  1729   } else {
  1730     // get object class
  1731     // not a safepoint as obj null check happens earlier
  1732     __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1733     if (k->is_loaded()) {
  1734       // See if we get an immediate positive hit
  1735 #ifdef _LP64
  1736       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1737 #else
  1738       __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1739 #endif // _LP64
  1740       if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
  1741         __ jcc(Assembler::notEqual, *failure_target);
  1742         // successful cast, fall through to profile or jump
  1743       } else {
  1744         // See if we get an immediate positive hit
  1745         __ jcc(Assembler::equal, *success_target);
  1746         // check for self
  1747 #ifdef _LP64
  1748         __ cmpptr(klass_RInfo, k_RInfo);
  1749 #else
  1750         __ cmpoop(klass_RInfo, k->constant_encoding());
  1751 #endif // _LP64
  1752         __ jcc(Assembler::equal, *success_target);
  1754         __ push(klass_RInfo);
  1755 #ifdef _LP64
  1756         __ push(k_RInfo);
  1757 #else
  1758         __ pushoop(k->constant_encoding());
  1759 #endif // _LP64
  1760         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1761         __ pop(klass_RInfo);
  1762         __ pop(klass_RInfo);
  1763         // result is a boolean
  1764         __ cmpl(klass_RInfo, 0);
  1765         __ jcc(Assembler::equal, *failure_target);
  1766         // successful cast, fall through to profile or jump
  1768     } else {
  1769       // perform the fast part of the checking logic
  1770       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1771       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1772       __ push(klass_RInfo);
  1773       __ push(k_RInfo);
  1774       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1775       __ pop(klass_RInfo);
  1776       __ pop(k_RInfo);
  1777       // result is a boolean
  1778       __ cmpl(k_RInfo, 0);
  1779       __ jcc(Assembler::equal, *failure_target);
  1780       // successful cast, fall through to profile or jump
  1783   if (op->should_profile()) {
  1784     Register mdo  = klass_RInfo, recv = k_RInfo;
  1785     __ bind(profile_cast_success);
  1786     __ movoop(mdo, md->constant_encoding());
  1787     __ movptr(recv, Address(obj, oopDesc::klass_offset_in_bytes()));
  1788     Label update_done;
  1789     type_profile_helper(mdo, md, data, recv, success);
  1790     __ jmp(*success);
  1792     __ bind(profile_cast_failure);
  1793     __ movoop(mdo, md->constant_encoding());
  1794     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1795     __ subptr(counter_addr, DataLayout::counter_increment);
  1796     __ jmp(*failure);
  1798   __ jmp(*success);
  1802 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1803   LIR_Code code = op->code();
  1804   if (code == lir_store_check) {
  1805     Register value = op->object()->as_register();
  1806     Register array = op->array()->as_register();
  1807     Register k_RInfo = op->tmp1()->as_register();
  1808     Register klass_RInfo = op->tmp2()->as_register();
  1809     Register Rtmp1 = op->tmp3()->as_register();
  1811     CodeStub* stub = op->stub();
  1813     // check if it needs to be profiled
  1814     ciMethodData* md;
  1815     ciProfileData* data;
  1817     if (op->should_profile()) {
  1818       ciMethod* method = op->profiled_method();
  1819       assert(method != NULL, "Should have method");
  1820       int bci = op->profiled_bci();
  1821       md = method->method_data();
  1822       if (md == NULL) {
  1823         bailout("out of memory building methodDataOop");
  1824         return;
  1826       data = md->bci_to_data(bci);
  1827       assert(data != NULL,                "need data for type check");
  1828       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1830     Label profile_cast_success, profile_cast_failure, done;
  1831     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1832     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1834     __ cmpptr(value, (int32_t)NULL_WORD);
  1835     if (op->should_profile()) {
  1836       Label not_null;
  1837       __ jccb(Assembler::notEqual, not_null);
  1838       // Object is null; update MDO and exit
  1839       Register mdo  = klass_RInfo;
  1840       __ movoop(mdo, md->constant_encoding());
  1841       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1842       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1843       __ orl(data_addr, header_bits);
  1844       __ jmp(done);
  1845       __ bind(not_null);
  1846     } else {
  1847       __ jcc(Assembler::equal, done);
  1850     add_debug_info_for_null_check_here(op->info_for_exception());
  1851     __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
  1852     __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
  1854     // get instance klass
  1855     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
  1856     // perform the fast part of the checking logic
  1857     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1858     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1859     __ push(klass_RInfo);
  1860     __ push(k_RInfo);
  1861     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1862     __ pop(klass_RInfo);
  1863     __ pop(k_RInfo);
  1864     // result is a boolean
  1865     __ cmpl(k_RInfo, 0);
  1866     __ jcc(Assembler::equal, *failure_target);
  1867     // fall through to the success case
  1869     if (op->should_profile()) {
  1870       Register mdo  = klass_RInfo, recv = k_RInfo;
  1871       __ bind(profile_cast_success);
  1872       __ movoop(mdo, md->constant_encoding());
  1873       __ movptr(recv, Address(value, oopDesc::klass_offset_in_bytes()));
  1874       Label update_done;
  1875       type_profile_helper(mdo, md, data, recv, &done);
  1876       __ jmpb(done);
  1878       __ bind(profile_cast_failure);
  1879       __ movoop(mdo, md->constant_encoding());
  1880       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1881       __ subptr(counter_addr, DataLayout::counter_increment);
  1882       __ jmp(*stub->entry());
  1885     __ bind(done);
  1886   } else
  1887     if (code == lir_checkcast) {
  1888       Register obj = op->object()->as_register();
  1889       Register dst = op->result_opr()->as_register();
  1890       Label success;
  1891       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1892       __ bind(success);
  1893       if (dst != obj) {
  1894         __ mov(dst, obj);
  1896     } else
  1897       if (code == lir_instanceof) {
  1898         Register obj = op->object()->as_register();
  1899         Register dst = op->result_opr()->as_register();
  1900         Label success, failure, done;
  1901         emit_typecheck_helper(op, &success, &failure, &failure);
  1902         __ bind(failure);
  1903         __ xorptr(dst, dst);
  1904         __ jmpb(done);
  1905         __ bind(success);
  1906         __ movptr(dst, 1);
  1907         __ bind(done);
  1908       } else {
  1909         ShouldNotReachHere();
  1915 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1916   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1917     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1918     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1919     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1920     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1921     Register addr = op->addr()->as_register();
  1922     if (os::is_MP()) {
  1923       __ lock();
  1925     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1927   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1928     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1929     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1930     Register newval = op->new_value()->as_register();
  1931     Register cmpval = op->cmp_value()->as_register();
  1932     assert(cmpval == rax, "wrong register");
  1933     assert(newval != NULL, "new val must be register");
  1934     assert(cmpval != newval, "cmp and new values must be in different registers");
  1935     assert(cmpval != addr, "cmp and addr must be in different registers");
  1936     assert(newval != addr, "new value and addr must be in different registers");
  1937     if (os::is_MP()) {
  1938       __ lock();
  1940     if ( op->code() == lir_cas_obj) {
  1941       __ cmpxchgptr(newval, Address(addr, 0));
