src/cpu/x86/vm/assembler_x86.cpp

Fri, 06 Jan 2012 20:09:20 -0800

author
kvn
date
Fri, 06 Jan 2012 20:09:20 -0800
changeset 3400
22cee0ee8927
parent 3399
1cb50d7a9d95
child 3574
fd8114661503
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 // Implementation of AddressLiteral
    46 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    47   _is_lval = false;
    48   _target = target;
    49   switch (rtype) {
    50   case relocInfo::oop_type:
    51     // Oops are a special case. Normally they would be their own section
    52     // but in cases like icBuffer they are literals in the code stream that
    53     // we don't have a section for. We use none so that we get a literal address
    54     // which is always patchable.
    55     break;
    56   case relocInfo::external_word_type:
    57     _rspec = external_word_Relocation::spec(target);
    58     break;
    59   case relocInfo::internal_word_type:
    60     _rspec = internal_word_Relocation::spec(target);
    61     break;
    62   case relocInfo::opt_virtual_call_type:
    63     _rspec = opt_virtual_call_Relocation::spec();
    64     break;
    65   case relocInfo::static_call_type:
    66     _rspec = static_call_Relocation::spec();
    67     break;
    68   case relocInfo::runtime_call_type:
    69     _rspec = runtime_call_Relocation::spec();
    70     break;
    71   case relocInfo::poll_type:
    72   case relocInfo::poll_return_type:
    73     _rspec = Relocation::spec_simple(rtype);
    74     break;
    75   case relocInfo::none:
    76     break;
    77   default:
    78     ShouldNotReachHere();
    79     break;
    80   }
    81 }
    83 // Implementation of Address
    85 #ifdef _LP64
    87 Address Address::make_array(ArrayAddress adr) {
    88   // Not implementable on 64bit machines
    89   // Should have been handled higher up the call chain.
    90   ShouldNotReachHere();
    91   return Address();
    92 }
    94 // exceedingly dangerous constructor
    95 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    96   _base  = noreg;
    97   _index = noreg;
    98   _scale = no_scale;
    99   _disp  = disp;
   100   switch (rtype) {
   101     case relocInfo::external_word_type:
   102       _rspec = external_word_Relocation::spec(loc);
   103       break;
   104     case relocInfo::internal_word_type:
   105       _rspec = internal_word_Relocation::spec(loc);
   106       break;
   107     case relocInfo::runtime_call_type:
   108       // HMM
   109       _rspec = runtime_call_Relocation::spec();
   110       break;
   111     case relocInfo::poll_type:
   112     case relocInfo::poll_return_type:
   113       _rspec = Relocation::spec_simple(rtype);
   114       break;
   115     case relocInfo::none:
   116       break;
   117     default:
   118       ShouldNotReachHere();
   119   }
   120 }
   121 #else // LP64
   123 Address Address::make_array(ArrayAddress adr) {
   124   AddressLiteral base = adr.base();
   125   Address index = adr.index();
   126   assert(index._disp == 0, "must not have disp"); // maybe it can?
   127   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   128   array._rspec = base._rspec;
   129   return array;
   130 }
   132 // exceedingly dangerous constructor
   133 Address::Address(address loc, RelocationHolder spec) {
   134   _base  = noreg;
   135   _index = noreg;
   136   _scale = no_scale;
   137   _disp  = (intptr_t) loc;
   138   _rspec = spec;
   139 }
   141 #endif // _LP64
   145 // Convert the raw encoding form into the form expected by the constructor for
   146 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   147 // that to noreg for the Address constructor.
   148 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   149   RelocationHolder rspec;
   150   if (disp_is_oop) {
   151     rspec = Relocation::spec_simple(relocInfo::oop_type);
   152   }
   153   bool valid_index = index != rsp->encoding();
   154   if (valid_index) {
   155     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   156     madr._rspec = rspec;
   157     return madr;
   158   } else {
   159     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   160     madr._rspec = rspec;
   161     return madr;
   162   }
   163 }
   165 // Implementation of Assembler
   167 int AbstractAssembler::code_fill_byte() {
   168   return (u_char)'\xF4'; // hlt
   169 }
   171 // make this go away someday
   172 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   173   if (rtype == relocInfo::none)
   174         emit_long(data);
   175   else  emit_data(data, Relocation::spec_simple(rtype), format);
   176 }
   178 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   179   assert(imm_operand == 0, "default format must be immediate in this file");
   180   assert(inst_mark() != NULL, "must be inside InstructionMark");
   181   if (rspec.type() !=  relocInfo::none) {
   182     #ifdef ASSERT
   183       check_relocation(rspec, format);
   184     #endif
   185     // Do not use AbstractAssembler::relocate, which is not intended for
   186     // embedded words.  Instead, relocate to the enclosing instruction.
   188     // hack. call32 is too wide for mask so use disp32
   189     if (format == call32_operand)
   190       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   191     else
   192       code_section()->relocate(inst_mark(), rspec, format);
   193   }
   194   emit_long(data);
   195 }
   197 static int encode(Register r) {
   198   int enc = r->encoding();
   199   if (enc >= 8) {
   200     enc -= 8;
   201   }
   202   return enc;
   203 }
   205 static int encode(XMMRegister r) {
   206   int enc = r->encoding();
   207   if (enc >= 8) {
   208     enc -= 8;
   209   }
   210   return enc;
   211 }
   213 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   214   assert(dst->has_byte_register(), "must have byte register");
   215   assert(isByte(op1) && isByte(op2), "wrong opcode");
   216   assert(isByte(imm8), "not a byte");
   217   assert((op1 & 0x01) == 0, "should be 8bit operation");
   218   emit_byte(op1);
   219   emit_byte(op2 | encode(dst));
   220   emit_byte(imm8);
   221 }
   224 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   225   assert(isByte(op1) && isByte(op2), "wrong opcode");
   226   assert((op1 & 0x01) == 1, "should be 32bit operation");
   227   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   228   if (is8bit(imm32)) {
   229     emit_byte(op1 | 0x02); // set sign bit
   230     emit_byte(op2 | encode(dst));
   231     emit_byte(imm32 & 0xFF);
   232   } else {
   233     emit_byte(op1);
   234     emit_byte(op2 | encode(dst));
   235     emit_long(imm32);
   236   }
   237 }
   239 // immediate-to-memory forms
   240 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   241   assert((op1 & 0x01) == 1, "should be 32bit operation");
   242   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   243   if (is8bit(imm32)) {
   244     emit_byte(op1 | 0x02); // set sign bit
   245     emit_operand(rm, adr, 1);
   246     emit_byte(imm32 & 0xFF);
   247   } else {
   248     emit_byte(op1);
   249     emit_operand(rm, adr, 4);
   250     emit_long(imm32);
   251   }
   252 }
   254 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   255   LP64_ONLY(ShouldNotReachHere());
   256   assert(isByte(op1) && isByte(op2), "wrong opcode");
   257   assert((op1 & 0x01) == 1, "should be 32bit operation");
   258   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   259   InstructionMark im(this);
   260   emit_byte(op1);
   261   emit_byte(op2 | encode(dst));
   262   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   263 }
   266 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   267   assert(isByte(op1) && isByte(op2), "wrong opcode");
   268   emit_byte(op1);
   269   emit_byte(op2 | encode(dst) << 3 | encode(src));
   270 }
   273 void Assembler::emit_operand(Register reg, Register base, Register index,
   274                              Address::ScaleFactor scale, int disp,
   275                              RelocationHolder const& rspec,
   276                              int rip_relative_correction) {
   277   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   279   // Encode the registers as needed in the fields they are used in
   281   int regenc = encode(reg) << 3;
   282   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   283   int baseenc = base->is_valid() ? encode(base) : 0;
   285   if (base->is_valid()) {
   286     if (index->is_valid()) {
   287       assert(scale != Address::no_scale, "inconsistent address");
   288       // [base + index*scale + disp]
   289       if (disp == 0 && rtype == relocInfo::none  &&
   290           base != rbp LP64_ONLY(&& base != r13)) {
   291         // [base + index*scale]
   292         // [00 reg 100][ss index base]
   293         assert(index != rsp, "illegal addressing mode");
   294         emit_byte(0x04 | regenc);
   295         emit_byte(scale << 6 | indexenc | baseenc);
   296       } else if (is8bit(disp) && rtype == relocInfo::none) {
   297         // [base + index*scale + imm8]
   298         // [01 reg 100][ss index base] imm8
   299         assert(index != rsp, "illegal addressing mode");
   300         emit_byte(0x44 | regenc);
   301         emit_byte(scale << 6 | indexenc | baseenc);
   302         emit_byte(disp & 0xFF);
   303       } else {
   304         // [base + index*scale + disp32]
   305         // [10 reg 100][ss index base] disp32
   306         assert(index != rsp, "illegal addressing mode");
   307         emit_byte(0x84 | regenc);
   308         emit_byte(scale << 6 | indexenc | baseenc);
   309         emit_data(disp, rspec, disp32_operand);
   310       }
   311     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   312       // [rsp + disp]
   313       if (disp == 0 && rtype == relocInfo::none) {
   314         // [rsp]
   315         // [00 reg 100][00 100 100]
   316         emit_byte(0x04 | regenc);
   317         emit_byte(0x24);
   318       } else if (is8bit(disp) && rtype == relocInfo::none) {
   319         // [rsp + imm8]
   320         // [01 reg 100][00 100 100] disp8
   321         emit_byte(0x44 | regenc);
   322         emit_byte(0x24);
   323         emit_byte(disp & 0xFF);
   324       } else {
   325         // [rsp + imm32]
   326         // [10 reg 100][00 100 100] disp32
   327         emit_byte(0x84 | regenc);
   328         emit_byte(0x24);
   329         emit_data(disp, rspec, disp32_operand);
   330       }
   331     } else {
   332       // [base + disp]
   333       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   334       if (disp == 0 && rtype == relocInfo::none &&
   335           base != rbp LP64_ONLY(&& base != r13)) {
   336         // [base]
   337         // [00 reg base]
   338         emit_byte(0x00 | regenc | baseenc);
   339       } else if (is8bit(disp) && rtype == relocInfo::none) {
   340         // [base + disp8]
   341         // [01 reg base] disp8
   342         emit_byte(0x40 | regenc | baseenc);
   343         emit_byte(disp & 0xFF);
   344       } else {
   345         // [base + disp32]
   346         // [10 reg base] disp32
   347         emit_byte(0x80 | regenc | baseenc);
   348         emit_data(disp, rspec, disp32_operand);
   349       }
   350     }
   351   } else {
   352     if (index->is_valid()) {
   353       assert(scale != Address::no_scale, "inconsistent address");
   354       // [index*scale + disp]
   355       // [00 reg 100][ss index 101] disp32
   356       assert(index != rsp, "illegal addressing mode");
   357       emit_byte(0x04 | regenc);
   358       emit_byte(scale << 6 | indexenc | 0x05);
   359       emit_data(disp, rspec, disp32_operand);
   360     } else if (rtype != relocInfo::none ) {
   361       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   362       // [00 000 101] disp32
   364       emit_byte(0x05 | regenc);
   365       // Note that the RIP-rel. correction applies to the generated
   366       // disp field, but _not_ to the target address in the rspec.
   368       // disp was created by converting the target address minus the pc
   369       // at the start of the instruction. That needs more correction here.
   370       // intptr_t disp = target - next_ip;
   371       assert(inst_mark() != NULL, "must be inside InstructionMark");
   372       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   373       int64_t adjusted = disp;
   374       // Do rip-rel adjustment for 64bit
   375       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   376       assert(is_simm32(adjusted),
   377              "must be 32bit offset (RIP relative address)");
   378       emit_data((int32_t) adjusted, rspec, disp32_operand);
   380     } else {
   381       // 32bit never did this, did everything as the rip-rel/disp code above
   382       // [disp] ABSOLUTE
   383       // [00 reg 100][00 100 101] disp32
   384       emit_byte(0x04 | regenc);
   385       emit_byte(0x25);
   386       emit_data(disp, rspec, disp32_operand);
   387     }
   388   }
   389 }
   391 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   392                              Address::ScaleFactor scale, int disp,
   393                              RelocationHolder const& rspec) {
   394   emit_operand((Register)reg, base, index, scale, disp, rspec);
   395 }
   397 // Secret local extension to Assembler::WhichOperand:
   398 #define end_pc_operand (_WhichOperand_limit)
   400 address Assembler::locate_operand(address inst, WhichOperand which) {
   401   // Decode the given instruction, and return the address of
   402   // an embedded 32-bit operand word.
   404   // If "which" is disp32_operand, selects the displacement portion
   405   // of an effective address specifier.
   406   // If "which" is imm64_operand, selects the trailing immediate constant.
   407   // If "which" is call32_operand, selects the displacement of a call or jump.
   408   // Caller is responsible for ensuring that there is such an operand,
   409   // and that it is 32/64 bits wide.
   411   // If "which" is end_pc_operand, find the end of the instruction.
   413   address ip = inst;
   414   bool is_64bit = false;
   416   debug_only(bool has_disp32 = false);
   417   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   419   again_after_prefix:
   420   switch (0xFF & *ip++) {
   422   // These convenience macros generate groups of "case" labels for the switch.
   423 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   424 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   425              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   426 #define REP16(x) REP8((x)+0): \
   427               case REP8((x)+8)
   429   case CS_segment:
   430   case SS_segment:
   431   case DS_segment:
   432   case ES_segment:
   433   case FS_segment:
   434   case GS_segment:
   435     // Seems dubious
   436     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   437     assert(ip == inst+1, "only one prefix allowed");
   438     goto again_after_prefix;
   440   case 0x67:
   441   case REX:
   442   case REX_B:
   443   case REX_X:
   444   case REX_XB:
   445   case REX_R:
   446   case REX_RB:
   447   case REX_RX:
   448   case REX_RXB:
   449     NOT_LP64(assert(false, "64bit prefixes"));
   450     goto again_after_prefix;
   452   case REX_W:
   453   case REX_WB:
   454   case REX_WX:
   455   case REX_WXB:
   456   case REX_WR:
   457   case REX_WRB:
   458   case REX_WRX:
   459   case REX_WRXB:
   460     NOT_LP64(assert(false, "64bit prefixes"));
   461     is_64bit = true;
   462     goto again_after_prefix;
   464   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   465   case 0x88: // movb a, r
   466   case 0x89: // movl a, r
   467   case 0x8A: // movb r, a
   468   case 0x8B: // movl r, a
   469   case 0x8F: // popl a
   470     debug_only(has_disp32 = true);
   471     break;
   473   case 0x68: // pushq #32
   474     if (which == end_pc_operand) {
   475       return ip + 4;
   476     }
   477     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   478     return ip;                  // not produced by emit_operand
   480   case 0x66: // movw ... (size prefix)
   481     again_after_size_prefix2:
   482     switch (0xFF & *ip++) {
   483     case REX:
   484     case REX_B:
   485     case REX_X:
   486     case REX_XB:
   487     case REX_R:
   488     case REX_RB:
   489     case REX_RX:
   490     case REX_RXB:
   491     case REX_W:
   492     case REX_WB:
   493     case REX_WX:
   494     case REX_WXB:
   495     case REX_WR:
   496     case REX_WRB:
   497     case REX_WRX:
   498     case REX_WRXB:
   499       NOT_LP64(assert(false, "64bit prefix found"));
   500       goto again_after_size_prefix2;
   501     case 0x8B: // movw r, a
   502     case 0x89: // movw a, r
   503       debug_only(has_disp32 = true);
   504       break;
   505     case 0xC7: // movw a, #16
   506       debug_only(has_disp32 = true);
   507       tail_size = 2;  // the imm16
   508       break;
   509     case 0x0F: // several SSE/SSE2 variants
   510       ip--;    // reparse the 0x0F
   511       goto again_after_prefix;
   512     default:
   513       ShouldNotReachHere();
   514     }
   515     break;
   517   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   518     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   519     // these asserts are somewhat nonsensical
   520 #ifndef _LP64
   521     assert(which == imm_operand || which == disp32_operand, "");
   522 #else
   523     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   524            which == narrow_oop_operand && !is_64bit, "");
   525 #endif // _LP64
   526     return ip;
   528   case 0x69: // imul r, a, #32
   529   case 0xC7: // movl a, #32(oop?)
   530     tail_size = 4;
   531     debug_only(has_disp32 = true); // has both kinds of operands!
   532     break;
   534   case 0x0F: // movx..., etc.
   535     switch (0xFF & *ip++) {
   536     case 0x3A: // pcmpestri
   537       tail_size = 1;
   538     case 0x38: // ptest, pmovzxbw
   539       ip++; // skip opcode
   540       debug_only(has_disp32 = true); // has both kinds of operands!
   541       break;
   543     case 0x70: // pshufd r, r/a, #8
   544       debug_only(has_disp32 = true); // has both kinds of operands!
   545     case 0x73: // psrldq r, #8
   546       tail_size = 1;
   547       break;
   549     case 0x12: // movlps
   550     case 0x28: // movaps
   551     case 0x2E: // ucomiss
   552     case 0x2F: // comiss
   553     case 0x54: // andps
   554     case 0x55: // andnps
   555     case 0x56: // orps
   556     case 0x57: // xorps
   557     case 0x6E: // movd
   558     case 0x7E: // movd
   559     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   560       debug_only(has_disp32 = true);
   561       break;
   563     case 0xAD: // shrd r, a, %cl
   564     case 0xAF: // imul r, a
   565     case 0xBE: // movsbl r, a (movsxb)
   566     case 0xBF: // movswl r, a (movsxw)
   567     case 0xB6: // movzbl r, a (movzxb)
   568     case 0xB7: // movzwl r, a (movzxw)
   569     case REP16(0x40): // cmovl cc, r, a
   570     case 0xB0: // cmpxchgb
   571     case 0xB1: // cmpxchg
   572     case 0xC1: // xaddl
   573     case 0xC7: // cmpxchg8
   574     case REP16(0x90): // setcc a
   575       debug_only(has_disp32 = true);
   576       // fall out of the switch to decode the address
   577       break;
   579     case 0xC4: // pinsrw r, a, #8
   580       debug_only(has_disp32 = true);
   581     case 0xC5: // pextrw r, r, #8
   582       tail_size = 1;  // the imm8
   583       break;
   585     case 0xAC: // shrd r, a, #8
   586       debug_only(has_disp32 = true);
   587       tail_size = 1;  // the imm8
   588       break;
   590     case REP16(0x80): // jcc rdisp32
   591       if (which == end_pc_operand)  return ip + 4;
   592       assert(which == call32_operand, "jcc has no disp32 or imm");
   593       return ip;
   594     default:
   595       ShouldNotReachHere();
   596     }
   597     break;
   599   case 0x81: // addl a, #32; addl r, #32
   600     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   601     // on 32bit in the case of cmpl, the imm might be an oop
   602     tail_size = 4;
   603     debug_only(has_disp32 = true); // has both kinds of operands!
   604     break;
   606   case 0x83: // addl a, #8; addl r, #8
   607     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   608     debug_only(has_disp32 = true); // has both kinds of operands!
   609     tail_size = 1;
   610     break;
   612   case 0x9B:
   613     switch (0xFF & *ip++) {
   614     case 0xD9: // fnstcw a
   615       debug_only(has_disp32 = true);
   616       break;
   617     default:
   618       ShouldNotReachHere();
   619     }
   620     break;
   622   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   623   case REP4(0x10): // adc...
   624   case REP4(0x20): // and...
   625   case REP4(0x30): // xor...
   626   case REP4(0x08): // or...
   627   case REP4(0x18): // sbb...
   628   case REP4(0x28): // sub...
   629   case 0xF7: // mull a
   630   case 0x8D: // lea r, a
   631   case 0x87: // xchg r, a
   632   case REP4(0x38): // cmp...
   633   case 0x85: // test r, a
   634     debug_only(has_disp32 = true); // has both kinds of operands!
   635     break;
   637   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   638   case 0xC6: // movb a, #8
   639   case 0x80: // cmpb a, #8
   640   case 0x6B: // imul r, a, #8
   641     debug_only(has_disp32 = true); // has both kinds of operands!
   642     tail_size = 1; // the imm8
   643     break;
   645   case 0xC4: // VEX_3bytes
   646   case 0xC5: // VEX_2bytes
   647     assert((UseAVX > 0), "shouldn't have VEX prefix");
   648     assert(ip == inst+1, "no prefixes allowed");
   649     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   650     // but they have prefix 0x0F and processed when 0x0F processed above.
   651     //
   652     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   653     // instructions (these instructions are not supported in 64-bit mode).
   654     // To distinguish them bits [7:6] are set in the VEX second byte since
   655     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   656     // those VEX bits REX and vvvv bits are inverted.
   657     //
   658     // Fortunately C2 doesn't generate these instructions so we don't need
   659     // to check for them in product version.
   661     // Check second byte
   662     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   664     // First byte
   665     if ((0xFF & *inst) == VEX_3bytes) {
   666       ip++; // third byte
   667       is_64bit = ((VEX_W & *ip) == VEX_W);
   668     }
   669     ip++; // opcode
   670     // To find the end of instruction (which == end_pc_operand).
   671     switch (0xFF & *ip) {
   672     case 0x61: // pcmpestri r, r/a, #8
   673     case 0x70: // pshufd r, r/a, #8
   674     case 0x73: // psrldq r, #8
   675       tail_size = 1;  // the imm8
   676       break;
   677     default:
   678       break;
   679     }
   680     ip++; // skip opcode
   681     debug_only(has_disp32 = true); // has both kinds of operands!
   682     break;
   684   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   685   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   686   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   687   case 0xDD: // fld_d a; fst_d a; fstp_d a
   688   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   689   case 0xDF: // fild_d a; fistp_d a
   690   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   691   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   692   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   693     debug_only(has_disp32 = true);
   694     break;
   696   case 0xE8: // call rdisp32
   697   case 0xE9: // jmp  rdisp32
   698     if (which == end_pc_operand)  return ip + 4;
   699     assert(which == call32_operand, "call has no disp32 or imm");
   700     return ip;
   702   case 0xF0:                    // Lock
   703     assert(os::is_MP(), "only on MP");
   704     goto again_after_prefix;
   706   case 0xF3:                    // For SSE
   707   case 0xF2:                    // For SSE2
   708     switch (0xFF & *ip++) {
   709     case REX:
   710     case REX_B:
   711     case REX_X:
   712     case REX_XB:
   713     case REX_R:
   714     case REX_RB:
   715     case REX_RX:
   716     case REX_RXB:
   717     case REX_W:
   718     case REX_WB:
   719     case REX_WX:
   720     case REX_WXB:
   721     case REX_WR:
   722     case REX_WRB:
   723     case REX_WRX:
   724     case REX_WRXB:
   725       NOT_LP64(assert(false, "found 64bit prefix"));
   726       ip++;
   727     default:
   728       ip++;
   729     }
   730     debug_only(has_disp32 = true); // has both kinds of operands!
   731     break;
   733   default:
   734     ShouldNotReachHere();
   736 #undef REP8
   737 #undef REP16
   738   }
   740   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   741 #ifdef _LP64
   742   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   743 #else
   744   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   745   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   746 #endif // LP64
   747   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   749   // parse the output of emit_operand
   750   int op2 = 0xFF & *ip++;
   751   int base = op2 & 0x07;
   752   int op3 = -1;
   753   const int b100 = 4;
   754   const int b101 = 5;
   755   if (base == b100 && (op2 >> 6) != 3) {
   756     op3 = 0xFF & *ip++;
   757     base = op3 & 0x07;   // refetch the base
   758   }
   759   // now ip points at the disp (if any)
   761   switch (op2 >> 6) {
   762   case 0:
   763     // [00 reg  100][ss index base]
   764     // [00 reg  100][00   100  esp]
   765     // [00 reg base]
   766     // [00 reg  100][ss index  101][disp32]
   767     // [00 reg  101]               [disp32]
   769     if (base == b101) {
   770       if (which == disp32_operand)
   771         return ip;              // caller wants the disp32
   772       ip += 4;                  // skip the disp32
   773     }
   774     break;
   776   case 1:
   777     // [01 reg  100][ss index base][disp8]
   778     // [01 reg  100][00   100  esp][disp8]
   779     // [01 reg base]               [disp8]
   780     ip += 1;                    // skip the disp8
   781     break;
   783   case 2:
   784     // [10 reg  100][ss index base][disp32]
   785     // [10 reg  100][00   100  esp][disp32]
   786     // [10 reg base]               [disp32]
   787     if (which == disp32_operand)
   788       return ip;                // caller wants the disp32
   789     ip += 4;                    // skip the disp32
   790     break;
   792   case 3:
   793     // [11 reg base]  (not a memory addressing mode)
   794     break;
   795   }
   797   if (which == end_pc_operand) {
   798     return ip + tail_size;
   799   }
   801 #ifdef _LP64
   802   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   803 #else
   804   assert(which == imm_operand, "instruction has only an imm field");
   805 #endif // LP64
   806   return ip;
   807 }
   809 address Assembler::locate_next_instruction(address inst) {
   810   // Secretly share code with locate_operand:
   811   return locate_operand(inst, end_pc_operand);
   812 }
   815 #ifdef ASSERT
   816 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   817   address inst = inst_mark();
   818   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   819   address opnd;
   821   Relocation* r = rspec.reloc();
   822   if (r->type() == relocInfo::none) {
   823     return;
   824   } else if (r->is_call() || format == call32_operand) {
   825     // assert(format == imm32_operand, "cannot specify a nonzero format");
   826     opnd = locate_operand(inst, call32_operand);
   827   } else if (r->is_data()) {
   828     assert(format == imm_operand || format == disp32_operand
   829            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   830     opnd = locate_operand(inst, (WhichOperand)format);
   831   } else {
   832     assert(format == imm_operand, "cannot specify a format");
   833     return;
   834   }
   835   assert(opnd == pc(), "must put operand where relocs can find it");
   836 }
   837 #endif // ASSERT
   839 void Assembler::emit_operand32(Register reg, Address adr) {
   840   assert(reg->encoding() < 8, "no extended registers");
   841   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   842   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   843                adr._rspec);
   844 }
   846 void Assembler::emit_operand(Register reg, Address adr,
   847                              int rip_relative_correction) {
   848   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   849                adr._rspec,
   850                rip_relative_correction);
   851 }
   853 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   854   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   855                adr._rspec);
   856 }
   858 // MMX operations
   859 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   860   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   861   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   862 }
   864 // work around gcc (3.2.1-7a) bug
   865 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   866   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   867   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   868 }
   871 void Assembler::emit_farith(int b1, int b2, int i) {
   872   assert(isByte(b1) && isByte(b2), "wrong opcode");
   873   assert(0 <= i &&  i < 8, "illegal stack offset");
   874   emit_byte(b1);
   875   emit_byte(b2 + i);
   876 }
   879 // Now the Assembler instructions (identical for 32/64 bits)
   881 void Assembler::adcl(Address dst, int32_t imm32) {
   882   InstructionMark im(this);
   883   prefix(dst);
   884   emit_arith_operand(0x81, rdx, dst, imm32);
   885 }
   887 void Assembler::adcl(Address dst, Register src) {
   888   InstructionMark im(this);
   889   prefix(dst, src);
   890   emit_byte(0x11);
   891   emit_operand(src, dst);
   892 }
   894 void Assembler::adcl(Register dst, int32_t imm32) {
   895   prefix(dst);
   896   emit_arith(0x81, 0xD0, dst, imm32);
   897 }
   899 void Assembler::adcl(Register dst, Address src) {
   900   InstructionMark im(this);
   901   prefix(src, dst);
   902   emit_byte(0x13);
   903   emit_operand(dst, src);
   904 }
   906 void Assembler::adcl(Register dst, Register src) {
   907   (void) prefix_and_encode(dst->encoding(), src->encoding());
   908   emit_arith(0x13, 0xC0, dst, src);
   909 }
   911 void Assembler::addl(Address dst, int32_t imm32) {
   912   InstructionMark im(this);
   913   prefix(dst);
   914   emit_arith_operand(0x81, rax, dst, imm32);
   915 }
   917 void Assembler::addl(Address dst, Register src) {
   918   InstructionMark im(this);
   919   prefix(dst, src);
   920   emit_byte(0x01);
   921   emit_operand(src, dst);
   922 }
   924 void Assembler::addl(Register dst, int32_t imm32) {
   925   prefix(dst);
   926   emit_arith(0x81, 0xC0, dst, imm32);
   927 }
   929 void Assembler::addl(Register dst, Address src) {
   930   InstructionMark im(this);
   931   prefix(src, dst);
   932   emit_byte(0x03);
   933   emit_operand(dst, src);
   934 }
   936 void Assembler::addl(Register dst, Register src) {
   937   (void) prefix_and_encode(dst->encoding(), src->encoding());
   938   emit_arith(0x03, 0xC0, dst, src);
   939 }
   941 void Assembler::addr_nop_4() {
   942   // 4 bytes: NOP DWORD PTR [EAX+0]
   943   emit_byte(0x0F);
   944   emit_byte(0x1F);
   945   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   946   emit_byte(0);    // 8-bits offset (1 byte)
   947 }
   949 void Assembler::addr_nop_5() {
   950   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   951   emit_byte(0x0F);
   952   emit_byte(0x1F);
   953   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   954   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   955   emit_byte(0);    // 8-bits offset (1 byte)
   956 }
   958 void Assembler::addr_nop_7() {
   959   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   960   emit_byte(0x0F);
   961   emit_byte(0x1F);
   962   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   963   emit_long(0);    // 32-bits offset (4 bytes)
   964 }
   966 void Assembler::addr_nop_8() {
   967   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   968   emit_byte(0x0F);
   969   emit_byte(0x1F);
   970   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   971   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   972   emit_long(0);    // 32-bits offset (4 bytes)
   973 }
   975 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   976   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   977   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
   978   emit_byte(0x58);
   979   emit_byte(0xC0 | encode);
   980 }
   982 void Assembler::addsd(XMMRegister dst, Address src) {
   983   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   984   InstructionMark im(this);
   985   simd_prefix(dst, dst, src, VEX_SIMD_F2);
   986   emit_byte(0x58);
   987   emit_operand(dst, src);
   988 }
   990 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   991   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   992   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
   993   emit_byte(0x58);
   994   emit_byte(0xC0 | encode);
   995 }
   997 void Assembler::addss(XMMRegister dst, Address src) {
   998   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   999   InstructionMark im(this);
  1000   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1001   emit_byte(0x58);
  1002   emit_operand(dst, src);
  1005 void Assembler::andl(Address dst, int32_t imm32) {
  1006   InstructionMark im(this);
  1007   prefix(dst);
  1008   emit_byte(0x81);
  1009   emit_operand(rsp, dst, 4);
  1010   emit_long(imm32);
  1013 void Assembler::andl(Register dst, int32_t imm32) {
  1014   prefix(dst);
  1015   emit_arith(0x81, 0xE0, dst, imm32);
  1018 void Assembler::andl(Register dst, Address src) {
  1019   InstructionMark im(this);
  1020   prefix(src, dst);
  1021   emit_byte(0x23);
  1022   emit_operand(dst, src);
  1025 void Assembler::andl(Register dst, Register src) {
  1026   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1027   emit_arith(0x23, 0xC0, dst, src);
  1030 void Assembler::andpd(XMMRegister dst, Address src) {
  1031   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1032   InstructionMark im(this);
  1033   simd_prefix(dst, dst, src, VEX_SIMD_66);
  1034   emit_byte(0x54);
  1035   emit_operand(dst, src);
  1038 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  1039   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1040   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  1041   emit_byte(0x54);
  1042   emit_byte(0xC0 | encode);
  1045 void Assembler::andps(XMMRegister dst, Address src) {
  1046   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1047   InstructionMark im(this);
  1048   simd_prefix(dst, dst, src, VEX_SIMD_NONE);
  1049   emit_byte(0x54);
  1050   emit_operand(dst, src);
  1053 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  1054   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1055   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
  1056   emit_byte(0x54);
  1057   emit_byte(0xC0 | encode);
  1060 void Assembler::bsfl(Register dst, Register src) {
  1061   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1062   emit_byte(0x0F);
  1063   emit_byte(0xBC);
  1064   emit_byte(0xC0 | encode);
  1067 void Assembler::bsrl(Register dst, Register src) {
  1068   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1069   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1070   emit_byte(0x0F);
  1071   emit_byte(0xBD);
  1072   emit_byte(0xC0 | encode);
  1075 void Assembler::bswapl(Register reg) { // bswap
  1076   int encode = prefix_and_encode(reg->encoding());
  1077   emit_byte(0x0F);
  1078   emit_byte(0xC8 | encode);
  1081 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1082   // suspect disp32 is always good
  1083   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1085   if (L.is_bound()) {
  1086     const int long_size = 5;
  1087     int offs = (int)( target(L) - pc() );
  1088     assert(offs <= 0, "assembler error");
  1089     InstructionMark im(this);
  1090     // 1110 1000 #32-bit disp
  1091     emit_byte(0xE8);
  1092     emit_data(offs - long_size, rtype, operand);
  1093   } else {
  1094     InstructionMark im(this);
  1095     // 1110 1000 #32-bit disp
  1096     L.add_patch_at(code(), locator());
  1098     emit_byte(0xE8);
  1099     emit_data(int(0), rtype, operand);
  1103 void Assembler::call(Register dst) {
  1104   int encode = prefix_and_encode(dst->encoding());
  1105   emit_byte(0xFF);
  1106   emit_byte(0xD0 | encode);
  1110 void Assembler::call(Address adr) {
  1111   InstructionMark im(this);
  1112   prefix(adr);
  1113   emit_byte(0xFF);
  1114   emit_operand(rdx, adr);
  1117 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1118   assert(entry != NULL, "call most probably wrong");
  1119   InstructionMark im(this);
  1120   emit_byte(0xE8);
  1121   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1122   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1123   // Technically, should use call32_operand, but this format is
  1124   // implied by the fact that we're emitting a call instruction.
  1126   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1127   emit_data((int) disp, rspec, operand);
  1130 void Assembler::cdql() {
  1131   emit_byte(0x99);
  1134 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1135   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1136   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1137   emit_byte(0x0F);
  1138   emit_byte(0x40 | cc);
  1139   emit_byte(0xC0 | encode);
  1143 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1144   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1145   prefix(src, dst);
  1146   emit_byte(0x0F);
  1147   emit_byte(0x40 | cc);
  1148   emit_operand(dst, src);
  1151 void Assembler::cmpb(Address dst, int imm8) {
  1152   InstructionMark im(this);
  1153   prefix(dst);
  1154   emit_byte(0x80);
  1155   emit_operand(rdi, dst, 1);
  1156   emit_byte(imm8);
  1159 void Assembler::cmpl(Address dst, int32_t imm32) {
  1160   InstructionMark im(this);
  1161   prefix(dst);
  1162   emit_byte(0x81);
  1163   emit_operand(rdi, dst, 4);
  1164   emit_long(imm32);
  1167 void Assembler::cmpl(Register dst, int32_t imm32) {
  1168   prefix(dst);
  1169   emit_arith(0x81, 0xF8, dst, imm32);
  1172 void Assembler::cmpl(Register dst, Register src) {
  1173   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1174   emit_arith(0x3B, 0xC0, dst, src);
  1178 void Assembler::cmpl(Register dst, Address  src) {
  1179   InstructionMark im(this);
  1180   prefix(src, dst);
  1181   emit_byte(0x3B);
  1182   emit_operand(dst, src);
  1185 void Assembler::cmpw(Address dst, int imm16) {
  1186   InstructionMark im(this);
  1187   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1188   emit_byte(0x66);
  1189   emit_byte(0x81);
  1190   emit_operand(rdi, dst, 2);
  1191   emit_word(imm16);
  1194 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1195 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1196 // The ZF is set if the compared values were equal, and cleared otherwise.
  1197 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1198   if (Atomics & 2) {
  1199      // caveat: no instructionmark, so this isn't relocatable.
  1200      // Emit a synthetic, non-atomic, CAS equivalent.
