src/cpu/x86/vm/assembler_x86.cpp

Wed, 15 Feb 2012 21:37:49 -0800

author
kvn
date
Wed, 15 Feb 2012 21:37:49 -0800
changeset 3574
fd8114661503
parent 3399
1cb50d7a9d95
child 3687
fd09f2d8283e
permissions
-rw-r--r--

7125136: SIGILL on linux amd64 in gc/ArrayJuggle/Juggle29
Summary: For C2 moved saving EBP after ESP adjustment. For C1 generated 5 byte nop instruction first if needed.
Reviewed-by: never, twisti, azeemj

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 // Implementation of AddressLiteral
    46 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    47   _is_lval = false;
    48   _target = target;
    49   switch (rtype) {
    50   case relocInfo::oop_type:
    51     // Oops are a special case. Normally they would be their own section
    52     // but in cases like icBuffer they are literals in the code stream that
    53     // we don't have a section for. We use none so that we get a literal address
    54     // which is always patchable.
    55     break;
    56   case relocInfo::external_word_type:
    57     _rspec = external_word_Relocation::spec(target);
    58     break;
    59   case relocInfo::internal_word_type:
    60     _rspec = internal_word_Relocation::spec(target);
    61     break;
    62   case relocInfo::opt_virtual_call_type:
    63     _rspec = opt_virtual_call_Relocation::spec();
    64     break;
    65   case relocInfo::static_call_type:
    66     _rspec = static_call_Relocation::spec();
    67     break;
    68   case relocInfo::runtime_call_type:
    69     _rspec = runtime_call_Relocation::spec();
    70     break;
    71   case relocInfo::poll_type:
    72   case relocInfo::poll_return_type:
    73     _rspec = Relocation::spec_simple(rtype);
    74     break;
    75   case relocInfo::none:
    76     break;
    77   default:
    78     ShouldNotReachHere();
    79     break;
    80   }
    81 }
    83 // Implementation of Address
    85 #ifdef _LP64
    87 Address Address::make_array(ArrayAddress adr) {
    88   // Not implementable on 64bit machines
    89   // Should have been handled higher up the call chain.
    90   ShouldNotReachHere();
    91   return Address();
    92 }
    94 // exceedingly dangerous constructor
    95 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    96   _base  = noreg;
    97   _index = noreg;
    98   _scale = no_scale;
    99   _disp  = disp;
   100   switch (rtype) {
   101     case relocInfo::external_word_type:
   102       _rspec = external_word_Relocation::spec(loc);
   103       break;
   104     case relocInfo::internal_word_type:
   105       _rspec = internal_word_Relocation::spec(loc);
   106       break;
   107     case relocInfo::runtime_call_type:
   108       // HMM
   109       _rspec = runtime_call_Relocation::spec();
   110       break;
   111     case relocInfo::poll_type:
   112     case relocInfo::poll_return_type:
   113       _rspec = Relocation::spec_simple(rtype);
   114       break;
   115     case relocInfo::none:
   116       break;
   117     default:
   118       ShouldNotReachHere();
   119   }
   120 }
   121 #else // LP64
   123 Address Address::make_array(ArrayAddress adr) {
   124   AddressLiteral base = adr.base();
   125   Address index = adr.index();
   126   assert(index._disp == 0, "must not have disp"); // maybe it can?
   127   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   128   array._rspec = base._rspec;
   129   return array;
   130 }
   132 // exceedingly dangerous constructor
   133 Address::Address(address loc, RelocationHolder spec) {
   134   _base  = noreg;
   135   _index = noreg;
   136   _scale = no_scale;
   137   _disp  = (intptr_t) loc;
   138   _rspec = spec;
   139 }
   141 #endif // _LP64
   145 // Convert the raw encoding form into the form expected by the constructor for
   146 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   147 // that to noreg for the Address constructor.
   148 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   149   RelocationHolder rspec;
   150   if (disp_is_oop) {
   151     rspec = Relocation::spec_simple(relocInfo::oop_type);
   152   }
   153   bool valid_index = index != rsp->encoding();
   154   if (valid_index) {
   155     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   156     madr._rspec = rspec;
   157     return madr;
   158   } else {
   159     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   160     madr._rspec = rspec;
   161     return madr;
   162   }
   163 }
   165 // Implementation of Assembler
   167 int AbstractAssembler::code_fill_byte() {
   168   return (u_char)'\xF4'; // hlt
   169 }
   171 // make this go away someday
   172 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   173   if (rtype == relocInfo::none)
   174         emit_long(data);
   175   else  emit_data(data, Relocation::spec_simple(rtype), format);
   176 }
   178 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   179   assert(imm_operand == 0, "default format must be immediate in this file");
   180   assert(inst_mark() != NULL, "must be inside InstructionMark");
   181   if (rspec.type() !=  relocInfo::none) {
   182     #ifdef ASSERT
   183       check_relocation(rspec, format);
   184     #endif
   185     // Do not use AbstractAssembler::relocate, which is not intended for
   186     // embedded words.  Instead, relocate to the enclosing instruction.
   188     // hack. call32 is too wide for mask so use disp32
   189     if (format == call32_operand)
   190       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   191     else
   192       code_section()->relocate(inst_mark(), rspec, format);
   193   }
   194   emit_long(data);
   195 }
   197 static int encode(Register r) {
   198   int enc = r->encoding();
   199   if (enc >= 8) {
   200     enc -= 8;
   201   }
   202   return enc;
   203 }
   205 static int encode(XMMRegister r) {
   206   int enc = r->encoding();
   207   if (enc >= 8) {
   208     enc -= 8;
   209   }
   210   return enc;
   211 }
   213 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   214   assert(dst->has_byte_register(), "must have byte register");
   215   assert(isByte(op1) && isByte(op2), "wrong opcode");
   216   assert(isByte(imm8), "not a byte");
   217   assert((op1 & 0x01) == 0, "should be 8bit operation");
   218   emit_byte(op1);
   219   emit_byte(op2 | encode(dst));
   220   emit_byte(imm8);
   221 }
   224 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   225   assert(isByte(op1) && isByte(op2), "wrong opcode");
   226   assert((op1 & 0x01) == 1, "should be 32bit operation");
   227   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   228   if (is8bit(imm32)) {
   229     emit_byte(op1 | 0x02); // set sign bit
   230     emit_byte(op2 | encode(dst));
   231     emit_byte(imm32 & 0xFF);
   232   } else {
   233     emit_byte(op1);
   234     emit_byte(op2 | encode(dst));
   235     emit_long(imm32);
   236   }
   237 }
   239 // Force generation of a 4 byte immediate value even if it fits into 8bit
   240 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   241   assert(isByte(op1) && isByte(op2), "wrong opcode");
   242   assert((op1 & 0x01) == 1, "should be 32bit operation");
   243   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   244   emit_byte(op1);
   245   emit_byte(op2 | encode(dst));
   246   emit_long(imm32);
   247 }
   249 // immediate-to-memory forms
   250 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   251   assert((op1 & 0x01) == 1, "should be 32bit operation");
   252   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   253   if (is8bit(imm32)) {
   254     emit_byte(op1 | 0x02); // set sign bit
   255     emit_operand(rm, adr, 1);
   256     emit_byte(imm32 & 0xFF);
   257   } else {
   258     emit_byte(op1);
   259     emit_operand(rm, adr, 4);
   260     emit_long(imm32);
   261   }
   262 }
   264 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   265   LP64_ONLY(ShouldNotReachHere());
   266   assert(isByte(op1) && isByte(op2), "wrong opcode");
   267   assert((op1 & 0x01) == 1, "should be 32bit operation");
   268   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   269   InstructionMark im(this);
   270   emit_byte(op1);
   271   emit_byte(op2 | encode(dst));
   272   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   273 }
   276 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   277   assert(isByte(op1) && isByte(op2), "wrong opcode");
   278   emit_byte(op1);
   279   emit_byte(op2 | encode(dst) << 3 | encode(src));
   280 }
   283 void Assembler::emit_operand(Register reg, Register base, Register index,
   284                              Address::ScaleFactor scale, int disp,
   285                              RelocationHolder const& rspec,
   286                              int rip_relative_correction) {
   287   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   289   // Encode the registers as needed in the fields they are used in
   291   int regenc = encode(reg) << 3;
   292   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   293   int baseenc = base->is_valid() ? encode(base) : 0;
   295   if (base->is_valid()) {
   296     if (index->is_valid()) {
   297       assert(scale != Address::no_scale, "inconsistent address");
   298       // [base + index*scale + disp]
   299       if (disp == 0 && rtype == relocInfo::none  &&
   300           base != rbp LP64_ONLY(&& base != r13)) {
   301         // [base + index*scale]
   302         // [00 reg 100][ss index base]
   303         assert(index != rsp, "illegal addressing mode");
   304         emit_byte(0x04 | regenc);
   305         emit_byte(scale << 6 | indexenc | baseenc);
   306       } else if (is8bit(disp) && rtype == relocInfo::none) {
   307         // [base + index*scale + imm8]
   308         // [01 reg 100][ss index base] imm8
   309         assert(index != rsp, "illegal addressing mode");
   310         emit_byte(0x44 | regenc);
   311         emit_byte(scale << 6 | indexenc | baseenc);
   312         emit_byte(disp & 0xFF);
   313       } else {
   314         // [base + index*scale + disp32]
   315         // [10 reg 100][ss index base] disp32
   316         assert(index != rsp, "illegal addressing mode");
   317         emit_byte(0x84 | regenc);
   318         emit_byte(scale << 6 | indexenc | baseenc);
   319         emit_data(disp, rspec, disp32_operand);
   320       }
   321     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   322       // [rsp + disp]
   323       if (disp == 0 && rtype == relocInfo::none) {
   324         // [rsp]
   325         // [00 reg 100][00 100 100]
   326         emit_byte(0x04 | regenc);
   327         emit_byte(0x24);
   328       } else if (is8bit(disp) && rtype == relocInfo::none) {
   329         // [rsp + imm8]
   330         // [01 reg 100][00 100 100] disp8
   331         emit_byte(0x44 | regenc);
   332         emit_byte(0x24);
   333         emit_byte(disp & 0xFF);
   334       } else {
   335         // [rsp + imm32]
   336         // [10 reg 100][00 100 100] disp32
   337         emit_byte(0x84 | regenc);
   338         emit_byte(0x24);
   339         emit_data(disp, rspec, disp32_operand);
   340       }
   341     } else {
   342       // [base + disp]
   343       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   344       if (disp == 0 && rtype == relocInfo::none &&
   345           base != rbp LP64_ONLY(&& base != r13)) {
   346         // [base]
   347         // [00 reg base]
   348         emit_byte(0x00 | regenc | baseenc);
   349       } else if (is8bit(disp) && rtype == relocInfo::none) {
   350         // [base + disp8]
   351         // [01 reg base] disp8
   352         emit_byte(0x40 | regenc | baseenc);
   353         emit_byte(disp & 0xFF);
   354       } else {
   355         // [base + disp32]
   356         // [10 reg base] disp32
   357         emit_byte(0x80 | regenc | baseenc);
   358         emit_data(disp, rspec, disp32_operand);
   359       }
   360     }
   361   } else {
   362     if (index->is_valid()) {
   363       assert(scale != Address::no_scale, "inconsistent address");
   364       // [index*scale + disp]
   365       // [00 reg 100][ss index 101] disp32
   366       assert(index != rsp, "illegal addressing mode");
   367       emit_byte(0x04 | regenc);
   368       emit_byte(scale << 6 | indexenc | 0x05);
   369       emit_data(disp, rspec, disp32_operand);
   370     } else if (rtype != relocInfo::none ) {
   371       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   372       // [00 000 101] disp32
   374       emit_byte(0x05 | regenc);
   375       // Note that the RIP-rel. correction applies to the generated
   376       // disp field, but _not_ to the target address in the rspec.
   378       // disp was created by converting the target address minus the pc
   379       // at the start of the instruction. That needs more correction here.
   380       // intptr_t disp = target - next_ip;
   381       assert(inst_mark() != NULL, "must be inside InstructionMark");
   382       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   383       int64_t adjusted = disp;
   384       // Do rip-rel adjustment for 64bit
   385       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   386       assert(is_simm32(adjusted),
   387              "must be 32bit offset (RIP relative address)");
   388       emit_data((int32_t) adjusted, rspec, disp32_operand);
   390     } else {
   391       // 32bit never did this, did everything as the rip-rel/disp code above
   392       // [disp] ABSOLUTE
   393       // [00 reg 100][00 100 101] disp32
   394       emit_byte(0x04 | regenc);
   395       emit_byte(0x25);
   396       emit_data(disp, rspec, disp32_operand);
   397     }
   398   }
   399 }
   401 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   402                              Address::ScaleFactor scale, int disp,
   403                              RelocationHolder const& rspec) {
   404   emit_operand((Register)reg, base, index, scale, disp, rspec);
   405 }
   407 // Secret local extension to Assembler::WhichOperand:
   408 #define end_pc_operand (_WhichOperand_limit)
   410 address Assembler::locate_operand(address inst, WhichOperand which) {
   411   // Decode the given instruction, and return the address of
   412   // an embedded 32-bit operand word.
   414   // If "which" is disp32_operand, selects the displacement portion
   415   // of an effective address specifier.
   416   // If "which" is imm64_operand, selects the trailing immediate constant.
   417   // If "which" is call32_operand, selects the displacement of a call or jump.
   418   // Caller is responsible for ensuring that there is such an operand,
   419   // and that it is 32/64 bits wide.
   421   // If "which" is end_pc_operand, find the end of the instruction.
   423   address ip = inst;
   424   bool is_64bit = false;
   426   debug_only(bool has_disp32 = false);
   427   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   429   again_after_prefix:
   430   switch (0xFF & *ip++) {
   432   // These convenience macros generate groups of "case" labels for the switch.
   433 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   434 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   435              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   436 #define REP16(x) REP8((x)+0): \
   437               case REP8((x)+8)
   439   case CS_segment:
   440   case SS_segment:
   441   case DS_segment:
   442   case ES_segment:
   443   case FS_segment:
   444   case GS_segment:
   445     // Seems dubious
   446     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   447     assert(ip == inst+1, "only one prefix allowed");
   448     goto again_after_prefix;
   450   case 0x67:
   451   case REX:
   452   case REX_B:
   453   case REX_X:
   454   case REX_XB:
   455   case REX_R:
   456   case REX_RB:
   457   case REX_RX:
   458   case REX_RXB:
   459     NOT_LP64(assert(false, "64bit prefixes"));
   460     goto again_after_prefix;
   462   case REX_W:
   463   case REX_WB:
   464   case REX_WX:
   465   case REX_WXB:
   466   case REX_WR:
   467   case REX_WRB:
   468   case REX_WRX:
   469   case REX_WRXB:
   470     NOT_LP64(assert(false, "64bit prefixes"));
   471     is_64bit = true;
   472     goto again_after_prefix;
   474   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   475   case 0x88: // movb a, r
   476   case 0x89: // movl a, r
   477   case 0x8A: // movb r, a
   478   case 0x8B: // movl r, a
   479   case 0x8F: // popl a
   480     debug_only(has_disp32 = true);
   481     break;
   483   case 0x68: // pushq #32
   484     if (which == end_pc_operand) {
   485       return ip + 4;
   486     }
   487     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   488     return ip;                  // not produced by emit_operand
   490   case 0x66: // movw ... (size prefix)
   491     again_after_size_prefix2:
   492     switch (0xFF & *ip++) {
   493     case REX:
   494     case REX_B:
   495     case REX_X:
   496     case REX_XB:
   497     case REX_R:
   498     case REX_RB:
   499     case REX_RX:
   500     case REX_RXB:
   501     case REX_W:
   502     case REX_WB:
   503     case REX_WX:
   504     case REX_WXB:
   505     case REX_WR:
   506     case REX_WRB:
   507     case REX_WRX:
   508     case REX_WRXB:
   509       NOT_LP64(assert(false, "64bit prefix found"));
   510       goto again_after_size_prefix2;
   511     case 0x8B: // movw r, a
   512     case 0x89: // movw a, r
   513       debug_only(has_disp32 = true);
   514       break;
   515     case 0xC7: // movw a, #16
   516       debug_only(has_disp32 = true);
   517       tail_size = 2;  // the imm16
   518       break;
   519     case 0x0F: // several SSE/SSE2 variants
   520       ip--;    // reparse the 0x0F
   521       goto again_after_prefix;
   522     default:
   523       ShouldNotReachHere();
   524     }
   525     break;
   527   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   528     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   529     // these asserts are somewhat nonsensical
   530 #ifndef _LP64
   531     assert(which == imm_operand || which == disp32_operand, "");
   532 #else
   533     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   534            which == narrow_oop_operand && !is_64bit, "");
   535 #endif // _LP64
   536     return ip;
   538   case 0x69: // imul r, a, #32
   539   case 0xC7: // movl a, #32(oop?)
   540     tail_size = 4;
   541     debug_only(has_disp32 = true); // has both kinds of operands!
   542     break;
   544   case 0x0F: // movx..., etc.
   545     switch (0xFF & *ip++) {
   546     case 0x3A: // pcmpestri
   547       tail_size = 1;
   548     case 0x38: // ptest, pmovzxbw
   549       ip++; // skip opcode
   550       debug_only(has_disp32 = true); // has both kinds of operands!
   551       break;
   553     case 0x70: // pshufd r, r/a, #8
   554       debug_only(has_disp32 = true); // has both kinds of operands!
   555     case 0x73: // psrldq r, #8
   556       tail_size = 1;
   557       break;
   559     case 0x12: // movlps
   560     case 0x28: // movaps
   561     case 0x2E: // ucomiss
   562     case 0x2F: // comiss
   563     case 0x54: // andps
   564     case 0x55: // andnps
   565     case 0x56: // orps
   566     case 0x57: // xorps
   567     case 0x6E: // movd
   568     case 0x7E: // movd
   569     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   570       debug_only(has_disp32 = true);
   571       break;
   573     case 0xAD: // shrd r, a, %cl
   574     case 0xAF: // imul r, a
   575     case 0xBE: // movsbl r, a (movsxb)
   576     case 0xBF: // movswl r, a (movsxw)
   577     case 0xB6: // movzbl r, a (movzxb)
   578     case 0xB7: // movzwl r, a (movzxw)
   579     case REP16(0x40): // cmovl cc, r, a
   580     case 0xB0: // cmpxchgb
   581     case 0xB1: // cmpxchg
   582     case 0xC1: // xaddl
   583     case 0xC7: // cmpxchg8
   584     case REP16(0x90): // setcc a
   585       debug_only(has_disp32 = true);
   586       // fall out of the switch to decode the address
   587       break;
   589     case 0xC4: // pinsrw r, a, #8
   590       debug_only(has_disp32 = true);
   591     case 0xC5: // pextrw r, r, #8
   592       tail_size = 1;  // the imm8
   593       break;
   595     case 0xAC: // shrd r, a, #8
   596       debug_only(has_disp32 = true);
   597       tail_size = 1;  // the imm8
   598       break;
   600     case REP16(0x80): // jcc rdisp32
   601       if (which == end_pc_operand)  return ip + 4;
   602       assert(which == call32_operand, "jcc has no disp32 or imm");
   603       return ip;
   604     default:
   605       ShouldNotReachHere();
   606     }
   607     break;
   609   case 0x81: // addl a, #32; addl r, #32
   610     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   611     // on 32bit in the case of cmpl, the imm might be an oop
   612     tail_size = 4;
   613     debug_only(has_disp32 = true); // has both kinds of operands!
   614     break;
   616   case 0x83: // addl a, #8; addl r, #8
   617     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   618     debug_only(has_disp32 = true); // has both kinds of operands!
   619     tail_size = 1;
   620     break;
   622   case 0x9B:
   623     switch (0xFF & *ip++) {
   624     case 0xD9: // fnstcw a
   625       debug_only(has_disp32 = true);
   626       break;
   627     default:
   628       ShouldNotReachHere();
   629     }
   630     break;
   632   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   633   case REP4(0x10): // adc...
   634   case REP4(0x20): // and...
   635   case REP4(0x30): // xor...
   636   case REP4(0x08): // or...
   637   case REP4(0x18): // sbb...
   638   case REP4(0x28): // sub...
   639   case 0xF7: // mull a
   640   case 0x8D: // lea r, a
   641   case 0x87: // xchg r, a
   642   case REP4(0x38): // cmp...
   643   case 0x85: // test r, a
   644     debug_only(has_disp32 = true); // has both kinds of operands!
   645     break;
   647   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   648   case 0xC6: // movb a, #8
   649   case 0x80: // cmpb a, #8
   650   case 0x6B: // imul r, a, #8
   651     debug_only(has_disp32 = true); // has both kinds of operands!
   652     tail_size = 1; // the imm8
   653     break;
   655   case 0xC4: // VEX_3bytes
   656   case 0xC5: // VEX_2bytes
   657     assert((UseAVX > 0), "shouldn't have VEX prefix");
   658     assert(ip == inst+1, "no prefixes allowed");
   659     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   660     // but they have prefix 0x0F and processed when 0x0F processed above.
   661     //
   662     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   663     // instructions (these instructions are not supported in 64-bit mode).
   664     // To distinguish them bits [7:6] are set in the VEX second byte since
   665     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   666     // those VEX bits REX and vvvv bits are inverted.
   667     //
   668     // Fortunately C2 doesn't generate these instructions so we don't need
   669     // to check for them in product version.
   671     // Check second byte
   672     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   674     // First byte
   675     if ((0xFF & *inst) == VEX_3bytes) {
   676       ip++; // third byte
   677       is_64bit = ((VEX_W & *ip) == VEX_W);
   678     }
   679     ip++; // opcode
   680     // To find the end of instruction (which == end_pc_operand).
   681     switch (0xFF & *ip) {
   682     case 0x61: // pcmpestri r, r/a, #8
   683     case 0x70: // pshufd r, r/a, #8
   684     case 0x73: // psrldq r, #8
   685       tail_size = 1;  // the imm8
   686       break;
   687     default:
   688       break;
   689     }
   690     ip++; // skip opcode
   691     debug_only(has_disp32 = true); // has both kinds of operands!
   692     break;
   694   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   695   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   696   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   697   case 0xDD: // fld_d a; fst_d a; fstp_d a
   698   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   699   case 0xDF: // fild_d a; fistp_d a
   700   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   701   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   702   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   703     debug_only(has_disp32 = true);
   704     break;
   706   case 0xE8: // call rdisp32
   707   case 0xE9: // jmp  rdisp32
   708     if (which == end_pc_operand)  return ip + 4;
   709     assert(which == call32_operand, "call has no disp32 or imm");
   710     return ip;
   712   case 0xF0:                    // Lock
   713     assert(os::is_MP(), "only on MP");
   714     goto again_after_prefix;
   716   case 0xF3:                    // For SSE
   717   case 0xF2:                    // For SSE2
   718     switch (0xFF & *ip++) {
   719     case REX:
   720     case REX_B:
   721     case REX_X:
   722     case REX_XB:
   723     case REX_R:
   724     case REX_RB:
   725     case REX_RX:
   726     case REX_RXB:
   727     case REX_W:
   728     case REX_WB:
   729     case REX_WX:
   730     case REX_WXB:
   731     case REX_WR:
   732     case REX_WRB:
   733     case REX_WRX:
   734     case REX_WRXB:
   735       NOT_LP64(assert(false, "found 64bit prefix"));
   736       ip++;
   737     default:
   738       ip++;
   739     }
   740     debug_only(has_disp32 = true); // has both kinds of operands!
   741     break;
   743   default:
   744     ShouldNotReachHere();
   746 #undef REP8
   747 #undef REP16
   748   }
   750   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   751 #ifdef _LP64
   752   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   753 #else
   754   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   755   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   756 #endif // LP64
   757   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   759   // parse the output of emit_operand
   760   int op2 = 0xFF & *ip++;
   761   int base = op2 & 0x07;
   762   int op3 = -1;
   763   const int b100 = 4;
   764   const int b101 = 5;
   765   if (base == b100 && (op2 >> 6) != 3) {
   766     op3 = 0xFF & *ip++;
   767     base = op3 & 0x07;   // refetch the base
   768   }
   769   // now ip points at the disp (if any)
   771   switch (op2 >> 6) {
   772   case 0:
   773     // [00 reg  100][ss index base]
   774     // [00 reg  100][00   100  esp]
   775     // [00 reg base]
   776     // [00 reg  100][ss index  101][disp32]
   777     // [00 reg  101]               [disp32]
   779     if (base == b101) {
   780       if (which == disp32_operand)
   781         return ip;              // caller wants the disp32
   782       ip += 4;                  // skip the disp32
   783     }
   784     break;
   786   case 1:
   787     // [01 reg  100][ss index base][disp8]
   788     // [01 reg  100][00   100  esp][disp8]
   789     // [01 reg base]               [disp8]
   790     ip += 1;                    // skip the disp8
   791     break;
   793   case 2:
   794     // [10 reg  100][ss index base][disp32]
   795     // [10 reg  100][00   100  esp][disp32]
   796     // [10 reg base]               [disp32]
   797     if (which == disp32_operand)
   798       return ip;                // caller wants the disp32
   799     ip += 4;                    // skip the disp32
   800     break;
   802   case 3:
   803     // [11 reg base]  (not a memory addressing mode)
   804     break;
   805   }
   807   if (which == end_pc_operand) {
   808     return ip + tail_size;
   809   }
   811 #ifdef _LP64
   812   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   813 #else
   814   assert(which == imm_operand, "instruction has only an imm field");
   815 #endif // LP64
   816   return ip;
   817 }
   819 address Assembler::locate_next_instruction(address inst) {
   820   // Secretly share code with locate_operand:
   821   return locate_operand(inst, end_pc_operand);
   822 }
   825 #ifdef ASSERT
   826 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   827   address inst = inst_mark();
   828   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   829   address opnd;
   831   Relocation* r = rspec.reloc();
   832   if (r->type() == relocInfo::none) {
   833     return;
   834   } else if (r->is_call() || format == call32_operand) {
   835     // assert(format == imm32_operand, "cannot specify a nonzero format");
   836     opnd = locate_operand(inst, call32_operand);
   837   } else if (r->is_data()) {
   838     assert(format == imm_operand || format == disp32_operand
   839            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   840     opnd = locate_operand(inst, (WhichOperand)format);
   841   } else {
   842     assert(format == imm_operand, "cannot specify a format");
   843     return;
   844   }
   845   assert(opnd == pc(), "must put operand where relocs can find it");
   846 }
   847 #endif // ASSERT
   849 void Assembler::emit_operand32(Register reg, Address adr) {
   850   assert(reg->encoding() < 8, "no extended registers");
   851   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   852   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   853                adr._rspec);
   854 }
   856 void Assembler::emit_operand(Register reg, Address adr,
   857                              int rip_relative_correction) {
   858   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   859                adr._rspec,
   860                rip_relative_correction);
   861 }
   863 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   864   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   865                adr._rspec);
   866 }
   868 // MMX operations
   869 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   870   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   871   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   872 }
   874 // work around gcc (3.2.1-7a) bug
   875 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   876   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   877   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   878 }
   881 void Assembler::emit_farith(int b1, int b2, int i) {
   882   assert(isByte(b1) && isByte(b2), "wrong opcode");
   883   assert(0 <= i &&  i < 8, "illegal stack offset");
   884   emit_byte(b1);
   885   emit_byte(b2 + i);
   886 }
   889 // Now the Assembler instructions (identical for 32/64 bits)
   891 void Assembler::adcl(Address dst, int32_t imm32) {
   892   InstructionMark im(this);
   893   prefix(dst);
   894   emit_arith_operand(0x81, rdx, dst, imm32);
   895 }
   897 void Assembler::adcl(Address dst, Register src) {
   898   InstructionMark im(this);
   899   prefix(dst, src);
   900   emit_byte(0x11);
   901   emit_operand(src, dst);
   902 }
   904 void Assembler::adcl(Register dst, int32_t imm32) {
   905   prefix(dst);
   906   emit_arith(0x81, 0xD0, dst, imm32);
   907 }
   909 void Assembler::adcl(Register dst, Address src) {
   910   InstructionMark im(this);
   911   prefix(src, dst);
   912   emit_byte(0x13);
   913   emit_operand(dst, src);
   914 }
   916 void Assembler::adcl(Register dst, Register src) {
   917   (void) prefix_and_encode(dst->encoding(), src->encoding());
   918   emit_arith(0x13, 0xC0, dst, src);
   919 }
   921 void Assembler::addl(Address dst, int32_t imm32) {
   922   InstructionMark im(this);
   923   prefix(dst);
   924   emit_arith_operand(0x81, rax, dst, imm32);
   925 }
   927 void Assembler::addl(Address dst, Register src) {
   928   InstructionMark im(this);
   929   prefix(dst, src);
   930   emit_byte(0x01);
   931   emit_operand(src, dst);
   932 }
   934 void Assembler::addl(Register dst, int32_t imm32) {
   935   prefix(dst);
   936   emit_arith(0x81, 0xC0, dst, imm32);
   937 }
   939 void Assembler::addl(Register dst, Address src) {
   940   InstructionMark im(this);
   941   prefix(src, dst);
   942   emit_byte(0x03);
   943   emit_operand(dst, src);
   944 }
   946 void Assembler::addl(Register dst, Register src) {
   947   (void) prefix_and_encode(dst->encoding(), src->encoding());
   948   emit_arith(0x03, 0xC0, dst, src);
   949 }
   951 void Assembler::addr_nop_4() {
   952   assert(UseAddressNop, "no CPU support");
   953   // 4 bytes: NOP DWORD PTR [EAX+0]
   954   emit_byte(0x0F);
   955   emit_byte(0x1F);
   956   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   957   emit_byte(0);    // 8-bits offset (1 byte)
   958 }
   960 void Assembler::addr_nop_5() {
   961   assert(UseAddressNop, "no CPU support");
   962   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   963   emit_byte(0x0F);
   964   emit_byte(0x1F);
   965   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   966   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   967   emit_byte(0);    // 8-bits offset (1 byte)
   968 }
   970 void Assembler::addr_nop_7() {
   971   assert(UseAddressNop, "no CPU support");
   972   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   973   emit_byte(0x0F);
   974   emit_byte(0x1F);
   975   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   976   emit_long(0);    // 32-bits offset (4 bytes)
   977 }
   979 void Assembler::addr_nop_8() {
   980   assert(UseAddressNop, "no CPU support");
   981   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   982   emit_byte(0x0F);
   983   emit_byte(0x1F);
   984   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   985   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   986   emit_long(0);    // 32-bits offset (4 bytes)
   987 }
   989 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   991   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
   992   emit_byte(0x58);
   993   emit_byte(0xC0 | encode);
   994 }
   996 void Assembler::addsd(XMMRegister dst, Address src) {
   997   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   998   InstructionMark im(this);
   999   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1000   emit_byte(0x58);
  1001   emit_operand(dst, src);
  1004 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  1005   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1006   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1007   emit_byte(0x58);
  1008   emit_byte(0xC0 | encode);
  1011 void Assembler::addss(XMMRegister dst, Address src) {
  1012   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1013   InstructionMark im(this);
  1014   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1015   emit_byte(0x58);
  1016   emit_operand(dst, src);
  1019 void Assembler::andl(Address dst, int32_t imm32) {
  1020   InstructionMark im(this);
  1021   prefix(dst);
  1022   emit_byte(0x81);
  1023   emit_operand(rsp, dst, 4);
  1024   emit_long(imm32);
  1027 void Assembler::andl(Register dst, int32_t imm32) {
  1028   prefix(dst);
  1029   emit_arith(0x81, 0xE0, dst, imm32);
  1032 void Assembler::andl(Register dst, Address src) {
  1033   InstructionMark im(this);
  1034   prefix(src, dst);
  1035   emit_byte(0x23);
  1036   emit_operand(dst, src);
  1039 void Assembler::andl(Register dst, Register src) {
  1040   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1041   emit_arith(0x23, 0xC0, dst, src);
  1044 void Assembler::andpd(XMMRegister dst, Address src) {
  1045   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1046   InstructionMark im(this);
  1047   simd_prefix(dst, dst, src, VEX_SIMD_66);
  1048   emit_byte(0x54);
  1049   emit_operand(dst, src);
  1052 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  1053   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1054   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  1055   emit_byte(0x54);
  1056   emit_byte(0xC0 | encode);
  1059 void Assembler::andps(XMMRegister dst, Address src) {
  1060   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1061   InstructionMark im(this);
  1062   simd_prefix(dst, dst, src, VEX_SIMD_NONE);
  1063   emit_byte(0x54);
  1064   emit_operand(dst, src);
  1067 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  1068   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1069   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
  1070   emit_byte(0x54);
  1071   emit_byte(0xC0 | encode);
  1074 void Assembler::bsfl(Register dst, Register src) {
  1075   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1076   emit_byte(0x0F);
  1077   emit_byte(0xBC);
  1078   emit_byte(0xC0 | encode);
  1081 void Assembler::bsrl(Register dst, Register src) {
  1082   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1083   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1084   emit_byte(0x0F);
  1085   emit_byte(0xBD);
  1086   emit_byte(0xC0 | encode);
  1089 void Assembler::bswapl(Register reg) { // bswap
  1090   int encode = prefix_and_encode(reg->encoding());
  1091   emit_byte(0x0F);
  1092   emit_byte(0xC8 | encode);
  1095 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1096   // suspect disp32 is always good
  1097   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1099   if (L.is_bound()) {
  1100     const int long_size = 5;
  1101     int offs = (int)( target(L) - pc() );
  1102     assert(offs <= 0, "assembler error");
  1103     InstructionMark im(this);
  1104     // 1110 1000 #32-bit disp
  1105     emit_byte(0xE8);
  1106     emit_data(offs - long_size, rtype, operand);
  1107   } else {
  1108     InstructionMark im(this);
  1109     // 1110 1000 #32-bit disp
  1110     L.add_patch_at(code(), locator());
  1112     emit_byte(0xE8);
  1113     emit_data(int(0), rtype, operand);
  1117 void Assembler::call(Register dst) {
  1118   int encode = prefix_and_encode(dst->encoding());
  1119   emit_byte(0xFF);
  1120   emit_byte(0xD0 | encode);
  1124 void Assembler::call(Address adr) {
  1125   InstructionMark im(this);
  1126   prefix(adr);
  1127   emit_byte(0xFF);
  1128   emit_operand(rdx, adr);
  1131 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1132   assert(entry != NULL, "call most probably wrong");
  1133   InstructionMark im(this);
  1134   emit_byte(0xE8);
  1135   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1136   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1137   // Technically, should use call32_operand, but this format is
  1138   // implied by the fact that we're emitting a call instruction.
  1140   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1141   emit_data((int) disp, rspec, operand);
  1144 void Assembler::cdql() {
  1145   emit_byte(0x99);
  1148 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1149   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1150   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1151   emit_byte(0x0F);
  1152   emit_byte(0x40 | cc);
  1153   emit_byte(0xC0 | encode);
  1157 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1158   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1159   prefix(src, dst);
  1160   emit_byte(0x0F);
  1161   emit_byte(0x40 | cc);
  1162   emit_operand(dst, src);
  1165 void Assembler::cmpb(Address dst, int imm8) {
  1166   InstructionMark im(this);
  1167   prefix(dst);
  1168   emit_byte(0x80);
  1169   emit_operand(rdi, dst, 1);
  1170   emit_byte(imm8);
  1173 void Assembler::cmpl(Address dst, int32_t imm32) {
  1174   InstructionMark im(this);
  1175   prefix(dst);
  1176   emit_byte(0x81);
  1177   emit_operand(rdi, dst, 4);
  1178   emit_long(imm32);
  1181 void Assembler::cmpl(Register dst, int32_t imm32) {
  1182   prefix(dst);
  1183   emit_arith(0x81, 0xF8, dst, imm32);
  1186 void Assembler::cmpl(Register dst, Register src) {
  1187   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1188   emit_arith(0x3B, 0xC0, dst, src);
  1192 void Assembler::cmpl(Register dst, Address  src) {
  1193   InstructionMark im(this);
  1194   prefix(src, dst);
  1195   emit_byte(0x3B);
  1196   emit_operand(dst, src);
  1199 void Assembler::cmpw(Address dst, int imm16) {
  1200   InstructionMark im(this);
  1201   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1202   emit_byte(0x66);
  1203   emit_byte(0x81);
  1204   emit_operand(rdi, dst, 2);
  1205   emit_word(imm16);
  1208 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1209 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1210 // The ZF is set if the compared values were equal, and cleared otherwise.
  1211 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1212   if (Atomics & 2) {
  1213      // caveat: no instructionmark, so this isn't relocatable.
  1214      // Emit a synthetic, non-atomic, CAS equivalent.