  1942     } else if (op->code() == lir_cas_int) {
  1943       __ cmpxchgl(newval, Address(addr, 0));
  1944     } else {
  1945       LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
  1947 #ifdef _LP64
  1948   } else if (op->code() == lir_cas_long) {
  1949     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1950     Register newval = op->new_value()->as_register_lo();
  1951     Register cmpval = op->cmp_value()->as_register_lo();
  1952     assert(cmpval == rax, "wrong register");
  1953     assert(newval != NULL, "new val must be register");
  1954     assert(cmpval != newval, "cmp and new values must be in different registers");
  1955     assert(cmpval != addr, "cmp and addr must be in different registers");
  1956     assert(newval != addr, "new value and addr must be in different registers");
  1957     if (os::is_MP()) {
  1958       __ lock();
  1960     __ cmpxchgq(newval, Address(addr, 0));
  1961 #endif // _LP64
  1962   } else {
  1963     Unimplemented();
  1967 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1968   Assembler::Condition acond, ncond;
  1969   switch (condition) {
  1970     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  1971     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  1972     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  1973     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  1974     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  1975     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  1976     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  1977     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  1978     default:                    ShouldNotReachHere();
  1981   if (opr1->is_cpu_register()) {
  1982     reg2reg(opr1, result);
  1983   } else if (opr1->is_stack()) {
  1984     stack2reg(opr1, result, result->type());
  1985   } else if (opr1->is_constant()) {
  1986     const2reg(opr1, result, lir_patch_none, NULL);
  1987   } else {
  1988     ShouldNotReachHere();
  1991   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  1992     // optimized version that does not require a branch
  1993     if (opr2->is_single_cpu()) {
  1994       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  1995       __ cmov(ncond, result->as_register(), opr2->as_register());
  1996     } else if (opr2->is_double_cpu()) {
  1997       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1998       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1999       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  2000       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  2001     } else if (opr2->is_single_stack()) {
  2002       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  2003     } else if (opr2->is_double_stack()) {
  2004       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  2005       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  2006     } else {
  2007       ShouldNotReachHere();
  2010   } else {
  2011     Label skip;
  2012     __ jcc (acond, skip);
  2013     if (opr2->is_cpu_register()) {
  2014       reg2reg(opr2, result);
  2015     } else if (opr2->is_stack()) {
  2016       stack2reg(opr2, result, result->type());
  2017     } else if (opr2->is_constant()) {
  2018       const2reg(opr2, result, lir_patch_none, NULL);
  2019     } else {
  2020       ShouldNotReachHere();
  2022     __ bind(skip);
  2027 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  2028   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  2030   if (left->is_single_cpu()) {
  2031     assert(left == dest, "left and dest must be equal");
  2032     Register lreg = left->as_register();
  2034     if (right->is_single_cpu()) {
  2035       // cpu register - cpu register
  2036       Register rreg = right->as_register();
  2037       switch (code) {
  2038         case lir_add: __ addl (lreg, rreg); break;
  2039         case lir_sub: __ subl (lreg, rreg); break;
  2040         case lir_mul: __ imull(lreg, rreg); break;
  2041         default:      ShouldNotReachHere();
  2044     } else if (right->is_stack()) {
  2045       // cpu register - stack
  2046       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2047       switch (code) {
  2048         case lir_add: __ addl(lreg, raddr); break;
  2049         case lir_sub: __ subl(lreg, raddr); break;
  2050         default:      ShouldNotReachHere();
  2053     } else if (right->is_constant()) {
  2054       // cpu register - constant
  2055       jint c = right->as_constant_ptr()->as_jint();
  2056       switch (code) {
  2057         case lir_add: {
  2058           __ incrementl(lreg, c);
  2059           break;
  2061         case lir_sub: {
  2062           __ decrementl(lreg, c);
  2063           break;
  2065         default: ShouldNotReachHere();
  2068     } else {
  2069       ShouldNotReachHere();
  2072   } else if (left->is_double_cpu()) {
  2073     assert(left == dest, "left and dest must be equal");
  2074     Register lreg_lo = left->as_register_lo();
  2075     Register lreg_hi = left->as_register_hi();
  2077     if (right->is_double_cpu()) {
  2078       // cpu register - cpu register
  2079       Register rreg_lo = right->as_register_lo();
  2080       Register rreg_hi = right->as_register_hi();
  2081       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2082       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2083       switch (code) {
  2084         case lir_add:
  2085           __ addptr(lreg_lo, rreg_lo);
  2086           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2087           break;
  2088         case lir_sub:
  2089           __ subptr(lreg_lo, rreg_lo);
  2090           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2091           break;
  2092         case lir_mul:
  2093 #ifdef _LP64
  2094           __ imulq(lreg_lo, rreg_lo);
  2095 #else
  2096           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2097           __ imull(lreg_hi, rreg_lo);
  2098           __ imull(rreg_hi, lreg_lo);
  2099           __ addl (rreg_hi, lreg_hi);
  2100           __ mull (rreg_lo);
  2101           __ addl (lreg_hi, rreg_hi);
  2102 #endif // _LP64
  2103           break;
  2104         default:
  2105           ShouldNotReachHere();
  2108     } else if (right->is_constant()) {
  2109       // cpu register - constant
  2110 #ifdef _LP64
  2111       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2112       __ movptr(r10, (intptr_t) c);
  2113       switch (code) {
  2114         case lir_add:
  2115           __ addptr(lreg_lo, r10);
  2116           break;
  2117         case lir_sub:
  2118           __ subptr(lreg_lo, r10);
  2119           break;
  2120         default:
  2121           ShouldNotReachHere();
  2123 #else
  2124       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2125       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2126       switch (code) {
  2127         case lir_add:
  2128           __ addptr(lreg_lo, c_lo);
  2129           __ adcl(lreg_hi, c_hi);
  2130           break;
  2131         case lir_sub:
  2132           __ subptr(lreg_lo, c_lo);
  2133           __ sbbl(lreg_hi, c_hi);
  2134           break;
  2135         default:
  2136           ShouldNotReachHere();
  2138 #endif // _LP64
  2140     } else {
  2141       ShouldNotReachHere();
  2144   } else if (left->is_single_xmm()) {
  2145     assert(left == dest, "left and dest must be equal");
  2146     XMMRegister lreg = left->as_xmm_float_reg();
  2148     if (right->is_single_xmm()) {
  2149       XMMRegister rreg = right->as_xmm_float_reg();
  2150       switch (code) {
  2151         case lir_add: __ addss(lreg, rreg);  break;
  2152         case lir_sub: __ subss(lreg, rreg);  break;
  2153         case lir_mul_strictfp: // fall through
  2154         case lir_mul: __ mulss(lreg, rreg);  break;
  2155         case lir_div_strictfp: // fall through
  2156         case lir_div: __ divss(lreg, rreg);  break;
  2157         default: ShouldNotReachHere();
  2159     } else {
  2160       Address raddr;
  2161       if (right->is_single_stack()) {
  2162         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2163       } else if (right->is_constant()) {
  2164         // hack for now
  2165         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2166       } else {
  2167         ShouldNotReachHere();
  2169       switch (code) {
  2170         case lir_add: __ addss(lreg, raddr);  break;