  1201      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1202      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1203      cmpl(rax, adr);
  1204      movl(rax, adr);
  1205      if (reg != rax) {
  1206         Label L ;
  1207         jcc(Assembler::notEqual, L);
  1208         movl(adr, reg);
  1209         bind(L);
  1211   } else {
  1212      InstructionMark im(this);
  1213      prefix(adr, reg);
  1214      emit_byte(0x0F);
  1215      emit_byte(0xB1);
  1216      emit_operand(reg, adr);
  1220 void Assembler::comisd(XMMRegister dst, Address src) {
  1221   // NOTE: dbx seems to decode this as comiss even though the
  1222   // 0x66 is there. Strangly ucomisd comes out correct
  1223   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1224   InstructionMark im(this);
  1225   simd_prefix(dst, src, VEX_SIMD_66);
  1226   emit_byte(0x2F);
  1227   emit_operand(dst, src);
  1230 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1231   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1232   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1233   emit_byte(0x2F);
  1234   emit_byte(0xC0 | encode);
  1237 void Assembler::comiss(XMMRegister dst, Address src) {
  1238   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1239   InstructionMark im(this);
  1240   simd_prefix(dst, src, VEX_SIMD_NONE);
  1241   emit_byte(0x2F);
  1242   emit_operand(dst, src);
  1245 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1246   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1247   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1248   emit_byte(0x2F);
  1249   emit_byte(0xC0 | encode);
  1252 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1253   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1254   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1255   emit_byte(0xE6);
  1256   emit_byte(0xC0 | encode);
  1259 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1260   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1261   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1262   emit_byte(0x5B);
  1263   emit_byte(0xC0 | encode);
  1266 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1267   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1268   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1269   emit_byte(0x5A);
  1270   emit_byte(0xC0 | encode);
  1273 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1274   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1275   InstructionMark im(this);
  1276   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1277   emit_byte(0x5A);
  1278   emit_operand(dst, src);
  1281 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1282   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1283   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1284   emit_byte(0x2A);
  1285   emit_byte(0xC0 | encode);
  1288 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1289   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1290   InstructionMark im(this);
  1291   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1292   emit_byte(0x2A);
  1293   emit_operand(dst, src);
  1296 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1297   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1298   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1299   emit_byte(0x2A);
  1300   emit_byte(0xC0 | encode);
  1303 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1304   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1305   InstructionMark im(this);
  1306   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1307   emit_byte(0x2A);
  1308   emit_operand(dst, src);
  1311 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1312   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1313   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1314   emit_byte(0x5A);
  1315   emit_byte(0xC0 | encode);
  1318 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1319   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1320   InstructionMark im(this);
  1321   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1322   emit_byte(0x5A);
  1323   emit_operand(dst, src);
  1327 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1329   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1330   emit_byte(0x2C);
  1331   emit_byte(0xC0 | encode);
  1334 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1335   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1336   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1337   emit_byte(0x2C);
  1338   emit_byte(0xC0 | encode);
  1341 void Assembler::decl(Address dst) {
  1342   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1343   InstructionMark im(this);
  1344   prefix(dst);
  1345   emit_byte(0xFF);
  1346   emit_operand(rcx, dst);
  1349 void Assembler::divsd(XMMRegister dst, Address src) {
  1350   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1351   InstructionMark im(this);
  1352   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1353   emit_byte(0x5E);
  1354   emit_operand(dst, src);
  1357 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1358   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1359   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1360   emit_byte(0x5E);
  1361   emit_byte(0xC0 | encode);
  1364 void Assembler::divss(XMMRegister dst, Address src) {
  1365   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1366   InstructionMark im(this);
  1367   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1368   emit_byte(0x5E);
  1369   emit_operand(dst, src);
  1372 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1373   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1374   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1375   emit_byte(0x5E);
  1376   emit_byte(0xC0 | encode);
  1379 void Assembler::emms() {
  1380   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1381   emit_byte(0x0F);
  1382   emit_byte(0x77);
  1385 void Assembler::hlt() {
  1386   emit_byte(0xF4);
  1389 void Assembler::idivl(Register src) {
  1390   int encode = prefix_and_encode(src->encoding());
  1391   emit_byte(0xF7);
  1392   emit_byte(0xF8 | encode);
  1395 void Assembler::divl(Register src) { // Unsigned
  1396   int encode = prefix_and_encode(src->encoding());
  1397   emit_byte(0xF7);
  1398   emit_byte(0xF0 | encode);
  1401 void Assembler::imull(Register dst, Register src) {
  1402   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1403   emit_byte(0x0F);
  1404   emit_byte(0xAF);
  1405   emit_byte(0xC0 | encode);
  1409 void Assembler::imull(Register dst, Register src, int value) {
  1410   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1411   if (is8bit(value)) {
  1412     emit_byte(0x6B);
  1413     emit_byte(0xC0 | encode);
  1414     emit_byte(value & 0xFF);
  1415   } else {
  1416     emit_byte(0x69);
  1417     emit_byte(0xC0 | encode);
  1418     emit_long(value);
  1422 void Assembler::incl(Address dst) {
  1423   // Don't use it directly. Use MacroAssembler::increment() instead.
  1424   InstructionMark im(this);
  1425   prefix(dst);
  1426   emit_byte(0xFF);
  1427   emit_operand(rax, dst);
  1430 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1431   InstructionMark im(this);
  1432   assert((0 <= cc) && (cc < 16), "illegal cc");
  1433   if (L.is_bound()) {
  1434     address dst = target(L);
  1435     assert(dst != NULL, "jcc most probably wrong");
  1437     const int short_size = 2;
  1438     const int long_size = 6;
  1439     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1440     if (maybe_short && is8bit(offs - short_size)) {
  1441       // 0111 tttn #8-bit disp
  1442       emit_byte(0x70 | cc);
  1443       emit_byte((offs - short_size) & 0xFF);
  1444     } else {
  1445       // 0000 1111 1000 tttn #32-bit disp
  1446       assert(is_simm32(offs - long_size),
  1447              "must be 32bit offset (call4)");
  1448       emit_byte(0x0F);
  1449       emit_byte(0x80 | cc);
  1450       emit_long(offs - long_size);
  1452   } else {
  1453     // Note: could eliminate cond. jumps to this jump if condition
  1454     //       is the same however, seems to be rather unlikely case.
  1455     // Note: use jccb() if label to be bound is very close to get
  1456     //       an 8-bit displacement
  1457     L.add_patch_at(code(), locator());
  1458     emit_byte(0x0F);
  1459     emit_byte(0x80 | cc);
  1460     emit_long(0);
  1464 void Assembler::jccb(Condition cc, Label& L) {
  1465   if (L.is_bound()) {
  1466     const int short_size = 2;
  1467     address entry = target(L);
  1468 #ifdef ASSERT
  1469     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1470     intptr_t delta = short_branch_delta();
  1471     if (delta != 0) {
  1472       dist += (dist < 0 ? (-delta) :delta);
  1474     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1475 #endif
  1476     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1477     // 0111 tttn #8-bit disp
  1478     emit_byte(0x70 | cc);
  1479     emit_byte((offs - short_size) & 0xFF);
  1480   } else {
  1481     InstructionMark im(this);
  1482     L.add_patch_at(code(), locator());
  1483     emit_byte(0x70 | cc);
  1484     emit_byte(0);
  1488 void Assembler::jmp(Address adr) {
  1489   InstructionMark im(this);
  1490   prefix(adr);
  1491   emit_byte(0xFF);
  1492   emit_operand(rsp, adr);
  1495 void Assembler::jmp(Label& L, bool maybe_short) {
  1496   if (L.is_bound()) {
  1497     address entry = target(L);
  1498     assert(entry != NULL, "jmp most probably wrong");
  1499     InstructionMark im(this);
  1500     const int short_size = 2;
  1501     const int long_size = 5;
  1502     intptr_t offs = entry - _code_pos;
  1503     if (maybe_short && is8bit(offs - short_size)) {
  1504       emit_byte(0xEB);
  1505       emit_byte((offs - short_size) & 0xFF);
  1506     } else {
  1507       emit_byte(0xE9);
  1508       emit_long(offs - long_size);
  1510   } else {
  1511     // By default, forward jumps are always 32-bit displacements, since
  1512     // we can't yet know where the label will be bound.  If you're sure that
  1513     // the forward jump will not run beyond 256 bytes, use jmpb to
  1514     // force an 8-bit displacement.
  1515     InstructionMark im(this);
  1516     L.add_patch_at(code(), locator());
  1517     emit_byte(0xE9);
  1518     emit_long(0);
  1522 void Assembler::jmp(Register entry) {
  1523   int encode = prefix_and_encode(entry->encoding());
  1524   emit_byte(0xFF);
  1525   emit_byte(0xE0 | encode);
  1528 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1529   InstructionMark im(this);
  1530   emit_byte(0xE9);
  1531   assert(dest != NULL, "must have a target");
  1532   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1533   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1534   emit_data(disp, rspec.reloc(), call32_operand);
  1537 void Assembler::jmpb(Label& L) {
  1538   if (L.is_bound()) {
  1539     const int short_size = 2;
  1540     address entry = target(L);
  1541     assert(entry != NULL, "jmp most probably wrong");
  1542 #ifdef ASSERT
  1543     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1544     intptr_t delta = short_branch_delta();
  1545     if (delta != 0) {
  1546       dist += (dist < 0 ? (-delta) :delta);
  1548     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1549 #endif
  1550     intptr_t offs = entry - _code_pos;
  1551     emit_byte(0xEB);
  1552     emit_byte((offs - short_size) & 0xFF);
  1553   } else {
  1554     InstructionMark im(this);
  1555     L.add_patch_at(code(), locator());
  1556     emit_byte(0xEB);
  1557     emit_byte(0);
  1561 void Assembler::ldmxcsr( Address src) {
  1562   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1563   InstructionMark im(this);
  1564   prefix(src);
  1565   emit_byte(0x0F);
  1566   emit_byte(0xAE);
  1567   emit_operand(as_Register(2), src);
  1570 void Assembler::leal(Register dst, Address src) {
  1571   InstructionMark im(this);
  1572 #ifdef _LP64
  1573   emit_byte(0x67); // addr32
  1574   prefix(src, dst);
  1575 #endif // LP64
  1576   emit_byte(0x8D);
  1577   emit_operand(dst, src);
  1580 void Assembler::lock() {
  1581   if (Atomics & 1) {
  1582      // Emit either nothing, a NOP, or a NOP: prefix
  1583      emit_byte(0x90) ;
  1584   } else {
  1585      emit_byte(0xF0);
  1589 void Assembler::lzcntl(Register dst, Register src) {
  1590   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1591   emit_byte(0xF3);
  1592   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1593   emit_byte(0x0F);
  1594   emit_byte(0xBD);
  1595   emit_byte(0xC0 | encode);
  1598 // Emit mfence instruction
  1599 void Assembler::mfence() {
  1600   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1601   emit_byte( 0x0F );
  1602   emit_byte( 0xAE );
  1603   emit_byte( 0xF0 );
  1606 void Assembler::mov(Register dst, Register src) {
  1607   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1610 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1611   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1612   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1613   emit_byte(0x28);
  1614   emit_byte(0xC0 | encode);
  1617 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1618   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1619   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1620   emit_byte(0x28);
  1621   emit_byte(0xC0 | encode);
  1624 void Assembler::movb(Register dst, Address src) {
  1625   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1626   InstructionMark im(this);
  1627   prefix(src, dst, true);
  1628   emit_byte(0x8A);
  1629   emit_operand(dst, src);
  1633 void Assembler::movb(Address dst, int imm8) {
  1634   InstructionMark im(this);
  1635    prefix(dst);
  1636   emit_byte(0xC6);
  1637   emit_operand(rax, dst, 1);
  1638   emit_byte(imm8);
  1642 void Assembler::movb(Address dst, Register src) {
  1643   assert(src->has_byte_register(), "must have byte register");
  1644   InstructionMark im(this);
  1645   prefix(dst, src, true);
  1646   emit_byte(0x88);
  1647   emit_operand(src, dst);
  1650 void Assembler::movdl(XMMRegister dst, Register src) {
  1651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1652   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1653   emit_byte(0x6E);
  1654   emit_byte(0xC0 | encode);
  1657 void Assembler::movdl(Register dst, XMMRegister src) {
  1658   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1659   // swap src/dst to get correct prefix
  1660   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1661   emit_byte(0x7E);
  1662   emit_byte(0xC0 | encode);
  1665 void Assembler::movdl(XMMRegister dst, Address src) {
  1666   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1667   InstructionMark im(this);
  1668   simd_prefix(dst, src, VEX_SIMD_66);
  1669   emit_byte(0x6E);
  1670   emit_operand(dst, src);
  1673 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1674   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1675   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1676   emit_byte(0x6F);
  1677   emit_byte(0xC0 | encode);
  1680 void Assembler::movdqu(XMMRegister dst, Address src) {
  1681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1682   InstructionMark im(this);
  1683   simd_prefix(dst, src, VEX_SIMD_F3);
  1684   emit_byte(0x6F);
  1685   emit_operand(dst, src);
  1688 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1689   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1690   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1691   emit_byte(0x6F);
  1692   emit_byte(0xC0 | encode);
  1695 void Assembler::movdqu(Address dst, XMMRegister src) {
  1696   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1697   InstructionMark im(this);
  1698   simd_prefix(dst, src, VEX_SIMD_F3);
  1699   emit_byte(0x7F);
  1700   emit_operand(src, dst);
  1703 // Uses zero extension on 64bit
  1705 void Assembler::movl(Register dst, int32_t imm32) {
  1706   int encode = prefix_and_encode(dst->encoding());
  1707   emit_byte(0xB8 | encode);
  1708   emit_long(imm32);
  1711 void Assembler::movl(Register dst, Register src) {
  1712   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1713   emit_byte(0x8B);
  1714   emit_byte(0xC0 | encode);
  1717 void Assembler::movl(Register dst, Address src) {
  1718   InstructionMark im(this);
  1719   prefix(src, dst);
  1720   emit_byte(0x8B);
  1721   emit_operand(dst, src);
  1724 void Assembler::movl(Address dst, int32_t imm32) {
  1725   InstructionMark im(this);
  1726   prefix(dst);
  1727   emit_byte(0xC7);
  1728   emit_operand(rax, dst, 4);
  1729   emit_long(imm32);
  1732 void Assembler::movl(Address dst, Register src) {
  1733   InstructionMark im(this);
  1734   prefix(dst, src);
  1735   emit_byte(0x89);
  1736   emit_operand(src, dst);
  1739 // New cpus require to use movsd and movss to avoid partial register stall
  1740 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1741 // The selection is done in MacroAssembler::movdbl() and movflt().
  1742 void Assembler::movlpd(XMMRegister dst, Address src) {
  1743   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1744   InstructionMark im(this);
  1745   simd_prefix(dst, dst, src, VEX_SIMD_66);
  1746   emit_byte(0x12);
  1747   emit_operand(dst, src);
  1750 void Assembler::movq( MMXRegister dst, Address src ) {
  1751   assert( VM_Version::supports_mmx(), "" );
  1752   emit_byte(0x0F);
  1753   emit_byte(0x6F);
  1754   emit_operand(dst, src);
  1757 void Assembler::movq( Address dst, MMXRegister src ) {
  1758   assert( VM_Version::supports_mmx(), "" );
  1759   emit_byte(0x0F);
  1760   emit_byte(0x7F);
  1761   // workaround gcc (3.2.1-7a) bug
  1762   // In that version of gcc with only an emit_operand(MMX, Address)
  1763   // gcc will tail jump and try and reverse the parameters completely
  1764   // obliterating dst in the process. By having a version available
  1765   // that doesn't need to swap the args at the tail jump the bug is
  1766   // avoided.
  1767   emit_operand(dst, src);
  1770 void Assembler::movq(XMMRegister dst, Address src) {
  1771   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1772   InstructionMark im(this);
  1773   simd_prefix(dst, src, VEX_SIMD_F3);
  1774   emit_byte(0x7E);
  1775   emit_operand(dst, src);
  1778 void Assembler::movq(Address dst, XMMRegister src) {
  1779   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1780   InstructionMark im(this);
  1781   simd_prefix(dst, src, VEX_SIMD_66);
  1782   emit_byte(0xD6);
  1783   emit_operand(src, dst);
  1786 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1787   InstructionMark im(this);
  1788   prefix(src, dst);
  1789   emit_byte(0x0F);
  1790   emit_byte(0xBE);
  1791   emit_operand(dst, src);
  1794 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1795   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1796   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1797   emit_byte(0x0F);
  1798   emit_byte(0xBE);
  1799   emit_byte(0xC0 | encode);
  1802 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1803   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1804   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1805   emit_byte(0x10);
  1806   emit_byte(0xC0 | encode);
  1809 void Assembler::movsd(XMMRegister dst, Address src) {
  1810   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1811   InstructionMark im(this);
  1812   simd_prefix(dst, src, VEX_SIMD_F2);
  1813   emit_byte(0x10);
  1814   emit_operand(dst, src);
  1817 void Assembler::movsd(Address dst, XMMRegister src) {
  1818   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1819   InstructionMark im(this);
  1820   simd_prefix(dst, src, VEX_SIMD_F2);
  1821   emit_byte(0x11);
  1822   emit_operand(src, dst);
  1825 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1826   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1827   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1828   emit_byte(0x10);
  1829   emit_byte(0xC0 | encode);
  1832 void Assembler::movss(XMMRegister dst, Address src) {
  1833   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1834   InstructionMark im(this);
  1835   simd_prefix(dst, src, VEX_SIMD_F3);
  1836   emit_byte(0x10);
  1837   emit_operand(dst, src);
  1840 void Assembler::movss(Address dst, XMMRegister src) {
  1841   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1842   InstructionMark im(this);
  1843   simd_prefix(dst, src, VEX_SIMD_F3);
  1844   emit_byte(0x11);
  1845   emit_operand(src, dst);
  1848 void Assembler::movswl(Register dst, Address src) { // movsxw
  1849   InstructionMark im(this);
  1850   prefix(src, dst);
  1851   emit_byte(0x0F);
  1852   emit_byte(0xBF);
  1853   emit_operand(dst, src);
  1856 void Assembler::movswl(Register dst, Register src) { // movsxw
  1857   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1858   emit_byte(0x0F);
  1859   emit_byte(0xBF);
  1860   emit_byte(0xC0 | encode);
  1863 void Assembler::movw(Address dst, int imm16) {
  1864   InstructionMark im(this);
  1866   emit_byte(0x66); // switch to 16-bit mode
  1867   prefix(dst);
  1868   emit_byte(0xC7);
  1869   emit_operand(rax, dst, 2);
  1870   emit_word(imm16);
  1873 void Assembler::movw(Register dst, Address src) {
  1874   InstructionMark im(this);
  1875   emit_byte(0x66);
  1876   prefix(src, dst);
  1877   emit_byte(0x8B);
  1878   emit_operand(dst, src);
  1881 void Assembler::movw(Address dst, Register src) {
  1882   InstructionMark im(this);
  1883   emit_byte(0x66);
  1884   prefix(dst, src);
  1885   emit_byte(0x89);
  1886   emit_operand(src, dst);
  1889 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1890   InstructionMark im(this);
  1891   prefix(src, dst);
  1892   emit_byte(0x0F);
  1893   emit_byte(0xB6);
  1894   emit_operand(dst, src);
  1897 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1898   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1899   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1900   emit_byte(0x0F);
  1901   emit_byte(0xB6);
  1902   emit_byte(0xC0 | encode);
  1905 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1906   InstructionMark im(this);
  1907   prefix(src, dst);
  1908   emit_byte(0x0F);
  1909   emit_byte(0xB7);
  1910   emit_operand(dst, src);
  1913 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1914   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1915   emit_byte(0x0F);
  1916   emit_byte(0xB7);
  1917   emit_byte(0xC0 | encode);
  1920 void Assembler::mull(Address src) {
  1921   InstructionMark im(this);
  1922   prefix(src);
  1923   emit_byte(0xF7);
  1924   emit_operand(rsp, src);
  1927 void Assembler::mull(Register src) {
  1928   int encode = prefix_and_encode(src->encoding());
  1929   emit_byte(0xF7);
  1930   emit_byte(0xE0 | encode);
  1933 void Assembler::mulsd(XMMRegister dst, Address src) {
  1934   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1935   InstructionMark im(this);
  1936   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1937   emit_byte(0x59);
  1938   emit_operand(dst, src);
  1941 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1942   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1943   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1944   emit_byte(0x59);
  1945   emit_byte(0xC0 | encode);
  1948 void Assembler::mulss(XMMRegister dst, Address src) {
  1949   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1950   InstructionMark im(this);
  1951   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1952   emit_byte(0x59);
  1953   emit_operand(dst, src);
  1956 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1957   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1958   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1959   emit_byte(0x59);
  1960   emit_byte(0xC0 | encode);
  1963 void Assembler::negl(Register dst) {
  1964   int encode = prefix_and_encode(dst->encoding());
  1965   emit_byte(0xF7);
  1966   emit_byte(0xD8 | encode);
  1969 void Assembler::nop(int i) {
  1970 #ifdef ASSERT
  1971   assert(i > 0, " ");
  1972   // The fancy nops aren't currently recognized by debuggers making it a
  1973   // pain to disassemble code while debugging. If asserts are on clearly
  1974   // speed is not an issue so simply use the single byte traditional nop
  1975   // to do alignment.
  1977   for (; i > 0 ; i--) emit_byte(0x90);
  1978   return;
  1980 #endif // ASSERT
  1982   if (UseAddressNop && VM_Version::is_intel()) {
  1983     //
  1984     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1985     //  1: 0x90
  1986     //  2: 0x66 0x90
  1987     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1988     //  4: 0x0F 0x1F 0x40 0x00
  1989     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1990     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1991     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1992     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1993     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1994     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1995     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1997     // The rest coding is Intel specific - don't use consecutive address nops
  1999     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2000     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2001     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2002     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2004     while(i >= 15) {
  2005       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2006       i -= 15;
  2007       emit_byte(0x66);   // size prefix
  2008       emit_byte(0x66);   // size prefix
  2009       emit_byte(0x66);   // size prefix
  2010       addr_nop_8();
  2011       emit_byte(0x66);   // size prefix
  2012       emit_byte(0x66);   // size prefix
  2013       emit_byte(0x66);   // size prefix
  2014       emit_byte(0x90);   // nop
  2016     switch (i) {
  2017       case 14:
  2018         emit_byte(0x66); // size prefix
  2019       case 13:
  2020         emit_byte(0x66); // size prefix
  2021       case 12:
  2022         addr_nop_8();
  2023         emit_byte(0x66); // size prefix
  2024         emit_byte(0x66); // size prefix
  2025         emit_byte(0x66); // size prefix
  2026         emit_byte(0x90); // nop
  2027         break;
  2028       case 11:
  2029         emit_byte(0x66); // size prefix
  2030       case 10:
  2031         emit_byte(0x66); // size prefix
  2032       case 9:
  2033         emit_byte(0x66); // size prefix
  2034       case 8:
  2035         addr_nop_8();
  2036         break;
  2037       case 7:
  2038         addr_nop_7();
  2039         break;
  2040       case 6:
  2041         emit_byte(0x66); // size prefix
  2042       case 5:
  2043         addr_nop_5();
  2044         break;
  2045       case 4:
  2046         addr_nop_4();
  2047         break;
  2048       case 3:
  2049         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2050         emit_byte(0x66); // size prefix
  2051       case 2:
  2052         emit_byte(0x66); // size prefix
  2053       case 1:
  2054         emit_byte(0x90); // nop
  2055         break;
  2056       default:
  2057         assert(i == 0, " ");
  2059     return;
  2061   if (UseAddressNop && VM_Version::is_amd()) {
  2062     //
  2063     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2064     //  1: 0x90
  2065     //  2: 0x66 0x90
  2066     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2067     //  4: 0x0F 0x1F 0x40 0x00
  2068     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2069     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2070     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2071     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2072     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2073     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2074     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2076     // The rest coding is AMD specific - use consecutive address nops
  2078     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2079     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2080     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2081     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2082     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2083     //     Size prefixes (0x66) are added for larger sizes
  2085     while(i >= 22) {
  2086       i -= 11;
  2087       emit_byte(0x66); // size prefix
  2088       emit_byte(0x66); // size prefix
  2089       emit_byte(0x66); // size prefix
  2090       addr_nop_8();
  2092     // Generate first nop for size between 21-12
  2093     switch (i) {
  2094       case 21:
  2095         i -= 1;
  2096         emit_byte(0x66); // size prefix
  2097       case 20:
  2098       case 19:
  2099         i -= 1;
  2100         emit_byte(0x66); // size prefix
  2101       case 18:
  2102       case 17:
  2103         i -= 1;
  2104         emit_byte(0x66); // size prefix
  2105       case 16:
  2106       case 15:
  2107         i -= 8;
  2108         addr_nop_8();
  2109         break;
  2110       case 14:
  2111       case 13:
  2112         i -= 7;
  2113         addr_nop_7();
  2114         break;
  2115       case 12:
  2116         i -= 6;
  2117         emit_byte(0x66); // size prefix
  2118         addr_nop_5();
  2119         break;
  2120       default:
  2121         assert(i < 12, " ");
  2124     // Generate second nop for size between 11-1
  2125     switch (i) {
  2126       case 11:
  2127         emit_byte(0x66); // size prefix
  2128       case 10:
  2129         emit_byte(0x66); // size prefix
  2130       case 9:
  2131         emit_byte(0x66); // size prefix
  2132       case 8:
  2133         addr_nop_8();
  2134         break;
  2135       case 7:
  2136         addr_nop_7();
  2137         break;
  2138       case 6:
  2139         emit_byte(0x66); // size prefix
  2140       case 5:
  2141         addr_nop_5();
  2142         break;
  2143       case 4:
  2144         addr_nop_4();
  2145         break;
  2146       case 3:
  2147         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2148         emit_byte(0x66); // size prefix
  2149       case 2:
  2150         emit_byte(0x66); // size prefix
  2151       case 1:
  2152         emit_byte(0x90); // nop
  2153         break;
  2154       default:
  2155         assert(i == 0, " ");
  2157     return;
  2160   // Using nops with size prefixes "0x66 0x90".
  2161   // From AMD Optimization Guide:
  2162   //  1: 0x90
  2163   //  2: 0x66 0x90
  2164   //  3: 0x66 0x66 0x90
  2165   //  4: 0x66 0x66 0x66 0x90
  2166   //  5: 0x66 0x66 0x90 0x66 0x90
  2167   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2168   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2169   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2170   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2171   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2172   //
  2173   while(i > 12) {
  2174     i -= 4;
  2175     emit_byte(0x66); // size prefix
  2176     emit_byte(0x66);
  2177     emit_byte(0x66);
  2178     emit_byte(0x90); // nop
  2180   // 1 - 12 nops
  2181   if(i > 8) {
  2182     if(i > 9) {
  2183       i -= 1;
  2184       emit_byte(0x66);
  2186     i -= 3;
  2187     emit_byte(0x66);
  2188     emit_byte(0x66);
  2189     emit_byte(0x90);
  2191   // 1 - 8 nops
  2192   if(i > 4) {
  2193     if(i > 6) {
  2194       i -= 1;
  2195       emit_byte(0x66);
  2197     i -= 3;
  2198     emit_byte(0x66);
  2199     emit_byte(0x66);
  2200     emit_byte(0x90);
  2202   switch (i) {
  2203     case 4:
  2204       emit_byte(0x66);
  2205     case 3:
  2206       emit_byte(0x66);
  2207     case 2:
  2208       emit_byte(0x66);
  2209     case 1:
  2210       emit_byte(0x90);
  2211       break;
  2212     default:
  2213       assert(i == 0, " ");
  2217 void Assembler::notl(Register dst) {
  2218   int encode = prefix_and_encode(dst->encoding());
  2219   emit_byte(0xF7);
  2220   emit_byte(0xD0 | encode );
  2223 void Assembler::orl(Address dst, int32_t imm32) {
  2224   InstructionMark im(this);
  2225   prefix(dst);
  2226   emit_arith_operand(0x81, rcx, dst, imm32);
  2229 void Assembler::orl(Register dst, int32_t imm32) {
  2230   prefix(dst);
  2231   emit_arith(0x81, 0xC8, dst, imm32);
  2234 void Assembler::orl(Register dst, Address src) {
  2235   InstructionMark im(this);
  2236   prefix(src, dst);
  2237   emit_byte(0x0B);
  2238   emit_operand(dst, src);
  2241 void Assembler::orl(Register dst, Register src) {
  2242   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2243   emit_arith(0x0B, 0xC0, dst, src);
  2246 void Assembler::packuswb(XMMRegister dst, Address src) {
  2247   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2248   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2249   InstructionMark im(this);
  2250   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2251   emit_byte(0x67);
  2252   emit_operand(dst, src);
  2255 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2257   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2258   emit_byte(0x67);
  2259   emit_byte(0xC0 | encode);
  2262 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2263   assert(VM_Version::supports_sse4_2(), "");
  2264   InstructionMark im(this);
  2265   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2266   emit_byte(0x61);
  2267   emit_operand(dst, src);
  2268   emit_byte(imm8);
  2271 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2272   assert(VM_Version::supports_sse4_2(), "");
  2273   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2274   emit_byte(0x61);
  2275   emit_byte(0xC0 | encode);
  2276   emit_byte(imm8);
  2279 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2280   assert(VM_Version::supports_sse4_1(), "");
  2281   InstructionMark im(this);
  2282   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2283   emit_byte(0x30);
  2284   emit_operand(dst, src);
  2287 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2288   assert(VM_Version::supports_sse4_1(), "");
  2289   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2290   emit_byte(0x30);
  2291   emit_byte(0xC0 | encode);
  2294 // generic
  2295 void Assembler::pop(Register dst) {
  2296   int encode = prefix_and_encode(dst->encoding());
  2297   emit_byte(0x58 | encode);
  2300 void Assembler::popcntl(Register dst, Address src) {
  2301   assert(VM_Version::supports_popcnt(), "must support");
  2302   InstructionMark im(this);
  2303   emit_byte(0xF3);
  2304   prefix(src, dst);
  2305   emit_byte(0x0F);
  2306   emit_byte(0xB8);
  2307   emit_operand(dst, src);
  2310 void Assembler::popcntl(Register dst, Register src) {
  2311   assert(VM_Version::supports_popcnt(), "must support");
  2312   emit_byte(0xF3);
  2313   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2314   emit_byte(0x0F);
  2315   emit_byte(0xB8);
  2316   emit_byte(0xC0 | encode);
  2319 void Assembler::popf() {
  2320   emit_byte(0x9D);
  2323 #ifndef _LP64 // no 32bit push/pop on amd64
  2324 void Assembler::popl(Address dst) {
  2325   // NOTE: this will adjust stack by 8byte on 64bits
  2326   InstructionMark im(this);
  2327   prefix(dst);
  2328   emit_byte(0x8F);
  2329   emit_operand(rax, dst);
  2331 #endif
  2333 void Assembler::prefetch_prefix(Address src) {
  2334   prefix(src);
  2335   emit_byte(0x0F);
  2338 void Assembler::prefetchnta(Address src) {
  2339   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2340   InstructionMark im(this);
  2341   prefetch_prefix(src);
  2342   emit_byte(0x18);
  2343   emit_operand(rax, src); // 0, src
  2346 void Assembler::prefetchr(Address src) {
  2347   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2348   InstructionMark im(this);
  2349   prefetch_prefix(src);
  2350   emit_byte(0x0D);
  2351   emit_operand(rax, src); // 0, src
  2354 void Assembler::prefetcht0(Address src) {
  2355   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2356   InstructionMark im(this);
  2357   prefetch_prefix(src);
  2358   emit_byte(0x18);
  2359   emit_operand(rcx, src); // 1, src
  2362 void Assembler::prefetcht1(Address src) {
  2363   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2364   InstructionMark im(this);
  2365   prefetch_prefix(src);
  2366   emit_byte(0x18);
  2367   emit_operand(rdx, src); // 2, src
  2370 void Assembler::prefetcht2(Address src) {
  2371   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2372   InstructionMark im(this);
  2373   prefetch_prefix(src);
  2374   emit_byte(0x18);
  2375   emit_operand(rbx, src); // 3, src
  2378 void Assembler::prefetchw(Address src) {
  2379   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2380   InstructionMark im(this);
  2381   prefetch_prefix(src);
  2382   emit_byte(0x0D);
  2383   emit_operand(rcx, src); // 1, src
  2386 void Assembler::prefix(Prefix p) {
  2387   a_byte(p);
  2390 void Assembler::por(XMMRegister dst, XMMRegister src) {
  2391   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2392   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2393   emit_byte(0xEB);
  2394   emit_byte(0xC0 | encode);
  2397 void Assembler::por(XMMRegister dst, Address src) {
  2398   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2399   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2400   InstructionMark im(this);
  2401   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2402   emit_byte(0xEB);
  2403   emit_operand(dst, src);
  2406 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2407   assert(isByte(mode), "invalid value");
  2408   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2409   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  2410   emit_byte(0x70);
  2411   emit_byte(0xC0 | encode);
  2412   emit_byte(mode & 0xFF);
  2416 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2417   assert(isByte(mode), "invalid value");
  2418   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2419   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2420   InstructionMark im(this);
  2421   simd_prefix(dst, src, VEX_SIMD_66);
  2422   emit_byte(0x70);
  2423   emit_operand(dst, src);
  2424   emit_byte(mode & 0xFF);
  2427 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2428   assert(isByte(mode), "invalid value");
  2429   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2430   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  2431   emit_byte(0x70);
  2432   emit_byte(0xC0 | encode);
  2433   emit_byte(mode & 0xFF);
  2436 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2437   assert(isByte(mode), "invalid value");
  2438   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2439   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2440   InstructionMark im(this);
  2441   simd_prefix(dst, src, VEX_SIMD_F2);
  2442   emit_byte(0x70);
  2443   emit_operand(dst, src);
  2444   emit_byte(mode & 0xFF);
  2447 void Assembler::psrlq(XMMRegister dst, int shift) {
  2448   // Shift 64 bit value logically right by specified number of bits.
  2449   // HMM Table D-1 says sse2 or mmx.
  2450   // Do not confuse it with psrldq SSE2 instruction which
  2451   // shifts 128 bit value in xmm register by number of bytes.
  2452   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2453   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  2454   emit_byte(0x73);
  2455   emit_byte(0xC0 | encode);
  2456   emit_byte(shift);
  2459 void Assembler::psrldq(XMMRegister dst, int shift) {
  2460   // Shift 128 bit value in xmm register by number of bytes.