  1215      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1216      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1217      cmpl(rax, adr);
  1218      movl(rax, adr);
  1219      if (reg != rax) {
  1220         Label L ;
  1221         jcc(Assembler::notEqual, L);
  1222         movl(adr, reg);
  1223         bind(L);
  1225   } else {
  1226      InstructionMark im(this);
  1227      prefix(adr, reg);
  1228      emit_byte(0x0F);
  1229      emit_byte(0xB1);
  1230      emit_operand(reg, adr);
  1234 void Assembler::comisd(XMMRegister dst, Address src) {
  1235   // NOTE: dbx seems to decode this as comiss even though the
  1236   // 0x66 is there. Strangly ucomisd comes out correct
  1237   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1238   InstructionMark im(this);
  1239   simd_prefix(dst, src, VEX_SIMD_66);
  1240   emit_byte(0x2F);
  1241   emit_operand(dst, src);
  1244 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1245   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1246   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1247   emit_byte(0x2F);
  1248   emit_byte(0xC0 | encode);
  1251 void Assembler::comiss(XMMRegister dst, Address src) {
  1252   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1253   InstructionMark im(this);
  1254   simd_prefix(dst, src, VEX_SIMD_NONE);
  1255   emit_byte(0x2F);
  1256   emit_operand(dst, src);
  1259 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1260   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1261   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1262   emit_byte(0x2F);
  1263   emit_byte(0xC0 | encode);
  1266 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1267   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1268   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1269   emit_byte(0xE6);
  1270   emit_byte(0xC0 | encode);
  1273 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1274   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1275   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1276   emit_byte(0x5B);
  1277   emit_byte(0xC0 | encode);
  1280 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1281   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1282   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1283   emit_byte(0x5A);
  1284   emit_byte(0xC0 | encode);
  1287 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1288   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1289   InstructionMark im(this);
  1290   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1291   emit_byte(0x5A);
  1292   emit_operand(dst, src);
  1295 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1296   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1297   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1298   emit_byte(0x2A);
  1299   emit_byte(0xC0 | encode);
  1302 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1303   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1304   InstructionMark im(this);
  1305   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1306   emit_byte(0x2A);
  1307   emit_operand(dst, src);
  1310 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1311   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1312   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1313   emit_byte(0x2A);
  1314   emit_byte(0xC0 | encode);
  1317 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1318   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1319   InstructionMark im(this);
  1320   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1321   emit_byte(0x2A);
  1322   emit_operand(dst, src);
  1325 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1326   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1327   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1328   emit_byte(0x5A);
  1329   emit_byte(0xC0 | encode);
  1332 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1333   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1334   InstructionMark im(this);
  1335   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1336   emit_byte(0x5A);
  1337   emit_operand(dst, src);
  1341 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1342   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1343   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1344   emit_byte(0x2C);
  1345   emit_byte(0xC0 | encode);
  1348 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1349   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1350   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1351   emit_byte(0x2C);
  1352   emit_byte(0xC0 | encode);
  1355 void Assembler::decl(Address dst) {
  1356   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1357   InstructionMark im(this);
  1358   prefix(dst);
  1359   emit_byte(0xFF);
  1360   emit_operand(rcx, dst);
  1363 void Assembler::divsd(XMMRegister dst, Address src) {
  1364   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1365   InstructionMark im(this);
  1366   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1367   emit_byte(0x5E);
  1368   emit_operand(dst, src);
  1371 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1372   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1373   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1374   emit_byte(0x5E);
  1375   emit_byte(0xC0 | encode);
  1378 void Assembler::divss(XMMRegister dst, Address src) {
  1379   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1380   InstructionMark im(this);
  1381   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1382   emit_byte(0x5E);
  1383   emit_operand(dst, src);
  1386 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1387   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1388   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1389   emit_byte(0x5E);
  1390   emit_byte(0xC0 | encode);
  1393 void Assembler::emms() {
  1394   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1395   emit_byte(0x0F);
  1396   emit_byte(0x77);
  1399 void Assembler::hlt() {
  1400   emit_byte(0xF4);
  1403 void Assembler::idivl(Register src) {
  1404   int encode = prefix_and_encode(src->encoding());
  1405   emit_byte(0xF7);
  1406   emit_byte(0xF8 | encode);
  1409 void Assembler::divl(Register src) { // Unsigned
  1410   int encode = prefix_and_encode(src->encoding());
  1411   emit_byte(0xF7);
  1412   emit_byte(0xF0 | encode);
  1415 void Assembler::imull(Register dst, Register src) {
  1416   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1417   emit_byte(0x0F);
  1418   emit_byte(0xAF);
  1419   emit_byte(0xC0 | encode);
  1423 void Assembler::imull(Register dst, Register src, int value) {
  1424   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1425   if (is8bit(value)) {
  1426     emit_byte(0x6B);
  1427     emit_byte(0xC0 | encode);
  1428     emit_byte(value & 0xFF);
  1429   } else {
  1430     emit_byte(0x69);
  1431     emit_byte(0xC0 | encode);
  1432     emit_long(value);
  1436 void Assembler::incl(Address dst) {
  1437   // Don't use it directly. Use MacroAssembler::increment() instead.
  1438   InstructionMark im(this);
  1439   prefix(dst);
  1440   emit_byte(0xFF);
  1441   emit_operand(rax, dst);
  1444 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1445   InstructionMark im(this);
  1446   assert((0 <= cc) && (cc < 16), "illegal cc");
  1447   if (L.is_bound()) {
  1448     address dst = target(L);
  1449     assert(dst != NULL, "jcc most probably wrong");
  1451     const int short_size = 2;
  1452     const int long_size = 6;
  1453     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1454     if (maybe_short && is8bit(offs - short_size)) {
  1455       // 0111 tttn #8-bit disp
  1456       emit_byte(0x70 | cc);
  1457       emit_byte((offs - short_size) & 0xFF);
  1458     } else {
  1459       // 0000 1111 1000 tttn #32-bit disp
  1460       assert(is_simm32(offs - long_size),
  1461              "must be 32bit offset (call4)");
  1462       emit_byte(0x0F);
  1463       emit_byte(0x80 | cc);
  1464       emit_long(offs - long_size);
  1466   } else {
  1467     // Note: could eliminate cond. jumps to this jump if condition
  1468     //       is the same however, seems to be rather unlikely case.
  1469     // Note: use jccb() if label to be bound is very close to get
  1470     //       an 8-bit displacement
  1471     L.add_patch_at(code(), locator());
  1472     emit_byte(0x0F);
  1473     emit_byte(0x80 | cc);
  1474     emit_long(0);
  1478 void Assembler::jccb(Condition cc, Label& L) {
  1479   if (L.is_bound()) {
  1480     const int short_size = 2;
  1481     address entry = target(L);
  1482 #ifdef ASSERT
  1483     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1484     intptr_t delta = short_branch_delta();
  1485     if (delta != 0) {
  1486       dist += (dist < 0 ? (-delta) :delta);
  1488     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1489 #endif
  1490     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1491     // 0111 tttn #8-bit disp
  1492     emit_byte(0x70 | cc);
  1493     emit_byte((offs - short_size) & 0xFF);
  1494   } else {
  1495     InstructionMark im(this);
  1496     L.add_patch_at(code(), locator());
  1497     emit_byte(0x70 | cc);
  1498     emit_byte(0);
  1502 void Assembler::jmp(Address adr) {
  1503   InstructionMark im(this);
  1504   prefix(adr);
  1505   emit_byte(0xFF);
  1506   emit_operand(rsp, adr);
  1509 void Assembler::jmp(Label& L, bool maybe_short) {
  1510   if (L.is_bound()) {
  1511     address entry = target(L);
  1512     assert(entry != NULL, "jmp most probably wrong");
  1513     InstructionMark im(this);
  1514     const int short_size = 2;
  1515     const int long_size = 5;
  1516     intptr_t offs = entry - _code_pos;
  1517     if (maybe_short && is8bit(offs - short_size)) {
  1518       emit_byte(0xEB);
  1519       emit_byte((offs - short_size) & 0xFF);
  1520     } else {
  1521       emit_byte(0xE9);
  1522       emit_long(offs - long_size);
  1524   } else {
  1525     // By default, forward jumps are always 32-bit displacements, since
  1526     // we can't yet know where the label will be bound.  If you're sure that
  1527     // the forward jump will not run beyond 256 bytes, use jmpb to
  1528     // force an 8-bit displacement.
  1529     InstructionMark im(this);
  1530     L.add_patch_at(code(), locator());
  1531     emit_byte(0xE9);
  1532     emit_long(0);
  1536 void Assembler::jmp(Register entry) {
  1537   int encode = prefix_and_encode(entry->encoding());
  1538   emit_byte(0xFF);
  1539   emit_byte(0xE0 | encode);
  1542 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1543   InstructionMark im(this);
  1544   emit_byte(0xE9);
  1545   assert(dest != NULL, "must have a target");
  1546   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1547   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1548   emit_data(disp, rspec.reloc(), call32_operand);
  1551 void Assembler::jmpb(Label& L) {
  1552   if (L.is_bound()) {
  1553     const int short_size = 2;
  1554     address entry = target(L);
  1555     assert(entry != NULL, "jmp most probably wrong");
  1556 #ifdef ASSERT
  1557     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1558     intptr_t delta = short_branch_delta();
  1559     if (delta != 0) {
  1560       dist += (dist < 0 ? (-delta) :delta);
  1562     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1563 #endif
  1564     intptr_t offs = entry - _code_pos;
  1565     emit_byte(0xEB);
  1566     emit_byte((offs - short_size) & 0xFF);
  1567   } else {
  1568     InstructionMark im(this);
  1569     L.add_patch_at(code(), locator());
  1570     emit_byte(0xEB);
  1571     emit_byte(0);
  1575 void Assembler::ldmxcsr( Address src) {
  1576   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1577   InstructionMark im(this);
  1578   prefix(src);
  1579   emit_byte(0x0F);
  1580   emit_byte(0xAE);
  1581   emit_operand(as_Register(2), src);
  1584 void Assembler::leal(Register dst, Address src) {
  1585   InstructionMark im(this);
  1586 #ifdef _LP64
  1587   emit_byte(0x67); // addr32
  1588   prefix(src, dst);
  1589 #endif // LP64
  1590   emit_byte(0x8D);
  1591   emit_operand(dst, src);
  1594 void Assembler::lock() {
  1595   if (Atomics & 1) {
  1596      // Emit either nothing, a NOP, or a NOP: prefix
  1597      emit_byte(0x90) ;
  1598   } else {
  1599      emit_byte(0xF0);
  1603 void Assembler::lzcntl(Register dst, Register src) {
  1604   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1605   emit_byte(0xF3);
  1606   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1607   emit_byte(0x0F);
  1608   emit_byte(0xBD);
  1609   emit_byte(0xC0 | encode);
  1612 // Emit mfence instruction
  1613 void Assembler::mfence() {
  1614   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1615   emit_byte( 0x0F );
  1616   emit_byte( 0xAE );
  1617   emit_byte( 0xF0 );
  1620 void Assembler::mov(Register dst, Register src) {
  1621   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1624 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1626   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1627   emit_byte(0x28);
  1628   emit_byte(0xC0 | encode);
  1631 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1632   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1633   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  1634   emit_byte(0x28);
  1635   emit_byte(0xC0 | encode);
  1638 void Assembler::movb(Register dst, Address src) {
  1639   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1640   InstructionMark im(this);
  1641   prefix(src, dst, true);
  1642   emit_byte(0x8A);
  1643   emit_operand(dst, src);
  1647 void Assembler::movb(Address dst, int imm8) {
  1648   InstructionMark im(this);
  1649    prefix(dst);
  1650   emit_byte(0xC6);
  1651   emit_operand(rax, dst, 1);
  1652   emit_byte(imm8);
  1656 void Assembler::movb(Address dst, Register src) {
  1657   assert(src->has_byte_register(), "must have byte register");
  1658   InstructionMark im(this);
  1659   prefix(dst, src, true);
  1660   emit_byte(0x88);
  1661   emit_operand(src, dst);
  1664 void Assembler::movdl(XMMRegister dst, Register src) {
  1665   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1666   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1667   emit_byte(0x6E);
  1668   emit_byte(0xC0 | encode);
  1671 void Assembler::movdl(Register dst, XMMRegister src) {
  1672   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1673   // swap src/dst to get correct prefix
  1674   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1675   emit_byte(0x7E);
  1676   emit_byte(0xC0 | encode);
  1679 void Assembler::movdl(XMMRegister dst, Address src) {
  1680   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1681   InstructionMark im(this);
  1682   simd_prefix(dst, src, VEX_SIMD_66);
  1683   emit_byte(0x6E);
  1684   emit_operand(dst, src);
  1687 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1688   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1689   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1690   emit_byte(0x6F);
  1691   emit_byte(0xC0 | encode);
  1694 void Assembler::movdqu(XMMRegister dst, Address src) {
  1695   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1696   InstructionMark im(this);
  1697   simd_prefix(dst, src, VEX_SIMD_F3);
  1698   emit_byte(0x6F);
  1699   emit_operand(dst, src);
  1702 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1703   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1704   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1705   emit_byte(0x6F);
  1706   emit_byte(0xC0 | encode);
  1709 void Assembler::movdqu(Address dst, XMMRegister src) {
  1710   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1711   InstructionMark im(this);
  1712   simd_prefix(dst, src, VEX_SIMD_F3);
  1713   emit_byte(0x7F);
  1714   emit_operand(src, dst);
  1717 // Uses zero extension on 64bit
  1719 void Assembler::movl(Register dst, int32_t imm32) {
  1720   int encode = prefix_and_encode(dst->encoding());
  1721   emit_byte(0xB8 | encode);
  1722   emit_long(imm32);
  1725 void Assembler::movl(Register dst, Register src) {
  1726   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1727   emit_byte(0x8B);
  1728   emit_byte(0xC0 | encode);
  1731 void Assembler::movl(Register dst, Address src) {
  1732   InstructionMark im(this);
  1733   prefix(src, dst);
  1734   emit_byte(0x8B);
  1735   emit_operand(dst, src);
  1738 void Assembler::movl(Address dst, int32_t imm32) {
  1739   InstructionMark im(this);
  1740   prefix(dst);
  1741   emit_byte(0xC7);
  1742   emit_operand(rax, dst, 4);
  1743   emit_long(imm32);
  1746 void Assembler::movl(Address dst, Register src) {
  1747   InstructionMark im(this);
  1748   prefix(dst, src);
  1749   emit_byte(0x89);
  1750   emit_operand(src, dst);
  1753 // New cpus require to use movsd and movss to avoid partial register stall
  1754 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1755 // The selection is done in MacroAssembler::movdbl() and movflt().
  1756 void Assembler::movlpd(XMMRegister dst, Address src) {
  1757   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1758   InstructionMark im(this);
  1759   simd_prefix(dst, dst, src, VEX_SIMD_66);
  1760   emit_byte(0x12);
  1761   emit_operand(dst, src);
  1764 void Assembler::movq( MMXRegister dst, Address src ) {
  1765   assert( VM_Version::supports_mmx(), "" );
  1766   emit_byte(0x0F);
  1767   emit_byte(0x6F);
  1768   emit_operand(dst, src);
  1771 void Assembler::movq( Address dst, MMXRegister src ) {
  1772   assert( VM_Version::supports_mmx(), "" );
  1773   emit_byte(0x0F);
  1774   emit_byte(0x7F);
  1775   // workaround gcc (3.2.1-7a) bug
  1776   // In that version of gcc with only an emit_operand(MMX, Address)
  1777   // gcc will tail jump and try and reverse the parameters completely
  1778   // obliterating dst in the process. By having a version available
  1779   // that doesn't need to swap the args at the tail jump the bug is
  1780   // avoided.
  1781   emit_operand(dst, src);
  1784 void Assembler::movq(XMMRegister dst, Address src) {
  1785   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1786   InstructionMark im(this);
  1787   simd_prefix(dst, src, VEX_SIMD_F3);
  1788   emit_byte(0x7E);
  1789   emit_operand(dst, src);
  1792 void Assembler::movq(Address dst, XMMRegister src) {
  1793   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1794   InstructionMark im(this);
  1795   simd_prefix(dst, src, VEX_SIMD_66);
  1796   emit_byte(0xD6);
  1797   emit_operand(src, dst);
  1800 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1801   InstructionMark im(this);
  1802   prefix(src, dst);
  1803   emit_byte(0x0F);
  1804   emit_byte(0xBE);
  1805   emit_operand(dst, src);
  1808 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1809   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1810   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1811   emit_byte(0x0F);
  1812   emit_byte(0xBE);
  1813   emit_byte(0xC0 | encode);
  1816 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1817   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1818   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1819   emit_byte(0x10);
  1820   emit_byte(0xC0 | encode);
  1823 void Assembler::movsd(XMMRegister dst, Address src) {
  1824   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1825   InstructionMark im(this);
  1826   simd_prefix(dst, src, VEX_SIMD_F2);
  1827   emit_byte(0x10);
  1828   emit_operand(dst, src);
  1831 void Assembler::movsd(Address dst, XMMRegister src) {
  1832   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1833   InstructionMark im(this);
  1834   simd_prefix(dst, src, VEX_SIMD_F2);
  1835   emit_byte(0x11);
  1836   emit_operand(src, dst);
  1839 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1840   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1841   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1842   emit_byte(0x10);
  1843   emit_byte(0xC0 | encode);
  1846 void Assembler::movss(XMMRegister dst, Address src) {
  1847   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1848   InstructionMark im(this);
  1849   simd_prefix(dst, src, VEX_SIMD_F3);
  1850   emit_byte(0x10);
  1851   emit_operand(dst, src);
  1854 void Assembler::movss(Address dst, XMMRegister src) {
  1855   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1856   InstructionMark im(this);
  1857   simd_prefix(dst, src, VEX_SIMD_F3);
  1858   emit_byte(0x11);
  1859   emit_operand(src, dst);
  1862 void Assembler::movswl(Register dst, Address src) { // movsxw
  1863   InstructionMark im(this);
  1864   prefix(src, dst);
  1865   emit_byte(0x0F);
  1866   emit_byte(0xBF);
  1867   emit_operand(dst, src);
  1870 void Assembler::movswl(Register dst, Register src) { // movsxw
  1871   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1872   emit_byte(0x0F);
  1873   emit_byte(0xBF);
  1874   emit_byte(0xC0 | encode);
  1877 void Assembler::movw(Address dst, int imm16) {
  1878   InstructionMark im(this);
  1880   emit_byte(0x66); // switch to 16-bit mode
  1881   prefix(dst);
  1882   emit_byte(0xC7);
  1883   emit_operand(rax, dst, 2);
  1884   emit_word(imm16);
  1887 void Assembler::movw(Register dst, Address src) {
  1888   InstructionMark im(this);
  1889   emit_byte(0x66);
  1890   prefix(src, dst);
  1891   emit_byte(0x8B);
  1892   emit_operand(dst, src);
  1895 void Assembler::movw(Address dst, Register src) {
  1896   InstructionMark im(this);
  1897   emit_byte(0x66);
  1898   prefix(dst, src);
  1899   emit_byte(0x89);
  1900   emit_operand(src, dst);
  1903 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1904   InstructionMark im(this);
  1905   prefix(src, dst);
  1906   emit_byte(0x0F);
  1907   emit_byte(0xB6);
  1908   emit_operand(dst, src);
  1911 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1912   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1913   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1914   emit_byte(0x0F);
  1915   emit_byte(0xB6);
  1916   emit_byte(0xC0 | encode);
  1919 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1920   InstructionMark im(this);
  1921   prefix(src, dst);
  1922   emit_byte(0x0F);
  1923   emit_byte(0xB7);
  1924   emit_operand(dst, src);
  1927 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1928   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1929   emit_byte(0x0F);
  1930   emit_byte(0xB7);
  1931   emit_byte(0xC0 | encode);
  1934 void Assembler::mull(Address src) {
  1935   InstructionMark im(this);
  1936   prefix(src);
  1937   emit_byte(0xF7);
  1938   emit_operand(rsp, src);
  1941 void Assembler::mull(Register src) {
  1942   int encode = prefix_and_encode(src->encoding());
  1943   emit_byte(0xF7);
  1944   emit_byte(0xE0 | encode);
  1947 void Assembler::mulsd(XMMRegister dst, Address src) {
  1948   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1949   InstructionMark im(this);
  1950   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  1951   emit_byte(0x59);
  1952   emit_operand(dst, src);
  1955 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1956   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1957   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1958   emit_byte(0x59);
  1959   emit_byte(0xC0 | encode);
  1962 void Assembler::mulss(XMMRegister dst, Address src) {
  1963   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1964   InstructionMark im(this);
  1965   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  1966   emit_byte(0x59);
  1967   emit_operand(dst, src);
  1970 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1971   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1972   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1973   emit_byte(0x59);
  1974   emit_byte(0xC0 | encode);
  1977 void Assembler::negl(Register dst) {
  1978   int encode = prefix_and_encode(dst->encoding());
  1979   emit_byte(0xF7);
  1980   emit_byte(0xD8 | encode);
  1983 void Assembler::nop(int i) {
  1984 #ifdef ASSERT
  1985   assert(i > 0, " ");
  1986   // The fancy nops aren't currently recognized by debuggers making it a
  1987   // pain to disassemble code while debugging. If asserts are on clearly
  1988   // speed is not an issue so simply use the single byte traditional nop
  1989   // to do alignment.
  1991   for (; i > 0 ; i--) emit_byte(0x90);
  1992   return;
  1994 #endif // ASSERT
  1996   if (UseAddressNop && VM_Version::is_intel()) {
  1997     //
  1998     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1999     //  1: 0x90
  2000     //  2: 0x66 0x90
  2001     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2002     //  4: 0x0F 0x1F 0x40 0x00
  2003     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2004     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2005     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2006     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2007     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2008     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2009     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2011     // The rest coding is Intel specific - don't use consecutive address nops
  2013     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2014     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2015     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2016     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2018     while(i >= 15) {
  2019       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2020       i -= 15;
  2021       emit_byte(0x66);   // size prefix
  2022       emit_byte(0x66);   // size prefix
  2023       emit_byte(0x66);   // size prefix
  2024       addr_nop_8();
  2025       emit_byte(0x66);   // size prefix
  2026       emit_byte(0x66);   // size prefix
  2027       emit_byte(0x66);   // size prefix
  2028       emit_byte(0x90);   // nop
  2030     switch (i) {
  2031       case 14:
  2032         emit_byte(0x66); // size prefix
  2033       case 13:
  2034         emit_byte(0x66); // size prefix
  2035       case 12:
  2036         addr_nop_8();
  2037         emit_byte(0x66); // size prefix
  2038         emit_byte(0x66); // size prefix
  2039         emit_byte(0x66); // size prefix
  2040         emit_byte(0x90); // nop
  2041         break;
  2042       case 11:
  2043         emit_byte(0x66); // size prefix
  2044       case 10:
  2045         emit_byte(0x66); // size prefix
  2046       case 9:
  2047         emit_byte(0x66); // size prefix
  2048       case 8:
  2049         addr_nop_8();
  2050         break;
  2051       case 7:
  2052         addr_nop_7();
  2053         break;
  2054       case 6:
  2055         emit_byte(0x66); // size prefix
  2056       case 5:
  2057         addr_nop_5();
  2058         break;
  2059       case 4:
  2060         addr_nop_4();
  2061         break;
  2062       case 3:
  2063         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2064         emit_byte(0x66); // size prefix
  2065       case 2:
  2066         emit_byte(0x66); // size prefix
  2067       case 1:
  2068         emit_byte(0x90); // nop
  2069         break;
  2070       default:
  2071         assert(i == 0, " ");
  2073     return;
  2075   if (UseAddressNop && VM_Version::is_amd()) {
  2076     //
  2077     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2078     //  1: 0x90
  2079     //  2: 0x66 0x90
  2080     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2081     //  4: 0x0F 0x1F 0x40 0x00
  2082     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2083     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2084     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2085     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2086     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2087     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2088     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2090     // The rest coding is AMD specific - use consecutive address nops
  2092     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2093     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2094     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2095     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2096     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2097     //     Size prefixes (0x66) are added for larger sizes
  2099     while(i >= 22) {
  2100       i -= 11;
  2101       emit_byte(0x66); // size prefix
  2102       emit_byte(0x66); // size prefix
  2103       emit_byte(0x66); // size prefix
  2104       addr_nop_8();
  2106     // Generate first nop for size between 21-12
  2107     switch (i) {
  2108       case 21:
  2109         i -= 1;
  2110         emit_byte(0x66); // size prefix
  2111       case 20:
  2112       case 19:
  2113         i -= 1;
  2114         emit_byte(0x66); // size prefix
  2115       case 18:
  2116       case 17:
  2117         i -= 1;
  2118         emit_byte(0x66); // size prefix
  2119       case 16:
  2120       case 15:
  2121         i -= 8;
  2122         addr_nop_8();
  2123         break;
  2124       case 14:
  2125       case 13:
  2126         i -= 7;
  2127         addr_nop_7();
  2128         break;
  2129       case 12:
  2130         i -= 6;
  2131         emit_byte(0x66); // size prefix
  2132         addr_nop_5();
  2133         break;
  2134       default:
  2135         assert(i < 12, " ");
  2138     // Generate second nop for size between 11-1
  2139     switch (i) {
  2140       case 11:
  2141         emit_byte(0x66); // size prefix
  2142       case 10:
  2143         emit_byte(0x66); // size prefix
  2144       case 9:
  2145         emit_byte(0x66); // size prefix
  2146       case 8:
  2147         addr_nop_8();
  2148         break;
  2149       case 7:
  2150         addr_nop_7();
  2151         break;
  2152       case 6:
  2153         emit_byte(0x66); // size prefix
  2154       case 5:
  2155         addr_nop_5();
  2156         break;
  2157       case 4:
  2158         addr_nop_4();
  2159         break;
  2160       case 3:
  2161         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2162         emit_byte(0x66); // size prefix
  2163       case 2:
  2164         emit_byte(0x66); // size prefix
  2165       case 1:
  2166         emit_byte(0x90); // nop
  2167         break;
  2168       default:
  2169         assert(i == 0, " ");
  2171     return;
  2174   // Using nops with size prefixes "0x66 0x90".
  2175   // From AMD Optimization Guide:
  2176   //  1: 0x90
  2177   //  2: 0x66 0x90
  2178   //  3: 0x66 0x66 0x90
  2179   //  4: 0x66 0x66 0x66 0x90
  2180   //  5: 0x66 0x66 0x90 0x66 0x90
  2181   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2182   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2183   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2184   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2185   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2186   //
  2187   while(i > 12) {
  2188     i -= 4;
  2189     emit_byte(0x66); // size prefix
  2190     emit_byte(0x66);
  2191     emit_byte(0x66);
  2192     emit_byte(0x90); // nop
  2194   // 1 - 12 nops
  2195   if(i > 8) {
  2196     if(i > 9) {
  2197       i -= 1;
  2198       emit_byte(0x66);
  2200     i -= 3;
  2201     emit_byte(0x66);
  2202     emit_byte(0x66);
  2203     emit_byte(0x90);
  2205   // 1 - 8 nops
  2206   if(i > 4) {
  2207     if(i > 6) {
  2208       i -= 1;
  2209       emit_byte(0x66);
  2211     i -= 3;
  2212     emit_byte(0x66);
  2213     emit_byte(0x66);
  2214     emit_byte(0x90);
  2216   switch (i) {
  2217     case 4:
  2218       emit_byte(0x66);
  2219     case 3:
  2220       emit_byte(0x66);
  2221     case 2:
  2222       emit_byte(0x66);
  2223     case 1:
  2224       emit_byte(0x90);
  2225       break;
  2226     default:
  2227       assert(i == 0, " ");
  2231 void Assembler::notl(Register dst) {
  2232   int encode = prefix_and_encode(dst->encoding());
  2233   emit_byte(0xF7);
  2234   emit_byte(0xD0 | encode );
  2237 void Assembler::orl(Address dst, int32_t imm32) {
  2238   InstructionMark im(this);
  2239   prefix(dst);
  2240   emit_arith_operand(0x81, rcx, dst, imm32);
  2243 void Assembler::orl(Register dst, int32_t imm32) {
  2244   prefix(dst);
  2245   emit_arith(0x81, 0xC8, dst, imm32);
  2248 void Assembler::orl(Register dst, Address src) {
  2249   InstructionMark im(this);
  2250   prefix(src, dst);
  2251   emit_byte(0x0B);
  2252   emit_operand(dst, src);
  2255 void Assembler::orl(Register dst, Register src) {
  2256   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2257   emit_arith(0x0B, 0xC0, dst, src);
  2260 void Assembler::packuswb(XMMRegister dst, Address src) {
  2261   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2262   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2263   InstructionMark im(this);
  2264   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2265   emit_byte(0x67);
  2266   emit_operand(dst, src);
  2269 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2270   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2271   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2272   emit_byte(0x67);
  2273   emit_byte(0xC0 | encode);
  2276 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2277   assert(VM_Version::supports_sse4_2(), "");
  2278   InstructionMark im(this);
  2279   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2280   emit_byte(0x61);
  2281   emit_operand(dst, src);
  2282   emit_byte(imm8);
  2285 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2286   assert(VM_Version::supports_sse4_2(), "");
  2287   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2288   emit_byte(0x61);
  2289   emit_byte(0xC0 | encode);
  2290   emit_byte(imm8);
  2293 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2294   assert(VM_Version::supports_sse4_1(), "");
  2295   InstructionMark im(this);
  2296   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2297   emit_byte(0x30);
  2298   emit_operand(dst, src);
  2301 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2302   assert(VM_Version::supports_sse4_1(), "");
  2303   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2304   emit_byte(0x30);
  2305   emit_byte(0xC0 | encode);
  2308 // generic
  2309 void Assembler::pop(Register dst) {
  2310   int encode = prefix_and_encode(dst->encoding());
  2311   emit_byte(0x58 | encode);
  2314 void Assembler::popcntl(Register dst, Address src) {
  2315   assert(VM_Version::supports_popcnt(), "must support");
  2316   InstructionMark im(this);
  2317   emit_byte(0xF3);
  2318   prefix(src, dst);
  2319   emit_byte(0x0F);
  2320   emit_byte(0xB8);
  2321   emit_operand(dst, src);
  2324 void Assembler::popcntl(Register dst, Register src) {
  2325   assert(VM_Version::supports_popcnt(), "must support");
  2326   emit_byte(0xF3);
  2327   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2328   emit_byte(0x0F);
  2329   emit_byte(0xB8);
  2330   emit_byte(0xC0 | encode);
  2333 void Assembler::popf() {
  2334   emit_byte(0x9D);
  2337 #ifndef _LP64 // no 32bit push/pop on amd64
  2338 void Assembler::popl(Address dst) {
  2339   // NOTE: this will adjust stack by 8byte on 64bits
  2340   InstructionMark im(this);
  2341   prefix(dst);
  2342   emit_byte(0x8F);
  2343   emit_operand(rax, dst);
  2345 #endif
  2347 void Assembler::prefetch_prefix(Address src) {
  2348   prefix(src);
  2349   emit_byte(0x0F);
  2352 void Assembler::prefetchnta(Address src) {
  2353   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2354   InstructionMark im(this);
  2355   prefetch_prefix(src);
  2356   emit_byte(0x18);
  2357   emit_operand(rax, src); // 0, src
  2360 void Assembler::prefetchr(Address src) {
  2361   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2362   InstructionMark im(this);
  2363   prefetch_prefix(src);
  2364   emit_byte(0x0D);
  2365   emit_operand(rax, src); // 0, src
  2368 void Assembler::prefetcht0(Address src) {
  2369   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2370   InstructionMark im(this);
  2371   prefetch_prefix(src);
  2372   emit_byte(0x18);
  2373   emit_operand(rcx, src); // 1, src
  2376 void Assembler::prefetcht1(Address src) {
  2377   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2378   InstructionMark im(this);
  2379   prefetch_prefix(src);
  2380   emit_byte(0x18);
  2381   emit_operand(rdx, src); // 2, src
  2384 void Assembler::prefetcht2(Address src) {
  2385   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2386   InstructionMark im(this);
  2387   prefetch_prefix(src);
  2388   emit_byte(0x18);
  2389   emit_operand(rbx, src); // 3, src
  2392 void Assembler::prefetchw(Address src) {
  2393   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2394   InstructionMark im(this);
  2395   prefetch_prefix(src);
  2396   emit_byte(0x0D);
  2397   emit_operand(rcx, src); // 1, src
  2400 void Assembler::prefix(Prefix p) {
  2401   a_byte(p);
  2404 void Assembler::por(XMMRegister dst, XMMRegister src) {
  2405   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2406   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2407   emit_byte(0xEB);
  2408   emit_byte(0xC0 | encode);
  2411 void Assembler::por(XMMRegister dst, Address src) {
  2412   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2413   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2414   InstructionMark im(this);
  2415   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2416   emit_byte(0xEB);
  2417   emit_operand(dst, src);
  2420 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2421   assert(isByte(mode), "invalid value");
  2422   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2423   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  2424   emit_byte(0x70);
  2425   emit_byte(0xC0 | encode);
  2426   emit_byte(mode & 0xFF);
  2430 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2431   assert(isByte(mode), "invalid value");
  2432   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2433   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2434   InstructionMark im(this);
  2435   simd_prefix(dst, src, VEX_SIMD_66);
  2436   emit_byte(0x70);
  2437   emit_operand(dst, src);
  2438   emit_byte(mode & 0xFF);
  2441 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2442   assert(isByte(mode), "invalid value");
  2443   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2444   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  2445   emit_byte(0x70);
  2446   emit_byte(0xC0 | encode);
  2447   emit_byte(mode & 0xFF);
  2450 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2451   assert(isByte(mode), "invalid value");
  2452   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2453   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2454   InstructionMark im(this);
  2455   simd_prefix(dst, src, VEX_SIMD_F2);
  2456   emit_byte(0x70);
  2457   emit_operand(dst, src);
  2458   emit_byte(mode & 0xFF);
  2461 void Assembler::psrlq(XMMRegister dst, int shift) {
  2462   // Shift 64 bit value logically right by specified number of bits.
  2463   // HMM Table D-1 says sse2 or mmx.
  2464   // Do not confuse it with psrldq SSE2 instruction which
  2465   // shifts 128 bit value in xmm register by number of bytes.
  2466   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2467   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  2468   emit_byte(0x73);
  2469   emit_byte(0xC0 | encode);
  2470   emit_byte(shift);
  2473 void Assembler::psrldq(XMMRegister dst, int shift) {
  2474   // Shift 128 bit value in xmm register by number of bytes.