  2171         case lir_sub: __ subss(lreg, raddr);  break;
  2172         case lir_mul_strictfp: // fall through
  2173         case lir_mul: __ mulss(lreg, raddr);  break;
  2174         case lir_div_strictfp: // fall through
  2175         case lir_div: __ divss(lreg, raddr);  break;
  2176         default: ShouldNotReachHere();
  2180   } else if (left->is_double_xmm()) {
  2181     assert(left == dest, "left and dest must be equal");
  2183     XMMRegister lreg = left->as_xmm_double_reg();
  2184     if (right->is_double_xmm()) {
  2185       XMMRegister rreg = right->as_xmm_double_reg();
  2186       switch (code) {
  2187         case lir_add: __ addsd(lreg, rreg);  break;
  2188         case lir_sub: __ subsd(lreg, rreg);  break;
  2189         case lir_mul_strictfp: // fall through
  2190         case lir_mul: __ mulsd(lreg, rreg);  break;
  2191         case lir_div_strictfp: // fall through
  2192         case lir_div: __ divsd(lreg, rreg);  break;
  2193         default: ShouldNotReachHere();
  2195     } else {
  2196       Address raddr;
  2197       if (right->is_double_stack()) {
  2198         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2199       } else if (right->is_constant()) {
  2200         // hack for now
  2201         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2202       } else {
  2203         ShouldNotReachHere();
  2205       switch (code) {
  2206         case lir_add: __ addsd(lreg, raddr);  break;
  2207         case lir_sub: __ subsd(lreg, raddr);  break;
  2208         case lir_mul_strictfp: // fall through
  2209         case lir_mul: __ mulsd(lreg, raddr);  break;
  2210         case lir_div_strictfp: // fall through
  2211         case lir_div: __ divsd(lreg, raddr);  break;
  2212         default: ShouldNotReachHere();
  2216   } else if (left->is_single_fpu()) {
  2217     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2219     if (right->is_single_fpu()) {
  2220       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2222     } else {
  2223       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2224       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2226       Address raddr;
  2227       if (right->is_single_stack()) {
  2228         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2229       } else if (right->is_constant()) {
  2230         address const_addr = float_constant(right->as_jfloat());
  2231         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2232         // hack for now
  2233         raddr = __ as_Address(InternalAddress(const_addr));
  2234       } else {
  2235         ShouldNotReachHere();
  2238       switch (code) {
  2239         case lir_add: __ fadd_s(raddr); break;
  2240         case lir_sub: __ fsub_s(raddr); break;
  2241         case lir_mul_strictfp: // fall through
  2242         case lir_mul: __ fmul_s(raddr); break;
  2243         case lir_div_strictfp: // fall through
  2244         case lir_div: __ fdiv_s(raddr); break;
  2245         default:      ShouldNotReachHere();
  2249   } else if (left->is_double_fpu()) {
  2250     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2252     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2253       // Double values require special handling for strictfp mul/div on x86
  2254       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2255       __ fmulp(left->fpu_regnrLo() + 1);
  2258     if (right->is_double_fpu()) {
  2259       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2261     } else {
  2262       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2263       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2265       Address raddr;
  2266       if (right->is_double_stack()) {
  2267         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2268       } else if (right->is_constant()) {
  2269         // hack for now
  2270         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2271       } else {
  2272         ShouldNotReachHere();
  2275       switch (code) {
  2276         case lir_add: __ fadd_d(raddr); break;
  2277         case lir_sub: __ fsub_d(raddr); break;
  2278         case lir_mul_strictfp: // fall through
  2279         case lir_mul: __ fmul_d(raddr); break;
  2280         case lir_div_strictfp: // fall through
  2281         case lir_div: __ fdiv_d(raddr); break;
  2282         default: ShouldNotReachHere();
  2286     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2287       // Double values require special handling for strictfp mul/div on x86
  2288       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2289       __ fmulp(dest->fpu_regnrLo() + 1);
  2292   } else if (left->is_single_stack() || left->is_address()) {
  2293     assert(left == dest, "left and dest must be equal");
  2295     Address laddr;
  2296     if (left->is_single_stack()) {
  2297       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2298     } else if (left->is_address()) {
  2299       laddr = as_Address(left->as_address_ptr());
  2300     } else {
  2301       ShouldNotReachHere();
  2304     if (right->is_single_cpu()) {
  2305       Register rreg = right->as_register();
  2306       switch (code) {
  2307         case lir_add: __ addl(laddr, rreg); break;
  2308         case lir_sub: __ subl(laddr, rreg); break;
  2309         default:      ShouldNotReachHere();
  2311     } else if (right->is_constant()) {
  2312       jint c = right->as_constant_ptr()->as_jint();
  2313       switch (code) {
  2314         case lir_add: {
  2315           __ incrementl(laddr, c);
  2316           break;
  2318         case lir_sub: {
  2319           __ decrementl(laddr, c);
  2320           break;
  2322         default: ShouldNotReachHere();
  2324     } else {
  2325       ShouldNotReachHere();
  2328   } else {
  2329     ShouldNotReachHere();
  2333 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2334   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2335   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2336   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2338   bool left_is_tos = (left_index == 0);
  2339   bool dest_is_tos = (dest_index == 0);
  2340   int non_tos_index = (left_is_tos ? right_index : left_index);
  2342   switch (code) {
  2343     case lir_add:
  2344       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2345       else if (dest_is_tos)    __ fadd (non_tos_index);
  2346       else                     __ fadda(non_tos_index);
  2347       break;
  2349     case lir_sub:
  2350       if (left_is_tos) {
  2351         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2352         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2353         else                   __ fsubra(non_tos_index);
  2354       } else {
  2355         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2356         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2357         else                   __ fsuba (non_tos_index);
  2359       break;
  2361     case lir_mul_strictfp: // fall through
  2362     case lir_mul:
  2363       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2364       else if (dest_is_tos)    __ fmul (non_tos_index);
  2365       else                     __ fmula(non_tos_index);
  2366       break;
  2368     case lir_div_strictfp: // fall through
  2369     case lir_div:
  2370       if (left_is_tos) {
  2371         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2372         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2373         else                   __ fdivra(non_tos_index);
  2374       } else {
  2375         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2376         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2377         else                   __ fdiva (non_tos_index);
  2379       break;
  2381     case lir_rem:
  2382       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2383       __ fremr(noreg);
  2384       break;
  2386     default:
  2387       ShouldNotReachHere();
  2392 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2393   if (value->is_double_xmm()) {
  2394     switch(code) {
  2395       case lir_abs :
  2397           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2398             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2400           __ andpd(dest->as_xmm_double_reg(),
  2401                     ExternalAddress((address)double_signmask_pool));
  2403         break;
  2405       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2406       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2407       default      : ShouldNotReachHere();