  2461   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2462   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2463   emit_byte(0x73);
  2464   emit_byte(0xC0 | encode);
  2465   emit_byte(shift);
  2468 void Assembler::ptest(XMMRegister dst, Address src) {
  2469   assert(VM_Version::supports_sse4_1(), "");
  2470   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2471   InstructionMark im(this);
  2472   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2473   emit_byte(0x17);
  2474   emit_operand(dst, src);
  2477 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2478   assert(VM_Version::supports_sse4_1(), "");
  2479   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2480   emit_byte(0x17);
  2481   emit_byte(0xC0 | encode);
  2484 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2485   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2486   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2487   InstructionMark im(this);
  2488   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2489   emit_byte(0x60);
  2490   emit_operand(dst, src);
  2493 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2494   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2495   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2496   emit_byte(0x60);
  2497   emit_byte(0xC0 | encode);
  2500 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2501   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2502   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2503   InstructionMark im(this);
  2504   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2505   emit_byte(0x62);
  2506   emit_operand(dst, src);
  2509 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2510   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2511   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2512   emit_byte(0x62);
  2513   emit_byte(0xC0 | encode);
  2516 void Assembler::push(int32_t imm32) {
  2517   // in 64bits we push 64bits onto the stack but only
  2518   // take a 32bit immediate
  2519   emit_byte(0x68);
  2520   emit_long(imm32);
  2523 void Assembler::push(Register src) {
  2524   int encode = prefix_and_encode(src->encoding());
  2526   emit_byte(0x50 | encode);
  2529 void Assembler::pushf() {
  2530   emit_byte(0x9C);
  2533 #ifndef _LP64 // no 32bit push/pop on amd64
  2534 void Assembler::pushl(Address src) {
  2535   // Note this will push 64bit on 64bit
  2536   InstructionMark im(this);
  2537   prefix(src);
  2538   emit_byte(0xFF);
  2539   emit_operand(rsi, src);
  2541 #endif
  2543 void Assembler::pxor(XMMRegister dst, Address src) {
  2544   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2545   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2546   InstructionMark im(this);
  2547   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2548   emit_byte(0xEF);
  2549   emit_operand(dst, src);
  2552 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2553   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2554   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2555   emit_byte(0xEF);
  2556   emit_byte(0xC0 | encode);
  2559 void Assembler::rcll(Register dst, int imm8) {
  2560   assert(isShiftCount(imm8), "illegal shift count");
  2561   int encode = prefix_and_encode(dst->encoding());
  2562   if (imm8 == 1) {
  2563     emit_byte(0xD1);
  2564     emit_byte(0xD0 | encode);
  2565   } else {
  2566     emit_byte(0xC1);
  2567     emit_byte(0xD0 | encode);
  2568     emit_byte(imm8);
  2572 // copies data from [esi] to [edi] using rcx pointer sized words
  2573 // generic
  2574 void Assembler::rep_mov() {
  2575   emit_byte(0xF3);
  2576   // MOVSQ
  2577   LP64_ONLY(prefix(REX_W));
  2578   emit_byte(0xA5);
  2581 // sets rcx pointer sized words with rax, value at [edi]
  2582 // generic
  2583 void Assembler::rep_set() { // rep_set
  2584   emit_byte(0xF3);
  2585   // STOSQ
  2586   LP64_ONLY(prefix(REX_W));
  2587   emit_byte(0xAB);
  2590 // scans rcx pointer sized words at [edi] for occurance of rax,
  2591 // generic
  2592 void Assembler::repne_scan() { // repne_scan
  2593   emit_byte(0xF2);
  2594   // SCASQ
  2595   LP64_ONLY(prefix(REX_W));
  2596   emit_byte(0xAF);
  2599 #ifdef _LP64
  2600 // scans rcx 4 byte words at [edi] for occurance of rax,
  2601 // generic
  2602 void Assembler::repne_scanl() { // repne_scan
  2603   emit_byte(0xF2);
  2604   // SCASL
  2605   emit_byte(0xAF);
  2607 #endif
  2609 void Assembler::ret(int imm16) {
  2610   if (imm16 == 0) {
  2611     emit_byte(0xC3);
  2612   } else {
  2613     emit_byte(0xC2);
  2614     emit_word(imm16);
  2618 void Assembler::sahf() {
  2619 #ifdef _LP64
  2620   // Not supported in 64bit mode
  2621   ShouldNotReachHere();
  2622 #endif
  2623   emit_byte(0x9E);
  2626 void Assembler::sarl(Register dst, int imm8) {
  2627   int encode = prefix_and_encode(dst->encoding());
  2628   assert(isShiftCount(imm8), "illegal shift count");
  2629   if (imm8 == 1) {
  2630     emit_byte(0xD1);
  2631     emit_byte(0xF8 | encode);
  2632   } else {
  2633     emit_byte(0xC1);
  2634     emit_byte(0xF8 | encode);
  2635     emit_byte(imm8);
  2639 void Assembler::sarl(Register dst) {
  2640   int encode = prefix_and_encode(dst->encoding());
  2641   emit_byte(0xD3);
  2642   emit_byte(0xF8 | encode);
  2645 void Assembler::sbbl(Address dst, int32_t imm32) {
  2646   InstructionMark im(this);
  2647   prefix(dst);
  2648   emit_arith_operand(0x81, rbx, dst, imm32);
  2651 void Assembler::sbbl(Register dst, int32_t imm32) {
  2652   prefix(dst);
  2653   emit_arith(0x81, 0xD8, dst, imm32);
  2657 void Assembler::sbbl(Register dst, Address src) {
  2658   InstructionMark im(this);
  2659   prefix(src, dst);
  2660   emit_byte(0x1B);
  2661   emit_operand(dst, src);
  2664 void Assembler::sbbl(Register dst, Register src) {
  2665   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2666   emit_arith(0x1B, 0xC0, dst, src);
  2669 void Assembler::setb(Condition cc, Register dst) {
  2670   assert(0 <= cc && cc < 16, "illegal cc");
  2671   int encode = prefix_and_encode(dst->encoding(), true);
  2672   emit_byte(0x0F);
  2673   emit_byte(0x90 | cc);
  2674   emit_byte(0xC0 | encode);
  2677 void Assembler::shll(Register dst, int imm8) {
  2678   assert(isShiftCount(imm8), "illegal shift count");
  2679   int encode = prefix_and_encode(dst->encoding());
  2680   if (imm8 == 1 ) {
  2681     emit_byte(0xD1);
  2682     emit_byte(0xE0 | encode);
  2683   } else {
  2684     emit_byte(0xC1);
  2685     emit_byte(0xE0 | encode);
  2686     emit_byte(imm8);
  2690 void Assembler::shll(Register dst) {
  2691   int encode = prefix_and_encode(dst->encoding());
  2692   emit_byte(0xD3);
  2693   emit_byte(0xE0 | encode);
  2696 void Assembler::shrl(Register dst, int imm8) {
  2697   assert(isShiftCount(imm8), "illegal shift count");
  2698   int encode = prefix_and_encode(dst->encoding());
  2699   emit_byte(0xC1);
  2700   emit_byte(0xE8 | encode);
  2701   emit_byte(imm8);
  2704 void Assembler::shrl(Register dst) {
  2705   int encode = prefix_and_encode(dst->encoding());
  2706   emit_byte(0xD3);
  2707   emit_byte(0xE8 | encode);
  2710 // copies a single word from [esi] to [edi]
  2711 void Assembler::smovl() {
  2712   emit_byte(0xA5);
  2715 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2716   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2717   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  2718   emit_byte(0x51);
  2719   emit_byte(0xC0 | encode);
  2722 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2723   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2724   InstructionMark im(this);
  2725   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  2726   emit_byte(0x51);
  2727   emit_operand(dst, src);
  2730 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2731   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2732   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  2733   emit_byte(0x51);
  2734   emit_byte(0xC0 | encode);
  2737 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2738   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2739   InstructionMark im(this);
  2740   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  2741   emit_byte(0x51);
  2742   emit_operand(dst, src);
  2745 void Assembler::stmxcsr( Address dst) {
  2746   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2747   InstructionMark im(this);
  2748   prefix(dst);
  2749   emit_byte(0x0F);
  2750   emit_byte(0xAE);
  2751   emit_operand(as_Register(3), dst);
  2754 void Assembler::subl(Address dst, int32_t imm32) {
  2755   InstructionMark im(this);
  2756   prefix(dst);
  2757   emit_arith_operand(0x81, rbp, dst, imm32);
  2760 void Assembler::subl(Address dst, Register src) {
  2761   InstructionMark im(this);
  2762   prefix(dst, src);
  2763   emit_byte(0x29);
  2764   emit_operand(src, dst);
  2767 void Assembler::subl(Register dst, int32_t imm32) {
  2768   prefix(dst);
  2769   emit_arith(0x81, 0xE8, dst, imm32);
  2772 void Assembler::subl(Register dst, Address src) {
  2773   InstructionMark im(this);
  2774   prefix(src, dst);
  2775   emit_byte(0x2B);
  2776   emit_operand(dst, src);
  2779 void Assembler::subl(Register dst, Register src) {
  2780   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2781   emit_arith(0x2B, 0xC0, dst, src);
  2784 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2785   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2786   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  2787   emit_byte(0x5C);
  2788   emit_byte(0xC0 | encode);
  2791 void Assembler::subsd(XMMRegister dst, Address src) {
  2792   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2793   InstructionMark im(this);
  2794   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  2795   emit_byte(0x5C);
  2796   emit_operand(dst, src);
  2799 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2800   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2801   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  2802   emit_byte(0x5C);
  2803   emit_byte(0xC0 | encode);
  2806 void Assembler::subss(XMMRegister dst, Address src) {
  2807   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2808   InstructionMark im(this);
  2809   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  2810   emit_byte(0x5C);
  2811   emit_operand(dst, src);
  2814 void Assembler::testb(Register dst, int imm8) {
  2815   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2816   (void) prefix_and_encode(dst->encoding(), true);
  2817   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2820 void Assembler::testl(Register dst, int32_t imm32) {
  2821   // not using emit_arith because test
  2822   // doesn't support sign-extension of
  2823   // 8bit operands
  2824   int encode = dst->encoding();
  2825   if (encode == 0) {
  2826     emit_byte(0xA9);
  2827   } else {
  2828     encode = prefix_and_encode(encode);
  2829     emit_byte(0xF7);
  2830     emit_byte(0xC0 | encode);
  2832   emit_long(imm32);
  2835 void Assembler::testl(Register dst, Register src) {
  2836   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2837   emit_arith(0x85, 0xC0, dst, src);
  2840 void Assembler::testl(Register dst, Address  src) {
  2841   InstructionMark im(this);
  2842   prefix(src, dst);
  2843   emit_byte(0x85);
  2844   emit_operand(dst, src);
  2847 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2848   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2849   InstructionMark im(this);
  2850   simd_prefix(dst, src, VEX_SIMD_66);
  2851   emit_byte(0x2E);
  2852   emit_operand(dst, src);
  2855 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2856   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2857   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  2858   emit_byte(0x2E);
  2859   emit_byte(0xC0 | encode);
  2862 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2863   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2864   InstructionMark im(this);
  2865   simd_prefix(dst, src, VEX_SIMD_NONE);
  2866   emit_byte(0x2E);
  2867   emit_operand(dst, src);
  2870 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2871   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2872   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  2873   emit_byte(0x2E);
  2874   emit_byte(0xC0 | encode);
  2878 void Assembler::xaddl(Address dst, Register src) {
  2879   InstructionMark im(this);
  2880   prefix(dst, src);
  2881   emit_byte(0x0F);
  2882   emit_byte(0xC1);
  2883   emit_operand(src, dst);
  2886 void Assembler::xchgl(Register dst, Address src) { // xchg
  2887   InstructionMark im(this);
  2888   prefix(src, dst);
  2889   emit_byte(0x87);
  2890   emit_operand(dst, src);
  2893 void Assembler::xchgl(Register dst, Register src) {
  2894   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2895   emit_byte(0x87);
  2896   emit_byte(0xc0 | encode);
  2899 void Assembler::xorl(Register dst, int32_t imm32) {
  2900   prefix(dst);
  2901   emit_arith(0x81, 0xF0, dst, imm32);
  2904 void Assembler::xorl(Register dst, Address src) {
  2905   InstructionMark im(this);
  2906   prefix(src, dst);
  2907   emit_byte(0x33);
  2908   emit_operand(dst, src);
  2911 void Assembler::xorl(Register dst, Register src) {
  2912   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2913   emit_arith(0x33, 0xC0, dst, src);
  2916 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2917   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2918   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2919   emit_byte(0x57);
  2920   emit_byte(0xC0 | encode);
  2923 void Assembler::xorpd(XMMRegister dst, Address src) {
  2924   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2925   InstructionMark im(this);
  2926   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2927   emit_byte(0x57);
  2928   emit_operand(dst, src);
  2932 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  2933   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2934   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
  2935   emit_byte(0x57);
  2936   emit_byte(0xC0 | encode);
  2939 void Assembler::xorps(XMMRegister dst, Address src) {
  2940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2941   InstructionMark im(this);
  2942   simd_prefix(dst, dst, src, VEX_SIMD_NONE);
  2943   emit_byte(0x57);
  2944   emit_operand(dst, src);
  2947 // AVX 3-operands non destructive source instructions (encoded with VEX prefix)
  2949 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  2950   assert(VM_Version::supports_avx(), "");
  2951   InstructionMark im(this);
  2952   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  2953   emit_byte(0x58);
  2954   emit_operand(dst, src);
  2957 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2958   assert(VM_Version::supports_avx(), "");
  2959   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  2960   emit_byte(0x58);
  2961   emit_byte(0xC0 | encode);
  2964 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  2965   assert(VM_Version::supports_avx(), "");
  2966   InstructionMark im(this);
  2967   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  2968   emit_byte(0x58);
  2969   emit_operand(dst, src);
  2972 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2973   assert(VM_Version::supports_avx(), "");
  2974   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  2975   emit_byte(0x58);
  2976   emit_byte(0xC0 | encode);
  2979 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src) {
  2980   assert(VM_Version::supports_avx(), "");
  2981   InstructionMark im(this);
  2982   vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector
  2983   emit_byte(0x54);
  2984   emit_operand(dst, src);
  2987 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src) {
  2988   assert(VM_Version::supports_avx(), "");
  2989   InstructionMark im(this);
  2990   vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector
  2991   emit_byte(0x54);
  2992   emit_operand(dst, src);
  2995 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  2996   assert(VM_Version::supports_avx(), "");
  2997   InstructionMark im(this);
  2998   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  2999   emit_byte(0x5E);
  3000   emit_operand(dst, src);
  3003 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3004   assert(VM_Version::supports_avx(), "");
  3005   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3006   emit_byte(0x5E);
  3007   emit_byte(0xC0 | encode);
  3010 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  3011   assert(VM_Version::supports_avx(), "");
  3012   InstructionMark im(this);
  3013   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3014   emit_byte(0x5E);
  3015   emit_operand(dst, src);
  3018 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3019   assert(VM_Version::supports_avx(), "");
  3020   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3021   emit_byte(0x5E);
  3022   emit_byte(0xC0 | encode);
  3025 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  3026   assert(VM_Version::supports_avx(), "");
  3027   InstructionMark im(this);
  3028   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3029   emit_byte(0x59);
  3030   emit_operand(dst, src);
  3033 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3034   assert(VM_Version::supports_avx(), "");
  3035   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3036   emit_byte(0x59);
  3037   emit_byte(0xC0 | encode);
  3040 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  3041   InstructionMark im(this);
  3042   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3043   emit_byte(0x59);
  3044   emit_operand(dst, src);
  3047 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3048   assert(VM_Version::supports_avx(), "");
  3049   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3050   emit_byte(0x59);
  3051   emit_byte(0xC0 | encode);
  3055 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  3056   assert(VM_Version::supports_avx(), "");
  3057   InstructionMark im(this);
  3058   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3059   emit_byte(0x5C);
  3060   emit_operand(dst, src);
  3063 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3064   assert(VM_Version::supports_avx(), "");
  3065   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3066   emit_byte(0x5C);
  3067   emit_byte(0xC0 | encode);
  3070 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  3071   assert(VM_Version::supports_avx(), "");
  3072   InstructionMark im(this);
  3073   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3074   emit_byte(0x5C);
  3075   emit_operand(dst, src);
  3078 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3079   assert(VM_Version::supports_avx(), "");
  3080   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3081   emit_byte(0x5C);
  3082   emit_byte(0xC0 | encode);
  3085 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src) {
  3086   assert(VM_Version::supports_avx(), "");
  3087   InstructionMark im(this);
  3088   vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector
  3089   emit_byte(0x57);
  3090   emit_operand(dst, src);
  3093 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src) {
  3094   assert(VM_Version::supports_avx(), "");
  3095   InstructionMark im(this);
  3096   vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector
  3097   emit_byte(0x57);
  3098   emit_operand(dst, src);
  3102 #ifndef _LP64
  3103 // 32bit only pieces of the assembler
  3105 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3106   // NO PREFIX AS NEVER 64BIT
  3107   InstructionMark im(this);
  3108   emit_byte(0x81);
  3109   emit_byte(0xF8 | src1->encoding());
  3110   emit_data(imm32, rspec, 0);
  3113 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3114   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3115   InstructionMark im(this);
  3116   emit_byte(0x81);
  3117   emit_operand(rdi, src1);
  3118   emit_data(imm32, rspec, 0);
  3121 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3122 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3123 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3124 void Assembler::cmpxchg8(Address adr) {
  3125   InstructionMark im(this);
  3126   emit_byte(0x0F);
  3127   emit_byte(0xc7);
  3128   emit_operand(rcx, adr);
  3131 void Assembler::decl(Register dst) {
  3132   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3133  emit_byte(0x48 | dst->encoding());
  3136 #endif // _LP64
  3138 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3140 void Assembler::fabs() {
  3141   emit_byte(0xD9);
  3142   emit_byte(0xE1);
  3145 void Assembler::fadd(int i) {
  3146   emit_farith(0xD8, 0xC0, i);
  3149 void Assembler::fadd_d(Address src) {
  3150   InstructionMark im(this);
  3151   emit_byte(0xDC);
  3152   emit_operand32(rax, src);
  3155 void Assembler::fadd_s(Address src) {
  3156   InstructionMark im(this);
  3157   emit_byte(0xD8);
  3158   emit_operand32(rax, src);
  3161 void Assembler::fadda(int i) {
  3162   emit_farith(0xDC, 0xC0, i);
  3165 void Assembler::faddp(int i) {
  3166   emit_farith(0xDE, 0xC0, i);
  3169 void Assembler::fchs() {
  3170   emit_byte(0xD9);
  3171   emit_byte(0xE0);
  3174 void Assembler::fcom(int i) {
  3175   emit_farith(0xD8, 0xD0, i);
  3178 void Assembler::fcomp(int i) {
  3179   emit_farith(0xD8, 0xD8, i);
  3182 void Assembler::fcomp_d(Address src) {
  3183   InstructionMark im(this);
  3184   emit_byte(0xDC);
  3185   emit_operand32(rbx, src);
  3188 void Assembler::fcomp_s(Address src) {
  3189   InstructionMark im(this);
  3190   emit_byte(0xD8);
  3191   emit_operand32(rbx, src);
  3194 void Assembler::fcompp() {
  3195   emit_byte(0xDE);
  3196   emit_byte(0xD9);
  3199 void Assembler::fcos() {
  3200   emit_byte(0xD9);
  3201   emit_byte(0xFF);
  3204 void Assembler::fdecstp() {
  3205   emit_byte(0xD9);
  3206   emit_byte(0xF6);
  3209 void Assembler::fdiv(int i) {
  3210   emit_farith(0xD8, 0xF0, i);
  3213 void Assembler::fdiv_d(Address src) {
  3214   InstructionMark im(this);
  3215   emit_byte(0xDC);
  3216   emit_operand32(rsi, src);
  3219 void Assembler::fdiv_s(Address src) {
  3220   InstructionMark im(this);
  3221   emit_byte(0xD8);
  3222   emit_operand32(rsi, src);
  3225 void Assembler::fdiva(int i) {
  3226   emit_farith(0xDC, 0xF8, i);
  3229 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3230 //       is erroneous for some of the floating-point instructions below.
  3232 void Assembler::fdivp(int i) {
  3233   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3236 void Assembler::fdivr(int i) {
  3237   emit_farith(0xD8, 0xF8, i);
  3240 void Assembler::fdivr_d(Address src) {
  3241   InstructionMark im(this);
  3242   emit_byte(0xDC);
  3243   emit_operand32(rdi, src);
  3246 void Assembler::fdivr_s(Address src) {
  3247   InstructionMark im(this);
  3248   emit_byte(0xD8);
  3249   emit_operand32(rdi, src);
  3252 void Assembler::fdivra(int i) {
  3253   emit_farith(0xDC, 0xF0, i);
  3256 void Assembler::fdivrp(int i) {
  3257   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3260 void Assembler::ffree(int i) {
  3261   emit_farith(0xDD, 0xC0, i);
  3264 void Assembler::fild_d(Address adr) {
  3265   InstructionMark im(this);
  3266   emit_byte(0xDF);
  3267   emit_operand32(rbp, adr);
  3270 void Assembler::fild_s(Address adr) {
  3271   InstructionMark im(this);
  3272   emit_byte(0xDB);
  3273   emit_operand32(rax, adr);
  3276 void Assembler::fincstp() {
  3277   emit_byte(0xD9);
  3278   emit_byte(0xF7);
  3281 void Assembler::finit() {
  3282   emit_byte(0x9B);
  3283   emit_byte(0xDB);
  3284   emit_byte(0xE3);
  3287 void Assembler::fist_s(Address adr) {
  3288   InstructionMark im(this);
  3289   emit_byte(0xDB);
  3290   emit_operand32(rdx, adr);
  3293 void Assembler::fistp_d(Address adr) {
  3294   InstructionMark im(this);
  3295   emit_byte(0xDF);
  3296   emit_operand32(rdi, adr);
  3299 void Assembler::fistp_s(Address adr) {
  3300   InstructionMark im(this);
  3301   emit_byte(0xDB);
  3302   emit_operand32(rbx, adr);
  3305 void Assembler::fld1() {
  3306   emit_byte(0xD9);
  3307   emit_byte(0xE8);
  3310 void Assembler::fld_d(Address adr) {
  3311   InstructionMark im(this);
  3312   emit_byte(0xDD);
  3313   emit_operand32(rax, adr);
  3316 void Assembler::fld_s(Address adr) {
  3317   InstructionMark im(this);
  3318   emit_byte(0xD9);
  3319   emit_operand32(rax, adr);
  3323 void Assembler::fld_s(int index) {
  3324   emit_farith(0xD9, 0xC0, index);
  3327 void Assembler::fld_x(Address adr) {
  3328   InstructionMark im(this);
  3329   emit_byte(0xDB);
  3330   emit_operand32(rbp, adr);
  3333 void Assembler::fldcw(Address src) {
  3334   InstructionMark im(this);
  3335   emit_byte(0xd9);
  3336   emit_operand32(rbp, src);
  3339 void Assembler::fldenv(Address src) {
  3340   InstructionMark im(this);
  3341   emit_byte(0xD9);
  3342   emit_operand32(rsp, src);
  3345 void Assembler::fldlg2() {
  3346   emit_byte(0xD9);
  3347   emit_byte(0xEC);
  3350 void Assembler::fldln2() {
  3351   emit_byte(0xD9);
  3352   emit_byte(0xED);
  3355 void Assembler::fldz() {
  3356   emit_byte(0xD9);
  3357   emit_byte(0xEE);
  3360 void Assembler::flog() {
  3361   fldln2();
  3362   fxch();
  3363   fyl2x();
  3366 void Assembler::flog10() {
  3367   fldlg2();
  3368   fxch();
  3369   fyl2x();
  3372 void Assembler::fmul(int i) {
  3373   emit_farith(0xD8, 0xC8, i);
  3376 void Assembler::fmul_d(Address src) {
  3377   InstructionMark im(this);
  3378   emit_byte(0xDC);
  3379   emit_operand32(rcx, src);
  3382 void Assembler::fmul_s(Address src) {
  3383   InstructionMark im(this);
  3384   emit_byte(0xD8);
  3385   emit_operand32(rcx, src);
  3388 void Assembler::fmula(int i) {
  3389   emit_farith(0xDC, 0xC8, i);
  3392 void Assembler::fmulp(int i) {
  3393   emit_farith(0xDE, 0xC8, i);
  3396 void Assembler::fnsave(Address dst) {
  3397   InstructionMark im(this);
  3398   emit_byte(0xDD);
  3399   emit_operand32(rsi, dst);
  3402 void Assembler::fnstcw(Address src) {
  3403   InstructionMark im(this);
  3404   emit_byte(0x9B);
  3405   emit_byte(0xD9);
  3406   emit_operand32(rdi, src);
  3409 void Assembler::fnstsw_ax() {
  3410   emit_byte(0xdF);
  3411   emit_byte(0xE0);
  3414 void Assembler::fprem() {
  3415   emit_byte(0xD9);
  3416   emit_byte(0xF8);
  3419 void Assembler::fprem1() {
  3420   emit_byte(0xD9);
  3421   emit_byte(0xF5);
  3424 void Assembler::frstor(Address src) {
  3425   InstructionMark im(this);
  3426   emit_byte(0xDD);
  3427   emit_operand32(rsp, src);
  3430 void Assembler::fsin() {
  3431   emit_byte(0xD9);
  3432   emit_byte(0xFE);
  3435 void Assembler::fsqrt() {
  3436   emit_byte(0xD9);
  3437   emit_byte(0xFA);
  3440 void Assembler::fst_d(Address adr) {
  3441   InstructionMark im(this);
  3442   emit_byte(0xDD);
  3443   emit_operand32(rdx, adr);
  3446 void Assembler::fst_s(Address adr) {
  3447   InstructionMark im(this);
  3448   emit_byte(0xD9);
  3449   emit_operand32(rdx, adr);
  3452 void Assembler::fstp_d(Address adr) {
  3453   InstructionMark im(this);
  3454   emit_byte(0xDD);
  3455   emit_operand32(rbx, adr);
  3458 void Assembler::fstp_d(int index) {
  3459   emit_farith(0xDD, 0xD8, index);
  3462 void Assembler::fstp_s(Address adr) {
  3463   InstructionMark im(this);
  3464   emit_byte(0xD9);
  3465   emit_operand32(rbx, adr);
  3468 void Assembler::fstp_x(Address adr) {
  3469   InstructionMark im(this);
  3470   emit_byte(0xDB);
  3471   emit_operand32(rdi, adr);
  3474 void Assembler::fsub(int i) {
  3475   emit_farith(0xD8, 0xE0, i);
  3478 void Assembler::fsub_d(Address src) {
  3479   InstructionMark im(this);
  3480   emit_byte(0xDC);
  3481   emit_operand32(rsp, src);
  3484 void Assembler::fsub_s(Address src) {
  3485   InstructionMark im(this);
  3486   emit_byte(0xD8);
  3487   emit_operand32(rsp, src);
  3490 void Assembler::fsuba(int i) {
  3491   emit_farith(0xDC, 0xE8, i);
  3494 void Assembler::fsubp(int i) {
  3495   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3498 void Assembler::fsubr(int i) {
  3499   emit_farith(0xD8, 0xE8, i);
  3502 void Assembler::fsubr_d(Address src) {
  3503   InstructionMark im(this);
  3504   emit_byte(0xDC);
  3505   emit_operand32(rbp, src);
  3508 void Assembler::fsubr_s(Address src) {
  3509   InstructionMark im(this);
  3510   emit_byte(0xD8);
  3511   emit_operand32(rbp, src);
  3514 void Assembler::fsubra(int i) {
  3515   emit_farith(0xDC, 0xE0, i);
  3518 void Assembler::fsubrp(int i) {
  3519   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3522 void Assembler::ftan() {
  3523   emit_byte(0xD9);
  3524   emit_byte(0xF2);
  3525   emit_byte(0xDD);
  3526   emit_byte(0xD8);
  3529 void Assembler::ftst() {
  3530   emit_byte(0xD9);
  3531   emit_byte(0xE4);
  3534 void Assembler::fucomi(int i) {
  3535   // make sure the instruction is supported (introduced for P6, together with cmov)
  3536   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3537   emit_farith(0xDB, 0xE8, i);
  3540 void Assembler::fucomip(int i) {
  3541   // make sure the instruction is supported (introduced for P6, together with cmov)
  3542   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3543   emit_farith(0xDF, 0xE8, i);
  3546 void Assembler::fwait() {
  3547   emit_byte(0x9B);
  3550 void Assembler::fxch(int i) {
  3551   emit_farith(0xD9, 0xC8, i);
  3554 void Assembler::fyl2x() {
  3555   emit_byte(0xD9);
  3556   emit_byte(0xF1);
  3559 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  3560 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  3561 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  3562 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  3564 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  3565 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  3566   if (pre > 0) {
  3567     emit_byte(simd_pre[pre]);
  3569   if (rex_w) {
  3570     prefixq(adr, xreg);
  3571   } else {
  3572     prefix(adr, xreg);
  3574   if (opc > 0) {
  3575     emit_byte(0x0F);
  3576     int opc2 = simd_opc[opc];
  3577     if (opc2 > 0) {
  3578       emit_byte(opc2);
  3583 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  3584   if (pre > 0) {
  3585     emit_byte(simd_pre[pre]);
  3587   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  3588                           prefix_and_encode(dst_enc, src_enc);
  3589   if (opc > 0) {
  3590     emit_byte(0x0F);
  3591     int opc2 = simd_opc[opc];
  3592     if (opc2 > 0) {
  3593       emit_byte(opc2);
  3596   return encode;
  3600 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  3601   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  3602     prefix(VEX_3bytes);
  3604     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  3605     byte1 = (~byte1) & 0xE0;
  3606     byte1 |= opc;
  3607     a_byte(byte1);
  3609     int byte2 = ((~nds_enc) & 0xf) << 3;
  3610     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  3611     emit_byte(byte2);
  3612   } else {
  3613     prefix(VEX_2bytes);
  3615     int byte1 = vex_r ? VEX_R : 0;
  3616     byte1 = (~byte1) & 0x80;
  3617     byte1 |= ((~nds_enc) & 0xf) << 3;
  3618     byte1 |= (vector256 ? 4 : 0) | pre;
  3619     emit_byte(byte1);
  3623 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  3624   bool vex_r = (xreg_enc >= 8);
  3625   bool vex_b = adr.base_needs_rex();
  3626   bool vex_x = adr.index_needs_rex();
  3627   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  3630 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  3631   bool vex_r = (dst_enc >= 8);
  3632   bool vex_b = (src_enc >= 8);
  3633   bool vex_x = false;
  3634   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  3635   return (((dst_enc & 7) << 3) | (src_enc & 7));
  3639 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  3640   if (UseAVX > 0) {
  3641     int xreg_enc = xreg->encoding();
  3642     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3643     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  3644   } else {
  3645     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  3646     rex_prefix(adr, xreg, pre, opc, rex_w);
  3650 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  3651   int dst_enc = dst->encoding();
  3652   int src_enc = src->encoding();
  3653   if (UseAVX > 0) {
  3654     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3655     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  3656   } else {
  3657     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  3658     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  3662 #ifndef _LP64
  3664 void Assembler::incl(Register dst) {
  3665   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3666   emit_byte(0x40 | dst->encoding());
  3669 void Assembler::lea(Register dst, Address src) {
  3670   leal(dst, src);
  3673 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3674   InstructionMark im(this);
  3675   emit_byte(0xC7);
  3676   emit_operand(rax, dst);
  3677   emit_data((int)imm32, rspec, 0);
  3680 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3681   InstructionMark im(this);
  3682   int encode = prefix_and_encode(dst->encoding());
  3683   emit_byte(0xB8 | encode);
  3684   emit_data((int)imm32, rspec, 0);
  3687 void Assembler::popa() { // 32bit
  3688   emit_byte(0x61);
  3691 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3692   InstructionMark im(this);
  3693   emit_byte(0x68);
  3694   emit_data(imm32, rspec, 0);
  3697 void Assembler::pusha() { // 32bit
  3698   emit_byte(0x60);
  3701 void Assembler::set_byte_if_not_zero(Register dst) {
  3702   emit_byte(0x0F);
  3703   emit_byte(0x95);
  3704   emit_byte(0xE0 | dst->encoding());
  3707 void Assembler::shldl(Register dst, Register src) {
  3708   emit_byte(0x0F);
  3709   emit_byte(0xA5);
  3710   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3713 void Assembler::shrdl(Register dst, Register src) {
  3714   emit_byte(0x0F);
  3715   emit_byte(0xAD);
  3716   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3719 #else // LP64
  3721 void Assembler::set_byte_if_not_zero(Register dst) {
  3722   int enc = prefix_and_encode(dst->encoding(), true);
  3723   emit_byte(0x0F);
  3724   emit_byte(0x95);
  3725   emit_byte(0xE0 | enc);
  3728 // 64bit only pieces of the assembler
  3729 // This should only be used by 64bit instructions that can use rip-relative
  3730 // it cannot be used by instructions that want an immediate value.
  3732 bool Assembler::reachable(AddressLiteral adr) {
  3733   int64_t disp;
  3734   // None will force a 64bit literal to the code stream. Likely a placeholder
  3735   // for something that will be patched later and we need to certain it will
  3736   // always be reachable.
  3737   if (adr.reloc() == relocInfo::none) {
  3738     return false;
  3740   if (adr.reloc() == relocInfo::internal_word_type) {
  3741     // This should be rip relative and easily reachable.
  3742     return true;
  3744   if (adr.reloc() == relocInfo::virtual_call_type ||
  3745       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3746       adr.reloc() == relocInfo::static_call_type ||
  3747       adr.reloc() == relocInfo::static_stub_type ) {
  3748     // This should be rip relative within the code cache and easily
  3749     // reachable until we get huge code caches. (At which point
  3750     // ic code is going to have issues).
  3751     return true;
  3753   if (adr.reloc() != relocInfo::external_word_type &&
  3754       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3755       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3756       adr.reloc() != relocInfo::runtime_call_type ) {
  3757     return false;
  3760   // Stress the correction code
  3761   if (ForceUnreachable) {
  3762     // Must be runtimecall reloc, see if it is in the codecache
  3763     // Flipping stuff in the codecache to be unreachable causes issues
  3764     // with things like inline caches where the additional instructions
  3765     // are not handled.
  3766     if (CodeCache::find_blob(adr._target) == NULL) {
  3767       return false;
  3770   // For external_word_type/runtime_call_type if it is reachable from where we
  3771   // are now (possibly a temp buffer) and where we might end up
  3772   // anywhere in the codeCache then we are always reachable.
  3773   // This would have to change if we ever save/restore shared code
  3774   // to be more pessimistic.
  3775   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3776   if (!is_simm32(disp)) return false;
  3777   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3778   if (!is_simm32(disp)) return false;
  3780   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3782   // Because rip relative is a disp + address_of_next_instruction and we
  3783   // don't know the value of address_of_next_instruction we apply a fudge factor
  3784   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3785   // We don't have to fudge the checks above here because they are already worst case.
  3787   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3788   // + 4 because better safe than sorry.
  3789   const int fudge = 12 + 4;
  3790   if (disp < 0) {
  3791     disp -= fudge;
  3792   } else {
  3793     disp += fudge;
  3795   return is_simm32(disp);
  3798 // Check if the polling page is not reachable from the code cache using rip-relative
  3799 // addressing.
  3800 bool Assembler::is_polling_page_far() {
  3801   intptr_t addr = (intptr_t)os::get_polling_page();
  3802   return ForceUnreachable ||
  3803          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  3804          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  3807 void Assembler::emit_data64(jlong data,
  3808                             relocInfo::relocType rtype,
  3809                             int format) {
  3810   if (rtype == relocInfo::none) {
  3811     emit_long64(data);
  3812   } else {
  3813     emit_data64(data, Relocation::spec_simple(rtype), format);
  3817 void Assembler::emit_data64(jlong data,
  3818                             RelocationHolder const& rspec,
  3819                             int format) {
  3820   assert(imm_operand == 0, "default format must be immediate in this file");
  3821   assert(imm_operand == format, "must be immediate");
  3822   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3823   // Do not use AbstractAssembler::relocate, which is not intended for
  3824   // embedded words.  Instead, relocate to the enclosing instruction.