  2475   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2476   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2477   emit_byte(0x73);
  2478   emit_byte(0xC0 | encode);
  2479   emit_byte(shift);
  2482 void Assembler::ptest(XMMRegister dst, Address src) {
  2483   assert(VM_Version::supports_sse4_1(), "");
  2484   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2485   InstructionMark im(this);
  2486   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2487   emit_byte(0x17);
  2488   emit_operand(dst, src);
  2491 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2492   assert(VM_Version::supports_sse4_1(), "");
  2493   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2494   emit_byte(0x17);
  2495   emit_byte(0xC0 | encode);
  2498 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2499   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2500   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2501   InstructionMark im(this);
  2502   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2503   emit_byte(0x60);
  2504   emit_operand(dst, src);
  2507 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2508   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2509   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2510   emit_byte(0x60);
  2511   emit_byte(0xC0 | encode);
  2514 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2515   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2516   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2517   InstructionMark im(this);
  2518   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2519   emit_byte(0x62);
  2520   emit_operand(dst, src);
  2523 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2524   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2525   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2526   emit_byte(0x62);
  2527   emit_byte(0xC0 | encode);
  2530 void Assembler::push(int32_t imm32) {
  2531   // in 64bits we push 64bits onto the stack but only
  2532   // take a 32bit immediate
  2533   emit_byte(0x68);
  2534   emit_long(imm32);
  2537 void Assembler::push(Register src) {
  2538   int encode = prefix_and_encode(src->encoding());
  2540   emit_byte(0x50 | encode);
  2543 void Assembler::pushf() {
  2544   emit_byte(0x9C);
  2547 #ifndef _LP64 // no 32bit push/pop on amd64
  2548 void Assembler::pushl(Address src) {
  2549   // Note this will push 64bit on 64bit
  2550   InstructionMark im(this);
  2551   prefix(src);
  2552   emit_byte(0xFF);
  2553   emit_operand(rsi, src);
  2555 #endif
  2557 void Assembler::pxor(XMMRegister dst, Address src) {
  2558   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2559   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2560   InstructionMark im(this);
  2561   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2562   emit_byte(0xEF);
  2563   emit_operand(dst, src);
  2566 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2567   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2568   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2569   emit_byte(0xEF);
  2570   emit_byte(0xC0 | encode);
  2573 void Assembler::rcll(Register dst, int imm8) {
  2574   assert(isShiftCount(imm8), "illegal shift count");
  2575   int encode = prefix_and_encode(dst->encoding());
  2576   if (imm8 == 1) {
  2577     emit_byte(0xD1);
  2578     emit_byte(0xD0 | encode);
  2579   } else {
  2580     emit_byte(0xC1);
  2581     emit_byte(0xD0 | encode);
  2582     emit_byte(imm8);
  2586 // copies data from [esi] to [edi] using rcx pointer sized words
  2587 // generic
  2588 void Assembler::rep_mov() {
  2589   emit_byte(0xF3);
  2590   // MOVSQ
  2591   LP64_ONLY(prefix(REX_W));
  2592   emit_byte(0xA5);
  2595 // sets rcx pointer sized words with rax, value at [edi]
  2596 // generic
  2597 void Assembler::rep_set() { // rep_set
  2598   emit_byte(0xF3);
  2599   // STOSQ
  2600   LP64_ONLY(prefix(REX_W));
  2601   emit_byte(0xAB);
  2604 // scans rcx pointer sized words at [edi] for occurance of rax,
  2605 // generic
  2606 void Assembler::repne_scan() { // repne_scan
  2607   emit_byte(0xF2);
  2608   // SCASQ
  2609   LP64_ONLY(prefix(REX_W));
  2610   emit_byte(0xAF);
  2613 #ifdef _LP64
  2614 // scans rcx 4 byte words at [edi] for occurance of rax,
  2615 // generic
  2616 void Assembler::repne_scanl() { // repne_scan
  2617   emit_byte(0xF2);
  2618   // SCASL
  2619   emit_byte(0xAF);
  2621 #endif
  2623 void Assembler::ret(int imm16) {
  2624   if (imm16 == 0) {
  2625     emit_byte(0xC3);
  2626   } else {
  2627     emit_byte(0xC2);
  2628     emit_word(imm16);
  2632 void Assembler::sahf() {
  2633 #ifdef _LP64
  2634   // Not supported in 64bit mode
  2635   ShouldNotReachHere();
  2636 #endif
  2637   emit_byte(0x9E);
  2640 void Assembler::sarl(Register dst, int imm8) {
  2641   int encode = prefix_and_encode(dst->encoding());
  2642   assert(isShiftCount(imm8), "illegal shift count");
  2643   if (imm8 == 1) {
  2644     emit_byte(0xD1);
  2645     emit_byte(0xF8 | encode);
  2646   } else {
  2647     emit_byte(0xC1);
  2648     emit_byte(0xF8 | encode);
  2649     emit_byte(imm8);
  2653 void Assembler::sarl(Register dst) {
  2654   int encode = prefix_and_encode(dst->encoding());
  2655   emit_byte(0xD3);
  2656   emit_byte(0xF8 | encode);
  2659 void Assembler::sbbl(Address dst, int32_t imm32) {
  2660   InstructionMark im(this);
  2661   prefix(dst);
  2662   emit_arith_operand(0x81, rbx, dst, imm32);
  2665 void Assembler::sbbl(Register dst, int32_t imm32) {
  2666   prefix(dst);
  2667   emit_arith(0x81, 0xD8, dst, imm32);
  2671 void Assembler::sbbl(Register dst, Address src) {
  2672   InstructionMark im(this);
  2673   prefix(src, dst);
  2674   emit_byte(0x1B);
  2675   emit_operand(dst, src);
  2678 void Assembler::sbbl(Register dst, Register src) {
  2679   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2680   emit_arith(0x1B, 0xC0, dst, src);
  2683 void Assembler::setb(Condition cc, Register dst) {
  2684   assert(0 <= cc && cc < 16, "illegal cc");
  2685   int encode = prefix_and_encode(dst->encoding(), true);
  2686   emit_byte(0x0F);
  2687   emit_byte(0x90 | cc);
  2688   emit_byte(0xC0 | encode);
  2691 void Assembler::shll(Register dst, int imm8) {
  2692   assert(isShiftCount(imm8), "illegal shift count");
  2693   int encode = prefix_and_encode(dst->encoding());
  2694   if (imm8 == 1 ) {
  2695     emit_byte(0xD1);
  2696     emit_byte(0xE0 | encode);
  2697   } else {
  2698     emit_byte(0xC1);
  2699     emit_byte(0xE0 | encode);
  2700     emit_byte(imm8);
  2704 void Assembler::shll(Register dst) {
  2705   int encode = prefix_and_encode(dst->encoding());
  2706   emit_byte(0xD3);
  2707   emit_byte(0xE0 | encode);
  2710 void Assembler::shrl(Register dst, int imm8) {
  2711   assert(isShiftCount(imm8), "illegal shift count");
  2712   int encode = prefix_and_encode(dst->encoding());
  2713   emit_byte(0xC1);
  2714   emit_byte(0xE8 | encode);
  2715   emit_byte(imm8);
  2718 void Assembler::shrl(Register dst) {
  2719   int encode = prefix_and_encode(dst->encoding());
  2720   emit_byte(0xD3);
  2721   emit_byte(0xE8 | encode);
  2724 // copies a single word from [esi] to [edi]
  2725 void Assembler::smovl() {
  2726   emit_byte(0xA5);
  2729 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2730   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2731   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  2732   emit_byte(0x51);
  2733   emit_byte(0xC0 | encode);
  2736 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2737   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2738   InstructionMark im(this);
  2739   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  2740   emit_byte(0x51);
  2741   emit_operand(dst, src);
  2744 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2745   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2746   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  2747   emit_byte(0x51);
  2748   emit_byte(0xC0 | encode);
  2751 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2752   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2753   InstructionMark im(this);
  2754   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  2755   emit_byte(0x51);
  2756   emit_operand(dst, src);
  2759 void Assembler::stmxcsr( Address dst) {
  2760   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2761   InstructionMark im(this);
  2762   prefix(dst);
  2763   emit_byte(0x0F);
  2764   emit_byte(0xAE);
  2765   emit_operand(as_Register(3), dst);
  2768 void Assembler::subl(Address dst, int32_t imm32) {
  2769   InstructionMark im(this);
  2770   prefix(dst);
  2771   emit_arith_operand(0x81, rbp, dst, imm32);
  2774 void Assembler::subl(Address dst, Register src) {
  2775   InstructionMark im(this);
  2776   prefix(dst, src);
  2777   emit_byte(0x29);
  2778   emit_operand(src, dst);
  2781 void Assembler::subl(Register dst, int32_t imm32) {
  2782   prefix(dst);
  2783   emit_arith(0x81, 0xE8, dst, imm32);
  2786 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2787 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2788   prefix(dst);
  2789   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2792 void Assembler::subl(Register dst, Address src) {
  2793   InstructionMark im(this);
  2794   prefix(src, dst);
  2795   emit_byte(0x2B);
  2796   emit_operand(dst, src);
  2799 void Assembler::subl(Register dst, Register src) {
  2800   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2801   emit_arith(0x2B, 0xC0, dst, src);
  2804 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2805   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2806   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  2807   emit_byte(0x5C);
  2808   emit_byte(0xC0 | encode);
  2811 void Assembler::subsd(XMMRegister dst, Address src) {
  2812   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2813   InstructionMark im(this);
  2814   simd_prefix(dst, dst, src, VEX_SIMD_F2);
  2815   emit_byte(0x5C);
  2816   emit_operand(dst, src);
  2819 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2820   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2821   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  2822   emit_byte(0x5C);
  2823   emit_byte(0xC0 | encode);
  2826 void Assembler::subss(XMMRegister dst, Address src) {
  2827   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2828   InstructionMark im(this);
  2829   simd_prefix(dst, dst, src, VEX_SIMD_F3);
  2830   emit_byte(0x5C);
  2831   emit_operand(dst, src);
  2834 void Assembler::testb(Register dst, int imm8) {
  2835   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2836   (void) prefix_and_encode(dst->encoding(), true);
  2837   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2840 void Assembler::testl(Register dst, int32_t imm32) {
  2841   // not using emit_arith because test
  2842   // doesn't support sign-extension of
  2843   // 8bit operands
  2844   int encode = dst->encoding();
  2845   if (encode == 0) {
  2846     emit_byte(0xA9);
  2847   } else {
  2848     encode = prefix_and_encode(encode);
  2849     emit_byte(0xF7);
  2850     emit_byte(0xC0 | encode);
  2852   emit_long(imm32);
  2855 void Assembler::testl(Register dst, Register src) {
  2856   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2857   emit_arith(0x85, 0xC0, dst, src);
  2860 void Assembler::testl(Register dst, Address  src) {
  2861   InstructionMark im(this);
  2862   prefix(src, dst);
  2863   emit_byte(0x85);
  2864   emit_operand(dst, src);
  2867 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2868   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2869   InstructionMark im(this);
  2870   simd_prefix(dst, src, VEX_SIMD_66);
  2871   emit_byte(0x2E);
  2872   emit_operand(dst, src);
  2875 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2876   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2877   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  2878   emit_byte(0x2E);
  2879   emit_byte(0xC0 | encode);
  2882 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2883   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2884   InstructionMark im(this);
  2885   simd_prefix(dst, src, VEX_SIMD_NONE);
  2886   emit_byte(0x2E);
  2887   emit_operand(dst, src);
  2890 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2891   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2892   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_NONE);
  2893   emit_byte(0x2E);
  2894   emit_byte(0xC0 | encode);
  2898 void Assembler::xaddl(Address dst, Register src) {
  2899   InstructionMark im(this);
  2900   prefix(dst, src);
  2901   emit_byte(0x0F);
  2902   emit_byte(0xC1);
  2903   emit_operand(src, dst);
  2906 void Assembler::xchgl(Register dst, Address src) { // xchg
  2907   InstructionMark im(this);
  2908   prefix(src, dst);
  2909   emit_byte(0x87);
  2910   emit_operand(dst, src);
  2913 void Assembler::xchgl(Register dst, Register src) {
  2914   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2915   emit_byte(0x87);
  2916   emit_byte(0xc0 | encode);
  2919 void Assembler::xorl(Register dst, int32_t imm32) {
  2920   prefix(dst);
  2921   emit_arith(0x81, 0xF0, dst, imm32);
  2924 void Assembler::xorl(Register dst, Address src) {
  2925   InstructionMark im(this);
  2926   prefix(src, dst);
  2927   emit_byte(0x33);
  2928   emit_operand(dst, src);
  2931 void Assembler::xorl(Register dst, Register src) {
  2932   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2933   emit_arith(0x33, 0xC0, dst, src);
  2936 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2937   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2938   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66);
  2939   emit_byte(0x57);
  2940   emit_byte(0xC0 | encode);
  2943 void Assembler::xorpd(XMMRegister dst, Address src) {
  2944   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2945   InstructionMark im(this);
  2946   simd_prefix(dst, dst, src, VEX_SIMD_66);
  2947   emit_byte(0x57);
  2948   emit_operand(dst, src);
  2952 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  2953   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2954   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE);
  2955   emit_byte(0x57);
  2956   emit_byte(0xC0 | encode);
  2959 void Assembler::xorps(XMMRegister dst, Address src) {
  2960   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2961   InstructionMark im(this);
  2962   simd_prefix(dst, dst, src, VEX_SIMD_NONE);
  2963   emit_byte(0x57);
  2964   emit_operand(dst, src);
  2967 // AVX 3-operands non destructive source instructions (encoded with VEX prefix)
  2969 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  2970   assert(VM_Version::supports_avx(), "");
  2971   InstructionMark im(this);
  2972   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  2973   emit_byte(0x58);
  2974   emit_operand(dst, src);
  2977 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2978   assert(VM_Version::supports_avx(), "");
  2979   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  2980   emit_byte(0x58);
  2981   emit_byte(0xC0 | encode);
  2984 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  2985   assert(VM_Version::supports_avx(), "");
  2986   InstructionMark im(this);
  2987   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  2988   emit_byte(0x58);
  2989   emit_operand(dst, src);
  2992 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2993   assert(VM_Version::supports_avx(), "");
  2994   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  2995   emit_byte(0x58);
  2996   emit_byte(0xC0 | encode);
  2999 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src) {
  3000   assert(VM_Version::supports_avx(), "");
  3001   InstructionMark im(this);
  3002   vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector
  3003   emit_byte(0x54);
  3004   emit_operand(dst, src);
  3007 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src) {
  3008   assert(VM_Version::supports_avx(), "");
  3009   InstructionMark im(this);
  3010   vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector
  3011   emit_byte(0x54);
  3012   emit_operand(dst, src);
  3015 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  3016   assert(VM_Version::supports_avx(), "");
  3017   InstructionMark im(this);
  3018   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3019   emit_byte(0x5E);
  3020   emit_operand(dst, src);
  3023 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3024   assert(VM_Version::supports_avx(), "");
  3025   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3026   emit_byte(0x5E);
  3027   emit_byte(0xC0 | encode);
  3030 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  3031   assert(VM_Version::supports_avx(), "");
  3032   InstructionMark im(this);
  3033   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3034   emit_byte(0x5E);
  3035   emit_operand(dst, src);
  3038 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3039   assert(VM_Version::supports_avx(), "");
  3040   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3041   emit_byte(0x5E);
  3042   emit_byte(0xC0 | encode);
  3045 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  3046   assert(VM_Version::supports_avx(), "");
  3047   InstructionMark im(this);
  3048   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3049   emit_byte(0x59);
  3050   emit_operand(dst, src);
  3053 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3054   assert(VM_Version::supports_avx(), "");
  3055   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3056   emit_byte(0x59);
  3057   emit_byte(0xC0 | encode);
  3060 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  3061   InstructionMark im(this);
  3062   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3063   emit_byte(0x59);
  3064   emit_operand(dst, src);
  3067 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3068   assert(VM_Version::supports_avx(), "");
  3069   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3070   emit_byte(0x59);
  3071   emit_byte(0xC0 | encode);
  3075 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  3076   assert(VM_Version::supports_avx(), "");
  3077   InstructionMark im(this);
  3078   vex_prefix(dst, nds, src, VEX_SIMD_F2);
  3079   emit_byte(0x5C);
  3080   emit_operand(dst, src);
  3083 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3084   assert(VM_Version::supports_avx(), "");
  3085   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F2);
  3086   emit_byte(0x5C);
  3087   emit_byte(0xC0 | encode);
  3090 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  3091   assert(VM_Version::supports_avx(), "");
  3092   InstructionMark im(this);
  3093   vex_prefix(dst, nds, src, VEX_SIMD_F3);
  3094   emit_byte(0x5C);
  3095   emit_operand(dst, src);
  3098 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3099   assert(VM_Version::supports_avx(), "");
  3100   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_F3);
  3101   emit_byte(0x5C);
  3102   emit_byte(0xC0 | encode);
  3105 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src) {
  3106   assert(VM_Version::supports_avx(), "");
  3107   InstructionMark im(this);
  3108   vex_prefix(dst, nds, src, VEX_SIMD_66); // 128-bit vector
  3109   emit_byte(0x57);
  3110   emit_operand(dst, src);
  3113 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src) {
  3114   assert(VM_Version::supports_avx(), "");
  3115   InstructionMark im(this);
  3116   vex_prefix(dst, nds, src, VEX_SIMD_NONE); // 128-bit vector
  3117   emit_byte(0x57);
  3118   emit_operand(dst, src);
  3122 #ifndef _LP64
  3123 // 32bit only pieces of the assembler
  3125 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3126   // NO PREFIX AS NEVER 64BIT
  3127   InstructionMark im(this);
  3128   emit_byte(0x81);
  3129   emit_byte(0xF8 | src1->encoding());
  3130   emit_data(imm32, rspec, 0);
  3133 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3134   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3135   InstructionMark im(this);
  3136   emit_byte(0x81);
  3137   emit_operand(rdi, src1);
  3138   emit_data(imm32, rspec, 0);
  3141 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3142 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3143 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3144 void Assembler::cmpxchg8(Address adr) {
  3145   InstructionMark im(this);
  3146   emit_byte(0x0F);
  3147   emit_byte(0xc7);
  3148   emit_operand(rcx, adr);
  3151 void Assembler::decl(Register dst) {
  3152   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3153  emit_byte(0x48 | dst->encoding());
  3156 #endif // _LP64
  3158 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3160 void Assembler::fabs() {
  3161   emit_byte(0xD9);
  3162   emit_byte(0xE1);
  3165 void Assembler::fadd(int i) {
  3166   emit_farith(0xD8, 0xC0, i);
  3169 void Assembler::fadd_d(Address src) {
  3170   InstructionMark im(this);
  3171   emit_byte(0xDC);
  3172   emit_operand32(rax, src);
  3175 void Assembler::fadd_s(Address src) {
  3176   InstructionMark im(this);
  3177   emit_byte(0xD8);
  3178   emit_operand32(rax, src);
  3181 void Assembler::fadda(int i) {
  3182   emit_farith(0xDC, 0xC0, i);
  3185 void Assembler::faddp(int i) {
  3186   emit_farith(0xDE, 0xC0, i);
  3189 void Assembler::fchs() {
  3190   emit_byte(0xD9);
  3191   emit_byte(0xE0);
  3194 void Assembler::fcom(int i) {
  3195   emit_farith(0xD8, 0xD0, i);
  3198 void Assembler::fcomp(int i) {
  3199   emit_farith(0xD8, 0xD8, i);
  3202 void Assembler::fcomp_d(Address src) {
  3203   InstructionMark im(this);
  3204   emit_byte(0xDC);
  3205   emit_operand32(rbx, src);
  3208 void Assembler::fcomp_s(Address src) {
  3209   InstructionMark im(this);
  3210   emit_byte(0xD8);
  3211   emit_operand32(rbx, src);
  3214 void Assembler::fcompp() {
  3215   emit_byte(0xDE);
  3216   emit_byte(0xD9);
  3219 void Assembler::fcos() {
  3220   emit_byte(0xD9);
  3221   emit_byte(0xFF);
  3224 void Assembler::fdecstp() {
  3225   emit_byte(0xD9);
  3226   emit_byte(0xF6);
  3229 void Assembler::fdiv(int i) {
  3230   emit_farith(0xD8, 0xF0, i);
  3233 void Assembler::fdiv_d(Address src) {
  3234   InstructionMark im(this);
  3235   emit_byte(0xDC);
  3236   emit_operand32(rsi, src);
  3239 void Assembler::fdiv_s(Address src) {
  3240   InstructionMark im(this);
  3241   emit_byte(0xD8);
  3242   emit_operand32(rsi, src);
  3245 void Assembler::fdiva(int i) {
  3246   emit_farith(0xDC, 0xF8, i);
  3249 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3250 //       is erroneous for some of the floating-point instructions below.
  3252 void Assembler::fdivp(int i) {
  3253   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3256 void Assembler::fdivr(int i) {
  3257   emit_farith(0xD8, 0xF8, i);
  3260 void Assembler::fdivr_d(Address src) {
  3261   InstructionMark im(this);
  3262   emit_byte(0xDC);
  3263   emit_operand32(rdi, src);
  3266 void Assembler::fdivr_s(Address src) {
  3267   InstructionMark im(this);
  3268   emit_byte(0xD8);
  3269   emit_operand32(rdi, src);
  3272 void Assembler::fdivra(int i) {
  3273   emit_farith(0xDC, 0xF0, i);
  3276 void Assembler::fdivrp(int i) {
  3277   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3280 void Assembler::ffree(int i) {
  3281   emit_farith(0xDD, 0xC0, i);
  3284 void Assembler::fild_d(Address adr) {
  3285   InstructionMark im(this);
  3286   emit_byte(0xDF);
  3287   emit_operand32(rbp, adr);
  3290 void Assembler::fild_s(Address adr) {
  3291   InstructionMark im(this);
  3292   emit_byte(0xDB);
  3293   emit_operand32(rax, adr);
  3296 void Assembler::fincstp() {
  3297   emit_byte(0xD9);
  3298   emit_byte(0xF7);
  3301 void Assembler::finit() {
  3302   emit_byte(0x9B);
  3303   emit_byte(0xDB);
  3304   emit_byte(0xE3);
  3307 void Assembler::fist_s(Address adr) {
  3308   InstructionMark im(this);
  3309   emit_byte(0xDB);
  3310   emit_operand32(rdx, adr);
  3313 void Assembler::fistp_d(Address adr) {
  3314   InstructionMark im(this);
  3315   emit_byte(0xDF);
  3316   emit_operand32(rdi, adr);
  3319 void Assembler::fistp_s(Address adr) {
  3320   InstructionMark im(this);
  3321   emit_byte(0xDB);
  3322   emit_operand32(rbx, adr);
  3325 void Assembler::fld1() {
  3326   emit_byte(0xD9);
  3327   emit_byte(0xE8);
  3330 void Assembler::fld_d(Address adr) {
  3331   InstructionMark im(this);
  3332   emit_byte(0xDD);
  3333   emit_operand32(rax, adr);
  3336 void Assembler::fld_s(Address adr) {
  3337   InstructionMark im(this);
  3338   emit_byte(0xD9);
  3339   emit_operand32(rax, adr);
  3343 void Assembler::fld_s(int index) {
  3344   emit_farith(0xD9, 0xC0, index);
  3347 void Assembler::fld_x(Address adr) {
  3348   InstructionMark im(this);
  3349   emit_byte(0xDB);
  3350   emit_operand32(rbp, adr);
  3353 void Assembler::fldcw(Address src) {
  3354   InstructionMark im(this);
  3355   emit_byte(0xd9);
  3356   emit_operand32(rbp, src);
  3359 void Assembler::fldenv(Address src) {
  3360   InstructionMark im(this);
  3361   emit_byte(0xD9);
  3362   emit_operand32(rsp, src);
  3365 void Assembler::fldlg2() {
  3366   emit_byte(0xD9);
  3367   emit_byte(0xEC);
  3370 void Assembler::fldln2() {
  3371   emit_byte(0xD9);
  3372   emit_byte(0xED);
  3375 void Assembler::fldz() {
  3376   emit_byte(0xD9);
  3377   emit_byte(0xEE);
  3380 void Assembler::flog() {
  3381   fldln2();
  3382   fxch();
  3383   fyl2x();
  3386 void Assembler::flog10() {
  3387   fldlg2();
  3388   fxch();
  3389   fyl2x();
  3392 void Assembler::fmul(int i) {
  3393   emit_farith(0xD8, 0xC8, i);
  3396 void Assembler::fmul_d(Address src) {
  3397   InstructionMark im(this);
  3398   emit_byte(0xDC);
  3399   emit_operand32(rcx, src);
  3402 void Assembler::fmul_s(Address src) {
  3403   InstructionMark im(this);
  3404   emit_byte(0xD8);
  3405   emit_operand32(rcx, src);
  3408 void Assembler::fmula(int i) {
  3409   emit_farith(0xDC, 0xC8, i);
  3412 void Assembler::fmulp(int i) {
  3413   emit_farith(0xDE, 0xC8, i);
  3416 void Assembler::fnsave(Address dst) {
  3417   InstructionMark im(this);
  3418   emit_byte(0xDD);
  3419   emit_operand32(rsi, dst);
  3422 void Assembler::fnstcw(Address src) {
  3423   InstructionMark im(this);
  3424   emit_byte(0x9B);
  3425   emit_byte(0xD9);
  3426   emit_operand32(rdi, src);
  3429 void Assembler::fnstsw_ax() {
  3430   emit_byte(0xdF);
  3431   emit_byte(0xE0);
  3434 void Assembler::fprem() {
  3435   emit_byte(0xD9);
  3436   emit_byte(0xF8);
  3439 void Assembler::fprem1() {
  3440   emit_byte(0xD9);
  3441   emit_byte(0xF5);
  3444 void Assembler::frstor(Address src) {
  3445   InstructionMark im(this);
  3446   emit_byte(0xDD);
  3447   emit_operand32(rsp, src);
  3450 void Assembler::fsin() {
  3451   emit_byte(0xD9);
  3452   emit_byte(0xFE);
  3455 void Assembler::fsqrt() {
  3456   emit_byte(0xD9);
  3457   emit_byte(0xFA);
  3460 void Assembler::fst_d(Address adr) {
  3461   InstructionMark im(this);
  3462   emit_byte(0xDD);
  3463   emit_operand32(rdx, adr);
  3466 void Assembler::fst_s(Address adr) {
  3467   InstructionMark im(this);
  3468   emit_byte(0xD9);
  3469   emit_operand32(rdx, adr);
  3472 void Assembler::fstp_d(Address adr) {
  3473   InstructionMark im(this);
  3474   emit_byte(0xDD);
  3475   emit_operand32(rbx, adr);
  3478 void Assembler::fstp_d(int index) {
  3479   emit_farith(0xDD, 0xD8, index);
  3482 void Assembler::fstp_s(Address adr) {
  3483   InstructionMark im(this);
  3484   emit_byte(0xD9);
  3485   emit_operand32(rbx, adr);
  3488 void Assembler::fstp_x(Address adr) {
  3489   InstructionMark im(this);
  3490   emit_byte(0xDB);
  3491   emit_operand32(rdi, adr);
  3494 void Assembler::fsub(int i) {
  3495   emit_farith(0xD8, 0xE0, i);
  3498 void Assembler::fsub_d(Address src) {
  3499   InstructionMark im(this);
  3500   emit_byte(0xDC);
  3501   emit_operand32(rsp, src);
  3504 void Assembler::fsub_s(Address src) {
  3505   InstructionMark im(this);
  3506   emit_byte(0xD8);
  3507   emit_operand32(rsp, src);
  3510 void Assembler::fsuba(int i) {
  3511   emit_farith(0xDC, 0xE8, i);
  3514 void Assembler::fsubp(int i) {
  3515   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3518 void Assembler::fsubr(int i) {
  3519   emit_farith(0xD8, 0xE8, i);
  3522 void Assembler::fsubr_d(Address src) {
  3523   InstructionMark im(this);
  3524   emit_byte(0xDC);
  3525   emit_operand32(rbp, src);
  3528 void Assembler::fsubr_s(Address src) {
  3529   InstructionMark im(this);
  3530   emit_byte(0xD8);
  3531   emit_operand32(rbp, src);
  3534 void Assembler::fsubra(int i) {
  3535   emit_farith(0xDC, 0xE0, i);
  3538 void Assembler::fsubrp(int i) {
  3539   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3542 void Assembler::ftan() {
  3543   emit_byte(0xD9);
  3544   emit_byte(0xF2);
  3545   emit_byte(0xDD);
  3546   emit_byte(0xD8);
  3549 void Assembler::ftst() {
  3550   emit_byte(0xD9);
  3551   emit_byte(0xE4);
  3554 void Assembler::fucomi(int i) {
  3555   // make sure the instruction is supported (introduced for P6, together with cmov)
  3556   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3557   emit_farith(0xDB, 0xE8, i);
  3560 void Assembler::fucomip(int i) {
  3561   // make sure the instruction is supported (introduced for P6, together with cmov)
  3562   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3563   emit_farith(0xDF, 0xE8, i);
  3566 void Assembler::fwait() {
  3567   emit_byte(0x9B);
  3570 void Assembler::fxch(int i) {
  3571   emit_farith(0xD9, 0xC8, i);
  3574 void Assembler::fyl2x() {
  3575   emit_byte(0xD9);
  3576   emit_byte(0xF1);
  3579 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  3580 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  3581 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  3582 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  3584 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  3585 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  3586   if (pre > 0) {
  3587     emit_byte(simd_pre[pre]);
  3589   if (rex_w) {
  3590     prefixq(adr, xreg);
  3591   } else {
  3592     prefix(adr, xreg);
  3594   if (opc > 0) {
  3595     emit_byte(0x0F);
  3596     int opc2 = simd_opc[opc];
  3597     if (opc2 > 0) {
  3598       emit_byte(opc2);
  3603 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  3604   if (pre > 0) {
  3605     emit_byte(simd_pre[pre]);
  3607   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  3608                           prefix_and_encode(dst_enc, src_enc);
  3609   if (opc > 0) {
  3610     emit_byte(0x0F);
  3611     int opc2 = simd_opc[opc];
  3612     if (opc2 > 0) {
  3613       emit_byte(opc2);
  3616   return encode;
  3620 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  3621   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  3622     prefix(VEX_3bytes);
  3624     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  3625     byte1 = (~byte1) & 0xE0;
  3626     byte1 |= opc;
  3627     a_byte(byte1);
  3629     int byte2 = ((~nds_enc) & 0xf) << 3;
  3630     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  3631     emit_byte(byte2);
  3632   } else {
  3633     prefix(VEX_2bytes);
  3635     int byte1 = vex_r ? VEX_R : 0;
  3636     byte1 = (~byte1) & 0x80;
  3637     byte1 |= ((~nds_enc) & 0xf) << 3;
  3638     byte1 |= (vector256 ? 4 : 0) | pre;
  3639     emit_byte(byte1);
  3643 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  3644   bool vex_r = (xreg_enc >= 8);
  3645   bool vex_b = adr.base_needs_rex();
  3646   bool vex_x = adr.index_needs_rex();
  3647   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  3650 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  3651   bool vex_r = (dst_enc >= 8);
  3652   bool vex_b = (src_enc >= 8);
  3653   bool vex_x = false;
  3654   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  3655   return (((dst_enc & 7) << 3) | (src_enc & 7));
  3659 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  3660   if (UseAVX > 0) {
  3661     int xreg_enc = xreg->encoding();
  3662     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3663     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  3664   } else {
  3665     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  3666     rex_prefix(adr, xreg, pre, opc, rex_w);
  3670 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  3671   int dst_enc = dst->encoding();
  3672   int src_enc = src->encoding();
  3673   if (UseAVX > 0) {
  3674     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3675     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  3676   } else {
  3677     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  3678     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  3682 #ifndef _LP64
  3684 void Assembler::incl(Register dst) {
  3685   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3686   emit_byte(0x40 | dst->encoding());
  3689 void Assembler::lea(Register dst, Address src) {
  3690   leal(dst, src);
  3693 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3694   InstructionMark im(this);
  3695   emit_byte(0xC7);
  3696   emit_operand(rax, dst);
  3697   emit_data((int)imm32, rspec, 0);
  3700 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3701   InstructionMark im(this);
  3702   int encode = prefix_and_encode(dst->encoding());
  3703   emit_byte(0xB8 | encode);
  3704   emit_data((int)imm32, rspec, 0);
  3707 void Assembler::popa() { // 32bit
  3708   emit_byte(0x61);
  3711 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3712   InstructionMark im(this);
  3713   emit_byte(0x68);
  3714   emit_data(imm32, rspec, 0);
  3717 void Assembler::pusha() { // 32bit
  3718   emit_byte(0x60);
  3721 void Assembler::set_byte_if_not_zero(Register dst) {
  3722   emit_byte(0x0F);
  3723   emit_byte(0x95);
  3724   emit_byte(0xE0 | dst->encoding());
  3727 void Assembler::shldl(Register dst, Register src) {
  3728   emit_byte(0x0F);
  3729   emit_byte(0xA5);
  3730   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3733 void Assembler::shrdl(Register dst, Register src) {
  3734   emit_byte(0x0F);
  3735   emit_byte(0xAD);
  3736   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3739 #else // LP64
  3741 void Assembler::set_byte_if_not_zero(Register dst) {
  3742   int enc = prefix_and_encode(dst->encoding(), true);
  3743   emit_byte(0x0F);
  3744   emit_byte(0x95);
  3745   emit_byte(0xE0 | enc);
  3748 // 64bit only pieces of the assembler
  3749 // This should only be used by 64bit instructions that can use rip-relative
  3750 // it cannot be used by instructions that want an immediate value.
  3752 bool Assembler::reachable(AddressLiteral adr) {
  3753   int64_t disp;
  3754   // None will force a 64bit literal to the code stream. Likely a placeholder
  3755   // for something that will be patched later and we need to certain it will
  3756   // always be reachable.
  3757   if (adr.reloc() == relocInfo::none) {
  3758     return false;
  3760   if (adr.reloc() == relocInfo::internal_word_type) {
  3761     // This should be rip relative and easily reachable.
  3762     return true;
  3764   if (adr.reloc() == relocInfo::virtual_call_type ||
  3765       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3766       adr.reloc() == relocInfo::static_call_type ||
  3767       adr.reloc() == relocInfo::static_stub_type ) {
  3768     // This should be rip relative within the code cache and easily
  3769     // reachable until we get huge code caches. (At which point
  3770     // ic code is going to have issues).
  3771     return true;
  3773   if (adr.reloc() != relocInfo::external_word_type &&
  3774       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3775       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3776       adr.reloc() != relocInfo::runtime_call_type ) {
  3777     return false;
  3780   // Stress the correction code
  3781   if (ForceUnreachable) {
  3782     // Must be runtimecall reloc, see if it is in the codecache
  3783     // Flipping stuff in the codecache to be unreachable causes issues
  3784     // with things like inline caches where the additional instructions
  3785     // are not handled.
  3786     if (CodeCache::find_blob(adr._target) == NULL) {
  3787       return false;
  3790   // For external_word_type/runtime_call_type if it is reachable from where we
  3791   // are now (possibly a temp buffer) and where we might end up
  3792   // anywhere in the codeCache then we are always reachable.
  3793   // This would have to change if we ever save/restore shared code
  3794   // to be more pessimistic.
  3795   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3796   if (!is_simm32(disp)) return false;
  3797   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3798   if (!is_simm32(disp)) return false;
  3800   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3802   // Because rip relative is a disp + address_of_next_instruction and we
  3803   // don't know the value of address_of_next_instruction we apply a fudge factor
  3804   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3805   // We don't have to fudge the checks above here because they are already worst case.
  3807   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3808   // + 4 because better safe than sorry.
  3809   const int fudge = 12 + 4;
  3810   if (disp < 0) {
  3811     disp -= fudge;
  3812   } else {
  3813     disp += fudge;
  3815   return is_simm32(disp);
  3818 // Check if the polling page is not reachable from the code cache using rip-relative
  3819 // addressing.
  3820 bool Assembler::is_polling_page_far() {
  3821   intptr_t addr = (intptr_t)os::get_polling_page();
  3822   return ForceUnreachable ||
  3823          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  3824          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  3827 void Assembler::emit_data64(jlong data,
  3828                             relocInfo::relocType rtype,
  3829                             int format) {
  3830   if (rtype == relocInfo::none) {
  3831     emit_long64(data);
  3832   } else {
  3833     emit_data64(data, Relocation::spec_simple(rtype), format);
  3837 void Assembler::emit_data64(jlong data,
  3838                             RelocationHolder const& rspec,
  3839                             int format) {
  3840   assert(imm_operand == 0, "default format must be immediate in this file");
  3841   assert(imm_operand == format, "must be immediate");
  3842   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3843   // Do not use AbstractAssembler::relocate, which is not intended for
  3844   // embedded words.  Instead, relocate to the enclosing instruction.