  2410   } else if (value->is_double_fpu()) {
  2411     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2412     switch(code) {
  2413       case lir_log   : __ flog() ; break;
  2414       case lir_log10 : __ flog10() ; break;
  2415       case lir_abs   : __ fabs() ; break;
  2416       case lir_sqrt  : __ fsqrt(); break;
  2417       case lir_sin   :
  2418         // Should consider not saving rbx, if not necessary
  2419         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2420         break;
  2421       case lir_cos :
  2422         // Should consider not saving rbx, if not necessary
  2423         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2424         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2425         break;
  2426       case lir_tan :
  2427         // Should consider not saving rbx, if not necessary
  2428         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2429         break;
  2430       default      : ShouldNotReachHere();
  2432   } else {
  2433     Unimplemented();
  2437 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2438   // assert(left->destroys_register(), "check");
  2439   if (left->is_single_cpu()) {
  2440     Register reg = left->as_register();
  2441     if (right->is_constant()) {
  2442       int val = right->as_constant_ptr()->as_jint();
  2443       switch (code) {
  2444         case lir_logic_and: __ andl (reg, val); break;
  2445         case lir_logic_or:  __ orl  (reg, val); break;
  2446         case lir_logic_xor: __ xorl (reg, val); break;
  2447         default: ShouldNotReachHere();
  2449     } else if (right->is_stack()) {
  2450       // added support for stack operands
  2451       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2452       switch (code) {
  2453         case lir_logic_and: __ andl (reg, raddr); break;
  2454         case lir_logic_or:  __ orl  (reg, raddr); break;
  2455         case lir_logic_xor: __ xorl (reg, raddr); break;
  2456         default: ShouldNotReachHere();
  2458     } else {
  2459       Register rright = right->as_register();
  2460       switch (code) {
  2461         case lir_logic_and: __ andptr (reg, rright); break;
  2462         case lir_logic_or : __ orptr  (reg, rright); break;
  2463         case lir_logic_xor: __ xorptr (reg, rright); break;
  2464         default: ShouldNotReachHere();
  2467     move_regs(reg, dst->as_register());
  2468   } else {
  2469     Register l_lo = left->as_register_lo();
  2470     Register l_hi = left->as_register_hi();
  2471     if (right->is_constant()) {
  2472 #ifdef _LP64
  2473       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2474       switch (code) {
  2475         case lir_logic_and:
  2476           __ andq(l_lo, rscratch1);
  2477           break;
  2478         case lir_logic_or:
  2479           __ orq(l_lo, rscratch1);
  2480           break;
  2481         case lir_logic_xor:
  2482           __ xorq(l_lo, rscratch1);
  2483           break;
  2484         default: ShouldNotReachHere();
  2486 #else
  2487       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2488       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2489       switch (code) {
  2490         case lir_logic_and:
  2491           __ andl(l_lo, r_lo);
  2492           __ andl(l_hi, r_hi);
  2493           break;
  2494         case lir_logic_or:
  2495           __ orl(l_lo, r_lo);
  2496           __ orl(l_hi, r_hi);
  2497           break;
  2498         case lir_logic_xor:
  2499           __ xorl(l_lo, r_lo);
  2500           __ xorl(l_hi, r_hi);
  2501           break;
  2502         default: ShouldNotReachHere();
  2504 #endif // _LP64
  2505     } else {
  2506 #ifdef _LP64
  2507       Register r_lo;
  2508       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
  2509         r_lo = right->as_register();
  2510       } else {
  2511         r_lo = right->as_register_lo();
  2513 #else
  2514       Register r_lo = right->as_register_lo();
  2515       Register r_hi = right->as_register_hi();
  2516       assert(l_lo != r_hi, "overwriting registers");
  2517 #endif
  2518       switch (code) {
  2519         case lir_logic_and:
  2520           __ andptr(l_lo, r_lo);
  2521           NOT_LP64(__ andptr(l_hi, r_hi);)
  2522           break;
  2523         case lir_logic_or:
  2524           __ orptr(l_lo, r_lo);
  2525           NOT_LP64(__ orptr(l_hi, r_hi);)
  2526           break;
  2527         case lir_logic_xor:
  2528           __ xorptr(l_lo, r_lo);
  2529           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2530           break;
  2531         default: ShouldNotReachHere();
  2535     Register dst_lo = dst->as_register_lo();
  2536     Register dst_hi = dst->as_register_hi();
  2538 #ifdef _LP64
  2539     move_regs(l_lo, dst_lo);
  2540 #else
  2541     if (dst_lo == l_hi) {
  2542       assert(dst_hi != l_lo, "overwriting registers");
  2543       move_regs(l_hi, dst_hi);
  2544       move_regs(l_lo, dst_lo);
  2545     } else {
  2546       assert(dst_lo != l_hi, "overwriting registers");
  2547       move_regs(l_lo, dst_lo);
  2548       move_regs(l_hi, dst_hi);
  2550 #endif // _LP64
  2555 // we assume that rax, and rdx can be overwritten
  2556 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2558   assert(left->is_single_cpu(),   "left must be register");
  2559   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2560   assert(result->is_single_cpu(), "result must be register");
  2562   //  assert(left->destroys_register(), "check");
  2563   //  assert(right->destroys_register(), "check");
  2565   Register lreg = left->as_register();
  2566   Register dreg = result->as_register();
  2568   if (right->is_constant()) {
  2569     int divisor = right->as_constant_ptr()->as_jint();
  2570     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2571     if (code == lir_idiv) {
  2572       assert(lreg == rax, "must be rax,");
  2573       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2574       __ cdql(); // sign extend into rdx:rax
  2575       if (divisor == 2) {
  2576         __ subl(lreg, rdx);
  2577       } else {
  2578         __ andl(rdx, divisor - 1);
  2579         __ addl(lreg, rdx);
  2581       __ sarl(lreg, log2_intptr(divisor));
  2582       move_regs(lreg, dreg);
  2583     } else if (code == lir_irem) {
  2584       Label done;
  2585       __ mov(dreg, lreg);
  2586       __ andl(dreg, 0x80000000 | (divisor - 1));
  2587       __ jcc(Assembler::positive, done);
  2588       __ decrement(dreg);
  2589       __ orl(dreg, ~(divisor - 1));
  2590       __ increment(dreg);
  2591       __ bind(done);
  2592     } else {
  2593       ShouldNotReachHere();
  2595   } else {
  2596     Register rreg = right->as_register();
  2597     assert(lreg == rax, "left register must be rax,");
  2598     assert(rreg != rdx, "right register must not be rdx");
  2599     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2601     move_regs(lreg, rax);
  2603     int idivl_offset = __ corrected_idivl(rreg);
  2604     add_debug_info_for_div0(idivl_offset, info);
  2605     if (code == lir_irem) {
  2606       move_regs(rdx, dreg); // result is in rdx
  2607     } else {
  2608       move_regs(rax, dreg);
  2614 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2615   if (opr1->is_single_cpu()) {
  2616     Register reg1 = opr1->as_register();
  2617     if (opr2->is_single_cpu()) {
  2618       // cpu register - cpu register
  2619       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2620         __ cmpptr(reg1, opr2->as_register());
  2621       } else {
  2622         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2623         __ cmpl(reg1, opr2->as_register());
  2625     } else if (opr2->is_stack()) {
  2626       // cpu register - stack
  2627       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2628         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2629       } else {
  2630         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2632     } else if (opr2->is_constant()) {
  2633       // cpu register - constant
  2634       LIR_Const* c = opr2->as_constant_ptr();
  2635       if (c->type() == T_INT) {
  2636         __ cmpl(reg1, c->as_jint());
  2637       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2638         // In 64bit oops are single register
  2639         jobject o = c->as_jobject();
  2640         if (o == NULL) {