  3825   code_section()->relocate(inst_mark(), rspec, format);
  3826 #ifdef ASSERT
  3827   check_relocation(rspec, format);
  3828 #endif
  3829   emit_long64(data);
  3832 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3833   if (reg_enc >= 8) {
  3834     prefix(REX_B);
  3835     reg_enc -= 8;
  3836   } else if (byteinst && reg_enc >= 4) {
  3837     prefix(REX);
  3839   return reg_enc;
  3842 int Assembler::prefixq_and_encode(int reg_enc) {
  3843   if (reg_enc < 8) {
  3844     prefix(REX_W);
  3845   } else {
  3846     prefix(REX_WB);
  3847     reg_enc -= 8;
  3849   return reg_enc;
  3852 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3853   if (dst_enc < 8) {
  3854     if (src_enc >= 8) {
  3855       prefix(REX_B);
  3856       src_enc -= 8;
  3857     } else if (byteinst && src_enc >= 4) {
  3858       prefix(REX);
  3860   } else {
  3861     if (src_enc < 8) {
  3862       prefix(REX_R);
  3863     } else {
  3864       prefix(REX_RB);
  3865       src_enc -= 8;
  3867     dst_enc -= 8;
  3869   return dst_enc << 3 | src_enc;
  3872 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  3873   if (dst_enc < 8) {
  3874     if (src_enc < 8) {
  3875       prefix(REX_W);
  3876     } else {
  3877       prefix(REX_WB);
  3878       src_enc -= 8;
  3880   } else {
  3881     if (src_enc < 8) {
  3882       prefix(REX_WR);
  3883     } else {
  3884       prefix(REX_WRB);
  3885       src_enc -= 8;
  3887     dst_enc -= 8;
  3889   return dst_enc << 3 | src_enc;
  3892 void Assembler::prefix(Register reg) {
  3893   if (reg->encoding() >= 8) {
  3894     prefix(REX_B);
  3898 void Assembler::prefix(Address adr) {
  3899   if (adr.base_needs_rex()) {
  3900     if (adr.index_needs_rex()) {
  3901       prefix(REX_XB);
  3902     } else {
  3903       prefix(REX_B);
  3905   } else {
  3906     if (adr.index_needs_rex()) {
  3907       prefix(REX_X);
  3912 void Assembler::prefixq(Address adr) {
  3913   if (adr.base_needs_rex()) {
  3914     if (adr.index_needs_rex()) {
  3915       prefix(REX_WXB);
  3916     } else {
  3917       prefix(REX_WB);
  3919   } else {
  3920     if (adr.index_needs_rex()) {
  3921       prefix(REX_WX);
  3922     } else {
  3923       prefix(REX_W);
  3929 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  3930   if (reg->encoding() < 8) {
  3931     if (adr.base_needs_rex()) {
  3932       if (adr.index_needs_rex()) {
  3933         prefix(REX_XB);
  3934       } else {
  3935         prefix(REX_B);
  3937     } else {
  3938       if (adr.index_needs_rex()) {
  3939         prefix(REX_X);
  3940       } else if (byteinst && reg->encoding() >= 4 ) {
  3941         prefix(REX);
  3944   } else {
  3945     if (adr.base_needs_rex()) {
  3946       if (adr.index_needs_rex()) {
  3947         prefix(REX_RXB);
  3948       } else {
  3949         prefix(REX_RB);
  3951     } else {
  3952       if (adr.index_needs_rex()) {
  3953         prefix(REX_RX);
  3954       } else {
  3955         prefix(REX_R);
  3961 void Assembler::prefixq(Address adr, Register src) {
  3962   if (src->encoding() < 8) {
  3963     if (adr.base_needs_rex()) {
  3964       if (adr.index_needs_rex()) {
  3965         prefix(REX_WXB);
  3966       } else {
  3967         prefix(REX_WB);
  3969     } else {
  3970       if (adr.index_needs_rex()) {
  3971         prefix(REX_WX);
  3972       } else {
  3973         prefix(REX_W);
  3976   } else {
  3977     if (adr.base_needs_rex()) {
  3978       if (adr.index_needs_rex()) {
  3979         prefix(REX_WRXB);
  3980       } else {
  3981         prefix(REX_WRB);
  3983     } else {
  3984       if (adr.index_needs_rex()) {
  3985         prefix(REX_WRX);
  3986       } else {
  3987         prefix(REX_WR);
  3993 void Assembler::prefix(Address adr, XMMRegister reg) {
  3994   if (reg->encoding() < 8) {
  3995     if (adr.base_needs_rex()) {
  3996       if (adr.index_needs_rex()) {
  3997         prefix(REX_XB);
  3998       } else {
  3999         prefix(REX_B);
  4001     } else {
  4002       if (adr.index_needs_rex()) {
  4003         prefix(REX_X);
  4006   } else {
  4007     if (adr.base_needs_rex()) {
  4008       if (adr.index_needs_rex()) {
  4009         prefix(REX_RXB);
  4010       } else {
  4011         prefix(REX_RB);
  4013     } else {
  4014       if (adr.index_needs_rex()) {
  4015         prefix(REX_RX);
  4016       } else {
  4017         prefix(REX_R);
  4023 void Assembler::prefixq(Address adr, XMMRegister src) {
  4024   if (src->encoding() < 8) {
  4025     if (adr.base_needs_rex()) {
  4026       if (adr.index_needs_rex()) {
  4027         prefix(REX_WXB);
  4028       } else {
  4029         prefix(REX_WB);
  4031     } else {
  4032       if (adr.index_needs_rex()) {
  4033         prefix(REX_WX);
  4034       } else {
  4035         prefix(REX_W);
  4038   } else {
  4039     if (adr.base_needs_rex()) {
  4040       if (adr.index_needs_rex()) {
  4041         prefix(REX_WRXB);
  4042       } else {
  4043         prefix(REX_WRB);
  4045     } else {
  4046       if (adr.index_needs_rex()) {
  4047         prefix(REX_WRX);
  4048       } else {
  4049         prefix(REX_WR);
  4055 void Assembler::adcq(Register dst, int32_t imm32) {
  4056   (void) prefixq_and_encode(dst->encoding());
  4057   emit_arith(0x81, 0xD0, dst, imm32);
  4060 void Assembler::adcq(Register dst, Address src) {
  4061   InstructionMark im(this);
  4062   prefixq(src, dst);
  4063   emit_byte(0x13);
  4064   emit_operand(dst, src);
  4067 void Assembler::adcq(Register dst, Register src) {
  4068   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4069   emit_arith(0x13, 0xC0, dst, src);
  4072 void Assembler::addq(Address dst, int32_t imm32) {
  4073   InstructionMark im(this);
  4074   prefixq(dst);
  4075   emit_arith_operand(0x81, rax, dst,imm32);
  4078 void Assembler::addq(Address dst, Register src) {
  4079   InstructionMark im(this);
  4080   prefixq(dst, src);
  4081   emit_byte(0x01);
  4082   emit_operand(src, dst);
  4085 void Assembler::addq(Register dst, int32_t imm32) {
  4086   (void) prefixq_and_encode(dst->encoding());
  4087   emit_arith(0x81, 0xC0, dst, imm32);
  4090 void Assembler::addq(Register dst, Address src) {
  4091   InstructionMark im(this);
  4092   prefixq(src, dst);
  4093   emit_byte(0x03);
  4094   emit_operand(dst, src);
  4097 void Assembler::addq(Register dst, Register src) {
  4098   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4099   emit_arith(0x03, 0xC0, dst, src);
  4102 void Assembler::andq(Address dst, int32_t imm32) {
  4103   InstructionMark im(this);
  4104   prefixq(dst);
  4105   emit_byte(0x81);
  4106   emit_operand(rsp, dst, 4);
  4107   emit_long(imm32);
  4110 void Assembler::andq(Register dst, int32_t imm32) {
  4111   (void) prefixq_and_encode(dst->encoding());
  4112   emit_arith(0x81, 0xE0, dst, imm32);
  4115 void Assembler::andq(Register dst, Address src) {
  4116   InstructionMark im(this);
  4117   prefixq(src, dst);
  4118   emit_byte(0x23);
  4119   emit_operand(dst, src);
  4122 void Assembler::andq(Register dst, Register src) {
  4123   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4124   emit_arith(0x23, 0xC0, dst, src);
  4127 void Assembler::bsfq(Register dst, Register src) {
  4128   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4129   emit_byte(0x0F);
  4130   emit_byte(0xBC);
  4131   emit_byte(0xC0 | encode);
  4134 void Assembler::bsrq(Register dst, Register src) {
  4135   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4136   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4137   emit_byte(0x0F);
  4138   emit_byte(0xBD);
  4139   emit_byte(0xC0 | encode);
  4142 void Assembler::bswapq(Register reg) {
  4143   int encode = prefixq_and_encode(reg->encoding());
  4144   emit_byte(0x0F);
  4145   emit_byte(0xC8 | encode);
  4148 void Assembler::cdqq() {
  4149   prefix(REX_W);
  4150   emit_byte(0x99);
  4153 void Assembler::clflush(Address adr) {
  4154   prefix(adr);
  4155   emit_byte(0x0F);
  4156   emit_byte(0xAE);
  4157   emit_operand(rdi, adr);
  4160 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4161   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4162   emit_byte(0x0F);
  4163   emit_byte(0x40 | cc);
  4164   emit_byte(0xC0 | encode);
  4167 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4168   InstructionMark im(this);
  4169   prefixq(src, dst);
  4170   emit_byte(0x0F);
  4171   emit_byte(0x40 | cc);
  4172   emit_operand(dst, src);
  4175 void Assembler::cmpq(Address dst, int32_t imm32) {
  4176   InstructionMark im(this);
  4177   prefixq(dst);
  4178   emit_byte(0x81);
  4179   emit_operand(rdi, dst, 4);
  4180   emit_long(imm32);
  4183 void Assembler::cmpq(Register dst, int32_t imm32) {
  4184   (void) prefixq_and_encode(dst->encoding());
  4185   emit_arith(0x81, 0xF8, dst, imm32);
  4188 void Assembler::cmpq(Address dst, Register src) {
  4189   InstructionMark im(this);
  4190   prefixq(dst, src);
  4191   emit_byte(0x3B);
  4192   emit_operand(src, dst);
  4195 void Assembler::cmpq(Register dst, Register src) {
  4196   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4197   emit_arith(0x3B, 0xC0, dst, src);
  4200 void Assembler::cmpq(Register dst, Address  src) {
  4201   InstructionMark im(this);
  4202   prefixq(src, dst);
  4203   emit_byte(0x3B);
  4204   emit_operand(dst, src);
  4207 void Assembler::cmpxchgq(Register reg, Address adr) {
  4208   InstructionMark im(this);
  4209   prefixq(adr, reg);
  4210   emit_byte(0x0F);
  4211   emit_byte(0xB1);
  4212   emit_operand(reg, adr);
  4215 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4216   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4217   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4218   emit_byte(0x2A);
  4219   emit_byte(0xC0 | encode);
  4222 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4223   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4224   InstructionMark im(this);
  4225   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4226   emit_byte(0x2A);
  4227   emit_operand(dst, src);
  4230 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4231   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4232   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4233   emit_byte(0x2A);
  4234   emit_byte(0xC0 | encode);
  4237 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4238   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4239   InstructionMark im(this);
  4240   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4241   emit_byte(0x2A);
  4242   emit_operand(dst, src);
  4245 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4246   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4247   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4248   emit_byte(0x2C);
  4249   emit_byte(0xC0 | encode);
  4252 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4253   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4254   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4255   emit_byte(0x2C);
  4256   emit_byte(0xC0 | encode);
  4259 void Assembler::decl(Register dst) {
  4260   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4261   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4262   int encode = prefix_and_encode(dst->encoding());
  4263   emit_byte(0xFF);
  4264   emit_byte(0xC8 | encode);
  4267 void Assembler::decq(Register dst) {
  4268   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4269   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4270   int encode = prefixq_and_encode(dst->encoding());
  4271   emit_byte(0xFF);
  4272   emit_byte(0xC8 | encode);
  4275 void Assembler::decq(Address dst) {
  4276   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4277   InstructionMark im(this);
  4278   prefixq(dst);
  4279   emit_byte(0xFF);
  4280   emit_operand(rcx, dst);
  4283 void Assembler::fxrstor(Address src) {
  4284   prefixq(src);
  4285   emit_byte(0x0F);
  4286   emit_byte(0xAE);
  4287   emit_operand(as_Register(1), src);
  4290 void Assembler::fxsave(Address dst) {
  4291   prefixq(dst);
  4292   emit_byte(0x0F);
  4293   emit_byte(0xAE);
  4294   emit_operand(as_Register(0), dst);
  4297 void Assembler::idivq(Register src) {
  4298   int encode = prefixq_and_encode(src->encoding());
  4299   emit_byte(0xF7);
  4300   emit_byte(0xF8 | encode);
  4303 void Assembler::imulq(Register dst, Register src) {
  4304   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4305   emit_byte(0x0F);
  4306   emit_byte(0xAF);
  4307   emit_byte(0xC0 | encode);
  4310 void Assembler::imulq(Register dst, Register src, int value) {
  4311   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4312   if (is8bit(value)) {
  4313     emit_byte(0x6B);
  4314     emit_byte(0xC0 | encode);
  4315     emit_byte(value & 0xFF);
  4316   } else {
  4317     emit_byte(0x69);
  4318     emit_byte(0xC0 | encode);
  4319     emit_long(value);
  4323 void Assembler::incl(Register dst) {
  4324   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4325   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4326   int encode = prefix_and_encode(dst->encoding());
  4327   emit_byte(0xFF);
  4328   emit_byte(0xC0 | encode);
  4331 void Assembler::incq(Register dst) {
  4332   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4333   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4334   int encode = prefixq_and_encode(dst->encoding());
  4335   emit_byte(0xFF);
  4336   emit_byte(0xC0 | encode);
  4339 void Assembler::incq(Address dst) {
  4340   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4341   InstructionMark im(this);
  4342   prefixq(dst);
  4343   emit_byte(0xFF);
  4344   emit_operand(rax, dst);
  4347 void Assembler::lea(Register dst, Address src) {
  4348   leaq(dst, src);
  4351 void Assembler::leaq(Register dst, Address src) {
  4352   InstructionMark im(this);
  4353   prefixq(src, dst);
  4354   emit_byte(0x8D);
  4355   emit_operand(dst, src);
  4358 void Assembler::mov64(Register dst, int64_t imm64) {
  4359   InstructionMark im(this);
  4360   int encode = prefixq_and_encode(dst->encoding());
  4361   emit_byte(0xB8 | encode);
  4362   emit_long64(imm64);
  4365 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4366   InstructionMark im(this);
  4367   int encode = prefixq_and_encode(dst->encoding());
  4368   emit_byte(0xB8 | encode);
  4369   emit_data64(imm64, rspec);
  4372 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4373   InstructionMark im(this);
  4374   int encode = prefix_and_encode(dst->encoding());
  4375   emit_byte(0xB8 | encode);
  4376   emit_data((int)imm32, rspec, narrow_oop_operand);
  4379 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4380   InstructionMark im(this);
  4381   prefix(dst);
  4382   emit_byte(0xC7);
  4383   emit_operand(rax, dst, 4);
  4384   emit_data((int)imm32, rspec, narrow_oop_operand);
  4387 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4388   InstructionMark im(this);
  4389   int encode = prefix_and_encode(src1->encoding());
  4390   emit_byte(0x81);
  4391   emit_byte(0xF8 | encode);
  4392   emit_data((int)imm32, rspec, narrow_oop_operand);
  4395 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4396   InstructionMark im(this);
  4397   prefix(src1);
  4398   emit_byte(0x81);
  4399   emit_operand(rax, src1, 4);
  4400   emit_data((int)imm32, rspec, narrow_oop_operand);
  4403 void Assembler::lzcntq(Register dst, Register src) {
  4404   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4405   emit_byte(0xF3);
  4406   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4407   emit_byte(0x0F);
  4408   emit_byte(0xBD);
  4409   emit_byte(0xC0 | encode);
  4412 void Assembler::movdq(XMMRegister dst, Register src) {
  4413   // table D-1 says MMX/SSE2
  4414   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4415   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  4416   emit_byte(0x6E);
  4417   emit_byte(0xC0 | encode);
  4420 void Assembler::movdq(Register dst, XMMRegister src) {
  4421   // table D-1 says MMX/SSE2
  4422   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4423   // swap src/dst to get correct prefix
  4424   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  4425   emit_byte(0x7E);
  4426   emit_byte(0xC0 | encode);
  4429 void Assembler::movq(Register dst, Register src) {
  4430   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4431   emit_byte(0x8B);
  4432   emit_byte(0xC0 | encode);
  4435 void Assembler::movq(Register dst, Address src) {
  4436   InstructionMark im(this);
  4437   prefixq(src, dst);
  4438   emit_byte(0x8B);
  4439   emit_operand(dst, src);
  4442 void Assembler::movq(Address dst, Register src) {
  4443   InstructionMark im(this);
  4444   prefixq(dst, src);
  4445   emit_byte(0x89);
  4446   emit_operand(src, dst);
  4449 void Assembler::movsbq(Register dst, Address src) {
  4450   InstructionMark im(this);
  4451   prefixq(src, dst);
  4452   emit_byte(0x0F);
  4453   emit_byte(0xBE);
  4454   emit_operand(dst, src);
  4457 void Assembler::movsbq(Register dst, Register src) {
  4458   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4459   emit_byte(0x0F);
  4460   emit_byte(0xBE);
  4461   emit_byte(0xC0 | encode);
  4464 void Assembler::movslq(Register dst, int32_t imm32) {
  4465   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4466   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4467   // as a result we shouldn't use until tested at runtime...
  4468   ShouldNotReachHere();
  4469   InstructionMark im(this);
  4470   int encode = prefixq_and_encode(dst->encoding());
  4471   emit_byte(0xC7 | encode);
  4472   emit_long(imm32);
  4475 void Assembler::movslq(Address dst, int32_t imm32) {
  4476   assert(is_simm32(imm32), "lost bits");
  4477   InstructionMark im(this);
  4478   prefixq(dst);
  4479   emit_byte(0xC7);
  4480   emit_operand(rax, dst, 4);
  4481   emit_long(imm32);
  4484 void Assembler::movslq(Register dst, Address src) {
  4485   InstructionMark im(this);
  4486   prefixq(src, dst);
  4487   emit_byte(0x63);
  4488   emit_operand(dst, src);
  4491 void Assembler::movslq(Register dst, Register src) {
  4492   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4493   emit_byte(0x63);
  4494   emit_byte(0xC0 | encode);
  4497 void Assembler::movswq(Register dst, Address src) {
  4498   InstructionMark im(this);
  4499   prefixq(src, dst);
  4500   emit_byte(0x0F);
  4501   emit_byte(0xBF);
  4502   emit_operand(dst, src);
  4505 void Assembler::movswq(Register dst, Register src) {
  4506   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4507   emit_byte(0x0F);
  4508   emit_byte(0xBF);
  4509   emit_byte(0xC0 | encode);
  4512 void Assembler::movzbq(Register dst, Address src) {
  4513   InstructionMark im(this);
  4514   prefixq(src, dst);
  4515   emit_byte(0x0F);
  4516   emit_byte(0xB6);
  4517   emit_operand(dst, src);
  4520 void Assembler::movzbq(Register dst, Register src) {
  4521   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4522   emit_byte(0x0F);
  4523   emit_byte(0xB6);
  4524   emit_byte(0xC0 | encode);
  4527 void Assembler::movzwq(Register dst, Address src) {
  4528   InstructionMark im(this);
  4529   prefixq(src, dst);
  4530   emit_byte(0x0F);
  4531   emit_byte(0xB7);
  4532   emit_operand(dst, src);
  4535 void Assembler::movzwq(Register dst, Register src) {
  4536   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4537   emit_byte(0x0F);
  4538   emit_byte(0xB7);
  4539   emit_byte(0xC0 | encode);
  4542 void Assembler::negq(Register dst) {
  4543   int encode = prefixq_and_encode(dst->encoding());
  4544   emit_byte(0xF7);
  4545   emit_byte(0xD8 | encode);
  4548 void Assembler::notq(Register dst) {
  4549   int encode = prefixq_and_encode(dst->encoding());
  4550   emit_byte(0xF7);
  4551   emit_byte(0xD0 | encode);
  4554 void Assembler::orq(Address dst, int32_t imm32) {
  4555   InstructionMark im(this);
  4556   prefixq(dst);
  4557   emit_byte(0x81);
  4558   emit_operand(rcx, dst, 4);
  4559   emit_long(imm32);
  4562 void Assembler::orq(Register dst, int32_t imm32) {
  4563   (void) prefixq_and_encode(dst->encoding());
  4564   emit_arith(0x81, 0xC8, dst, imm32);
  4567 void Assembler::orq(Register dst, Address src) {
  4568   InstructionMark im(this);
  4569   prefixq(src, dst);
  4570   emit_byte(0x0B);
  4571   emit_operand(dst, src);
  4574 void Assembler::orq(Register dst, Register src) {
  4575   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4576   emit_arith(0x0B, 0xC0, dst, src);
  4579 void Assembler::popa() { // 64bit
  4580   movq(r15, Address(rsp, 0));
  4581   movq(r14, Address(rsp, wordSize));
  4582   movq(r13, Address(rsp, 2 * wordSize));
  4583   movq(r12, Address(rsp, 3 * wordSize));
  4584   movq(r11, Address(rsp, 4 * wordSize));
  4585   movq(r10, Address(rsp, 5 * wordSize));
  4586   movq(r9,  Address(rsp, 6 * wordSize));
  4587   movq(r8,  Address(rsp, 7 * wordSize));
  4588   movq(rdi, Address(rsp, 8 * wordSize));
  4589   movq(rsi, Address(rsp, 9 * wordSize));
  4590   movq(rbp, Address(rsp, 10 * wordSize));
  4591   // skip rsp
  4592   movq(rbx, Address(rsp, 12 * wordSize));
  4593   movq(rdx, Address(rsp, 13 * wordSize));
  4594   movq(rcx, Address(rsp, 14 * wordSize));
  4595   movq(rax, Address(rsp, 15 * wordSize));
  4597   addq(rsp, 16 * wordSize);
  4600 void Assembler::popcntq(Register dst, Address src) {
  4601   assert(VM_Version::supports_popcnt(), "must support");
  4602   InstructionMark im(this);
  4603   emit_byte(0xF3);
  4604   prefixq(src, dst);
  4605   emit_byte(0x0F);
  4606   emit_byte(0xB8);
  4607   emit_operand(dst, src);
  4610 void Assembler::popcntq(Register dst, Register src) {
  4611   assert(VM_Version::supports_popcnt(), "must support");
  4612   emit_byte(0xF3);
  4613   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4614   emit_byte(0x0F);
  4615   emit_byte(0xB8);
  4616   emit_byte(0xC0 | encode);
  4619 void Assembler::popq(Address dst) {
  4620   InstructionMark im(this);
  4621   prefixq(dst);
  4622   emit_byte(0x8F);
  4623   emit_operand(rax, dst);
  4626 void Assembler::pusha() { // 64bit
  4627   // we have to store original rsp.  ABI says that 128 bytes
  4628   // below rsp are local scratch.
  4629   movq(Address(rsp, -5 * wordSize), rsp);
  4631   subq(rsp, 16 * wordSize);
  4633   movq(Address(rsp, 15 * wordSize), rax);
  4634   movq(Address(rsp, 14 * wordSize), rcx);
  4635   movq(Address(rsp, 13 * wordSize), rdx);
  4636   movq(Address(rsp, 12 * wordSize), rbx);
  4637   // skip rsp
  4638   movq(Address(rsp, 10 * wordSize), rbp);
  4639   movq(Address(rsp, 9 * wordSize), rsi);
  4640   movq(Address(rsp, 8 * wordSize), rdi);
  4641   movq(Address(rsp, 7 * wordSize), r8);
  4642   movq(Address(rsp, 6 * wordSize), r9);
  4643   movq(Address(rsp, 5 * wordSize), r10);
  4644   movq(Address(rsp, 4 * wordSize), r11);
  4645   movq(Address(rsp, 3 * wordSize), r12);
  4646   movq(Address(rsp, 2 * wordSize), r13);
  4647   movq(Address(rsp, wordSize), r14);
  4648   movq(Address(rsp, 0), r15);
  4651 void Assembler::pushq(Address src) {
  4652   InstructionMark im(this);
  4653   prefixq(src);
  4654   emit_byte(0xFF);
  4655   emit_operand(rsi, src);
  4658 void Assembler::rclq(Register dst, int imm8) {
  4659   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4660   int encode = prefixq_and_encode(dst->encoding());
  4661   if (imm8 == 1) {
  4662     emit_byte(0xD1);
  4663     emit_byte(0xD0 | encode);
  4664   } else {
  4665     emit_byte(0xC1);
  4666     emit_byte(0xD0 | encode);
  4667     emit_byte(imm8);
  4670 void Assembler::sarq(Register dst, int imm8) {
  4671   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4672   int encode = prefixq_and_encode(dst->encoding());
  4673   if (imm8 == 1) {
  4674     emit_byte(0xD1);
  4675     emit_byte(0xF8 | encode);
  4676   } else {
  4677     emit_byte(0xC1);
  4678     emit_byte(0xF8 | encode);
  4679     emit_byte(imm8);
  4683 void Assembler::sarq(Register dst) {
  4684   int encode = prefixq_and_encode(dst->encoding());
  4685   emit_byte(0xD3);
  4686   emit_byte(0xF8 | encode);
  4689 void Assembler::sbbq(Address dst, int32_t imm32) {
  4690   InstructionMark im(this);
  4691   prefixq(dst);
  4692   emit_arith_operand(0x81, rbx, dst, imm32);
  4695 void Assembler::sbbq(Register dst, int32_t imm32) {
  4696   (void) prefixq_and_encode(dst->encoding());
  4697   emit_arith(0x81, 0xD8, dst, imm32);
  4700 void Assembler::sbbq(Register dst, Address src) {
  4701   InstructionMark im(this);
  4702   prefixq(src, dst);
  4703   emit_byte(0x1B);
  4704   emit_operand(dst, src);
  4707 void Assembler::sbbq(Register dst, Register src) {
  4708   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4709   emit_arith(0x1B, 0xC0, dst, src);
  4712 void Assembler::shlq(Register dst, int imm8) {
  4713   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4714   int encode = prefixq_and_encode(dst->encoding());
  4715   if (imm8 == 1) {
  4716     emit_byte(0xD1);
  4717     emit_byte(0xE0 | encode);
  4718   } else {
  4719     emit_byte(0xC1);
  4720     emit_byte(0xE0 | encode);
  4721     emit_byte(imm8);
  4725 void Assembler::shlq(Register dst) {
  4726   int encode = prefixq_and_encode(dst->encoding());
  4727   emit_byte(0xD3);
  4728   emit_byte(0xE0 | encode);
  4731 void Assembler::shrq(Register dst, int imm8) {
  4732   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4733   int encode = prefixq_and_encode(dst->encoding());
  4734   emit_byte(0xC1);
  4735   emit_byte(0xE8 | encode);
  4736   emit_byte(imm8);
  4739 void Assembler::shrq(Register dst) {
  4740   int encode = prefixq_and_encode(dst->encoding());
  4741   emit_byte(0xD3);
  4742   emit_byte(0xE8 | encode);
  4745 void Assembler::subq(Address dst, int32_t imm32) {
  4746   InstructionMark im(this);
  4747   prefixq(dst);
  4748   emit_arith_operand(0x81, rbp, dst, imm32);
  4751 void Assembler::subq(Address dst, Register src) {
  4752   InstructionMark im(this);
  4753   prefixq(dst, src);
  4754   emit_byte(0x29);
  4755   emit_operand(src, dst);
  4758 void Assembler::subq(Register dst, int32_t imm32) {
  4759   (void) prefixq_and_encode(dst->encoding());
  4760   emit_arith(0x81, 0xE8, dst, imm32);
  4763 void Assembler::subq(Register dst, Address src) {
  4764   InstructionMark im(this);
  4765   prefixq(src, dst);
  4766   emit_byte(0x2B);
  4767   emit_operand(dst, src);
  4770 void Assembler::subq(Register dst, Register src) {
  4771   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4772   emit_arith(0x2B, 0xC0, dst, src);
  4775 void Assembler::testq(Register dst, int32_t imm32) {
  4776   // not using emit_arith because test
  4777   // doesn't support sign-extension of
  4778   // 8bit operands
  4779   int encode = dst->encoding();
  4780   if (encode == 0) {
  4781     prefix(REX_W);
  4782     emit_byte(0xA9);
  4783   } else {
  4784     encode = prefixq_and_encode(encode);
  4785     emit_byte(0xF7);
  4786     emit_byte(0xC0 | encode);
  4788   emit_long(imm32);
  4791 void Assembler::testq(Register dst, Register src) {
  4792   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4793   emit_arith(0x85, 0xC0, dst, src);
  4796 void Assembler::xaddq(Address dst, Register src) {
  4797   InstructionMark im(this);
  4798   prefixq(dst, src);
  4799   emit_byte(0x0F);
  4800   emit_byte(0xC1);
  4801   emit_operand(src, dst);
  4804 void Assembler::xchgq(Register dst, Address src) {
  4805   InstructionMark im(this);
  4806   prefixq(src, dst);
  4807   emit_byte(0x87);
  4808   emit_operand(dst, src);
  4811 void Assembler::xchgq(Register dst, Register src) {
  4812   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4813   emit_byte(0x87);
  4814   emit_byte(0xc0 | encode);
  4817 void Assembler::xorq(Register dst, Register src) {
  4818   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4819   emit_arith(0x33, 0xC0, dst, src);
  4822 void Assembler::xorq(Register dst, Address src) {
  4823   InstructionMark im(this);
  4824   prefixq(src, dst);
  4825   emit_byte(0x33);
  4826   emit_operand(dst, src);
  4829 #endif // !LP64
  4831 static Assembler::Condition reverse[] = {
  4832     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4833     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4834     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4835     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4836     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4837     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4838     Assembler::above          /* belowEqual    = 0x6 */ ,
  4839     Assembler::belowEqual     /* above         = 0x7 */ ,
  4840     Assembler::positive       /* negative      = 0x8 */ ,
  4841     Assembler::negative       /* positive      = 0x9 */ ,
  4842     Assembler::noParity       /* parity        = 0xa */ ,
  4843     Assembler::parity         /* noParity      = 0xb */ ,
  4844     Assembler::greaterEqual   /* less          = 0xc */ ,
  4845     Assembler::less           /* greaterEqual  = 0xd */ ,
  4846     Assembler::greater        /* lessEqual     = 0xe */ ,
  4847     Assembler::lessEqual      /* greater       = 0xf, */
  4849 };
  4852 // Implementation of MacroAssembler
  4854 // First all the versions that have distinct versions depending on 32/64 bit
  4855 // Unless the difference is trivial (1 line or so).
  4857 #ifndef _LP64
  4859 // 32bit versions
  4861 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4862   return Address(adr.target(), adr.rspec());
  4865 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4866   return Address::make_array(adr);
  4869 int MacroAssembler::biased_locking_enter(Register lock_reg,
  4870                                          Register obj_reg,
  4871                                          Register swap_reg,
  4872                                          Register tmp_reg,
  4873                                          bool swap_reg_contains_mark,
  4874                                          Label& done,
  4875                                          Label* slow_case,
  4876                                          BiasedLockingCounters* counters) {
  4877   assert(UseBiasedLocking, "why call this otherwise?");
  4878   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  4879   assert_different_registers(lock_reg, obj_reg, swap_reg);
  4881   if (PrintBiasedLockingStatistics && counters == NULL)
  4882     counters = BiasedLocking::counters();
  4884   bool need_tmp_reg = false;
  4885   if (tmp_reg == noreg) {
  4886     need_tmp_reg = true;
  4887     tmp_reg = lock_reg;
  4888   } else {
  4889     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4891   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4892   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4893   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  4894   Address saved_mark_addr(lock_reg, 0);
  4896   // Biased locking
  4897   // See whether the lock is currently biased toward our thread and
  4898   // whether the epoch is still valid
  4899   // Note that the runtime guarantees sufficient alignment of JavaThread
  4900   // pointers to allow age to be placed into low bits
  4901   // First check to see whether biasing is even enabled for this object
  4902   Label cas_label;
  4903   int null_check_offset = -1;
  4904   if (!swap_reg_contains_mark) {
  4905     null_check_offset = offset();
  4906     movl(swap_reg, mark_addr);
  4908   if (need_tmp_reg) {
  4909     push(tmp_reg);
  4911   movl(tmp_reg, swap_reg);
  4912   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4913   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  4914   if (need_tmp_reg) {
  4915     pop(tmp_reg);
  4917   jcc(Assembler::notEqual, cas_label);
  4918   // The bias pattern is present in the object's header. Need to check
  4919   // whether the bias owner and the epoch are both still current.
  4920   // Note that because there is no current thread register on x86 we
  4921   // need to store off the mark word we read out of the object to
  4922   // avoid reloading it and needing to recheck invariants below. This
  4923   // store is unfortunate but it makes the overall code shorter and
  4924   // simpler.
  4925   movl(saved_mark_addr, swap_reg);
  4926   if (need_tmp_reg) {
  4927     push(tmp_reg);
  4929   get_thread(tmp_reg);
  4930   xorl(swap_reg, tmp_reg);
  4931   if (swap_reg_contains_mark) {
  4932     null_check_offset = offset();
  4934   movl(tmp_reg, klass_addr);
  4935   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  4936   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  4937   if (need_tmp_reg) {
  4938     pop(tmp_reg);
  4940   if (counters != NULL) {
  4941     cond_inc32(Assembler::zero,
  4942                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  4944   jcc(Assembler::equal, done);
  4946   Label try_revoke_bias;
  4947   Label try_rebias;
  4949   // At this point we know that the header has the bias pattern and
  4950   // that we are not the bias owner in the current epoch. We need to
  4951   // figure out more details about the state of the header in order to
  4952   // know what operations can be legally performed on the object's
  4953   // header.
  4955   // If the low three bits in the xor result aren't clear, that means
  4956   // the prototype header is no longer biased and we have to revoke
  4957   // the bias on this object.
  4958   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  4959   jcc(Assembler::notZero, try_revoke_bias);
  4961   // Biasing is still enabled for this data type. See whether the
  4962   // epoch of the current bias is still valid, meaning that the epoch
  4963   // bits of the mark word are equal to the epoch bits of the
  4964   // prototype header. (Note that the prototype header's epoch bits
  4965   // only change at a safepoint.) If not, attempt to rebias the object
  4966   // toward the current thread. Note that we must be absolutely sure
  4967   // that the current epoch is invalid in order to do this because
  4968   // otherwise the manipulations it performs on the mark word are
  4969   // illegal.
  4970   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  4971   jcc(Assembler::notZero, try_rebias);
  4973   // The epoch of the current bias is still valid but we know nothing
  4974   // about the owner; it might be set or it might be clear. Try to
  4975   // acquire the bias of the object using an atomic operation. If this
  4976   // fails we will go in to the runtime to revoke the object's bias.
  4977   // Note that we first construct the presumed unbiased header so we
  4978   // don't accidentally blow away another thread's valid bias.
  4979   movl(swap_reg, saved_mark_addr);
  4980   andl(swap_reg,
  4981        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  4982   if (need_tmp_reg) {
  4983     push(tmp_reg);
  4985   get_thread(tmp_reg);
  4986   orl(tmp_reg, swap_reg);
  4987   if (os::is_MP()) {
  4988     lock();
  4990   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4991   if (need_tmp_reg) {
  4992     pop(tmp_reg);
  4994   // If the biasing toward our thread failed, this means that
  4995   // another thread succeeded in biasing it toward itself and we
  4996   // need to revoke that bias. The revocation will occur in the
  4997   // interpreter runtime in the slow case.
  4998   if (counters != NULL) {
  4999     cond_inc32(Assembler::zero,
  5000                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  5002   if (slow_case != NULL) {
  5003     jcc(Assembler::notZero, *slow_case);
  5005   jmp(done);
  5007   bind(try_rebias);
  5008   // At this point we know the epoch has expired, meaning that the
  5009   // current "bias owner", if any, is actually invalid. Under these
  5010   // circumstances _only_, we are allowed to use the current header's
  5011   // value as the comparison value when doing the cas to acquire the
  5012   // bias in the current epoch. In other words, we allow transfer of
  5013   // the bias from one thread to another directly in this situation.
  5014   //
  5015   // FIXME: due to a lack of registers we currently blow away the age
  5016   // bits in this situation. Should attempt to preserve them.
  5017   if (need_tmp_reg) {
  5018     push(tmp_reg);
  5020   get_thread(tmp_reg);
  5021   movl(swap_reg, klass_addr);
  5022   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
  5023   movl(swap_reg, saved_mark_addr);
  5024   if (os::is_MP()) {
  5025     lock();
  5027   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5028   if (need_tmp_reg) {
  5029     pop(tmp_reg);
  5031   // If the biasing toward our thread failed, then another thread
  5032   // succeeded in biasing it toward itself and we need to revoke that
  5033   // bias. The revocation will occur in the runtime in the slow case.
  5034   if (counters != NULL) {
  5035     cond_inc32(Assembler::zero,
  5036                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  5038   if (slow_case != NULL) {
  5039     jcc(Assembler::notZero, *slow_case);
  5041   jmp(done);
  5043   bind(try_revoke_bias);
  5044   // The prototype mark in the klass doesn't have the bias bit set any
  5045   // more, indicating that objects of this data type are not supposed
  5046   // to be biased any more. We are going to try to reset the mark of
  5047   // this object to the prototype value and fall through to the
  5048   // CAS-based locking scheme. Note that if our CAS fails, it means
  5049   // that another thread raced us for the privilege of revoking the
  5050   // bias of this particular object, so it's okay to continue in the
  5051   // normal locking code.
  5052   //
  5053   // FIXME: due to a lack of registers we currently blow away the age
  5054   // bits in this situation. Should attempt to preserve them.
  5055   movl(swap_reg, saved_mark_addr);
  5056   if (need_tmp_reg) {
  5057     push(tmp_reg);
  5059   movl(tmp_reg, klass_addr);
  5060   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5061   if (os::is_MP()) {
  5062     lock();
  5064   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5065   if (need_tmp_reg) {
  5066     pop(tmp_reg);
  5068   // Fall through to the normal CAS-based lock, because no matter what
  5069   // the result of the above CAS, some thread must have succeeded in
  5070   // removing the bias bit from the object's header.
  5071   if (counters != NULL) {
  5072     cond_inc32(Assembler::zero,
  5073                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  5076   bind(cas_label);
  5078   return null_check_offset;
  5080 void MacroAssembler::call_VM_leaf_base(address entry_point,
  5081                                        int number_of_arguments) {
  5082   call(RuntimeAddress(entry_point));
  5083   increment(rsp, number_of_arguments * wordSize);
  5086 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  5087   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5090 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  5091   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5094 void MacroAssembler::extend_sign(Register hi, Register lo) {
  5095   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  5096   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  5097     cdql();
  5098   } else {
  5099     movl(hi, lo);
  5100     sarl(hi, 31);
  5104 void MacroAssembler::fat_nop() {
  5105   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  5106   emit_byte(0x26); // es:
  5107   emit_byte(0x2e); // cs:
  5108   emit_byte(0x64); // fs:
  5109   emit_byte(0x65); // gs:
  5110   emit_byte(0x90);
  5113 void MacroAssembler::jC2(Register tmp, Label& L) {
  5114   // set parity bit if FPU flag C2 is set (via rax)
  5115   save_rax(tmp);
  5116   fwait(); fnstsw_ax();
  5117   sahf();
  5118   restore_rax(tmp);
  5119   // branch
  5120   jcc(Assembler::parity, L);
  5123 void MacroAssembler::jnC2(Register tmp, Label& L) {
  5124   // set parity bit if FPU flag C2 is set (via rax)
  5125   save_rax(tmp);
  5126   fwait(); fnstsw_ax();
  5127   sahf();
  5128   restore_rax(tmp);
  5129   // branch
  5130   jcc(Assembler::noParity, L);
  5133 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5134 // to be installed in the Address class
  5135 void MacroAssembler::jump(ArrayAddress entry) {
  5136   jmp(as_Address(entry));
  5139 // Note: y_lo will be destroyed
  5140 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5141   // Long compare for Java (semantics as described in JVM spec.)
  5142   Label high, low, done;
  5144   cmpl(x_hi, y_hi);
  5145   jcc(Assembler::less, low);
  5146   jcc(Assembler::greater, high);
  5147   // x_hi is the return register
  5148   xorl(x_hi, x_hi);
  5149   cmpl(x_lo, y_lo);
  5150   jcc(Assembler::below, low);
  5151   jcc(Assembler::equal, done);
  5153   bind(high);
  5154   xorl(x_hi, x_hi);
  5155   increment(x_hi);
  5156   jmp(done);
  5158   bind(low);
  5159   xorl(x_hi, x_hi);
  5160   decrementl(x_hi);
  5162   bind(done);
  5165 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5166     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  5169 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5170   // leal(dst, as_Address(adr));
  5171   // see note in movl as to why we must use a move
  5172   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  5175 void MacroAssembler::leave() {
  5176   mov(rsp, rbp);
  5177   pop(rbp);
  5180 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  5181   // Multiplication of two Java long values stored on the stack
  5182   // as illustrated below. Result is in rdx:rax.
  5183   //
  5184   // rsp ---> [  ??  ] \               \
  5185   //            ....    | y_rsp_offset  |
  5186   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  5187   //          [ y_hi ]                  | (in bytes)
  5188   //            ....                    |
  5189   //          [ x_lo ]                 /
  5190   //          [ x_hi ]
  5191   //            ....
  5192   //
  5193   // Basic idea: lo(result) = lo(x_lo * y_lo)
  5194   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  5195   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  5196   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  5197   Label quick;
  5198   // load x_hi, y_hi and check if quick
  5199   // multiplication is possible
  5200   movl(rbx, x_hi);
  5201   movl(rcx, y_hi);
  5202   movl(rax, rbx);
  5203   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  5204   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  5205   // do full multiplication
  5206   // 1st step
  5207   mull(y_lo);                                    // x_hi * y_lo
  5208   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  5209   // 2nd step
  5210   movl(rax, x_lo);
  5211   mull(rcx);                                     // x_lo * y_hi
  5212   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  5213   // 3rd step
  5214   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  5215   movl(rax, x_lo);
  5216   mull(y_lo);                                    // x_lo * y_lo
  5217   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  5220 void MacroAssembler::lneg(Register hi, Register lo) {
  5221   negl(lo);
  5222   adcl(hi, 0);
  5223   negl(hi);
  5226 void MacroAssembler::lshl(Register hi, Register lo) {
  5227   // Java shift left long support (semantics as described in JVM spec., p.305)
  5228   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  5229   // shift value is in rcx !