  3845   code_section()->relocate(inst_mark(), rspec, format);
  3846 #ifdef ASSERT
  3847   check_relocation(rspec, format);
  3848 #endif
  3849   emit_long64(data);
  3852 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3853   if (reg_enc >= 8) {
  3854     prefix(REX_B);
  3855     reg_enc -= 8;
  3856   } else if (byteinst && reg_enc >= 4) {
  3857     prefix(REX);
  3859   return reg_enc;
  3862 int Assembler::prefixq_and_encode(int reg_enc) {
  3863   if (reg_enc < 8) {
  3864     prefix(REX_W);
  3865   } else {
  3866     prefix(REX_WB);
  3867     reg_enc -= 8;
  3869   return reg_enc;
  3872 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3873   if (dst_enc < 8) {
  3874     if (src_enc >= 8) {
  3875       prefix(REX_B);
  3876       src_enc -= 8;
  3877     } else if (byteinst && src_enc >= 4) {
  3878       prefix(REX);
  3880   } else {
  3881     if (src_enc < 8) {
  3882       prefix(REX_R);
  3883     } else {
  3884       prefix(REX_RB);
  3885       src_enc -= 8;
  3887     dst_enc -= 8;
  3889   return dst_enc << 3 | src_enc;
  3892 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  3893   if (dst_enc < 8) {
  3894     if (src_enc < 8) {
  3895       prefix(REX_W);
  3896     } else {
  3897       prefix(REX_WB);
  3898       src_enc -= 8;
  3900   } else {
  3901     if (src_enc < 8) {
  3902       prefix(REX_WR);
  3903     } else {
  3904       prefix(REX_WRB);
  3905       src_enc -= 8;
  3907     dst_enc -= 8;
  3909   return dst_enc << 3 | src_enc;
  3912 void Assembler::prefix(Register reg) {
  3913   if (reg->encoding() >= 8) {
  3914     prefix(REX_B);
  3918 void Assembler::prefix(Address adr) {
  3919   if (adr.base_needs_rex()) {
  3920     if (adr.index_needs_rex()) {
  3921       prefix(REX_XB);
  3922     } else {
  3923       prefix(REX_B);
  3925   } else {
  3926     if (adr.index_needs_rex()) {
  3927       prefix(REX_X);
  3932 void Assembler::prefixq(Address adr) {
  3933   if (adr.base_needs_rex()) {
  3934     if (adr.index_needs_rex()) {
  3935       prefix(REX_WXB);
  3936     } else {
  3937       prefix(REX_WB);
  3939   } else {
  3940     if (adr.index_needs_rex()) {
  3941       prefix(REX_WX);
  3942     } else {
  3943       prefix(REX_W);
  3949 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  3950   if (reg->encoding() < 8) {
  3951     if (adr.base_needs_rex()) {
  3952       if (adr.index_needs_rex()) {
  3953         prefix(REX_XB);
  3954       } else {
  3955         prefix(REX_B);
  3957     } else {
  3958       if (adr.index_needs_rex()) {
  3959         prefix(REX_X);
  3960       } else if (byteinst && reg->encoding() >= 4 ) {
  3961         prefix(REX);
  3964   } else {
  3965     if (adr.base_needs_rex()) {
  3966       if (adr.index_needs_rex()) {
  3967         prefix(REX_RXB);
  3968       } else {
  3969         prefix(REX_RB);
  3971     } else {
  3972       if (adr.index_needs_rex()) {
  3973         prefix(REX_RX);
  3974       } else {
  3975         prefix(REX_R);
  3981 void Assembler::prefixq(Address adr, Register src) {
  3982   if (src->encoding() < 8) {
  3983     if (adr.base_needs_rex()) {
  3984       if (adr.index_needs_rex()) {
  3985         prefix(REX_WXB);
  3986       } else {
  3987         prefix(REX_WB);
  3989     } else {
  3990       if (adr.index_needs_rex()) {
  3991         prefix(REX_WX);
  3992       } else {
  3993         prefix(REX_W);
  3996   } else {
  3997     if (adr.base_needs_rex()) {
  3998       if (adr.index_needs_rex()) {
  3999         prefix(REX_WRXB);
  4000       } else {
  4001         prefix(REX_WRB);
  4003     } else {
  4004       if (adr.index_needs_rex()) {
  4005         prefix(REX_WRX);
  4006       } else {
  4007         prefix(REX_WR);
  4013 void Assembler::prefix(Address adr, XMMRegister reg) {
  4014   if (reg->encoding() < 8) {
  4015     if (adr.base_needs_rex()) {
  4016       if (adr.index_needs_rex()) {
  4017         prefix(REX_XB);
  4018       } else {
  4019         prefix(REX_B);
  4021     } else {
  4022       if (adr.index_needs_rex()) {
  4023         prefix(REX_X);
  4026   } else {
  4027     if (adr.base_needs_rex()) {
  4028       if (adr.index_needs_rex()) {
  4029         prefix(REX_RXB);
  4030       } else {
  4031         prefix(REX_RB);
  4033     } else {
  4034       if (adr.index_needs_rex()) {
  4035         prefix(REX_RX);
  4036       } else {
  4037         prefix(REX_R);
  4043 void Assembler::prefixq(Address adr, XMMRegister src) {
  4044   if (src->encoding() < 8) {
  4045     if (adr.base_needs_rex()) {
  4046       if (adr.index_needs_rex()) {
  4047         prefix(REX_WXB);
  4048       } else {
  4049         prefix(REX_WB);
  4051     } else {
  4052       if (adr.index_needs_rex()) {
  4053         prefix(REX_WX);
  4054       } else {
  4055         prefix(REX_W);
  4058   } else {
  4059     if (adr.base_needs_rex()) {
  4060       if (adr.index_needs_rex()) {
  4061         prefix(REX_WRXB);
  4062       } else {
  4063         prefix(REX_WRB);
  4065     } else {
  4066       if (adr.index_needs_rex()) {
  4067         prefix(REX_WRX);
  4068       } else {
  4069         prefix(REX_WR);
  4075 void Assembler::adcq(Register dst, int32_t imm32) {
  4076   (void) prefixq_and_encode(dst->encoding());
  4077   emit_arith(0x81, 0xD0, dst, imm32);
  4080 void Assembler::adcq(Register dst, Address src) {
  4081   InstructionMark im(this);
  4082   prefixq(src, dst);
  4083   emit_byte(0x13);
  4084   emit_operand(dst, src);
  4087 void Assembler::adcq(Register dst, Register src) {
  4088   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4089   emit_arith(0x13, 0xC0, dst, src);
  4092 void Assembler::addq(Address dst, int32_t imm32) {
  4093   InstructionMark im(this);
  4094   prefixq(dst);
  4095   emit_arith_operand(0x81, rax, dst,imm32);
  4098 void Assembler::addq(Address dst, Register src) {
  4099   InstructionMark im(this);
  4100   prefixq(dst, src);
  4101   emit_byte(0x01);
  4102   emit_operand(src, dst);
  4105 void Assembler::addq(Register dst, int32_t imm32) {
  4106   (void) prefixq_and_encode(dst->encoding());
  4107   emit_arith(0x81, 0xC0, dst, imm32);
  4110 void Assembler::addq(Register dst, Address src) {
  4111   InstructionMark im(this);
  4112   prefixq(src, dst);
  4113   emit_byte(0x03);
  4114   emit_operand(dst, src);
  4117 void Assembler::addq(Register dst, Register src) {
  4118   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4119   emit_arith(0x03, 0xC0, dst, src);
  4122 void Assembler::andq(Address dst, int32_t imm32) {
  4123   InstructionMark im(this);
  4124   prefixq(dst);
  4125   emit_byte(0x81);
  4126   emit_operand(rsp, dst, 4);
  4127   emit_long(imm32);
  4130 void Assembler::andq(Register dst, int32_t imm32) {
  4131   (void) prefixq_and_encode(dst->encoding());
  4132   emit_arith(0x81, 0xE0, dst, imm32);
  4135 void Assembler::andq(Register dst, Address src) {
  4136   InstructionMark im(this);
  4137   prefixq(src, dst);
  4138   emit_byte(0x23);
  4139   emit_operand(dst, src);
  4142 void Assembler::andq(Register dst, Register src) {
  4143   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4144   emit_arith(0x23, 0xC0, dst, src);
  4147 void Assembler::bsfq(Register dst, Register src) {
  4148   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4149   emit_byte(0x0F);
  4150   emit_byte(0xBC);
  4151   emit_byte(0xC0 | encode);
  4154 void Assembler::bsrq(Register dst, Register src) {
  4155   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4156   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4157   emit_byte(0x0F);
  4158   emit_byte(0xBD);
  4159   emit_byte(0xC0 | encode);
  4162 void Assembler::bswapq(Register reg) {
  4163   int encode = prefixq_and_encode(reg->encoding());
  4164   emit_byte(0x0F);
  4165   emit_byte(0xC8 | encode);
  4168 void Assembler::cdqq() {
  4169   prefix(REX_W);
  4170   emit_byte(0x99);
  4173 void Assembler::clflush(Address adr) {
  4174   prefix(adr);
  4175   emit_byte(0x0F);
  4176   emit_byte(0xAE);
  4177   emit_operand(rdi, adr);
  4180 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4181   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4182   emit_byte(0x0F);
  4183   emit_byte(0x40 | cc);
  4184   emit_byte(0xC0 | encode);
  4187 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4188   InstructionMark im(this);
  4189   prefixq(src, dst);
  4190   emit_byte(0x0F);
  4191   emit_byte(0x40 | cc);
  4192   emit_operand(dst, src);
  4195 void Assembler::cmpq(Address dst, int32_t imm32) {
  4196   InstructionMark im(this);
  4197   prefixq(dst);
  4198   emit_byte(0x81);
  4199   emit_operand(rdi, dst, 4);
  4200   emit_long(imm32);
  4203 void Assembler::cmpq(Register dst, int32_t imm32) {
  4204   (void) prefixq_and_encode(dst->encoding());
  4205   emit_arith(0x81, 0xF8, dst, imm32);
  4208 void Assembler::cmpq(Address dst, Register src) {
  4209   InstructionMark im(this);
  4210   prefixq(dst, src);
  4211   emit_byte(0x3B);
  4212   emit_operand(src, dst);
  4215 void Assembler::cmpq(Register dst, Register src) {
  4216   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4217   emit_arith(0x3B, 0xC0, dst, src);
  4220 void Assembler::cmpq(Register dst, Address  src) {
  4221   InstructionMark im(this);
  4222   prefixq(src, dst);
  4223   emit_byte(0x3B);
  4224   emit_operand(dst, src);
  4227 void Assembler::cmpxchgq(Register reg, Address adr) {
  4228   InstructionMark im(this);
  4229   prefixq(adr, reg);
  4230   emit_byte(0x0F);
  4231   emit_byte(0xB1);
  4232   emit_operand(reg, adr);
  4235 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4236   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4237   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4238   emit_byte(0x2A);
  4239   emit_byte(0xC0 | encode);
  4242 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4243   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4244   InstructionMark im(this);
  4245   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4246   emit_byte(0x2A);
  4247   emit_operand(dst, src);
  4250 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4251   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4252   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4253   emit_byte(0x2A);
  4254   emit_byte(0xC0 | encode);
  4257 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4258   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4259   InstructionMark im(this);
  4260   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4261   emit_byte(0x2A);
  4262   emit_operand(dst, src);
  4265 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4266   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4267   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4268   emit_byte(0x2C);
  4269   emit_byte(0xC0 | encode);
  4272 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4273   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4274   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4275   emit_byte(0x2C);
  4276   emit_byte(0xC0 | encode);
  4279 void Assembler::decl(Register dst) {
  4280   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4281   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4282   int encode = prefix_and_encode(dst->encoding());
  4283   emit_byte(0xFF);
  4284   emit_byte(0xC8 | encode);
  4287 void Assembler::decq(Register dst) {
  4288   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4289   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4290   int encode = prefixq_and_encode(dst->encoding());
  4291   emit_byte(0xFF);
  4292   emit_byte(0xC8 | encode);
  4295 void Assembler::decq(Address dst) {
  4296   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4297   InstructionMark im(this);
  4298   prefixq(dst);
  4299   emit_byte(0xFF);
  4300   emit_operand(rcx, dst);
  4303 void Assembler::fxrstor(Address src) {
  4304   prefixq(src);
  4305   emit_byte(0x0F);
  4306   emit_byte(0xAE);
  4307   emit_operand(as_Register(1), src);
  4310 void Assembler::fxsave(Address dst) {
  4311   prefixq(dst);
  4312   emit_byte(0x0F);
  4313   emit_byte(0xAE);
  4314   emit_operand(as_Register(0), dst);
  4317 void Assembler::idivq(Register src) {
  4318   int encode = prefixq_and_encode(src->encoding());
  4319   emit_byte(0xF7);
  4320   emit_byte(0xF8 | encode);
  4323 void Assembler::imulq(Register dst, Register src) {
  4324   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4325   emit_byte(0x0F);
  4326   emit_byte(0xAF);
  4327   emit_byte(0xC0 | encode);
  4330 void Assembler::imulq(Register dst, Register src, int value) {
  4331   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4332   if (is8bit(value)) {
  4333     emit_byte(0x6B);
  4334     emit_byte(0xC0 | encode);
  4335     emit_byte(value & 0xFF);
  4336   } else {
  4337     emit_byte(0x69);
  4338     emit_byte(0xC0 | encode);
  4339     emit_long(value);
  4343 void Assembler::incl(Register dst) {
  4344   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4345   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4346   int encode = prefix_and_encode(dst->encoding());
  4347   emit_byte(0xFF);
  4348   emit_byte(0xC0 | encode);
  4351 void Assembler::incq(Register dst) {
  4352   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4353   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4354   int encode = prefixq_and_encode(dst->encoding());
  4355   emit_byte(0xFF);
  4356   emit_byte(0xC0 | encode);
  4359 void Assembler::incq(Address dst) {
  4360   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4361   InstructionMark im(this);
  4362   prefixq(dst);
  4363   emit_byte(0xFF);
  4364   emit_operand(rax, dst);
  4367 void Assembler::lea(Register dst, Address src) {
  4368   leaq(dst, src);
  4371 void Assembler::leaq(Register dst, Address src) {
  4372   InstructionMark im(this);
  4373   prefixq(src, dst);
  4374   emit_byte(0x8D);
  4375   emit_operand(dst, src);
  4378 void Assembler::mov64(Register dst, int64_t imm64) {
  4379   InstructionMark im(this);
  4380   int encode = prefixq_and_encode(dst->encoding());
  4381   emit_byte(0xB8 | encode);
  4382   emit_long64(imm64);
  4385 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4386   InstructionMark im(this);
  4387   int encode = prefixq_and_encode(dst->encoding());
  4388   emit_byte(0xB8 | encode);
  4389   emit_data64(imm64, rspec);
  4392 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4393   InstructionMark im(this);
  4394   int encode = prefix_and_encode(dst->encoding());
  4395   emit_byte(0xB8 | encode);
  4396   emit_data((int)imm32, rspec, narrow_oop_operand);
  4399 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4400   InstructionMark im(this);
  4401   prefix(dst);
  4402   emit_byte(0xC7);
  4403   emit_operand(rax, dst, 4);
  4404   emit_data((int)imm32, rspec, narrow_oop_operand);
  4407 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4408   InstructionMark im(this);
  4409   int encode = prefix_and_encode(src1->encoding());
  4410   emit_byte(0x81);
  4411   emit_byte(0xF8 | encode);
  4412   emit_data((int)imm32, rspec, narrow_oop_operand);
  4415 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4416   InstructionMark im(this);
  4417   prefix(src1);
  4418   emit_byte(0x81);
  4419   emit_operand(rax, src1, 4);
  4420   emit_data((int)imm32, rspec, narrow_oop_operand);
  4423 void Assembler::lzcntq(Register dst, Register src) {
  4424   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4425   emit_byte(0xF3);
  4426   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4427   emit_byte(0x0F);
  4428   emit_byte(0xBD);
  4429   emit_byte(0xC0 | encode);
  4432 void Assembler::movdq(XMMRegister dst, Register src) {
  4433   // table D-1 says MMX/SSE2
  4434   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4435   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  4436   emit_byte(0x6E);
  4437   emit_byte(0xC0 | encode);
  4440 void Assembler::movdq(Register dst, XMMRegister src) {
  4441   // table D-1 says MMX/SSE2
  4442   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4443   // swap src/dst to get correct prefix
  4444   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  4445   emit_byte(0x7E);
  4446   emit_byte(0xC0 | encode);
  4449 void Assembler::movq(Register dst, Register src) {
  4450   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4451   emit_byte(0x8B);
  4452   emit_byte(0xC0 | encode);
  4455 void Assembler::movq(Register dst, Address src) {
  4456   InstructionMark im(this);
  4457   prefixq(src, dst);
  4458   emit_byte(0x8B);
  4459   emit_operand(dst, src);
  4462 void Assembler::movq(Address dst, Register src) {
  4463   InstructionMark im(this);
  4464   prefixq(dst, src);
  4465   emit_byte(0x89);
  4466   emit_operand(src, dst);
  4469 void Assembler::movsbq(Register dst, Address src) {
  4470   InstructionMark im(this);
  4471   prefixq(src, dst);
  4472   emit_byte(0x0F);
  4473   emit_byte(0xBE);
  4474   emit_operand(dst, src);
  4477 void Assembler::movsbq(Register dst, Register src) {
  4478   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4479   emit_byte(0x0F);
  4480   emit_byte(0xBE);
  4481   emit_byte(0xC0 | encode);
  4484 void Assembler::movslq(Register dst, int32_t imm32) {
  4485   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4486   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4487   // as a result we shouldn't use until tested at runtime...
  4488   ShouldNotReachHere();
  4489   InstructionMark im(this);
  4490   int encode = prefixq_and_encode(dst->encoding());
  4491   emit_byte(0xC7 | encode);
  4492   emit_long(imm32);
  4495 void Assembler::movslq(Address dst, int32_t imm32) {
  4496   assert(is_simm32(imm32), "lost bits");
  4497   InstructionMark im(this);
  4498   prefixq(dst);
  4499   emit_byte(0xC7);
  4500   emit_operand(rax, dst, 4);
  4501   emit_long(imm32);
  4504 void Assembler::movslq(Register dst, Address src) {
  4505   InstructionMark im(this);
  4506   prefixq(src, dst);
  4507   emit_byte(0x63);
  4508   emit_operand(dst, src);
  4511 void Assembler::movslq(Register dst, Register src) {
  4512   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4513   emit_byte(0x63);
  4514   emit_byte(0xC0 | encode);
  4517 void Assembler::movswq(Register dst, Address src) {
  4518   InstructionMark im(this);
  4519   prefixq(src, dst);
  4520   emit_byte(0x0F);
  4521   emit_byte(0xBF);
  4522   emit_operand(dst, src);
  4525 void Assembler::movswq(Register dst, Register src) {
  4526   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4527   emit_byte(0x0F);
  4528   emit_byte(0xBF);
  4529   emit_byte(0xC0 | encode);
  4532 void Assembler::movzbq(Register dst, Address src) {
  4533   InstructionMark im(this);
  4534   prefixq(src, dst);
  4535   emit_byte(0x0F);
  4536   emit_byte(0xB6);
  4537   emit_operand(dst, src);
  4540 void Assembler::movzbq(Register dst, Register src) {
  4541   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4542   emit_byte(0x0F);
  4543   emit_byte(0xB6);
  4544   emit_byte(0xC0 | encode);
  4547 void Assembler::movzwq(Register dst, Address src) {
  4548   InstructionMark im(this);
  4549   prefixq(src, dst);
  4550   emit_byte(0x0F);
  4551   emit_byte(0xB7);
  4552   emit_operand(dst, src);
  4555 void Assembler::movzwq(Register dst, Register src) {
  4556   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4557   emit_byte(0x0F);
  4558   emit_byte(0xB7);
  4559   emit_byte(0xC0 | encode);
  4562 void Assembler::negq(Register dst) {
  4563   int encode = prefixq_and_encode(dst->encoding());
  4564   emit_byte(0xF7);
  4565   emit_byte(0xD8 | encode);
  4568 void Assembler::notq(Register dst) {
  4569   int encode = prefixq_and_encode(dst->encoding());
  4570   emit_byte(0xF7);
  4571   emit_byte(0xD0 | encode);
  4574 void Assembler::orq(Address dst, int32_t imm32) {
  4575   InstructionMark im(this);
  4576   prefixq(dst);
  4577   emit_byte(0x81);
  4578   emit_operand(rcx, dst, 4);
  4579   emit_long(imm32);
  4582 void Assembler::orq(Register dst, int32_t imm32) {
  4583   (void) prefixq_and_encode(dst->encoding());
  4584   emit_arith(0x81, 0xC8, dst, imm32);
  4587 void Assembler::orq(Register dst, Address src) {
  4588   InstructionMark im(this);
  4589   prefixq(src, dst);
  4590   emit_byte(0x0B);
  4591   emit_operand(dst, src);
  4594 void Assembler::orq(Register dst, Register src) {
  4595   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4596   emit_arith(0x0B, 0xC0, dst, src);
  4599 void Assembler::popa() { // 64bit
  4600   movq(r15, Address(rsp, 0));
  4601   movq(r14, Address(rsp, wordSize));
  4602   movq(r13, Address(rsp, 2 * wordSize));
  4603   movq(r12, Address(rsp, 3 * wordSize));
  4604   movq(r11, Address(rsp, 4 * wordSize));
  4605   movq(r10, Address(rsp, 5 * wordSize));
  4606   movq(r9,  Address(rsp, 6 * wordSize));
  4607   movq(r8,  Address(rsp, 7 * wordSize));
  4608   movq(rdi, Address(rsp, 8 * wordSize));
  4609   movq(rsi, Address(rsp, 9 * wordSize));
  4610   movq(rbp, Address(rsp, 10 * wordSize));
  4611   // skip rsp
  4612   movq(rbx, Address(rsp, 12 * wordSize));
  4613   movq(rdx, Address(rsp, 13 * wordSize));
  4614   movq(rcx, Address(rsp, 14 * wordSize));
  4615   movq(rax, Address(rsp, 15 * wordSize));
  4617   addq(rsp, 16 * wordSize);
  4620 void Assembler::popcntq(Register dst, Address src) {
  4621   assert(VM_Version::supports_popcnt(), "must support");
  4622   InstructionMark im(this);
  4623   emit_byte(0xF3);
  4624   prefixq(src, dst);
  4625   emit_byte(0x0F);
  4626   emit_byte(0xB8);
  4627   emit_operand(dst, src);
  4630 void Assembler::popcntq(Register dst, Register src) {
  4631   assert(VM_Version::supports_popcnt(), "must support");
  4632   emit_byte(0xF3);
  4633   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4634   emit_byte(0x0F);
  4635   emit_byte(0xB8);
  4636   emit_byte(0xC0 | encode);
  4639 void Assembler::popq(Address dst) {
  4640   InstructionMark im(this);
  4641   prefixq(dst);
  4642   emit_byte(0x8F);
  4643   emit_operand(rax, dst);
  4646 void Assembler::pusha() { // 64bit
  4647   // we have to store original rsp.  ABI says that 128 bytes
  4648   // below rsp are local scratch.
  4649   movq(Address(rsp, -5 * wordSize), rsp);
  4651   subq(rsp, 16 * wordSize);
  4653   movq(Address(rsp, 15 * wordSize), rax);
  4654   movq(Address(rsp, 14 * wordSize), rcx);
  4655   movq(Address(rsp, 13 * wordSize), rdx);
  4656   movq(Address(rsp, 12 * wordSize), rbx);
  4657   // skip rsp
  4658   movq(Address(rsp, 10 * wordSize), rbp);
  4659   movq(Address(rsp, 9 * wordSize), rsi);
  4660   movq(Address(rsp, 8 * wordSize), rdi);
  4661   movq(Address(rsp, 7 * wordSize), r8);
  4662   movq(Address(rsp, 6 * wordSize), r9);
  4663   movq(Address(rsp, 5 * wordSize), r10);
  4664   movq(Address(rsp, 4 * wordSize), r11);
  4665   movq(Address(rsp, 3 * wordSize), r12);
  4666   movq(Address(rsp, 2 * wordSize), r13);
  4667   movq(Address(rsp, wordSize), r14);
  4668   movq(Address(rsp, 0), r15);
  4671 void Assembler::pushq(Address src) {
  4672   InstructionMark im(this);
  4673   prefixq(src);
  4674   emit_byte(0xFF);
  4675   emit_operand(rsi, src);
  4678 void Assembler::rclq(Register dst, int imm8) {
  4679   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4680   int encode = prefixq_and_encode(dst->encoding());
  4681   if (imm8 == 1) {
  4682     emit_byte(0xD1);
  4683     emit_byte(0xD0 | encode);
  4684   } else {
  4685     emit_byte(0xC1);
  4686     emit_byte(0xD0 | encode);
  4687     emit_byte(imm8);
  4690 void Assembler::sarq(Register dst, int imm8) {
  4691   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4692   int encode = prefixq_and_encode(dst->encoding());
  4693   if (imm8 == 1) {
  4694     emit_byte(0xD1);
  4695     emit_byte(0xF8 | encode);
  4696   } else {
  4697     emit_byte(0xC1);
  4698     emit_byte(0xF8 | encode);
  4699     emit_byte(imm8);
  4703 void Assembler::sarq(Register dst) {
  4704   int encode = prefixq_and_encode(dst->encoding());
  4705   emit_byte(0xD3);
  4706   emit_byte(0xF8 | encode);
  4709 void Assembler::sbbq(Address dst, int32_t imm32) {
  4710   InstructionMark im(this);
  4711   prefixq(dst);
  4712   emit_arith_operand(0x81, rbx, dst, imm32);
  4715 void Assembler::sbbq(Register dst, int32_t imm32) {
  4716   (void) prefixq_and_encode(dst->encoding());
  4717   emit_arith(0x81, 0xD8, dst, imm32);
  4720 void Assembler::sbbq(Register dst, Address src) {
  4721   InstructionMark im(this);
  4722   prefixq(src, dst);
  4723   emit_byte(0x1B);
  4724   emit_operand(dst, src);
  4727 void Assembler::sbbq(Register dst, Register src) {
  4728   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4729   emit_arith(0x1B, 0xC0, dst, src);
  4732 void Assembler::shlq(Register dst, int imm8) {
  4733   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4734   int encode = prefixq_and_encode(dst->encoding());
  4735   if (imm8 == 1) {
  4736     emit_byte(0xD1);
  4737     emit_byte(0xE0 | encode);
  4738   } else {
  4739     emit_byte(0xC1);
  4740     emit_byte(0xE0 | encode);
  4741     emit_byte(imm8);
  4745 void Assembler::shlq(Register dst) {
  4746   int encode = prefixq_and_encode(dst->encoding());
  4747   emit_byte(0xD3);
  4748   emit_byte(0xE0 | encode);
  4751 void Assembler::shrq(Register dst, int imm8) {
  4752   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4753   int encode = prefixq_and_encode(dst->encoding());
  4754   emit_byte(0xC1);
  4755   emit_byte(0xE8 | encode);
  4756   emit_byte(imm8);
  4759 void Assembler::shrq(Register dst) {
  4760   int encode = prefixq_and_encode(dst->encoding());
  4761   emit_byte(0xD3);
  4762   emit_byte(0xE8 | encode);
  4765 void Assembler::subq(Address dst, int32_t imm32) {
  4766   InstructionMark im(this);
  4767   prefixq(dst);
  4768   emit_arith_operand(0x81, rbp, dst, imm32);
  4771 void Assembler::subq(Address dst, Register src) {
  4772   InstructionMark im(this);
  4773   prefixq(dst, src);
  4774   emit_byte(0x29);
  4775   emit_operand(src, dst);
  4778 void Assembler::subq(Register dst, int32_t imm32) {
  4779   (void) prefixq_and_encode(dst->encoding());
  4780   emit_arith(0x81, 0xE8, dst, imm32);
  4783 // Force generation of a 4 byte immediate value even if it fits into 8bit
  4784 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  4785   (void) prefixq_and_encode(dst->encoding());
  4786   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  4789 void Assembler::subq(Register dst, Address src) {
  4790   InstructionMark im(this);
  4791   prefixq(src, dst);
  4792   emit_byte(0x2B);
  4793   emit_operand(dst, src);
  4796 void Assembler::subq(Register dst, Register src) {
  4797   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4798   emit_arith(0x2B, 0xC0, dst, src);
  4801 void Assembler::testq(Register dst, int32_t imm32) {
  4802   // not using emit_arith because test
  4803   // doesn't support sign-extension of
  4804   // 8bit operands
  4805   int encode = dst->encoding();
  4806   if (encode == 0) {
  4807     prefix(REX_W);
  4808     emit_byte(0xA9);
  4809   } else {
  4810     encode = prefixq_and_encode(encode);
  4811     emit_byte(0xF7);
  4812     emit_byte(0xC0 | encode);
  4814   emit_long(imm32);
  4817 void Assembler::testq(Register dst, Register src) {
  4818   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4819   emit_arith(0x85, 0xC0, dst, src);
  4822 void Assembler::xaddq(Address dst, Register src) {
  4823   InstructionMark im(this);
  4824   prefixq(dst, src);
  4825   emit_byte(0x0F);
  4826   emit_byte(0xC1);
  4827   emit_operand(src, dst);
  4830 void Assembler::xchgq(Register dst, Address src) {
  4831   InstructionMark im(this);
  4832   prefixq(src, dst);
  4833   emit_byte(0x87);
  4834   emit_operand(dst, src);
  4837 void Assembler::xchgq(Register dst, Register src) {
  4838   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4839   emit_byte(0x87);
  4840   emit_byte(0xc0 | encode);
  4843 void Assembler::xorq(Register dst, Register src) {
  4844   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4845   emit_arith(0x33, 0xC0, dst, src);
  4848 void Assembler::xorq(Register dst, Address src) {
  4849   InstructionMark im(this);
  4850   prefixq(src, dst);
  4851   emit_byte(0x33);
  4852   emit_operand(dst, src);
  4855 #endif // !LP64
  4857 static Assembler::Condition reverse[] = {
  4858     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4859     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4860     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4861     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4862     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4863     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4864     Assembler::above          /* belowEqual    = 0x6 */ ,
  4865     Assembler::belowEqual     /* above         = 0x7 */ ,
  4866     Assembler::positive       /* negative      = 0x8 */ ,
  4867     Assembler::negative       /* positive      = 0x9 */ ,
  4868     Assembler::noParity       /* parity        = 0xa */ ,
  4869     Assembler::parity         /* noParity      = 0xb */ ,
  4870     Assembler::greaterEqual   /* less          = 0xc */ ,
  4871     Assembler::less           /* greaterEqual  = 0xd */ ,
  4872     Assembler::greater        /* lessEqual     = 0xe */ ,
  4873     Assembler::lessEqual      /* greater       = 0xf, */
  4875 };
  4878 // Implementation of MacroAssembler
  4880 // First all the versions that have distinct versions depending on 32/64 bit
  4881 // Unless the difference is trivial (1 line or so).
  4883 #ifndef _LP64
  4885 // 32bit versions
  4887 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4888   return Address(adr.target(), adr.rspec());
  4891 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4892   return Address::make_array(adr);
  4895 int MacroAssembler::biased_locking_enter(Register lock_reg,
  4896                                          Register obj_reg,
  4897                                          Register swap_reg,
  4898                                          Register tmp_reg,
  4899                                          bool swap_reg_contains_mark,
  4900                                          Label& done,
  4901                                          Label* slow_case,
  4902                                          BiasedLockingCounters* counters) {
  4903   assert(UseBiasedLocking, "why call this otherwise?");
  4904   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  4905   assert_different_registers(lock_reg, obj_reg, swap_reg);
  4907   if (PrintBiasedLockingStatistics && counters == NULL)
  4908     counters = BiasedLocking::counters();
  4910   bool need_tmp_reg = false;
  4911   if (tmp_reg == noreg) {
  4912     need_tmp_reg = true;
  4913     tmp_reg = lock_reg;
  4914   } else {
  4915     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4917   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4918   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4919   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  4920   Address saved_mark_addr(lock_reg, 0);
  4922   // Biased locking
  4923   // See whether the lock is currently biased toward our thread and
  4924   // whether the epoch is still valid
  4925   // Note that the runtime guarantees sufficient alignment of JavaThread
  4926   // pointers to allow age to be placed into low bits
  4927   // First check to see whether biasing is even enabled for this object
  4928   Label cas_label;
  4929   int null_check_offset = -1;
  4930   if (!swap_reg_contains_mark) {
  4931     null_check_offset = offset();
  4932     movl(swap_reg, mark_addr);
  4934   if (need_tmp_reg) {
  4935     push(tmp_reg);
  4937   movl(tmp_reg, swap_reg);
  4938   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4939   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  4940   if (need_tmp_reg) {
  4941     pop(tmp_reg);
  4943   jcc(Assembler::notEqual, cas_label);
  4944   // The bias pattern is present in the object's header. Need to check
  4945   // whether the bias owner and the epoch are both still current.
  4946   // Note that because there is no current thread register on x86 we
  4947   // need to store off the mark word we read out of the object to
  4948   // avoid reloading it and needing to recheck invariants below. This
  4949   // store is unfortunate but it makes the overall code shorter and
  4950   // simpler.
  4951   movl(saved_mark_addr, swap_reg);
  4952   if (need_tmp_reg) {
  4953     push(tmp_reg);
  4955   get_thread(tmp_reg);
  4956   xorl(swap_reg, tmp_reg);
  4957   if (swap_reg_contains_mark) {
  4958     null_check_offset = offset();
  4960   movl(tmp_reg, klass_addr);
  4961   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  4962   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  4963   if (need_tmp_reg) {
  4964     pop(tmp_reg);
  4966   if (counters != NULL) {
  4967     cond_inc32(Assembler::zero,
  4968                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  4970   jcc(Assembler::equal, done);
  4972   Label try_revoke_bias;
  4973   Label try_rebias;
  4975   // At this point we know that the header has the bias pattern and
  4976   // that we are not the bias owner in the current epoch. We need to
  4977   // figure out more details about the state of the header in order to
  4978   // know what operations can be legally performed on the object's
  4979   // header.
  4981   // If the low three bits in the xor result aren't clear, that means
  4982   // the prototype header is no longer biased and we have to revoke
  4983   // the bias on this object.
  4984   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  4985   jcc(Assembler::notZero, try_revoke_bias);
  4987   // Biasing is still enabled for this data type. See whether the
  4988   // epoch of the current bias is still valid, meaning that the epoch
  4989   // bits of the mark word are equal to the epoch bits of the
  4990   // prototype header. (Note that the prototype header's epoch bits
  4991   // only change at a safepoint.) If not, attempt to rebias the object
  4992   // toward the current thread. Note that we must be absolutely sure
  4993   // that the current epoch is invalid in order to do this because
  4994   // otherwise the manipulations it performs on the mark word are
  4995   // illegal.
  4996   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  4997   jcc(Assembler::notZero, try_rebias);
  4999   // The epoch of the current bias is still valid but we know nothing
  5000   // about the owner; it might be set or it might be clear. Try to
  5001   // acquire the bias of the object using an atomic operation. If this
  5002   // fails we will go in to the runtime to revoke the object's bias.
  5003   // Note that we first construct the presumed unbiased header so we
  5004   // don't accidentally blow away another thread's valid bias.
  5005   movl(swap_reg, saved_mark_addr);
  5006   andl(swap_reg,
  5007        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5008   if (need_tmp_reg) {
  5009     push(tmp_reg);
  5011   get_thread(tmp_reg);
  5012   orl(tmp_reg, swap_reg);
  5013   if (os::is_MP()) {
  5014     lock();
  5016   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5017   if (need_tmp_reg) {
  5018     pop(tmp_reg);
  5020   // If the biasing toward our thread failed, this means that
  5021   // another thread succeeded in biasing it toward itself and we
  5022   // need to revoke that bias. The revocation will occur in the
  5023   // interpreter runtime in the slow case.
  5024   if (counters != NULL) {
  5025     cond_inc32(Assembler::zero,
  5026                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  5028   if (slow_case != NULL) {
  5029     jcc(Assembler::notZero, *slow_case);
  5031   jmp(done);
  5033   bind(try_rebias);
  5034   // At this point we know the epoch has expired, meaning that the
  5035   // current "bias owner", if any, is actually invalid. Under these
  5036   // circumstances _only_, we are allowed to use the current header's
  5037   // value as the comparison value when doing the cas to acquire the
  5038   // bias in the current epoch. In other words, we allow transfer of
  5039   // the bias from one thread to another directly in this situation.
  5040   //
  5041   // FIXME: due to a lack of registers we currently blow away the age
  5042   // bits in this situation. Should attempt to preserve them.
  5043   if (need_tmp_reg) {
  5044     push(tmp_reg);
  5046   get_thread(tmp_reg);
  5047   movl(swap_reg, klass_addr);
  5048   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
  5049   movl(swap_reg, saved_mark_addr);
  5050   if (os::is_MP()) {
  5051     lock();
  5053   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5054   if (need_tmp_reg) {
  5055     pop(tmp_reg);
  5057   // If the biasing toward our thread failed, then another thread
  5058   // succeeded in biasing it toward itself and we need to revoke that
  5059   // bias. The revocation will occur in the runtime in the slow case.
  5060   if (counters != NULL) {
  5061     cond_inc32(Assembler::zero,
  5062                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  5064   if (slow_case != NULL) {
  5065     jcc(Assembler::notZero, *slow_case);
  5067   jmp(done);
  5069   bind(try_revoke_bias);
  5070   // The prototype mark in the klass doesn't have the bias bit set any
  5071   // more, indicating that objects of this data type are not supposed
  5072   // to be biased any more. We are going to try to reset the mark of
  5073   // this object to the prototype value and fall through to the
  5074   // CAS-based locking scheme. Note that if our CAS fails, it means
  5075   // that another thread raced us for the privilege of revoking the
  5076   // bias of this particular object, so it's okay to continue in the
  5077   // normal locking code.
  5078   //
  5079   // FIXME: due to a lack of registers we currently blow away the age
  5080   // bits in this situation. Should attempt to preserve them.
  5081   movl(swap_reg, saved_mark_addr);
  5082   if (need_tmp_reg) {
  5083     push(tmp_reg);
  5085   movl(tmp_reg, klass_addr);
  5086   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5087   if (os::is_MP()) {
  5088     lock();
  5090   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5091   if (need_tmp_reg) {
  5092     pop(tmp_reg);
  5094   // Fall through to the normal CAS-based lock, because no matter what
  5095   // the result of the above CAS, some thread must have succeeded in
  5096   // removing the bias bit from the object's header.
  5097   if (counters != NULL) {
  5098     cond_inc32(Assembler::zero,
  5099                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  5102   bind(cas_label);
  5104   return null_check_offset;
  5106 void MacroAssembler::call_VM_leaf_base(address entry_point,
  5107                                        int number_of_arguments) {
  5108   call(RuntimeAddress(entry_point));
  5109   increment(rsp, number_of_arguments * wordSize);
  5112 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  5113   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5116 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  5117   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5120 void MacroAssembler::extend_sign(Register hi, Register lo) {
  5121   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  5122   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  5123     cdql();
  5124   } else {
  5125     movl(hi, lo);
  5126     sarl(hi, 31);
  5130 void MacroAssembler::jC2(Register tmp, Label& L) {
  5131   // set parity bit if FPU flag C2 is set (via rax)
  5132   save_rax(tmp);
  5133   fwait(); fnstsw_ax();
  5134   sahf();
  5135   restore_rax(tmp);
  5136   // branch
  5137   jcc(Assembler::parity, L);
  5140 void MacroAssembler::jnC2(Register tmp, Label& L) {
  5141   // set parity bit if FPU flag C2 is set (via rax)
  5142   save_rax(tmp);
  5143   fwait(); fnstsw_ax();
  5144   sahf();
  5145   restore_rax(tmp);
  5146   // branch
  5147   jcc(Assembler::noParity, L);
  5150 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5151 // to be installed in the Address class
  5152 void MacroAssembler::jump(ArrayAddress entry) {
  5153   jmp(as_Address(entry));
  5156 // Note: y_lo will be destroyed
  5157 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5158   // Long compare for Java (semantics as described in JVM spec.)
  5159   Label high, low, done;
  5161   cmpl(x_hi, y_hi);
  5162   jcc(Assembler::less, low);
  5163   jcc(Assembler::greater, high);
  5164   // x_hi is the return register
  5165   xorl(x_hi, x_hi);
  5166   cmpl(x_lo, y_lo);
  5167   jcc(Assembler::below, low);
  5168   jcc(Assembler::equal, done);
  5170   bind(high);
  5171   xorl(x_hi, x_hi);
  5172   increment(x_hi);
  5173   jmp(done);
  5175   bind(low);
  5176   xorl(x_hi, x_hi);
  5177   decrementl(x_hi);
  5179   bind(done);
  5182 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5183     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  5186 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5187   // leal(dst, as_Address(adr));
  5188   // see note in movl as to why we must use a move
  5189   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  5192 void MacroAssembler::leave() {
  5193   mov(rsp, rbp);
  5194   pop(rbp);
  5197 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  5198   // Multiplication of two Java long values stored on the stack
  5199   // as illustrated below. Result is in rdx:rax.
  5200   //
  5201   // rsp ---> [  ??  ] \               \
  5202   //            ....    | y_rsp_offset  |
  5203   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  5204   //          [ y_hi ]                  | (in bytes)
  5205   //            ....                    |
  5206   //          [ x_lo ]                 /
  5207   //          [ x_hi ]
  5208   //            ....
  5209   //
  5210   // Basic idea: lo(result) = lo(x_lo * y_lo)
  5211   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  5212   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  5213   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  5214   Label quick;
  5215   // load x_hi, y_hi and check if quick
  5216   // multiplication is possible
  5217   movl(rbx, x_hi);
  5218   movl(rcx, y_hi);
  5219   movl(rax, rbx);
  5220   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  5221   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  5222   // do full multiplication
  5223   // 1st step
  5224   mull(y_lo);                                    // x_hi * y_lo
  5225   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  5226   // 2nd step
  5227   movl(rax, x_lo);
  5228   mull(rcx);                                     // x_lo * y_hi
  5229   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  5230   // 3rd step
  5231   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  5232   movl(rax, x_lo);
  5233   mull(y_lo);                                    // x_lo * y_lo
  5234   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  5237 void MacroAssembler::lneg(Register hi, Register lo) {
  5238   negl(lo);
  5239   adcl(hi, 0);
  5240   negl(hi);
  5243 void MacroAssembler::lshl(Register hi, Register lo) {
  5244   // Java shift left long support (semantics as described in JVM spec., p.305)
  5245   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  5246   // shift value is in rcx !