  2641           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2642         } else {
  2643 #ifdef _LP64
  2644           __ movoop(rscratch1, o);
  2645           __ cmpptr(reg1, rscratch1);
  2646 #else
  2647           __ cmpoop(reg1, c->as_jobject());
  2648 #endif // _LP64
  2650       } else {
  2651         ShouldNotReachHere();
  2653       // cpu register - address
  2654     } else if (opr2->is_address()) {
  2655       if (op->info() != NULL) {
  2656         add_debug_info_for_null_check_here(op->info());
  2658       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2659     } else {
  2660       ShouldNotReachHere();
  2663   } else if(opr1->is_double_cpu()) {
  2664     Register xlo = opr1->as_register_lo();
  2665     Register xhi = opr1->as_register_hi();
  2666     if (opr2->is_double_cpu()) {
  2667 #ifdef _LP64
  2668       __ cmpptr(xlo, opr2->as_register_lo());
  2669 #else
  2670       // cpu register - cpu register
  2671       Register ylo = opr2->as_register_lo();
  2672       Register yhi = opr2->as_register_hi();
  2673       __ subl(xlo, ylo);
  2674       __ sbbl(xhi, yhi);
  2675       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2676         __ orl(xhi, xlo);
  2678 #endif // _LP64
  2679     } else if (opr2->is_constant()) {
  2680       // cpu register - constant 0
  2681       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2682 #ifdef _LP64
  2683       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2684 #else
  2685       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2686       __ orl(xhi, xlo);
  2687 #endif // _LP64
  2688     } else {
  2689       ShouldNotReachHere();
  2692   } else if (opr1->is_single_xmm()) {
  2693     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2694     if (opr2->is_single_xmm()) {
  2695       // xmm register - xmm register
  2696       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2697     } else if (opr2->is_stack()) {
  2698       // xmm register - stack
  2699       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2700     } else if (opr2->is_constant()) {
  2701       // xmm register - constant
  2702       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2703     } else if (opr2->is_address()) {
  2704       // xmm register - address
  2705       if (op->info() != NULL) {
  2706         add_debug_info_for_null_check_here(op->info());
  2708       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2709     } else {
  2710       ShouldNotReachHere();
  2713   } else if (opr1->is_double_xmm()) {
  2714     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2715     if (opr2->is_double_xmm()) {
  2716       // xmm register - xmm register
  2717       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2718     } else if (opr2->is_stack()) {
  2719       // xmm register - stack
  2720       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2721     } else if (opr2->is_constant()) {
  2722       // xmm register - constant
  2723       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2724     } else if (opr2->is_address()) {
  2725       // xmm register - address
  2726       if (op->info() != NULL) {
  2727         add_debug_info_for_null_check_here(op->info());
  2729       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2730     } else {
  2731       ShouldNotReachHere();
  2734   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2735     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2736     assert(opr2->is_fpu_register(), "both must be registers");
  2737     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2739   } else if (opr1->is_address() && opr2->is_constant()) {
  2740     LIR_Const* c = opr2->as_constant_ptr();
  2741 #ifdef _LP64
  2742     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2743       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2744       __ movoop(rscratch1, c->as_jobject());
  2746 #endif // LP64
  2747     if (op->info() != NULL) {
  2748       add_debug_info_for_null_check_here(op->info());
  2750     // special case: address - constant
  2751     LIR_Address* addr = opr1->as_address_ptr();
  2752     if (c->type() == T_INT) {
  2753       __ cmpl(as_Address(addr), c->as_jint());
  2754     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2755 #ifdef _LP64
  2756       // %%% Make this explode if addr isn't reachable until we figure out a
  2757       // better strategy by giving noreg as the temp for as_Address
  2758       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2759 #else
  2760       __ cmpoop(as_Address(addr), c->as_jobject());
  2761 #endif // _LP64
  2762     } else {
  2763       ShouldNotReachHere();
  2766   } else {
  2767     ShouldNotReachHere();
  2771 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2772   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2773     if (left->is_single_xmm()) {
  2774       assert(right->is_single_xmm(), "must match");
  2775       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2776     } else if (left->is_double_xmm()) {
  2777       assert(right->is_double_xmm(), "must match");
  2778       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2780     } else {
  2781       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2782       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2784       assert(left->fpu() == 0, "left must be on TOS");
  2785       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2786                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2788   } else {
  2789     assert(code == lir_cmp_l2i, "check");
  2790 #ifdef _LP64
  2791     Label done;
  2792     Register dest = dst->as_register();
  2793     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2794     __ movl(dest, -1);
  2795     __ jccb(Assembler::less, done);
  2796     __ set_byte_if_not_zero(dest);
  2797     __ movzbl(dest, dest);
  2798     __ bind(done);
  2799 #else
  2800     __ lcmp2int(left->as_register_hi(),
  2801                 left->as_register_lo(),
  2802                 right->as_register_hi(),
  2803                 right->as_register_lo());
  2804     move_regs(left->as_register_hi(), dst->as_register());
  2805 #endif // _LP64
  2810 void LIR_Assembler::align_call(LIR_Code code) {
  2811   if (os::is_MP()) {
  2812     // make sure that the displacement word of the call ends up word aligned
  2813     int offset = __ offset();
  2814     switch (code) {
  2815       case lir_static_call:
  2816       case lir_optvirtual_call:
  2817       case lir_dynamic_call:
  2818         offset += NativeCall::displacement_offset;
  2819         break;
  2820       case lir_icvirtual_call:
  2821         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2822       break;
  2823       case lir_virtual_call:  // currently, sparc-specific for niagara
  2824       default: ShouldNotReachHere();
  2826     while (offset++ % BytesPerWord != 0) {
  2827       __ nop();
  2833 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2834   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2835          "must be aligned");
  2836   __ call(AddressLiteral(op->addr(), rtype));
  2837   add_call_info(code_offset(), op->info());
  2841 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2842   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2843   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
  2844   assert(!os::is_MP() ||
  2845          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2846          "must be aligned");
  2847   __ call(AddressLiteral(op->addr(), rh));
  2848   add_call_info(code_offset(), op->info());
  2852 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2853 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2854   ShouldNotReachHere();
  2858 void LIR_Assembler::emit_static_call_stub() {
  2859   address call_pc = __ pc();
  2860   address stub = __ start_a_stub(call_stub_size);
  2861   if (stub == NULL) {
  2862     bailout("static call stub overflow");
  2863     return;
  2866   int start = __ offset();
  2867   if (os::is_MP()) {
  2868     // make sure that the displacement word of the call ends up word aligned
  2869     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2870     while (offset++ % BytesPerWord != 0) {
  2871       __ nop();
  2874   __ relocate(static_stub_Relocation::spec(call_pc));
  2875   __ movoop(rbx, (jobject)NULL);
  2876   // must be set to -1 at code generation time