  5230   assert(hi != rcx, "must not use rcx");
  5231   assert(lo != rcx, "must not use rcx");
  5232   const Register s = rcx;                        // shift count
  5233   const int      n = BitsPerWord;
  5234   Label L;
  5235   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5236   cmpl(s, n);                                    // if (s < n)
  5237   jcc(Assembler::less, L);                       // else (s >= n)
  5238   movl(hi, lo);                                  // x := x << n
  5239   xorl(lo, lo);
  5240   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5241   bind(L);                                       // s (mod n) < n
  5242   shldl(hi, lo);                                 // x := x << s
  5243   shll(lo);
  5247 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  5248   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  5249   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  5250   assert(hi != rcx, "must not use rcx");
  5251   assert(lo != rcx, "must not use rcx");
  5252   const Register s = rcx;                        // shift count
  5253   const int      n = BitsPerWord;
  5254   Label L;
  5255   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5256   cmpl(s, n);                                    // if (s < n)
  5257   jcc(Assembler::less, L);                       // else (s >= n)
  5258   movl(lo, hi);                                  // x := x >> n
  5259   if (sign_extension) sarl(hi, 31);
  5260   else                xorl(hi, hi);
  5261   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5262   bind(L);                                       // s (mod n) < n
  5263   shrdl(lo, hi);                                 // x := x >> s
  5264   if (sign_extension) sarl(hi);
  5265   else                shrl(hi);
  5268 void MacroAssembler::movoop(Register dst, jobject obj) {
  5269   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5272 void MacroAssembler::movoop(Address dst, jobject obj) {
  5273   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5276 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5277   if (src.is_lval()) {
  5278     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  5279   } else {
  5280     movl(dst, as_Address(src));
  5284 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5285   movl(as_Address(dst), src);
  5288 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5289   movl(dst, as_Address(src));
  5292 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5293 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5294   movl(dst, src);
  5298 void MacroAssembler::pop_callee_saved_registers() {
  5299   pop(rcx);
  5300   pop(rdx);
  5301   pop(rdi);
  5302   pop(rsi);
  5305 void MacroAssembler::pop_fTOS() {
  5306   fld_d(Address(rsp, 0));
  5307   addl(rsp, 2 * wordSize);
  5310 void MacroAssembler::push_callee_saved_registers() {
  5311   push(rsi);
  5312   push(rdi);
  5313   push(rdx);
  5314   push(rcx);
  5317 void MacroAssembler::push_fTOS() {
  5318   subl(rsp, 2 * wordSize);
  5319   fstp_d(Address(rsp, 0));
  5323 void MacroAssembler::pushoop(jobject obj) {
  5324   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  5328 void MacroAssembler::pushptr(AddressLiteral src) {
  5329   if (src.is_lval()) {
  5330     push_literal32((int32_t)src.target(), src.rspec());
  5331   } else {
  5332     pushl(as_Address(src));
  5336 void MacroAssembler::set_word_if_not_zero(Register dst) {
  5337   xorl(dst, dst);
  5338   set_byte_if_not_zero(dst);
  5341 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5342   masm->push(arg);
  5345 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5346   masm->push(arg);
  5349 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5350   masm->push(arg);
  5353 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5354   masm->push(arg);
  5357 #ifndef PRODUCT
  5358 extern "C" void findpc(intptr_t x);
  5359 #endif
  5361 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5362   // In order to get locks to work, we need to fake a in_VM state
  5363   JavaThread* thread = JavaThread::current();
  5364   JavaThreadState saved_state = thread->thread_state();
  5365   thread->set_thread_state(_thread_in_vm);
  5366   if (ShowMessageBoxOnError) {
  5367     JavaThread* thread = JavaThread::current();
  5368     JavaThreadState saved_state = thread->thread_state();
  5369     thread->set_thread_state(_thread_in_vm);
  5370     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5371       ttyLocker ttyl;
  5372       BytecodeCounter::print();
  5374     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5375     // This is the value of eip which points to where verify_oop will return.
  5376     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5377       ttyLocker ttyl;
  5378       tty->print_cr("eip = 0x%08x", eip);
  5379 #ifndef PRODUCT
  5380       if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5381         tty->cr();
  5382         findpc(eip);
  5383         tty->cr();
  5385 #endif
  5386       tty->print_cr("rax = 0x%08x", rax);
  5387       tty->print_cr("rbx = 0x%08x", rbx);
  5388       tty->print_cr("rcx = 0x%08x", rcx);
  5389       tty->print_cr("rdx = 0x%08x", rdx);
  5390       tty->print_cr("rdi = 0x%08x", rdi);
  5391       tty->print_cr("rsi = 0x%08x", rsi);
  5392       tty->print_cr("rbp = 0x%08x", rbp);
  5393       tty->print_cr("rsp = 0x%08x", rsp);
  5394       BREAKPOINT;
  5395       assert(false, "start up GDB");
  5397   } else {
  5398     ttyLocker ttyl;
  5399     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5400     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5402   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5405 void MacroAssembler::stop(const char* msg) {
  5406   ExternalAddress message((address)msg);
  5407   // push address of message
  5408   pushptr(message.addr());
  5409   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5410   pusha();                                           // push registers
  5411   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5412   hlt();
  5415 void MacroAssembler::warn(const char* msg) {
  5416   push_CPU_state();
  5418   ExternalAddress message((address) msg);
  5419   // push address of message
  5420   pushptr(message.addr());
  5422   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5423   addl(rsp, wordSize);       // discard argument
  5424   pop_CPU_state();
  5427 #else // _LP64
  5429 // 64 bit versions
  5431 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5432   // amd64 always does this as a pc-rel
  5433   // we can be absolute or disp based on the instruction type
  5434   // jmp/call are displacements others are absolute
  5435   assert(!adr.is_lval(), "must be rval");
  5436   assert(reachable(adr), "must be");
  5437   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5441 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5442   AddressLiteral base = adr.base();
  5443   lea(rscratch1, base);
  5444   Address index = adr.index();
  5445   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5446   Address array(rscratch1, index._index, index._scale, index._disp);
  5447   return array;
  5450 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5451                                          Register obj_reg,
  5452                                          Register swap_reg,
  5453                                          Register tmp_reg,
  5454                                          bool swap_reg_contains_mark,
  5455                                          Label& done,
  5456                                          Label* slow_case,
  5457                                          BiasedLockingCounters* counters) {
  5458   assert(UseBiasedLocking, "why call this otherwise?");
  5459   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5460   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5461   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5462   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5463   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5464   Address saved_mark_addr(lock_reg, 0);
  5466   if (PrintBiasedLockingStatistics && counters == NULL)
  5467     counters = BiasedLocking::counters();
  5469   // Biased locking
  5470   // See whether the lock is currently biased toward our thread and
  5471   // whether the epoch is still valid
  5472   // Note that the runtime guarantees sufficient alignment of JavaThread
  5473   // pointers to allow age to be placed into low bits
  5474   // First check to see whether biasing is even enabled for this object
  5475   Label cas_label;
  5476   int null_check_offset = -1;
  5477   if (!swap_reg_contains_mark) {
  5478     null_check_offset = offset();
  5479     movq(swap_reg, mark_addr);
  5481   movq(tmp_reg, swap_reg);
  5482   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5483   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5484   jcc(Assembler::notEqual, cas_label);
  5485   // The bias pattern is present in the object's header. Need to check
  5486   // whether the bias owner and the epoch are both still current.
  5487   load_prototype_header(tmp_reg, obj_reg);
  5488   orq(tmp_reg, r15_thread);
  5489   xorq(tmp_reg, swap_reg);
  5490   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5491   if (counters != NULL) {
  5492     cond_inc32(Assembler::zero,
  5493                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5495   jcc(Assembler::equal, done);
  5497   Label try_revoke_bias;
  5498   Label try_rebias;
  5500   // At this point we know that the header has the bias pattern and
  5501   // that we are not the bias owner in the current epoch. We need to
  5502   // figure out more details about the state of the header in order to
  5503   // know what operations can be legally performed on the object's
  5504   // header.
  5506   // If the low three bits in the xor result aren't clear, that means
  5507   // the prototype header is no longer biased and we have to revoke
  5508   // the bias on this object.
  5509   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5510   jcc(Assembler::notZero, try_revoke_bias);
  5512   // Biasing is still enabled for this data type. See whether the
  5513   // epoch of the current bias is still valid, meaning that the epoch
  5514   // bits of the mark word are equal to the epoch bits of the
  5515   // prototype header. (Note that the prototype header's epoch bits
  5516   // only change at a safepoint.) If not, attempt to rebias the object
  5517   // toward the current thread. Note that we must be absolutely sure
  5518   // that the current epoch is invalid in order to do this because
  5519   // otherwise the manipulations it performs on the mark word are
  5520   // illegal.
  5521   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5522   jcc(Assembler::notZero, try_rebias);
  5524   // The epoch of the current bias is still valid but we know nothing
  5525   // about the owner; it might be set or it might be clear. Try to
  5526   // acquire the bias of the object using an atomic operation. If this
  5527   // fails we will go in to the runtime to revoke the object's bias.
  5528   // Note that we first construct the presumed unbiased header so we
  5529   // don't accidentally blow away another thread's valid bias.
  5530   andq(swap_reg,
  5531        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5532   movq(tmp_reg, swap_reg);
  5533   orq(tmp_reg, r15_thread);
  5534   if (os::is_MP()) {
  5535     lock();
  5537   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5538   // If the biasing toward our thread failed, this means that
  5539   // another thread succeeded in biasing it toward itself and we
  5540   // need to revoke that bias. The revocation will occur in the
  5541   // interpreter runtime in the slow case.
  5542   if (counters != NULL) {
  5543     cond_inc32(Assembler::zero,
  5544                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5546   if (slow_case != NULL) {
  5547     jcc(Assembler::notZero, *slow_case);
  5549   jmp(done);
  5551   bind(try_rebias);
  5552   // At this point we know the epoch has expired, meaning that the
  5553   // current "bias owner", if any, is actually invalid. Under these
  5554   // circumstances _only_, we are allowed to use the current header's
  5555   // value as the comparison value when doing the cas to acquire the
  5556   // bias in the current epoch. In other words, we allow transfer of
  5557   // the bias from one thread to another directly in this situation.
  5558   //
  5559   // FIXME: due to a lack of registers we currently blow away the age
  5560   // bits in this situation. Should attempt to preserve them.
  5561   load_prototype_header(tmp_reg, obj_reg);
  5562   orq(tmp_reg, r15_thread);
  5563   if (os::is_MP()) {
  5564     lock();
  5566   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5567   // If the biasing toward our thread failed, then another thread
  5568   // succeeded in biasing it toward itself and we need to revoke that
  5569   // bias. The revocation will occur in the runtime in the slow case.
  5570   if (counters != NULL) {
  5571     cond_inc32(Assembler::zero,
  5572                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5574   if (slow_case != NULL) {
  5575     jcc(Assembler::notZero, *slow_case);
  5577   jmp(done);
  5579   bind(try_revoke_bias);
  5580   // The prototype mark in the klass doesn't have the bias bit set any
  5581   // more, indicating that objects of this data type are not supposed
  5582   // to be biased any more. We are going to try to reset the mark of
  5583   // this object to the prototype value and fall through to the
  5584   // CAS-based locking scheme. Note that if our CAS fails, it means
  5585   // that another thread raced us for the privilege of revoking the
  5586   // bias of this particular object, so it's okay to continue in the
  5587   // normal locking code.
  5588   //
  5589   // FIXME: due to a lack of registers we currently blow away the age
  5590   // bits in this situation. Should attempt to preserve them.
  5591   load_prototype_header(tmp_reg, obj_reg);
  5592   if (os::is_MP()) {
  5593     lock();
  5595   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5596   // Fall through to the normal CAS-based lock, because no matter what
  5597   // the result of the above CAS, some thread must have succeeded in
  5598   // removing the bias bit from the object's header.
  5599   if (counters != NULL) {
  5600     cond_inc32(Assembler::zero,
  5601                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5604   bind(cas_label);
  5606   return null_check_offset;
  5609 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  5610   Label L, E;
  5612 #ifdef _WIN64
  5613   // Windows always allocates space for it's register args
  5614   assert(num_args <= 4, "only register arguments supported");
  5615   subq(rsp,  frame::arg_reg_save_area_bytes);
  5616 #endif
  5618   // Align stack if necessary
  5619   testl(rsp, 15);
  5620   jcc(Assembler::zero, L);
  5622   subq(rsp, 8);
  5624     call(RuntimeAddress(entry_point));
  5626   addq(rsp, 8);
  5627   jmp(E);
  5629   bind(L);
  5631     call(RuntimeAddress(entry_point));
  5634   bind(E);
  5636 #ifdef _WIN64
  5637   // restore stack pointer
  5638   addq(rsp, frame::arg_reg_save_area_bytes);
  5639 #endif
  5643 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5644   assert(!src2.is_lval(), "should use cmpptr");
  5646   if (reachable(src2)) {
  5647     cmpq(src1, as_Address(src2));
  5648   } else {
  5649     lea(rscratch1, src2);
  5650     Assembler::cmpq(src1, Address(rscratch1, 0));
  5654 int MacroAssembler::corrected_idivq(Register reg) {
  5655   // Full implementation of Java ldiv and lrem; checks for special
  5656   // case as described in JVM spec., p.243 & p.271.  The function
  5657   // returns the (pc) offset of the idivl instruction - may be needed
  5658   // for implicit exceptions.
  5659   //
  5660   //         normal case                           special case
  5661   //
  5662   // input : rax: dividend                         min_long
  5663   //         reg: divisor   (may not be eax/edx)   -1
  5664   //
  5665   // output: rax: quotient  (= rax idiv reg)       min_long
  5666   //         rdx: remainder (= rax irem reg)       0
  5667   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5668   static const int64_t min_long = 0x8000000000000000;
  5669   Label normal_case, special_case;
  5671   // check for special case
  5672   cmp64(rax, ExternalAddress((address) &min_long));
  5673   jcc(Assembler::notEqual, normal_case);
  5674   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5675                   // remainder = 0)
  5676   cmpq(reg, -1);
  5677   jcc(Assembler::equal, special_case);
  5679   // handle normal case
  5680   bind(normal_case);
  5681   cdqq();
  5682   int idivq_offset = offset();
  5683   idivq(reg);
  5685   // normal and special case exit
  5686   bind(special_case);
  5688   return idivq_offset;
  5691 void MacroAssembler::decrementq(Register reg, int value) {
  5692   if (value == min_jint) { subq(reg, value); return; }
  5693   if (value <  0) { incrementq(reg, -value); return; }
  5694   if (value == 0) {                        ; return; }
  5695   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5696   /* else */      { subq(reg, value)       ; return; }
  5699 void MacroAssembler::decrementq(Address dst, int value) {
  5700   if (value == min_jint) { subq(dst, value); return; }
  5701   if (value <  0) { incrementq(dst, -value); return; }
  5702   if (value == 0) {                        ; return; }
  5703   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5704   /* else */      { subq(dst, value)       ; return; }
  5707 void MacroAssembler::fat_nop() {
  5708   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  5709   // Recommened sequence from 'Software Optimization Guide for the AMD
  5710   // Hammer Processor'
  5711   emit_byte(0x66);
  5712   emit_byte(0x66);
  5713   emit_byte(0x90);
  5714   emit_byte(0x66);
  5715   emit_byte(0x90);
  5718 void MacroAssembler::incrementq(Register reg, int value) {
  5719   if (value == min_jint) { addq(reg, value); return; }
  5720   if (value <  0) { decrementq(reg, -value); return; }
  5721   if (value == 0) {                        ; return; }
  5722   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5723   /* else */      { addq(reg, value)       ; return; }
  5726 void MacroAssembler::incrementq(Address dst, int value) {
  5727   if (value == min_jint) { addq(dst, value); return; }
  5728   if (value <  0) { decrementq(dst, -value); return; }
  5729   if (value == 0) {                        ; return; }
  5730   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5731   /* else */      { addq(dst, value)       ; return; }
  5734 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5735 // to be installed in the Address class
  5736 void MacroAssembler::jump(ArrayAddress entry) {
  5737   lea(rscratch1, entry.base());
  5738   Address dispatch = entry.index();
  5739   assert(dispatch._base == noreg, "must be");
  5740   dispatch._base = rscratch1;
  5741   jmp(dispatch);
  5744 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5745   ShouldNotReachHere(); // 64bit doesn't use two regs
  5746   cmpq(x_lo, y_lo);
  5749 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5750     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5753 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5754   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5755   movptr(dst, rscratch1);
  5758 void MacroAssembler::leave() {
  5759   // %%% is this really better? Why not on 32bit too?
  5760   emit_byte(0xC9); // LEAVE
  5763 void MacroAssembler::lneg(Register hi, Register lo) {
  5764   ShouldNotReachHere(); // 64bit doesn't use two regs
  5765   negq(lo);
  5768 void MacroAssembler::movoop(Register dst, jobject obj) {
  5769   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5772 void MacroAssembler::movoop(Address dst, jobject obj) {
  5773   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5774   movq(dst, rscratch1);
  5777 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5778   if (src.is_lval()) {
  5779     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5780   } else {
  5781     if (reachable(src)) {
  5782       movq(dst, as_Address(src));
  5783     } else {
  5784       lea(rscratch1, src);
  5785       movq(dst, Address(rscratch1,0));
  5790 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5791   movq(as_Address(dst), src);
  5794 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5795   movq(dst, as_Address(src));
  5798 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5799 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5800   mov64(rscratch1, src);
  5801   movq(dst, rscratch1);
  5804 // These are mostly for initializing NULL
  5805 void MacroAssembler::movptr(Address dst, int32_t src) {
  5806   movslq(dst, src);
  5809 void MacroAssembler::movptr(Register dst, int32_t src) {
  5810   mov64(dst, (intptr_t)src);
  5813 void MacroAssembler::pushoop(jobject obj) {
  5814   movoop(rscratch1, obj);
  5815   push(rscratch1);
  5818 void MacroAssembler::pushptr(AddressLiteral src) {
  5819   lea(rscratch1, src);
  5820   if (src.is_lval()) {
  5821     push(rscratch1);
  5822   } else {
  5823     pushq(Address(rscratch1, 0));
  5827 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5828                                            bool clear_pc) {
  5829   // we must set sp to zero to clear frame
  5830   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  5831   // must clear fp, so that compiled frames are not confused; it is
  5832   // possible that we need it only for debugging
  5833   if (clear_fp) {
  5834     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  5837   if (clear_pc) {
  5838     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  5842 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  5843                                          Register last_java_fp,
  5844                                          address  last_java_pc) {
  5845   // determine last_java_sp register
  5846   if (!last_java_sp->is_valid()) {
  5847     last_java_sp = rsp;
  5850   // last_java_fp is optional
  5851   if (last_java_fp->is_valid()) {
  5852     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  5853            last_java_fp);
  5856   // last_java_pc is optional
  5857   if (last_java_pc != NULL) {
  5858     Address java_pc(r15_thread,
  5859                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  5860     lea(rscratch1, InternalAddress(last_java_pc));
  5861     movptr(java_pc, rscratch1);
  5864   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  5867 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5868   if (c_rarg0 != arg ) {
  5869     masm->mov(c_rarg0, arg);
  5873 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5874   if (c_rarg1 != arg ) {
  5875     masm->mov(c_rarg1, arg);
  5879 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5880   if (c_rarg2 != arg ) {
  5881     masm->mov(c_rarg2, arg);
  5885 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5886   if (c_rarg3 != arg ) {
  5887     masm->mov(c_rarg3, arg);
  5891 void MacroAssembler::stop(const char* msg) {
  5892   address rip = pc();
  5893   pusha(); // get regs on stack
  5894   lea(c_rarg0, ExternalAddress((address) msg));
  5895   lea(c_rarg1, InternalAddress(rip));
  5896   movq(c_rarg2, rsp); // pass pointer to regs array
  5897   andq(rsp, -16); // align stack as required by ABI
  5898   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  5899   hlt();
  5902 void MacroAssembler::warn(const char* msg) {
  5903   push(rsp);
  5904   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  5906   push_CPU_state();   // keeps alignment at 16 bytes
  5907   lea(c_rarg0, ExternalAddress((address) msg));
  5908   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  5909   pop_CPU_state();
  5910   pop(rsp);
  5913 #ifndef PRODUCT
  5914 extern "C" void findpc(intptr_t x);
  5915 #endif
  5917 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  5918   // In order to get locks to work, we need to fake a in_VM state
  5919   if (ShowMessageBoxOnError ) {
  5920     JavaThread* thread = JavaThread::current();
  5921     JavaThreadState saved_state = thread->thread_state();
  5922     thread->set_thread_state(_thread_in_vm);
  5923 #ifndef PRODUCT
  5924     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5925       ttyLocker ttyl;
  5926       BytecodeCounter::print();
  5928 #endif
  5929     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5930     // XXX correct this offset for amd64
  5931     // This is the value of eip which points to where verify_oop will return.
  5932     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5933       ttyLocker ttyl;
  5934       tty->print_cr("rip = 0x%016lx", pc);
  5935 #ifndef PRODUCT
  5936       tty->cr();
  5937       findpc(pc);
  5938       tty->cr();
  5939 #endif
  5940       tty->print_cr("rax = 0x%016lx", regs[15]);
  5941       tty->print_cr("rbx = 0x%016lx", regs[12]);
  5942       tty->print_cr("rcx = 0x%016lx", regs[14]);
  5943       tty->print_cr("rdx = 0x%016lx", regs[13]);
  5944       tty->print_cr("rdi = 0x%016lx", regs[8]);
  5945       tty->print_cr("rsi = 0x%016lx", regs[9]);
  5946       tty->print_cr("rbp = 0x%016lx", regs[10]);
  5947       tty->print_cr("rsp = 0x%016lx", regs[11]);
  5948       tty->print_cr("r8  = 0x%016lx", regs[7]);
  5949       tty->print_cr("r9  = 0x%016lx", regs[6]);
  5950       tty->print_cr("r10 = 0x%016lx", regs[5]);
  5951       tty->print_cr("r11 = 0x%016lx", regs[4]);
  5952       tty->print_cr("r12 = 0x%016lx", regs[3]);
  5953       tty->print_cr("r13 = 0x%016lx", regs[2]);
  5954       tty->print_cr("r14 = 0x%016lx", regs[1]);
  5955       tty->print_cr("r15 = 0x%016lx", regs[0]);
  5956       BREAKPOINT;
  5958     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5959   } else {
  5960     ttyLocker ttyl;
  5961     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  5962                     msg);
  5963     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5967 #endif // _LP64
  5969 // Now versions that are common to 32/64 bit
  5971 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  5972   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  5975 void MacroAssembler::addptr(Register dst, Register src) {
  5976   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5979 void MacroAssembler::addptr(Address dst, Register src) {
  5980   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5983 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  5984   if (reachable(src)) {
  5985     Assembler::addsd(dst, as_Address(src));
  5986   } else {
  5987     lea(rscratch1, src);
  5988     Assembler::addsd(dst, Address(rscratch1, 0));
  5992 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  5993   if (reachable(src)) {
  5994     addss(dst, as_Address(src));
  5995   } else {
  5996     lea(rscratch1, src);
  5997     addss(dst, Address(rscratch1, 0));
  6001 void MacroAssembler::align(int modulus) {
  6002   if (offset() % modulus != 0) {
  6003     nop(modulus - (offset() % modulus));
  6007 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  6008   // Used in sign-masking with aligned address.
  6009   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6010   if (reachable(src)) {
  6011     Assembler::andpd(dst, as_Address(src));
  6012   } else {
  6013     lea(rscratch1, src);
  6014     Assembler::andpd(dst, Address(rscratch1, 0));
  6018 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  6019   // Used in sign-masking with aligned address.
  6020   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6021   if (reachable(src)) {
  6022     Assembler::andps(dst, as_Address(src));
  6023   } else {
  6024     lea(rscratch1, src);
  6025     Assembler::andps(dst, Address(rscratch1, 0));
  6029 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  6030   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  6033 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  6034   pushf();
  6035   if (os::is_MP())
  6036     lock();
  6037   incrementl(counter_addr);
  6038   popf();
  6041 // Writes to stack successive pages until offset reached to check for
  6042 // stack overflow + shadow pages.  This clobbers tmp.
  6043 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  6044   movptr(tmp, rsp);
  6045   // Bang stack for total size given plus shadow page size.
  6046   // Bang one page at a time because large size can bang beyond yellow and
  6047   // red zones.
  6048   Label loop;
  6049   bind(loop);
  6050   movl(Address(tmp, (-os::vm_page_size())), size );
  6051   subptr(tmp, os::vm_page_size());
  6052   subl(size, os::vm_page_size());
  6053   jcc(Assembler::greater, loop);
  6055   // Bang down shadow pages too.
  6056   // The -1 because we already subtracted 1 page.
  6057   for (int i = 0; i< StackShadowPages-1; i++) {
  6058     // this could be any sized move but this is can be a debugging crumb
  6059     // so the bigger the better.
  6060     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  6064 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  6065   assert(UseBiasedLocking, "why call this otherwise?");
  6067   // Check for biased locking unlock case, which is a no-op
  6068   // Note: we do not have to check the thread ID for two reasons.
  6069   // First, the interpreter checks for IllegalMonitorStateException at
  6070   // a higher level. Second, if the bias was revoked while we held the
  6071   // lock, the object could not be rebiased toward another thread, so
  6072   // the bias bit would be clear.
  6073   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  6074   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  6075   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  6076   jcc(Assembler::equal, done);
  6079 void MacroAssembler::c2bool(Register x) {
  6080   // implements x == 0 ? 0 : 1
  6081   // note: must only look at least-significant byte of x
  6082   //       since C-style booleans are stored in one byte
  6083   //       only! (was bug)
  6084   andl(x, 0xFF);
  6085   setb(Assembler::notZero, x);
  6088 // Wouldn't need if AddressLiteral version had new name
  6089 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  6090   Assembler::call(L, rtype);
  6093 void MacroAssembler::call(Register entry) {
  6094   Assembler::call(entry);
  6097 void MacroAssembler::call(AddressLiteral entry) {
  6098   if (reachable(entry)) {
  6099     Assembler::call_literal(entry.target(), entry.rspec());
  6100   } else {
  6101     lea(rscratch1, entry);
  6102     Assembler::call(rscratch1);
  6106 // Implementation of call_VM versions
  6108 void MacroAssembler::call_VM(Register oop_result,
  6109                              address entry_point,
  6110                              bool check_exceptions) {
  6111   Label C, E;
  6112   call(C, relocInfo::none);
  6113   jmp(E);
  6115   bind(C);
  6116   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  6117   ret(0);
  6119   bind(E);
  6122 void MacroAssembler::call_VM(Register oop_result,
  6123                              address entry_point,
  6124                              Register arg_1,
  6125                              bool check_exceptions) {
  6126   Label C, E;
  6127   call(C, relocInfo::none);
  6128   jmp(E);
  6130   bind(C);
  6131   pass_arg1(this, arg_1);
  6132   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  6133   ret(0);
  6135   bind(E);
  6138 void MacroAssembler::call_VM(Register oop_result,
  6139                              address entry_point,
  6140                              Register arg_1,
  6141                              Register arg_2,
  6142                              bool check_exceptions) {
  6143   Label C, E;
  6144   call(C, relocInfo::none);
  6145   jmp(E);
  6147   bind(C);
  6149   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6151   pass_arg2(this, arg_2);
  6152   pass_arg1(this, arg_1);
  6153   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  6154   ret(0);
  6156   bind(E);
  6159 void MacroAssembler::call_VM(Register oop_result,
  6160                              address entry_point,
  6161                              Register arg_1,
  6162                              Register arg_2,
  6163                              Register arg_3,
  6164                              bool check_exceptions) {
  6165   Label C, E;
  6166   call(C, relocInfo::none);
  6167   jmp(E);
  6169   bind(C);
  6171   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6172   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6173   pass_arg3(this, arg_3);
  6175   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6176   pass_arg2(this, arg_2);
  6178   pass_arg1(this, arg_1);
  6179   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  6180   ret(0);
  6182   bind(E);
  6185 void MacroAssembler::call_VM(Register oop_result,
  6186                              Register last_java_sp,
  6187                              address entry_point,
  6188                              int number_of_arguments,
  6189                              bool check_exceptions) {
  6190   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6191   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6194 void MacroAssembler::call_VM(Register oop_result,
  6195                              Register last_java_sp,
  6196                              address entry_point,
  6197                              Register arg_1,
  6198                              bool check_exceptions) {
  6199   pass_arg1(this, arg_1);
  6200   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6203 void MacroAssembler::call_VM(Register oop_result,
  6204                              Register last_java_sp,
  6205                              address entry_point,
  6206                              Register arg_1,
  6207                              Register arg_2,
  6208                              bool check_exceptions) {
  6210   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6211   pass_arg2(this, arg_2);
  6212   pass_arg1(this, arg_1);
  6213   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6216 void MacroAssembler::call_VM(Register oop_result,
  6217                              Register last_java_sp,
  6218                              address entry_point,
  6219                              Register arg_1,
  6220                              Register arg_2,
  6221                              Register arg_3,
  6222                              bool check_exceptions) {
  6223   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6224   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6225   pass_arg3(this, arg_3);
  6226   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6227   pass_arg2(this, arg_2);
  6228   pass_arg1(this, arg_1);
  6229   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6232 void MacroAssembler::super_call_VM(Register oop_result,
  6233                                    Register last_java_sp,
  6234                                    address entry_point,
  6235                                    int number_of_arguments,
  6236                                    bool check_exceptions) {
  6237   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6238   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6241 void MacroAssembler::super_call_VM(Register oop_result,
  6242                                    Register last_java_sp,
  6243                                    address entry_point,
  6244                                    Register arg_1,
  6245                                    bool check_exceptions) {
  6246   pass_arg1(this, arg_1);
  6247   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6250 void MacroAssembler::super_call_VM(Register oop_result,
  6251                                    Register last_java_sp,
  6252                                    address entry_point,
  6253                                    Register arg_1,
  6254                                    Register arg_2,
  6255                                    bool check_exceptions) {
  6257   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6258   pass_arg2(this, arg_2);
  6259   pass_arg1(this, arg_1);
  6260   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6263 void MacroAssembler::super_call_VM(Register oop_result,
  6264                                    Register last_java_sp,
  6265                                    address entry_point,
  6266                                    Register arg_1,
  6267                                    Register arg_2,
  6268                                    Register arg_3,
  6269                                    bool check_exceptions) {
  6270   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6271   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6272   pass_arg3(this, arg_3);
  6273   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6274   pass_arg2(this, arg_2);
  6275   pass_arg1(this, arg_1);
  6276   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6279 void MacroAssembler::call_VM_base(Register oop_result,
  6280                                   Register java_thread,
  6281                                   Register last_java_sp,
  6282                                   address  entry_point,
  6283                                   int      number_of_arguments,
  6284                                   bool     check_exceptions) {
  6285   // determine java_thread register
  6286   if (!java_thread->is_valid()) {
  6287 #ifdef _LP64
  6288     java_thread = r15_thread;
  6289 #else
  6290     java_thread = rdi;
  6291     get_thread(java_thread);
  6292 #endif // LP64
  6294   // determine last_java_sp register
  6295   if (!last_java_sp->is_valid()) {
  6296     last_java_sp = rsp;
  6298   // debugging support
  6299   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  6300   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  6301 #ifdef ASSERT
  6302   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  6303   // r12 is the heapbase.
  6304   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base");)
  6305 #endif // ASSERT
  6307   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  6308   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  6310   // push java thread (becomes first argument of C function)
  6312   NOT_LP64(push(java_thread); number_of_arguments++);
  6313   LP64_ONLY(mov(c_rarg0, r15_thread));
  6315   // set last Java frame before call
  6316   assert(last_java_sp != rbp, "can't use ebp/rbp");
  6318   // Only interpreter should have to set fp
  6319   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  6321   // do the call, remove parameters
  6322   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  6324   // restore the thread (cannot use the pushed argument since arguments
  6325   // may be overwritten by C code generated by an optimizing compiler);
  6326   // however can use the register value directly if it is callee saved.
  6327   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  6328     // rdi & rsi (also r15) are callee saved -> nothing to do
  6329 #ifdef ASSERT
  6330     guarantee(java_thread != rax, "change this code");
  6331     push(rax);
  6332     { Label L;
  6333       get_thread(rax);
  6334       cmpptr(java_thread, rax);
  6335       jcc(Assembler::equal, L);
  6336       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
  6337       bind(L);
  6339     pop(rax);
  6340 #endif
  6341   } else {
  6342     get_thread(java_thread);
  6344   // reset last Java frame
  6345   // Only interpreter should have to clear fp
  6346   reset_last_Java_frame(java_thread, true, false);
  6348 #ifndef CC_INTERP
  6349    // C++ interp handles this in the interpreter
  6350   check_and_handle_popframe(java_thread);
  6351   check_and_handle_earlyret(java_thread);
  6352 #endif /* CC_INTERP */
  6354   if (check_exceptions) {
  6355     // check for pending exceptions (java_thread is set upon return)
  6356     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  6357 #ifndef _LP64
  6358     jump_cc(Assembler::notEqual,
  6359             RuntimeAddress(StubRoutines::forward_exception_entry()));
  6360 #else
  6361     // This used to conditionally jump to forward_exception however it is
  6362     // possible if we relocate that the branch will not reach. So we must jump
  6363     // around so we can always reach
  6365     Label ok;
  6366     jcc(Assembler::equal, ok);
  6367     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  6368     bind(ok);
  6369 #endif // LP64
  6372   // get oop result if there is one and reset the value in the thread
  6373   if (oop_result->is_valid()) {
  6374     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  6375     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  6376     verify_oop(oop_result, "broken oop in call_VM_base");
  6380 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  6382   // Calculate the value for last_Java_sp
  6383   // somewhat subtle. call_VM does an intermediate call
  6384   // which places a return address on the stack just under the
  6385   // stack pointer as the user finsihed with it. This allows
  6386   // use to retrieve last_Java_pc from last_Java_sp[-1].
  6387   // On 32bit we then have to push additional args on the stack to accomplish
  6388   // the actual requested call. On 64bit call_VM only can use register args
  6389   // so the only extra space is the return address that call_VM created.
  6390   // This hopefully explains the calculations here.