  5247   assert(hi != rcx, "must not use rcx");
  5248   assert(lo != rcx, "must not use rcx");
  5249   const Register s = rcx;                        // shift count
  5250   const int      n = BitsPerWord;
  5251   Label L;
  5252   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5253   cmpl(s, n);                                    // if (s < n)
  5254   jcc(Assembler::less, L);                       // else (s >= n)
  5255   movl(hi, lo);                                  // x := x << n
  5256   xorl(lo, lo);
  5257   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5258   bind(L);                                       // s (mod n) < n
  5259   shldl(hi, lo);                                 // x := x << s
  5260   shll(lo);
  5264 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  5265   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  5266   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  5267   assert(hi != rcx, "must not use rcx");
  5268   assert(lo != rcx, "must not use rcx");
  5269   const Register s = rcx;                        // shift count
  5270   const int      n = BitsPerWord;
  5271   Label L;
  5272   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5273   cmpl(s, n);                                    // if (s < n)
  5274   jcc(Assembler::less, L);                       // else (s >= n)
  5275   movl(lo, hi);                                  // x := x >> n
  5276   if (sign_extension) sarl(hi, 31);
  5277   else                xorl(hi, hi);
  5278   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5279   bind(L);                                       // s (mod n) < n
  5280   shrdl(lo, hi);                                 // x := x >> s
  5281   if (sign_extension) sarl(hi);
  5282   else                shrl(hi);
  5285 void MacroAssembler::movoop(Register dst, jobject obj) {
  5286   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5289 void MacroAssembler::movoop(Address dst, jobject obj) {
  5290   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5293 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5294   if (src.is_lval()) {
  5295     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  5296   } else {
  5297     movl(dst, as_Address(src));
  5301 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5302   movl(as_Address(dst), src);
  5305 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5306   movl(dst, as_Address(src));
  5309 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5310 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5311   movl(dst, src);
  5315 void MacroAssembler::pop_callee_saved_registers() {
  5316   pop(rcx);
  5317   pop(rdx);
  5318   pop(rdi);
  5319   pop(rsi);
  5322 void MacroAssembler::pop_fTOS() {
  5323   fld_d(Address(rsp, 0));
  5324   addl(rsp, 2 * wordSize);
  5327 void MacroAssembler::push_callee_saved_registers() {
  5328   push(rsi);
  5329   push(rdi);
  5330   push(rdx);
  5331   push(rcx);
  5334 void MacroAssembler::push_fTOS() {
  5335   subl(rsp, 2 * wordSize);
  5336   fstp_d(Address(rsp, 0));
  5340 void MacroAssembler::pushoop(jobject obj) {
  5341   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  5345 void MacroAssembler::pushptr(AddressLiteral src) {
  5346   if (src.is_lval()) {
  5347     push_literal32((int32_t)src.target(), src.rspec());
  5348   } else {
  5349     pushl(as_Address(src));
  5353 void MacroAssembler::set_word_if_not_zero(Register dst) {
  5354   xorl(dst, dst);
  5355   set_byte_if_not_zero(dst);
  5358 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5359   masm->push(arg);
  5362 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5363   masm->push(arg);
  5366 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5367   masm->push(arg);
  5370 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5371   masm->push(arg);
  5374 #ifndef PRODUCT
  5375 extern "C" void findpc(intptr_t x);
  5376 #endif
  5378 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5379   // In order to get locks to work, we need to fake a in_VM state
  5380   JavaThread* thread = JavaThread::current();
  5381   JavaThreadState saved_state = thread->thread_state();
  5382   thread->set_thread_state(_thread_in_vm);
  5383   if (ShowMessageBoxOnError) {
  5384     JavaThread* thread = JavaThread::current();
  5385     JavaThreadState saved_state = thread->thread_state();
  5386     thread->set_thread_state(_thread_in_vm);
  5387     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5388       ttyLocker ttyl;
  5389       BytecodeCounter::print();
  5391     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5392     // This is the value of eip which points to where verify_oop will return.
  5393     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5394       ttyLocker ttyl;
  5395       tty->print_cr("eip = 0x%08x", eip);
  5396 #ifndef PRODUCT
  5397       if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5398         tty->cr();
  5399         findpc(eip);
  5400         tty->cr();
  5402 #endif
  5403       tty->print_cr("rax = 0x%08x", rax);
  5404       tty->print_cr("rbx = 0x%08x", rbx);
  5405       tty->print_cr("rcx = 0x%08x", rcx);
  5406       tty->print_cr("rdx = 0x%08x", rdx);
  5407       tty->print_cr("rdi = 0x%08x", rdi);
  5408       tty->print_cr("rsi = 0x%08x", rsi);
  5409       tty->print_cr("rbp = 0x%08x", rbp);
  5410       tty->print_cr("rsp = 0x%08x", rsp);
  5411       BREAKPOINT;
  5412       assert(false, "start up GDB");
  5414   } else {
  5415     ttyLocker ttyl;
  5416     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5417     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5419   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5422 void MacroAssembler::stop(const char* msg) {
  5423   ExternalAddress message((address)msg);
  5424   // push address of message
  5425   pushptr(message.addr());
  5426   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5427   pusha();                                           // push registers
  5428   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5429   hlt();
  5432 void MacroAssembler::warn(const char* msg) {
  5433   push_CPU_state();
  5435   ExternalAddress message((address) msg);
  5436   // push address of message
  5437   pushptr(message.addr());
  5439   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5440   addl(rsp, wordSize);       // discard argument
  5441   pop_CPU_state();
  5444 #else // _LP64
  5446 // 64 bit versions
  5448 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5449   // amd64 always does this as a pc-rel
  5450   // we can be absolute or disp based on the instruction type
  5451   // jmp/call are displacements others are absolute
  5452   assert(!adr.is_lval(), "must be rval");
  5453   assert(reachable(adr), "must be");
  5454   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5458 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5459   AddressLiteral base = adr.base();
  5460   lea(rscratch1, base);
  5461   Address index = adr.index();
  5462   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5463   Address array(rscratch1, index._index, index._scale, index._disp);
  5464   return array;
  5467 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5468                                          Register obj_reg,
  5469                                          Register swap_reg,
  5470                                          Register tmp_reg,
  5471                                          bool swap_reg_contains_mark,
  5472                                          Label& done,
  5473                                          Label* slow_case,
  5474                                          BiasedLockingCounters* counters) {
  5475   assert(UseBiasedLocking, "why call this otherwise?");
  5476   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5477   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5478   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5479   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5480   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5481   Address saved_mark_addr(lock_reg, 0);
  5483   if (PrintBiasedLockingStatistics && counters == NULL)
  5484     counters = BiasedLocking::counters();
  5486   // Biased locking
  5487   // See whether the lock is currently biased toward our thread and
  5488   // whether the epoch is still valid
  5489   // Note that the runtime guarantees sufficient alignment of JavaThread
  5490   // pointers to allow age to be placed into low bits
  5491   // First check to see whether biasing is even enabled for this object
  5492   Label cas_label;
  5493   int null_check_offset = -1;
  5494   if (!swap_reg_contains_mark) {
  5495     null_check_offset = offset();
  5496     movq(swap_reg, mark_addr);
  5498   movq(tmp_reg, swap_reg);
  5499   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5500   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5501   jcc(Assembler::notEqual, cas_label);
  5502   // The bias pattern is present in the object's header. Need to check
  5503   // whether the bias owner and the epoch are both still current.
  5504   load_prototype_header(tmp_reg, obj_reg);
  5505   orq(tmp_reg, r15_thread);
  5506   xorq(tmp_reg, swap_reg);
  5507   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5508   if (counters != NULL) {
  5509     cond_inc32(Assembler::zero,
  5510                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5512   jcc(Assembler::equal, done);
  5514   Label try_revoke_bias;
  5515   Label try_rebias;
  5517   // At this point we know that the header has the bias pattern and
  5518   // that we are not the bias owner in the current epoch. We need to
  5519   // figure out more details about the state of the header in order to
  5520   // know what operations can be legally performed on the object's
  5521   // header.
  5523   // If the low three bits in the xor result aren't clear, that means
  5524   // the prototype header is no longer biased and we have to revoke
  5525   // the bias on this object.
  5526   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5527   jcc(Assembler::notZero, try_revoke_bias);
  5529   // Biasing is still enabled for this data type. See whether the
  5530   // epoch of the current bias is still valid, meaning that the epoch
  5531   // bits of the mark word are equal to the epoch bits of the
  5532   // prototype header. (Note that the prototype header's epoch bits
  5533   // only change at a safepoint.) If not, attempt to rebias the object
  5534   // toward the current thread. Note that we must be absolutely sure
  5535   // that the current epoch is invalid in order to do this because
  5536   // otherwise the manipulations it performs on the mark word are
  5537   // illegal.
  5538   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5539   jcc(Assembler::notZero, try_rebias);
  5541   // The epoch of the current bias is still valid but we know nothing
  5542   // about the owner; it might be set or it might be clear. Try to
  5543   // acquire the bias of the object using an atomic operation. If this
  5544   // fails we will go in to the runtime to revoke the object's bias.
  5545   // Note that we first construct the presumed unbiased header so we
  5546   // don't accidentally blow away another thread's valid bias.
  5547   andq(swap_reg,
  5548        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5549   movq(tmp_reg, swap_reg);
  5550   orq(tmp_reg, r15_thread);
  5551   if (os::is_MP()) {
  5552     lock();
  5554   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5555   // If the biasing toward our thread failed, this means that
  5556   // another thread succeeded in biasing it toward itself and we
  5557   // need to revoke that bias. The revocation will occur in the
  5558   // interpreter runtime in the slow case.
  5559   if (counters != NULL) {
  5560     cond_inc32(Assembler::zero,
  5561                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5563   if (slow_case != NULL) {
  5564     jcc(Assembler::notZero, *slow_case);
  5566   jmp(done);
  5568   bind(try_rebias);
  5569   // At this point we know the epoch has expired, meaning that the
  5570   // current "bias owner", if any, is actually invalid. Under these
  5571   // circumstances _only_, we are allowed to use the current header's
  5572   // value as the comparison value when doing the cas to acquire the
  5573   // bias in the current epoch. In other words, we allow transfer of
  5574   // the bias from one thread to another directly in this situation.
  5575   //
  5576   // FIXME: due to a lack of registers we currently blow away the age
  5577   // bits in this situation. Should attempt to preserve them.
  5578   load_prototype_header(tmp_reg, obj_reg);
  5579   orq(tmp_reg, r15_thread);
  5580   if (os::is_MP()) {
  5581     lock();
  5583   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5584   // If the biasing toward our thread failed, then another thread
  5585   // succeeded in biasing it toward itself and we need to revoke that
  5586   // bias. The revocation will occur in the runtime in the slow case.
  5587   if (counters != NULL) {
  5588     cond_inc32(Assembler::zero,
  5589                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5591   if (slow_case != NULL) {
  5592     jcc(Assembler::notZero, *slow_case);
  5594   jmp(done);
  5596   bind(try_revoke_bias);
  5597   // The prototype mark in the klass doesn't have the bias bit set any
  5598   // more, indicating that objects of this data type are not supposed
  5599   // to be biased any more. We are going to try to reset the mark of
  5600   // this object to the prototype value and fall through to the
  5601   // CAS-based locking scheme. Note that if our CAS fails, it means
  5602   // that another thread raced us for the privilege of revoking the
  5603   // bias of this particular object, so it's okay to continue in the
  5604   // normal locking code.
  5605   //
  5606   // FIXME: due to a lack of registers we currently blow away the age
  5607   // bits in this situation. Should attempt to preserve them.
  5608   load_prototype_header(tmp_reg, obj_reg);
  5609   if (os::is_MP()) {
  5610     lock();
  5612   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5613   // Fall through to the normal CAS-based lock, because no matter what
  5614   // the result of the above CAS, some thread must have succeeded in
  5615   // removing the bias bit from the object's header.
  5616   if (counters != NULL) {
  5617     cond_inc32(Assembler::zero,
  5618                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5621   bind(cas_label);
  5623   return null_check_offset;
  5626 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  5627   Label L, E;
  5629 #ifdef _WIN64
  5630   // Windows always allocates space for it's register args
  5631   assert(num_args <= 4, "only register arguments supported");
  5632   subq(rsp,  frame::arg_reg_save_area_bytes);
  5633 #endif
  5635   // Align stack if necessary
  5636   testl(rsp, 15);
  5637   jcc(Assembler::zero, L);
  5639   subq(rsp, 8);
  5641     call(RuntimeAddress(entry_point));
  5643   addq(rsp, 8);
  5644   jmp(E);
  5646   bind(L);
  5648     call(RuntimeAddress(entry_point));
  5651   bind(E);
  5653 #ifdef _WIN64
  5654   // restore stack pointer
  5655   addq(rsp, frame::arg_reg_save_area_bytes);
  5656 #endif
  5660 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5661   assert(!src2.is_lval(), "should use cmpptr");
  5663   if (reachable(src2)) {
  5664     cmpq(src1, as_Address(src2));
  5665   } else {
  5666     lea(rscratch1, src2);
  5667     Assembler::cmpq(src1, Address(rscratch1, 0));
  5671 int MacroAssembler::corrected_idivq(Register reg) {
  5672   // Full implementation of Java ldiv and lrem; checks for special
  5673   // case as described in JVM spec., p.243 & p.271.  The function
  5674   // returns the (pc) offset of the idivl instruction - may be needed
  5675   // for implicit exceptions.
  5676   //
  5677   //         normal case                           special case
  5678   //
  5679   // input : rax: dividend                         min_long
  5680   //         reg: divisor   (may not be eax/edx)   -1
  5681   //
  5682   // output: rax: quotient  (= rax idiv reg)       min_long
  5683   //         rdx: remainder (= rax irem reg)       0
  5684   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5685   static const int64_t min_long = 0x8000000000000000;
  5686   Label normal_case, special_case;
  5688   // check for special case
  5689   cmp64(rax, ExternalAddress((address) &min_long));
  5690   jcc(Assembler::notEqual, normal_case);
  5691   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5692                   // remainder = 0)
  5693   cmpq(reg, -1);
  5694   jcc(Assembler::equal, special_case);
  5696   // handle normal case
  5697   bind(normal_case);
  5698   cdqq();
  5699   int idivq_offset = offset();
  5700   idivq(reg);
  5702   // normal and special case exit
  5703   bind(special_case);
  5705   return idivq_offset;
  5708 void MacroAssembler::decrementq(Register reg, int value) {
  5709   if (value == min_jint) { subq(reg, value); return; }
  5710   if (value <  0) { incrementq(reg, -value); return; }
  5711   if (value == 0) {                        ; return; }
  5712   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5713   /* else */      { subq(reg, value)       ; return; }
  5716 void MacroAssembler::decrementq(Address dst, int value) {
  5717   if (value == min_jint) { subq(dst, value); return; }
  5718   if (value <  0) { incrementq(dst, -value); return; }
  5719   if (value == 0) {                        ; return; }
  5720   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5721   /* else */      { subq(dst, value)       ; return; }
  5724 void MacroAssembler::incrementq(Register reg, int value) {
  5725   if (value == min_jint) { addq(reg, value); return; }
  5726   if (value <  0) { decrementq(reg, -value); return; }
  5727   if (value == 0) {                        ; return; }
  5728   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5729   /* else */      { addq(reg, value)       ; return; }
  5732 void MacroAssembler::incrementq(Address dst, int value) {
  5733   if (value == min_jint) { addq(dst, value); return; }
  5734   if (value <  0) { decrementq(dst, -value); return; }
  5735   if (value == 0) {                        ; return; }
  5736   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5737   /* else */      { addq(dst, value)       ; return; }
  5740 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5741 // to be installed in the Address class
  5742 void MacroAssembler::jump(ArrayAddress entry) {
  5743   lea(rscratch1, entry.base());
  5744   Address dispatch = entry.index();
  5745   assert(dispatch._base == noreg, "must be");
  5746   dispatch._base = rscratch1;
  5747   jmp(dispatch);
  5750 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5751   ShouldNotReachHere(); // 64bit doesn't use two regs
  5752   cmpq(x_lo, y_lo);
  5755 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5756     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5759 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5760   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5761   movptr(dst, rscratch1);
  5764 void MacroAssembler::leave() {
  5765   // %%% is this really better? Why not on 32bit too?
  5766   emit_byte(0xC9); // LEAVE
  5769 void MacroAssembler::lneg(Register hi, Register lo) {
  5770   ShouldNotReachHere(); // 64bit doesn't use two regs
  5771   negq(lo);
  5774 void MacroAssembler::movoop(Register dst, jobject obj) {
  5775   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5778 void MacroAssembler::movoop(Address dst, jobject obj) {
  5779   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5780   movq(dst, rscratch1);
  5783 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5784   if (src.is_lval()) {
  5785     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5786   } else {
  5787     if (reachable(src)) {
  5788       movq(dst, as_Address(src));
  5789     } else {
  5790       lea(rscratch1, src);
  5791       movq(dst, Address(rscratch1,0));
  5796 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5797   movq(as_Address(dst), src);
  5800 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5801   movq(dst, as_Address(src));
  5804 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5805 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5806   mov64(rscratch1, src);
  5807   movq(dst, rscratch1);
  5810 // These are mostly for initializing NULL
  5811 void MacroAssembler::movptr(Address dst, int32_t src) {
  5812   movslq(dst, src);
  5815 void MacroAssembler::movptr(Register dst, int32_t src) {
  5816   mov64(dst, (intptr_t)src);
  5819 void MacroAssembler::pushoop(jobject obj) {
  5820   movoop(rscratch1, obj);
  5821   push(rscratch1);
  5824 void MacroAssembler::pushptr(AddressLiteral src) {
  5825   lea(rscratch1, src);
  5826   if (src.is_lval()) {
  5827     push(rscratch1);
  5828   } else {
  5829     pushq(Address(rscratch1, 0));
  5833 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5834                                            bool clear_pc) {
  5835   // we must set sp to zero to clear frame
  5836   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  5837   // must clear fp, so that compiled frames are not confused; it is
  5838   // possible that we need it only for debugging
  5839   if (clear_fp) {
  5840     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  5843   if (clear_pc) {
  5844     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  5848 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  5849                                          Register last_java_fp,
  5850                                          address  last_java_pc) {
  5851   // determine last_java_sp register
  5852   if (!last_java_sp->is_valid()) {
  5853     last_java_sp = rsp;
  5856   // last_java_fp is optional
  5857   if (last_java_fp->is_valid()) {
  5858     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  5859            last_java_fp);
  5862   // last_java_pc is optional
  5863   if (last_java_pc != NULL) {
  5864     Address java_pc(r15_thread,
  5865                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  5866     lea(rscratch1, InternalAddress(last_java_pc));
  5867     movptr(java_pc, rscratch1);
  5870   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  5873 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5874   if (c_rarg0 != arg ) {
  5875     masm->mov(c_rarg0, arg);
  5879 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5880   if (c_rarg1 != arg ) {
  5881     masm->mov(c_rarg1, arg);
  5885 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5886   if (c_rarg2 != arg ) {
  5887     masm->mov(c_rarg2, arg);
  5891 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5892   if (c_rarg3 != arg ) {
  5893     masm->mov(c_rarg3, arg);
  5897 void MacroAssembler::stop(const char* msg) {
  5898   address rip = pc();
  5899   pusha(); // get regs on stack
  5900   lea(c_rarg0, ExternalAddress((address) msg));
  5901   lea(c_rarg1, InternalAddress(rip));
  5902   movq(c_rarg2, rsp); // pass pointer to regs array
  5903   andq(rsp, -16); // align stack as required by ABI
  5904   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  5905   hlt();
  5908 void MacroAssembler::warn(const char* msg) {
  5909   push(rsp);
  5910   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  5912   push_CPU_state();   // keeps alignment at 16 bytes
  5913   lea(c_rarg0, ExternalAddress((address) msg));
  5914   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  5915   pop_CPU_state();
  5916   pop(rsp);
  5919 #ifndef PRODUCT
  5920 extern "C" void findpc(intptr_t x);
  5921 #endif
  5923 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  5924   // In order to get locks to work, we need to fake a in_VM state
  5925   if (ShowMessageBoxOnError ) {
  5926     JavaThread* thread = JavaThread::current();
  5927     JavaThreadState saved_state = thread->thread_state();
  5928     thread->set_thread_state(_thread_in_vm);
  5929 #ifndef PRODUCT
  5930     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5931       ttyLocker ttyl;
  5932       BytecodeCounter::print();
  5934 #endif
  5935     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5936     // XXX correct this offset for amd64
  5937     // This is the value of eip which points to where verify_oop will return.
  5938     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5939       ttyLocker ttyl;
  5940       tty->print_cr("rip = 0x%016lx", pc);
  5941 #ifndef PRODUCT
  5942       tty->cr();
  5943       findpc(pc);
  5944       tty->cr();
  5945 #endif
  5946       tty->print_cr("rax = 0x%016lx", regs[15]);
  5947       tty->print_cr("rbx = 0x%016lx", regs[12]);
  5948       tty->print_cr("rcx = 0x%016lx", regs[14]);
  5949       tty->print_cr("rdx = 0x%016lx", regs[13]);
  5950       tty->print_cr("rdi = 0x%016lx", regs[8]);
  5951       tty->print_cr("rsi = 0x%016lx", regs[9]);
  5952       tty->print_cr("rbp = 0x%016lx", regs[10]);
  5953       tty->print_cr("rsp = 0x%016lx", regs[11]);
  5954       tty->print_cr("r8  = 0x%016lx", regs[7]);
  5955       tty->print_cr("r9  = 0x%016lx", regs[6]);
  5956       tty->print_cr("r10 = 0x%016lx", regs[5]);
  5957       tty->print_cr("r11 = 0x%016lx", regs[4]);
  5958       tty->print_cr("r12 = 0x%016lx", regs[3]);
  5959       tty->print_cr("r13 = 0x%016lx", regs[2]);
  5960       tty->print_cr("r14 = 0x%016lx", regs[1]);
  5961       tty->print_cr("r15 = 0x%016lx", regs[0]);
  5962       BREAKPOINT;
  5964     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5965   } else {
  5966     ttyLocker ttyl;
  5967     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  5968                     msg);
  5969     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5973 #endif // _LP64
  5975 // Now versions that are common to 32/64 bit
  5977 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  5978   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  5981 void MacroAssembler::addptr(Register dst, Register src) {
  5982   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5985 void MacroAssembler::addptr(Address dst, Register src) {
  5986   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5989 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  5990   if (reachable(src)) {
  5991     Assembler::addsd(dst, as_Address(src));
  5992   } else {
  5993     lea(rscratch1, src);
  5994     Assembler::addsd(dst, Address(rscratch1, 0));
  5998 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  5999   if (reachable(src)) {
  6000     addss(dst, as_Address(src));
  6001   } else {
  6002     lea(rscratch1, src);
  6003     addss(dst, Address(rscratch1, 0));
  6007 void MacroAssembler::align(int modulus) {
  6008   if (offset() % modulus != 0) {
  6009     nop(modulus - (offset() % modulus));
  6013 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  6014   // Used in sign-masking with aligned address.
  6015   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6016   if (reachable(src)) {
  6017     Assembler::andpd(dst, as_Address(src));
  6018   } else {
  6019     lea(rscratch1, src);
  6020     Assembler::andpd(dst, Address(rscratch1, 0));
  6024 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  6025   // Used in sign-masking with aligned address.
  6026   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6027   if (reachable(src)) {
  6028     Assembler::andps(dst, as_Address(src));
  6029   } else {
  6030     lea(rscratch1, src);
  6031     Assembler::andps(dst, Address(rscratch1, 0));
  6035 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  6036   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  6039 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  6040   pushf();
  6041   if (os::is_MP())
  6042     lock();
  6043   incrementl(counter_addr);
  6044   popf();
  6047 // Writes to stack successive pages until offset reached to check for
  6048 // stack overflow + shadow pages.  This clobbers tmp.
  6049 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  6050   movptr(tmp, rsp);
  6051   // Bang stack for total size given plus shadow page size.
  6052   // Bang one page at a time because large size can bang beyond yellow and
  6053   // red zones.
  6054   Label loop;
  6055   bind(loop);
  6056   movl(Address(tmp, (-os::vm_page_size())), size );
  6057   subptr(tmp, os::vm_page_size());
  6058   subl(size, os::vm_page_size());
  6059   jcc(Assembler::greater, loop);
  6061   // Bang down shadow pages too.
  6062   // The -1 because we already subtracted 1 page.
  6063   for (int i = 0; i< StackShadowPages-1; i++) {
  6064     // this could be any sized move but this is can be a debugging crumb
  6065     // so the bigger the better.
  6066     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  6070 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  6071   assert(UseBiasedLocking, "why call this otherwise?");
  6073   // Check for biased locking unlock case, which is a no-op
  6074   // Note: we do not have to check the thread ID for two reasons.
  6075   // First, the interpreter checks for IllegalMonitorStateException at
  6076   // a higher level. Second, if the bias was revoked while we held the
  6077   // lock, the object could not be rebiased toward another thread, so
  6078   // the bias bit would be clear.
  6079   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  6080   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  6081   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  6082   jcc(Assembler::equal, done);
  6085 void MacroAssembler::c2bool(Register x) {
  6086   // implements x == 0 ? 0 : 1
  6087   // note: must only look at least-significant byte of x
  6088   //       since C-style booleans are stored in one byte
  6089   //       only! (was bug)
  6090   andl(x, 0xFF);
  6091   setb(Assembler::notZero, x);
  6094 // Wouldn't need if AddressLiteral version had new name
  6095 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  6096   Assembler::call(L, rtype);
  6099 void MacroAssembler::call(Register entry) {
  6100   Assembler::call(entry);
  6103 void MacroAssembler::call(AddressLiteral entry) {
  6104   if (reachable(entry)) {
  6105     Assembler::call_literal(entry.target(), entry.rspec());
  6106   } else {
  6107     lea(rscratch1, entry);
  6108     Assembler::call(rscratch1);
  6112 // Implementation of call_VM versions
  6114 void MacroAssembler::call_VM(Register oop_result,
  6115                              address entry_point,
  6116                              bool check_exceptions) {
  6117   Label C, E;
  6118   call(C, relocInfo::none);
  6119   jmp(E);
  6121   bind(C);
  6122   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  6123   ret(0);
  6125   bind(E);
  6128 void MacroAssembler::call_VM(Register oop_result,
  6129                              address entry_point,
  6130                              Register arg_1,
  6131                              bool check_exceptions) {
  6132   Label C, E;
  6133   call(C, relocInfo::none);
  6134   jmp(E);
  6136   bind(C);
  6137   pass_arg1(this, arg_1);
  6138   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  6139   ret(0);
  6141   bind(E);
  6144 void MacroAssembler::call_VM(Register oop_result,
  6145                              address entry_point,
  6146                              Register arg_1,
  6147                              Register arg_2,
  6148                              bool check_exceptions) {
  6149   Label C, E;
  6150   call(C, relocInfo::none);
  6151   jmp(E);
  6153   bind(C);
  6155   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6157   pass_arg2(this, arg_2);
  6158   pass_arg1(this, arg_1);
  6159   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  6160   ret(0);
  6162   bind(E);
  6165 void MacroAssembler::call_VM(Register oop_result,
  6166                              address entry_point,
  6167                              Register arg_1,
  6168                              Register arg_2,
  6169                              Register arg_3,
  6170                              bool check_exceptions) {
  6171   Label C, E;
  6172   call(C, relocInfo::none);
  6173   jmp(E);
  6175   bind(C);
  6177   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6178   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6179   pass_arg3(this, arg_3);
  6181   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6182   pass_arg2(this, arg_2);
  6184   pass_arg1(this, arg_1);
  6185   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  6186   ret(0);
  6188   bind(E);
  6191 void MacroAssembler::call_VM(Register oop_result,
  6192                              Register last_java_sp,
  6193                              address entry_point,
  6194                              int number_of_arguments,
  6195                              bool check_exceptions) {
  6196   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6197   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6200 void MacroAssembler::call_VM(Register oop_result,
  6201                              Register last_java_sp,
  6202                              address entry_point,
  6203                              Register arg_1,
  6204                              bool check_exceptions) {
  6205   pass_arg1(this, arg_1);
  6206   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6209 void MacroAssembler::call_VM(Register oop_result,
  6210                              Register last_java_sp,
  6211                              address entry_point,
  6212                              Register arg_1,
  6213                              Register arg_2,
  6214                              bool check_exceptions) {
  6216   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6217   pass_arg2(this, arg_2);
  6218   pass_arg1(this, arg_1);
  6219   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6222 void MacroAssembler::call_VM(Register oop_result,
  6223                              Register last_java_sp,
  6224                              address entry_point,
  6225                              Register arg_1,
  6226                              Register arg_2,
  6227                              Register arg_3,
  6228                              bool check_exceptions) {
  6229   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6230   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6231   pass_arg3(this, arg_3);
  6232   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6233   pass_arg2(this, arg_2);
  6234   pass_arg1(this, arg_1);
  6235   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6238 void MacroAssembler::super_call_VM(Register oop_result,
  6239                                    Register last_java_sp,
  6240                                    address entry_point,
  6241                                    int number_of_arguments,
  6242                                    bool check_exceptions) {
  6243   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6244   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6247 void MacroAssembler::super_call_VM(Register oop_result,
  6248                                    Register last_java_sp,
  6249                                    address entry_point,
  6250                                    Register arg_1,
  6251                                    bool check_exceptions) {
  6252   pass_arg1(this, arg_1);
  6253   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6256 void MacroAssembler::super_call_VM(Register oop_result,
  6257                                    Register last_java_sp,
  6258                                    address entry_point,
  6259                                    Register arg_1,
  6260                                    Register arg_2,
  6261                                    bool check_exceptions) {
  6263   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6264   pass_arg2(this, arg_2);
  6265   pass_arg1(this, arg_1);
  6266   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6269 void MacroAssembler::super_call_VM(Register oop_result,
  6270                                    Register last_java_sp,
  6271                                    address entry_point,
  6272                                    Register arg_1,
  6273                                    Register arg_2,
  6274                                    Register arg_3,
  6275                                    bool check_exceptions) {
  6276   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6277   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6278   pass_arg3(this, arg_3);
  6279   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6280   pass_arg2(this, arg_2);
  6281   pass_arg1(this, arg_1);
  6282   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6285 void MacroAssembler::call_VM_base(Register oop_result,
  6286                                   Register java_thread,
  6287                                   Register last_java_sp,
  6288                                   address  entry_point,
  6289                                   int      number_of_arguments,
  6290                                   bool     check_exceptions) {
  6291   // determine java_thread register
  6292   if (!java_thread->is_valid()) {
  6293 #ifdef _LP64
  6294     java_thread = r15_thread;
  6295 #else
  6296     java_thread = rdi;
  6297     get_thread(java_thread);
  6298 #endif // LP64
  6300   // determine last_java_sp register
  6301   if (!last_java_sp->is_valid()) {
  6302     last_java_sp = rsp;
  6304   // debugging support
  6305   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  6306   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  6307 #ifdef ASSERT
  6308   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  6309   // r12 is the heapbase.
  6310   LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base");)
  6311 #endif // ASSERT
  6313   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  6314   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  6316   // push java thread (becomes first argument of C function)
  6318   NOT_LP64(push(java_thread); number_of_arguments++);
  6319   LP64_ONLY(mov(c_rarg0, r15_thread));
  6321   // set last Java frame before call
  6322   assert(last_java_sp != rbp, "can't use ebp/rbp");
  6324   // Only interpreter should have to set fp
  6325   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  6327   // do the call, remove parameters
  6328   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  6330   // restore the thread (cannot use the pushed argument since arguments
  6331   // may be overwritten by C code generated by an optimizing compiler);
  6332   // however can use the register value directly if it is callee saved.
  6333   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  6334     // rdi & rsi (also r15) are callee saved -> nothing to do
  6335 #ifdef ASSERT
  6336     guarantee(java_thread != rax, "change this code");
  6337     push(rax);
  6338     { Label L;
  6339       get_thread(rax);
  6340       cmpptr(java_thread, rax);
  6341       jcc(Assembler::equal, L);
  6342       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
  6343       bind(L);
  6345     pop(rax);
  6346 #endif
  6347   } else {
  6348     get_thread(java_thread);
  6350   // reset last Java frame
  6351   // Only interpreter should have to clear fp
  6352   reset_last_Java_frame(java_thread, true, false);
  6354 #ifndef CC_INTERP
  6355    // C++ interp handles this in the interpreter
  6356   check_and_handle_popframe(java_thread);
  6357   check_and_handle_earlyret(java_thread);
  6358 #endif /* CC_INTERP */
  6360   if (check_exceptions) {
  6361     // check for pending exceptions (java_thread is set upon return)
  6362     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  6363 #ifndef _LP64
  6364     jump_cc(Assembler::notEqual,
  6365             RuntimeAddress(StubRoutines::forward_exception_entry()));
  6366 #else
  6367     // This used to conditionally jump to forward_exception however it is
  6368     // possible if we relocate that the branch will not reach. So we must jump
  6369     // around so we can always reach
  6371     Label ok;
  6372     jcc(Assembler::equal, ok);
  6373     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  6374     bind(ok);
  6375 #endif // LP64
  6378   // get oop result if there is one and reset the value in the thread
  6379   if (oop_result->is_valid()) {
  6380     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  6381     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  6382     verify_oop(oop_result, "broken oop in call_VM_base");
  6386 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  6388   // Calculate the value for last_Java_sp
  6389   // somewhat subtle. call_VM does an intermediate call
  6390   // which places a return address on the stack just under the
  6391   // stack pointer as the user finsihed with it. This allows
  6392   // use to retrieve last_Java_pc from last_Java_sp[-1].
  6393   // On 32bit we then have to push additional args on the stack to accomplish
  6394   // the actual requested call. On 64bit call_VM only can use register args
  6395   // so the only extra space is the return address that call_VM created.
  6396   // This hopefully explains the calculations here.
  6398 #ifdef _LP64
  6399   // We've pushed one address, correct last_Java_sp
  6400   lea(rax, Address(rsp, wordSize));
  6401 #else
  6402   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  6403 #endif // LP64
  6405   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  6409 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  6410   call_VM_leaf_base(entry_point, number_of_arguments);
  6413 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  6414   pass_arg0(this, arg_0);
  6415   call_VM_leaf(entry_point, 1);
  6418 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6420   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6421   pass_arg1(this, arg_1);
  6422   pass_arg0(this, arg_0);
  6423   call_VM_leaf(entry_point, 2);
  6426 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6427   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6428   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6429   pass_arg2(this, arg_2);
  6430   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6431   pass_arg1(this, arg_1);
  6432   pass_arg0(this, arg_0);
  6433   call_VM_leaf(entry_point, 3);
  6436 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  6437   pass_arg0(this, arg_0);
  6438   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  6441 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6443   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6444   pass_arg1(this, arg_1);
  6445   pass_arg0(this, arg_0);
  6446   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  6449 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6450   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6451   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6452   pass_arg2(this, arg_2);
  6453   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6454   pass_arg1(this, arg_1);
  6455   pass_arg0(this, arg_0);
  6456   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  6459 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  6460   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  6461   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6462   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6463   pass_arg3(this, arg_3);
  6464   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6465   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6466   pass_arg2(this, arg_2);
  6467   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6468   pass_arg1(this, arg_1);
  6469   pass_arg0(this, arg_0);
  6470   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  6473 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  6476 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  6479 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  6480   if (reachable(src1)) {
  6481     cmpl(as_Address(src1), imm);
  6482   } else {
  6483     lea(rscratch1, src1);
  6484     cmpl(Address(rscratch1, 0), imm);
  6488 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  6489   assert(!src2.is_lval(), "use cmpptr");
  6490   if (reachable(src2)) {
  6491     cmpl(src1, as_Address(src2));
  6492   } else {
  6493     lea(rscratch1, src2);
  6494     cmpl(src1, Address(rscratch1, 0));
  6498 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  6499   Assembler::cmpl(src1, imm);
  6502 void MacroAssembler::cmp32(Register src1, Address src2) {
  6503   Assembler::cmpl(src1, src2);
  6506 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6507   ucomisd(opr1, opr2);
  6509   Label L;
  6510   if (unordered_is_less) {
  6511     movl(dst, -1);
  6512     jcc(Assembler::parity, L);
  6513     jcc(Assembler::below , L);
  6514     movl(dst, 0);
  6515     jcc(Assembler::equal , L);
  6516     increment(dst);
  6517   } else { // unordered is greater
  6518     movl(dst, 1);
  6519     jcc(Assembler::parity, L);
  6520     jcc(Assembler::above , L);
  6521     movl(dst, 0);
  6522     jcc(Assembler::equal , L);
  6523     decrementl(dst);
  6525   bind(L);
  6528 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6529   ucomiss(opr1, opr2);
  6531   Label L;
  6532   if (unordered_is_less) {
  6533     movl(dst, -1);
  6534     jcc(Assembler::parity, L);
  6535     jcc(Assembler::below , L);
  6536     movl(dst, 0);
  6537     jcc(Assembler::equal , L);
  6538     increment(dst);
  6539   } else { // unordered is greater
  6540     movl(dst, 1);
  6541     jcc(Assembler::parity, L);
  6542     jcc(Assembler::above , L);
  6543     movl(dst, 0);
  6544     jcc(Assembler::equal , L);
  6545     decrementl(dst);
  6547   bind(L);
  6551 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  6552   if (reachable(src1)) {
  6553     cmpb(as_Address(src1), imm);
  6554   } else {
  6555     lea(rscratch1, src1);
  6556     cmpb(Address(rscratch1, 0), imm);
  6560 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  6561 #ifdef _LP64
  6562   if (src2.is_lval()) {
  6563     movptr(rscratch1, src2);
  6564     Assembler::cmpq(src1, rscratch1);
  6565   } else if (reachable(src2)) {
  6566     cmpq(src1, as_Address(src2));
  6567   } else {
  6568     lea(rscratch1, src2);
  6569     Assembler::cmpq(src1, Address(rscratch1, 0));
  6571 #else
  6572   if (src2.is_lval()) {
  6573     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6574   } else {
  6575     cmpl(src1, as_Address(src2));
  6577 #endif // _LP64
  6580 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  6581   assert(src2.is_lval(), "not a mem-mem compare");
  6582 #ifdef _LP64
  6583   // moves src2's literal address
  6584   movptr(rscratch1, src2);
  6585   Assembler::cmpq(src1, rscratch1);
  6586 #else
  6587   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6588 #endif // _LP64
  6591 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  6592   if (reachable(adr)) {
  6593     if (os::is_MP())
  6594       lock();
  6595     cmpxchgptr(reg, as_Address(adr));
  6596   } else {
  6597     lea(rscratch1, adr);
  6598     if (os::is_MP())
  6599       lock();
  6600     cmpxchgptr(reg, Address(rscratch1, 0));
  6604 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  6605   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  6608 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  6609   if (reachable(src)) {
  6610     Assembler::comisd(dst, as_Address(src));
  6611   } else {
  6612     lea(rscratch1, src);
  6613     Assembler::comisd(dst, Address(rscratch1, 0));
  6617 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  6618   if (reachable(src)) {
  6619     Assembler::comiss(dst, as_Address(src));
  6620   } else {
  6621     lea(rscratch1, src);
  6622     Assembler::comiss(dst, Address(rscratch1, 0));
  6627 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  6628   Condition negated_cond = negate_condition(cond);
  6629   Label L;
  6630   jcc(negated_cond, L);
  6631   atomic_incl(counter_addr);
  6632   bind(L);
  6635 int MacroAssembler::corrected_idivl(Register reg) {
  6636   // Full implementation of Java idiv and irem; checks for
  6637   // special case as described in JVM spec., p.243 & p.271.