  2877   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2878   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2879   __ jump(RuntimeAddress(__ pc()));
  2881   assert(__ offset() - start <= call_stub_size, "stub too big");
  2882   __ end_a_stub();
  2886 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2887   assert(exceptionOop->as_register() == rax, "must match");
  2888   assert(exceptionPC->as_register() == rdx, "must match");
  2890   // exception object is not added to oop map by LinearScan
  2891   // (LinearScan assumes that no oops are in fixed registers)
  2892   info->add_register_oop(exceptionOop);
  2893   Runtime1::StubID unwind_id;
  2895   // get current pc information
  2896   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2897   int pc_for_athrow_offset = __ offset();
  2898   InternalAddress pc_for_athrow(__ pc());
  2899   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2900   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2902   __ verify_not_null_oop(rax);
  2903   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2904   if (compilation()->has_fpu_code()) {
  2905     unwind_id = Runtime1::handle_exception_id;
  2906   } else {
  2907     unwind_id = Runtime1::handle_exception_nofpu_id;
  2909   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2911   // enough room for two byte trap
  2912   __ nop();
  2916 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2917   assert(exceptionOop->as_register() == rax, "must match");
  2919   __ jmp(_unwind_handler_entry);
  2923 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2925   // optimized version for linear scan:
  2926   // * count must be already in ECX (guaranteed by LinearScan)
  2927   // * left and dest must be equal
  2928   // * tmp must be unused
  2929   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2930   assert(left == dest, "left and dest must be equal");
  2931   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2933   if (left->is_single_cpu()) {
  2934     Register value = left->as_register();
  2935     assert(value != SHIFT_count, "left cannot be ECX");
  2937     switch (code) {
  2938       case lir_shl:  __ shll(value); break;
  2939       case lir_shr:  __ sarl(value); break;
  2940       case lir_ushr: __ shrl(value); break;
  2941       default: ShouldNotReachHere();
  2943   } else if (left->is_double_cpu()) {
  2944     Register lo = left->as_register_lo();
  2945     Register hi = left->as_register_hi();
  2946     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  2947 #ifdef _LP64
  2948     switch (code) {
  2949       case lir_shl:  __ shlptr(lo);        break;
  2950       case lir_shr:  __ sarptr(lo);        break;
  2951       case lir_ushr: __ shrptr(lo);        break;
  2952       default: ShouldNotReachHere();
  2954 #else
  2956     switch (code) {
  2957       case lir_shl:  __ lshl(hi, lo);        break;
  2958       case lir_shr:  __ lshr(hi, lo, true);  break;
  2959       case lir_ushr: __ lshr(hi, lo, false); break;
  2960       default: ShouldNotReachHere();
  2962 #endif // LP64
  2963   } else {
  2964     ShouldNotReachHere();
  2969 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2970   if (dest->is_single_cpu()) {
  2971     // first move left into dest so that left is not destroyed by the shift
  2972     Register value = dest->as_register();
  2973     count = count & 0x1F; // Java spec
  2975     move_regs(left->as_register(), value);
  2976     switch (code) {
  2977       case lir_shl:  __ shll(value, count); break;
  2978       case lir_shr:  __ sarl(value, count); break;
  2979       case lir_ushr: __ shrl(value, count); break;
  2980       default: ShouldNotReachHere();
  2982   } else if (dest->is_double_cpu()) {
  2983 #ifndef _LP64
  2984     Unimplemented();
  2985 #else
  2986     // first move left into dest so that left is not destroyed by the shift
  2987     Register value = dest->as_register_lo();
  2988     count = count & 0x1F; // Java spec
  2990     move_regs(left->as_register_lo(), value);
  2991     switch (code) {
  2992       case lir_shl:  __ shlptr(value, count); break;
  2993       case lir_shr:  __ sarptr(value, count); break;
  2994       case lir_ushr: __ shrptr(value, count); break;
  2995       default: ShouldNotReachHere();
  2997 #endif // _LP64
  2998   } else {
  2999     ShouldNotReachHere();
  3004 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  3005   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3006   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3007   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3008   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  3012 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  3013   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3014   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3015   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3016   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  3020 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  3021   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3022   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3023   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3024   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  3028 // This code replaces a call to arraycopy; no exception may
  3029 // be thrown in this code, they must be thrown in the System.arraycopy
  3030 // activation frame; we could save some checks if this would not be the case
  3031 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  3032   ciArrayKlass* default_type = op->expected_type();
  3033   Register src = op->src()->as_register();
  3034   Register dst = op->dst()->as_register();
  3035   Register src_pos = op->src_pos()->as_register();
  3036   Register dst_pos = op->dst_pos()->as_register();
  3037   Register length  = op->length()->as_register();
  3038   Register tmp = op->tmp()->as_register();
  3040   CodeStub* stub = op->stub();
  3041   int flags = op->flags();
  3042   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3043   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3045   // if we don't know anything or it's an object array, just go through the generic arraycopy
  3046   if (default_type == NULL) {
  3047     Label done;
  3048     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3049     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3050     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3051     // For the moment until C1 gets the new register allocator I just force all the
  3052     // args to the right place (except the register args) and then on the back side
  3053     // reload the register args properly if we go slow path. Yuck
  3055     // These are proper for the calling convention
  3057     store_parameter(length, 2);
  3058     store_parameter(dst_pos, 1);
  3059     store_parameter(dst, 0);
  3061     // these are just temporary placements until we need to reload
  3062     store_parameter(src_pos, 3);
  3063     store_parameter(src, 4);
  3064     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3066     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3068     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3069 #ifdef _LP64
  3070     // The arguments are in java calling convention so we can trivially shift them to C
  3071     // convention
  3072     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3073     __ mov(c_rarg0, j_rarg0);
  3074     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3075     __ mov(c_rarg1, j_rarg1);
  3076     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3077     __ mov(c_rarg2, j_rarg2);
  3078     assert_different_registers(c_rarg3, j_rarg4);
  3079     __ mov(c_rarg3, j_rarg3);
  3080 #ifdef _WIN64
  3081     // Allocate abi space for args but be sure to keep stack aligned
  3082     __ subptr(rsp, 6*wordSize);
  3083     store_parameter(j_rarg4, 4);
  3084     __ call(RuntimeAddress(entry));
  3085     __ addptr(rsp, 6*wordSize);
  3086 #else
  3087     __ mov(c_rarg4, j_rarg4);
  3088     __ call(RuntimeAddress(entry));
  3089 #endif // _WIN64
  3090 #else
  3091     __ push(length);
  3092     __ push(dst_pos);
  3093     __ push(dst);
  3094     __ push(src_pos);
  3095     __ push(src);
  3096     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
  3098 #endif // _LP64
  3100     __ cmpl(rax, 0);
  3101     __ jcc(Assembler::equal, *stub->continuation());
  3103     // Reload values from the stack so they are where the stub
  3104     // expects them.