  6392 #ifdef _LP64
  6393   // We've pushed one address, correct last_Java_sp
  6394   lea(rax, Address(rsp, wordSize));
  6395 #else
  6396   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  6397 #endif // LP64
  6399   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  6403 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  6404   call_VM_leaf_base(entry_point, number_of_arguments);
  6407 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  6408   pass_arg0(this, arg_0);
  6409   call_VM_leaf(entry_point, 1);
  6412 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6414   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6415   pass_arg1(this, arg_1);
  6416   pass_arg0(this, arg_0);
  6417   call_VM_leaf(entry_point, 2);
  6420 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6421   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6422   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6423   pass_arg2(this, arg_2);
  6424   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6425   pass_arg1(this, arg_1);
  6426   pass_arg0(this, arg_0);
  6427   call_VM_leaf(entry_point, 3);
  6430 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  6431   pass_arg0(this, arg_0);
  6432   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  6435 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6437   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6438   pass_arg1(this, arg_1);
  6439   pass_arg0(this, arg_0);
  6440   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  6443 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6444   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6445   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6446   pass_arg2(this, arg_2);
  6447   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6448   pass_arg1(this, arg_1);
  6449   pass_arg0(this, arg_0);
  6450   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  6453 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  6454   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  6455   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6456   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6457   pass_arg3(this, arg_3);
  6458   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6459   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6460   pass_arg2(this, arg_2);
  6461   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6462   pass_arg1(this, arg_1);
  6463   pass_arg0(this, arg_0);
  6464   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  6467 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  6470 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  6473 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  6474   if (reachable(src1)) {
  6475     cmpl(as_Address(src1), imm);
  6476   } else {
  6477     lea(rscratch1, src1);
  6478     cmpl(Address(rscratch1, 0), imm);
  6482 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  6483   assert(!src2.is_lval(), "use cmpptr");
  6484   if (reachable(src2)) {
  6485     cmpl(src1, as_Address(src2));
  6486   } else {
  6487     lea(rscratch1, src2);
  6488     cmpl(src1, Address(rscratch1, 0));
  6492 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  6493   Assembler::cmpl(src1, imm);
  6496 void MacroAssembler::cmp32(Register src1, Address src2) {
  6497   Assembler::cmpl(src1, src2);
  6500 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6501   ucomisd(opr1, opr2);
  6503   Label L;
  6504   if (unordered_is_less) {
  6505     movl(dst, -1);
  6506     jcc(Assembler::parity, L);
  6507     jcc(Assembler::below , L);
  6508     movl(dst, 0);
  6509     jcc(Assembler::equal , L);
  6510     increment(dst);
  6511   } else { // unordered is greater
  6512     movl(dst, 1);
  6513     jcc(Assembler::parity, L);
  6514     jcc(Assembler::above , L);
  6515     movl(dst, 0);
  6516     jcc(Assembler::equal , L);
  6517     decrementl(dst);
  6519   bind(L);
  6522 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6523   ucomiss(opr1, opr2);
  6525   Label L;
  6526   if (unordered_is_less) {
  6527     movl(dst, -1);
  6528     jcc(Assembler::parity, L);
  6529     jcc(Assembler::below , L);
  6530     movl(dst, 0);
  6531     jcc(Assembler::equal , L);
  6532     increment(dst);
  6533   } else { // unordered is greater
  6534     movl(dst, 1);
  6535     jcc(Assembler::parity, L);
  6536     jcc(Assembler::above , L);
  6537     movl(dst, 0);
  6538     jcc(Assembler::equal , L);
  6539     decrementl(dst);
  6541   bind(L);
  6545 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  6546   if (reachable(src1)) {
  6547     cmpb(as_Address(src1), imm);
  6548   } else {
  6549     lea(rscratch1, src1);
  6550     cmpb(Address(rscratch1, 0), imm);
  6554 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  6555 #ifdef _LP64
  6556   if (src2.is_lval()) {
  6557     movptr(rscratch1, src2);
  6558     Assembler::cmpq(src1, rscratch1);
  6559   } else if (reachable(src2)) {
  6560     cmpq(src1, as_Address(src2));
  6561   } else {
  6562     lea(rscratch1, src2);
  6563     Assembler::cmpq(src1, Address(rscratch1, 0));
  6565 #else
  6566   if (src2.is_lval()) {
  6567     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6568   } else {
  6569     cmpl(src1, as_Address(src2));
  6571 #endif // _LP64
  6574 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  6575   assert(src2.is_lval(), "not a mem-mem compare");
  6576 #ifdef _LP64
  6577   // moves src2's literal address
  6578   movptr(rscratch1, src2);
  6579   Assembler::cmpq(src1, rscratch1);
  6580 #else
  6581   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6582 #endif // _LP64
  6585 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  6586   if (reachable(adr)) {
  6587     if (os::is_MP())
  6588       lock();
  6589     cmpxchgptr(reg, as_Address(adr));
  6590   } else {
  6591     lea(rscratch1, adr);
  6592     if (os::is_MP())
  6593       lock();
  6594     cmpxchgptr(reg, Address(rscratch1, 0));
  6598 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  6599   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  6602 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  6603   if (reachable(src)) {
  6604     Assembler::comisd(dst, as_Address(src));
  6605   } else {
  6606     lea(rscratch1, src);
  6607     Assembler::comisd(dst, Address(rscratch1, 0));
  6611 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  6612   if (reachable(src)) {
  6613     Assembler::comiss(dst, as_Address(src));
  6614   } else {
  6615     lea(rscratch1, src);
  6616     Assembler::comiss(dst, Address(rscratch1, 0));
  6621 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  6622   Condition negated_cond = negate_condition(cond);
  6623   Label L;
  6624   jcc(negated_cond, L);
  6625   atomic_incl(counter_addr);
  6626   bind(L);
  6629 int MacroAssembler::corrected_idivl(Register reg) {
  6630   // Full implementation of Java idiv and irem; checks for
  6631   // special case as described in JVM spec., p.243 & p.271.
  6632   // The function returns the (pc) offset of the idivl
  6633   // instruction - may be needed for implicit exceptions.
  6634   //
  6635   //         normal case                           special case
  6636   //
  6637   // input : rax,: dividend                         min_int
  6638   //         reg: divisor   (may not be rax,/rdx)   -1
  6639   //
  6640   // output: rax,: quotient  (= rax, idiv reg)       min_int
  6641   //         rdx: remainder (= rax, irem reg)       0
  6642   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  6643   const int min_int = 0x80000000;
  6644   Label normal_case, special_case;
  6646   // check for special case
  6647   cmpl(rax, min_int);
  6648   jcc(Assembler::notEqual, normal_case);
  6649   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  6650   cmpl(reg, -1);
  6651   jcc(Assembler::equal, special_case);
  6653   // handle normal case
  6654   bind(normal_case);
  6655   cdql();
  6656   int idivl_offset = offset();
  6657   idivl(reg);
  6659   // normal and special case exit
  6660   bind(special_case);
  6662   return idivl_offset;
  6667 void MacroAssembler::decrementl(Register reg, int value) {
  6668   if (value == min_jint) {subl(reg, value) ; return; }
  6669   if (value <  0) { incrementl(reg, -value); return; }
  6670   if (value == 0) {                        ; return; }
  6671   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  6672   /* else */      { subl(reg, value)       ; return; }
  6675 void MacroAssembler::decrementl(Address dst, int value) {
  6676   if (value == min_jint) {subl(dst, value) ; return; }
  6677   if (value <  0) { incrementl(dst, -value); return; }
  6678   if (value == 0) {                        ; return; }
  6679   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  6680   /* else */      { subl(dst, value)       ; return; }
  6683 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  6684   assert (shift_value > 0, "illegal shift value");
  6685   Label _is_positive;
  6686   testl (reg, reg);
  6687   jcc (Assembler::positive, _is_positive);
  6688   int offset = (1 << shift_value) - 1 ;
  6690   if (offset == 1) {
  6691     incrementl(reg);
  6692   } else {
  6693     addl(reg, offset);
  6696   bind (_is_positive);
  6697   sarl(reg, shift_value);
  6700 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  6701   if (reachable(src)) {
  6702     Assembler::divsd(dst, as_Address(src));
  6703   } else {
  6704     lea(rscratch1, src);
  6705     Assembler::divsd(dst, Address(rscratch1, 0));
  6709 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  6710   if (reachable(src)) {
  6711     Assembler::divss(dst, as_Address(src));
  6712   } else {
  6713     lea(rscratch1, src);
  6714     Assembler::divss(dst, Address(rscratch1, 0));
  6718 // !defined(COMPILER2) is because of stupid core builds
  6719 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  6720 void MacroAssembler::empty_FPU_stack() {
  6721   if (VM_Version::supports_mmx()) {
  6722     emms();
  6723   } else {
  6724     for (int i = 8; i-- > 0; ) ffree(i);
  6727 #endif // !LP64 || C1 || !C2
  6730 // Defines obj, preserves var_size_in_bytes
  6731 void MacroAssembler::eden_allocate(Register obj,
  6732                                    Register var_size_in_bytes,
  6733                                    int con_size_in_bytes,
  6734                                    Register t1,
  6735                                    Label& slow_case) {
  6736   assert(obj == rax, "obj must be in rax, for cmpxchg");
  6737   assert_different_registers(obj, var_size_in_bytes, t1);
  6738   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6739     jmp(slow_case);
  6740   } else {
  6741     Register end = t1;
  6742     Label retry;
  6743     bind(retry);
  6744     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  6745     movptr(obj, heap_top);
  6746     if (var_size_in_bytes == noreg) {
  6747       lea(end, Address(obj, con_size_in_bytes));
  6748     } else {
  6749       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6751     // if end < obj then we wrapped around => object too long => slow case
  6752     cmpptr(end, obj);
  6753     jcc(Assembler::below, slow_case);
  6754     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  6755     jcc(Assembler::above, slow_case);
  6756     // Compare obj with the top addr, and if still equal, store the new top addr in
  6757     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  6758     // it otherwise. Use lock prefix for atomicity on MPs.
  6759     locked_cmpxchgptr(end, heap_top);
  6760     jcc(Assembler::notEqual, retry);
  6764 void MacroAssembler::enter() {
  6765   push(rbp);
  6766   mov(rbp, rsp);
  6769 void MacroAssembler::fcmp(Register tmp) {
  6770   fcmp(tmp, 1, true, true);
  6773 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  6774   assert(!pop_right || pop_left, "usage error");
  6775   if (VM_Version::supports_cmov()) {
  6776     assert(tmp == noreg, "unneeded temp");
  6777     if (pop_left) {
  6778       fucomip(index);
  6779     } else {
  6780       fucomi(index);
  6782     if (pop_right) {
  6783       fpop();
  6785   } else {
  6786     assert(tmp != noreg, "need temp");
  6787     if (pop_left) {
  6788       if (pop_right) {
  6789         fcompp();
  6790       } else {
  6791         fcomp(index);
  6793     } else {
  6794       fcom(index);
  6796     // convert FPU condition into eflags condition via rax,
  6797     save_rax(tmp);
  6798     fwait(); fnstsw_ax();
  6799     sahf();
  6800     restore_rax(tmp);
  6802   // condition codes set as follows:
  6803   //
  6804   // CF (corresponds to C0) if x < y
  6805   // PF (corresponds to C2) if unordered
  6806   // ZF (corresponds to C3) if x = y
  6809 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  6810   fcmp2int(dst, unordered_is_less, 1, true, true);
  6813 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  6814   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  6815   Label L;
  6816   if (unordered_is_less) {
  6817     movl(dst, -1);
  6818     jcc(Assembler::parity, L);
  6819     jcc(Assembler::below , L);
  6820     movl(dst, 0);
  6821     jcc(Assembler::equal , L);
  6822     increment(dst);
  6823   } else { // unordered is greater
  6824     movl(dst, 1);
  6825     jcc(Assembler::parity, L);
  6826     jcc(Assembler::above , L);
  6827     movl(dst, 0);
  6828     jcc(Assembler::equal , L);
  6829     decrementl(dst);
  6831   bind(L);
  6834 void MacroAssembler::fld_d(AddressLiteral src) {
  6835   fld_d(as_Address(src));
  6838 void MacroAssembler::fld_s(AddressLiteral src) {
  6839   fld_s(as_Address(src));
  6842 void MacroAssembler::fld_x(AddressLiteral src) {
  6843   Assembler::fld_x(as_Address(src));
  6846 void MacroAssembler::fldcw(AddressLiteral src) {
  6847   Assembler::fldcw(as_Address(src));
  6850 void MacroAssembler::fpop() {
  6851   ffree();
  6852   fincstp();
  6855 void MacroAssembler::fremr(Register tmp) {
  6856   save_rax(tmp);
  6857   { Label L;
  6858     bind(L);
  6859     fprem();
  6860     fwait(); fnstsw_ax();
  6861 #ifdef _LP64
  6862     testl(rax, 0x400);
  6863     jcc(Assembler::notEqual, L);
  6864 #else
  6865     sahf();
  6866     jcc(Assembler::parity, L);
  6867 #endif // _LP64
  6869   restore_rax(tmp);
  6870   // Result is in ST0.
  6871   // Note: fxch & fpop to get rid of ST1
  6872   // (otherwise FPU stack could overflow eventually)
  6873   fxch(1);
  6874   fpop();
  6878 void MacroAssembler::incrementl(AddressLiteral dst) {
  6879   if (reachable(dst)) {
  6880     incrementl(as_Address(dst));
  6881   } else {
  6882     lea(rscratch1, dst);
  6883     incrementl(Address(rscratch1, 0));
  6887 void MacroAssembler::incrementl(ArrayAddress dst) {
  6888   incrementl(as_Address(dst));
  6891 void MacroAssembler::incrementl(Register reg, int value) {
  6892   if (value == min_jint) {addl(reg, value) ; return; }
  6893   if (value <  0) { decrementl(reg, -value); return; }
  6894   if (value == 0) {                        ; return; }
  6895   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  6896   /* else */      { addl(reg, value)       ; return; }
  6899 void MacroAssembler::incrementl(Address dst, int value) {
  6900   if (value == min_jint) {addl(dst, value) ; return; }
  6901   if (value <  0) { decrementl(dst, -value); return; }
  6902   if (value == 0) {                        ; return; }
  6903   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  6904   /* else */      { addl(dst, value)       ; return; }
  6907 void MacroAssembler::jump(AddressLiteral dst) {
  6908   if (reachable(dst)) {
  6909     jmp_literal(dst.target(), dst.rspec());
  6910   } else {
  6911     lea(rscratch1, dst);
  6912     jmp(rscratch1);
  6916 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  6917   if (reachable(dst)) {
  6918     InstructionMark im(this);
  6919     relocate(dst.reloc());
  6920     const int short_size = 2;
  6921     const int long_size = 6;
  6922     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  6923     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  6924       // 0111 tttn #8-bit disp
  6925       emit_byte(0x70 | cc);
  6926       emit_byte((offs - short_size) & 0xFF);
  6927     } else {
  6928       // 0000 1111 1000 tttn #32-bit disp
  6929       emit_byte(0x0F);
  6930       emit_byte(0x80 | cc);
  6931       emit_long(offs - long_size);
  6933   } else {
  6934 #ifdef ASSERT
  6935     warning("reversing conditional branch");
  6936 #endif /* ASSERT */
  6937     Label skip;
  6938     jccb(reverse[cc], skip);
  6939     lea(rscratch1, dst);
  6940     Assembler::jmp(rscratch1);
  6941     bind(skip);
  6945 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  6946   if (reachable(src)) {
  6947     Assembler::ldmxcsr(as_Address(src));
  6948   } else {
  6949     lea(rscratch1, src);
  6950     Assembler::ldmxcsr(Address(rscratch1, 0));
  6954 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  6955   int off;
  6956   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6957     off = offset();
  6958     movsbl(dst, src); // movsxb
  6959   } else {
  6960     off = load_unsigned_byte(dst, src);
  6961     shll(dst, 24);
  6962     sarl(dst, 24);
  6964   return off;
  6967 // Note: load_signed_short used to be called load_signed_word.
  6968 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  6969 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  6970 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  6971 int MacroAssembler::load_signed_short(Register dst, Address src) {
  6972   int off;
  6973   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6974     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  6975     // version but this is what 64bit has always done. This seems to imply
  6976     // that users are only using 32bits worth.
  6977     off = offset();
  6978     movswl(dst, src); // movsxw
  6979   } else {
  6980     off = load_unsigned_short(dst, src);
  6981     shll(dst, 16);
  6982     sarl(dst, 16);
  6984   return off;
  6987 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  6988   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6989   // and "3.9 Partial Register Penalties", p. 22).
  6990   int off;
  6991   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  6992     off = offset();
  6993     movzbl(dst, src); // movzxb
  6994   } else {
  6995     xorl(dst, dst);
  6996     off = offset();
  6997     movb(dst, src);
  6999   return off;
  7002 // Note: load_unsigned_short used to be called load_unsigned_word.
  7003 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  7004   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7005   // and "3.9 Partial Register Penalties", p. 22).
  7006   int off;
  7007   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  7008     off = offset();
  7009     movzwl(dst, src); // movzxw
  7010   } else {
  7011     xorl(dst, dst);
  7012     off = offset();
  7013     movw(dst, src);
  7015   return off;
  7018 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  7019   switch (size_in_bytes) {
  7020 #ifndef _LP64
  7021   case  8:
  7022     assert(dst2 != noreg, "second dest register required");
  7023     movl(dst,  src);
  7024     movl(dst2, src.plus_disp(BytesPerInt));
  7025     break;
  7026 #else
  7027   case  8:  movq(dst, src); break;
  7028 #endif
  7029   case  4:  movl(dst, src); break;
  7030   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  7031   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  7032   default:  ShouldNotReachHere();
  7036 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  7037   switch (size_in_bytes) {
  7038 #ifndef _LP64
  7039   case  8:
  7040     assert(src2 != noreg, "second source register required");
  7041     movl(dst,                        src);
  7042     movl(dst.plus_disp(BytesPerInt), src2);
  7043     break;
  7044 #else
  7045   case  8:  movq(dst, src); break;
  7046 #endif
  7047   case  4:  movl(dst, src); break;
  7048   case  2:  movw(dst, src); break;
  7049   case  1:  movb(dst, src); break;
  7050   default:  ShouldNotReachHere();
  7054 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  7055   if (reachable(dst)) {
  7056     movl(as_Address(dst), src);
  7057   } else {
  7058     lea(rscratch1, dst);
  7059     movl(Address(rscratch1, 0), src);
  7063 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  7064   if (reachable(src)) {
  7065     movl(dst, as_Address(src));
  7066   } else {
  7067     lea(rscratch1, src);
  7068     movl(dst, Address(rscratch1, 0));
  7072 // C++ bool manipulation
  7074 void MacroAssembler::movbool(Register dst, Address src) {
  7075   if(sizeof(bool) == 1)
  7076     movb(dst, src);
  7077   else if(sizeof(bool) == 2)
  7078     movw(dst, src);
  7079   else if(sizeof(bool) == 4)
  7080     movl(dst, src);
  7081   else
  7082     // unsupported
  7083     ShouldNotReachHere();
  7086 void MacroAssembler::movbool(Address dst, bool boolconst) {
  7087   if(sizeof(bool) == 1)
  7088     movb(dst, (int) boolconst);
  7089   else if(sizeof(bool) == 2)
  7090     movw(dst, (int) boolconst);
  7091   else if(sizeof(bool) == 4)
  7092     movl(dst, (int) boolconst);
  7093   else
  7094     // unsupported
  7095     ShouldNotReachHere();
  7098 void MacroAssembler::movbool(Address dst, Register src) {
  7099   if(sizeof(bool) == 1)
  7100     movb(dst, src);
  7101   else if(sizeof(bool) == 2)
  7102     movw(dst, src);
  7103   else if(sizeof(bool) == 4)
  7104     movl(dst, src);
  7105   else
  7106     // unsupported
  7107     ShouldNotReachHere();
  7110 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  7111   movb(as_Address(dst), src);
  7114 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  7115   if (reachable(src)) {
  7116     if (UseXmmLoadAndClearUpper) {
  7117       movsd (dst, as_Address(src));
  7118     } else {
  7119       movlpd(dst, as_Address(src));
  7121   } else {
  7122     lea(rscratch1, src);
  7123     if (UseXmmLoadAndClearUpper) {
  7124       movsd (dst, Address(rscratch1, 0));
  7125     } else {
  7126       movlpd(dst, Address(rscratch1, 0));
  7131 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  7132   if (reachable(src)) {
  7133     movss(dst, as_Address(src));
  7134   } else {
  7135     lea(rscratch1, src);
  7136     movss(dst, Address(rscratch1, 0));
  7140 void MacroAssembler::movptr(Register dst, Register src) {
  7141   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7144 void MacroAssembler::movptr(Register dst, Address src) {
  7145   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7148 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  7149 void MacroAssembler::movptr(Register dst, intptr_t src) {
  7150   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  7153 void MacroAssembler::movptr(Address dst, Register src) {
  7154   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7157 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  7158   if (reachable(src)) {
  7159     Assembler::movsd(dst, as_Address(src));
  7160   } else {
  7161     lea(rscratch1, src);
  7162     Assembler::movsd(dst, Address(rscratch1, 0));
  7166 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  7167   if (reachable(src)) {
  7168     Assembler::movss(dst, as_Address(src));
  7169   } else {
  7170     lea(rscratch1, src);
  7171     Assembler::movss(dst, Address(rscratch1, 0));
  7175 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  7176   if (reachable(src)) {
  7177     Assembler::mulsd(dst, as_Address(src));
  7178   } else {
  7179     lea(rscratch1, src);
  7180     Assembler::mulsd(dst, Address(rscratch1, 0));
  7184 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  7185   if (reachable(src)) {
  7186     Assembler::mulss(dst, as_Address(src));
  7187   } else {
  7188     lea(rscratch1, src);
  7189     Assembler::mulss(dst, Address(rscratch1, 0));
  7193 void MacroAssembler::null_check(Register reg, int offset) {
  7194   if (needs_explicit_null_check(offset)) {
  7195     // provoke OS NULL exception if reg = NULL by
  7196     // accessing M[reg] w/o changing any (non-CC) registers
  7197     // NOTE: cmpl is plenty here to provoke a segv
  7198     cmpptr(rax, Address(reg, 0));
  7199     // Note: should probably use testl(rax, Address(reg, 0));
  7200     //       may be shorter code (however, this version of
  7201     //       testl needs to be implemented first)
  7202   } else {
  7203     // nothing to do, (later) access of M[reg + offset]
  7204     // will provoke OS NULL exception if reg = NULL
  7208 void MacroAssembler::os_breakpoint() {
  7209   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  7210   // (e.g., MSVC can't call ps() otherwise)
  7211   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  7214 void MacroAssembler::pop_CPU_state() {
  7215   pop_FPU_state();
  7216   pop_IU_state();
  7219 void MacroAssembler::pop_FPU_state() {
  7220   NOT_LP64(frstor(Address(rsp, 0));)
  7221   LP64_ONLY(fxrstor(Address(rsp, 0));)
  7222   addptr(rsp, FPUStateSizeInWords * wordSize);
  7225 void MacroAssembler::pop_IU_state() {
  7226   popa();
  7227   LP64_ONLY(addq(rsp, 8));
  7228   popf();
  7231 // Save Integer and Float state
  7232 // Warning: Stack must be 16 byte aligned (64bit)
  7233 void MacroAssembler::push_CPU_state() {
  7234   push_IU_state();
  7235   push_FPU_state();
  7238 void MacroAssembler::push_FPU_state() {
  7239   subptr(rsp, FPUStateSizeInWords * wordSize);
  7240 #ifndef _LP64
  7241   fnsave(Address(rsp, 0));
  7242   fwait();
  7243 #else
  7244   fxsave(Address(rsp, 0));
  7245 #endif // LP64
  7248 void MacroAssembler::push_IU_state() {
  7249   // Push flags first because pusha kills them
  7250   pushf();
  7251   // Make sure rsp stays 16-byte aligned
  7252   LP64_ONLY(subq(rsp, 8));
  7253   pusha();
  7256 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  7257   // determine java_thread register
  7258   if (!java_thread->is_valid()) {
  7259     java_thread = rdi;
  7260     get_thread(java_thread);
  7262   // we must set sp to zero to clear frame
  7263   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  7264   if (clear_fp) {
  7265     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  7268   if (clear_pc)
  7269     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  7273 void MacroAssembler::restore_rax(Register tmp) {
  7274   if (tmp == noreg) pop(rax);
  7275   else if (tmp != rax) mov(rax, tmp);
  7278 void MacroAssembler::round_to(Register reg, int modulus) {
  7279   addptr(reg, modulus - 1);
  7280   andptr(reg, -modulus);
  7283 void MacroAssembler::save_rax(Register tmp) {
  7284   if (tmp == noreg) push(rax);
  7285   else if (tmp != rax) mov(tmp, rax);
  7288 // Write serialization page so VM thread can do a pseudo remote membar.
  7289 // We use the current thread pointer to calculate a thread specific
  7290 // offset to write to within the page. This minimizes bus traffic
  7291 // due to cache line collision.
  7292 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  7293   movl(tmp, thread);
  7294   shrl(tmp, os::get_serialize_page_shift_count());
  7295   andl(tmp, (os::vm_page_size() - sizeof(int)));
  7297   Address index(noreg, tmp, Address::times_1);
  7298   ExternalAddress page(os::get_memory_serialize_page());
  7300   // Size of store must match masking code above
  7301   movl(as_Address(ArrayAddress(page, index)), tmp);
  7304 // Calls to C land
  7305 //
  7306 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  7307 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  7308 // has to be reset to 0. This is required to allow proper stack traversal.
  7309 void MacroAssembler::set_last_Java_frame(Register java_thread,
  7310                                          Register last_java_sp,
  7311                                          Register last_java_fp,
  7312                                          address  last_java_pc) {
  7313   // determine java_thread register
  7314   if (!java_thread->is_valid()) {
  7315     java_thread = rdi;
  7316     get_thread(java_thread);
  7318   // determine last_java_sp register
  7319   if (!last_java_sp->is_valid()) {
  7320     last_java_sp = rsp;
  7323   // last_java_fp is optional
  7325   if (last_java_fp->is_valid()) {
  7326     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  7329   // last_java_pc is optional
  7331   if (last_java_pc != NULL) {
  7332     lea(Address(java_thread,
  7333                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  7334         InternalAddress(last_java_pc));
  7337   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  7340 void MacroAssembler::shlptr(Register dst, int imm8) {
  7341   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  7344 void MacroAssembler::shrptr(Register dst, int imm8) {
  7345   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  7348 void MacroAssembler::sign_extend_byte(Register reg) {
  7349   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  7350     movsbl(reg, reg); // movsxb
  7351   } else {
  7352     shll(reg, 24);
  7353     sarl(reg, 24);
  7357 void MacroAssembler::sign_extend_short(Register reg) {
  7358   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7359     movswl(reg, reg); // movsxw
  7360   } else {
  7361     shll(reg, 16);
  7362     sarl(reg, 16);
  7366 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  7367   assert(reachable(src), "Address should be reachable");
  7368   testl(dst, as_Address(src));
  7371 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  7372   if (reachable(src)) {
  7373     Assembler::sqrtsd(dst, as_Address(src));
  7374   } else {
  7375     lea(rscratch1, src);
  7376     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  7380 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  7381   if (reachable(src)) {
  7382     Assembler::sqrtss(dst, as_Address(src));
  7383   } else {
  7384     lea(rscratch1, src);
  7385     Assembler::sqrtss(dst, Address(rscratch1, 0));
  7389 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  7390   if (reachable(src)) {
  7391     Assembler::subsd(dst, as_Address(src));
  7392   } else {
  7393     lea(rscratch1, src);
  7394     Assembler::subsd(dst, Address(rscratch1, 0));
  7398 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  7399   if (reachable(src)) {
  7400     Assembler::subss(dst, as_Address(src));
  7401   } else {
  7402     lea(rscratch1, src);
  7403     Assembler::subss(dst, Address(rscratch1, 0));
  7407 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7408   if (reachable(src)) {
  7409     Assembler::ucomisd(dst, as_Address(src));
  7410   } else {
  7411     lea(rscratch1, src);
  7412     Assembler::ucomisd(dst, Address(rscratch1, 0));
  7416 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7417   if (reachable(src)) {
  7418     Assembler::ucomiss(dst, as_Address(src));
  7419   } else {
  7420     lea(rscratch1, src);
  7421     Assembler::ucomiss(dst, Address(rscratch1, 0));
  7425 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7426   // Used in sign-bit flipping with aligned address.
  7427   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  7428   if (reachable(src)) {
  7429     Assembler::xorpd(dst, as_Address(src));
  7430   } else {
  7431     lea(rscratch1, src);
  7432     Assembler::xorpd(dst, Address(rscratch1, 0));
  7436 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7437   // Used in sign-bit flipping with aligned address.
  7438   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  7439   if (reachable(src)) {
  7440     Assembler::xorps(dst, as_Address(src));
  7441   } else {
  7442     lea(rscratch1, src);
  7443     Assembler::xorps(dst, Address(rscratch1, 0));
  7447 // AVX 3-operands instructions
  7449 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7450   if (reachable(src)) {
  7451     vaddsd(dst, nds, as_Address(src));
  7452   } else {
  7453     lea(rscratch1, src);
  7454     vaddsd(dst, nds, Address(rscratch1, 0));
  7458 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7459   if (reachable(src)) {
  7460     vaddss(dst, nds, as_Address(src));
  7461   } else {
  7462     lea(rscratch1, src);
  7463     vaddss(dst, nds, Address(rscratch1, 0));
  7467 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7468   if (reachable(src)) {
  7469     vandpd(dst, nds, as_Address(src));
  7470   } else {
  7471     lea(rscratch1, src);
  7472     vandpd(dst, nds, Address(rscratch1, 0));
  7476 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7477   if (reachable(src)) {
  7478     vandps(dst, nds, as_Address(src));
  7479   } else {
  7480     lea(rscratch1, src);
  7481     vandps(dst, nds, Address(rscratch1, 0));
  7485 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7486   if (reachable(src)) {
  7487     vdivsd(dst, nds, as_Address(src));
  7488   } else {
  7489     lea(rscratch1, src);
  7490     vdivsd(dst, nds, Address(rscratch1, 0));
  7494 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7495   if (reachable(src)) {
  7496     vdivss(dst, nds, as_Address(src));
  7497   } else {
  7498     lea(rscratch1, src);
  7499     vdivss(dst, nds, Address(rscratch1, 0));
  7503 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7504   if (reachable(src)) {
  7505     vmulsd(dst, nds, as_Address(src));
  7506   } else {
  7507     lea(rscratch1, src);
  7508     vmulsd(dst, nds, Address(rscratch1, 0));
  7512 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7513   if (reachable(src)) {
  7514     vmulss(dst, nds, as_Address(src));
  7515   } else {
  7516     lea(rscratch1, src);
  7517     vmulss(dst, nds, Address(rscratch1, 0));
  7521 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7522   if (reachable(src)) {
  7523     vsubsd(dst, nds, as_Address(src));
  7524   } else {
  7525     lea(rscratch1, src);
  7526     vsubsd(dst, nds, Address(rscratch1, 0));
  7530 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7531   if (reachable(src)) {
  7532     vsubss(dst, nds, as_Address(src));
  7533   } else {
  7534     lea(rscratch1, src);
  7535     vsubss(dst, nds, Address(rscratch1, 0));
  7539 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7540   if (reachable(src)) {
  7541     vxorpd(dst, nds, as_Address(src));
  7542   } else {
  7543     lea(rscratch1, src);
  7544     vxorpd(dst, nds, Address(rscratch1, 0));
  7548 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7549   if (reachable(src)) {
  7550     vxorps(dst, nds, as_Address(src));
  7551   } else {
  7552     lea(rscratch1, src);
  7553     vxorps(dst, nds, Address(rscratch1, 0));
  7558 //////////////////////////////////////////////////////////////////////////////////
  7559 #ifndef SERIALGC
  7561 void MacroAssembler::g1_write_barrier_pre(Register obj,
  7562                                           Register pre_val,
  7563                                           Register thread,
  7564                                           Register tmp,
  7565                                           bool tosca_live,
  7566                                           bool expand_call) {
  7568   // If expand_call is true then we expand the call_VM_leaf macro
  7569   // directly to skip generating the check by
  7570   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  7572 #ifdef _LP64
  7573   assert(thread == r15_thread, "must be");
  7574 #endif // _LP64
  7576   Label done;
  7577   Label runtime;
  7579   assert(pre_val != noreg, "check this code");
  7581   if (obj != noreg) {
  7582     assert_different_registers(obj, pre_val, tmp);
  7583     assert(pre_val != rax, "check this code");
  7586   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7587                                        PtrQueue::byte_offset_of_active()));
  7588   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7589                                        PtrQueue::byte_offset_of_index()));
  7590   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7591                                        PtrQueue::byte_offset_of_buf()));
  7594   // Is marking active?
  7595   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  7596     cmpl(in_progress, 0);
  7597   } else {
  7598     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  7599     cmpb(in_progress, 0);
  7601   jcc(Assembler::equal, done);
  7603   // Do we need to load the previous value?
  7604   if (obj != noreg) {
  7605     load_heap_oop(pre_val, Address(obj, 0));
  7608   // Is the previous value null?
  7609   cmpptr(pre_val, (int32_t) NULL_WORD);
  7610   jcc(Assembler::equal, done);
  7612   // Can we store original value in the thread's buffer?
  7613   // Is index == 0?
  7614   // (The index field is typed as size_t.)
  7616   movptr(tmp, index);                   // tmp := *index_adr
  7617   cmpptr(tmp, 0);                       // tmp == 0?
  7618   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  7620   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  7621   movptr(index, tmp);                   // *index_adr := tmp
  7622   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  7624   // Record the previous value
  7625   movptr(Address(tmp, 0), pre_val);
  7626   jmp(done);
  7628   bind(runtime);
  7629   // save the live input values
  7630   if(tosca_live) push(rax);
  7632   if (obj != noreg && obj != rax)
  7633     push(obj);
  7635   if (pre_val != rax)
  7636     push(pre_val);
  7638   // Calling the runtime using the regular call_VM_leaf mechanism generates
  7639   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  7640   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  7641   //
  7642   // If we care generating the pre-barrier without a frame (e.g. in the
  7643   // intrinsified Reference.get() routine) then ebp might be pointing to
  7644   // the caller frame and so this check will most likely fail at runtime.
  7645   //
  7646   // Expanding the call directly bypasses the generation of the check.
  7647   // So when we do not have have a full interpreter frame on the stack
  7648   // expand_call should be passed true.
  7650   NOT_LP64( push(thread); )
  7652   if (expand_call) {
  7653     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  7654     pass_arg1(this, thread);
  7655     pass_arg0(this, pre_val);
  7656     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  7657   } else {
  7658     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  7661   NOT_LP64( pop(thread); )
  7663   // save the live input values
  7664   if (pre_val != rax)
  7665     pop(pre_val);
  7667   if (obj != noreg && obj != rax)
  7668     pop(obj);
  7670   if(tosca_live) pop(rax);
  7672   bind(done);
  7675 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  7676                                            Register new_val,
  7677                                            Register thread,
  7678                                            Register tmp,
  7679                                            Register tmp2) {
  7680 #ifdef _LP64
  7681   assert(thread == r15_thread, "must be");
  7682 #endif // _LP64
  7684   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  7685                                        PtrQueue::byte_offset_of_index()));
  7686   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  7687                                        PtrQueue::byte_offset_of_buf()));
  7689   BarrierSet* bs = Universe::heap()->barrier_set();
  7690   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  7691   Label done;
  7692   Label runtime;
  7694   // Does store cross heap regions?
  7696   movptr(tmp, store_addr);
  7697   xorptr(tmp, new_val);
  7698   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  7699   jcc(Assembler::equal, done);
  7701   // crosses regions, storing NULL?
  7703   cmpptr(new_val, (int32_t) NULL_WORD);
  7704   jcc(Assembler::equal, done);
  7706   // storing region crossing non-NULL, is card already dirty?
  7708   ExternalAddress cardtable((address) ct->byte_map_base);
  7709   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  7710 #ifdef _LP64
  7711   const Register card_addr = tmp;
  7713   movq(card_addr, store_addr);
  7714   shrq(card_addr, CardTableModRefBS::card_shift);
  7716   lea(tmp2, cardtable);
  7718   // get the address of the card
  7719   addq(card_addr, tmp2);
  7720 #else
  7721   const Register card_index = tmp;
  7723   movl(card_index, store_addr);
  7724   shrl(card_index, CardTableModRefBS::card_shift);
  7726   Address index(noreg, card_index, Address::times_1);
  7727   const Register card_addr = tmp;
  7728   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  7729 #endif
  7730   cmpb(Address(card_addr, 0), 0);
  7731   jcc(Assembler::equal, done);
  7733   // storing a region crossing, non-NULL oop, card is clean.
  7734   // dirty card and log.
  7736   movb(Address(card_addr, 0), 0);
  7738   cmpl(queue_index, 0);
  7739   jcc(Assembler::equal, runtime);
  7740   subl(queue_index, wordSize);
  7741   movptr(tmp2, buffer);
  7742 #ifdef _LP64
  7743   movslq(rscratch1, queue_index);
  7744   addq(tmp2, rscratch1);
  7745   movq(Address(tmp2, 0), card_addr);
  7746 #else
  7747   addl(tmp2, queue_index);
  7748   movl(Address(tmp2, 0), card_index);
  7749 #endif
  7750   jmp(done);
  7752   bind(runtime);
  7753   // save the live input values
  7754   push(store_addr);
  7755   push(new_val);
  7756 #ifdef _LP64
  7757   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  7758 #else
  7759   push(thread);
  7760   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  7761   pop(thread);
  7762 #endif
  7763   pop(new_val);
  7764   pop(store_addr);
  7766   bind(done);
  7769 #endif // SERIALGC
  7770 //////////////////////////////////////////////////////////////////////////////////
  7773 void MacroAssembler::store_check(Register obj) {
  7774   // Does a store check for the oop in register obj. The content of
  7775   // register obj is destroyed afterwards.
  7776   store_check_part_1(obj);
  7777   store_check_part_2(obj);
  7780 void MacroAssembler::store_check(Register obj, Address dst) {
  7781   store_check(obj);
  7785 // split the store check operation so that other instructions can be scheduled inbetween
  7786 void MacroAssembler::store_check_part_1(Register obj) {
  7787   BarrierSet* bs = Universe::heap()->barrier_set();
  7788   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  7789   shrptr(obj, CardTableModRefBS::card_shift);
  7792 void MacroAssembler::store_check_part_2(Register obj) {
  7793   BarrierSet* bs = Universe::heap()->barrier_set();
  7794   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  7795   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  7796   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  7798   // The calculation for byte_map_base is as follows:
  7799   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  7800   // So this essentially converts an address to a displacement and
  7801   // it will never need to be relocated. On 64bit however the value may be too
  7802   // large for a 32bit displacement
  7804   intptr_t disp = (intptr_t) ct->byte_map_base;
  7805   if (is_simm32(disp)) {
  7806     Address cardtable(noreg, obj, Address::times_1, disp);
  7807     movb(cardtable, 0);
  7808   } else {
  7809     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  7810     // displacement and done in a single instruction given favorable mapping and
  7811     // a smarter version of as_Address. Worst case it is two instructions which
  7812     // is no worse off then loading disp into a register and doing as a simple
  7813     // Address() as above.
  7814     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  7815     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  7816     // in some cases we'll get a single instruction version.