  6638   // The function returns the (pc) offset of the idivl
  6639   // instruction - may be needed for implicit exceptions.
  6640   //
  6641   //         normal case                           special case
  6642   //
  6643   // input : rax,: dividend                         min_int
  6644   //         reg: divisor   (may not be rax,/rdx)   -1
  6645   //
  6646   // output: rax,: quotient  (= rax, idiv reg)       min_int
  6647   //         rdx: remainder (= rax, irem reg)       0
  6648   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  6649   const int min_int = 0x80000000;
  6650   Label normal_case, special_case;
  6652   // check for special case
  6653   cmpl(rax, min_int);
  6654   jcc(Assembler::notEqual, normal_case);
  6655   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  6656   cmpl(reg, -1);
  6657   jcc(Assembler::equal, special_case);
  6659   // handle normal case
  6660   bind(normal_case);
  6661   cdql();
  6662   int idivl_offset = offset();
  6663   idivl(reg);
  6665   // normal and special case exit
  6666   bind(special_case);
  6668   return idivl_offset;
  6673 void MacroAssembler::decrementl(Register reg, int value) {
  6674   if (value == min_jint) {subl(reg, value) ; return; }
  6675   if (value <  0) { incrementl(reg, -value); return; }
  6676   if (value == 0) {                        ; return; }
  6677   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  6678   /* else */      { subl(reg, value)       ; return; }
  6681 void MacroAssembler::decrementl(Address dst, int value) {
  6682   if (value == min_jint) {subl(dst, value) ; return; }
  6683   if (value <  0) { incrementl(dst, -value); return; }
  6684   if (value == 0) {                        ; return; }
  6685   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  6686   /* else */      { subl(dst, value)       ; return; }
  6689 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  6690   assert (shift_value > 0, "illegal shift value");
  6691   Label _is_positive;
  6692   testl (reg, reg);
  6693   jcc (Assembler::positive, _is_positive);
  6694   int offset = (1 << shift_value) - 1 ;
  6696   if (offset == 1) {
  6697     incrementl(reg);
  6698   } else {
  6699     addl(reg, offset);
  6702   bind (_is_positive);
  6703   sarl(reg, shift_value);
  6706 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  6707   if (reachable(src)) {
  6708     Assembler::divsd(dst, as_Address(src));
  6709   } else {
  6710     lea(rscratch1, src);
  6711     Assembler::divsd(dst, Address(rscratch1, 0));
  6715 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  6716   if (reachable(src)) {
  6717     Assembler::divss(dst, as_Address(src));
  6718   } else {
  6719     lea(rscratch1, src);
  6720     Assembler::divss(dst, Address(rscratch1, 0));
  6724 // !defined(COMPILER2) is because of stupid core builds
  6725 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  6726 void MacroAssembler::empty_FPU_stack() {
  6727   if (VM_Version::supports_mmx()) {
  6728     emms();
  6729   } else {
  6730     for (int i = 8; i-- > 0; ) ffree(i);
  6733 #endif // !LP64 || C1 || !C2
  6736 // Defines obj, preserves var_size_in_bytes
  6737 void MacroAssembler::eden_allocate(Register obj,
  6738                                    Register var_size_in_bytes,
  6739                                    int con_size_in_bytes,
  6740                                    Register t1,
  6741                                    Label& slow_case) {
  6742   assert(obj == rax, "obj must be in rax, for cmpxchg");
  6743   assert_different_registers(obj, var_size_in_bytes, t1);
  6744   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6745     jmp(slow_case);
  6746   } else {
  6747     Register end = t1;
  6748     Label retry;
  6749     bind(retry);
  6750     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  6751     movptr(obj, heap_top);
  6752     if (var_size_in_bytes == noreg) {
  6753       lea(end, Address(obj, con_size_in_bytes));
  6754     } else {
  6755       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6757     // if end < obj then we wrapped around => object too long => slow case
  6758     cmpptr(end, obj);
  6759     jcc(Assembler::below, slow_case);
  6760     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  6761     jcc(Assembler::above, slow_case);
  6762     // Compare obj with the top addr, and if still equal, store the new top addr in
  6763     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  6764     // it otherwise. Use lock prefix for atomicity on MPs.
  6765     locked_cmpxchgptr(end, heap_top);
  6766     jcc(Assembler::notEqual, retry);
  6770 void MacroAssembler::enter() {
  6771   push(rbp);
  6772   mov(rbp, rsp);
  6775 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  6776 void MacroAssembler::fat_nop() {
  6777   if (UseAddressNop) {
  6778     addr_nop_5();
  6779   } else {
  6780     emit_byte(0x26); // es:
  6781     emit_byte(0x2e); // cs:
  6782     emit_byte(0x64); // fs:
  6783     emit_byte(0x65); // gs:
  6784     emit_byte(0x90);
  6788 void MacroAssembler::fcmp(Register tmp) {
  6789   fcmp(tmp, 1, true, true);
  6792 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  6793   assert(!pop_right || pop_left, "usage error");
  6794   if (VM_Version::supports_cmov()) {
  6795     assert(tmp == noreg, "unneeded temp");
  6796     if (pop_left) {
  6797       fucomip(index);
  6798     } else {
  6799       fucomi(index);
  6801     if (pop_right) {
  6802       fpop();
  6804   } else {
  6805     assert(tmp != noreg, "need temp");
  6806     if (pop_left) {
  6807       if (pop_right) {
  6808         fcompp();
  6809       } else {
  6810         fcomp(index);
  6812     } else {
  6813       fcom(index);
  6815     // convert FPU condition into eflags condition via rax,
  6816     save_rax(tmp);
  6817     fwait(); fnstsw_ax();
  6818     sahf();
  6819     restore_rax(tmp);
  6821   // condition codes set as follows:
  6822   //
  6823   // CF (corresponds to C0) if x < y
  6824   // PF (corresponds to C2) if unordered
  6825   // ZF (corresponds to C3) if x = y
  6828 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  6829   fcmp2int(dst, unordered_is_less, 1, true, true);
  6832 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  6833   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  6834   Label L;
  6835   if (unordered_is_less) {
  6836     movl(dst, -1);
  6837     jcc(Assembler::parity, L);
  6838     jcc(Assembler::below , L);
  6839     movl(dst, 0);
  6840     jcc(Assembler::equal , L);
  6841     increment(dst);
  6842   } else { // unordered is greater
  6843     movl(dst, 1);
  6844     jcc(Assembler::parity, L);
  6845     jcc(Assembler::above , L);
  6846     movl(dst, 0);
  6847     jcc(Assembler::equal , L);
  6848     decrementl(dst);
  6850   bind(L);
  6853 void MacroAssembler::fld_d(AddressLiteral src) {
  6854   fld_d(as_Address(src));
  6857 void MacroAssembler::fld_s(AddressLiteral src) {
  6858   fld_s(as_Address(src));
  6861 void MacroAssembler::fld_x(AddressLiteral src) {
  6862   Assembler::fld_x(as_Address(src));
  6865 void MacroAssembler::fldcw(AddressLiteral src) {
  6866   Assembler::fldcw(as_Address(src));
  6869 void MacroAssembler::fpop() {
  6870   ffree();
  6871   fincstp();
  6874 void MacroAssembler::fremr(Register tmp) {
  6875   save_rax(tmp);
  6876   { Label L;
  6877     bind(L);
  6878     fprem();
  6879     fwait(); fnstsw_ax();
  6880 #ifdef _LP64
  6881     testl(rax, 0x400);
  6882     jcc(Assembler::notEqual, L);
  6883 #else
  6884     sahf();
  6885     jcc(Assembler::parity, L);
  6886 #endif // _LP64
  6888   restore_rax(tmp);
  6889   // Result is in ST0.
  6890   // Note: fxch & fpop to get rid of ST1
  6891   // (otherwise FPU stack could overflow eventually)
  6892   fxch(1);
  6893   fpop();
  6897 void MacroAssembler::incrementl(AddressLiteral dst) {
  6898   if (reachable(dst)) {
  6899     incrementl(as_Address(dst));
  6900   } else {
  6901     lea(rscratch1, dst);
  6902     incrementl(Address(rscratch1, 0));
  6906 void MacroAssembler::incrementl(ArrayAddress dst) {
  6907   incrementl(as_Address(dst));
  6910 void MacroAssembler::incrementl(Register reg, int value) {
  6911   if (value == min_jint) {addl(reg, value) ; return; }
  6912   if (value <  0) { decrementl(reg, -value); return; }
  6913   if (value == 0) {                        ; return; }
  6914   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  6915   /* else */      { addl(reg, value)       ; return; }
  6918 void MacroAssembler::incrementl(Address dst, int value) {
  6919   if (value == min_jint) {addl(dst, value) ; return; }
  6920   if (value <  0) { decrementl(dst, -value); return; }
  6921   if (value == 0) {                        ; return; }
  6922   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  6923   /* else */      { addl(dst, value)       ; return; }
  6926 void MacroAssembler::jump(AddressLiteral dst) {
  6927   if (reachable(dst)) {
  6928     jmp_literal(dst.target(), dst.rspec());
  6929   } else {
  6930     lea(rscratch1, dst);
  6931     jmp(rscratch1);
  6935 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  6936   if (reachable(dst)) {
  6937     InstructionMark im(this);
  6938     relocate(dst.reloc());
  6939     const int short_size = 2;
  6940     const int long_size = 6;
  6941     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  6942     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  6943       // 0111 tttn #8-bit disp
  6944       emit_byte(0x70 | cc);
  6945       emit_byte((offs - short_size) & 0xFF);
  6946     } else {
  6947       // 0000 1111 1000 tttn #32-bit disp
  6948       emit_byte(0x0F);
  6949       emit_byte(0x80 | cc);
  6950       emit_long(offs - long_size);
  6952   } else {
  6953 #ifdef ASSERT
  6954     warning("reversing conditional branch");
  6955 #endif /* ASSERT */
  6956     Label skip;
  6957     jccb(reverse[cc], skip);
  6958     lea(rscratch1, dst);
  6959     Assembler::jmp(rscratch1);
  6960     bind(skip);
  6964 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  6965   if (reachable(src)) {
  6966     Assembler::ldmxcsr(as_Address(src));
  6967   } else {
  6968     lea(rscratch1, src);
  6969     Assembler::ldmxcsr(Address(rscratch1, 0));
  6973 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  6974   int off;
  6975   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6976     off = offset();
  6977     movsbl(dst, src); // movsxb
  6978   } else {
  6979     off = load_unsigned_byte(dst, src);
  6980     shll(dst, 24);
  6981     sarl(dst, 24);
  6983   return off;
  6986 // Note: load_signed_short used to be called load_signed_word.
  6987 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  6988 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  6989 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  6990 int MacroAssembler::load_signed_short(Register dst, Address src) {
  6991   int off;
  6992   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6993     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  6994     // version but this is what 64bit has always done. This seems to imply
  6995     // that users are only using 32bits worth.
  6996     off = offset();
  6997     movswl(dst, src); // movsxw
  6998   } else {
  6999     off = load_unsigned_short(dst, src);
  7000     shll(dst, 16);
  7001     sarl(dst, 16);
  7003   return off;
  7006 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  7007   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7008   // and "3.9 Partial Register Penalties", p. 22).
  7009   int off;
  7010   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  7011     off = offset();
  7012     movzbl(dst, src); // movzxb
  7013   } else {
  7014     xorl(dst, dst);
  7015     off = offset();
  7016     movb(dst, src);
  7018   return off;
  7021 // Note: load_unsigned_short used to be called load_unsigned_word.
  7022 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  7023   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7024   // and "3.9 Partial Register Penalties", p. 22).
  7025   int off;
  7026   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  7027     off = offset();
  7028     movzwl(dst, src); // movzxw
  7029   } else {
  7030     xorl(dst, dst);
  7031     off = offset();
  7032     movw(dst, src);
  7034   return off;
  7037 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  7038   switch (size_in_bytes) {
  7039 #ifndef _LP64
  7040   case  8:
  7041     assert(dst2 != noreg, "second dest register required");
  7042     movl(dst,  src);
  7043     movl(dst2, src.plus_disp(BytesPerInt));
  7044     break;
  7045 #else
  7046   case  8:  movq(dst, src); break;
  7047 #endif
  7048   case  4:  movl(dst, src); break;
  7049   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  7050   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  7051   default:  ShouldNotReachHere();
  7055 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  7056   switch (size_in_bytes) {
  7057 #ifndef _LP64
  7058   case  8:
  7059     assert(src2 != noreg, "second source register required");
  7060     movl(dst,                        src);
  7061     movl(dst.plus_disp(BytesPerInt), src2);
  7062     break;
  7063 #else
  7064   case  8:  movq(dst, src); break;
  7065 #endif
  7066   case  4:  movl(dst, src); break;
  7067   case  2:  movw(dst, src); break;
  7068   case  1:  movb(dst, src); break;
  7069   default:  ShouldNotReachHere();
  7073 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  7074   if (reachable(dst)) {
  7075     movl(as_Address(dst), src);
  7076   } else {
  7077     lea(rscratch1, dst);
  7078     movl(Address(rscratch1, 0), src);
  7082 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  7083   if (reachable(src)) {
  7084     movl(dst, as_Address(src));
  7085   } else {
  7086     lea(rscratch1, src);
  7087     movl(dst, Address(rscratch1, 0));
  7091 // C++ bool manipulation
  7093 void MacroAssembler::movbool(Register dst, Address src) {
  7094   if(sizeof(bool) == 1)
  7095     movb(dst, src);
  7096   else if(sizeof(bool) == 2)
  7097     movw(dst, src);
  7098   else if(sizeof(bool) == 4)
  7099     movl(dst, src);
  7100   else
  7101     // unsupported
  7102     ShouldNotReachHere();
  7105 void MacroAssembler::movbool(Address dst, bool boolconst) {
  7106   if(sizeof(bool) == 1)
  7107     movb(dst, (int) boolconst);
  7108   else if(sizeof(bool) == 2)
  7109     movw(dst, (int) boolconst);
  7110   else if(sizeof(bool) == 4)
  7111     movl(dst, (int) boolconst);
  7112   else
  7113     // unsupported
  7114     ShouldNotReachHere();
  7117 void MacroAssembler::movbool(Address dst, Register src) {
  7118   if(sizeof(bool) == 1)
  7119     movb(dst, src);
  7120   else if(sizeof(bool) == 2)
  7121     movw(dst, src);
  7122   else if(sizeof(bool) == 4)
  7123     movl(dst, src);
  7124   else
  7125     // unsupported
  7126     ShouldNotReachHere();
  7129 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  7130   movb(as_Address(dst), src);
  7133 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  7134   if (reachable(src)) {
  7135     if (UseXmmLoadAndClearUpper) {
  7136       movsd (dst, as_Address(src));
  7137     } else {
  7138       movlpd(dst, as_Address(src));
  7140   } else {
  7141     lea(rscratch1, src);
  7142     if (UseXmmLoadAndClearUpper) {
  7143       movsd (dst, Address(rscratch1, 0));
  7144     } else {
  7145       movlpd(dst, Address(rscratch1, 0));
  7150 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  7151   if (reachable(src)) {
  7152     movss(dst, as_Address(src));
  7153   } else {
  7154     lea(rscratch1, src);
  7155     movss(dst, Address(rscratch1, 0));
  7159 void MacroAssembler::movptr(Register dst, Register src) {
  7160   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7163 void MacroAssembler::movptr(Register dst, Address src) {
  7164   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7167 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  7168 void MacroAssembler::movptr(Register dst, intptr_t src) {
  7169   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  7172 void MacroAssembler::movptr(Address dst, Register src) {
  7173   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  7176 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  7177   if (reachable(src)) {
  7178     Assembler::movsd(dst, as_Address(src));
  7179   } else {
  7180     lea(rscratch1, src);
  7181     Assembler::movsd(dst, Address(rscratch1, 0));
  7185 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  7186   if (reachable(src)) {
  7187     Assembler::movss(dst, as_Address(src));
  7188   } else {
  7189     lea(rscratch1, src);
  7190     Assembler::movss(dst, Address(rscratch1, 0));
  7194 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  7195   if (reachable(src)) {
  7196     Assembler::mulsd(dst, as_Address(src));
  7197   } else {
  7198     lea(rscratch1, src);
  7199     Assembler::mulsd(dst, Address(rscratch1, 0));
  7203 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  7204   if (reachable(src)) {
  7205     Assembler::mulss(dst, as_Address(src));
  7206   } else {
  7207     lea(rscratch1, src);
  7208     Assembler::mulss(dst, Address(rscratch1, 0));
  7212 void MacroAssembler::null_check(Register reg, int offset) {
  7213   if (needs_explicit_null_check(offset)) {
  7214     // provoke OS NULL exception if reg = NULL by
  7215     // accessing M[reg] w/o changing any (non-CC) registers
  7216     // NOTE: cmpl is plenty here to provoke a segv
  7217     cmpptr(rax, Address(reg, 0));
  7218     // Note: should probably use testl(rax, Address(reg, 0));
  7219     //       may be shorter code (however, this version of
  7220     //       testl needs to be implemented first)
  7221   } else {
  7222     // nothing to do, (later) access of M[reg + offset]
  7223     // will provoke OS NULL exception if reg = NULL
  7227 void MacroAssembler::os_breakpoint() {
  7228   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  7229   // (e.g., MSVC can't call ps() otherwise)
  7230   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  7233 void MacroAssembler::pop_CPU_state() {
  7234   pop_FPU_state();
  7235   pop_IU_state();
  7238 void MacroAssembler::pop_FPU_state() {
  7239   NOT_LP64(frstor(Address(rsp, 0));)
  7240   LP64_ONLY(fxrstor(Address(rsp, 0));)
  7241   addptr(rsp, FPUStateSizeInWords * wordSize);
  7244 void MacroAssembler::pop_IU_state() {
  7245   popa();
  7246   LP64_ONLY(addq(rsp, 8));
  7247   popf();
  7250 // Save Integer and Float state
  7251 // Warning: Stack must be 16 byte aligned (64bit)
  7252 void MacroAssembler::push_CPU_state() {
  7253   push_IU_state();
  7254   push_FPU_state();
  7257 void MacroAssembler::push_FPU_state() {
  7258   subptr(rsp, FPUStateSizeInWords * wordSize);
  7259 #ifndef _LP64
  7260   fnsave(Address(rsp, 0));
  7261   fwait();
  7262 #else
  7263   fxsave(Address(rsp, 0));
  7264 #endif // LP64
  7267 void MacroAssembler::push_IU_state() {
  7268   // Push flags first because pusha kills them
  7269   pushf();
  7270   // Make sure rsp stays 16-byte aligned
  7271   LP64_ONLY(subq(rsp, 8));
  7272   pusha();
  7275 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  7276   // determine java_thread register
  7277   if (!java_thread->is_valid()) {
  7278     java_thread = rdi;
  7279     get_thread(java_thread);
  7281   // we must set sp to zero to clear frame
  7282   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  7283   if (clear_fp) {
  7284     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  7287   if (clear_pc)
  7288     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  7292 void MacroAssembler::restore_rax(Register tmp) {
  7293   if (tmp == noreg) pop(rax);
  7294   else if (tmp != rax) mov(rax, tmp);
  7297 void MacroAssembler::round_to(Register reg, int modulus) {
  7298   addptr(reg, modulus - 1);
  7299   andptr(reg, -modulus);
  7302 void MacroAssembler::save_rax(Register tmp) {
  7303   if (tmp == noreg) push(rax);
  7304   else if (tmp != rax) mov(tmp, rax);
  7307 // Write serialization page so VM thread can do a pseudo remote membar.
  7308 // We use the current thread pointer to calculate a thread specific
  7309 // offset to write to within the page. This minimizes bus traffic
  7310 // due to cache line collision.
  7311 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  7312   movl(tmp, thread);
  7313   shrl(tmp, os::get_serialize_page_shift_count());
  7314   andl(tmp, (os::vm_page_size() - sizeof(int)));
  7316   Address index(noreg, tmp, Address::times_1);
  7317   ExternalAddress page(os::get_memory_serialize_page());
  7319   // Size of store must match masking code above
  7320   movl(as_Address(ArrayAddress(page, index)), tmp);
  7323 // Calls to C land
  7324 //
  7325 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  7326 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  7327 // has to be reset to 0. This is required to allow proper stack traversal.
  7328 void MacroAssembler::set_last_Java_frame(Register java_thread,
  7329                                          Register last_java_sp,
  7330                                          Register last_java_fp,
  7331                                          address  last_java_pc) {
  7332   // determine java_thread register
  7333   if (!java_thread->is_valid()) {
  7334     java_thread = rdi;
  7335     get_thread(java_thread);
  7337   // determine last_java_sp register
  7338   if (!last_java_sp->is_valid()) {
  7339     last_java_sp = rsp;
  7342   // last_java_fp is optional
  7344   if (last_java_fp->is_valid()) {
  7345     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  7348   // last_java_pc is optional
  7350   if (last_java_pc != NULL) {
  7351     lea(Address(java_thread,
  7352                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  7353         InternalAddress(last_java_pc));
  7356   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  7359 void MacroAssembler::shlptr(Register dst, int imm8) {
  7360   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  7363 void MacroAssembler::shrptr(Register dst, int imm8) {
  7364   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  7367 void MacroAssembler::sign_extend_byte(Register reg) {
  7368   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  7369     movsbl(reg, reg); // movsxb
  7370   } else {
  7371     shll(reg, 24);
  7372     sarl(reg, 24);
  7376 void MacroAssembler::sign_extend_short(Register reg) {
  7377   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7378     movswl(reg, reg); // movsxw
  7379   } else {
  7380     shll(reg, 16);
  7381     sarl(reg, 16);
  7385 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  7386   assert(reachable(src), "Address should be reachable");
  7387   testl(dst, as_Address(src));
  7390 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  7391   if (reachable(src)) {
  7392     Assembler::sqrtsd(dst, as_Address(src));
  7393   } else {
  7394     lea(rscratch1, src);
  7395     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  7399 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  7400   if (reachable(src)) {
  7401     Assembler::sqrtss(dst, as_Address(src));
  7402   } else {
  7403     lea(rscratch1, src);
  7404     Assembler::sqrtss(dst, Address(rscratch1, 0));
  7408 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  7409   if (reachable(src)) {
  7410     Assembler::subsd(dst, as_Address(src));
  7411   } else {
  7412     lea(rscratch1, src);
  7413     Assembler::subsd(dst, Address(rscratch1, 0));
  7417 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  7418   if (reachable(src)) {
  7419     Assembler::subss(dst, as_Address(src));
  7420   } else {
  7421     lea(rscratch1, src);
  7422     Assembler::subss(dst, Address(rscratch1, 0));
  7426 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7427   if (reachable(src)) {
  7428     Assembler::ucomisd(dst, as_Address(src));
  7429   } else {
  7430     lea(rscratch1, src);
  7431     Assembler::ucomisd(dst, Address(rscratch1, 0));
  7435 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7436   if (reachable(src)) {
  7437     Assembler::ucomiss(dst, as_Address(src));
  7438   } else {
  7439     lea(rscratch1, src);
  7440     Assembler::ucomiss(dst, Address(rscratch1, 0));
  7444 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7445   // Used in sign-bit flipping with aligned address.
  7446   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  7447   if (reachable(src)) {
  7448     Assembler::xorpd(dst, as_Address(src));
  7449   } else {
  7450     lea(rscratch1, src);
  7451     Assembler::xorpd(dst, Address(rscratch1, 0));
  7455 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7456   // Used in sign-bit flipping with aligned address.
  7457   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  7458   if (reachable(src)) {
  7459     Assembler::xorps(dst, as_Address(src));
  7460   } else {
  7461     lea(rscratch1, src);
  7462     Assembler::xorps(dst, Address(rscratch1, 0));
  7466 // AVX 3-operands instructions
  7468 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7469   if (reachable(src)) {
  7470     vaddsd(dst, nds, as_Address(src));
  7471   } else {
  7472     lea(rscratch1, src);
  7473     vaddsd(dst, nds, Address(rscratch1, 0));
  7477 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7478   if (reachable(src)) {
  7479     vaddss(dst, nds, as_Address(src));
  7480   } else {
  7481     lea(rscratch1, src);
  7482     vaddss(dst, nds, Address(rscratch1, 0));
  7486 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7487   if (reachable(src)) {
  7488     vandpd(dst, nds, as_Address(src));
  7489   } else {
  7490     lea(rscratch1, src);
  7491     vandpd(dst, nds, Address(rscratch1, 0));
  7495 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7496   if (reachable(src)) {
  7497     vandps(dst, nds, as_Address(src));
  7498   } else {
  7499     lea(rscratch1, src);
  7500     vandps(dst, nds, Address(rscratch1, 0));
  7504 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7505   if (reachable(src)) {
  7506     vdivsd(dst, nds, as_Address(src));
  7507   } else {
  7508     lea(rscratch1, src);
  7509     vdivsd(dst, nds, Address(rscratch1, 0));
  7513 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7514   if (reachable(src)) {
  7515     vdivss(dst, nds, as_Address(src));
  7516   } else {
  7517     lea(rscratch1, src);
  7518     vdivss(dst, nds, Address(rscratch1, 0));
  7522 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7523   if (reachable(src)) {
  7524     vmulsd(dst, nds, as_Address(src));
  7525   } else {
  7526     lea(rscratch1, src);
  7527     vmulsd(dst, nds, Address(rscratch1, 0));
  7531 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7532   if (reachable(src)) {
  7533     vmulss(dst, nds, as_Address(src));
  7534   } else {
  7535     lea(rscratch1, src);
  7536     vmulss(dst, nds, Address(rscratch1, 0));
  7540 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7541   if (reachable(src)) {
  7542     vsubsd(dst, nds, as_Address(src));
  7543   } else {
  7544     lea(rscratch1, src);
  7545     vsubsd(dst, nds, Address(rscratch1, 0));
  7549 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7550   if (reachable(src)) {
  7551     vsubss(dst, nds, as_Address(src));
  7552   } else {
  7553     lea(rscratch1, src);
  7554     vsubss(dst, nds, Address(rscratch1, 0));
  7558 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7559   if (reachable(src)) {
  7560     vxorpd(dst, nds, as_Address(src));
  7561   } else {
  7562     lea(rscratch1, src);
  7563     vxorpd(dst, nds, Address(rscratch1, 0));
  7567 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  7568   if (reachable(src)) {
  7569     vxorps(dst, nds, as_Address(src));
  7570   } else {
  7571     lea(rscratch1, src);
  7572     vxorps(dst, nds, Address(rscratch1, 0));
  7577 //////////////////////////////////////////////////////////////////////////////////
  7578 #ifndef SERIALGC
  7580 void MacroAssembler::g1_write_barrier_pre(Register obj,
  7581                                           Register pre_val,
  7582                                           Register thread,
  7583                                           Register tmp,
  7584                                           bool tosca_live,
  7585                                           bool expand_call) {
  7587   // If expand_call is true then we expand the call_VM_leaf macro
  7588   // directly to skip generating the check by
  7589   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  7591 #ifdef _LP64
  7592   assert(thread == r15_thread, "must be");
  7593 #endif // _LP64
  7595   Label done;
  7596   Label runtime;
  7598   assert(pre_val != noreg, "check this code");
  7600   if (obj != noreg) {
  7601     assert_different_registers(obj, pre_val, tmp);
  7602     assert(pre_val != rax, "check this code");
  7605   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7606                                        PtrQueue::byte_offset_of_active()));
  7607   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7608                                        PtrQueue::byte_offset_of_index()));
  7609   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  7610                                        PtrQueue::byte_offset_of_buf()));
  7613   // Is marking active?
  7614   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  7615     cmpl(in_progress, 0);
  7616   } else {
  7617     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  7618     cmpb(in_progress, 0);
  7620   jcc(Assembler::equal, done);
  7622   // Do we need to load the previous value?
  7623   if (obj != noreg) {
  7624     load_heap_oop(pre_val, Address(obj, 0));
  7627   // Is the previous value null?
  7628   cmpptr(pre_val, (int32_t) NULL_WORD);
  7629   jcc(Assembler::equal, done);
  7631   // Can we store original value in the thread's buffer?
  7632   // Is index == 0?
  7633   // (The index field is typed as size_t.)
  7635   movptr(tmp, index);                   // tmp := *index_adr
  7636   cmpptr(tmp, 0);                       // tmp == 0?
  7637   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  7639   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  7640   movptr(index, tmp);                   // *index_adr := tmp
  7641   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  7643   // Record the previous value
  7644   movptr(Address(tmp, 0), pre_val);
  7645   jmp(done);
  7647   bind(runtime);
  7648   // save the live input values
  7649   if(tosca_live) push(rax);
  7651   if (obj != noreg && obj != rax)
  7652     push(obj);
  7654   if (pre_val != rax)
  7655     push(pre_val);
  7657   // Calling the runtime using the regular call_VM_leaf mechanism generates
  7658   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  7659   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  7660   //
  7661   // If we care generating the pre-barrier without a frame (e.g. in the
  7662   // intrinsified Reference.get() routine) then ebp might be pointing to
  7663   // the caller frame and so this check will most likely fail at runtime.
  7664   //
  7665   // Expanding the call directly bypasses the generation of the check.
  7666   // So when we do not have have a full interpreter frame on the stack
  7667   // expand_call should be passed true.
  7669   NOT_LP64( push(thread); )
  7671   if (expand_call) {
  7672     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  7673     pass_arg1(this, thread);
  7674     pass_arg0(this, pre_val);
  7675     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  7676   } else {
  7677     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  7680   NOT_LP64( pop(thread); )
  7682   // save the live input values
  7683   if (pre_val != rax)
  7684     pop(pre_val);
  7686   if (obj != noreg && obj != rax)
  7687     pop(obj);
  7689   if(tosca_live) pop(rax);
  7691   bind(done);
  7694 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  7695                                            Register new_val,
  7696                                            Register thread,
  7697                                            Register tmp,
  7698                                            Register tmp2) {
  7699 #ifdef _LP64
  7700   assert(thread == r15_thread, "must be");
  7701 #endif // _LP64
  7703   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  7704                                        PtrQueue::byte_offset_of_index()));
  7705   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  7706                                        PtrQueue::byte_offset_of_buf()));
  7708   BarrierSet* bs = Universe::heap()->barrier_set();
  7709   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  7710   Label done;
  7711   Label runtime;
  7713   // Does store cross heap regions?
  7715   movptr(tmp, store_addr);
  7716   xorptr(tmp, new_val);
  7717   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  7718   jcc(Assembler::equal, done);
  7720   // crosses regions, storing NULL?
  7722   cmpptr(new_val, (int32_t) NULL_WORD);
  7723   jcc(Assembler::equal, done);
  7725   // storing region crossing non-NULL, is card already dirty?
  7727   ExternalAddress cardtable((address) ct->byte_map_base);
  7728   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  7729 #ifdef _LP64
  7730   const Register card_addr = tmp;
  7732   movq(card_addr, store_addr);
  7733   shrq(card_addr, CardTableModRefBS::card_shift);
  7735   lea(tmp2, cardtable);
  7737   // get the address of the card
  7738   addq(card_addr, tmp2);
  7739 #else
  7740   const Register card_index = tmp;
  7742   movl(card_index, store_addr);
  7743   shrl(card_index, CardTableModRefBS::card_shift);
  7745   Address index(noreg, card_index, Address::times_1);
  7746   const Register card_addr = tmp;
  7747   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  7748 #endif
  7749   cmpb(Address(card_addr, 0), 0);
  7750   jcc(Assembler::equal, done);
  7752   // storing a region crossing, non-NULL oop, card is clean.
  7753   // dirty card and log.
  7755   movb(Address(card_addr, 0), 0);
  7757   cmpl(queue_index, 0);
  7758   jcc(Assembler::equal, runtime);
  7759   subl(queue_index, wordSize);
  7760   movptr(tmp2, buffer);
  7761 #ifdef _LP64
  7762   movslq(rscratch1, queue_index);
  7763   addq(tmp2, rscratch1);
  7764   movq(Address(tmp2, 0), card_addr);
  7765 #else
  7766   addl(tmp2, queue_index);
  7767   movl(Address(tmp2, 0), card_index);
  7768 #endif
  7769   jmp(done);
  7771   bind(runtime);
  7772   // save the live input values
  7773   push(store_addr);
  7774   push(new_val);
  7775 #ifdef _LP64
  7776   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  7777 #else
  7778   push(thread);
  7779   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  7780   pop(thread);
  7781 #endif
  7782   pop(new_val);
  7783   pop(store_addr);
  7785   bind(done);
  7788 #endif // SERIALGC
  7789 //////////////////////////////////////////////////////////////////////////////////
  7792 void MacroAssembler::store_check(Register obj) {
  7793   // Does a store check for the oop in register obj. The content of
  7794   // register obj is destroyed afterwards.
  7795   store_check_part_1(obj);
  7796   store_check_part_2(obj);
  7799 void MacroAssembler::store_check(Register obj, Address dst) {
  7800   store_check(obj);
  7804 // split the store check operation so that other instructions can be scheduled inbetween
  7805 void MacroAssembler::store_check_part_1(Register obj) {
  7806   BarrierSet* bs = Universe::heap()->barrier_set();
  7807   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  7808   shrptr(obj, CardTableModRefBS::card_shift);
  7811 void MacroAssembler::store_check_part_2(Register obj) {
  7812   BarrierSet* bs = Universe::heap()->barrier_set();
  7813   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  7814   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  7815   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  7817   // The calculation for byte_map_base is as follows:
  7818   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  7819   // So this essentially converts an address to a displacement and
  7820   // it will never need to be relocated. On 64bit however the value may be too
  7821   // large for a 32bit displacement
  7823   intptr_t disp = (intptr_t) ct->byte_map_base;
  7824   if (is_simm32(disp)) {
  7825     Address cardtable(noreg, obj, Address::times_1, disp);
  7826     movb(cardtable, 0);
  7827   } else {
  7828     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  7829     // displacement and done in a single instruction given favorable mapping and
  7830     // a smarter version of as_Address. Worst case it is two instructions which
  7831     // is no worse off then loading disp into a register and doing as a simple
  7832     // Address() as above.
  7833     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  7834     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  7835     // in some cases we'll get a single instruction version.
  7837     ExternalAddress cardtable((address)disp);
  7838     Address index(noreg, obj, Address::times_1);
  7839     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  7843 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  7844   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  7847 // Force generation of a 4 byte immediate value even if it fits into 8bit
  7848 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  7849   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  7852 void MacroAssembler::subptr(Register dst, Register src) {
  7853   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  7856 // C++ bool manipulation
  7857 void MacroAssembler::testbool(Register dst) {
  7858   if(sizeof(bool) == 1)
  7859     testb(dst, 0xff);
  7860   else if(sizeof(bool) == 2) {
  7861     // testw implementation needed for two byte bools
  7862     ShouldNotReachHere();
  7863   } else if(sizeof(bool) == 4)
  7864     testl(dst, dst);
  7865   else
  7866     // unsupported
  7867     ShouldNotReachHere();
  7870 void MacroAssembler::testptr(Register dst, Register src) {
  7871   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  7874 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  7875 void MacroAssembler::tlab_allocate(Register obj,
  7876                                    Register var_size_in_bytes,
  7877                                    int con_size_in_bytes,
  7878                                    Register t1,
  7879                                    Register t2,
  7880                                    Label& slow_case) {
  7881   assert_different_registers(obj, t1, t2);
  7882   assert_different_registers(obj, var_size_in_bytes, t1);
  7883   Register end = t2;
  7884   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  7886   verify_tlab();
  7888   NOT_LP64(get_thread(thread));
  7890   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  7891   if (var_size_in_bytes == noreg) {
  7892     lea(end, Address(obj, con_size_in_bytes));
  7893   } else {
  7894     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7896   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  7897   jcc(Assembler::above, slow_case);
  7899   // update the tlab top pointer
  7900   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  7902   // recover var_size_in_bytes if necessary
  7903   if (var_size_in_bytes == end) {
  7904     subptr(var_size_in_bytes, obj);
  7906   verify_tlab();
  7909 // Preserves rbx, and rdx.