  3105     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3106     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3107     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3108     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3109     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3110     __ jmp(*stub->entry());
  3112     __ bind(*stub->continuation());
  3113     return;
  3116   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3118   int elem_size = type2aelembytes(basic_type);
  3119   int shift_amount;
  3120   Address::ScaleFactor scale;
  3122   switch (elem_size) {
  3123     case 1 :
  3124       shift_amount = 0;
  3125       scale = Address::times_1;
  3126       break;
  3127     case 2 :
  3128       shift_amount = 1;
  3129       scale = Address::times_2;
  3130       break;
  3131     case 4 :
  3132       shift_amount = 2;
  3133       scale = Address::times_4;
  3134       break;
  3135     case 8 :
  3136       shift_amount = 3;
  3137       scale = Address::times_8;
  3138       break;
  3139     default:
  3140       ShouldNotReachHere();
  3143   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3144   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3145   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3146   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3148   // length and pos's are all sign extended at this point on 64bit
  3150   // test for NULL
  3151   if (flags & LIR_OpArrayCopy::src_null_check) {
  3152     __ testptr(src, src);
  3153     __ jcc(Assembler::zero, *stub->entry());
  3155   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3156     __ testptr(dst, dst);
  3157     __ jcc(Assembler::zero, *stub->entry());
  3160   // check if negative
  3161   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3162     __ testl(src_pos, src_pos);
  3163     __ jcc(Assembler::less, *stub->entry());
  3165   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3166     __ testl(dst_pos, dst_pos);
  3167     __ jcc(Assembler::less, *stub->entry());
  3169   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3170     __ testl(length, length);
  3171     __ jcc(Assembler::less, *stub->entry());
  3174   if (flags & LIR_OpArrayCopy::src_range_check) {
  3175     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3176     __ cmpl(tmp, src_length_addr);
  3177     __ jcc(Assembler::above, *stub->entry());
  3179   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3180     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3181     __ cmpl(tmp, dst_length_addr);
  3182     __ jcc(Assembler::above, *stub->entry());
  3185   if (flags & LIR_OpArrayCopy::type_check) {
  3186     __ movptr(tmp, src_klass_addr);
  3187     __ cmpptr(tmp, dst_klass_addr);
  3188     __ jcc(Assembler::notEqual, *stub->entry());
  3191 #ifdef ASSERT
  3192   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3193     // Sanity check the known type with the incoming class.  For the
  3194     // primitive case the types must match exactly with src.klass and
  3195     // dst.klass each exactly matching the default type.  For the
  3196     // object array case, if no type check is needed then either the
  3197     // dst type is exactly the expected type and the src type is a
  3198     // subtype which we can't check or src is the same array as dst
  3199     // but not necessarily exactly of type default_type.
  3200     Label known_ok, halt;
  3201     __ movoop(tmp, default_type->constant_encoding());
  3202     if (basic_type != T_OBJECT) {
  3203       __ cmpptr(tmp, dst_klass_addr);
  3204       __ jcc(Assembler::notEqual, halt);
  3205       __ cmpptr(tmp, src_klass_addr);
  3206       __ jcc(Assembler::equal, known_ok);
  3207     } else {
  3208       __ cmpptr(tmp, dst_klass_addr);
  3209       __ jcc(Assembler::equal, known_ok);
  3210       __ cmpptr(src, dst);
  3211       __ jcc(Assembler::equal, known_ok);
  3213     __ bind(halt);
  3214     __ stop("incorrect type information in arraycopy");
  3215     __ bind(known_ok);
  3217 #endif
  3219   if (shift_amount > 0 && basic_type != T_OBJECT) {
  3220     __ shlptr(length, shift_amount);
  3223 #ifdef _LP64
  3224   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3225   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3226   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3227   assert_different_registers(c_rarg1, length);
  3228   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3229   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3230   __ mov(c_rarg2, length);
  3232 #else
  3233   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3234   store_parameter(tmp, 0);
  3235   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3236   store_parameter(tmp, 1);
  3237   store_parameter(length, 2);
  3238 #endif // _LP64
  3239   if (basic_type == T_OBJECT) {
  3240     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
  3241   } else {
  3242     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
  3245   __ bind(*stub->continuation());
  3249 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3250   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3251   Register hdr = op->hdr_opr()->as_register();
  3252   Register lock = op->lock_opr()->as_register();
  3253   if (!UseFastLocking) {
  3254     __ jmp(*op->stub()->entry());
  3255   } else if (op->code() == lir_lock) {
  3256     Register scratch = noreg;
  3257     if (UseBiasedLocking) {
  3258       scratch = op->scratch_opr()->as_register();
  3260     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3261     // add debug info for NullPointerException only if one is possible
  3262     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3263     if (op->info() != NULL) {
  3264       add_debug_info_for_null_check(null_check_offset, op->info());
  3266     // done
  3267   } else if (op->code() == lir_unlock) {
  3268     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3269     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3270   } else {
  3271     Unimplemented();
  3273   __ bind(*op->stub()->continuation());
  3277 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3278   ciMethod* method = op->profiled_method();
  3279   int bci          = op->profiled_bci();
  3281   // Update counter for all call types
  3282   ciMethodData* md = method->method_data();
  3283   if (md == NULL) {
  3284     bailout("out of memory building methodDataOop");
  3285     return;
  3287   ciProfileData* data = md->bci_to_data(bci);
  3288   assert(data->is_CounterData(), "need CounterData for calls");
  3289   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3290   Register mdo  = op->mdo()->as_register();
  3291   __ movoop(mdo, md->constant_encoding());
  3292   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3293   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3294   // Perform additional virtual call profiling for invokevirtual and
  3295   // invokeinterface bytecodes
  3296   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3297       C1ProfileVirtualCalls) {
  3298     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3299     Register recv = op->recv()->as_register();
  3300     assert_different_registers(mdo, recv);
  3301     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3302     ciKlass* known_klass = op->known_holder();
  3303     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3304       // We know the type that will be seen at this call site; we can
  3305       // statically update the methodDataOop rather than needing to do
  3306       // dynamic tests on the receiver type
  3308       // NOTE: we should probably put a lock around this search to
  3309       // avoid collisions by concurrent compilations
  3310       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3311       uint i;
  3312       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3313         ciKlass* receiver = vc_data->receiver(i);
  3314         if (known_klass->equals(receiver)) {
  3315           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3316           __ addptr(data_addr, DataLayout::counter_increment);
  3317           return;
  3321       // Receiver type not found in profile data; select an empty slot
  3323       // Note that this is less efficient than it should be because it
  3324       // always does a write to the receiver part of the
  3325       // VirtualCallData rather than just the first time
  3326       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3327         ciKlass* receiver = vc_data->receiver(i);
  3328         if (receiver == NULL) {
  3329           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3330           __ movoop(recv_addr, known_klass->constant_encoding());
  3331           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3332           __ addptr(data_addr, DataLayout::counter_increment);
  3333           return;
  3336     } else {
  3337       __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
  3338       Label update_done;
  3339       type_profile_helper(mdo, md, data, recv, &update_done);
  3340       // Receiver did not match any saved receiver and there is no empty row for it.