  7818     ExternalAddress cardtable((address)disp);
  7819     Address index(noreg, obj, Address::times_1);
  7820     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  7824 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  7825   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  7828 void MacroAssembler::subptr(Register dst, Register src) {
  7829   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  7832 // C++ bool manipulation
  7833 void MacroAssembler::testbool(Register dst) {
  7834   if(sizeof(bool) == 1)
  7835     testb(dst, 0xff);
  7836   else if(sizeof(bool) == 2) {
  7837     // testw implementation needed for two byte bools
  7838     ShouldNotReachHere();
  7839   } else if(sizeof(bool) == 4)
  7840     testl(dst, dst);
  7841   else
  7842     // unsupported
  7843     ShouldNotReachHere();
  7846 void MacroAssembler::testptr(Register dst, Register src) {
  7847   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  7850 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  7851 void MacroAssembler::tlab_allocate(Register obj,
  7852                                    Register var_size_in_bytes,
  7853                                    int con_size_in_bytes,
  7854                                    Register t1,
  7855                                    Register t2,
  7856                                    Label& slow_case) {
  7857   assert_different_registers(obj, t1, t2);
  7858   assert_different_registers(obj, var_size_in_bytes, t1);
  7859   Register end = t2;
  7860   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  7862   verify_tlab();
  7864   NOT_LP64(get_thread(thread));
  7866   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  7867   if (var_size_in_bytes == noreg) {
  7868     lea(end, Address(obj, con_size_in_bytes));
  7869   } else {
  7870     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7872   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  7873   jcc(Assembler::above, slow_case);
  7875   // update the tlab top pointer
  7876   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  7878   // recover var_size_in_bytes if necessary
  7879   if (var_size_in_bytes == end) {
  7880     subptr(var_size_in_bytes, obj);
  7882   verify_tlab();
  7885 // Preserves rbx, and rdx.
  7886 Register MacroAssembler::tlab_refill(Label& retry,
  7887                                      Label& try_eden,
  7888                                      Label& slow_case) {
  7889   Register top = rax;
  7890   Register t1  = rcx;
  7891   Register t2  = rsi;
  7892   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  7893   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  7894   Label do_refill, discard_tlab;
  7896   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7897     // No allocation in the shared eden.
  7898     jmp(slow_case);
  7901   NOT_LP64(get_thread(thread_reg));
  7903   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7904   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7906   // calculate amount of free space
  7907   subptr(t1, top);
  7908   shrptr(t1, LogHeapWordSize);
  7910   // Retain tlab and allocate object in shared space if
  7911   // the amount free in the tlab is too large to discard.
  7912   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  7913   jcc(Assembler::lessEqual, discard_tlab);
  7915   // Retain
  7916   // %%% yuck as movptr...
  7917   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  7918   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  7919   if (TLABStats) {
  7920     // increment number of slow_allocations
  7921     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  7923   jmp(try_eden);
  7925   bind(discard_tlab);
  7926   if (TLABStats) {
  7927     // increment number of refills
  7928     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  7929     // accumulate wastage -- t1 is amount free in tlab
  7930     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  7933   // if tlab is currently allocated (top or end != null) then
  7934   // fill [top, end + alignment_reserve) with array object
  7935   testptr(top, top);
  7936   jcc(Assembler::zero, do_refill);
  7938   // set up the mark word
  7939   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  7940   // set the length to the remaining space
  7941   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  7942   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  7943   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  7944   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  7945   // set klass to intArrayKlass
  7946   // dubious reloc why not an oop reloc?
  7947   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  7948   // store klass last.  concurrent gcs assumes klass length is valid if
  7949   // klass field is not null.
  7950   store_klass(top, t1);
  7952   movptr(t1, top);
  7953   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  7954   incr_allocated_bytes(thread_reg, t1, 0);
  7956   // refill the tlab with an eden allocation
  7957   bind(do_refill);
  7958   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7959   shlptr(t1, LogHeapWordSize);
  7960   // allocate new tlab, address returned in top
  7961   eden_allocate(top, t1, 0, t2, slow_case);
  7963   // Check that t1 was preserved in eden_allocate.
  7964 #ifdef ASSERT
  7965   if (UseTLAB) {
  7966     Label ok;
  7967     Register tsize = rsi;
  7968     assert_different_registers(tsize, thread_reg, t1);
  7969     push(tsize);
  7970     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7971     shlptr(tsize, LogHeapWordSize);
  7972     cmpptr(t1, tsize);
  7973     jcc(Assembler::equal, ok);
  7974     stop("assert(t1 != tlab size)");
  7975     should_not_reach_here();
  7977     bind(ok);
  7978     pop(tsize);
  7980 #endif
  7981   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  7982   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  7983   addptr(top, t1);
  7984   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  7985   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  7986   verify_tlab();
  7987   jmp(retry);
  7989   return thread_reg; // for use by caller
  7992 void MacroAssembler::incr_allocated_bytes(Register thread,
  7993                                           Register var_size_in_bytes,
  7994                                           int con_size_in_bytes,
  7995                                           Register t1) {
  7996   if (!thread->is_valid()) {
  7997 #ifdef _LP64
  7998     thread = r15_thread;
  7999 #else
  8000     assert(t1->is_valid(), "need temp reg");
  8001     thread = t1;
  8002     get_thread(thread);
  8003 #endif
  8006 #ifdef _LP64
  8007   if (var_size_in_bytes->is_valid()) {
  8008     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8009   } else {
  8010     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8012 #else
  8013   if (var_size_in_bytes->is_valid()) {
  8014     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8015   } else {
  8016     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8018   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  8019 #endif
  8022 static const double     pi_4 =  0.7853981633974483;
  8024 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  8025   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  8026   // was attempted in this code; unfortunately it appears that the
  8027   // switch to 80-bit precision and back causes this to be
  8028   // unprofitable compared with simply performing a runtime call if
  8029   // the argument is out of the (-pi/4, pi/4) range.
  8031   Register tmp = noreg;
  8032   if (!VM_Version::supports_cmov()) {
  8033     // fcmp needs a temporary so preserve rbx,
  8034     tmp = rbx;
  8035     push(tmp);
  8038   Label slow_case, done;
  8040   ExternalAddress pi4_adr = (address)&pi_4;
  8041   if (reachable(pi4_adr)) {
  8042     // x ?<= pi/4
  8043     fld_d(pi4_adr);
  8044     fld_s(1);                // Stack:  X  PI/4  X
  8045     fabs();                  // Stack: |X| PI/4  X
  8046     fcmp(tmp);
  8047     jcc(Assembler::above, slow_case);
  8049     // fastest case: -pi/4 <= x <= pi/4
  8050     switch(trig) {
  8051     case 's':
  8052       fsin();
  8053       break;
  8054     case 'c':
  8055       fcos();
  8056       break;
  8057     case 't':
  8058       ftan();
  8059       break;
  8060     default:
  8061       assert(false, "bad intrinsic");
  8062       break;
  8064     jmp(done);
  8067   // slow case: runtime call
  8068   bind(slow_case);
  8069   // Preserve registers across runtime call
  8070   pusha();
  8071   int incoming_argument_and_return_value_offset = -1;
  8072   if (num_fpu_regs_in_use > 1) {
  8073     // Must preserve all other FPU regs (could alternatively convert
  8074     // SharedRuntime::dsin and dcos into assembly routines known not to trash
  8075     // FPU state, but can not trust C compiler)
  8076     NEEDS_CLEANUP;
  8077     // NOTE that in this case we also push the incoming argument to
  8078     // the stack and restore it later; we also use this stack slot to
  8079     // hold the return value from dsin or dcos.
  8080     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  8081       subptr(rsp, sizeof(jdouble));
  8082       fstp_d(Address(rsp, 0));
  8084     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  8085     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
  8087   subptr(rsp, sizeof(jdouble));
  8088   fstp_d(Address(rsp, 0));
  8089 #ifdef _LP64
  8090   movdbl(xmm0, Address(rsp, 0));
  8091 #endif // _LP64
  8093   // NOTE: we must not use call_VM_leaf here because that requires a
  8094   // complete interpreter frame in debug mode -- same bug as 4387334
  8095   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  8096   // do proper 64bit abi
  8098   NEEDS_CLEANUP;
  8099   // Need to add stack banging before this runtime call if it needs to
  8100   // be taken; however, there is no generic stack banging routine at
  8101   // the MacroAssembler level
  8102   switch(trig) {
  8103   case 's':
  8105       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
  8107     break;
  8108   case 'c':
  8110       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
  8112     break;
  8113   case 't':
  8115       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
  8117     break;
  8118   default:
  8119     assert(false, "bad intrinsic");
  8120     break;
  8122 #ifdef _LP64
  8123     movsd(Address(rsp, 0), xmm0);
  8124     fld_d(Address(rsp, 0));
  8125 #endif // _LP64
  8126   addptr(rsp, sizeof(jdouble));
  8127   if (num_fpu_regs_in_use > 1) {
  8128     // Must save return value to stack and then restore entire FPU stack
  8129     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  8130     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  8131       fld_d(Address(rsp, 0));
  8132       addptr(rsp, sizeof(jdouble));
  8135   popa();
  8137   // Come here with result in F-TOS
  8138   bind(done);
  8140   if (tmp != noreg) {
  8141     pop(tmp);
  8146 // Look up the method for a megamorphic invokeinterface call.
  8147 // The target method is determined by <intf_klass, itable_index>.
  8148 // The receiver klass is in recv_klass.
  8149 // On success, the result will be in method_result, and execution falls through.
  8150 // On failure, execution transfers to the given label.
  8151 void MacroAssembler::lookup_interface_method(Register recv_klass,
  8152                                              Register intf_klass,
  8153                                              RegisterOrConstant itable_index,
  8154                                              Register method_result,
  8155                                              Register scan_temp,
  8156                                              Label& L_no_such_interface) {
  8157   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  8158   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  8159          "caller must use same register for non-constant itable index as for method");
  8161   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  8162   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  8163   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  8164   int scan_step   = itableOffsetEntry::size() * wordSize;
  8165   int vte_size    = vtableEntry::size() * wordSize;
  8166   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  8167   assert(vte_size == wordSize, "else adjust times_vte_scale");
  8169   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  8171   // %%% Could store the aligned, prescaled offset in the klassoop.
  8172   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  8173   if (HeapWordsPerLong > 1) {
  8174     // Round up to align_object_offset boundary
  8175     // see code for instanceKlass::start_of_itable!
  8176     round_to(scan_temp, BytesPerLong);
  8179   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  8180   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  8181   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  8183   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  8184   //   if (scan->interface() == intf) {
  8185   //     result = (klass + scan->offset() + itable_index);
  8186   //   }
  8187   // }
  8188   Label search, found_method;
  8190   for (int peel = 1; peel >= 0; peel--) {
  8191     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  8192     cmpptr(intf_klass, method_result);
  8194     if (peel) {
  8195       jccb(Assembler::equal, found_method);
  8196     } else {
  8197       jccb(Assembler::notEqual, search);
  8198       // (invert the test to fall through to found_method...)
  8201     if (!peel)  break;
  8203     bind(search);
  8205     // Check that the previous entry is non-null.  A null entry means that
  8206     // the receiver class doesn't implement the interface, and wasn't the
  8207     // same as when the caller was compiled.
  8208     testptr(method_result, method_result);
  8209     jcc(Assembler::zero, L_no_such_interface);
  8210     addptr(scan_temp, scan_step);
  8213   bind(found_method);
  8215   // Got a hit.
  8216   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  8217   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  8221 void MacroAssembler::check_klass_subtype(Register sub_klass,
  8222                            Register super_klass,
  8223                            Register temp_reg,
  8224                            Label& L_success) {
  8225   Label L_failure;
  8226   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  8227   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  8228   bind(L_failure);
  8232 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  8233                                                    Register super_klass,
  8234                                                    Register temp_reg,
  8235                                                    Label* L_success,
  8236                                                    Label* L_failure,
  8237                                                    Label* L_slow_path,
  8238                                         RegisterOrConstant super_check_offset) {
  8239   assert_different_registers(sub_klass, super_klass, temp_reg);
  8240   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  8241   if (super_check_offset.is_register()) {
  8242     assert_different_registers(sub_klass, super_klass,
  8243                                super_check_offset.as_register());
  8244   } else if (must_load_sco) {
  8245     assert(temp_reg != noreg, "supply either a temp or a register offset");
  8248   Label L_fallthrough;
  8249   int label_nulls = 0;
  8250   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  8251   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  8252   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  8253   assert(label_nulls <= 1, "at most one NULL in the batch");
  8255   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  8256   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  8257   Address super_check_offset_addr(super_klass, sco_offset);
  8259   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  8260   // range of a jccb.  If this routine grows larger, reconsider at
  8261   // least some of these.
  8262 #define local_jcc(assembler_cond, label)                                \
  8263   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  8264   else                             jcc( assembler_cond, label) /*omit semi*/
  8266   // Hacked jmp, which may only be used just before L_fallthrough.
  8267 #define final_jmp(label)                                                \
  8268   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  8269   else                            jmp(label)                /*omit semi*/
  8271   // If the pointers are equal, we are done (e.g., String[] elements).
  8272   // This self-check enables sharing of secondary supertype arrays among
  8273   // non-primary types such as array-of-interface.  Otherwise, each such
  8274   // type would need its own customized SSA.
  8275   // We move this check to the front of the fast path because many
  8276   // type checks are in fact trivially successful in this manner,
  8277   // so we get a nicely predicted branch right at the start of the check.
  8278   cmpptr(sub_klass, super_klass);
  8279   local_jcc(Assembler::equal, *L_success);
  8281   // Check the supertype display:
  8282   if (must_load_sco) {
  8283     // Positive movl does right thing on LP64.
  8284     movl(temp_reg, super_check_offset_addr);
  8285     super_check_offset = RegisterOrConstant(temp_reg);
  8287   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  8288   cmpptr(super_klass, super_check_addr); // load displayed supertype
  8290   // This check has worked decisively for primary supers.
  8291   // Secondary supers are sought in the super_cache ('super_cache_addr').
  8292   // (Secondary supers are interfaces and very deeply nested subtypes.)
  8293   // This works in the same check above because of a tricky aliasing
  8294   // between the super_cache and the primary super display elements.
  8295   // (The 'super_check_addr' can address either, as the case requires.)
  8296   // Note that the cache is updated below if it does not help us find
  8297   // what we need immediately.
  8298   // So if it was a primary super, we can just fail immediately.
  8299   // Otherwise, it's the slow path for us (no success at this point).
  8301   if (super_check_offset.is_register()) {
  8302     local_jcc(Assembler::equal, *L_success);
  8303     cmpl(super_check_offset.as_register(), sc_offset);
  8304     if (L_failure == &L_fallthrough) {
  8305       local_jcc(Assembler::equal, *L_slow_path);
  8306     } else {
  8307       local_jcc(Assembler::notEqual, *L_failure);
  8308       final_jmp(*L_slow_path);
  8310   } else if (super_check_offset.as_constant() == sc_offset) {
  8311     // Need a slow path; fast failure is impossible.
  8312     if (L_slow_path == &L_fallthrough) {
  8313       local_jcc(Assembler::equal, *L_success);
  8314     } else {
  8315       local_jcc(Assembler::notEqual, *L_slow_path);
  8316       final_jmp(*L_success);
  8318   } else {
  8319     // No slow path; it's a fast decision.
  8320     if (L_failure == &L_fallthrough) {
  8321       local_jcc(Assembler::equal, *L_success);
  8322     } else {
  8323       local_jcc(Assembler::notEqual, *L_failure);
  8324       final_jmp(*L_success);
  8328   bind(L_fallthrough);
  8330 #undef local_jcc
  8331 #undef final_jmp
  8335 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  8336                                                    Register super_klass,
  8337                                                    Register temp_reg,
  8338                                                    Register temp2_reg,
  8339                                                    Label* L_success,
  8340                                                    Label* L_failure,
  8341                                                    bool set_cond_codes) {
  8342   assert_different_registers(sub_klass, super_klass, temp_reg);
  8343   if (temp2_reg != noreg)
  8344     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  8345 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  8347   Label L_fallthrough;
  8348   int label_nulls = 0;
  8349   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  8350   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  8351   assert(label_nulls <= 1, "at most one NULL in the batch");
  8353   // a couple of useful fields in sub_klass:
  8354   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  8355   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  8356   Address secondary_supers_addr(sub_klass, ss_offset);
  8357   Address super_cache_addr(     sub_klass, sc_offset);
  8359   // Do a linear scan of the secondary super-klass chain.
  8360   // This code is rarely used, so simplicity is a virtue here.
  8361   // The repne_scan instruction uses fixed registers, which we must spill.
  8362   // Don't worry too much about pre-existing connections with the input regs.
  8364   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  8365   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  8367   // Get super_klass value into rax (even if it was in rdi or rcx).
  8368   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  8369   if (super_klass != rax || UseCompressedOops) {
  8370     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  8371     mov(rax, super_klass);
  8373   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  8374   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  8376 #ifndef PRODUCT
  8377   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  8378   ExternalAddress pst_counter_addr((address) pst_counter);
  8379   NOT_LP64(  incrementl(pst_counter_addr) );
  8380   LP64_ONLY( lea(rcx, pst_counter_addr) );
  8381   LP64_ONLY( incrementl(Address(rcx, 0)) );
  8382 #endif //PRODUCT
  8384   // We will consult the secondary-super array.
  8385   movptr(rdi, secondary_supers_addr);
  8386   // Load the array length.  (Positive movl does right thing on LP64.)
  8387   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  8388   // Skip to start of data.
  8389   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  8391   // Scan RCX words at [RDI] for an occurrence of RAX.
  8392   // Set NZ/Z based on last compare.
  8393   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  8394   // not change flags (only scas instruction which is repeated sets flags).
  8395   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  8396 #ifdef _LP64
  8397   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  8398   // and we store values in objArrays always encoded, thus we need to encode
  8399   // the value of rax before repne.  Note that rax is dead after the repne.
  8400   if (UseCompressedOops) {
  8401     encode_heap_oop_not_null(rax); // Changes flags.
  8402     // The superclass is never null; it would be a basic system error if a null
  8403     // pointer were to sneak in here.  Note that we have already loaded the
  8404     // Klass::super_check_offset from the super_klass in the fast path,
  8405     // so if there is a null in that register, we are already in the afterlife.
  8406     testl(rax,rax); // Set Z = 0
  8407     repne_scanl();
  8408   } else
  8409 #endif // _LP64
  8411     testptr(rax,rax); // Set Z = 0
  8412     repne_scan();
  8414   // Unspill the temp. registers:
  8415   if (pushed_rdi)  pop(rdi);
  8416   if (pushed_rcx)  pop(rcx);
  8417   if (pushed_rax)  pop(rax);
  8419   if (set_cond_codes) {
  8420     // Special hack for the AD files:  rdi is guaranteed non-zero.
  8421     assert(!pushed_rdi, "rdi must be left non-NULL");
  8422     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  8425   if (L_failure == &L_fallthrough)
  8426         jccb(Assembler::notEqual, *L_failure);
  8427   else  jcc(Assembler::notEqual, *L_failure);
  8429   // Success.  Cache the super we found and proceed in triumph.
  8430   movptr(super_cache_addr, super_klass);
  8432   if (L_success != &L_fallthrough) {
  8433     jmp(*L_success);
  8436 #undef IS_A_TEMP
  8438   bind(L_fallthrough);
  8442 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  8443   if (VM_Version::supports_cmov()) {
  8444     cmovl(cc, dst, src);
  8445   } else {
  8446     Label L;
  8447     jccb(negate_condition(cc), L);
  8448     movl(dst, src);
  8449     bind(L);
  8453 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  8454   if (VM_Version::supports_cmov()) {
  8455     cmovl(cc, dst, src);
  8456   } else {
  8457     Label L;
  8458     jccb(negate_condition(cc), L);
  8459     movl(dst, src);
  8460     bind(L);
  8464 void MacroAssembler::verify_oop(Register reg, const char* s) {
  8465   if (!VerifyOops) return;
  8467   // Pass register number to verify_oop_subroutine
  8468   char* b = new char[strlen(s) + 50];
  8469   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  8470 #ifdef _LP64
  8471   push(rscratch1);                    // save r10, trashed by movptr()
  8472 #endif
  8473   push(rax);                          // save rax,
  8474   push(reg);                          // pass register argument
  8475   ExternalAddress buffer((address) b);
  8476   // avoid using pushptr, as it modifies scratch registers
  8477   // and our contract is not to modify anything
  8478   movptr(rax, buffer.addr());
  8479   push(rax);
  8480   // call indirectly to solve generation ordering problem
  8481   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  8482   call(rax);
  8483   // Caller pops the arguments (oop, message) and restores rax, r10
  8487 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  8488                                                       Register tmp,
  8489                                                       int offset) {
  8490   intptr_t value = *delayed_value_addr;
  8491   if (value != 0)
  8492     return RegisterOrConstant(value + offset);
  8494   // load indirectly to solve generation ordering problem
  8495   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  8497 #ifdef ASSERT
  8498   { Label L;
  8499     testptr(tmp, tmp);
  8500     if (WizardMode) {
  8501       jcc(Assembler::notZero, L);
  8502       char* buf = new char[40];
  8503       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  8504       stop(buf);
  8505     } else {
  8506       jccb(Assembler::notZero, L);
  8507       hlt();
  8509     bind(L);
  8511 #endif
  8513   if (offset != 0)
  8514     addptr(tmp, offset);
  8516   return RegisterOrConstant(tmp);
  8520 // registers on entry:
  8521 //  - rax ('check' register): required MethodType
  8522 //  - rcx: method handle
  8523 //  - rdx, rsi, or ?: killable temp
  8524 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  8525                                               Register temp_reg,
  8526                                               Label& wrong_method_type) {
  8527   Address type_addr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg));
  8528   // compare method type against that of the receiver
  8529   if (UseCompressedOops) {
  8530     load_heap_oop(temp_reg, type_addr);
  8531     cmpptr(mtype_reg, temp_reg);
  8532   } else {
  8533     cmpptr(mtype_reg, type_addr);
  8535   jcc(Assembler::notEqual, wrong_method_type);
  8539 // A method handle has a "vmslots" field which gives the size of its
  8540 // argument list in JVM stack slots.  This field is either located directly
  8541 // in every method handle, or else is indirectly accessed through the
  8542 // method handle's MethodType.  This macro hides the distinction.
  8543 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  8544                                                 Register temp_reg) {
  8545   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  8546   // load mh.type.form.vmslots
  8547   Register temp2_reg = vmslots_reg;
  8548   load_heap_oop(temp2_reg, Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)));
  8549   load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)));
  8550   movl(vmslots_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
  8554 // registers on entry:
  8555 //  - rcx: method handle
  8556 //  - rdx: killable temp (interpreted only)
  8557 //  - rax: killable temp (compiled only)
  8558 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
  8559   assert(mh_reg == rcx, "caller must put MH object in rcx");
  8560   assert_different_registers(mh_reg, temp_reg);
  8562   // pick out the interpreted side of the handler
  8563   // NOTE: vmentry is not an oop!
  8564   movptr(temp_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
  8566   // off we go...
  8567   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
  8569   // for the various stubs which take control at this point,
  8570   // see MethodHandles::generate_method_handle_stub
  8574 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  8575                                          int extra_slot_offset) {
  8576   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  8577   int stackElementSize = Interpreter::stackElementSize;
  8578   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  8579 #ifdef ASSERT
  8580   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  8581   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  8582 #endif
  8583   Register             scale_reg    = noreg;
  8584   Address::ScaleFactor scale_factor = Address::no_scale;
  8585   if (arg_slot.is_constant()) {
  8586     offset += arg_slot.as_constant() * stackElementSize;
  8587   } else {
  8588     scale_reg    = arg_slot.as_register();
  8589     scale_factor = Address::times(stackElementSize);
  8591   offset += wordSize;           // return PC is on stack
  8592   return Address(rsp, scale_reg, scale_factor, offset);
  8596 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  8597   if (!VerifyOops) return;
  8599   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  8600   // Pass register number to verify_oop_subroutine
  8601   char* b = new char[strlen(s) + 50];
  8602   sprintf(b, "verify_oop_addr: %s", s);
  8604 #ifdef _LP64
  8605   push(rscratch1);                    // save r10, trashed by movptr()
  8606 #endif
  8607   push(rax);                          // save rax,
  8608   // addr may contain rsp so we will have to adjust it based on the push
  8609   // we just did (and on 64 bit we do two pushes)
  8610   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  8611   // stores rax into addr which is backwards of what was intended.
  8612   if (addr.uses(rsp)) {
  8613     lea(rax, addr);
  8614     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  8615   } else {
  8616     pushptr(addr);
  8619   ExternalAddress buffer((address) b);
  8620   // pass msg argument
  8621   // avoid using pushptr, as it modifies scratch registers
  8622   // and our contract is not to modify anything
  8623   movptr(rax, buffer.addr());
  8624   push(rax);
  8626   // call indirectly to solve generation ordering problem
  8627   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  8628   call(rax);
  8629   // Caller pops the arguments (addr, message) and restores rax, r10.
  8632 void MacroAssembler::verify_tlab() {
  8633 #ifdef ASSERT
  8634   if (UseTLAB && VerifyOops) {
  8635     Label next, ok;
  8636     Register t1 = rsi;
  8637     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  8639     push(t1);
  8640     NOT_LP64(push(thread_reg));
  8641     NOT_LP64(get_thread(thread_reg));
  8643     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8644     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  8645     jcc(Assembler::aboveEqual, next);
  8646     stop("assert(top >= start)");
  8647     should_not_reach_here();
  8649     bind(next);
  8650     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  8651     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8652     jcc(Assembler::aboveEqual, ok);
  8653     stop("assert(top <= end)");
  8654     should_not_reach_here();
  8656     bind(ok);
  8657     NOT_LP64(pop(thread_reg));
  8658     pop(t1);
  8660 #endif
  8663 class ControlWord {
  8664  public:
  8665   int32_t _value;
  8667   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  8668   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  8669   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  8670   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  8671   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  8672   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  8673   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  8674   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  8676   void print() const {
  8677     // rounding control
  8678     const char* rc;
  8679     switch (rounding_control()) {
  8680       case 0: rc = "round near"; break;
  8681       case 1: rc = "round down"; break;
  8682       case 2: rc = "round up  "; break;
  8683       case 3: rc = "chop      "; break;
  8684     };
  8685     // precision control
  8686     const char* pc;
  8687     switch (precision_control()) {
  8688       case 0: pc = "24 bits "; break;
  8689       case 1: pc = "reserved"; break;
  8690       case 2: pc = "53 bits "; break;
  8691       case 3: pc = "64 bits "; break;
  8692     };
  8693     // flags
  8694     char f[9];
  8695     f[0] = ' ';
  8696     f[1] = ' ';
  8697     f[2] = (precision   ()) ? 'P' : 'p';
  8698     f[3] = (underflow   ()) ? 'U' : 'u';
  8699     f[4] = (overflow    ()) ? 'O' : 'o';
  8700     f[5] = (zero_divide ()) ? 'Z' : 'z';
  8701     f[6] = (denormalized()) ? 'D' : 'd';
  8702     f[7] = (invalid     ()) ? 'I' : 'i';
  8703     f[8] = '\x0';
  8704     // output
  8705     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  8708 };
  8710 class StatusWord {
  8711  public:
  8712   int32_t _value;
  8714   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  8715   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  8716   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  8717   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  8718   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  8719   int  top() const                     { return  (_value >> 11) & 7      ; }
  8720   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  8721   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  8722   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  8723   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  8724   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  8725   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  8726   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  8727   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  8729   void print() const {
  8730     // condition codes
  8731     char c[5];
  8732     c[0] = (C3()) ? '3' : '-';
  8733     c[1] = (C2()) ? '2' : '-';
  8734     c[2] = (C1()) ? '1' : '-';
  8735     c[3] = (C0()) ? '0' : '-';
  8736     c[4] = '\x0';
  8737     // flags
  8738     char f[9];
  8739     f[0] = (error_status()) ? 'E' : '-';
  8740     f[1] = (stack_fault ()) ? 'S' : '-';
  8741     f[2] = (precision   ()) ? 'P' : '-';
  8742     f[3] = (underflow   ()) ? 'U' : '-';
  8743     f[4] = (overflow    ()) ? 'O' : '-';
  8744     f[5] = (zero_divide ()) ? 'Z' : '-';
  8745     f[6] = (denormalized()) ? 'D' : '-';
  8746     f[7] = (invalid     ()) ? 'I' : '-';
  8747     f[8] = '\x0';
  8748     // output
  8749     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  8752 };
  8754 class TagWord {
  8755  public:
  8756   int32_t _value;
  8758   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  8760   void print() const {
  8761     printf("%04x", _value & 0xFFFF);
  8764 };
  8766 class FPU_Register {
  8767  public:
  8768   int32_t _m0;
  8769   int32_t _m1;
  8770   int16_t _ex;
  8772   bool is_indefinite() const           {
  8773     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  8776   void print() const {
  8777     char  sign = (_ex < 0) ? '-' : '+';
  8778     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  8779     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  8780   };
  8782 };
  8784 class FPU_State {
  8785  public:
  8786   enum {
  8787     register_size       = 10,
  8788     number_of_registers =  8,
  8789     register_mask       =  7
  8790   };
  8792   ControlWord  _control_word;
  8793   StatusWord   _status_word;
  8794   TagWord      _tag_word;
  8795   int32_t      _error_offset;
  8796   int32_t      _error_selector;
  8797   int32_t      _data_offset;
  8798   int32_t      _data_selector;
  8799   int8_t       _register[register_size * number_of_registers];
  8801   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  8802   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  8804   const char* tag_as_string(int tag) const {
  8805     switch (tag) {
  8806       case 0: return "valid";
  8807       case 1: return "zero";
  8808       case 2: return "special";
  8809       case 3: return "empty";
  8811     ShouldNotReachHere();
  8812     return NULL;
  8815   void print() const {
  8816     // print computation registers
  8817     { int t = _status_word.top();
  8818       for (int i = 0; i < number_of_registers; i++) {
  8819         int j = (i - t) & register_mask;
  8820         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  8821         st(j)->print();
  8822         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  8825     printf("\n");
  8826     // print control registers
  8827     printf("ctrl = "); _control_word.print(); printf("\n");
  8828     printf("stat = "); _status_word .print(); printf("\n");
  8829     printf("tags = "); _tag_word    .print(); printf("\n");
  8832 };
  8834 class Flag_Register {
  8835  public:
  8836   int32_t _value;
  8838   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  8839   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  8840   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  8841   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  8842   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  8843   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  8844   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  8846   void print() const {
  8847     // flags
  8848     char f[8];
  8849     f[0] = (overflow       ()) ? 'O' : '-';
  8850     f[1] = (direction      ()) ? 'D' : '-';
  8851     f[2] = (sign           ()) ? 'S' : '-';
  8852     f[3] = (zero           ()) ? 'Z' : '-';
  8853     f[4] = (auxiliary_carry()) ? 'A' : '-';
  8854     f[5] = (parity         ()) ? 'P' : '-';
  8855     f[6] = (carry          ()) ? 'C' : '-';
  8856     f[7] = '\x0';
  8857     // output
  8858     printf("%08x  flags = %s", _value, f);
  8861 };
  8863 class IU_Register {
  8864  public:
  8865   int32_t _value;
  8867   void print() const {
  8868     printf("%08x  %11d", _value, _value);
  8871 };
  8873 class IU_State {
  8874  public:
  8875   Flag_Register _eflags;
  8876   IU_Register   _rdi;
  8877   IU_Register   _rsi;
  8878   IU_Register   _rbp;
  8879   IU_Register   _rsp;
  8880   IU_Register   _rbx;
  8881   IU_Register   _rdx;
  8882   IU_Register   _rcx;
  8883   IU_Register   _rax;
  8885   void print() const {
  8886     // computation registers
  8887     printf("rax,  = "); _rax.print(); printf("\n");
  8888     printf("rbx,  = "); _rbx.print(); printf("\n");
  8889     printf("rcx  = "); _rcx.print(); printf("\n");
  8890     printf("rdx  = "); _rdx.print(); printf("\n");
  8891     printf("rdi  = "); _rdi.print(); printf("\n");
  8892     printf("rsi  = "); _rsi.print(); printf("\n");
  8893     printf("rbp,  = "); _rbp.print(); printf("\n");
  8894     printf("rsp  = "); _rsp.print(); printf("\n");
  8895     printf("\n");
  8896     // control registers
  8897     printf("flgs = "); _eflags.print(); printf("\n");
  8899 };
  8902 class CPU_State {
  8903  public:
  8904   FPU_State _fpu_state;
  8905   IU_State  _iu_state;
  8907   void print() const {
  8908     printf("--------------------------------------------------\n");
  8909     _iu_state .print();
  8910     printf("\n");
  8911     _fpu_state.print();
  8912     printf("--------------------------------------------------\n");
  8915 };
  8918 static void _print_CPU_state(CPU_State* state) {
  8919   state->print();
  8920 };
  8923 void MacroAssembler::print_CPU_state() {
  8924   push_CPU_state();
  8925   push(rsp);                // pass CPU state
  8926   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  8927   addptr(rsp, wordSize);       // discard argument
  8928   pop_CPU_state();
  8932 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  8933   static int counter = 0;
  8934   FPU_State* fs = &state->_fpu_state;
  8935   counter++;
  8936   // For leaf calls, only verify that the top few elements remain empty.
  8937   // We only need 1 empty at the top for C2 code.
  8938   if( stack_depth < 0 ) {
  8939     if( fs->tag_for_st(7) != 3 ) {
  8940       printf("FPR7 not empty\n");
  8941       state->print();
  8942       assert(false, "error");
  8943       return false;
  8945     return true;                // All other stack states do not matter
  8948   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  8949          "bad FPU control word");
  8951   // compute stack depth
  8952   int i = 0;
  8953   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  8954   int d = i;
  8955   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  8956   // verify findings
  8957   if (i != FPU_State::number_of_registers) {
  8958     // stack not contiguous
  8959     printf("%s: stack not contiguous at ST%d\n", s, i);
  8960     state->print();
  8961     assert(false, "error");
  8962     return false;
  8964   // check if computed stack depth corresponds to expected stack depth
  8965   if (stack_depth < 0) {
  8966     // expected stack depth is -stack_depth or less
  8967     if (d > -stack_depth) {
  8968       // too many elements on the stack
  8969       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  8970       state->print();
  8971       assert(false, "error");
  8972       return false;
  8974   } else {
  8975     // expected stack depth is stack_depth
  8976     if (d != stack_depth) {
  8977       // wrong stack depth
  8978       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  8979       state->print();
  8980       assert(false, "error");
  8981       return false;
  8984   // everything is cool
  8985   return true;
  8989 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  8990   if (!VerifyFPU) return;
  8991   push_CPU_state();
  8992   push(rsp);                // pass CPU state
  8993   ExternalAddress msg((address) s);
  8994   // pass message string s
  8995   pushptr(msg.addr());
  8996   push(stack_depth);        // pass stack depth
  8997   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  8998   addptr(rsp, 3 * wordSize);   // discard arguments
  8999   // check for error
  9000   { Label L;
  9001     testl(rax, rax);
  9002     jcc(Assembler::notZero, L);
  9003     int3();                  // break if error condition
  9004     bind(L);
  9006   pop_CPU_state();
  9009 void MacroAssembler::load_klass(Register dst, Register src) {
  9010 #ifdef _LP64
  9011   if (UseCompressedOops) {
  9012     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9013     decode_heap_oop_not_null(dst);
  9014   } else
  9015 #endif
  9016     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9019 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  9020 #ifdef _LP64
  9021   if (UseCompressedOops) {
  9022     assert (Universe::heap() != NULL, "java heap should be initialized");
  9023     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9024     if (Universe::narrow_oop_shift() != 0) {
  9025       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9026       if (LogMinObjAlignmentInBytes == Address::times_8) {
  9027         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
  9028       } else {
  9029         // OK to use shift since we don't need to preserve flags.
  9030         shlq(dst, LogMinObjAlignmentInBytes);
  9031         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset()));
  9033     } else {
  9034       movq(dst, Address(dst, Klass::prototype_header_offset()));
  9036   } else
  9037 #endif
  9039     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9040     movptr(dst, Address(dst, Klass::prototype_header_offset()));
  9044 void MacroAssembler::store_klass(Register dst, Register src) {
  9045 #ifdef _LP64
  9046   if (UseCompressedOops) {
  9047     encode_heap_oop_not_null(src);
  9048     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9049   } else
  9050 #endif
  9051     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9054 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  9055 #ifdef _LP64
  9056   if (UseCompressedOops) {
  9057     movl(dst, src);
  9058     decode_heap_oop(dst);
  9059   } else
  9060 #endif
  9061     movptr(dst, src);
  9064 // Doesn't do verfication, generates fixed size code
  9065 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  9066 #ifdef _LP64
  9067   if (UseCompressedOops) {
  9068     movl(dst, src);
  9069     decode_heap_oop_not_null(dst);
  9070   } else
  9071 #endif
  9072     movptr(dst, src);
  9075 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  9076 #ifdef _LP64
  9077   if (UseCompressedOops) {
  9078     assert(!dst.uses(src), "not enough registers");
  9079     encode_heap_oop(src);
  9080     movl(dst, src);
  9081   } else
  9082 #endif
  9083     movptr(dst, src);
  9086 // Used for storing NULLs.