  7910 Register MacroAssembler::tlab_refill(Label& retry,
  7911                                      Label& try_eden,
  7912                                      Label& slow_case) {
  7913   Register top = rax;
  7914   Register t1  = rcx;
  7915   Register t2  = rsi;
  7916   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  7917   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  7918   Label do_refill, discard_tlab;
  7920   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7921     // No allocation in the shared eden.
  7922     jmp(slow_case);
  7925   NOT_LP64(get_thread(thread_reg));
  7927   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7928   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7930   // calculate amount of free space
  7931   subptr(t1, top);
  7932   shrptr(t1, LogHeapWordSize);
  7934   // Retain tlab and allocate object in shared space if
  7935   // the amount free in the tlab is too large to discard.
  7936   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  7937   jcc(Assembler::lessEqual, discard_tlab);
  7939   // Retain
  7940   // %%% yuck as movptr...
  7941   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  7942   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  7943   if (TLABStats) {
  7944     // increment number of slow_allocations
  7945     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  7947   jmp(try_eden);
  7949   bind(discard_tlab);
  7950   if (TLABStats) {
  7951     // increment number of refills
  7952     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  7953     // accumulate wastage -- t1 is amount free in tlab
  7954     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  7957   // if tlab is currently allocated (top or end != null) then
  7958   // fill [top, end + alignment_reserve) with array object
  7959   testptr(top, top);
  7960   jcc(Assembler::zero, do_refill);
  7962   // set up the mark word
  7963   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  7964   // set the length to the remaining space
  7965   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  7966   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  7967   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  7968   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  7969   // set klass to intArrayKlass
  7970   // dubious reloc why not an oop reloc?
  7971   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  7972   // store klass last.  concurrent gcs assumes klass length is valid if
  7973   // klass field is not null.
  7974   store_klass(top, t1);
  7976   movptr(t1, top);
  7977   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  7978   incr_allocated_bytes(thread_reg, t1, 0);
  7980   // refill the tlab with an eden allocation
  7981   bind(do_refill);
  7982   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7983   shlptr(t1, LogHeapWordSize);
  7984   // allocate new tlab, address returned in top
  7985   eden_allocate(top, t1, 0, t2, slow_case);
  7987   // Check that t1 was preserved in eden_allocate.
  7988 #ifdef ASSERT
  7989   if (UseTLAB) {
  7990     Label ok;
  7991     Register tsize = rsi;
  7992     assert_different_registers(tsize, thread_reg, t1);
  7993     push(tsize);
  7994     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7995     shlptr(tsize, LogHeapWordSize);
  7996     cmpptr(t1, tsize);
  7997     jcc(Assembler::equal, ok);
  7998     stop("assert(t1 != tlab size)");
  7999     should_not_reach_here();
  8001     bind(ok);
  8002     pop(tsize);
  8004 #endif
  8005   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  8006   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  8007   addptr(top, t1);
  8008   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  8009   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  8010   verify_tlab();
  8011   jmp(retry);
  8013   return thread_reg; // for use by caller
  8016 void MacroAssembler::incr_allocated_bytes(Register thread,
  8017                                           Register var_size_in_bytes,
  8018                                           int con_size_in_bytes,
  8019                                           Register t1) {
  8020   if (!thread->is_valid()) {
  8021 #ifdef _LP64
  8022     thread = r15_thread;
  8023 #else
  8024     assert(t1->is_valid(), "need temp reg");
  8025     thread = t1;
  8026     get_thread(thread);
  8027 #endif
  8030 #ifdef _LP64
  8031   if (var_size_in_bytes->is_valid()) {
  8032     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8033   } else {
  8034     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8036 #else
  8037   if (var_size_in_bytes->is_valid()) {
  8038     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  8039   } else {
  8040     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  8042   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  8043 #endif
  8046 static const double     pi_4 =  0.7853981633974483;
  8048 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  8049   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  8050   // was attempted in this code; unfortunately it appears that the
  8051   // switch to 80-bit precision and back causes this to be
  8052   // unprofitable compared with simply performing a runtime call if
  8053   // the argument is out of the (-pi/4, pi/4) range.
  8055   Register tmp = noreg;
  8056   if (!VM_Version::supports_cmov()) {
  8057     // fcmp needs a temporary so preserve rbx,
  8058     tmp = rbx;
  8059     push(tmp);
  8062   Label slow_case, done;
  8064   ExternalAddress pi4_adr = (address)&pi_4;
  8065   if (reachable(pi4_adr)) {
  8066     // x ?<= pi/4
  8067     fld_d(pi4_adr);
  8068     fld_s(1);                // Stack:  X  PI/4  X
  8069     fabs();                  // Stack: |X| PI/4  X
  8070     fcmp(tmp);
  8071     jcc(Assembler::above, slow_case);
  8073     // fastest case: -pi/4 <= x <= pi/4
  8074     switch(trig) {
  8075     case 's':
  8076       fsin();
  8077       break;
  8078     case 'c':
  8079       fcos();
  8080       break;
  8081     case 't':
  8082       ftan();
  8083       break;
  8084     default:
  8085       assert(false, "bad intrinsic");
  8086       break;
  8088     jmp(done);
  8091   // slow case: runtime call
  8092   bind(slow_case);
  8093   // Preserve registers across runtime call
  8094   pusha();
  8095   int incoming_argument_and_return_value_offset = -1;
  8096   if (num_fpu_regs_in_use > 1) {
  8097     // Must preserve all other FPU regs (could alternatively convert
  8098     // SharedRuntime::dsin and dcos into assembly routines known not to trash
  8099     // FPU state, but can not trust C compiler)
  8100     NEEDS_CLEANUP;
  8101     // NOTE that in this case we also push the incoming argument to
  8102     // the stack and restore it later; we also use this stack slot to
  8103     // hold the return value from dsin or dcos.
  8104     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  8105       subptr(rsp, sizeof(jdouble));
  8106       fstp_d(Address(rsp, 0));
  8108     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  8109     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
  8111   subptr(rsp, sizeof(jdouble));
  8112   fstp_d(Address(rsp, 0));
  8113 #ifdef _LP64
  8114   movdbl(xmm0, Address(rsp, 0));
  8115 #endif // _LP64
  8117   // NOTE: we must not use call_VM_leaf here because that requires a
  8118   // complete interpreter frame in debug mode -- same bug as 4387334
  8119   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  8120   // do proper 64bit abi
  8122   NEEDS_CLEANUP;
  8123   // Need to add stack banging before this runtime call if it needs to
  8124   // be taken; however, there is no generic stack banging routine at
  8125   // the MacroAssembler level
  8126   switch(trig) {
  8127   case 's':
  8129       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
  8131     break;
  8132   case 'c':
  8134       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
  8136     break;
  8137   case 't':
  8139       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
  8141     break;
  8142   default:
  8143     assert(false, "bad intrinsic");
  8144     break;
  8146 #ifdef _LP64
  8147     movsd(Address(rsp, 0), xmm0);
  8148     fld_d(Address(rsp, 0));
  8149 #endif // _LP64
  8150   addptr(rsp, sizeof(jdouble));
  8151   if (num_fpu_regs_in_use > 1) {
  8152     // Must save return value to stack and then restore entire FPU stack
  8153     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  8154     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  8155       fld_d(Address(rsp, 0));
  8156       addptr(rsp, sizeof(jdouble));
  8159   popa();
  8161   // Come here with result in F-TOS
  8162   bind(done);
  8164   if (tmp != noreg) {
  8165     pop(tmp);
  8170 // Look up the method for a megamorphic invokeinterface call.
  8171 // The target method is determined by <intf_klass, itable_index>.
  8172 // The receiver klass is in recv_klass.
  8173 // On success, the result will be in method_result, and execution falls through.
  8174 // On failure, execution transfers to the given label.
  8175 void MacroAssembler::lookup_interface_method(Register recv_klass,
  8176                                              Register intf_klass,
  8177                                              RegisterOrConstant itable_index,
  8178                                              Register method_result,
  8179                                              Register scan_temp,
  8180                                              Label& L_no_such_interface) {
  8181   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  8182   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  8183          "caller must use same register for non-constant itable index as for method");
  8185   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  8186   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  8187   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  8188   int scan_step   = itableOffsetEntry::size() * wordSize;
  8189   int vte_size    = vtableEntry::size() * wordSize;
  8190   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  8191   assert(vte_size == wordSize, "else adjust times_vte_scale");
  8193   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  8195   // %%% Could store the aligned, prescaled offset in the klassoop.
  8196   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  8197   if (HeapWordsPerLong > 1) {
  8198     // Round up to align_object_offset boundary
  8199     // see code for instanceKlass::start_of_itable!
  8200     round_to(scan_temp, BytesPerLong);
  8203   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  8204   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  8205   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  8207   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  8208   //   if (scan->interface() == intf) {
  8209   //     result = (klass + scan->offset() + itable_index);
  8210   //   }
  8211   // }
  8212   Label search, found_method;
  8214   for (int peel = 1; peel >= 0; peel--) {
  8215     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  8216     cmpptr(intf_klass, method_result);
  8218     if (peel) {
  8219       jccb(Assembler::equal, found_method);
  8220     } else {
  8221       jccb(Assembler::notEqual, search);
  8222       // (invert the test to fall through to found_method...)
  8225     if (!peel)  break;
  8227     bind(search);
  8229     // Check that the previous entry is non-null.  A null entry means that
  8230     // the receiver class doesn't implement the interface, and wasn't the
  8231     // same as when the caller was compiled.
  8232     testptr(method_result, method_result);
  8233     jcc(Assembler::zero, L_no_such_interface);
  8234     addptr(scan_temp, scan_step);
  8237   bind(found_method);
  8239   // Got a hit.
  8240   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  8241   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  8245 void MacroAssembler::check_klass_subtype(Register sub_klass,
  8246                            Register super_klass,
  8247                            Register temp_reg,
  8248                            Label& L_success) {
  8249   Label L_failure;
  8250   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  8251   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  8252   bind(L_failure);
  8256 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  8257                                                    Register super_klass,
  8258                                                    Register temp_reg,
  8259                                                    Label* L_success,
  8260                                                    Label* L_failure,
  8261                                                    Label* L_slow_path,
  8262                                         RegisterOrConstant super_check_offset) {
  8263   assert_different_registers(sub_klass, super_klass, temp_reg);
  8264   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  8265   if (super_check_offset.is_register()) {
  8266     assert_different_registers(sub_klass, super_klass,
  8267                                super_check_offset.as_register());
  8268   } else if (must_load_sco) {
  8269     assert(temp_reg != noreg, "supply either a temp or a register offset");
  8272   Label L_fallthrough;
  8273   int label_nulls = 0;
  8274   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  8275   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  8276   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  8277   assert(label_nulls <= 1, "at most one NULL in the batch");
  8279   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  8280   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  8281   Address super_check_offset_addr(super_klass, sco_offset);
  8283   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  8284   // range of a jccb.  If this routine grows larger, reconsider at
  8285   // least some of these.
  8286 #define local_jcc(assembler_cond, label)                                \
  8287   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  8288   else                             jcc( assembler_cond, label) /*omit semi*/
  8290   // Hacked jmp, which may only be used just before L_fallthrough.
  8291 #define final_jmp(label)                                                \
  8292   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  8293   else                            jmp(label)                /*omit semi*/
  8295   // If the pointers are equal, we are done (e.g., String[] elements).
  8296   // This self-check enables sharing of secondary supertype arrays among
  8297   // non-primary types such as array-of-interface.  Otherwise, each such
  8298   // type would need its own customized SSA.
  8299   // We move this check to the front of the fast path because many
  8300   // type checks are in fact trivially successful in this manner,
  8301   // so we get a nicely predicted branch right at the start of the check.
  8302   cmpptr(sub_klass, super_klass);
  8303   local_jcc(Assembler::equal, *L_success);
  8305   // Check the supertype display:
  8306   if (must_load_sco) {
  8307     // Positive movl does right thing on LP64.
  8308     movl(temp_reg, super_check_offset_addr);
  8309     super_check_offset = RegisterOrConstant(temp_reg);
  8311   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  8312   cmpptr(super_klass, super_check_addr); // load displayed supertype
  8314   // This check has worked decisively for primary supers.
  8315   // Secondary supers are sought in the super_cache ('super_cache_addr').
  8316   // (Secondary supers are interfaces and very deeply nested subtypes.)
  8317   // This works in the same check above because of a tricky aliasing
  8318   // between the super_cache and the primary super display elements.
  8319   // (The 'super_check_addr' can address either, as the case requires.)
  8320   // Note that the cache is updated below if it does not help us find
  8321   // what we need immediately.
  8322   // So if it was a primary super, we can just fail immediately.
  8323   // Otherwise, it's the slow path for us (no success at this point).
  8325   if (super_check_offset.is_register()) {
  8326     local_jcc(Assembler::equal, *L_success);
  8327     cmpl(super_check_offset.as_register(), sc_offset);
  8328     if (L_failure == &L_fallthrough) {
  8329       local_jcc(Assembler::equal, *L_slow_path);
  8330     } else {
  8331       local_jcc(Assembler::notEqual, *L_failure);
  8332       final_jmp(*L_slow_path);
  8334   } else if (super_check_offset.as_constant() == sc_offset) {
  8335     // Need a slow path; fast failure is impossible.
  8336     if (L_slow_path == &L_fallthrough) {
  8337       local_jcc(Assembler::equal, *L_success);
  8338     } else {
  8339       local_jcc(Assembler::notEqual, *L_slow_path);
  8340       final_jmp(*L_success);
  8342   } else {
  8343     // No slow path; it's a fast decision.
  8344     if (L_failure == &L_fallthrough) {
  8345       local_jcc(Assembler::equal, *L_success);
  8346     } else {
  8347       local_jcc(Assembler::notEqual, *L_failure);
  8348       final_jmp(*L_success);
  8352   bind(L_fallthrough);
  8354 #undef local_jcc
  8355 #undef final_jmp
  8359 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  8360                                                    Register super_klass,
  8361                                                    Register temp_reg,
  8362                                                    Register temp2_reg,
  8363                                                    Label* L_success,
  8364                                                    Label* L_failure,
  8365                                                    bool set_cond_codes) {
  8366   assert_different_registers(sub_klass, super_klass, temp_reg);
  8367   if (temp2_reg != noreg)
  8368     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  8369 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  8371   Label L_fallthrough;
  8372   int label_nulls = 0;
  8373   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  8374   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  8375   assert(label_nulls <= 1, "at most one NULL in the batch");
  8377   // a couple of useful fields in sub_klass:
  8378   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  8379   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  8380   Address secondary_supers_addr(sub_klass, ss_offset);
  8381   Address super_cache_addr(     sub_klass, sc_offset);
  8383   // Do a linear scan of the secondary super-klass chain.
  8384   // This code is rarely used, so simplicity is a virtue here.
  8385   // The repne_scan instruction uses fixed registers, which we must spill.
  8386   // Don't worry too much about pre-existing connections with the input regs.
  8388   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  8389   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  8391   // Get super_klass value into rax (even if it was in rdi or rcx).
  8392   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  8393   if (super_klass != rax || UseCompressedOops) {
  8394     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  8395     mov(rax, super_klass);
  8397   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  8398   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  8400 #ifndef PRODUCT
  8401   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  8402   ExternalAddress pst_counter_addr((address) pst_counter);
  8403   NOT_LP64(  incrementl(pst_counter_addr) );
  8404   LP64_ONLY( lea(rcx, pst_counter_addr) );
  8405   LP64_ONLY( incrementl(Address(rcx, 0)) );
  8406 #endif //PRODUCT
  8408   // We will consult the secondary-super array.
  8409   movptr(rdi, secondary_supers_addr);
  8410   // Load the array length.  (Positive movl does right thing on LP64.)
  8411   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  8412   // Skip to start of data.
  8413   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  8415   // Scan RCX words at [RDI] for an occurrence of RAX.
  8416   // Set NZ/Z based on last compare.
  8417   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  8418   // not change flags (only scas instruction which is repeated sets flags).
  8419   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  8420 #ifdef _LP64
  8421   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  8422   // and we store values in objArrays always encoded, thus we need to encode
  8423   // the value of rax before repne.  Note that rax is dead after the repne.
  8424   if (UseCompressedOops) {
  8425     encode_heap_oop_not_null(rax); // Changes flags.
  8426     // The superclass is never null; it would be a basic system error if a null
  8427     // pointer were to sneak in here.  Note that we have already loaded the
  8428     // Klass::super_check_offset from the super_klass in the fast path,
  8429     // so if there is a null in that register, we are already in the afterlife.
  8430     testl(rax,rax); // Set Z = 0
  8431     repne_scanl();
  8432   } else
  8433 #endif // _LP64
  8435     testptr(rax,rax); // Set Z = 0
  8436     repne_scan();
  8438   // Unspill the temp. registers:
  8439   if (pushed_rdi)  pop(rdi);
  8440   if (pushed_rcx)  pop(rcx);
  8441   if (pushed_rax)  pop(rax);
  8443   if (set_cond_codes) {
  8444     // Special hack for the AD files:  rdi is guaranteed non-zero.
  8445     assert(!pushed_rdi, "rdi must be left non-NULL");
  8446     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  8449   if (L_failure == &L_fallthrough)
  8450         jccb(Assembler::notEqual, *L_failure);
  8451   else  jcc(Assembler::notEqual, *L_failure);
  8453   // Success.  Cache the super we found and proceed in triumph.
  8454   movptr(super_cache_addr, super_klass);
  8456   if (L_success != &L_fallthrough) {
  8457     jmp(*L_success);
  8460 #undef IS_A_TEMP
  8462   bind(L_fallthrough);
  8466 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  8467   if (VM_Version::supports_cmov()) {
  8468     cmovl(cc, dst, src);
  8469   } else {
  8470     Label L;
  8471     jccb(negate_condition(cc), L);
  8472     movl(dst, src);
  8473     bind(L);
  8477 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  8478   if (VM_Version::supports_cmov()) {
  8479     cmovl(cc, dst, src);
  8480   } else {
  8481     Label L;
  8482     jccb(negate_condition(cc), L);
  8483     movl(dst, src);
  8484     bind(L);
  8488 void MacroAssembler::verify_oop(Register reg, const char* s) {
  8489   if (!VerifyOops) return;
  8491   // Pass register number to verify_oop_subroutine
  8492   char* b = new char[strlen(s) + 50];
  8493   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  8494 #ifdef _LP64
  8495   push(rscratch1);                    // save r10, trashed by movptr()
  8496 #endif
  8497   push(rax);                          // save rax,
  8498   push(reg);                          // pass register argument
  8499   ExternalAddress buffer((address) b);
  8500   // avoid using pushptr, as it modifies scratch registers
  8501   // and our contract is not to modify anything
  8502   movptr(rax, buffer.addr());
  8503   push(rax);
  8504   // call indirectly to solve generation ordering problem
  8505   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  8506   call(rax);
  8507   // Caller pops the arguments (oop, message) and restores rax, r10
  8511 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  8512                                                       Register tmp,
  8513                                                       int offset) {
  8514   intptr_t value = *delayed_value_addr;
  8515   if (value != 0)
  8516     return RegisterOrConstant(value + offset);
  8518   // load indirectly to solve generation ordering problem
  8519   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  8521 #ifdef ASSERT
  8522   { Label L;
  8523     testptr(tmp, tmp);
  8524     if (WizardMode) {
  8525       jcc(Assembler::notZero, L);
  8526       char* buf = new char[40];
  8527       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  8528       stop(buf);
  8529     } else {
  8530       jccb(Assembler::notZero, L);
  8531       hlt();
  8533     bind(L);
  8535 #endif
  8537   if (offset != 0)
  8538     addptr(tmp, offset);
  8540   return RegisterOrConstant(tmp);
  8544 // registers on entry:
  8545 //  - rax ('check' register): required MethodType
  8546 //  - rcx: method handle
  8547 //  - rdx, rsi, or ?: killable temp
  8548 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  8549                                               Register temp_reg,
  8550                                               Label& wrong_method_type) {
  8551   Address type_addr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg));
  8552   // compare method type against that of the receiver
  8553   if (UseCompressedOops) {
  8554     load_heap_oop(temp_reg, type_addr);
  8555     cmpptr(mtype_reg, temp_reg);
  8556   } else {
  8557     cmpptr(mtype_reg, type_addr);
  8559   jcc(Assembler::notEqual, wrong_method_type);
  8563 // A method handle has a "vmslots" field which gives the size of its
  8564 // argument list in JVM stack slots.  This field is either located directly
  8565 // in every method handle, or else is indirectly accessed through the
  8566 // method handle's MethodType.  This macro hides the distinction.
  8567 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  8568                                                 Register temp_reg) {
  8569   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  8570   // load mh.type.form.vmslots
  8571   Register temp2_reg = vmslots_reg;
  8572   load_heap_oop(temp2_reg, Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)));
  8573   load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)));
  8574   movl(vmslots_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
  8578 // registers on entry:
  8579 //  - rcx: method handle
  8580 //  - rdx: killable temp (interpreted only)
  8581 //  - rax: killable temp (compiled only)
  8582 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
  8583   assert(mh_reg == rcx, "caller must put MH object in rcx");
  8584   assert_different_registers(mh_reg, temp_reg);
  8586   // pick out the interpreted side of the handler
  8587   // NOTE: vmentry is not an oop!
  8588   movptr(temp_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
  8590   // off we go...
  8591   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
  8593   // for the various stubs which take control at this point,
  8594   // see MethodHandles::generate_method_handle_stub
  8598 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  8599                                          int extra_slot_offset) {
  8600   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  8601   int stackElementSize = Interpreter::stackElementSize;
  8602   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  8603 #ifdef ASSERT
  8604   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  8605   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  8606 #endif
  8607   Register             scale_reg    = noreg;
  8608   Address::ScaleFactor scale_factor = Address::no_scale;
  8609   if (arg_slot.is_constant()) {
  8610     offset += arg_slot.as_constant() * stackElementSize;
  8611   } else {
  8612     scale_reg    = arg_slot.as_register();
  8613     scale_factor = Address::times(stackElementSize);
  8615   offset += wordSize;           // return PC is on stack
  8616   return Address(rsp, scale_reg, scale_factor, offset);
  8620 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  8621   if (!VerifyOops) return;
  8623   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  8624   // Pass register number to verify_oop_subroutine
  8625   char* b = new char[strlen(s) + 50];
  8626   sprintf(b, "verify_oop_addr: %s", s);
  8628 #ifdef _LP64
  8629   push(rscratch1);                    // save r10, trashed by movptr()
  8630 #endif
  8631   push(rax);                          // save rax,
  8632   // addr may contain rsp so we will have to adjust it based on the push
  8633   // we just did (and on 64 bit we do two pushes)
  8634   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  8635   // stores rax into addr which is backwards of what was intended.
  8636   if (addr.uses(rsp)) {
  8637     lea(rax, addr);
  8638     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  8639   } else {
  8640     pushptr(addr);
  8643   ExternalAddress buffer((address) b);
  8644   // pass msg argument
  8645   // avoid using pushptr, as it modifies scratch registers
  8646   // and our contract is not to modify anything
  8647   movptr(rax, buffer.addr());
  8648   push(rax);
  8650   // call indirectly to solve generation ordering problem
  8651   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  8652   call(rax);
  8653   // Caller pops the arguments (addr, message) and restores rax, r10.
  8656 void MacroAssembler::verify_tlab() {
  8657 #ifdef ASSERT
  8658   if (UseTLAB && VerifyOops) {
  8659     Label next, ok;
  8660     Register t1 = rsi;
  8661     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  8663     push(t1);
  8664     NOT_LP64(push(thread_reg));
  8665     NOT_LP64(get_thread(thread_reg));
  8667     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8668     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  8669     jcc(Assembler::aboveEqual, next);
  8670     stop("assert(top >= start)");
  8671     should_not_reach_here();
  8673     bind(next);
  8674     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  8675     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8676     jcc(Assembler::aboveEqual, ok);
  8677     stop("assert(top <= end)");
  8678     should_not_reach_here();
  8680     bind(ok);
  8681     NOT_LP64(pop(thread_reg));
  8682     pop(t1);
  8684 #endif
  8687 class ControlWord {
  8688  public:
  8689   int32_t _value;
  8691   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  8692   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  8693   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  8694   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  8695   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  8696   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  8697   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  8698   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  8700   void print() const {
  8701     // rounding control
  8702     const char* rc;
  8703     switch (rounding_control()) {
  8704       case 0: rc = "round near"; break;
  8705       case 1: rc = "round down"; break;
  8706       case 2: rc = "round up  "; break;
  8707       case 3: rc = "chop      "; break;
  8708     };
  8709     // precision control
  8710     const char* pc;
  8711     switch (precision_control()) {
  8712       case 0: pc = "24 bits "; break;
  8713       case 1: pc = "reserved"; break;
  8714       case 2: pc = "53 bits "; break;
  8715       case 3: pc = "64 bits "; break;
  8716     };
  8717     // flags
  8718     char f[9];
  8719     f[0] = ' ';
  8720     f[1] = ' ';
  8721     f[2] = (precision   ()) ? 'P' : 'p';
  8722     f[3] = (underflow   ()) ? 'U' : 'u';
  8723     f[4] = (overflow    ()) ? 'O' : 'o';
  8724     f[5] = (zero_divide ()) ? 'Z' : 'z';
  8725     f[6] = (denormalized()) ? 'D' : 'd';
  8726     f[7] = (invalid     ()) ? 'I' : 'i';
  8727     f[8] = '\x0';
  8728     // output
  8729     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  8732 };
  8734 class StatusWord {
  8735  public:
  8736   int32_t _value;
  8738   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  8739   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  8740   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  8741   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  8742   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  8743   int  top() const                     { return  (_value >> 11) & 7      ; }
  8744   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  8745   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  8746   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  8747   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  8748   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  8749   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  8750   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  8751   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  8753   void print() const {
  8754     // condition codes
  8755     char c[5];
  8756     c[0] = (C3()) ? '3' : '-';
  8757     c[1] = (C2()) ? '2' : '-';
  8758     c[2] = (C1()) ? '1' : '-';
  8759     c[3] = (C0()) ? '0' : '-';
  8760     c[4] = '\x0';
  8761     // flags
  8762     char f[9];
  8763     f[0] = (error_status()) ? 'E' : '-';
  8764     f[1] = (stack_fault ()) ? 'S' : '-';
  8765     f[2] = (precision   ()) ? 'P' : '-';
  8766     f[3] = (underflow   ()) ? 'U' : '-';
  8767     f[4] = (overflow    ()) ? 'O' : '-';
  8768     f[5] = (zero_divide ()) ? 'Z' : '-';
  8769     f[6] = (denormalized()) ? 'D' : '-';
  8770     f[7] = (invalid     ()) ? 'I' : '-';
  8771     f[8] = '\x0';
  8772     // output
  8773     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  8776 };
  8778 class TagWord {
  8779  public:
  8780   int32_t _value;
  8782   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  8784   void print() const {
  8785     printf("%04x", _value & 0xFFFF);
  8788 };
  8790 class FPU_Register {
  8791  public:
  8792   int32_t _m0;
  8793   int32_t _m1;
  8794   int16_t _ex;
  8796   bool is_indefinite() const           {
  8797     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  8800   void print() const {
  8801     char  sign = (_ex < 0) ? '-' : '+';
  8802     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  8803     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  8804   };
  8806 };
  8808 class FPU_State {
  8809  public:
  8810   enum {
  8811     register_size       = 10,
  8812     number_of_registers =  8,
  8813     register_mask       =  7
  8814   };
  8816   ControlWord  _control_word;
  8817   StatusWord   _status_word;
  8818   TagWord      _tag_word;
  8819   int32_t      _error_offset;
  8820   int32_t      _error_selector;
  8821   int32_t      _data_offset;
  8822   int32_t      _data_selector;
  8823   int8_t       _register[register_size * number_of_registers];
  8825   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  8826   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  8828   const char* tag_as_string(int tag) const {
  8829     switch (tag) {
  8830       case 0: return "valid";
  8831       case 1: return "zero";
  8832       case 2: return "special";
  8833       case 3: return "empty";
  8835     ShouldNotReachHere();
  8836     return NULL;
  8839   void print() const {
  8840     // print computation registers
  8841     { int t = _status_word.top();
  8842       for (int i = 0; i < number_of_registers; i++) {
  8843         int j = (i - t) & register_mask;
  8844         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  8845         st(j)->print();
  8846         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  8849     printf("\n");
  8850     // print control registers
  8851     printf("ctrl = "); _control_word.print(); printf("\n");
  8852     printf("stat = "); _status_word .print(); printf("\n");
  8853     printf("tags = "); _tag_word    .print(); printf("\n");
  8856 };
  8858 class Flag_Register {
  8859  public:
  8860   int32_t _value;
  8862   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  8863   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  8864   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  8865   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  8866   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  8867   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  8868   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  8870   void print() const {
  8871     // flags
  8872     char f[8];
  8873     f[0] = (overflow       ()) ? 'O' : '-';
  8874     f[1] = (direction      ()) ? 'D' : '-';
  8875     f[2] = (sign           ()) ? 'S' : '-';
  8876     f[3] = (zero           ()) ? 'Z' : '-';
  8877     f[4] = (auxiliary_carry()) ? 'A' : '-';
  8878     f[5] = (parity         ()) ? 'P' : '-';
  8879     f[6] = (carry          ()) ? 'C' : '-';
  8880     f[7] = '\x0';
  8881     // output
  8882     printf("%08x  flags = %s", _value, f);
  8885 };
  8887 class IU_Register {
  8888  public:
  8889   int32_t _value;
  8891   void print() const {
  8892     printf("%08x  %11d", _value, _value);
  8895 };
  8897 class IU_State {
  8898  public:
  8899   Flag_Register _eflags;
  8900   IU_Register   _rdi;
  8901   IU_Register   _rsi;
  8902   IU_Register   _rbp;
  8903   IU_Register   _rsp;
  8904   IU_Register   _rbx;
  8905   IU_Register   _rdx;
  8906   IU_Register   _rcx;
  8907   IU_Register   _rax;
  8909   void print() const {
  8910     // computation registers
  8911     printf("rax,  = "); _rax.print(); printf("\n");
  8912     printf("rbx,  = "); _rbx.print(); printf("\n");
  8913     printf("rcx  = "); _rcx.print(); printf("\n");
  8914     printf("rdx  = "); _rdx.print(); printf("\n");
  8915     printf("rdi  = "); _rdi.print(); printf("\n");
  8916     printf("rsi  = "); _rsi.print(); printf("\n");
  8917     printf("rbp,  = "); _rbp.print(); printf("\n");
  8918     printf("rsp  = "); _rsp.print(); printf("\n");
  8919     printf("\n");
  8920     // control registers
  8921     printf("flgs = "); _eflags.print(); printf("\n");
  8923 };
  8926 class CPU_State {
  8927  public:
  8928   FPU_State _fpu_state;
  8929   IU_State  _iu_state;
  8931   void print() const {
  8932     printf("--------------------------------------------------\n");
  8933     _iu_state .print();
  8934     printf("\n");
  8935     _fpu_state.print();
  8936     printf("--------------------------------------------------\n");
  8939 };
  8942 static void _print_CPU_state(CPU_State* state) {
  8943   state->print();
  8944 };
  8947 void MacroAssembler::print_CPU_state() {
  8948   push_CPU_state();
  8949   push(rsp);                // pass CPU state
  8950   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  8951   addptr(rsp, wordSize);       // discard argument
  8952   pop_CPU_state();
  8956 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  8957   static int counter = 0;
  8958   FPU_State* fs = &state->_fpu_state;
  8959   counter++;
  8960   // For leaf calls, only verify that the top few elements remain empty.
  8961   // We only need 1 empty at the top for C2 code.
  8962   if( stack_depth < 0 ) {
  8963     if( fs->tag_for_st(7) != 3 ) {
  8964       printf("FPR7 not empty\n");
  8965       state->print();
  8966       assert(false, "error");
  8967       return false;
  8969     return true;                // All other stack states do not matter
  8972   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  8973          "bad FPU control word");
  8975   // compute stack depth
  8976   int i = 0;
  8977   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  8978   int d = i;
  8979   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  8980   // verify findings
  8981   if (i != FPU_State::number_of_registers) {
  8982     // stack not contiguous
  8983     printf("%s: stack not contiguous at ST%d\n", s, i);
  8984     state->print();
  8985     assert(false, "error");
  8986     return false;
  8988   // check if computed stack depth corresponds to expected stack depth
  8989   if (stack_depth < 0) {
  8990     // expected stack depth is -stack_depth or less
  8991     if (d > -stack_depth) {
  8992       // too many elements on the stack
  8993       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  8994       state->print();
  8995       assert(false, "error");
  8996       return false;
  8998   } else {
  8999     // expected stack depth is stack_depth
  9000     if (d != stack_depth) {
  9001       // wrong stack depth
  9002       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  9003       state->print();
  9004       assert(false, "error");
  9005       return false;
  9008   // everything is cool
  9009   return true;
  9013 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  9014   if (!VerifyFPU) return;
  9015   push_CPU_state();
  9016   push(rsp);                // pass CPU state
  9017   ExternalAddress msg((address) s);
  9018   // pass message string s
  9019   pushptr(msg.addr());
  9020   push(stack_depth);        // pass stack depth
  9021   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  9022   addptr(rsp, 3 * wordSize);   // discard arguments
  9023   // check for error
  9024   { Label L;
  9025     testl(rax, rax);
  9026     jcc(Assembler::notZero, L);
  9027     int3();                  // break if error condition
  9028     bind(L);
  9030   pop_CPU_state();
  9033 void MacroAssembler::load_klass(Register dst, Register src) {
  9034 #ifdef _LP64
  9035   if (UseCompressedOops) {
  9036     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9037     decode_heap_oop_not_null(dst);
  9038   } else
  9039 #endif
  9040     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9043 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  9044 #ifdef _LP64
  9045   if (UseCompressedOops) {
  9046     assert (Universe::heap() != NULL, "java heap should be initialized");
  9047     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9048     if (Universe::narrow_oop_shift() != 0) {
  9049       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9050       if (LogMinObjAlignmentInBytes == Address::times_8) {
  9051         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
  9052       } else {
  9053         // OK to use shift since we don't need to preserve flags.
  9054         shlq(dst, LogMinObjAlignmentInBytes);
  9055         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset()));
  9057     } else {
  9058       movq(dst, Address(dst, Klass::prototype_header_offset()));
  9060   } else
  9061 #endif
  9063     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  9064     movptr(dst, Address(dst, Klass::prototype_header_offset()));
  9068 void MacroAssembler::store_klass(Register dst, Register src) {
  9069 #ifdef _LP64
  9070   if (UseCompressedOops) {
  9071     encode_heap_oop_not_null(src);
  9072     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9073   } else
  9074 #endif
  9075     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  9078 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  9079 #ifdef _LP64
  9080   if (UseCompressedOops) {
  9081     movl(dst, src);
  9082     decode_heap_oop(dst);
  9083   } else
  9084 #endif
  9085     movptr(dst, src);
  9088 // Doesn't do verfication, generates fixed size code
  9089 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  9090 #ifdef _LP64
  9091   if (UseCompressedOops) {
  9092     movl(dst, src);
  9093     decode_heap_oop_not_null(dst);
  9094   } else
  9095 #endif
  9096     movptr(dst, src);
  9099 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  9100 #ifdef _LP64
  9101   if (UseCompressedOops) {
  9102     assert(!dst.uses(src), "not enough registers");
  9103     encode_heap_oop(src);
  9104     movl(dst, src);
  9105   } else
  9106 #endif
  9107     movptr(dst, src);
  9110 // Used for storing NULLs.
  9111 void MacroAssembler::store_heap_oop_null(Address dst) {
  9112 #ifdef _LP64
  9113   if (UseCompressedOops) {
  9114     movl(dst, (int32_t)NULL_WORD);
  9115   } else {
  9116     movslq(dst, (int32_t)NULL_WORD);
  9118 #else
  9119   movl(dst, (int32_t)NULL_WORD);
  9120 #endif
  9123 #ifdef _LP64
  9124 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  9125   if (UseCompressedOops) {
  9126     // Store to klass gap in destination
  9127     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  9131 #ifdef ASSERT
  9132 void MacroAssembler::verify_heapbase(const char* msg) {
  9133   assert (UseCompressedOops, "should be compressed");
  9134   assert (Universe::heap() != NULL, "java heap should be initialized");
  9135   if (CheckCompressedOops) {
  9136     Label ok;
  9137     push(rscratch1); // cmpptr trashes rscratch1
  9138     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  9139     jcc(Assembler::equal, ok);
  9140     stop(msg);
  9141     bind(ok);
  9142     pop(rscratch1);
  9145 #endif
  9147 // Algorithm must match oop.inline.hpp encode_heap_oop.