  3341       // Increment total counter to indicate polymorphic case.
  3342       __ addptr(counter_addr, DataLayout::counter_increment);
  3344       __ bind(update_done);
  3346   } else {
  3347     // Static call
  3348     __ addptr(counter_addr, DataLayout::counter_increment);
  3352 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3353   Unimplemented();
  3357 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3358   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3362 void LIR_Assembler::align_backward_branch_target() {
  3363   __ align(BytesPerWord);
  3367 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3368   if (left->is_single_cpu()) {
  3369     __ negl(left->as_register());
  3370     move_regs(left->as_register(), dest->as_register());
  3372   } else if (left->is_double_cpu()) {
  3373     Register lo = left->as_register_lo();
  3374 #ifdef _LP64
  3375     Register dst = dest->as_register_lo();
  3376     __ movptr(dst, lo);
  3377     __ negptr(dst);
  3378 #else
  3379     Register hi = left->as_register_hi();
  3380     __ lneg(hi, lo);
  3381     if (dest->as_register_lo() == hi) {
  3382       assert(dest->as_register_hi() != lo, "destroying register");
  3383       move_regs(hi, dest->as_register_hi());
  3384       move_regs(lo, dest->as_register_lo());
  3385     } else {
  3386       move_regs(lo, dest->as_register_lo());
  3387       move_regs(hi, dest->as_register_hi());
  3389 #endif // _LP64
  3391   } else if (dest->is_single_xmm()) {
  3392     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3393       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3395     __ xorps(dest->as_xmm_float_reg(),
  3396              ExternalAddress((address)float_signflip_pool));
  3398   } else if (dest->is_double_xmm()) {
  3399     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3400       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3402     __ xorpd(dest->as_xmm_double_reg(),
  3403              ExternalAddress((address)double_signflip_pool));
  3405   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3406     assert(left->fpu() == 0, "arg must be on TOS");
  3407     assert(dest->fpu() == 0, "dest must be TOS");
  3408     __ fchs();
  3410   } else {
  3411     ShouldNotReachHere();
  3416 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3417   assert(addr->is_address() && dest->is_register(), "check");
  3418   Register reg;
  3419   reg = dest->as_pointer_register();
  3420   __ lea(reg, as_Address(addr->as_address_ptr()));
  3425 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3426   assert(!tmp->is_valid(), "don't need temporary");
  3427   __ call(RuntimeAddress(dest));
  3428   if (info != NULL) {
  3429     add_call_info_here(info);
  3434 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3435   assert(type == T_LONG, "only for volatile long fields");
  3437   if (info != NULL) {
  3438     add_debug_info_for_null_check_here(info);
  3441   if (src->is_double_xmm()) {
  3442     if (dest->is_double_cpu()) {
  3443 #ifdef _LP64
  3444       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3445 #else
  3446       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3447       __ psrlq(src->as_xmm_double_reg(), 32);
  3448       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3449 #endif // _LP64
  3450     } else if (dest->is_double_stack()) {
  3451       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3452     } else if (dest->is_address()) {
  3453       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3454     } else {
  3455       ShouldNotReachHere();
  3458   } else if (dest->is_double_xmm()) {
  3459     if (src->is_double_stack()) {
  3460       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3461     } else if (src->is_address()) {
  3462       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3463     } else {
  3464       ShouldNotReachHere();
  3467   } else if (src->is_double_fpu()) {
  3468     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3469     if (dest->is_double_stack()) {
  3470       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3471     } else if (dest->is_address()) {
  3472       __ fistp_d(as_Address(dest->as_address_ptr()));
  3473     } else {
  3474       ShouldNotReachHere();
  3477   } else if (dest->is_double_fpu()) {
  3478     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3479     if (src->is_double_stack()) {
  3480       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3481     } else if (src->is_address()) {
  3482       __ fild_d(as_Address(src->as_address_ptr()));
  3483     } else {
  3484       ShouldNotReachHere();
  3486   } else {
  3487     ShouldNotReachHere();
  3492 void LIR_Assembler::membar() {
  3493   // QQQ sparc TSO uses this,
  3494   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3497 void LIR_Assembler::membar_acquire() {
  3498   // No x86 machines currently require load fences
  3499   // __ load_fence();
  3502 void LIR_Assembler::membar_release() {
  3503   // No x86 machines currently require store fences
  3504   // __ store_fence();
  3507 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3508   assert(result_reg->is_register(), "check");
  3509 #ifdef _LP64
  3510   // __ get_thread(result_reg->as_register_lo());
  3511   __ mov(result_reg->as_register(), r15_thread);
  3512 #else
  3513   __ get_thread(result_reg->as_register());
  3514 #endif // _LP64
  3518 void LIR_Assembler::peephole(LIR_List*) {
  3519   // do nothing for now
  3523 #undef __

mercurial