  9087 void MacroAssembler::store_heap_oop_null(Address dst) {
  9088 #ifdef _LP64
  9089   if (UseCompressedOops) {
  9090     movl(dst, (int32_t)NULL_WORD);
  9091   } else {
  9092     movslq(dst, (int32_t)NULL_WORD);
  9094 #else
  9095   movl(dst, (int32_t)NULL_WORD);
  9096 #endif
  9099 #ifdef _LP64
  9100 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  9101   if (UseCompressedOops) {
  9102     // Store to klass gap in destination
  9103     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  9107 #ifdef ASSERT
  9108 void MacroAssembler::verify_heapbase(const char* msg) {
  9109   assert (UseCompressedOops, "should be compressed");
  9110   assert (Universe::heap() != NULL, "java heap should be initialized");
  9111   if (CheckCompressedOops) {
  9112     Label ok;
  9113     push(rscratch1); // cmpptr trashes rscratch1
  9114     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  9115     jcc(Assembler::equal, ok);
  9116     stop(msg);
  9117     bind(ok);
  9118     pop(rscratch1);
  9121 #endif
  9123 // Algorithm must match oop.inline.hpp encode_heap_oop.
  9124 void MacroAssembler::encode_heap_oop(Register r) {
  9125 #ifdef ASSERT
  9126   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  9127 #endif
  9128   verify_oop(r, "broken oop in encode_heap_oop");
  9129   if (Universe::narrow_oop_base() == NULL) {
  9130     if (Universe::narrow_oop_shift() != 0) {
  9131       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9132       shrq(r, LogMinObjAlignmentInBytes);
  9134     return;
  9136   testq(r, r);
  9137   cmovq(Assembler::equal, r, r12_heapbase);
  9138   subq(r, r12_heapbase);
  9139   shrq(r, LogMinObjAlignmentInBytes);
  9142 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  9143 #ifdef ASSERT
  9144   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  9145   if (CheckCompressedOops) {
  9146     Label ok;
  9147     testq(r, r);
  9148     jcc(Assembler::notEqual, ok);
  9149     stop("null oop passed to encode_heap_oop_not_null");
  9150     bind(ok);
  9152 #endif
  9153   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  9154   if (Universe::narrow_oop_base() != NULL) {
  9155     subq(r, r12_heapbase);
  9157   if (Universe::narrow_oop_shift() != 0) {
  9158     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9159     shrq(r, LogMinObjAlignmentInBytes);
  9163 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  9164 #ifdef ASSERT
  9165   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  9166   if (CheckCompressedOops) {
  9167     Label ok;
  9168     testq(src, src);
  9169     jcc(Assembler::notEqual, ok);
  9170     stop("null oop passed to encode_heap_oop_not_null2");
  9171     bind(ok);
  9173 #endif
  9174   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  9175   if (dst != src) {
  9176     movq(dst, src);
  9178   if (Universe::narrow_oop_base() != NULL) {
  9179     subq(dst, r12_heapbase);
  9181   if (Universe::narrow_oop_shift() != 0) {
  9182     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9183     shrq(dst, LogMinObjAlignmentInBytes);
  9187 void  MacroAssembler::decode_heap_oop(Register r) {
  9188 #ifdef ASSERT
  9189   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  9190 #endif
  9191   if (Universe::narrow_oop_base() == NULL) {
  9192     if (Universe::narrow_oop_shift() != 0) {
  9193       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9194       shlq(r, LogMinObjAlignmentInBytes);
  9196   } else {
  9197     Label done;
  9198     shlq(r, LogMinObjAlignmentInBytes);
  9199     jccb(Assembler::equal, done);
  9200     addq(r, r12_heapbase);
  9201     bind(done);
  9203   verify_oop(r, "broken oop in decode_heap_oop");
  9206 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  9207   // Note: it will change flags
  9208   assert (UseCompressedOops, "should only be used for compressed headers");
  9209   assert (Universe::heap() != NULL, "java heap should be initialized");
  9210   // Cannot assert, unverified entry point counts instructions (see .ad file)
  9211   // vtableStubs also counts instructions in pd_code_size_limit.
  9212   // Also do not verify_oop as this is called by verify_oop.
  9213   if (Universe::narrow_oop_shift() != 0) {
  9214     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9215     shlq(r, LogMinObjAlignmentInBytes);
  9216     if (Universe::narrow_oop_base() != NULL) {
  9217       addq(r, r12_heapbase);
  9219   } else {
  9220     assert (Universe::narrow_oop_base() == NULL, "sanity");
  9224 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  9225   // Note: it will change flags
  9226   assert (UseCompressedOops, "should only be used for compressed headers");
  9227   assert (Universe::heap() != NULL, "java heap should be initialized");
  9228   // Cannot assert, unverified entry point counts instructions (see .ad file)
  9229   // vtableStubs also counts instructions in pd_code_size_limit.
  9230   // Also do not verify_oop as this is called by verify_oop.
  9231   if (Universe::narrow_oop_shift() != 0) {
  9232     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9233     if (LogMinObjAlignmentInBytes == Address::times_8) {
  9234       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  9235     } else {
  9236       if (dst != src) {
  9237         movq(dst, src);
  9239       shlq(dst, LogMinObjAlignmentInBytes);
  9240       if (Universe::narrow_oop_base() != NULL) {
  9241         addq(dst, r12_heapbase);
  9244   } else {
  9245     assert (Universe::narrow_oop_base() == NULL, "sanity");
  9246     if (dst != src) {
  9247       movq(dst, src);
  9252 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  9253   assert (UseCompressedOops, "should only be used for compressed headers");
  9254   assert (Universe::heap() != NULL, "java heap should be initialized");
  9255   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9256   int oop_index = oop_recorder()->find_index(obj);
  9257   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9258   mov_narrow_oop(dst, oop_index, rspec);
  9261 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  9262   assert (UseCompressedOops, "should only be used for compressed headers");
  9263   assert (Universe::heap() != NULL, "java heap should be initialized");
  9264   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9265   int oop_index = oop_recorder()->find_index(obj);
  9266   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9267   mov_narrow_oop(dst, oop_index, rspec);
  9270 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  9271   assert (UseCompressedOops, "should only be used for compressed headers");
  9272   assert (Universe::heap() != NULL, "java heap should be initialized");
  9273   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9274   int oop_index = oop_recorder()->find_index(obj);
  9275   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9276   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  9279 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  9280   assert (UseCompressedOops, "should only be used for compressed headers");
  9281   assert (Universe::heap() != NULL, "java heap should be initialized");
  9282   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9283   int oop_index = oop_recorder()->find_index(obj);
  9284   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9285   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  9288 void MacroAssembler::reinit_heapbase() {
  9289   if (UseCompressedOops) {
  9290     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  9293 #endif // _LP64
  9295 // IndexOf for constant substrings with size >= 8 chars
  9296 // which don't need to be loaded through stack.
  9297 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  9298                                       Register cnt1, Register cnt2,
  9299                                       int int_cnt2,  Register result,
  9300                                       XMMRegister vec, Register tmp) {
  9301   ShortBranchVerifier sbv(this);
  9302   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  9304   // This method uses pcmpestri inxtruction with bound registers
  9305   //   inputs:
  9306   //     xmm - substring
  9307   //     rax - substring length (elements count)
  9308   //     mem - scanned string
  9309   //     rdx - string length (elements count)
  9310   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  9311   //   outputs:
  9312   //     rcx - matched index in string
  9313   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  9315   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  9316         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  9317         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  9319   // Note, inline_string_indexOf() generates checks:
  9320   // if (substr.count > string.count) return -1;
  9321   // if (substr.count == 0) return 0;
  9322   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  9324   // Load substring.
  9325   movdqu(vec, Address(str2, 0));
  9326   movl(cnt2, int_cnt2);
  9327   movptr(result, str1); // string addr
  9329   if (int_cnt2 > 8) {
  9330     jmpb(SCAN_TO_SUBSTR);
  9332     // Reload substr for rescan, this code
  9333     // is executed only for large substrings (> 8 chars)
  9334     bind(RELOAD_SUBSTR);
  9335     movdqu(vec, Address(str2, 0));
  9336     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  9338     bind(RELOAD_STR);
  9339     // We came here after the beginning of the substring was
  9340     // matched but the rest of it was not so we need to search
  9341     // again. Start from the next element after the previous match.
  9343     // cnt2 is number of substring reminding elements and
  9344     // cnt1 is number of string reminding elements when cmp failed.
  9345     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  9346     subl(cnt1, cnt2);
  9347     addl(cnt1, int_cnt2);
  9348     movl(cnt2, int_cnt2); // Now restore cnt2
  9350     decrementl(cnt1);     // Shift to next element
  9351     cmpl(cnt1, cnt2);
  9352     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9354     addptr(result, 2);
  9356   } // (int_cnt2 > 8)
  9358   // Scan string for start of substr in 16-byte vectors
  9359   bind(SCAN_TO_SUBSTR);
  9360   pcmpestri(vec, Address(result, 0), 0x0d);
  9361   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  9362   subl(cnt1, 8);
  9363   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  9364   cmpl(cnt1, cnt2);
  9365   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9366   addptr(result, 16);
  9367   jmpb(SCAN_TO_SUBSTR);
  9369   // Found a potential substr
  9370   bind(FOUND_CANDIDATE);
  9371   // Matched whole vector if first element matched (tmp(rcx) == 0).
  9372   if (int_cnt2 == 8) {
  9373     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  9374   } else { // int_cnt2 > 8
  9375     jccb(Assembler::overflow, FOUND_SUBSTR);
  9377   // After pcmpestri tmp(rcx) contains matched element index
  9378   // Compute start addr of substr
  9379   lea(result, Address(result, tmp, Address::times_2));
  9381   // Make sure string is still long enough
  9382   subl(cnt1, tmp);
  9383   cmpl(cnt1, cnt2);
  9384   if (int_cnt2 == 8) {
  9385     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  9386   } else { // int_cnt2 > 8
  9387     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  9389   // Left less then substring.
  9391   bind(RET_NOT_FOUND);
  9392   movl(result, -1);
  9393   jmpb(EXIT);
  9395   if (int_cnt2 > 8) {
  9396     // This code is optimized for the case when whole substring
  9397     // is matched if its head is matched.
  9398     bind(MATCH_SUBSTR_HEAD);
  9399     pcmpestri(vec, Address(result, 0), 0x0d);
  9400     // Reload only string if does not match
  9401     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  9403     Label CONT_SCAN_SUBSTR;
  9404     // Compare the rest of substring (> 8 chars).
  9405     bind(FOUND_SUBSTR);
  9406     // First 8 chars are already matched.
  9407     negptr(cnt2);
  9408     addptr(cnt2, 8);
  9410     bind(SCAN_SUBSTR);
  9411     subl(cnt1, 8);
  9412     cmpl(cnt2, -8); // Do not read beyond substring
  9413     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  9414     // Back-up strings to avoid reading beyond substring:
  9415     // cnt1 = cnt1 - cnt2 + 8
  9416     addl(cnt1, cnt2); // cnt2 is negative
  9417     addl(cnt1, 8);
  9418     movl(cnt2, 8); negptr(cnt2);
  9419     bind(CONT_SCAN_SUBSTR);
  9420     if (int_cnt2 < (int)G) {
  9421       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
  9422       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
  9423     } else {
  9424       // calculate index in register to avoid integer overflow (int_cnt2*2)
  9425       movl(tmp, int_cnt2);
  9426       addptr(tmp, cnt2);
  9427       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
  9428       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
  9430     // Need to reload strings pointers if not matched whole vector
  9431     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  9432     addptr(cnt2, 8);
  9433     jcc(Assembler::negative, SCAN_SUBSTR);
  9434     // Fall through if found full substring
  9436   } // (int_cnt2 > 8)
  9438   bind(RET_FOUND);
  9439   // Found result if we matched full small substring.
  9440   // Compute substr offset
  9441   subptr(result, str1);
  9442   shrl(result, 1); // index
  9443   bind(EXIT);
  9445 } // string_indexofC8
  9447 // Small strings are loaded through stack if they cross page boundary.
  9448 void MacroAssembler::string_indexof(Register str1, Register str2,
  9449                                     Register cnt1, Register cnt2,
  9450                                     int int_cnt2,  Register result,
  9451                                     XMMRegister vec, Register tmp) {
  9452   ShortBranchVerifier sbv(this);
  9453   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  9454   //
  9455   // int_cnt2 is length of small (< 8 chars) constant substring
  9456   // or (-1) for non constant substring in which case its length
  9457   // is in cnt2 register.
  9458   //
  9459   // Note, inline_string_indexOf() generates checks:
  9460   // if (substr.count > string.count) return -1;
  9461   // if (substr.count == 0) return 0;
  9462   //
  9463   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
  9465   // This method uses pcmpestri inxtruction with bound registers
  9466   //   inputs:
  9467   //     xmm - substring
  9468   //     rax - substring length (elements count)
  9469   //     mem - scanned string
  9470   //     rdx - string length (elements count)
  9471   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  9472   //   outputs:
  9473   //     rcx - matched index in string
  9474   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  9476   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
  9477         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
  9478         FOUND_CANDIDATE;
  9480   { //========================================================
  9481     // We don't know where these strings are located
  9482     // and we can't read beyond them. Load them through stack.
  9483     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
  9485     movptr(tmp, rsp); // save old SP
  9487     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
  9488       if (int_cnt2 == 1) {  // One char
  9489         load_unsigned_short(result, Address(str2, 0));
  9490         movdl(vec, result); // move 32 bits
  9491       } else if (int_cnt2 == 2) { // Two chars
  9492         movdl(vec, Address(str2, 0)); // move 32 bits
  9493       } else if (int_cnt2 == 4) { // Four chars
  9494         movq(vec, Address(str2, 0));  // move 64 bits
  9495       } else { // cnt2 = { 3, 5, 6, 7 }
  9496         // Array header size is 12 bytes in 32-bit VM
  9497         // + 6 bytes for 3 chars == 18 bytes,
  9498         // enough space to load vec and shift.
  9499         assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
  9500         movdqu(vec, Address(str2, (int_cnt2*2)-16));
  9501         psrldq(vec, 16-(int_cnt2*2));
  9503     } else { // not constant substring
  9504       cmpl(cnt2, 8);
  9505       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
  9507       // We can read beyond string if srt+16 does not cross page boundary
  9508       // since heaps are aligned and mapped by pages.
  9509       assert(os::vm_page_size() < (int)G, "default page should be small");
  9510       movl(result, str2); // We need only low 32 bits
  9511       andl(result, (os::vm_page_size()-1));
  9512       cmpl(result, (os::vm_page_size()-16));
  9513       jccb(Assembler::belowEqual, CHECK_STR);
  9515       // Move small strings to stack to allow load 16 bytes into vec.
  9516       subptr(rsp, 16);
  9517       int stk_offset = wordSize-2;
  9518       push(cnt2);
  9520       bind(COPY_SUBSTR);
  9521       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
  9522       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  9523       decrement(cnt2);
  9524       jccb(Assembler::notZero, COPY_SUBSTR);
  9526       pop(cnt2);
  9527       movptr(str2, rsp);  // New substring address
  9528     } // non constant
  9530     bind(CHECK_STR);
  9531     cmpl(cnt1, 8);
  9532     jccb(Assembler::aboveEqual, BIG_STRINGS);
  9534     // Check cross page boundary.
  9535     movl(result, str1); // We need only low 32 bits
  9536     andl(result, (os::vm_page_size()-1));
  9537     cmpl(result, (os::vm_page_size()-16));
  9538     jccb(Assembler::belowEqual, BIG_STRINGS);
  9540     subptr(rsp, 16);
  9541     int stk_offset = -2;
  9542     if (int_cnt2 < 0) { // not constant
  9543       push(cnt2);
  9544       stk_offset += wordSize;
  9546     movl(cnt2, cnt1);
  9548     bind(COPY_STR);
  9549     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
  9550     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  9551     decrement(cnt2);
  9552     jccb(Assembler::notZero, COPY_STR);
  9554     if (int_cnt2 < 0) { // not constant
  9555       pop(cnt2);
  9557     movptr(str1, rsp);  // New string address
  9559     bind(BIG_STRINGS);
  9560     // Load substring.
  9561     if (int_cnt2 < 0) { // -1
  9562       movdqu(vec, Address(str2, 0));
  9563       push(cnt2);       // substr count
  9564       push(str2);       // substr addr
  9565       push(str1);       // string addr
  9566     } else {
  9567       // Small (< 8 chars) constant substrings are loaded already.
  9568       movl(cnt2, int_cnt2);
  9570     push(tmp);  // original SP
  9572   } // Finished loading
  9574   //========================================================
  9575   // Start search
  9576   //
  9578   movptr(result, str1); // string addr
  9580   if (int_cnt2  < 0) {  // Only for non constant substring
  9581     jmpb(SCAN_TO_SUBSTR);
  9583     // SP saved at sp+0
  9584     // String saved at sp+1*wordSize
  9585     // Substr saved at sp+2*wordSize
  9586     // Substr count saved at sp+3*wordSize
  9588     // Reload substr for rescan, this code
  9589     // is executed only for large substrings (> 8 chars)
  9590     bind(RELOAD_SUBSTR);
  9591     movptr(str2, Address(rsp, 2*wordSize));
  9592     movl(cnt2, Address(rsp, 3*wordSize));
  9593     movdqu(vec, Address(str2, 0));
  9594     // We came here after the beginning of the substring was
  9595     // matched but the rest of it was not so we need to search
  9596     // again. Start from the next element after the previous match.
  9597     subptr(str1, result); // Restore counter
  9598     shrl(str1, 1);
  9599     addl(cnt1, str1);
  9600     decrementl(cnt1);   // Shift to next element
  9601     cmpl(cnt1, cnt2);
  9602     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9604     addptr(result, 2);
  9605   } // non constant
  9607   // Scan string for start of substr in 16-byte vectors
  9608   bind(SCAN_TO_SUBSTR);
  9609   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  9610   pcmpestri(vec, Address(result, 0), 0x0d);
  9611   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  9612   subl(cnt1, 8);
  9613   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  9614   cmpl(cnt1, cnt2);
  9615   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9616   addptr(result, 16);
  9618   bind(ADJUST_STR);
  9619   cmpl(cnt1, 8); // Do not read beyond string
  9620   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  9621   // Back-up string to avoid reading beyond string.
  9622   lea(result, Address(result, cnt1, Address::times_2, -16));
  9623   movl(cnt1, 8);
  9624   jmpb(SCAN_TO_SUBSTR);
  9626   // Found a potential substr
  9627   bind(FOUND_CANDIDATE);
  9628   // After pcmpestri tmp(rcx) contains matched element index
  9630   // Make sure string is still long enough
  9631   subl(cnt1, tmp);
  9632   cmpl(cnt1, cnt2);
  9633   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  9634   // Left less then substring.
  9636   bind(RET_NOT_FOUND);
  9637   movl(result, -1);
  9638   jmpb(CLEANUP);
  9640   bind(FOUND_SUBSTR);
  9641   // Compute start addr of substr
  9642   lea(result, Address(result, tmp, Address::times_2));
  9644   if (int_cnt2 > 0) { // Constant substring
  9645     // Repeat search for small substring (< 8 chars)
  9646     // from new point without reloading substring.
  9647     // Have to check that we don't read beyond string.
  9648     cmpl(tmp, 8-int_cnt2);
  9649     jccb(Assembler::greater, ADJUST_STR);
  9650     // Fall through if matched whole substring.
  9651   } else { // non constant
  9652     assert(int_cnt2 == -1, "should be != 0");
  9654     addl(tmp, cnt2);
  9655     // Found result if we matched whole substring.
  9656     cmpl(tmp, 8);
  9657     jccb(Assembler::lessEqual, RET_FOUND);
  9659     // Repeat search for small substring (<= 8 chars)
  9660     // from new point 'str1' without reloading substring.
  9661     cmpl(cnt2, 8);
  9662     // Have to check that we don't read beyond string.
  9663     jccb(Assembler::lessEqual, ADJUST_STR);
  9665     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
  9666     // Compare the rest of substring (> 8 chars).
  9667     movptr(str1, result);
  9669     cmpl(tmp, cnt2);
  9670     // First 8 chars are already matched.
  9671     jccb(Assembler::equal, CHECK_NEXT);
  9673     bind(SCAN_SUBSTR);
  9674     pcmpestri(vec, Address(str1, 0), 0x0d);
  9675     // Need to reload strings pointers if not matched whole vector
  9676     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  9678     bind(CHECK_NEXT);
  9679     subl(cnt2, 8);
  9680     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
  9681     addptr(str1, 16);
  9682     addptr(str2, 16);
  9683     subl(cnt1, 8);
  9684     cmpl(cnt2, 8); // Do not read beyond substring
  9685     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
  9686     // Back-up strings to avoid reading beyond substring.
  9687     lea(str2, Address(str2, cnt2, Address::times_2, -16));
  9688     lea(str1, Address(str1, cnt2, Address::times_2, -16));
  9689     subl(cnt1, cnt2);
  9690     movl(cnt2, 8);
  9691     addl(cnt1, 8);
  9692     bind(CONT_SCAN_SUBSTR);
  9693     movdqu(vec, Address(str2, 0));
  9694     jmpb(SCAN_SUBSTR);
  9696     bind(RET_FOUND_LONG);
  9697     movptr(str1, Address(rsp, wordSize));
  9698   } // non constant
  9700   bind(RET_FOUND);
  9701   // Compute substr offset
  9702   subptr(result, str1);
  9703   shrl(result, 1); // index
  9705   bind(CLEANUP);
  9706   pop(rsp); // restore SP
  9708 } // string_indexof
  9710 // Compare strings.
  9711 void MacroAssembler::string_compare(Register str1, Register str2,
  9712                                     Register cnt1, Register cnt2, Register result,
  9713                                     XMMRegister vec1) {
  9714   ShortBranchVerifier sbv(this);
  9715   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  9717   // Compute the minimum of the string lengths and the
  9718   // difference of the string lengths (stack).
  9719   // Do the conditional move stuff
  9720   movl(result, cnt1);
  9721   subl(cnt1, cnt2);
  9722   push(cnt1);
  9723   cmov32(Assembler::lessEqual, cnt2, result);
  9725   // Is the minimum length zero?
  9726   testl(cnt2, cnt2);
  9727   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  9729   // Load first characters
  9730   load_unsigned_short(result, Address(str1, 0));
  9731   load_unsigned_short(cnt1, Address(str2, 0));
  9733   // Compare first characters
  9734   subl(result, cnt1);
  9735   jcc(Assembler::notZero,  POP_LABEL);
  9736   decrementl(cnt2);
  9737   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  9740     // Check after comparing first character to see if strings are equivalent
  9741     Label LSkip2;
  9742     // Check if the strings start at same location
  9743     cmpptr(str1, str2);
  9744     jccb(Assembler::notEqual, LSkip2);
  9746     // Check if the length difference is zero (from stack)
  9747     cmpl(Address(rsp, 0), 0x0);
  9748     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  9750     // Strings might not be equivalent
  9751     bind(LSkip2);
  9754   Address::ScaleFactor scale = Address::times_2;
  9755   int stride = 8;
  9757   // Advance to next element
  9758   addptr(str1, 16/stride);
  9759   addptr(str2, 16/stride);
  9761   if (UseSSE42Intrinsics) {
  9762     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  9763     int pcmpmask = 0x19;
  9764     // Setup to compare 16-byte vectors
  9765     movl(result, cnt2);
  9766     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
  9767     jccb(Assembler::zero, COMPARE_TAIL);
  9769     lea(str1, Address(str1, result, scale));
  9770     lea(str2, Address(str2, result, scale));
  9771     negptr(result);
  9773     // pcmpestri
  9774     //   inputs:
  9775     //     vec1- substring
  9776     //     rax - negative string length (elements count)
  9777     //     mem - scaned string
  9778     //     rdx - string length (elements count)
  9779     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
  9780     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
  9781     //   outputs:
  9782     //     rcx - first mismatched element index
  9783     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  9785     bind(COMPARE_WIDE_VECTORS);
  9786     movdqu(vec1, Address(str1, result, scale));
  9787     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  9788     // After pcmpestri cnt1(rcx) contains mismatched element index
  9790     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
  9791     addptr(result, stride);
  9792     subptr(cnt2, stride);
  9793     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
  9795     // compare wide vectors tail
  9796     testl(result, result);
  9797     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  9799     movl(cnt2, stride);
  9800     movl(result, stride);
  9801     negptr(result);
  9802     movdqu(vec1, Address(str1, result, scale));
  9803     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  9804     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
  9806     // Mismatched characters in the vectors
  9807     bind(VECTOR_NOT_EQUAL);
  9808     addptr(result, cnt1);
  9809     movptr(cnt2, result);
  9810     load_unsigned_short(result, Address(str1, cnt2, scale));
  9811     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
  9812     subl(result, cnt1);
  9813     jmpb(POP_LABEL);
  9815     bind(COMPARE_TAIL); // limit is zero
  9816     movl(cnt2, result);
  9817     // Fallthru to tail compare
  9820   // Shift str2 and str1 to the end of the arrays, negate min
  9821   lea(str1, Address(str1, cnt2, scale, 0));
  9822   lea(str2, Address(str2, cnt2, scale, 0));
  9823   negptr(cnt2);
  9825   // Compare the rest of the elements
  9826   bind(WHILE_HEAD_LABEL);
  9827   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  9828   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
  9829   subl(result, cnt1);
  9830   jccb(Assembler::notZero, POP_LABEL);
  9831   increment(cnt2);
  9832   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
  9834   // Strings are equal up to min length.  Return the length difference.
  9835   bind(LENGTH_DIFF_LABEL);
  9836   pop(result);
  9837   jmpb(DONE_LABEL);
  9839   // Discard the stored length difference
  9840   bind(POP_LABEL);
  9841   pop(cnt1);
  9843   // That's it
  9844   bind(DONE_LABEL);
  9847 // Compare char[] arrays aligned to 4 bytes or substrings.
  9848 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  9849                                         Register limit, Register result, Register chr,
  9850                                         XMMRegister vec1, XMMRegister vec2) {
  9851   ShortBranchVerifier sbv(this);
  9852   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  9854   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  9855   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  9857   // Check the input args
  9858   cmpptr(ary1, ary2);
  9859   jcc(Assembler::equal, TRUE_LABEL);
  9861   if (is_array_equ) {
  9862     // Need additional checks for arrays_equals.
  9863     testptr(ary1, ary1);
  9864     jcc(Assembler::zero, FALSE_LABEL);
  9865     testptr(ary2, ary2);
  9866     jcc(Assembler::zero, FALSE_LABEL);
  9868     // Check the lengths
  9869     movl(limit, Address(ary1, length_offset));
  9870     cmpl(limit, Address(ary2, length_offset));
  9871     jcc(Assembler::notEqual, FALSE_LABEL);
  9874   // count == 0
  9875   testl(limit, limit);
  9876   jcc(Assembler::zero, TRUE_LABEL);
  9878   if (is_array_equ) {
  9879     // Load array address
  9880     lea(ary1, Address(ary1, base_offset));
  9881     lea(ary2, Address(ary2, base_offset));
  9884   shll(limit, 1);      // byte count != 0
  9885   movl(result, limit); // copy
  9887   if (UseSSE42Intrinsics) {
  9888     // With SSE4.2, use double quad vector compare
  9889     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  9891     // Compare 16-byte vectors
  9892     andl(result, 0x0000000e);  //   tail count (in bytes)
  9893     andl(limit, 0xfffffff0);   // vector count (in bytes)
  9894     jccb(Assembler::zero, COMPARE_TAIL);
  9896     lea(ary1, Address(ary1, limit, Address::times_1));
  9897     lea(ary2, Address(ary2, limit, Address::times_1));
  9898     negptr(limit);
  9900     bind(COMPARE_WIDE_VECTORS);
  9901     movdqu(vec1, Address(ary1, limit, Address::times_1));
  9902     movdqu(vec2, Address(ary2, limit, Address::times_1));
  9903     pxor(vec1, vec2);
  9905     ptest(vec1, vec1);
  9906     jccb(Assembler::notZero, FALSE_LABEL);
  9907     addptr(limit, 16);
  9908     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  9910     testl(result, result);
  9911     jccb(Assembler::zero, TRUE_LABEL);
  9913     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
  9914     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
  9915     pxor(vec1, vec2);
  9917     ptest(vec1, vec1);
  9918     jccb(Assembler::notZero, FALSE_LABEL);
  9919     jmpb(TRUE_LABEL);
  9921     bind(COMPARE_TAIL); // limit is zero
  9922     movl(limit, result);
  9923     // Fallthru to tail compare
  9926   // Compare 4-byte vectors
  9927   andl(limit, 0xfffffffc); // vector count (in bytes)
  9928   jccb(Assembler::zero, COMPARE_CHAR);
  9930   lea(ary1, Address(ary1, limit, Address::times_1));
  9931   lea(ary2, Address(ary2, limit, Address::times_1));
  9932   negptr(limit);
  9934   bind(COMPARE_VECTORS);
  9935   movl(chr, Address(ary1, limit, Address::times_1));
  9936   cmpl(chr, Address(ary2, limit, Address::times_1));
  9937   jccb(Assembler::notEqual, FALSE_LABEL);
  9938   addptr(limit, 4);
  9939   jcc(Assembler::notZero, COMPARE_VECTORS);
  9941   // Compare trailing char (final 2 bytes), if any
  9942   bind(COMPARE_CHAR);
  9943   testl(result, 0x2);   // tail  char
  9944   jccb(Assembler::zero, TRUE_LABEL);
  9945   load_unsigned_short(chr, Address(ary1, 0));
  9946   load_unsigned_short(limit, Address(ary2, 0));
  9947   cmpl(chr, limit);
  9948   jccb(Assembler::notEqual, FALSE_LABEL);
  9950   bind(TRUE_LABEL);
  9951   movl(result, 1);   // return true
  9952   jmpb(DONE);
  9954   bind(FALSE_LABEL);
  9955   xorl(result, result); // return false
  9957   // That's it
  9958   bind(DONE);
  9961 #ifdef PRODUCT
  9962 #define BLOCK_COMMENT(str) /* nothing */
  9963 #else
  9964 #define BLOCK_COMMENT(str) block_comment(str)
  9965 #endif
  9967 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  9968 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  9969                                    Register to, Register value, Register count,
  9970                                    Register rtmp, XMMRegister xtmp) {
  9971   ShortBranchVerifier sbv(this);
  9972   assert_different_registers(to, value, count, rtmp);
  9973   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  9974   Label L_fill_2_bytes, L_fill_4_bytes;
  9976   int shift = -1;
  9977   switch (t) {
  9978     case T_BYTE:
  9979       shift = 2;
  9980       break;
  9981     case T_SHORT:
  9982       shift = 1;
  9983       break;
  9984     case T_INT:
  9985       shift = 0;
  9986       break;
  9987     default: ShouldNotReachHere();
  9990   if (t == T_BYTE) {
  9991     andl(value, 0xff);
  9992     movl(rtmp, value);
  9993     shll(rtmp, 8);
  9994     orl(value, rtmp);
  9996   if (t == T_SHORT) {
  9997     andl(value, 0xffff);
  9999   if (t == T_BYTE || t == T_SHORT) {
 10000     movl(rtmp, value);
 10001     shll(rtmp, 16);
 10002     orl(value, rtmp);
 10005   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 10006   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 10007   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 10008     // align source address at 4 bytes address boundary
 10009     if (t == T_BYTE) {
 10010       // One byte misalignment happens only for byte arrays
 10011       testptr(to, 1);
 10012       jccb(Assembler::zero, L_skip_align1);
 10013       movb(Address(to, 0), value);
 10014       increment(to);
 10015       decrement(count);
 10016       BIND(L_skip_align1);
 10018     // Two bytes misalignment happens only for byte and short (char) arrays
 10019     testptr(to, 2);
 10020     jccb(Assembler::zero, L_skip_align2);
 10021     movw(Address(to, 0), value);
 10022     addptr(to, 2);
 10023     subl(count, 1<<(shift-1));
 10024     BIND(L_skip_align2);
 10026   if (UseSSE < 2) {
 10027     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 10028     // Fill 32-byte chunks
 10029     subl(count, 8 << shift);
 10030     jcc(Assembler::less, L_check_fill_8_bytes);
 10031     align(16);
 10033     BIND(L_fill_32_bytes_loop);
 10035     for (int i = 0; i < 32; i += 4) {
 10036       movl(Address(to, i), value);
 10039     addptr(to, 32);
 10040     subl(count, 8 << shift);
 10041     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 10042     BIND(L_check_fill_8_bytes);
 10043     addl(count, 8 << shift);
 10044     jccb(Assembler::zero, L_exit);
 10045     jmpb(L_fill_8_bytes);
 10047     //
 10048     // length is too short, just fill qwords
 10049     //
 10050     BIND(L_fill_8_bytes_loop);
 10051     movl(Address(to, 0), value);
 10052     movl(Address(to, 4), value);
 10053     addptr(to, 8);
 10054     BIND(L_fill_8_bytes);
 10055     subl(count, 1 << (shift + 1));
 10056     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 10057     // fall through to fill 4 bytes
 10058   } else {
 10059     Label L_fill_32_bytes;
 10060     if (!UseUnalignedLoadStores) {
 10061       // align to 8 bytes, we know we are 4 byte aligned to start
 10062       testptr(to, 4);
 10063       jccb(Assembler::zero, L_fill_32_bytes);
 10064       movl(Address(to, 0), value);
 10065       addptr(to, 4);
 10066       subl(count, 1<<shift);
 10068     BIND(L_fill_32_bytes);
 10070       assert( UseSSE >= 2, "supported cpu only" );
 10071       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 10072       // Fill 32-byte chunks
 10073       movdl(xtmp, value);
 10074       pshufd(xtmp, xtmp, 0);
 10076       subl(count, 8 << shift);
 10077       jcc(Assembler::less, L_check_fill_8_bytes);
 10078       align(16);
 10080       BIND(L_fill_32_bytes_loop);
 10082       if (UseUnalignedLoadStores) {
 10083         movdqu(Address(to, 0), xtmp);
 10084         movdqu(Address(to, 16), xtmp);
 10085       } else {
 10086         movq(Address(to, 0), xtmp);
 10087         movq(Address(to, 8), xtmp);
 10088         movq(Address(to, 16), xtmp);
 10089         movq(Address(to, 24), xtmp);
 10092       addptr(to, 32);
 10093       subl(count, 8 << shift);
 10094       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 10095       BIND(L_check_fill_8_bytes);
 10096       addl(count, 8 << shift);
 10097       jccb(Assembler::zero, L_exit);
 10098       jmpb(L_fill_8_bytes);
 10100       //
 10101       // length is too short, just fill qwords
 10102       //
 10103       BIND(L_fill_8_bytes_loop);
 10104       movq(Address(to, 0), xtmp);
 10105       addptr(to, 8);
 10106       BIND(L_fill_8_bytes);
 10107       subl(count, 1 << (shift + 1));
 10108       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 10111   // fill trailing 4 bytes
 10112   BIND(L_fill_4_bytes);
 10113   testl(count, 1<<shift);
 10114   jccb(Assembler::zero, L_fill_2_bytes);
 10115   movl(Address(to, 0), value);
 10116   if (t == T_BYTE || t == T_SHORT) {
 10117     addptr(to, 4);
 10118     BIND(L_fill_2_bytes);
 10119     // fill trailing 2 bytes
 10120     testl(count, 1<<(shift-1));
 10121     jccb(Assembler::zero, L_fill_byte);
 10122     movw(Address(to, 0), value);
 10123     if (t == T_BYTE) {
 10124       addptr(to, 2);
 10125       BIND(L_fill_byte);
 10126       // fill trailing byte
 10127       testl(count, 1);
 10128       jccb(Assembler::zero, L_exit);
 10129       movb(Address(to, 0), value);
 10130     } else {
 10131       BIND(L_fill_byte);
 10133   } else {
 10134     BIND(L_fill_2_bytes);
 10136   BIND(L_exit);
 10138 #undef BIND
 10139 #undef BLOCK_COMMENT
 10142 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
 10143   switch (cond) {
 10144     // Note some conditions are synonyms for others
 10145     case Assembler::zero:         return Assembler::notZero;
 10146     case Assembler::notZero:      return Assembler::zero;
 10147     case Assembler::less:         return Assembler::greaterEqual;
 10148     case Assembler::lessEqual:    return Assembler::greater;
 10149     case Assembler::greater:      return Assembler::lessEqual;
 10150     case Assembler::greaterEqual: return Assembler::less;
 10151     case Assembler::below:        return Assembler::aboveEqual;
 10152     case Assembler::belowEqual:   return Assembler::above;
 10153     case Assembler::above:        return Assembler::belowEqual;
 10154     case Assembler::aboveEqual:   return Assembler::below;
 10155     case Assembler::overflow:     return Assembler::noOverflow;
 10156     case Assembler::noOverflow:   return Assembler::overflow;
 10157     case Assembler::negative:     return Assembler::positive;
 10158     case Assembler::positive:     return Assembler::negative;
 10159     case Assembler::parity:       return Assembler::noParity;
 10160     case Assembler::noParity:     return Assembler::parity;
 10162   ShouldNotReachHere(); return Assembler::overflow;
 10165 SkipIfEqual::SkipIfEqual(
 10166     MacroAssembler* masm, const bool* flag_addr, bool value) {
 10167   _masm = masm;
 10168   _masm->cmp8(ExternalAddress((address)flag_addr), value);
 10169   _masm->jcc(Assembler::equal, _label);
 10172 SkipIfEqual::~SkipIfEqual() {
 10173   _masm->bind(_label);

mercurial