  9148 void MacroAssembler::encode_heap_oop(Register r) {
  9149 #ifdef ASSERT
  9150   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  9151 #endif
  9152   verify_oop(r, "broken oop in encode_heap_oop");
  9153   if (Universe::narrow_oop_base() == NULL) {
  9154     if (Universe::narrow_oop_shift() != 0) {
  9155       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9156       shrq(r, LogMinObjAlignmentInBytes);
  9158     return;
  9160   testq(r, r);
  9161   cmovq(Assembler::equal, r, r12_heapbase);
  9162   subq(r, r12_heapbase);
  9163   shrq(r, LogMinObjAlignmentInBytes);
  9166 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  9167 #ifdef ASSERT
  9168   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  9169   if (CheckCompressedOops) {
  9170     Label ok;
  9171     testq(r, r);
  9172     jcc(Assembler::notEqual, ok);
  9173     stop("null oop passed to encode_heap_oop_not_null");
  9174     bind(ok);
  9176 #endif
  9177   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  9178   if (Universe::narrow_oop_base() != NULL) {
  9179     subq(r, r12_heapbase);
  9181   if (Universe::narrow_oop_shift() != 0) {
  9182     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9183     shrq(r, LogMinObjAlignmentInBytes);
  9187 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  9188 #ifdef ASSERT
  9189   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  9190   if (CheckCompressedOops) {
  9191     Label ok;
  9192     testq(src, src);
  9193     jcc(Assembler::notEqual, ok);
  9194     stop("null oop passed to encode_heap_oop_not_null2");
  9195     bind(ok);
  9197 #endif
  9198   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  9199   if (dst != src) {
  9200     movq(dst, src);
  9202   if (Universe::narrow_oop_base() != NULL) {
  9203     subq(dst, r12_heapbase);
  9205   if (Universe::narrow_oop_shift() != 0) {
  9206     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9207     shrq(dst, LogMinObjAlignmentInBytes);
  9211 void  MacroAssembler::decode_heap_oop(Register r) {
  9212 #ifdef ASSERT
  9213   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  9214 #endif
  9215   if (Universe::narrow_oop_base() == NULL) {
  9216     if (Universe::narrow_oop_shift() != 0) {
  9217       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9218       shlq(r, LogMinObjAlignmentInBytes);
  9220   } else {
  9221     Label done;
  9222     shlq(r, LogMinObjAlignmentInBytes);
  9223     jccb(Assembler::equal, done);
  9224     addq(r, r12_heapbase);
  9225     bind(done);
  9227   verify_oop(r, "broken oop in decode_heap_oop");
  9230 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  9231   // Note: it will change flags
  9232   assert (UseCompressedOops, "should only be used for compressed headers");
  9233   assert (Universe::heap() != NULL, "java heap should be initialized");
  9234   // Cannot assert, unverified entry point counts instructions (see .ad file)
  9235   // vtableStubs also counts instructions in pd_code_size_limit.
  9236   // Also do not verify_oop as this is called by verify_oop.
  9237   if (Universe::narrow_oop_shift() != 0) {
  9238     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9239     shlq(r, LogMinObjAlignmentInBytes);
  9240     if (Universe::narrow_oop_base() != NULL) {
  9241       addq(r, r12_heapbase);
  9243   } else {
  9244     assert (Universe::narrow_oop_base() == NULL, "sanity");
  9248 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  9249   // Note: it will change flags
  9250   assert (UseCompressedOops, "should only be used for compressed headers");
  9251   assert (Universe::heap() != NULL, "java heap should be initialized");
  9252   // Cannot assert, unverified entry point counts instructions (see .ad file)
  9253   // vtableStubs also counts instructions in pd_code_size_limit.
  9254   // Also do not verify_oop as this is called by verify_oop.
  9255   if (Universe::narrow_oop_shift() != 0) {
  9256     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  9257     if (LogMinObjAlignmentInBytes == Address::times_8) {
  9258       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  9259     } else {
  9260       if (dst != src) {
  9261         movq(dst, src);
  9263       shlq(dst, LogMinObjAlignmentInBytes);
  9264       if (Universe::narrow_oop_base() != NULL) {
  9265         addq(dst, r12_heapbase);
  9268   } else {
  9269     assert (Universe::narrow_oop_base() == NULL, "sanity");
  9270     if (dst != src) {
  9271       movq(dst, src);
  9276 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  9277   assert (UseCompressedOops, "should only be used for compressed headers");
  9278   assert (Universe::heap() != NULL, "java heap should be initialized");
  9279   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9280   int oop_index = oop_recorder()->find_index(obj);
  9281   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9282   mov_narrow_oop(dst, oop_index, rspec);
  9285 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  9286   assert (UseCompressedOops, "should only be used for compressed headers");
  9287   assert (Universe::heap() != NULL, "java heap should be initialized");
  9288   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9289   int oop_index = oop_recorder()->find_index(obj);
  9290   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9291   mov_narrow_oop(dst, oop_index, rspec);
  9294 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  9295   assert (UseCompressedOops, "should only be used for compressed headers");
  9296   assert (Universe::heap() != NULL, "java heap should be initialized");
  9297   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9298   int oop_index = oop_recorder()->find_index(obj);
  9299   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9300   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  9303 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  9304   assert (UseCompressedOops, "should only be used for compressed headers");
  9305   assert (Universe::heap() != NULL, "java heap should be initialized");
  9306   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  9307   int oop_index = oop_recorder()->find_index(obj);
  9308   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  9309   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  9312 void MacroAssembler::reinit_heapbase() {
  9313   if (UseCompressedOops) {
  9314     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  9317 #endif // _LP64
  9320 // C2 compiled method's prolog code.
  9321 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
  9323   // WARNING: Initial instruction MUST be 5 bytes or longer so that
  9324   // NativeJump::patch_verified_entry will be able to patch out the entry
  9325   // code safely. The push to verify stack depth is ok at 5 bytes,
  9326   // the frame allocation can be either 3 or 6 bytes. So if we don't do
  9327   // stack bang then we must use the 6 byte frame allocation even if
  9328   // we have no frame. :-(
  9330   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  9331   // Remove word for return addr
  9332   framesize -= wordSize;
  9334   // Calls to C2R adapters often do not accept exceptional returns.
  9335   // We require that their callers must bang for them.  But be careful, because
  9336   // some VM calls (such as call site linkage) can use several kilobytes of
  9337   // stack.  But the stack safety zone should account for that.
  9338   // See bugs 4446381, 4468289, 4497237.
  9339   if (stack_bang) {
  9340     generate_stack_overflow_check(framesize);
  9342     // We always push rbp, so that on return to interpreter rbp, will be
  9343     // restored correctly and we can correct the stack.
  9344     push(rbp);
  9345     // Remove word for ebp
  9346     framesize -= wordSize;
  9348     // Create frame
  9349     if (framesize) {
  9350       subptr(rsp, framesize);
  9352   } else {
  9353     // Create frame (force generation of a 4 byte immediate value)
  9354     subptr_imm32(rsp, framesize);
  9356     // Save RBP register now.
  9357     framesize -= wordSize;
  9358     movptr(Address(rsp, framesize), rbp);
  9361   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
  9362     framesize -= wordSize;
  9363     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
  9366 #ifndef _LP64
  9367   // If method sets FPU control word do it now
  9368   if (fp_mode_24b) {
  9369     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  9371   if (UseSSE >= 2 && VerifyFPU) {
  9372     verify_FPU(0, "FPU stack must be clean on entry");
  9374 #endif
  9376 #ifdef ASSERT
  9377   if (VerifyStackAtCalls) {
  9378     Label L;
  9379     push(rax);
  9380     mov(rax, rsp);
  9381     andptr(rax, StackAlignmentInBytes-1);
  9382     cmpptr(rax, StackAlignmentInBytes-wordSize);
  9383     pop(rax);
  9384     jcc(Assembler::equal, L);
  9385     stop("Stack is not properly aligned!");
  9386     bind(L);
  9388 #endif
  9393 // IndexOf for constant substrings with size >= 8 chars
  9394 // which don't need to be loaded through stack.
  9395 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  9396                                       Register cnt1, Register cnt2,
  9397                                       int int_cnt2,  Register result,
  9398                                       XMMRegister vec, Register tmp) {
  9399   ShortBranchVerifier sbv(this);
  9400   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  9402   // This method uses pcmpestri inxtruction with bound registers
  9403   //   inputs:
  9404   //     xmm - substring
  9405   //     rax - substring length (elements count)
  9406   //     mem - scanned string
  9407   //     rdx - string length (elements count)
  9408   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  9409   //   outputs:
  9410   //     rcx - matched index in string
  9411   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  9413   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  9414         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  9415         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  9417   // Note, inline_string_indexOf() generates checks:
  9418   // if (substr.count > string.count) return -1;
  9419   // if (substr.count == 0) return 0;
  9420   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  9422   // Load substring.
  9423   movdqu(vec, Address(str2, 0));
  9424   movl(cnt2, int_cnt2);
  9425   movptr(result, str1); // string addr
  9427   if (int_cnt2 > 8) {
  9428     jmpb(SCAN_TO_SUBSTR);
  9430     // Reload substr for rescan, this code
  9431     // is executed only for large substrings (> 8 chars)
  9432     bind(RELOAD_SUBSTR);
  9433     movdqu(vec, Address(str2, 0));
  9434     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  9436     bind(RELOAD_STR);
  9437     // We came here after the beginning of the substring was
  9438     // matched but the rest of it was not so we need to search
  9439     // again. Start from the next element after the previous match.
  9441     // cnt2 is number of substring reminding elements and
  9442     // cnt1 is number of string reminding elements when cmp failed.
  9443     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  9444     subl(cnt1, cnt2);
  9445     addl(cnt1, int_cnt2);
  9446     movl(cnt2, int_cnt2); // Now restore cnt2
  9448     decrementl(cnt1);     // Shift to next element
  9449     cmpl(cnt1, cnt2);
  9450     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9452     addptr(result, 2);
  9454   } // (int_cnt2 > 8)
  9456   // Scan string for start of substr in 16-byte vectors
  9457   bind(SCAN_TO_SUBSTR);
  9458   pcmpestri(vec, Address(result, 0), 0x0d);
  9459   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  9460   subl(cnt1, 8);
  9461   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  9462   cmpl(cnt1, cnt2);
  9463   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9464   addptr(result, 16);
  9465   jmpb(SCAN_TO_SUBSTR);
  9467   // Found a potential substr
  9468   bind(FOUND_CANDIDATE);
  9469   // Matched whole vector if first element matched (tmp(rcx) == 0).
  9470   if (int_cnt2 == 8) {
  9471     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  9472   } else { // int_cnt2 > 8
  9473     jccb(Assembler::overflow, FOUND_SUBSTR);
  9475   // After pcmpestri tmp(rcx) contains matched element index
  9476   // Compute start addr of substr
  9477   lea(result, Address(result, tmp, Address::times_2));
  9479   // Make sure string is still long enough
  9480   subl(cnt1, tmp);
  9481   cmpl(cnt1, cnt2);
  9482   if (int_cnt2 == 8) {
  9483     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  9484   } else { // int_cnt2 > 8
  9485     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  9487   // Left less then substring.
  9489   bind(RET_NOT_FOUND);
  9490   movl(result, -1);
  9491   jmpb(EXIT);
  9493   if (int_cnt2 > 8) {
  9494     // This code is optimized for the case when whole substring
  9495     // is matched if its head is matched.
  9496     bind(MATCH_SUBSTR_HEAD);
  9497     pcmpestri(vec, Address(result, 0), 0x0d);
  9498     // Reload only string if does not match
  9499     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  9501     Label CONT_SCAN_SUBSTR;
  9502     // Compare the rest of substring (> 8 chars).
  9503     bind(FOUND_SUBSTR);
  9504     // First 8 chars are already matched.
  9505     negptr(cnt2);
  9506     addptr(cnt2, 8);
  9508     bind(SCAN_SUBSTR);
  9509     subl(cnt1, 8);
  9510     cmpl(cnt2, -8); // Do not read beyond substring
  9511     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  9512     // Back-up strings to avoid reading beyond substring:
  9513     // cnt1 = cnt1 - cnt2 + 8
  9514     addl(cnt1, cnt2); // cnt2 is negative
  9515     addl(cnt1, 8);
  9516     movl(cnt2, 8); negptr(cnt2);
  9517     bind(CONT_SCAN_SUBSTR);
  9518     if (int_cnt2 < (int)G) {
  9519       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
  9520       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
  9521     } else {
  9522       // calculate index in register to avoid integer overflow (int_cnt2*2)
  9523       movl(tmp, int_cnt2);
  9524       addptr(tmp, cnt2);
  9525       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
  9526       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
  9528     // Need to reload strings pointers if not matched whole vector
  9529     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  9530     addptr(cnt2, 8);
  9531     jcc(Assembler::negative, SCAN_SUBSTR);
  9532     // Fall through if found full substring
  9534   } // (int_cnt2 > 8)
  9536   bind(RET_FOUND);
  9537   // Found result if we matched full small substring.
  9538   // Compute substr offset
  9539   subptr(result, str1);
  9540   shrl(result, 1); // index
  9541   bind(EXIT);
  9543 } // string_indexofC8
  9545 // Small strings are loaded through stack if they cross page boundary.
  9546 void MacroAssembler::string_indexof(Register str1, Register str2,
  9547                                     Register cnt1, Register cnt2,
  9548                                     int int_cnt2,  Register result,
  9549                                     XMMRegister vec, Register tmp) {
  9550   ShortBranchVerifier sbv(this);
  9551   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  9552   //
  9553   // int_cnt2 is length of small (< 8 chars) constant substring
  9554   // or (-1) for non constant substring in which case its length
  9555   // is in cnt2 register.
  9556   //
  9557   // Note, inline_string_indexOf() generates checks:
  9558   // if (substr.count > string.count) return -1;
  9559   // if (substr.count == 0) return 0;
  9560   //
  9561   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
  9563   // This method uses pcmpestri inxtruction with bound registers
  9564   //   inputs:
  9565   //     xmm - substring
  9566   //     rax - substring length (elements count)
  9567   //     mem - scanned string
  9568   //     rdx - string length (elements count)
  9569   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  9570   //   outputs:
  9571   //     rcx - matched index in string
  9572   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  9574   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
  9575         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
  9576         FOUND_CANDIDATE;
  9578   { //========================================================
  9579     // We don't know where these strings are located
  9580     // and we can't read beyond them. Load them through stack.
  9581     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
  9583     movptr(tmp, rsp); // save old SP
  9585     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
  9586       if (int_cnt2 == 1) {  // One char
  9587         load_unsigned_short(result, Address(str2, 0));
  9588         movdl(vec, result); // move 32 bits
  9589       } else if (int_cnt2 == 2) { // Two chars
  9590         movdl(vec, Address(str2, 0)); // move 32 bits
  9591       } else if (int_cnt2 == 4) { // Four chars
  9592         movq(vec, Address(str2, 0));  // move 64 bits
  9593       } else { // cnt2 = { 3, 5, 6, 7 }
  9594         // Array header size is 12 bytes in 32-bit VM
  9595         // + 6 bytes for 3 chars == 18 bytes,
  9596         // enough space to load vec and shift.
  9597         assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
  9598         movdqu(vec, Address(str2, (int_cnt2*2)-16));
  9599         psrldq(vec, 16-(int_cnt2*2));
  9601     } else { // not constant substring
  9602       cmpl(cnt2, 8);
  9603       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
  9605       // We can read beyond string if srt+16 does not cross page boundary
  9606       // since heaps are aligned and mapped by pages.
  9607       assert(os::vm_page_size() < (int)G, "default page should be small");
  9608       movl(result, str2); // We need only low 32 bits
  9609       andl(result, (os::vm_page_size()-1));
  9610       cmpl(result, (os::vm_page_size()-16));
  9611       jccb(Assembler::belowEqual, CHECK_STR);
  9613       // Move small strings to stack to allow load 16 bytes into vec.
  9614       subptr(rsp, 16);
  9615       int stk_offset = wordSize-2;
  9616       push(cnt2);
  9618       bind(COPY_SUBSTR);
  9619       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
  9620       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  9621       decrement(cnt2);
  9622       jccb(Assembler::notZero, COPY_SUBSTR);
  9624       pop(cnt2);
  9625       movptr(str2, rsp);  // New substring address
  9626     } // non constant
  9628     bind(CHECK_STR);
  9629     cmpl(cnt1, 8);
  9630     jccb(Assembler::aboveEqual, BIG_STRINGS);
  9632     // Check cross page boundary.
  9633     movl(result, str1); // We need only low 32 bits
  9634     andl(result, (os::vm_page_size()-1));
  9635     cmpl(result, (os::vm_page_size()-16));
  9636     jccb(Assembler::belowEqual, BIG_STRINGS);
  9638     subptr(rsp, 16);
  9639     int stk_offset = -2;
  9640     if (int_cnt2 < 0) { // not constant
  9641       push(cnt2);
  9642       stk_offset += wordSize;
  9644     movl(cnt2, cnt1);
  9646     bind(COPY_STR);
  9647     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
  9648     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  9649     decrement(cnt2);
  9650     jccb(Assembler::notZero, COPY_STR);
  9652     if (int_cnt2 < 0) { // not constant
  9653       pop(cnt2);
  9655     movptr(str1, rsp);  // New string address
  9657     bind(BIG_STRINGS);
  9658     // Load substring.
  9659     if (int_cnt2 < 0) { // -1
  9660       movdqu(vec, Address(str2, 0));
  9661       push(cnt2);       // substr count
  9662       push(str2);       // substr addr
  9663       push(str1);       // string addr
  9664     } else {
  9665       // Small (< 8 chars) constant substrings are loaded already.
  9666       movl(cnt2, int_cnt2);
  9668     push(tmp);  // original SP
  9670   } // Finished loading
  9672   //========================================================
  9673   // Start search
  9674   //
  9676   movptr(result, str1); // string addr
  9678   if (int_cnt2  < 0) {  // Only for non constant substring
  9679     jmpb(SCAN_TO_SUBSTR);
  9681     // SP saved at sp+0
  9682     // String saved at sp+1*wordSize
  9683     // Substr saved at sp+2*wordSize
  9684     // Substr count saved at sp+3*wordSize
  9686     // Reload substr for rescan, this code
  9687     // is executed only for large substrings (> 8 chars)
  9688     bind(RELOAD_SUBSTR);
  9689     movptr(str2, Address(rsp, 2*wordSize));
  9690     movl(cnt2, Address(rsp, 3*wordSize));
  9691     movdqu(vec, Address(str2, 0));
  9692     // We came here after the beginning of the substring was
  9693     // matched but the rest of it was not so we need to search
  9694     // again. Start from the next element after the previous match.
  9695     subptr(str1, result); // Restore counter
  9696     shrl(str1, 1);
  9697     addl(cnt1, str1);
  9698     decrementl(cnt1);   // Shift to next element
  9699     cmpl(cnt1, cnt2);
  9700     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9702     addptr(result, 2);
  9703   } // non constant
  9705   // Scan string for start of substr in 16-byte vectors
  9706   bind(SCAN_TO_SUBSTR);
  9707   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  9708   pcmpestri(vec, Address(result, 0), 0x0d);
  9709   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  9710   subl(cnt1, 8);
  9711   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  9712   cmpl(cnt1, cnt2);
  9713   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  9714   addptr(result, 16);
  9716   bind(ADJUST_STR);
  9717   cmpl(cnt1, 8); // Do not read beyond string
  9718   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  9719   // Back-up string to avoid reading beyond string.
  9720   lea(result, Address(result, cnt1, Address::times_2, -16));
  9721   movl(cnt1, 8);
  9722   jmpb(SCAN_TO_SUBSTR);
  9724   // Found a potential substr
  9725   bind(FOUND_CANDIDATE);
  9726   // After pcmpestri tmp(rcx) contains matched element index
  9728   // Make sure string is still long enough
  9729   subl(cnt1, tmp);
  9730   cmpl(cnt1, cnt2);
  9731   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  9732   // Left less then substring.
  9734   bind(RET_NOT_FOUND);
  9735   movl(result, -1);
  9736   jmpb(CLEANUP);
  9738   bind(FOUND_SUBSTR);
  9739   // Compute start addr of substr
  9740   lea(result, Address(result, tmp, Address::times_2));
  9742   if (int_cnt2 > 0) { // Constant substring
  9743     // Repeat search for small substring (< 8 chars)
  9744     // from new point without reloading substring.
  9745     // Have to check that we don't read beyond string.
  9746     cmpl(tmp, 8-int_cnt2);
  9747     jccb(Assembler::greater, ADJUST_STR);
  9748     // Fall through if matched whole substring.
  9749   } else { // non constant
  9750     assert(int_cnt2 == -1, "should be != 0");
  9752     addl(tmp, cnt2);
  9753     // Found result if we matched whole substring.
  9754     cmpl(tmp, 8);
  9755     jccb(Assembler::lessEqual, RET_FOUND);
  9757     // Repeat search for small substring (<= 8 chars)
  9758     // from new point 'str1' without reloading substring.
  9759     cmpl(cnt2, 8);
  9760     // Have to check that we don't read beyond string.
  9761     jccb(Assembler::lessEqual, ADJUST_STR);
  9763     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
  9764     // Compare the rest of substring (> 8 chars).
  9765     movptr(str1, result);
  9767     cmpl(tmp, cnt2);
  9768     // First 8 chars are already matched.
  9769     jccb(Assembler::equal, CHECK_NEXT);
  9771     bind(SCAN_SUBSTR);
  9772     pcmpestri(vec, Address(str1, 0), 0x0d);
  9773     // Need to reload strings pointers if not matched whole vector
  9774     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  9776     bind(CHECK_NEXT);
  9777     subl(cnt2, 8);
  9778     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
  9779     addptr(str1, 16);
  9780     addptr(str2, 16);
  9781     subl(cnt1, 8);
  9782     cmpl(cnt2, 8); // Do not read beyond substring
  9783     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
  9784     // Back-up strings to avoid reading beyond substring.
  9785     lea(str2, Address(str2, cnt2, Address::times_2, -16));
  9786     lea(str1, Address(str1, cnt2, Address::times_2, -16));
  9787     subl(cnt1, cnt2);
  9788     movl(cnt2, 8);
  9789     addl(cnt1, 8);
  9790     bind(CONT_SCAN_SUBSTR);
  9791     movdqu(vec, Address(str2, 0));
  9792     jmpb(SCAN_SUBSTR);
  9794     bind(RET_FOUND_LONG);
  9795     movptr(str1, Address(rsp, wordSize));
  9796   } // non constant
  9798   bind(RET_FOUND);
  9799   // Compute substr offset
  9800   subptr(result, str1);
  9801   shrl(result, 1); // index
  9803   bind(CLEANUP);
  9804   pop(rsp); // restore SP
  9806 } // string_indexof
  9808 // Compare strings.
  9809 void MacroAssembler::string_compare(Register str1, Register str2,
  9810                                     Register cnt1, Register cnt2, Register result,
  9811                                     XMMRegister vec1) {
  9812   ShortBranchVerifier sbv(this);
  9813   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  9815   // Compute the minimum of the string lengths and the
  9816   // difference of the string lengths (stack).
  9817   // Do the conditional move stuff
  9818   movl(result, cnt1);
  9819   subl(cnt1, cnt2);
  9820   push(cnt1);
  9821   cmov32(Assembler::lessEqual, cnt2, result);
  9823   // Is the minimum length zero?
  9824   testl(cnt2, cnt2);
  9825   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  9827   // Load first characters
  9828   load_unsigned_short(result, Address(str1, 0));
  9829   load_unsigned_short(cnt1, Address(str2, 0));
  9831   // Compare first characters
  9832   subl(result, cnt1);
  9833   jcc(Assembler::notZero,  POP_LABEL);
  9834   decrementl(cnt2);
  9835   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  9838     // Check after comparing first character to see if strings are equivalent
  9839     Label LSkip2;
  9840     // Check if the strings start at same location
  9841     cmpptr(str1, str2);
  9842     jccb(Assembler::notEqual, LSkip2);
  9844     // Check if the length difference is zero (from stack)
  9845     cmpl(Address(rsp, 0), 0x0);
  9846     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  9848     // Strings might not be equivalent
  9849     bind(LSkip2);
  9852   Address::ScaleFactor scale = Address::times_2;
  9853   int stride = 8;
  9855   // Advance to next element
  9856   addptr(str1, 16/stride);
  9857   addptr(str2, 16/stride);
  9859   if (UseSSE42Intrinsics) {
  9860     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  9861     int pcmpmask = 0x19;
  9862     // Setup to compare 16-byte vectors
  9863     movl(result, cnt2);
  9864     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
  9865     jccb(Assembler::zero, COMPARE_TAIL);
  9867     lea(str1, Address(str1, result, scale));
  9868     lea(str2, Address(str2, result, scale));
  9869     negptr(result);
  9871     // pcmpestri
  9872     //   inputs:
  9873     //     vec1- substring
  9874     //     rax - negative string length (elements count)
  9875     //     mem - scaned string
  9876     //     rdx - string length (elements count)
  9877     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
  9878     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
  9879     //   outputs:
  9880     //     rcx - first mismatched element index
  9881     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  9883     bind(COMPARE_WIDE_VECTORS);
  9884     movdqu(vec1, Address(str1, result, scale));
  9885     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  9886     // After pcmpestri cnt1(rcx) contains mismatched element index
  9888     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
  9889     addptr(result, stride);
  9890     subptr(cnt2, stride);
  9891     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
  9893     // compare wide vectors tail
  9894     testl(result, result);
  9895     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  9897     movl(cnt2, stride);
  9898     movl(result, stride);
  9899     negptr(result);
  9900     movdqu(vec1, Address(str1, result, scale));
  9901     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  9902     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
  9904     // Mismatched characters in the vectors
  9905     bind(VECTOR_NOT_EQUAL);
  9906     addptr(result, cnt1);
  9907     movptr(cnt2, result);
  9908     load_unsigned_short(result, Address(str1, cnt2, scale));
  9909     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
  9910     subl(result, cnt1);
  9911     jmpb(POP_LABEL);
  9913     bind(COMPARE_TAIL); // limit is zero
  9914     movl(cnt2, result);
  9915     // Fallthru to tail compare
  9918   // Shift str2 and str1 to the end of the arrays, negate min
  9919   lea(str1, Address(str1, cnt2, scale, 0));
  9920   lea(str2, Address(str2, cnt2, scale, 0));
  9921   negptr(cnt2);
  9923   // Compare the rest of the elements
  9924   bind(WHILE_HEAD_LABEL);
  9925   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  9926   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
  9927   subl(result, cnt1);
  9928   jccb(Assembler::notZero, POP_LABEL);
  9929   increment(cnt2);
  9930   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
  9932   // Strings are equal up to min length.  Return the length difference.
  9933   bind(LENGTH_DIFF_LABEL);
  9934   pop(result);
  9935   jmpb(DONE_LABEL);
  9937   // Discard the stored length difference
  9938   bind(POP_LABEL);
  9939   pop(cnt1);
  9941   // That's it
  9942   bind(DONE_LABEL);
  9945 // Compare char[] arrays aligned to 4 bytes or substrings.
  9946 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  9947                                         Register limit, Register result, Register chr,
  9948                                         XMMRegister vec1, XMMRegister vec2) {
  9949   ShortBranchVerifier sbv(this);
  9950   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  9952   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  9953   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  9955   // Check the input args
  9956   cmpptr(ary1, ary2);
  9957   jcc(Assembler::equal, TRUE_LABEL);
  9959   if (is_array_equ) {
  9960     // Need additional checks for arrays_equals.
  9961     testptr(ary1, ary1);
  9962     jcc(Assembler::zero, FALSE_LABEL);
  9963     testptr(ary2, ary2);
  9964     jcc(Assembler::zero, FALSE_LABEL);
  9966     // Check the lengths
  9967     movl(limit, Address(ary1, length_offset));
  9968     cmpl(limit, Address(ary2, length_offset));
  9969     jcc(Assembler::notEqual, FALSE_LABEL);
  9972   // count == 0
  9973   testl(limit, limit);
  9974   jcc(Assembler::zero, TRUE_LABEL);
  9976   if (is_array_equ) {
  9977     // Load array address
  9978     lea(ary1, Address(ary1, base_offset));
  9979     lea(ary2, Address(ary2, base_offset));
  9982   shll(limit, 1);      // byte count != 0
  9983   movl(result, limit); // copy
  9985   if (UseSSE42Intrinsics) {
  9986     // With SSE4.2, use double quad vector compare
  9987     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  9989     // Compare 16-byte vectors
  9990     andl(result, 0x0000000e);  //   tail count (in bytes)
  9991     andl(limit, 0xfffffff0);   // vector count (in bytes)
  9992     jccb(Assembler::zero, COMPARE_TAIL);
  9994     lea(ary1, Address(ary1, limit, Address::times_1));
  9995     lea(ary2, Address(ary2, limit, Address::times_1));
  9996     negptr(limit);
  9998     bind(COMPARE_WIDE_VECTORS);
  9999     movdqu(vec1, Address(ary1, limit, Address::times_1));
 10000     movdqu(vec2, Address(ary2, limit, Address::times_1));
 10001     pxor(vec1, vec2);
 10003     ptest(vec1, vec1);
 10004     jccb(Assembler::notZero, FALSE_LABEL);
 10005     addptr(limit, 16);
 10006     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
 10008     testl(result, result);
 10009     jccb(Assembler::zero, TRUE_LABEL);
 10011     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
 10012     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
 10013     pxor(vec1, vec2);
 10015     ptest(vec1, vec1);
 10016     jccb(Assembler::notZero, FALSE_LABEL);
 10017     jmpb(TRUE_LABEL);
 10019     bind(COMPARE_TAIL); // limit is zero
 10020     movl(limit, result);
 10021     // Fallthru to tail compare
 10024   // Compare 4-byte vectors
 10025   andl(limit, 0xfffffffc); // vector count (in bytes)
 10026   jccb(Assembler::zero, COMPARE_CHAR);
 10028   lea(ary1, Address(ary1, limit, Address::times_1));
 10029   lea(ary2, Address(ary2, limit, Address::times_1));
 10030   negptr(limit);
 10032   bind(COMPARE_VECTORS);
 10033   movl(chr, Address(ary1, limit, Address::times_1));
 10034   cmpl(chr, Address(ary2, limit, Address::times_1));
 10035   jccb(Assembler::notEqual, FALSE_LABEL);
 10036   addptr(limit, 4);
 10037   jcc(Assembler::notZero, COMPARE_VECTORS);
 10039   // Compare trailing char (final 2 bytes), if any
 10040   bind(COMPARE_CHAR);
 10041   testl(result, 0x2);   // tail  char
 10042   jccb(Assembler::zero, TRUE_LABEL);
 10043   load_unsigned_short(chr, Address(ary1, 0));
 10044   load_unsigned_short(limit, Address(ary2, 0));
 10045   cmpl(chr, limit);
 10046   jccb(Assembler::notEqual, FALSE_LABEL);
 10048   bind(TRUE_LABEL);
 10049   movl(result, 1);   // return true
 10050   jmpb(DONE);
 10052   bind(FALSE_LABEL);
 10053   xorl(result, result); // return false
 10055   // That's it
 10056   bind(DONE);
 10059 #ifdef PRODUCT
 10060 #define BLOCK_COMMENT(str) /* nothing */
 10061 #else
 10062 #define BLOCK_COMMENT(str) block_comment(str)
 10063 #endif
 10065 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
 10066 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 10067                                    Register to, Register value, Register count,
 10068                                    Register rtmp, XMMRegister xtmp) {
 10069   ShortBranchVerifier sbv(this);
 10070   assert_different_registers(to, value, count, rtmp);
 10071   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
 10072   Label L_fill_2_bytes, L_fill_4_bytes;
 10074   int shift = -1;
 10075   switch (t) {
 10076     case T_BYTE:
 10077       shift = 2;
 10078       break;
 10079     case T_SHORT:
 10080       shift = 1;
 10081       break;
 10082     case T_INT:
 10083       shift = 0;
 10084       break;
 10085     default: ShouldNotReachHere();
 10088   if (t == T_BYTE) {
 10089     andl(value, 0xff);
 10090     movl(rtmp, value);
 10091     shll(rtmp, 8);
 10092     orl(value, rtmp);
 10094   if (t == T_SHORT) {
 10095     andl(value, 0xffff);
 10097   if (t == T_BYTE || t == T_SHORT) {
 10098     movl(rtmp, value);
 10099     shll(rtmp, 16);
 10100     orl(value, rtmp);
 10103   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 10104   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 10105   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 10106     // align source address at 4 bytes address boundary
 10107     if (t == T_BYTE) {
 10108       // One byte misalignment happens only for byte arrays
 10109       testptr(to, 1);
 10110       jccb(Assembler::zero, L_skip_align1);
 10111       movb(Address(to, 0), value);
 10112       increment(to);
 10113       decrement(count);
 10114       BIND(L_skip_align1);
 10116     // Two bytes misalignment happens only for byte and short (char) arrays
 10117     testptr(to, 2);
 10118     jccb(Assembler::zero, L_skip_align2);
 10119     movw(Address(to, 0), value);
 10120     addptr(to, 2);
 10121     subl(count, 1<<(shift-1));
 10122     BIND(L_skip_align2);
 10124   if (UseSSE < 2) {
 10125     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 10126     // Fill 32-byte chunks
 10127     subl(count, 8 << shift);
 10128     jcc(Assembler::less, L_check_fill_8_bytes);
 10129     align(16);
 10131     BIND(L_fill_32_bytes_loop);
 10133     for (int i = 0; i < 32; i += 4) {
 10134       movl(Address(to, i), value);
 10137     addptr(to, 32);
 10138     subl(count, 8 << shift);
 10139     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 10140     BIND(L_check_fill_8_bytes);
 10141     addl(count, 8 << shift);
 10142     jccb(Assembler::zero, L_exit);
 10143     jmpb(L_fill_8_bytes);
 10145     //
 10146     // length is too short, just fill qwords
 10147     //
 10148     BIND(L_fill_8_bytes_loop);
 10149     movl(Address(to, 0), value);
 10150     movl(Address(to, 4), value);
 10151     addptr(to, 8);
 10152     BIND(L_fill_8_bytes);
 10153     subl(count, 1 << (shift + 1));
 10154     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 10155     // fall through to fill 4 bytes
 10156   } else {
 10157     Label L_fill_32_bytes;
 10158     if (!UseUnalignedLoadStores) {
 10159       // align to 8 bytes, we know we are 4 byte aligned to start
 10160       testptr(to, 4);
 10161       jccb(Assembler::zero, L_fill_32_bytes);
 10162       movl(Address(to, 0), value);
 10163       addptr(to, 4);
 10164       subl(count, 1<<shift);
 10166     BIND(L_fill_32_bytes);
 10168       assert( UseSSE >= 2, "supported cpu only" );
 10169       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 10170       // Fill 32-byte chunks
 10171       movdl(xtmp, value);
 10172       pshufd(xtmp, xtmp, 0);
 10174       subl(count, 8 << shift);
 10175       jcc(Assembler::less, L_check_fill_8_bytes);
 10176       align(16);
 10178       BIND(L_fill_32_bytes_loop);
 10180       if (UseUnalignedLoadStores) {
 10181         movdqu(Address(to, 0), xtmp);
 10182         movdqu(Address(to, 16), xtmp);
 10183       } else {
 10184         movq(Address(to, 0), xtmp);
 10185         movq(Address(to, 8), xtmp);
 10186         movq(Address(to, 16), xtmp);
 10187         movq(Address(to, 24), xtmp);
 10190       addptr(to, 32);
 10191       subl(count, 8 << shift);
 10192       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 10193       BIND(L_check_fill_8_bytes);
 10194       addl(count, 8 << shift);
 10195       jccb(Assembler::zero, L_exit);
 10196       jmpb(L_fill_8_bytes);
 10198       //
 10199       // length is too short, just fill qwords
 10200       //
 10201       BIND(L_fill_8_bytes_loop);
 10202       movq(Address(to, 0), xtmp);
 10203       addptr(to, 8);
 10204       BIND(L_fill_8_bytes);
 10205       subl(count, 1 << (shift + 1));
 10206       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 10209   // fill trailing 4 bytes
 10210   BIND(L_fill_4_bytes);
 10211   testl(count, 1<<shift);
 10212   jccb(Assembler::zero, L_fill_2_bytes);
 10213   movl(Address(to, 0), value);
 10214   if (t == T_BYTE || t == T_SHORT) {
 10215     addptr(to, 4);
 10216     BIND(L_fill_2_bytes);
 10217     // fill trailing 2 bytes
 10218     testl(count, 1<<(shift-1));
 10219     jccb(Assembler::zero, L_fill_byte);
 10220     movw(Address(to, 0), value);
 10221     if (t == T_BYTE) {
 10222       addptr(to, 2);
 10223       BIND(L_fill_byte);
 10224       // fill trailing byte
 10225       testl(count, 1);
 10226       jccb(Assembler::zero, L_exit);
 10227       movb(Address(to, 0), value);
 10228     } else {
 10229       BIND(L_fill_byte);
 10231   } else {
 10232     BIND(L_fill_2_bytes);
 10234   BIND(L_exit);
 10236 #undef BIND
 10237 #undef BLOCK_COMMENT
 10240 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
 10241   switch (cond) {
 10242     // Note some conditions are synonyms for others
 10243     case Assembler::zero:         return Assembler::notZero;
 10244     case Assembler::notZero:      return Assembler::zero;
 10245     case Assembler::less:         return Assembler::greaterEqual;
 10246     case Assembler::lessEqual:    return Assembler::greater;
 10247     case Assembler::greater:      return Assembler::lessEqual;
 10248     case Assembler::greaterEqual: return Assembler::less;
 10249     case Assembler::below:        return Assembler::aboveEqual;
 10250     case Assembler::belowEqual:   return Assembler::above;
 10251     case Assembler::above:        return Assembler::belowEqual;
 10252     case Assembler::aboveEqual:   return Assembler::below;
 10253     case Assembler::overflow:     return Assembler::noOverflow;
 10254     case Assembler::noOverflow:   return Assembler::overflow;
 10255     case Assembler::negative:     return Assembler::positive;
 10256     case Assembler::positive:     return Assembler::negative;
 10257     case Assembler::parity:       return Assembler::noParity;
 10258     case Assembler::noParity:     return Assembler::parity;
 10260   ShouldNotReachHere(); return Assembler::overflow;
 10263 SkipIfEqual::SkipIfEqual(
 10264     MacroAssembler* masm, const bool* flag_addr, bool value) {
 10265   _masm = masm;
 10266   _masm->cmp8(ExternalAddress((address)flag_addr), value);
 10267   _masm->jcc(Assembler::equal, _label);
 10270 SkipIfEqual::~SkipIfEqual() {
 10271   _masm->bind(_label);

mercurial